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AIM of WORK / SUMMARY 

Mesenchymal stem cells (MSC) are multipotent progenitor cells with self-renewable 

capacity and the potential to differentiate into various cell types, especially of the 

mesodermal lineages. They have immunomodulatory properties and, in particular when 

exposed to pro-inflammatory cytokines, they acquire immunosuppressive and anti-

inflammatory properties due in part to an array of soluble mediators. The characterization 

of the totality of soluble mediators, also indicated as “secretome”, could be useful to clarify 

the mechanism of MSC activity and, eventually, to design strategies to modulate their 

properties for the design of rational therapy design or improvement of existing therapies. 

However, until now, a thorough characterization of pro-inflammatory primed MSC 

secretome is still lacking, being its characterization in vivo very difficult, so a commonly 

used approach is the analysis of media conditioned by cells in culture. The aim of this 

investigation is the proteomic characterization of bone marrow derived cultured MSC 

secretome following stimulation with pro-inflammatory cytokines. We performed the study 

using a protocol set up in our laboratory and published in Nonnis et al, 2016, using two 

different models: murine and human. The chapter 3 of this dissertation, that concerns 

results obtained from the application of the previously mentioned protocol, is divided into 

three main parts: the first one describes results obtained from the proteomic 

characterization of murine MSC secretome; the second one those from human MSC 

secretome, and the last one is the comparison between the results from the two models, in 

order to define a unique molecular mechanism for MSC activity. Despite important 

differences among human and mouse, secreted proteins in both models are associated 

with inflammation and angiogenesis. In particular, the attention was focused on two 

proteins: CSF1 and TIMP1, which are present in conditioned medium of stimulated MSC 

(st MSC-CM) of both species and play a key role in immunity/inflammation and 

angiogenesis, respectively. This work allows to confirm the potential therapeutic role of 

MSC secretome and to design pre-clinical experiments and clinical trials. Results reported 

in this phD thesis have been in part published in:  

Mouse mesenchymal stem cells inhibit high endothelial cell activation and 

lymphocyte homing to lymph nodes by releasing TIMP-1 L.Zanotti, R.Angioni, B.Cali, 

C.Soldani, C.Ploia, F.Moalli, M.Gargesha, G.D’Amico, S.Elliman, G.tedeschi, E.Maffioli, 

A.Negri, S. Zacchigna, A.Sarukhan, JV Stein and A. Viola, Leukemia (2016) 30, 1143–

1154  and in Proteomic analysis of the secretome of human bone marrow-derived 
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Mesenchymal Stem Cells primed by pro-inflammatory cytokines E.Maffioli, S.Nonnis, 

R. Angioni, F.Santagata, B.Calì, L. Zanotti, A.Negri, A.Viola, G.Tedeschi, Journal of 

proteomics (2017) 166, 115-126. 
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1.1 Stem cells 

 

1.1.1 Definition and origin 
The human body comprises over 200 different cell types that are organized into tissues 

and organs to provide all the functions required for viability and reproduction. Historically, 

biologists have been interested primarily in the events that occur prior to birth. The second 

half of the twentieth century was a golden era for the developmental biology, since the key 

regulatory pathways that control specification and morphogenesis of tissues were defined 

at the molecular level [1]. The origins of stem cell research lie in a desire to understand 

how tissues are maintained in adult life, rather than how different cell types arise in the 

embryo. Stem cells are unspecialized cells found in multicellular organisms, characterized 

by the ability to self-renew by mitosis while in undifferentiated state, and to give rise to 

various differentiated cell types by cell differentiation [Fig.1], [2]. For definition, a stem cell 

possesses two important properties: 

 self-renewal: the ability to go through numerous cycles of cell division while 

maintaining the undifferentiated state [3]; 

 potency: the capacity to differentiate into specialized cell types [3]. 

 

Fig.1 The two fundamental properties of a stem cell: self-renewal and potency. Self-renewal is the 

cell’s ability to replicate itself, and potency is the capacity to differentiate into many cell types [3]. 
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1.1.1.1 Self-renewal  

To ensure self-renewal, stem cells undergo two types of cell division: symmetric division, 

which gives rise to two identical daughter cells both endowed with stem cell properties; 

and asymmetric division, which produces only one stem cell and a progenitor cell with 

limited self-renewal potential. Progenitors can go through several rounds of cell division 

before terminally differentiating into a mature cell [Fig. 2], [4].  

 

 

Fig.2 A stem cell division and differentiation. A: stem cell; B: progenitor cell; C: differentiated cell; 1: 

symmetric stem cell division; 2: asymmetric stem cell division; 3: progenitor division; 4: terminal 

differentiation [4].   

1.1.1.2 Potency  

In terms of the capacity to differentiate into different cell types, stem cells can be divided in 

[Fig.3]: 

 totipotent stem cells: produced from the fusion of an egg and sperm cell, they can 

differentiate into embryonic and extraembryonic cell types. Such cells can construct 

a complete, viable organism [5];  

 pluripotent stem cells: descendants of totipotent cells, these cells can differentiate 

into nearly all cells [5], for example, cells derived from any of the three germ layers 

[7];  

 multipotent stem cells:  these cells can differentiate into a number of cell types, but 

only those of a closely related family of cells [5]; 

 oligopotent stem cells: these cells can differentiate into only a few cell types (such 

as lymphoid or myeloid stem cells) [5];  
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 unipotent cells: they can produce only one cell type, their own, but have the 

property of self-renewal, which distinguishes them from non-stem cells (e.g. 

progenitor cells, which cannot self-renew) [5]. 

 

 

Fig. 3 Classification of stem cells about their potency. Totipotent, pluripotent, multipotent, oligopotent 

and unipotent stem cells [8].  

1.1.2 Types of stem cells 

In mammals, there are two broad types of stem cells: embryonic stem cells [9], which are 

isolated from the inner cell mass of blastocysts, and adult stem cells [11], which are found 

in various tissues [Fig.4]. In a developing embryo, stem cells can differentiate into all the 

specialized cells (ectoderm, endoderm and mesoderm) but can also maintain the normal 

turnover of regenerative organs, such as blood, skin, or intestinal tissues. In adult 

organisms, stem cells and progenitor cells act as a repair system for the body, 

replenishing adult tissues.  

1.1.2.1 Embryonic stem cells  

Embryonic stem cells (ES) are the cells of the inner cell mass of a blastocyst, an early-

stage embryo [9]. Human embryos reach the blastocyst stage 4–5 days post fertilization, 

at which time they consist of 50–150 cells. ES cells are pluripotent and give rise during 

development to all derivatives of the three primary germ layers: ectoderm, endoderm and 

mesoderm. In other words, they can develop into each of the more than 200 cell types of 

the adult body when given sufficient and necessary stimulation for a specific cell type. 

They do not contribute to the extra-embryonic membranes or the placenta. A human 

embryonic stem cell is defined by the expression of several transcription factors and cell 

surface proteins. Among the transcription factors, Oct-4, Nanog, and Sox2 form the core 

regulatory network that ensures the suppression of genes leading to differentiation and 

maintenance of pluripotency [10]; while the cell surface antigens most commonly used to 
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identify human ES cells are the glycolipids stage specific embryonic antigen 3 and 4 and 

the keratan sulfate antigens Tra-1-60 and Tra-1-81[10].  

1.1.2.2 Adult stem cells  

Adult stem cells, also called somatic stem cells, are stem cells which maintain and repair 

the tissue in which they are found [11]. They are present in children, as well as adults [12]. 

Pluripotent adult stem cells are rare and generally small in number, but they can be found 

in umbilical cord blood and other tissues [13]. Bone marrow is a rich source of adult stem 

cells [14], which have been used in treating several conditions including liver cirrhosis [15], 

chronic limb ischemia [16] and end stage heart failure [17]. The quantity of bone marrow 

stem cells declines with age and is greater in males than females during reproductive 

years [18]. DNA damage accumulates with age in both stem cells and in the cells that 

comprise the stem cell environment. This accumulation is considered to be responsible, at 

least in part, for increasing stem cell dysfunction with aging [19]. Most adult stem cells are 

lineage-restricted (multipotent) and are generally referred to by their tissue origin 

(mesenchymal stem cell, adipose-derived stem cell, endothelial stem cell, dental pulp stem 

cell, etc.) [10]. 

  

                    Embryonic stem cells                             Adult stem cells 

Fig.4 Types of stem cells. A. Embryonic stem cells are obtained from the inner mass of blastocyst and can 

be removed and cultivated for different uses. B. Adult stem cells are stem cells which maintain and repair the 

tissue in which they are found. They can be extracted, selected, grown and under stimulation, also 

differentiated into a specific cell type [21].  
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1.1.2.3 Other types: fetal and amniotic stem cells  

The primitive stem cells located in the organs of  fetuses are referred to as fetal stem cells. 

They can be fetal proper stem cells and extraembryonic fetal stem cells [22] The fetal 

proper stem cells come from the tissue of the fetus, and are generally obtained after an 

abortion, they are not immortal but have a high level of division and are multipotent [22]; 

the extraembryonic fetal stem cells, from extraembryonic membranes, are not 

distinguished from adult stem cells [22]. These stem cells are acquired after birth; they are 

not immortal but have a high level of cell division and are pluripotent [23]. Multipotent stem 

cells are also found in amniotic fluid, and are known also as amniotic stem cells. These 

stem cells are very active, expand extensively without feeders and are not tumorigenic; 

they can differentiate in cells of adipogenic, osteogenic, myogenic, endothelial, hepatic 

and neuronal lines [24] and represent a topic of active research. 

