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1. LIST OF ABBREVIATIONS 

AAS, atomic absorption spectrometry  

ACTH, adrenocorticotropic hormone  

aPV, anterior periventricular nucleus  

AR, androgen receptor  

ARC, arcuate nucleus  

AREs, androgen response elements  

BBB, blood-brain barrier  

BBM, brush-border membrane  

BLM, basolateral membrane  

BTB, blood-testis barrier  

CHOP, CAAT/enhancer binding protein (C/EBP) homologous protein  

CLAMS, comprehensive laboratory animal monitoring system 

CNS, central nervous system 

CPS count per second  

CTR, control 

DCYTB, duodenal cytochrome b  

DEXA, dual-energy X-ray absorptiometry  

DFO, Deferoxamine  

DIOS, dysmetabolic iron overload syndrome 

DMH, dorsomedial hypothalamus 

DMT1, divalent metal-ion transporter 1  

ELISA, enzyme-linked immunosorbent assay 

EMA, European Medicines Agency  

ER, endoplasmic reticulum  

ERK, extracellular signal-regulated kinase  

FAC, ferric ammonium citrate  

FBXL5, F-box and leucine rich repeat protein 5  

FDA, Food and Drug Administration  
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FOXO1, forkhead box protein O1  

FPN, ferroportin 

FSH, follicle-stimulating hormone  

Ft, ferritin 

FtMt, mitoferritin  

GH, growth hormone  

Glut4, glucose transporter 4  

GnRH, gonadotropin-releasing hormone  

GPR54, G protein-coupled receptor 54  

hCG, human chorionic gonadotropin 

HCP1, heme carrier protein 1 

HCV, hepatitis C virus  

HFE, hemochromatosis protein  

HH, hypogonadotropic hypogonadism 

HJV, hemojuvelin  

HOMA-IR, Homeostatic Model Assessment of Insulin Resistance  

HPG axis, hypothalamic-pituitary-gonadal axis 

IED, iron-enriched diet  

IL6, interleukin 6  

IR, insulin resistance 

IREs, iron responsive elements  

IRPs, iron regulatory proteins 

JAK, janus kinase 

JH, juvenile hemochromatosis  

KISS1, kisspeptin  

KNDy neurons, kisspeptin/neurokinin B/dynorphin neurons 

LH, luteinizing hormone  

LHRH, luteinizing hormone-releasing hormone  

LIC, liver iron concentration  
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LIP, labile iron pool 

MBH, mediobasal hypothalamus  

ME, median eminence 

MEK 1/2, mitogen-activated protein (MAP) kinase/ extracellular signal-regulated kinase 1/2  

MetS, metabolic syndrome 

MRI, magnetic resonance imaging 

NAFLD, nonalcoholic fatty liver disease  

NPY, neuropeptide Y  

NTBI, non-transferrin bound iron 

POA, preoptic area  

POMC, pro-opiomelanocortin  

PRL, prolactin  

PVN, paraventricular nucleus  

RIA, radioimmunoassay 

ROS, reactive oxygen species  

SCN, suprachiasmatic nucleus  

SD, standard deviation  

SEM, standard error of the mean  

SHBG, sex hormone binding globulin  

SOCS3, suppressor of cytokine signaling-3  

SOD, superoxide dismutase  

SON, supraoptic nucleus 

SQUID, superconducting quantum interference device  

StAR, steroidogenic acute regulatory  

STAT3, signal transducer and activator of transcription 3  

STEAP3, six-transmembrane epithelial antigen of prostate  

T2DM, type 2 diabetes mellitus 

T, testosterone 

Tf, transferrin 
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TfR, transferrin receptor 

TNFα, tumor necrosis factor α  

TSH, thyroid stimulating hormone  

UPR, unfolded protein response  

UROD, uroporphyrinogen decarboxylase  

UTRs, untranslated regions 

VMH, ventromedial hypothalamus 

XBP-1, X-box binding protein-1   



9 
 

2. ABSTRACT 

Introduction. Iron is an essential micronutrient required for fundamental biochemical activities, 

such as oxygen and energy metabolism, mitochondrial function and brain development. 