1.1.3 Clinical application/Therapeutic use  

Stem cell therapy is the use of stem cells to treat or prevent a disease or pathological 

condition exploiting their capacity to differentiate in various cells type. Stem cells are used 

in neurodegenerative diseases, diabetes, heart disease, and other conditions [25], but also 

for research purpose to further understand human development, organogenesis, and 

diseases [26]. For example, by using human embryonic stem cells to produce specialized 

cells in the lab, scientists can gain access to adult human cells without taking tissue from 

patients. They can then study these specialized adult cells in detail to catch complications 

of diseases, or to study cells reactions to potentially new drugs. Adult stem cells have 

limitations in their potency since they are not able to differentiate into cells from all three 

germ layers. However, a genetic reprogramming allows for the creation of pluripotent cells, 

called induced pluripotent stem cells (iPSCs), [Fig.5]. It is important to note that these are 

not adult stem cells, but adult cells (e.g. epithelial cells) reprogrammed to give rise to cells 

with pluripotent capabilities [27, 28, 29] and they are also different from embryonic stem 

cells (ESs). Importantly, the chromatin of iPSCs appears to be more "closed" or 

methylated than that of ESs [30, 31] and similarly, the gene expression pattern is different 

from ESs or even among iPSCs sourced from different origins [30]. 
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Fig.5 Induced pluripotent stem (iPS) cells. They are created artificially in the lab by "reprogramming" a 

patient's own cells. These cells can be made from readily available cells including fat, skin, and fibroblasts 

(cells that produce connective tissue) [32]. 

 

Adult stem cell treatments have been successfully used for many years to treat leukemia 

and related bone/blood cancers through bone marrow transplants [33]. They are also used 

in veterinary medicine to treat tendon and ligament injuries in horses [34]. 

 

1.1.4 Potential risks of the use of stem cells 

The use of stem cells presents also some disadvantages: 
 

 

1.  it  is  difficult  to  obtain  the  exact  cell  type  needed,  because  not  all  cells  in  a 

population differentiate uniformly and undifferentiated cells can create tissues other 

than the desired one [23]; 

2.  some stem cells form tumors after transplantation [81]; 
 

3. stem cell treatments may require immunosuppression by radiation before the 

transplant to remove the person's previous cells and to avoid the targeting of stem 

cells by patient's immune system. One approach to avoid the second possibility is to 

use stem cells from the same patient who is being treated [23].
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1.2 Mesenchymal stem cells 

1.2.1 Definition  

The term mesenchymal stem cells (MSCs) [Fig.6] is referred to stem cells present in the 

hematopoietic microenvironment of bone marrow that can differentiate into different 

tissues developing from the mesoderm. It was first used to refer to a hypothetical 

postnatal, multipotent and self­renewing precursor derived from an original embryonic 

MSC, the function of which was to maintain the turnover of skeletal tissues in homeostasis 

or tissue repair during adulthood.  

 

Fig.6  Mesenchymal Stem Cells [36]. 

MSCs refer to cultivated cells that are used in research and in the clinic. When cultivated, 

these cells are a mix of cells ranging from stem cells to mature stromal cells; in this case, 

MSCs refer to multipotent mesenchymal stromal cells [37]. Although MSCs were first 

described in bone marrow, they have been found in all tissues and are present within the 

pericyte population in the vasculature wall [38]. Many studies have further reported 

mesenchymal stromal cell differentiation into multiple other cell types of mesodermal and 

non­mesodermal origin, including endothelial cells [39], cardiomyocytes [40],  hepato cytes 

[41] and neural cells [42]. 

1.2.1.1 MSC classification 

The International Society of Cellular Therapy defines MSCs or multipotent stromal cells by 

three main characteristics [37]: 

1. their adhesion to plastic;  

2. their expression of a specific set of membrane molecules (CD73, CD90, CD105), 

together with lack of expression of the hematopoietic markers CD14, CD34 and 

CD45 and human leucocyte antigen-DR (HLA-DR);  

3. their ability to differentiate within three main pathways -- osteoblastic, chondrogenic 

and adipocytic.  

Although these main characteristics can be applied to all cultivated MSCs, some 

differences might depend on the tissue origin [43]. An additional important consideration is 
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that mesenchymal stromal cells derived from various postnatal or embryonic tissues using 

identical culture conditions display significant differences in colony morphology, 

differentiation potential and gene expression [44, 45]. Data suggest that mesenchymal 

stromal cell cultures may originate from an array of tissue­specific multipotent precursor 

cells that are present in native tissues and have diverse degrees of plasticity and 

self­renewal. 

1.2.2 Studying MSCs in vivo  

After years of investigating MSCs out of their native context, little has been learned 

regarding the identity and function of their precursors in vivo. It is important to note that the 

fundamental biological properties of mesenchymal stromal cells are likely to be altered by 

culture conditions and thus should not be directly ascribed to their presumed in vivo 

counterpart. Progress in our understanding of bona fide MSCs largely relies on having the 

capacity to recognize progenitor cells in situ, prospectively isolate them and finally assay 

their multi­ potency and self­renewal capacity in vivo [170].  

1.2.2.1 Perivascular localization in vivo 

A key task for assessing the function of MSCs in vivo is to define their micro-anatomical 

localization in situ in diverse organs. Efforts to track the identity of tissue­resident MSCs 

have consistently suggested that these cells lie adjacent to blood vessels. Evidence for 

such association came from initial observations that pericytes (also known as Rouget cells 

or mural cells), which are defined by their perivascular location and morphology, display 

MSC­like features [46], [Fig.7].   

 

 

Fig. 7 In vivo perivascular localization of MSC. MSCs lie adjacent to blood vessel, such as pericyte, that 

are contractile cells that wrap around the endothelial cells that line the capillaries and venules and that 

display MSC-like features [47]. 

https://en.wikipedia.org/wiki/Endothelium
https://en.wikipedia.org/wiki/Capillary
https://en.wikipedia.org/wiki/Venule
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Pericyte­derived cultures are similar to mesenchymal stromal cell cultures in terms of 

morphology and cell­surface antigen expression, and can be induced to differentiate into 

not only osteoblasts, chondrocytes and adipocytes but also smooth muscle cells and 

myocytes under appropriate conditions [48, 49].  

1.2.3 MSCs: potential for differentiation  

MSCs can differentiate in vitro to osteoblasts or chondrocytes and should be able to 

differentiate in vivo as well. The transplantation and differentiation of MSCs to functional 

osteoblasts was demonstrated in vivo in an animal model and in humans, which led to 

treatment for osteogenesis imperfecta and bone loss [43]. MSCs participate in stem cell 

niches such as the hematopoietic niche, and recently, bone marrow sub-endothelial cells 

expressing CD146, a population of MSC, were found to reconstitute the hematopoietic 

microenvironment [44]. The multipotent character of MSCs and their plasticity within 

mesodermic lineages is supported by lineage priming [45]. However, the differentiation 

towards other lineages originating from the mesoderm, such as skeletal and myocardial 

muscle cells, remains questionable and could depend on the origin of MSCs; for example, 

adipose-tissue-derived MSCs are able to differentiate to cardiomyocytes [46]. 

1.2.4 MSCs: immune privilege of MSCs 

In addition to their stem/progenitor properties, MSCs have also been shown to possess 

broad immunoregulatory abilities and are capable of influencing both adaptive and innate 

immune responses. Recent findings have demonstrated that MSCs actively interact with 

components of the innate immune system and that, through these interactions; they 

display both anti-inflammatory and pro-inflammatory effects [50].  

1.2.4.1 MSC as “sensor of inflammation” 

Inflammation serves as a localized or systemic protective response elicited by infection, 

injury or tissue destruction to eliminate pathogens and preserve host integrity. Within hours 

after the onset of an inflammatory response, molecules expressed by pathogens or 

associated with tissue injury are recognized by Toll-like receptors (TLRs) present on innate 

effector cells. TLR ligation triggers phagocytosis and the release of inflammatory 

mediators, which may initiate innate immune responses that provide a first line of 

nonspecific defence, mainly through the activation of phagocytic cells, including 

macrophages and neutrophils [51]. TLR ligation may not only activate phagocytic cells but 

also stromal cells, including MSCs, thus creating an inflammatory environment [52, 53]. 

Human and mouse MSCs dynamically express a number of distinct and overlapping TLRs 
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in culture. Moreover, in vitro stimulation of specific TLRs affects the subsequent immune 

modulating responses of MSCs [54, 55, 56]. Under hypoxic culture conditions, stimulation 

of MSCs with the pro-inflammatory cytokines IFN-γ, TNF, IFN-α, and IL-1β upregulates 

expression of a subset of TLRs, thus increasing the sensitivity of MSCs to the 

inflammatory milieu [57]. However, prolonged stimulation with TLR ligands causes 

downregulation of TLR2 and TLR4 [58], most likely as a self-regulatory mechanism to 

prevent overactive skewing of the immune response. To direct appropriate immune 

responses to a diversity of pathogenic insults, the different TLRs are activated by specific 

endogenous or pathogen-associated molecules, including lipopolysaccharide (LPS) from 

Gram-negative bacteria (TLR4) and double strand RNA (dsRNA) carried by some viruses 

(TLR3) [53]. This has suggested that MSCs may polarize into two distinctly acting 

phenotypes following specific TLR stimulation, resulting in different immune modulatory 

effects and distinct secretomes. The TLR4-primed MSC population exhibits a pro-

inflammatory profile (MSC1) and the TLR3-primed MSC population delivers anti-

inflammatory signals (MSC2), [Fig.8]. 

 

Fig. 8 The polarization of MSCs into a Pro-inflammatory and Anti- Inflammatory Phenotype. (A) In the 

presence of an inflammatory environment, MSCs become activated and adopt an immune-suppressive 

phenotype (MSC2) by secreting high levels of soluble factors that suppress T cell proliferation. (B) In the 

absence of an inflammatory environment, MSCs may adopt a pro-inflammatory phenotype (MSC1) and 

enhance T cell responses by secreting chemokines that recruit lymphocytes to sites of inflammation [59].  

 

In particular, besides their potential for differentiation, MSCs can exert an 

immunosuppressive effect in vitro and in vivo [60, 61] by acting on all immune effectors 

[62]. In fact, MSCs are unable to induce considerable alloreactivity because of a number of 
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unique characteristics that protect MSCs from alloreactive natural killer (NK)-cell-mediated 

lysis [63]. However, some controversial data have been obtained with animal-derived 

MSCs. For example, in vitro and in vivo, murine allogeneic MSCs can elicit an immune 

response in immunocompetent mice [64, 65].  

1.2.4.1.1 MSC interaction with immune cells (T cells, B cells, NK cells and dendritic 

cells) 

As “sensor of inflammation”, MSCs interact with cells involved in the process [Fig.9].  