However, it may catalyze the formation of highly reactive hydroxyl radicals, leading to oxidative 

stress, lipid peroxidation, and DNA damage with, finally, cell and tissue damages. Given its 

potential high toxicity, a condition of iron overload can promote multiple organ damages, 

associated to acute and chronic diseases. Among the several complications associated with iron 

overload syndromes, hypogonadism is the second most common endocrinopathy although the 

role of iron in its pathophysiology is still debated. 

Aim. To explore in a dysmetabolic murine model, the molecular determinants of hypogonadism 

induced by iron overload, with a specific focus on hypothalamic derangement. 

Material and methods. Male C57BL/6J mice fed standard iron concentration diet or iron-

enriched diet (IED, 3% carbonyl-iron) and HFE-/- mice, these last resembling a murine model of 

human genetic hemochromatosis; cell-based models of gonadotropin-releasing hormone 

(GnRH) neurons (GN-11 and GT1-7 cell lines); radioimmunoassay (RIA); enzyme-linked 

immunosorbent assay (ELISA); histological analysis and immunostaining; image processing and 

quantitation; atomic absorption spectrometry; ATPliteTM 1step assay; Trypan Blue exclusion 

test; qRT-PCR; Boyden’s chamber assay; Western blot analysis. 

Results. In vivo models. IED led to a hypogonadal phenotype as shown by micro- and 

macroscopic alterations at the testicular level. Iron accumulation in testes and pituitary 

significantly reduced serum levels of testosterone (-83%) and luteinizing hormone (-86%). 

Although, hypothalamic iron concentration did not differ in mice fed IED compared to controls, 

a significant increment in GnRH gene expression (+34%) and in intensity of GnRH-neuron 

innervation of the median eminence (+1.5-fold) were found; similar changes were obtained in 

HFE-/- mice. Hypothalamic gene expression of tumor necrosis factor α was increased in IED 

mice. 

Moreover, a series of metabolic impairments, such as (i) increment in glycemia and 

Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) index and (ii) reduction in 

body weight and fat as well as in plasma leptin was found upon IED. 

In vitro models. Treatment of GN-11 and GT1-7 cells with ferric ammonium citrate, as a source 

of iron, significantly increased its intracellular concentration; as such, the genes involved in iron 
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homeostasis were changed: transferrin receptor, -75%; ferritin H, +92%. Furthermore, GN-11 

cell chemomigration was inhibited by iron overload with an apparent involvement of the 

extracellular signal-regulated kinase (ERK) 1/2 cell signaling pathway. Finally, iron overload 

induced oxidative stress in GN-11 cells. 

Conclusions. In adult male mice, iron overload leads to a severe impairment of the 

hypothalamic-pituitary-gonadal axis possibly resulting in a hypogonadal condition, a feature 

possibly deriving from iron deposition in pituitary and/or gonads via extrahypothalamic 

mechanisms. This finding represents a further step in understanding how iron overload leads 

to this endocrinopathy. In this context, the use of in vitro GnRH neurons, which functions were 

impaired by iron accumulation, leaves open questions relative to the role of brain blood barrier 

in the protection of the central region (hypothalamus). 
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3. INTRODUCTION 

3.1 IRON 

3.1.1 IRON PHYSIOLOGY 

Iron is an essential micronutrient required for fundamental biochemical activities, such as 

oxygen and energy metabolism, mitochondrial function, brain development and function. In 

vertebrates, iron acts as an essential co-factor for many proteins and enzymes involved in 

central cellular processes such as respiration, metabolite biosynthesis, DNA synthesis and 

repair, protein synthesis, ribosome biogenesis, and oxygen transport [1]. The human body 

contains ~3–5 g of iron and most of them are present as heme protein complexes. These latter 

are involved in numerous biological functions, like oxygen binding and transport. This family 

includes hemoglobin of erythroid cells, which accounts for more than 2 g of iron, and myoglobin 

of muscles, containing ~300 mg of iron [2]. In hemoglobin, iron is stabilized in the Fe2+ oxidation 

state and directly binds and releases oxygen in circulating erythrocytes. Also in myoglobin, a 

protein responsible for oxygen storage and transport from erythrocytes to muscle cellular 

mitochondria, iron is present in the ferrous state. Other hemeproteins, containing smaller 

amounts of iron, are involved in oxygen metabolism (catalases, peroxidases), cellular 

respiration and electron transport (cytochromes). Iron can also be found in non-heme proteins, 

such as transferrin (Tf, protein that transports iron throughout the body), and ferritin (Ft, 

intracellular iron storage protein). In these forms, iron plays a role in fundamental cellular 

processes such as DNA synthesis and repair (ribonucleotide reductase), cell proliferation and 

differentiation, gene regulation, drug metabolism, and steroid synthesis [2, 3].  