About T-cells, MSC may inhibit their proliferation induced by several stimuli both in vitro 

and in vivo [66, 67, 68], arresting activated T-cells in the G0/G1 phase of the cell cycle [69] 

without inducing apoptosis [66, 68] and the same is for B-cells [70]. Moreover, MSCs can 

also modulate B-cell migration and production of IgM, IgA and IgG, without inducing 

apoptosis [70, 71]. MSCs may also inhibit both IL-2 and IL-15 induced NK proliferation  

[72, 73] and may interfere also with dendritic cells (DC) function and support the 

development of tolerogenic antigen-presenting cells (APCs). In vivo results indicate that 

MSCs actively interact with cells of the innate immune system and modulate their function 

to establish a fine balance between pathogen elimination and repair processes, aiming at 

controlling inflammation, preventing organ failure, and preserving tissue homeostasis. 

Therefore, the further elucidation of mechanisms that trigger a functional switch between 

MSC phenotypes remains an important research goal for future studies [74].  

 

Fig. 9 MSC interactions with immune cells. MSCs are immune privileged cells that inhibit both innate 

(neutrophils, dendritic cells and natural killer cells) and adaptive (T cells and B cells) immune cells (INF-

indicates interferon; TNF-indicates tumor necrosis factor) [74].  

http://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiE7Pbm5vHUAhWGWBoKHWgzDnQQjRwIBw&url=http://circres.ahajournals.org/content/109/8/923&psig=AFQjCNEPIugwB6qvwjVZ_dXDb3bgw6GxvQ&ust=1499332076225282


17 
 

1.2.5 Clinical application/ Therapeutic use  

The wide range of in vivo effects of MSCs, from cell replacement and immunosuppression 

to trophic effects, drives their increasing use in regenerative medicine and immune 

intervention. Whatever the use, MSCs must be produced according to good manufacturing 

practices (GMPs), with relevant controls, to obtain efficient and safe cell therapy [75]. The 

ability of MSCs to adopt a different phenotype in response to sensing an inflammatory 

environment is crucial for understanding their therapeutic potential in immune-mediated 

disorders. The available evidence suggests that responses to MSC treatment may be 

independent of the MSC donor or dose of the immune-suppressive treatment employed. 

This heterogeneity in response might be related to the presence or absence of the 

appropriate environment in the patient capable of activating MSCs. 

1.2.5.1 Regenerative medicine: stem cell transplantation 

Stem cell transplantation is a procedure that replaces unhealthy blood-forming cells with 

healthy cells arising from stem cells. There are two different types of stem cell 

transplantation: autologous and allogenic. In the first one stem cells come from patient 

own body, instead in the allogenic one cells are from a healthy person (the donor). In this 

last case, an important medical complication is the graft versus host disease (GvHD) that 

consist in the fact that immune cells in the donated tissue (the graft) recognize the 

recipient (the host) as foreign (nonself); so the transplanted immune cells then attack the 

host's body cells. It has been observed [76] that, because of the profound 

immunomodulatory effect of MSCs in vivo and in vitro, use of ex vivo-expanded MSCs for 

treatment or prophylaxis of steroid-resistant GvHD was recommended. Another important 

potential application of MSCs in allogeneic stem cell transplantation is for enhancement of 

engraftment. In fact, since MSCs secrete many growth factors stimulating hematopoiesis, 

provide a scaffold for hematopoiesis and support primitive progenitor cells in vivo, they 

might enhance engraftment after stem cell transplantation [77]. 

1.2.5.2 Immune Intervention 

Under the effect of inflammatory cytokines, MSCs are capable to migrate to inflamed 

tissues and modulate the local inflammatory reactions thanks to the effects on both innate 

and adaptive immunity [67, 78]. In addition, MSCs may recruit and support local 

autologous stem cells inside the injured tissues, thus promoting cell survival and tissue 

repair [75]. Therefore, MSC-based treatments may represent a novel strategy against 

systemic autoimmunity and inflammation, in diseases such as rheumatoid arthritis, multiple 

sclerosis and type-I diabetes. In vitro and in vivo studies in animal model [79, 80] suggest 
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the use of MSCs for managing autoimmune and inflammatory diseases. In addition, no 

evidence exists of systemic immunosuppression and increased risk of infections as side-

effects of MSC infusion in immunocompetent individuals, which suggests that the immune-

regulatory effects of MSCs are restricted to inflamed tissues. For these reasons, MSC-

based immunotherapy may become suitable in the future for many severe inflammatory 

diseases [171]: 

1. Bone and cartilage repair 

2. Heart and vessels 

3. Epithelium 

4. Central nervous system 

1.2.6 Potential risks in using MSCs 

The use of MSCs could imply different risks, because of the differentiation potentials, their 

immunosuppressive properties and some possible immortalisation/transformation during 

long-term culture. Recent concerns have been expressed about the potential 

transformation of MSCs during the culture process, as shown recently in describing the 

transformation of human MSCs in cells cultured for a long time. In fact, although they can 

be managed safely during the standard ex vivo expansion period (6-8 weeks), human 

mesenchymal stem cells can undergo spontaneous transformation following long-term in 

vitro culture (4-5 months) [81]. Human cells have two control points that regulate their life 

span in vitro, the senescence and crisis phases. Senescence is associated with moderate 

telomere shortening and is characterized by cell cycle arrest and positive β-galactosidase 

staining at pH 6 [82]. If cells bypass this stage, they continue to grow until telomeres 

become critically short and cells enter crisis phase, characterized by generalized 

chromosome instability that provokes mass apoptosis [83]. Human cells immortalize at low 

frequency seem resistant to spontaneous transformation, instead MSC in long-term 

cultures immortalize at high frequency and undergo spontaneous transformation [81] 

supporting recent cautionary speculation that “mutant stem cells may seed cancer” [84]. 

1.2.7 Animal Models – different biological and functional properties of 

MSCs in mouse and man 

Animal models are of critical importance for translating in vitro immune regulatory 

properties of MSCs into therapeutic application and dissecting mechanisms of efficacy. 

However, it’s important to note that murine MSCs are intrinsically different from human 

cells. Although murine and human MSCs share properties such as multi lineage 
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differentiation capacity, they are also distinct with respect to other properties. Ex vivo 

expansion with murine cells is slower than with human cells, and murine MSCs require 

weeks before entering a linear growth rate [85]. At this stage, murine MSCs undergo 

transformation and immortalization in culture. Several reports have indicated that 

transformed murine MSCs have an increased proliferation rate, display an altered 

morphology, carry cytogenetic abnormalities, and form tumors following injection into 

syngeneic mice. Murine BM-derived MSCs in long-term culture gradually exhibit increased 

telomerase activity and proceed to a malignant state, resulting in sarcoma formation in 

vivo [86, 87]. This susceptibility to malignant transformation may be attributed to the high 

degree of chromosomal instability in genetically unstable inbred mice, characterized by the 

development of both structural and numerical aberrations even at early culture passages. 

Therefore, culture-expanded murine MSCs should be regarded as transformed cells, even 

in the absence of a malignant phenotype. These differences should be taken into 

consideration when interpreting data. The dissimilarities between MSCs isolated from 

murine and human species require a careful evaluation when choosing animal models to 

test MSCs in preclinical studies and so, when interpreting in vivo effects of murine MSCs, 

especially in light of efforts to look at clinical application of MSCs. 

1.3 Study of MSC secretome 

Mesenchymal stem cells represent a promising therapeutic approach and they action is 

due mainly to secreted mediators that often acts through chemotactic signaling [88], that 

are referred as “secretome”. This term was first used by Tjalsma et al. [89] to include all 

proteins that are synthesized and processed by the secretary pathway and proteins 

located in the secretion machinery, although, the term was recently limited to include only 

the set of secreted or extracellular proteins in a species. For the use of MSC, it’s very 

important to know as much as possible the identity of molecules responsible for their 

activities. Since the secretome plays a direct role in the biological activities of MSCs, the 

qualitative and quantitative analysis of the protein component of MSC secretome is a 

fundamental step in order to identify key players in the control and regulation of the many 

biological processes influenced by these cells [90]. Previously, studies used to compare 

plasma/serum from cancer patients with those from normal controls because, as 

suggested by Liotta, "the blood contains a treasure trove of previously unstudied 

biomarkers that could reflect the ongoing physiologic state of all tissues", and the latter, 
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therefore, appears to be more attractive [91]. However, the prospects of blood proteomics 

are challenged by the fact that blood is a very complex body fluid, comprising an 

enormous diversity of proteins and protein isoforms with a large dynamic range of at least 

9–10 orders of magnitude. The abundant blood proteins, such as albumin, 

immunoglobulin, fibrinogen, transferrin, haptoglobin and lipoproteins, may mask the less 

abundant proteins, which are usually potential markers [92]. So, studies redirected to the 

“secretome” although, only few studies have characterized the cellular secretome in vivo, 

assuming the idea that cells grown in vitro and stimulated using specific factors to which 

cells are exposed under certain conditions in vivo, present in vitro a secretion phenotype 

similar to one in vivo [93,94]. In particular, for this purpose an optimized protocol set up in 

our laboratory was used to allow the collection of the secretome of human bone marrow 

mesenchymal stem cells (BM-MSC) in order to detect the differential expression of 

secreted protein induced by exposing cells to specific stimulation conditions. 

1.3.1 Proteomic characterization of MSC secretome 

The proteomic approach for the characterization of MSC secretome, described in this 

thesis, is a shotgun label free approach to allow direct identification and quantification of 

«all detectable» proteins in the secretome of stimulated (MIX) vs unstimulated (CTR) 

MSC, both in mouse and human. The shot gun approach is a “bottom-up” protein analysis 

which allow the characterization of all the proteins present in a sample without any 

previous purification before digestion and nano LC-MS/MS analysis. For many years 2D-

PAGE/MS, which is an overall, comparative, quantitative proteomic technique, was the 

gold standard for analysis of protein expression and biomarker discovery. However, there 

are several disadvantages associated with gel-based proteomic techniques. For example, 

any 2D approach is subjected to the restrictions imposed by the gel method, which include 

limited dynamic range, difficulty in handling hydrophobic proteins, and difficulty in detecting 

proteins with extreme molecular weights and pI values [95]. Another negative aspect is 

that spots on a 2D gel often contain more than one protein, making quantification 

ambiguous; throughput is low and gel-to-gel reproducibility can be a challenge [95]. 

Furthermore, co-migration of proteins can cause problems during the excision and 

identification steps as there may be more than one protein present in the gel spot excised. 