 

3.1.2 IRON TOXICITY 

From a chemical point of view, iron is the 26th element of the periodic table with a molecular 

weight of 55.85. It is a d-block transition metal and it can assume several oxidation states. The 

most common species are the divalent ferrous (Fe2+) and the trivalent ferric (Fe3+) iron, by which 

it takes part in oxidation/reduction reactions. This chemical property of iron, underling its 

ability to donate and accept electrons is essential for this metal functions. However, the highly 

reactive “free” iron reacts with reactive oxygen species (ROS), physiologically produced during 

aerobic respiration and enzymatic reactions, leading to the generation of hydroxyl radicals 
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(Fenton chemistry). These, in turn, trigger oxidative stress, lipid peroxidation, and DNA damage 

with the final result of cell and tissue damage, making iron a highly toxic metal. 

Fe3+ + O2
.- -> Fe2+ + O2 

Fe2+ + H2O2 -> Fe3+ + OH- + OH. 

Fenton reaction 

The highly reactive “free” iron, in particular, represents a minor fraction of the total cellular 

iron (~3–5%) and it constitutes the labile iron pool (LIP), which includes both Fe2+ and Fe3+. The 

metal within the LIP is thought to be in steady state equilibrium and is proposed to bind 

different low molecular weight chelates, such as organic anions (phosphates, citrates, 

carboxylates) and poly-functional ligands (polypeptides, siderophores) [2].  

 

3.1.3 IRON METABOLISM 

In healthy individuals, the total amount of body iron is maintained within the range of 4-5 g by 

a strict control of its absorption, mobilization, storage and recycling. 

 

3.1.3.1 Bioavailability 

It is important to highlight that iron stores are not directly related to the capacity of the small 

intestine to absorb the metal, because the amount of bioavailable iron is often the limiting 

factor [4]. 

Dietary iron bioavailability is high from refined Western diets, which contain meat, poultry, fish, 

abundant sources of ascorbic acid and low amount of phytic acid from whole grains and 

legumes and are associated to limited drinking of coffee and tea with meals. Dietary heme, in 

particular, has a higher bioavailability compared with non-heme iron in the predominantly 

alkaline conditions found in the lumen of the small intestine [5]. 

Heme iron absorption is efficient and largely uninfluenced by other dietary constituents. 

Conversely, nonheme (and largely ferric) iron, found in both meat and plant foods, is highly 

insoluble, and its bioavailability is influenced by many dietary components. Among them, 

factors commonly found in plants, such as phytate, oxalate, polyphenols, and tannins are able 

to decrease its absorption. Moreover, the chronic use of proton pump inhibitors for gastric acid 

reflux, Helicobacter pylori infection, and inflammatory conditions (e.g., celiac disease) also 
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decrease nonheme iron absorption. In fact, gastric acid and ascorbic acid promote reduction 

and solubilization of dietary ferric iron, thus making the absorption more efficient [3, 4]. 

 

3.1.3.2 Absorption 

Due to its toxicity, the metabolic balance of iron is tightly controlled, mediating the absorption 

of sufficient amounts of the metal, essential for physiological functions, but avoiding an 

excessive accumulation that can be hazardous for cells and tissues. Since, unlike most essential 

nutrients, no active excretory mechanisms exist for iron in humans, the balance of this metal is 

controlled almost exclusively by absorption [6]. 

In adults, the iron stock is about 3 g in men and 2.5 g in women. A regular diet contains 6 mg of 

iron per 1,000 calories. In normal conditions, around 10% of iron is absorbed (~1 mg/die) at the 

duodenal level. This amount can increase in particular conditions, like during pregnancy, 

breastfeeding, anemias, in response to tissue hypoxia or when erythropoiesis is stimulated [4]. 

As above stated, dietary iron is present as heme and non-heme forms. Heme iron is 

predominantly derived from hemoglobin and myoglobin in meats. In the duodenum, the 

uptake of luminal heme occurs as a metalloporphyrin. It is degraded by the enzyme heme 

oxygenase to yield ferrous iron which then enters into enterocytes, along with iron absorbed 

as inorganic (i.e., non-heme) iron. The heme carrier protein 1 (HCP1) has been suggested to be 

a potential candidate to transport intestinal heme. Thus, iron exits the enterocyte via the 

basolateral transporter ferroportin-1 (FPN1) [7, 8]. 

Relative to the non-heme iron, it exists predominantly in the ferric form, which must be 

reduced before being transported into duodenal enterocytes. This process occurs at the brush-

border membrane (BBM), where a ferric reductase, the duodenal cytochrome b (DCYTB), 

reduces iron to Fe2+. Interestingly, DCYTB facilitates the reduction of ferric iron via electron 

transfer from intracellular ascorbate, providing one potential mechanism by which vitamin C 

enhances iron absorption. DCYTB is strongly upregulated in duodenal enterocytes during iron 

deficiency and acute hypoxia [4]. Subsequent to reduction of dietary ferric iron, ferrous iron is 

transported across the BBM of enterocytes into the mucosal cell, via divalent metal-ion 

transporter 1 (DMT1; encoded by the SLC11A2 gene). DMT1 is a transmembrane protein 

mediating proton-coupled and ferrous iron uptake; it is so called because it DMT1 transports 

other divalent cations, including manganese and cobalt [4]. 
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After ferrous iron is transported across the BBM into enterocytes, it is likely chelated by small 

molecular weight organic acids (e.g., citrate), amino acids, or intracellular proteins. When body 

iron demand is low, iron can be stored in Ft, an intracellular iron storage protein complex 

consisting of heavy (H) and light (L) chain subunits forming a hollow sphere accepting up to 

4,500 iron atoms. L-Ft is predominant in iron storing tissues, whereas H-Ft is preferentially 

expressed in cells that take up and release iron rapidly [2]. Given the role of iron in ROS 

formation, induction of Ft synthesis is induced not only by iron but also by oxidative stress 

conditions. Most of the iron stored in Ft is likely lost via subsequent exfoliation of intestinal 

epithelial cells. 

Ferrous iron exits enterocytes crossing the basolateral membrane (BLM) via FPN1-mediated 

transport. FPN1 (encoded by the SLC40A1 gene) is the only ferrous iron export protein 

identified to date in mammals. Subsequently, iron can be transported throughout the body 

bound to the protein Tf. Notably, Tf requires iron to be in the ferric form. Therefore, exported 

Fe2+ is rapidly oxidized to Fe3+ by a membrane-anchored, multicopper-containing ferroxidases 

(hephaestin) to be taken up by apotransferrin (free Tf) and distributed via the circulation 

throughout the body as Fe-Tf complexes [4, 8] [Fig. 1]. 
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Gulec S. et al. Am J Physiol Gastrointest Liver Physiol. 2014; 307(4):G397-409  [4]. 

 

Fig. 1. Mechanisms of iron absorption in the duodenum. Iron may be derived from heme or it may occur as free 

non-heme iron. Heme iron transport is probably mediated by endocytosis of heme followed by iron liberation from 

heme within endosomes by heme oxygenase (HO). Non-heme ferric iron must be reduced, by duodenal cytochrome 

b (DCYTB), and subsequently transported into cells via divalent metal-ion transporter 1 (DMT1). Iron destined for 

export traverses the basolateral membrane (BLM) via ferroportin 1 (FPN1). The exit of ferrous iron is functionally 

coupled with iron oxidation via hephaestin (HEPH). Ultimately, ferric iron binds to Tf in the interstitial fluids or in 

the vasculature and is distributed throughout the body. 
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3.1.3.2.1 Regulation of intestinal iron absorption  

The major regulator of systemic iron homeostasis is hepcidin, a 25-amino acid peptide 

produced by the hepatocytes but expressed, at low levels, also in macrophages and in cells 

from non-hepatic tissues (such as heart, brain, pancreas, stomach, lung, kidney, adipose tissue, 

retina). Nevertheless, only hepatic hepcidin appears to regulate systemic iron trafficking [8, 9].  

Hepcidin functions. Hepcidin functions are to block intestinal iron absorption and to inhibit iron 

release from stores.  