Moreover, low-abundance proteins may be masked in the gel by high-abundance 

housekeeping proteins. Therefore, in more recent years, there has been a move towards 

gel-free MS methods for proteome analysis. The gel-free methods are based on the high-

throughput ‘‘shotgun” analysis of peptides from a digested complex protein sample using 
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an on-line high performance liquid chromatography (HPLC) method, prior to identification 

using MS [96]. Label-free approaches have been developed for quantitative shotgun 

proteomic and are methods that don’t use chemical tags for quantification. In this method, 

each sample is processed separately and individually analysed through LC-MS/MS [95]. 

The basic steps of all the label-free techniques are: 

- sample preparation including protein extraction, reduction, alkylation, and digestion;  

- sample separation by liquid chromatography (LC or LC/LC) and analysis by MS/MS; 

- data analysis including peptide/protein identification, quantification, and statistical 

analysis.  

Shotgun proteomic has provided powerful tools for studying large scale protein expression 

and characterization in complex biological systems [99, 100]. This proteomic strategy 

converts a complex protein mixture to an even more complicated peptide mixture. For this 

reason, to resolve complex peptide mixtures, high-resolution HPLC separations are 

necessary to maximize peptide separation for acquisition of tandem mass spectra. The 

liquid chromatography step separates the peptides and elutes them directly into the ESI 

ionizer of the mass spectrometer. 

There are two different kind of measurement used for the quantification (Fig.10): the first 

one calculates ion intensity changes as peptide peak areas or heights in chromatography, 

while the second is based on the spectral counting of identified proteins after tandem mass 

analysis. The two measures are calculated for each LC-MS/MS or LC/LC-MS/MS runs, so 

it is possible to point out differences in protein abundance comparing the results of 

different analyses. The relative quantification by peak intensity is based on extracting the 

ion chromatogram of the peptides and comparing them across range (Fig.10 A). In LC-MS, 

an ion with a specific m/z and intensity is detected and recorded at a certain time and it 

has been observed that its signal intensity from electrospray ionization (ESI) correlates 

with the concentration [101].  As reported in [101], it was experimentally observed that the 

chromatographic peaks area of each peptide, increases with the increase of the ion’s 

concentration and the sum of the peak’s area of all the peptides identified correlates 

linearly with the protein concentration. The strong correlation between chromatographic 

peak areas and the peptide/protein concentration was still observed when the when the 

protein was spiked into a complex mixture and its digests were detected by LC-MS/MS 

[102, 103]. Although these early studies showed that the relative quantification of the 

peptides could be achieved via direct comparison of peak intensity of each peptide ion in 

https://www.hindawi.com/journals/bmri/2010/840518/#B13
https://www.hindawi.com/journals/bmri/2010/840518/#B14


22 
 

multiple LC-MS datasets, applying this method for the analysis of changes in protein 

abundances in complex biological samples had some practical constraints. First, even the 

same sample can result in differences in the peak intensities of the peptides from run to 

run. These differences are caused by experimental variations such as differences in 

sample preparation and sample injection. Normalization is required to account for this kind 

of variation. Second, any experimental drifts in retention time and m/z will significantly 

complicate the direct, accurate comparison of multiple LC-MS datasets. Chromatographic 

shifts may occur as a result of multiple sample injections onto the same reverse-phase LC 

column. Unaligned peak comparison will result in large variability and inaccuracy in 

quantification. Thus, highly reproducible LC-MS and careful chromatographic peak 

alignment are required and critical in this comparative approach [104 – 109]. In the 

spectral counting approach, relative protein quantification is achieved by comparing the 

number of identified MS/MS spectra from the same protein in each of the multiple LC-

MS/MS or LC/LC-MS/MS datasets (Fig.10 B). This is possible because an increase in 

protein abundance typically results in an increase in the number of its proteolytic peptides, 

and vice versa. This increased number of (tryptic) digests then usually results in an 

increase in protein sequence coverage, the number of identified unique peptides, and the 

number of identified total MS/MS spectra (spectral count) for each protein [110]. Liu et al. 

[111] studied the correlation between relative protein abundance and sequence coverage, 

peptide number, and spectral count. It was demonstrated that among all the factors of 

identification, only spectral count showed strong linear correlation with relative protein 

abundance  with a dynamic range over 2 orders of magnitude [111]. Therefore, spectral 

count can be used as a simple but reliable index for relative protein quantification. Spectral 

counting-based quantification is proved more reproducible and has a larger dynamic range 

than the peptide ion chromatogram-based quantification [112]. In contrast to the 

chromatographic peak intensity approach, which requires delicate computer algorithms for 

automatic LC-MS peak alignment and comparison, no specific tools or algorithms have 

been developed specially for spectral counting due to its ease of implementation. 

However, normalization and statistical analysis of spectral counting datasets are 

necessary for accurate and reliable detection of protein changes in complex mixtures. 

Relative quantification by spectral count has been widely applied in different biological 

complex [113, 114, 115] and it is the type of measurement used in this work. 
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Fig.10 Label-free quantitative proteomics. Control and sample are subject to individual LC-MS/MS 

analysis. Quantification is based on the comparison of peak intensity of the same peptide (A) or the spectral 

count of the same protein (B) [95]. 
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2.1 Isolation of murine MSC 

C57BL/6J mice were purchased from Charles River Laboratories (Calco, Italy). All mice 

used as primary cell donors or recipients were between 8 and 12 weeks of age. 

Procedures involving animals and their care conformed to institutional guidelines in 

compliance with national (4D.L. N.116, G.U., suppl. 40, 18-2-1992) and international (EEC 

Council Directive 2010/63/UE; National Institutes of Health Guide for the Care and Use of 

Laboratory Animals) law and policies. The protocol was approved by the Italian Ministry of 

Health on 18 June 2007 and modified by Protocol 162/2011-B. All efforts were made to 

minimize the number of animals used and their suffering. In all the experiment, the mice 

were sex and age matched, no further randomization was applied. MSC were isolated as 

described [116] by flushing the femurs and tibias from 8 week-old, C57Bl/6 female mice 

and cultured in 25 cm2 tissue culture flasks at a concentration of 2X106 cells/cm2 using 

complete Dulbecco modified Eagle medium low glucose (DMEM, Lonza, Braine-L’Alleud, 

Belgium) supplemented with 20% heat inactivated fetal bovine serum (Biosera, Ringmer, 

United Kingdom), 2mM glutamine (Lonza), 100 U/ml penicillin/streptomycin (Lonza). Cells 

were incubated at 37°C in 5% CO2. After 48 hours, the non-adherent cells were removed. 

After reaching 70–80% confluence, the adherent cells were trypsinized (0.05% trypsin at 

37°C for 3 minutes), harvested and expanded in larger flasks. MSC at passage 10 were 

screened by flow cytometry for the expression of CD106, CD45, CD117, CD73, CD105, 

MHC-I, SCA-1 and CD11b and used to perform experiments (BD Pharmingen, Oxford, 

UK). 

2.2 Isolation of human MSC  

MSC were provided by Orbsen Therapeutics Ltd (Galway, Ireland). Ethical approvals are 

granted from the NUIG Research Ethics Committee and the Galway University Hospitals 

Clinical Research Ethics Committee (CREC). Briefly, bone marrow was harvested from 

volunteers, and the cell culture was set up as previously described [117]. MSC were 

characterized according to international guidelines [118]. All samples were obtained with 

informed consent. Procurement of the sample conformed to European Parliament and 

Council directives (2001/20/EC; 2004/23/EC). 
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2.3 Collection of conditioned medium (CM)  

2.3.1 Collection of conditioned medium (CM) of murine 

MSCMSC were plated and let grow until confluence in ventilated cap flask. Growth 

medium was substituted with DMEM low glucose supplemented with 10% FBS, 2mM 

glutamine, 100 U/ml penicillin/streptomycin, with or without 25 ng/ml mIL1b, 20 ng/ml 

mIL6, 25 ng/ml mTNFa for 24 hours. Then this medium was changed with DMEM low 

glucose supplemented with 2mM glutamine, 100 U/ml penicillin/streptomycin for the 

following 18 hours. Conditioned medium was harvested and centrifuged at 4000 rpm for 10 

min.  

2.3.2 Collection of conditioned medium (CM) of human MSC 

MSC were plated in with MEM Alpha with Glutamax supplemented with 10% FBS, 2 mM 

glutamine, 100 U/mL penicillin/streptomycin and let grow until confluence in in a humidified 

incubator with 5% CO2 and 37°C. At the moment of the confluence, medium was 

substituted with MEM Alpha with Glutamax supplemented with 2% FBS, 2 mM glutamine, 

100 U/mL penicillin/streptomycin, with (st hMSC) or without (unst hMSC) 25 ng/mL hIL1b, 

20 ng/mL hIL6, 25 ng/mL hTNFa. 24 hours later, after three washes in MEM Alpha with 

Glutamax, the medium was changed with MEM Alpha with Glutamax supplemented with 2 

mM glutamine, 100 U/mL penicillin/streptomycin for the following 18 hours. Conditioned 

medium was harvested and centrifuged at 4000 rpm for 10 min. Both isolation and 

collection, were performed in collaboration with the lab of prof.ssa Antonella Viola from 

University of Padua. 

2.4 Proteomic analysis  

Proteomic methods used are the same for both mouse and human samples. 

2.4.1 Sample preparation 

The protein concentration of MSC secretome was determined using the Bradford assay 

and then, proteins (150 ug for mouse samples, in the range 135-200 ug for human 

samples) were precipitated with 10 % tricholoracetic acid (TCA) for 2 hours on ice.  

Prior to proteolysis, proteins were subjected to reduction with dithiothreitol (10 mM DTT in 

50mM NH4HCO3), for 30 minutes at 56°C; and to alkylation with iodoacetamide (200mM 

IAA in 1M NH4HCO3), for 30 minutes at room temperature in the dark. Then protein were 
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digested with sequence-grade trypsin (Roche) for 16 hours at 37°C using a protein:trypsin 

ratio of 50:1. The reaction was stopped by acidification with 98% formic acid and the pellet 

was then desalted using Zip-Tip C18 (Millipore) before mass spectrometric (MS) analysis. 

The following protocol was applied: 

 

Equilibrate the ZipTip for Sample Binding:  

1) pre-wet the tips with 50% CH3CN 3 times (3 x 100 µl); 

2) wash the tips with TFA 0.1% 3 times (3 x 100 µl). 

Bind and Wash the Peptides:  

1) bind the sample to ZipTip pipette tip. Aspirate and dispense the material 10-13 cycles 

for maximum binding of complex mixtures; 

2) wash the tips with 5% CH3CN/0.1% TFA at least once. 

Elute the Peptides:  

1) elute the sample with 50% CH3CN in HCOOH 1%, 3 times (3 x 100 µl), into a clean vial, 

for mass spectrometry analysis. 

2.4.2 LC-ESI-MS/MS  

Analysis was performed on a DionexUltiMate 3000 HPLC System with a 

PicoFritProteoPrep C18 column (200 mm, internal diameter of 75 μm) (New Objective, 

USA). Gradient: 1% ACN in 0.1 % formic acid for 10 min, 1-4 % ACN in 0.1% formic acid 

for 6 min, 4-30% ACN in 0.1% formic acid for 147 min and 30-50 % ACN in 0.1% formic for 

3 min at a flow rate of 0.3 μl/min. The eluate was electrosprayed into an LTQ 

OrbitrapVelos (Thermo Fisher Scientific, Bremen, Germany) through a Proxeon 

nanoelectrospray ion source (Thermo Fisher Scientific). The LTQ-Orbitrap was operated in 

positive mode in data-dependent acquisition mode to automatically alternate between a full 

scan (m/z 350-2000) in the Orbitrap (at resolution 60000, AGC target 1000000) and 

subsequent CID MS/MS in the linear ion trap of the 20 most intense peaks from full scan 

(normalized collision energy of 35%, 10 ms activation). Isolation window: 3 Da, unassigned 

charge states: rejected, charge state 1: rejected, charge states 2+, 3+, 4+: not rejected; 

dynamic exclusion enabled (60 s, exclusion list size: 200).  Five technical replicate 

analyses of each biological sample were performed.  Data acquisition was controlled by 

Xcalibur 2.0 and Tune 2.4 software (Thermo Fisher Scientific). 
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2.4.3 Data processing  

Mass spectra were analyzed using MaxQuant software (version 1.3.0.5) [119]. The initial 

maximum allowed mass deviation was set to 6 ppm for monoisotopic precursor ions and 

0.5 Da for MS/MS peaks. Enzyme specificity was set to trypsin, defined as C-terminal to 

arginine and lysine excluding proline, and a maximum of two missed cleavages were 

allowed. Carbamidomethylcysteine was set as a fixed modification, N-terminal acetylation 

and methionine oxidation as variable modifications. The spectra were searched by the 

Andromeda search engine against the mouse Uniprot sequence database (release 

29.05.2013 for mouse, release 2014_01 for human). Protein identification required at least 

one unique or razor peptide per protein group. Quantification in MaxQuant was performed 

using the built in XIC-based label free quantification (LFQ) algorithm [125] using fast LFQ. 

The required false positive rate was set to 1% at the peptide and 1% at the protein level, 

and the minimum required peptide length was set to 6 amino acids.  

2.4.4 Statistical analysis 

Statistical analyses were performed using the Perseus software (version 1.4.0.6, 

www.biochem.mpg.de/mann/tools/ [119]). Only proteins present and quantified in at least 3 

out of 5 technical repeats were considered as positively identified in a sample and used for 

statistical analyses. Proteins were considered differentially expressed if they were present 

only in unstimulated (unst-) or stimulated (st-)  MSC-CM (both in human and mouse) or 

showed significant t-test difference (cut-off at 1% permutation-based False Discovery 

Rate) in both biological replicates. 

2.4.5 Bioinformatic analysis 

Proteins were considered secreted or involved in inflammation/angiogenesis according to 

the following databases/datasets: Geno Ontology [121], NextProt [122], UniProt [123], 

Gene Cards [124], datasets [125, 126] and manual literature mining. Bioinformatic 

analyses were carried out by DAVID software (release 6.7) in order to cluster enriched 

annotation groups of Biological Function within the set of identified secretome proteins 

[124]. GOBP and groups were filtered for significant terms (modified Fisher exact EASE 

score p value <0.05 and at least five counts). Networks of up-regulated proteins in st 

hMSC-CM involved in inflammation or angiogenesis was performed using String [128] 

(active interactions: text mining, experiments, databases). 
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The mass spectrometry proteomics data, for human samples, have been deposited to the 

ProteomeXchange Consortium via the PRIDE [129] partner repository with the dataset 

identifier PXD005746. 
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3.1 Proteomic characterization of murine MSC (mMSC) 

secretome 

The secretome of MSC stimulated (st-MSC-CM) or not (unst-MSC-CM) with inflammatory 

cytokines was analyzed by a shotgun label free proteomic approach. The analysis allowed 

the identification of 1613 and 1630 proteins in the secretome of control (CTR) and 

stimulated (MIX) MSC, respectively. Proteins were considered differentially expressed if: 

(a) a protein was present only in MSC-CM or in control; (b) the LFQ (label free 

quantification) intensity resulted statistically significant as calculated by Perseus (t-test cut 

off at 1% permutation-based false discovery rate).  

According to this analysis, 7.6% or 8.3% of the proteins detected in the secretome of 

control or stimulated MSC, respectively, were differentially expressed, either upregulated 

or downregulated, as shown in the Venn diagram reported in Fig.11.  

 

 

 

Fig.11 Venn diagram. Description of the comparison between unstimulated MSC in conditioned medium 

and the stimulated one. 1613 and 1630 proteins were identified in the secretome of control 

(CTR/unstimulated, unst-) and treated (MIX/stimulated, st-) MSC respectively. Among these, 1610 proteins 

were present in both samples st- and unst- MSC-CM. Applying a t-test with p<0.05,in total 89 resulted 

significantly UP regulated or present only in stimulated MSC-CM, and 52 significantly DOWN regulated in 

stimulated or present only in unstimulated MSC-CM. 
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These proteins were clustered according to their functions using the DAVID platform [130] 

filtered for significant Gene Ontology Biological Process (GOBP) terms using a P-value of 

≤ 0.05 and at least five gene counts for each category. 

3.1.1 Proteins up-regulated in stimulated murine MSC-CM 

The differential expression analysis identified 141 proteins that were either up (Tab.1) or 

down (Tab.2) regulated in stimulated MSC. 

We focused our attention mainly on the proteins up-regulated or exclusively expressed in 

MSC. These proteins are listed in Tab.1.  A GO enrichment analysis was performed as 

shown in Fig.12. In detail, in Fig.12A the bar chart shows the fold enrichment of the top 26 

most enriched GO terms in MSC versus unstimulated MSC-CM, while in Fig.12B, the 

histograms report the GOBP categories related to angiogenesis or inflammation. 

Interestingly 18% and 30% of the proteins, listed in Tab.1, belong to these two categories 

and are shown in bold in Tab.1, while concerning the 52 proteins that were significantly 

down-regulated or present only in the secretome of unstimulated MSC [Tab.2], the GO 

analysis revealed that most terms are related to metabolic processes [Fig.13]. The 

presence of an ‘angiogenesis-related’ signature among up-regulated proteins was also 

confirmed by the analyses of human MSC secretome, reported in the following chapter, 

which reveals that all the 16 up-regulated proteins in stimulated MSC secretome common 

to human and mouse are modulators of angiogenesis [Tab.3].  

Angiogenesis is the physiological process through which new blood vessels form from pre-

existing vessels [131]. It is a normal and vital process in growth and development, 

although, it is also involved in the process of transition of tumors from a benign state to 

a malignant one [132]. The process involves a complex and dynamic interaction between 

endothelial cells and the corresponding extracellular environment. Its chemical stimulation 

is performed by various angiogenic proteins, including several growth factors [133] that are 

also involved in inflammation processes [134]. Critical, in all phases of the process, are 

proteolysis and remodeling of the extracellular matrix (ECM) that affect endothelial cells 

migration, invasion into the perivascular tissue and morphologic formation of luminal 

structures. In these two events very important is the role taken on matrix 

metalloproteinase (MMP), a family of proteases that degrade ECM proteins and are critical 

in vascular remodeling, cellular migration, and sprout formation [135]. The activities of 

these metalloproteinases are precisely regulated under physiological conditions at the 

levels of transcription, zymogen activation and inhibition by endogenous inhibitors. 

Disruption of the balance between the production of active enzymes and their inhibition 
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may result in diseases associated with uncontrolled ECM turnover, inflammation, cell 

growth and migration, such as arthritis, cardiovascular disease, cancer, pulmonary 

disease, nephritis, neurological disorders and tissue ulceration [136]. Tissue inhibitors of 

metalloproteinases (TIMPs) are endogenous inhibitors of these metalloproteinases and 

are consequently important regulators of ECM turnover, tissue remodelling and cellular 

behaviour, so the balance between MMPs and their natural inhibitors is very critical. 

Interestingly, the proteomic analysis of the murine MSC secretome indicated that the cells 

activated by inflammatory cytokines, upregulate the expression of several proteins 

potentially involved in angiogenesis and inflammation through multiple pathways and, in 

particular, among these proteins, the attention was focused on the tissue inhibitors of 

metalloproteinases TIMP-1, because of its well-known anti-angiogenic properties [137]. 