Hepcidin’s mechanism of action. Since its discovery in 2001, numerous studies have been 

conducted to understand the mechanism of action of this peptide. Hepcidin acts as a negative 

regulator of iron uptake by binding FPN1 on the plasma membrane of enterocytes, 

macrophages, hepatocytes and other cells, promoting its Jak2-mediated tyrosine 

phosphorylation and internalization and subsequent lysosomal degradation. Accordingly, low 

hepcidin states are characterized by high levels of FPN as well as high iron export to 

extracellular fluid and plasma. In contrast, high circulating hepcidin concentrations lead to a 

reduction of FPN levels at the membrane level, with the consequent decreased iron export to 

plasma [10]. However, several authors have found that this internalization mechanism was not 

observed in the intestine. Indeed, in the duodenum, hepcidin was found to act rather on DMT1, 

leading to its internalization and proteasomal degradation [8].  

Hepcidin synthesis. Hepcidin synthesis is regulated by different signals including circulating iron 

concentration, erythropoiesis, and inflammation. Iron-dependent induction of hepcidin serves 

to prevent excessive dietary iron absorption from enterocytes when body iron levels increase. 

When the levels of this metal are high, hepcidin is significantly upregulated, limiting further 

iron absorption and thus reflecting a regulatory response against iron overload. In contrast, 

iron deficiency significantly reduced hepcidin synthesis, allowing more iron to enter plasma. 

This regulation is complex and involves different hemochromatotic proteins. In particular, 

increased hepcidin gene transcription related to iron levels, involves the hemojuvelin/bone 

morphogenetic/SMAD (HJV/BMP/SMAD) pathway, which is activated following BMP6 over-

expression. In addition, hereditary hemochromatosis protein (HFE) and the Tf receptor 2 (TfR2), 

both expressed on the hepatocyte cell membranes, also participate, under conditions of iron 

excess, in the induction of hepcidin expression [11]. Hepcidin inhibition, in response to iron 

deficiency, can also be mediated by the reduction of BMP6 expression, which decreases the 
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BMPR/HJV/SMAD signaling pathway. Besides being responsive to iron, hepcidin synthesis is 

strongly increased by inflammation through the interleukin 6 (IL6) / Signal transducer and 

activator of transcription 3 (STAT3) pathway, contributing to limited iron bioavailability for 

invading microorganisms, malignant cells or oxidative stress during chronic inflammation [8, 

11]. In addition, hepcidin can be regulated also according to the erythropoietic requirement for 

iron. Indeed, during active erythropoiesis hepcidin production is suppressed, making more iron 

available for hemoglobin synthesis [12]. Factors reducing hepcidin expression include hypoxia. 

In this context, serum iron and Tf saturation are increased, allowing intense erythropoiesis to 

compensate for tissue hypoxia [13]. 

 

3.1.3.3 Transport 

Exported Fe3+ is captured by Tf, the plasma iron carrier, and transported to bone marrow 

erythroblasts and other cells in peripheral tissues. Tf is an 80-kDa glycoprotein, synthesized and 

secreted mainly by the liver, which maintains iron in a redox inert state and delivers it to tissues. 

Varying amounts are also produced in lymph nodes, thymus, spleen, salivary glands, bone 

marrow and testis. Tf contains two high affinity (kD = 10−23 M) ferric binding sites, and is only 

partially (30%) saturated with iron under physiological conditions. The concentration of diferric 

Tf in plasma is ~5 μmol/L, corresponding to approximately one tenth of total circulating Tf. The 

high abundance of unsaturated apo-Tf allows an efficient buffering of increased plasma iron 

levels and prevents the build-up of non-transferrin bound iron (NTBI). This latter is taken up by 

tissue parenchymal cells and promotes oxidative injury. Under physiological conditions, NTBI is 

undetectable, but it is generated in iron overload states, such as in hereditary 

hemochromatosis, where Tf gradually becomes fully saturated with iron and loses its buffering 

capacity, or in atransferrinemia [2]. The uptake of Tf-iron through Tf receptor 1 (TfR1) is the 

main source of iron for most cells. The iron status of Tf influences its affinity for TfR1, with 

diferric Tf having the greatest affinity, monoferric Tf intermediate and apo Tf the lowest. Tf-

iron binds to TfR1 on the cell surface and the complex undergoes endocytosis via clathrin-

coated pits. A proton pump acidifies the endosome resulting in the release of Fe3+, which is 

subsequently reduced to Fe2+ by six-transmembrane epithelial antigen of prostate (STEAP3) 

and transported across the endosomal membrane to the cytosol by DMT1. Apo-Tf is recycled 

back to the cell surface and released from TfR1 to plasma to repeat another cycle [2, 14]. 
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After reduction of ferric iron by the STEAP3 protein, iron is transferred to the cytosol, where it 

is transported to intracellular sites either for local use or for storage, bound to Ft. The 

mechanism of iron transport through the cytosol is not well understood. Presumably, iron binds 

to dedicated iron chaperones, such as poly (rC)-binding proteins mediating its storage in Ft, its 

use for synthesis of heme as well as iron-sulfur clusters in the mitochondrion [1, 8]. 