We thus used the tube formation assay to analyze the effect of MSC-derived TIMP-1 on 

angiogenesis. Although the blocking anti-TIMP-1 antibody had no effect on the ability of 

endothelial cells to form tubes when cultured in the supernatants of unstimulated MSC, it 

totally reverted the anti-angiogenic properties of the supernatant from stimulated MSC 

[Fig. 14a],  indicating that, at least in this in vitro setting, TIMP-1 is one of the key MSC-

secreted molecules targeting the endothelium. In an in vivo setting, in the lab of our 

collaborator in Padua, the injection of neutralizing anti-TIMP-1 antibody [138] 1 day after 

MSC transplantation reverted the MSC-induced reduction of endothelial cell numbers and 

high endothelial venules (HEV) in lymph nodes (dLNs) [Fig. 14b-d], suggesting that TIMP-

1 may be directly responsible for the anti-inflammatory effects of MSC on LNs. To confirm 

this hypothesis, they used a siRNA approach to knock down TIMP-1 expression in MSC 

[Fig. 15]. Again, the absolute cell numbers of endothelial cells and HEV in dLN were 

reduced by MSC transfected with the scramble siRNA control but not by MSC with TIMP-1 

siRNA [Fig. 14 e-g]. On the basis of these results, we speculated that overexpression of 

TIMP-1 might be sufficient to mimic the effects of MSC transplantation, in terms of 

inhibition of angiogenesis in the inflamed lymph nodes. TIMP-1 overexpression by AAV9-

mediated gene transfer [139] in mice immunized with CFA/OVA [Fig.16a] inhibited the 

inflammatory reaction in the draining LNs, as indicated by the reduced total cellularity 

[Fig.16b], which was due to a decreased number of both CD45+ cells [Fig.16c] and 

endothelial and HEV cells [Fig.16d, e]. 
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Tab.1 Proteins up-regulated in stimulated-MSC vs unstimulated-MSC, or present only in stimulated-

MSC secretome in both biological replicates. Proteins categorized as modulators of angiogenesis 

according to GOBP analysis (see Fig.12a and b) are shown in bold. Legend: (a) Uniprot accession ID, (b) 

percentage of the protein sequence that is coverage by the identified peptides, (c) number of unique and 

razor peptides associated with the protein, (d) –log p-value t-test for biological replicate 1, (e) –log p-value t-

test for biological replicate 2, (f) not detected in un-stimulated MSC secretome. 
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Tab.2 Proteins down-regulated in stimulated-MSC vs unstimulated-MSC, or present only in 

unstimulated-MSC secretome in both biological replicates. Legend: (a) Uniprot accession ID, (b) 

percentage of the protein sequence that is coverage by the identified peptides, (c) number of unique and 

razor peptides associated with the protein, (d) –log p-value t-test for biological replicate 1, (e) –log p-value t-

test for biological replicate 2, (f) not detected in un-stimulated MSC secretome. 
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Fig.12 Distribution into biological processes of the proteins upregulated in MSC-CM. The proteins that 

were significantly upregulated or present only in MSC-CM were classified into different biological processes 

according to the GO classification system. (a) The bar chart shows the count of the top 26 most-enriched GO 

terms in MSC-CM versus unstimulated MSC-CM. Color coding indicates the fold enrichment. (b) Proteins 

were categorized as modulators involved in inflammation processes and/or angiogenesis. The histograms 

report the GOBP groups related to these categories. 
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Fig.13 Distribution into biological processes of the proteins downregulated in MSC-CM. The proteins 

that were significantly downregulated or present only in unstimulated secretome MSC-CM were classified 

into different biological processes according to the GO classification system. Analysis reveal that most term 

are related to metabolic processes. 

 

 

Tab.3 Common proteins up regulated in stimulated- vs- unstimulated- mouse and human secretome. 

Proteins involved in angiogenesis are indicated in detail. 
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Fig.14 TIMP-1 mediates the anti-angiogenic effect of MSC-CM in vitro and the anti-inflammatory effect 

of MSC in vivo. SVEC4-10 network formation in matrigel in the presence of MSC-CM or unst MSC-CM and 

anti-TIMP-1 blocking antibody. 

(a) anti-mTIMP1 blocking antibody restores SVEC4-10 network formation in matrigel in the presence of 

MSC-CM. Representative images at 6 h (left) and segment length quantification as percentage of variation 

(right) are shown. Data are expressed as mean±s.e.m. (*P<0.05, **P<0.01; one-way ANOVA). (b) Diagram 

of the experimental protocol designed to block the TIMP-1 activity during the anti-inflammatory effects of 
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MSC. Mice were immunized in the dorsal region with CFA/OVA on day 0 and, on day 1, three groups of 

animals received subcutaneous injection of 106 MSC in the lumbar region. Eighteen hours after MSC 

transplantation, goat polyclonal anti-TIMP-1 IgG or isotype-matched goat IgG was i.v. administrated. On day 

4,*-3 brachial LNs were collected, processed and analyzed by flow cytometry; (c, d) the graphs show the 

absolute number of CD45−CD31+ cells and HEV PNAd+ cells per single LN, expressed as normalized 

percentage on CFA/OVA (t-test). (e) Diagram of the experimental protocol designed to investigate the 

contribution of MSC-derived TIMP-1 on dLN endothelium. Mice were immunized in the dorsal region with 

CFA/OVA on day 0. The day after, two groups of animals received in the lumbar region subcutaneous 

injection of 106 MSC transfected with either scramble control siRNA or siRNA specific for TIMP-1, 

respectively. On day 4, brachial LNs were collected, processed and analyzed by flow cytometry; (f, g) graphs 

showing the absolute number of CD45−CD31+ cells and HEV PNAd+ cells per single dLN. Data are 

expressed as normalized percentage on CFA/OVA (Mann–Whitney test) (*P<0.05; **P<0.01). 

 

 

 

 

 

Fig.15 siRNA approach to knock down TIMP-1 expression in MSC. Histograms represent levels of 

mTIMP-1 production after 24, 48 and 72 hours after sRNA silencing. 
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Fig. 16. TIMP-1 overexpression in vivo mimics MSC transplantation. (a) Diagram of the experimental 

protocol designed to overexpress TIMP-1 in immunized mice. One day after AAV9-TIMP-1 or AAV9-LacZ 

administration (day 0), mice were immunized with CFA/OVA. Brachial dLNs were collected 4 days after 

immunization and processed for flow cytometry. The graphs show the absolute number of total cells (b), 

CD45+ cells (c), CD45−CD31+ (d) and HEV PNAd+ (e) cells per single LN, expressed as normalized 

percentage on CFA/OVA. Error bars represent standard error (*Po0.05; **Po0.01; Mann–Whitney test). 

 

3.2 Proteomic characterization of human MSC (hMSC) 

secretome 

To the best of our knowledge, the present study reports for the first time a quantitative 

proteomic characterization of the secretome of human bone marrow-derived MSC primed 

with pro-inflammatory cytokines. Proteomic analyses were conducted under exactly the 

same conditions used in the previous investigation on mMSC in order to avoid variations 

with methodology, allowing direct comparative analysis between the results obtained with 

the two organisms. The proteomic characterization of human MSC secretome was 

performed on samples from two different patients, indicated as “donors H30” and “donors 

H34”, before (CTR condition/ unstimulated human MSC conditioned medium) and after 

stimulation (MIX condition/ stimulated human MSC conditioned medium). Fig.17 

summarizes the results of the proteomic characterization of secretome of hMSC before 

(unst-) and after (st-) stimulation with inflammatory cytokines. Only the 497 proteins 

present in at least 3 out of 5 technical repeats in both biological replicates (donors H30 

and H34) were considered for further analysis: these proteins are listed in Tab. Suppl. 

http://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/proteomics
http://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/msc-gene
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together with their main identification parameters. Fig.17 highlights the number of proteins 

detected in stimulated human MSC conditioned medium (465 in st hMSC-CM) and 

unstimulated human MSC conditioned medium (457 in unst hMSC-CM). As shown in 

Fig.17, 32 proteins and 39 proteins were exclusively identified in unst- and st- cells 

respectively. Amongst the 465 proteins identified in st hMSC-CM (proteins in groups 1, 2, 

4 and 5 of Tab.S1.), 133 are listed as cytokine or chemokine or functionally related to 

these classes of compounds according to the NextProt database [122].  

 

 

Fig.17 Summary of the results obtained in the proteomic characterization of hMSC-CM. Venn diagram 

showing proteins detected in at least 3 out of 5 technical replicas in both patients in stimulated hMSC-MC 

and unstimulated hMSC-CM 

3.2.1 Proteins up-regulated in stimulated human MSC-CM 

Since MSC enhance their therapeutic efficacy following priming by cytokines [59, 140], 

analyses were focused on proteins over-expressed or present only in stimulated human 

MSC compared to unstimulated human MSC secretome. In particular 39 proteins are 

present only in stimulated hMSC-CM, while 426 are common to stimulated and 

unstimulated hMSC-CM [Fig.17]. The statistical analysis of the common proteins indicates 

that 57 proteins are up-regulated in stimulated hMSC-CM (t-test difference, cut-off at 1% 

permutation-based False Discovery Rate). A Pearson correlation coefficient R=0.73 was 

calculated by comparing the log(2) t-test difference value in the two biological replicates 

[Fig.18]. Overall, 96 proteins are up-regulated or present only in stimulated hMSC-CM. 

These proteins, listed in Tab. 5, are predicted to be potentially secreted, included in 

exosomes according to annotations in Gene Ontology [141], NextProt [122], UniProt [142], 

Gene Cards [124], in datasets [125, 143] or from manual literature mining. A subsequent 

bioinformatics analysis, performed with the aim of evaluating enriched proteins, showed 
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that 70% and 64% are involved in inflammation or angiogenesis, respectively [Tab. 4, Tab. 

7] and to evaluate the extended network of interaction, amongst inflammation or 

angiogenesis related proteins up-regulated in stimulated hMSC-CM, a STRING (Search 

Tool for the Retrieval of Interacting Genes/Proteins) [128] analysis was used. Fig.19, 

represents the graphical expression of the network considered, showing the proteins 

involved in the processes of inflammation (A) and angiogenesis (B), respectively. Red 

symbols are proteins present only in stimulated hMSC secretome, yellow symbols indicate 

proteins with protease or protease inhibitor activity. Moreover, a  number of proteases 

(BMP1, C1R, C1S, CFB, CTSB, MMP1, MMP2, MMP3, MMP10 MMP13, PSMA5, PSME2, 

QPCT) and protease inhibitors (C3, COL7A1, FBLN1, FN1INHBA, ITIH2, SERPINB2, 

SERPINE1, TIMP1) are up-regulated in stimulated hMSC secretome, strengthening our 

suggestion, based on the results obtained in mouse MSC secretome, that a fine but 

complex tuning of proteolytic activity is a key mechanism regulating MSC effects on 

angiogenesis and tissue remodeling [144]. MMPs are presently considered not only 

effectors but also regulators of a number of biological processes since they can activate, 

inactivate or antagonize the biological functions of growth factors, cytokines and 

chemokines by proteolytic processing and thus either promote or suppress inflammation 

and angiogenesis [145, 146]. Notably several protease/protease inhibitors listed above are 

amongst the proteins showing large quantitative differences in stimulated vs unstimulated 

hMSC-CM [Tab.4, Fig.18, Fig.19]. In conclusion, the proteomic analysis of human model 

reveal that pro-inflammatory cytokines have a strong impact on the secretome of human 

bone marrow-derived MSC and that the large majority of cytokine-induced proteins are 

involved in inflammation and, or angiogenesis.  
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Fig. 18 Pearson correlation from 2 databases: H30 and H34. T-test difference (difference of log(2) mean 

intensity of a protein in stimulated and unstimulated hMSC-CM replicas, [120]) observed in the two patients 

for the 57 proteins present in stimulated and unstimulated hMSC-MC and significantly overrepresented in 

stimulated hMSC-MC according to t-test p-value (cut-off at 1% permutation-based False Discovery Rate). 