 

3.1.3.4 Storage 

More than 70% of body iron (3-5 g) is present within hemoglobin of red cells. In fact, the plasma 

compartment contains only 2–3 mg of iron, bound to Tf. When erythrocytes are degraded by 

macrophages, their iron content is returned to plasma Tf. Degradation of senescent red blood 

cells by splenic macrophages accounts for 90% of total iron recycling, the remaining 10% comes 

from the diet. The iron-Tf is mostly destined for erythrocyte production in the bone marrow. 

Other cells contain and require much less iron, and some of them are able to utilize non-

transferrin bound iron as well. In the average adult male, significant fractions of body iron are 

distributed within tissue macrophages (∼5%) and hepatocytes (∼20%). In these sites, iron is 

stored in cytoplasmic Ft and is readily mobilized during periods of high iron demand. However, 

in general, the amount stored is much lower in women of reproductive age, due to blood losses 

from menstruation and parturition [9, 12, 15] [Fig. 2]. 
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Papanikolaou G. et al. IUBMB Life. 2017; 69(6):399-413 [9]. 

Fig. 2. Distribution of iron in humans. 

 

3.1.3.4.1 Intracellular regulation of iron 

Inside the cell, iron balance is controlled by post-transcriptional mechanisms involving the Iron 

Regulatory Proteins (IRPs) and the Iron Responsive Elements (IREs). IRPs are capable of binding 

to IREs located in untranslated regions (UTRs) of mRNAs encoding iron-regulated proteins. 

When IRPs are active, they interact with the IRE and limit the expression of proteins having an 

IRE in its 5′UTR, whereas they stabilize mRNA displaying IRE motifs in 3′UTR. In particular, the 

DMT1 transcript contains an IRE in its 3′ UTR, TfR1 mRNA contains multiple IREs within its long 

3′ UTR, while the mRNAs encoding H- and L-ferritin and the FPN1 transcript contain a single IRE 

in their 5′ UTRs [2, 4, 15]. Thus, when intracellular iron is low, IRPs are maintained in their active 

form, leading to the stabilization of TfR1 and DMT1 mRNAs and the inhibition of FPN1 and Ft 

mRNAs translation. This response results in an increment of intracellular iron availability by 

both increment of cellular iron uptake and decrease of iron storage and release. On the 

contrary, when iron is abundant, the decrease in IRP activity leads to a decrease in DMT1 and 

TfR1 mRNA expression and in the translation of FPN1 and Ft mRNAs. This minimizes further 

internalization of iron and promotes the storage of excessive intracellular iron into Ft [2, 14]. 
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As a further explanation of how the regulation of intracellular iron occurs, it is important to 

highlight that the cytosolic proteins that specifically recognize and bind IREs are IRP1 and IRP2. 

IRP1 acts as a sensor of iron levels within the cell and as a regulator of cellular iron homeostasis. 

Indeed, as an apoform, it is able to bind IRE, but it can also assemble a [4Fe–4S] cluster and 

become the cytosolic counterpart of mitochondrial aconitase, the enzyme that converts citrate 

to isocitrate in the tricarboxylic acid cycle. Under high iron conditions, the cluster is assembled 

and IRP1 functions as cytosolic aconitase. In this case, the iron-sulfur cluster keeps IRP1 in a 

closed conformation precluding access of IREs. Conversely, when iron levels are low, no cluster 

is formed and IRP1 acquires IRE-binding activity. IRP2 is highly homologous to IRP1 but lacks 

aconitase activity, probably because of its inability to assemble a [4Fe–4S] cluster [2, 16]. In 

iron-replete cells, IRP2 undergoes iron-dependent proteasomal degradation via the ubiquitin 

ligase F-box and leucine rich repeat protein 5 (FBXL5), while in iron deficiency FBXL5 is degraded 

and IRP2 accumulated [9]. 

 

3.1.3.5 Excretion 

Iron excretion is not actively controlled and skin desquamation is the major mechanism, so far, 

described accounting for about 1–2 mg per day less than 0.1% of the 3–4 g of total iron in the 

human body; iron must be replaced from dietary sources to maintain its balance. Adolescent 

girls and premenopausal women excrete considerable amounts of iron through menstruation. 

Non-menstrual iron losses occur also through desquamation of epithelial cells in the intestine, 

through bile, urine and minor bleeding. Importantly, the losses of iron cannot substantially 

increase through physiologic mechanisms, even if iron intake and stores become excessive [8, 

15]. 

 

3.1.4 Mitochondria and iron 

Mitochondria are the major site of iron utilization. They harbor several abundant iron-

dependent proteins that play essential roles in the respiratory chain (complexes I–IV), the citric 

acid cycle (aconitase) and the biosynthesis of amino acids and vitamins (e.g., lipoate synthase). 

They are also central sites for the synthesis of iron-containing co-factors, as well as of heme 

and iron sulfur clusters [1]. Moreover, mitochondria are key players in the regulation of cellular 

iron homeostasis and they actively communicate the status of mitochondrial iron availability to 

the cytosolic iron-regulatory systems, in order to balance cellular iron uptake and storage to 
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intracellular demands. Mitochondrial handling of iron is complex and even more delicate than 

in the rest of the cell because mitochondria are an important source of ROS. Mitochondrial iron 

trafficking mirrors cellular iron metabolism, but the exact mechanism by which it occurs 

remains elusive and not all the carriers involved are known. Iron must cross both outer and 

inner mitochondrial membranes to reach the site of heme synthesis, the matrix [2]. 

Mitochondrial outer membrane facilitators of iron import were identified by computational 

screening, which yielded several members of the SLC family, as well as a non-SLC transporter. 

Interestingly, members of the SLC family also facilitate iron import across the mitochondrial 

inner membrane. Most notable are SLC25A37 or Mitoferrin-1 and SLC25A38 or Mitoferrin-2, 

which are important for mitochondrial iron import into erythroid and non-erythroid cells, 

respectively [2]. Moving the attention from iron transport to its storage, mitochondria are 

characterized by the presence of a specific iron storage protein, the mitochondrial Ft or 

mitoferritin (FtMt), which is also able to change cellular iron distribution by attracting iron from 

the cytosol to mitochondria [2, 14]. Also in this organelle, FtMt plays a role in the protection 

against iron toxicity. In contrast to cytosolic Ft, the expression of FtMt is restricted to few 

tissues. Indeed, it is particularly expressed in mitochondria-rich tissues, such as the heart, 

skeletal muscle and osteoclasts [14]. 

 

 

3.2 IRON OVERLOAD 

Given its potential high toxicity, an excessive iron accumulation in specific tissues, cellular and 

subcellular sites can promote a vast array of acute and chronic illness. This condition is defined 

as “iron overload” and can promote the development of organ damage as well as an increased 

mortality. The pathogenesis of this disease is not always clear. Indeed, this syndrome can occur 

as a consequence of mutations in genes involved in iron metabolism, or it may be secondary to 

acquired conditions, such as hazardous alcohol consumption and metabolic diseases, among 

others [17, 18]. Accordingly, iron overload syndromes can be divided into two groups: Inherited 

or Primary iron overload and Secondary iron overload syndromes, as described in Table 1 and 

Table 2, respectively [18]. 
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Modified by Siddique A. et al. Aliment Pharmacol Ther. 2012; 35(8):876-93 [18]. 

 

Table 1 and Table 2. Primary and secondary iron overload syndromes. 