Pearson correlation coefficient R = 0.73. Complete protein identities and detailed values are reported in 

Tab.4. 
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Tab.4 Proteins overrepresented or present only in st hMSC-CM. Legend: (a) t-test diff: difference of 

log(2) mean intensity of a protein in technical replicas of st- versus unst hMSC-CM from t-test analysis using 

Perseus [120] as detailed in the text; (b) proteins related to angiogenesis or inflammation according to 

criteria detailed in “Materials and methods”. 
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Fig. 19 Network interactions of overrepresented proteins in stimulated hMSC-CM involved in 

inflammation or in angiogenesis. Overrepresented proteins in stimulated hMSC-CM involved in 

inflammation (A) or angiogenesis (B), respectively, according to targeted accurate literature mining as 

reported in Tab.4, have been searched for possible interactions using String [128]. Active interactions: text 

mining, experiments, databases; edges thickness indicates “confidence”. Red symbols: proteins present only 

in stimulated hMSC secretome or showing high t-test difference according to Fig.18. Yellow edges indicate 

proteins with proteases/protease inhibitors activity. 
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3.2.3 Comparison between different stimulation conditions 

Since it has been established that tissue origin, growth and stimulation conditions may 

influence the type and quantity of proteic components of MSC secretome [147], we 

compared the list of up-regulated proteins in st hMSC-CM with those reported in recent 

studies performed using a similar mass spectrometry based quantitative proteomic 

approach on human MSC. Tab. 5 confirms that different stimulation conditions lead to up-

regulation of largely different sets of proteins. Notably, 24 proteins (25%) detected as up-

regulated in our study were up-regulated also in TNF-α stimulated MSC deriving from a 

different adult tissue (adipose tissue) [148]. This finding gives experimental evidences at 

molecular level, supporting the idea that the type of stimulus influences the MSC 

secretome. 
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Tab5. Comparison of up-regulated proteins in st hMSC-CM according to the present study with those 

reported in previous mass spectrometry based proteomic studies on stimulated human MSC-CM. 

Stimulation condition: (a) Dexamethasone 10 
-3

M, retinoic acid 10
-7

M, ascorbic acid 10 uL/mL, transferrin 

10 uL/mL, TGF-beta310 ng/mL, FBS 15%; (b) 20%FBS, 10 mM beta-glycerophosphate, 50 uM ascorbate-2-

phosphate and 100 nM dexamethasone; (c) hTNF-alpha 10 ng/mL; (d) 10 mMbeta-glycerophosphate, 

50ug/mL 2-phosphate ascorbate, 10 nM dexamethasone, 10 nM 1.25 dihydroxyvitamin D3; (e) 100 ng/mL 

recombinant human GF-II; (f) proteins related to angiogenesis or inflammation, accordind to criteria detailed 

in materials and methods. 
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3.3 Proteomic based comparison between mouse and human 

MSC-CM  

Murine models allowed to elucidate the molecular pathway involved in the effects of 

mMSC on the complex crosstalk between inflammation and angiogenesis [156], but, 

because it is widely accepted that significant differences exist between mouse and human 

MSC [59, 149], and because of the tremendous relevance of inflammation-induced 

angiogenesis in human diseases, we focused our attention on comparing mouse and 

human MSC secretome.  

Tab.S1 lists the 286 proteins (out of the 465 proteins identified in stimulated hMSC-CM, 

(62%) present in stimulated hMSC-CM that have been detected also in stimulated mMSC-

CM. The number of proteins significantly up-regulated or present only in the secretome of 

stimulated MSC is similar in the two species: 89 in mouse (Tab.1 and 96 in human, 

respectively [Tab.4]).  

A comparative analysis of GO_BP category enrichment of over-represented proteins in 

human and/or mouse [Fig.20] suggests that:  

a) proteins up-regulated in the secretome of stimulated MSC from both organisms are, for 

the most part, involved in similar biological processes, mainly related to defense, immune 

and inflammatory response, chemotaxis and extracellular matrix remodeling;  

b) there are clear important differences among human and mouse. Thus, only stmMSC-

CM is enriched in proteins involved in chromatin structure assembly, cell proliferation 

regulation and related processes. On the contrary, complement activation, leukocyte 

migration, bone development and metabolic processes specifically related to collagen are 

amongst the statistically enriched GO functional categories in human but not in mouse. 

Such differences are confirmed by the observation that only 23 proteins are up-regulated 

or present only in stimulated MSC-CM both in mouse and human [Tab.6]; this again points 

to a fine species-related tuning of the overall effects of secretome from the two organisms; 

interestingly, our analysis indicates that 74 % and 83% of the common up-regulated 

proteins are associated with angiogenesis or inflammation, respectively. 
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Fig.20 Distribution into biological processes of the proteins overrepresented in stimulated hMSC-CM 

in human and mouse. The proteins that were significantly up-regulated or present only in stimulated MSC-

CM (Table 1 and [156]) were classified into different biological processes according to the Gene Ontology 

classification system (GOBP) using DAVID software [150]; confidence level: medium; only categories 

showing modified Fisher exact EASE score p value<0.05 and at least 5 counts in hMSC are represented. 

The bars represent the percentage of proteins involved in a category out of the total number of 

overrepresented proteins in human (96) or mouse (89) secretome. Asterisks indicate Fold Enrichment range 

for each category: * 1-5, ** 6-10, ***>10. 
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Tab.6 Proteins overrepresented or present only in st MSC-CM common to mouse and human 

 

3.3.1 Functional evidence of human and mouse MSC secretome 

similarities or differences 

Our proteomic results indicate that the majority of secreted proteins from both human and 

mouse MSC are associated with inflammation and angiogenesis (Tab.4 and [156]). To 

identify specific functional analogies or differences of human and mouse MSC in the 

regulation of these two important processes, we focused on two proteins, M-SCF/CSF1 

and TIMP1, which are present in st MSC-CM of both species and play a key role in 

immunity/inflammation and angiogenesis, respectively [151, 152]. 

3.3.1.1 Macrophage colony-stimulating factor (M-CSF) 

M-CSF is a growth factor secreted by a large variety of cells including macrophages, 

endothelial cells, fibroblast and lymphocytes. Locally produced M-CSF in the vessel wall 

contributes to the development and progression of atherosclerosis [153]. By interacting 

with its membrane receptor (CSF1R or M-CSF-R), it stimulates the survival, proliferation, 

and differentiation of monocytes and macrophages [154, 155].  

https://en.wikipedia.org/wiki/Atherosclerosis
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Our proteomic data indicated that M-CSF (CSF1) is up-regulated in the secretome of both 

human and mouse MSC upon stimulation by inflammatory cytokines [Tab.S1, Tab.4, 

Fig.19]. As reported in Tab.S1 and Fig.20, M-CSF is amongst the proteins showing the 

highest increase in stimulated human secretome according to mass spectrometric 

analysis. 

3.3.1.2 TIMP-1 

Concerning angiogenesis, it has been analysed the effect of mMSC-CM on in vitro 

angiogenesis exploiting the tube formation assay [156]. Interestingly, in the case of human 

cells, MSC-CM was able to inhibit tube formation even when MSC had not been primed by 

cytokines. However, pre-activation with pro-inflammatory cytokines strengthened the anti-

angiogenic effects of hMSC-CM, thus supporting our hypothesis that, during an 

inflammatory response, MSC target angiogenesis and thus dampen the inflammatory 

response [156]. 

The anti-angiogenic effect of MSC is mediated by TIMP-1 [156], according to many studies 

based on in vitro and in vivo approaches. 

Because the proteomic analyses indicate that TIMP-1 is one of the proteins up-regulated 

in both human and mouse stMSC-CM [Tab.4], we compared the results obtained by 

blocking TIMP-1 in SVEC4-10 cells incubated in the presence of mMSC-CM [Fig.12a] with 

those generated using HUVEC cells and hMSC-CM [Fig.12b]. By inhibiting TIMP-1 activity 

with a specific blocking antibody, we observed the complete recovery of HUVEC cell ability 

to form tubes even in the presence of st hMSC-CM, indicating that TIMP1 is one of the key 

secreted molecules targeting endothelial cells in both mouse and human MSC. TIMP-1 

concentration was measured by ELISA in st and unst, human and mouse MSC-CM (Fig. 

21a for mouse and b for human). In accordance with our data of tubulogenesis showing 

that unst mMSC-CM has no effect on angiogenesis (Figs. 22 and Fig.23a), the 

concentration of TIMP-1 in mMSC-CM was about 5 times higher when cells had been 

primed by pro-inflammatory cytokines. Thus, in mouse MSC, the anti-angiogenic 

phenotype is acquired only after licensing with pro-inflammatory cytokines. In human MSC, 

however, the basal high level of secreted TIMP1 may explain the partial anti-angiogenic 

effect of the unst hMSC-CM (Figs. 22, 23b). In fact, in support of this hypothesis, TIMP-1 

blockade restored the formation of the endothelial network in the presence of unst or st 

hMSC-CM. Again, proteomic data fully agree with functional assays and ELISA results for 

human TIMP1. As reported in Fig. 2 and Table 1, this protein is listed amongst those over-

represented in st hMSC but showing relative lower level increase following stimulation. 
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Additional bioinformatics analyses of proteomic data further support the observation that 

even relatively small changes in the level of TIMP1 can result in very significant 

modulation of secretome properties. First of all, TIMP-1 concentration will greatly influence 

the proteolytic potential of the secretome and, consequently, the overall activity of a 

number of secretome components, including proteins which level is not increased following 

stimulation and proteins not directly involved in inflammation and angiogenesis; secondly, 

but not less importantly, TIMP1 is functionally related to a number of overrepresented 

proteins in stimulated secretome besides proteases [Fig. 19], like cytokines and structural 

proteins (such as IL6, IL8, CCL2 CXCL12, COL3A1). The complete list of the 54 proteins 

of stimulated hMSC-CM functionally correlated to TIMP1 according to String [171] is 

reported Tab. 8. 

 

 

 

Fig.21 Mouse and human MSC-derived TIMP-1 quantification. MSC-derived TIMP-1 concentration in A) 

mouse and B) human unstimulated or stimulated MSC conditioned medium was measured with ELISA. Data 

are expressed as mean ± SEM (*p b 0.05, parametric t-test), 2 independent experiments. 
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Fig.22 Effect of human or mouse MSC conditioned medium on tube formation assay. The effect of 

unstimulated or stimulated MSC media on endothelial cells was determined by a tube formation assay. Cells 

were seeded on the top of a matri-gel phase in the presence of unstimulated or stimulated A)mouse, B) 

human MSC-CM. 6 h later, images were acquired with a phase contrast inverted microscope at 4× objective 

magnification. Analysis was performed with ImageJ Angiogenesis Analyzer. A) SVEC4-10 network formation; 

quantification of the tube segment length (expressed in pixel number) and representative images at 4 h. B) 

Huvec network formation; quantification of the tube segment length and representative images (expressed in 

pixel number) at 4 h. 3 independent experiments, data are expressed as mean ± SEM (*p b 0.05, **p b 0.01, 

One way ANOVA 
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Fig. 23: Timp-1 blocking reverts the anti-angiogenic effect of mouse and human MSC conditioned 

media. In order to investigate the role of MSC-derived TIMP-1 on angiogenesis, the tube formation assay 

was performed in the presence of A) mouse or B) human TIMP-1 blocking antibody. Representative images 

of A) SVEC4-10 cell line or B) Huvec cells are taken with a phase contrast inverted microscope at 4× 

objective magnifications. Graphs show the quantification of the tube segment length measured with ImageJ 

Angiogenesis Analyzer. Data are expressed as mean ± SEM (*p<0.05, **p<0.01; One way Anova), 3 

independent experiments. 

 

 

 



69 
 

Tab.7: TIMP1 interactions with other proteins in st hMSC-CM according to String 
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CONCLUSION 
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MSC have been studied across a range of clinical indications and represent a promising 

therapeutic approach in many diseases in view of their potent immunomodulatory 

properties. To design better therapeutic protocols and define the clinical endpoints, it is 

important to identify the specific targets of MSC anti-inflammatory action in vivo. Recently, 

it  was  demonstrated  that  MSC  have  a  potent  stabilizing  effect  on  the  vascular 

endothelium, having the capacity of inhibiting endothelial permeability after traumatic brain 

injury [156] and in hemorrhagic shock [157]. The data obtained from mouse MSCs suggest 

that the effects of MSC are all mediated by soluble factors released by MSC [158]. This is 

in agreement with another study showing an antiangiogenic activity for soluble factors 

present in media derived from MSC/glioma co-cultures. Moreover, the proteomic analysis 

of hMSC-CM and mMSC-CM confirms that exposure to pro-inflammatory cytokines results 

in significantly higher secretion of a number of immunomodulatory and angiogenesis- 

related proteins by MSC from both species. Notably, 62% of the proteins identified in st 

hMSC-CM were also identified in st mMSC-CM, clearly highlighting the existence of a 

common  signature  in  the  secretome  of  human  and  mouse  MSC.  However, although 

human and mouse MSC show a similar proteomic signature in response to stimulation by 

pro-inflammatory cytokines, our data indicate that they may induce different biological 

responses. Thus, even if M-CSF is up-regulated in both human and mouse MSC-CM, only 

hMSC-CM induce macrophage differentiation efficiently because of its high concentration 

of   M-CSF.   In   both   species,   several   up-regulated   proteins   are   associated   with 

angiogenesis. This process requires degradation of the vascular basement membrane and 

remodelling of the extracellular matrix to allow endothelial cells migration and invasion into 

the surrounding tissue [159]. The extended network of interactions amongst inflammation 

and angiogenesis-related proteins in stimulated hMSC-CM makes it extremely difficult to 

assess the in vivo physiological importance of each factor. The angiogenesis requires the 

action  of  matrix metalloproteinases  (MMPs)  that  degrade  both  matrix and  non-matrix 

proteins and have central roles in morphogenesis, wound healing, tissue repair and in 

progression of chronic diseases [159] and, in particular, the presence of a number of 

protease and protease inhibitors implies the possibility of additional self-modulation of the 

properties of the various components of the secretome [146]. The balance between MMPs 

and their natural inhibitors, the TIMPs, is critical for extracellular matrix remodelling and 

angiogenesis. The TIMP family comprises four protease inhibitors: TIMP-1, TIMP-2, TIMP-

3 and TIMP-4. With the exception of TIMP-4 [160], all three TIMPs inhibit angiogenesis in
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vivo [137], although through diverse mechanisms. MSC secrete both MMPs and their 

inhibitors, and thus contribute to the regulation and protection of the perivascular niche 

[161].  Using both in vitro and in vivo assays, we identified the metalloproteinase inhibitor 

TIMP-1 as the molecule responsible for the anti-angiogenic effects of MSC. TIMP-1 is 

known to inhibit endothelial cells migration by MMP-dependent and MMP independent 

mechanisms [162, 163]. The latter involve regulation of various biological processes such 

as cell growth, apoptosis and differentiation through the CD63 receptor [164, 165]. In 

addition,  TIMP-1  was  shown  to  induce  secretion  of  soluble  VEGFR-1  by  human 

endothelial cells, leading to a decrease of bioavailable VEGF and of blood vessel growth 

[166]. TIMP-3 has also been identified as a soluble factor produced by MSC with beneficial 

effects on endothelial cell function in a mouse model of traumatic brain  injury [167]; 

however, we did not find evidence for TIMP-3 upregulation in the mouse or human MSC 

secretomes. It is likely that, in vivo, other soluble factors in addition to TIMP-1 contribute to 

MSC-mediated immune regulation: MSC are also known to produce prostaglandin E2 and 

thus inhibit the activation of macrophages [168], which are a source of multiple growth 

factors that enhance endothelial cell proliferation and survival [169]. Therefore, by 

identifying TIMP-1 as a critical effector of the anti-inflammatory properties of MSC, and by 

observing its anti-angiogenic role, both in mouse and in human, we can confirm the 

important role of TIMP-1 as key secreted molecule targeting endothelial cells. The 

identification of TIMP-1 as potential effector molecule responsible for the anti-angiogenic 

properties of MSC, both in mouse and in human, allow to confirm that MSC exert specific 

effect by secretion of a broad range of bioactive molecules and allow to design pre-clinical 

experiments and clinical trials, with the aim of exploit their potentially therapeutic role. 

Moreover, these data could be also a starting point for further analysis aimed to 

understand important differences between human and mouse also in a pharmacological 

field. In fact, although mouse and rats are still considered the animal models of choice for 

applied pharmacological research and drug test, up to now, many important biochemistry 

pathways involved in life processes, in both species, have not been yet clearly understood, 

often precluding the possibility to translate results in humans without leading to errors. 

Indeed, there are few studies in literature focused on this particular aspect, therefore the 

data reported in this thesis represent a source for new studies evaluating similarities and 

differences between human and mouse models in pharmacological field. 
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The results reported in this phD thesis have been partially published in the papers listed 

below: 

Mouse mesenchymal stem cells inhibit high endothelial cell activation and 

lymphocyte homing to lymph nodes by releasing TIMP-1 Leukemia (2016) 30, 

1143-1154. 

Proteomic analysis of the secretome of human bone marrow-derived 

Mesenchymal Stem Cells primed by pro-inflammatory cytokines Journal of 

proteomics (2017) 166, 115-126. 

And in following poster presentation: 

S. Nonnis, E. Maffioli, F. Santagata, F. Grassi Scalvini, S. Morelli, A. Negri, A. Viola, 

G. Tedeschi. Proteomic analysis of bone marrow derived human MSC secretome 

stimulated  with  pro-  inflammatory  cytokines.  SIB  2017,  20-22  settembre  2017, 

Caserta. 

G. Tedeschi, L. Zanotti, F. Santagata, E. maffioli, S. Nonnis, A. Negri, A. Viola. Human 

mesenchymal   stem   cells   secretome   before   and   after   treatment   with   pro 

inflammatory cytokines investigated by a label free proteomic approach. XI ItPA 

national Congress, 16 – 19 maggio 2016, Perugia. 

S. Nonnis, L. Zanotti, F. Santagata, E. Maffioli, A. Negri, A. Viola, G. Tedeschi. 

Proteome characterization of human stromal mesenchymal stem cells secretome 

before and after treatement with pro inflammatory cytokines. Proteine 2016, 30 

marzo-1aprile 2016, Bologna. 

S. Nonnis, L. Zanotti, E. Maffioli, F. Santagata, A. Negri, L. Chiesa, A. Viola, G. 

Tedeschi. Human mesenchymal stem cells secretome investigated by using a label 

free proteomic approach. 58th National Meeting of the Italian society of biochemistry 

and molecular biology (SIB), 14-16 settembre 2015, Urbino. 

S.  Nonnis,  L.  Zanotti,  E.  Maffioli,  F.  Santagata,  ,  A.  Negri,  A.  Viola,  G.  

Tedeschi. Proteomic analysis of the mesenchymal stem cells secretome using a 

label free approach. EupA IX Annual Congress, 23-28 giugno 2015, Milano. 
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Tab.S1 Proteins identified and quantified in hMSC secretome in at least 3 out of 5 technical replicas 

in at least one stimulation condition in both patients. Notes (a) cytokine or chemokine or proteins 

functionally related to these classes of compounds according to the nextProt database [122]; (b) proteins 

present also in mouse stimulated MSC-CM; (c) number of razor+unique peptides used to identified the 

protein in patients H30 or H34; (d) posterior error probability score calculated for the identification of protein; 

(e) percentage of the protein sequence that is covered by the identified peptides. 
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