 

3.2.1 Primary iron overload syndromes 

Hemochromatosis was first described by Armand Trousseau in 1865 as a “case of bronze 

diabetes and cirrhosis”. Then, in 1935, Sheldon recognized the inherited nature of this disorder 

and the association with abnormal iron metabolism and, for this reason, this disease is now 

defined as “hereditary hemochromatosis”. This latter is a group of inherited disorders 

characterized by progressive iron accumulation in tissues associated to iron-mediated injury 

and organ dysfunction. This pathology is characterized by an unrestricted iron efflux from 

enterocytes and macrophages leading to hyperferremia. The excessive circulating iron levels, 

Table 1 – Inherited iron overload syndromes 

HFE-related hemochromatosis (Type 1) 

     C282Y/C282Y 

     C282Y/H63D 

     Other HFE mutations 

Non-HFE related hemochromatosis 

Juvenile Hemochromatosis (Type 2) 

     Type 2A – Hemojuvelin mutations 

     Type 2B – Hepcidin mutations 

Transferrin receptor 2 hemochromatosis 

(Type 3) 

Ferroportin diseases (Type 4) 

     Classical 

     Non classical 

Table 2 – Secondary iron overload 

syndromes 

Iron-loading anemia 

     Thalassemic syndromes (β Thalassemia) 

     Sideroblastic Anemias 

     Chronic Hemolytic Anemia 

     Apalstic Anemia 

     Pyruvate Kinase Deficiency 

Chronic liver disease 

     Hepatic C infection 

     NAFLD 

     Alcholic liver disease 

     Porphyria Cutanea Tarda 

Iatrogenic 

     Red blood cell transfusion 

     Long-term hemodialysis 

Miscellaneous 

     Aceruloplasminemia 

     African iron overload 

     Neonatal iron overload 
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in turn, exceed the iron-binding capacity of Tf and, when the saturation of this latter is higher 

than 70%, NTBI appears in the circulation. NTBI is then readily taken up by hepatocytes, cardiac 

myocytes and other parenchymal cells. This rapid and excessive accumulation of intracellular 

iron causes specific tissue toxicities dependent on both the rate and the extent of iron 

accumulation, and triggers clinical complications.  Hereditary hemochromatosis has been 

demonstrated to result from mutations in several genes involved in the regulation of iron 

homeostasis and, based on the gene causing the disease, four forms have been identified:  the 

type 1, or HFE-related hemochromatosis, and three types of non HFE-related 

hemochromatosis: type 2, or juvenile hemochromatosis, type 3, or transferrin receptor 2 

hemochromatosis, type 4, or ferroportin disease [19, 20]. 

 

3.2.1.1 HFE-related hemochromatosis or type 1 hemochromatosis 

The most common form of hemochromatosis is associated with mutations of the HFE gene. 

HFE-related hemochromatosis is an autosomal recessive disorder, which usually manifests in 

the fourth or fifth decade. HFE encodes a membrane-bound major histocompatibility complex 

class I-like protein which binds to β2-microglobulin and this association enables it to be moved 

to the cell surface where it competes with Tf for binding TfR1 to modulate cellular iron uptake. 

It is involved in the induction of hepcidin expression under conditions of iron excess. A number 

of HFE mutations have been identified. The most common clinically relevant mutations, 

however, are the C282Y and H63D. The first one is a missense mutation on the short arm of 

chromosome 6 that causes a substitution of tyrosine for cysteine at the amino acid 282 in the 

HFE protein. This mutation disrupts a critical disulfide bond and impairs β2-microglobulin 

association and normal HFE processing. Instead, the H63D mutation is characterized by a 

histidine to aspartic acid substitution at amino acid 63. Generally, these mutations lead to the 

inability of HFE to sense increased levels of iron and to interact with TfR1, resulting in decreased 

hepcidin expression with the consequent impaired regulation of duodenal iron absorption and 

excessive delivery of iron to plasma [15, 18]. Approximately 85–90% of patients with the typical 

phenotype of HFE-related hemochromatosis are C282Y homozygotes whereas 3–5% are 

C282Y/H63D compound heterozygotes. The prevalence of C282Y homozygosity is 1 in 250 

persons in the general population. However, iron overload features do not manifest in many 

C282Y homozygotes, suggesting an incomplete penetrance, the possibility that there may be 

other genes that act as modifiers of the HFE-related hemochromatosis phenotype or that 
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environmental or dietary factors are also important for the pathogenesis of this disease. In this 

context, the two main factors which can promote an increased phenotypic expression of the 

homozygous C282Y mutation are male gender (men are affected more frequently and more 

severely than women) and increased alcohol consumption [4, 18]. With regard to the H63D 

mutation, it has a carrier frequency of 10–20% of population of European descent and may 

contribute to minor increases in iron levels and rarely to iron overload in the absence of C282Y. 

However, only 0.5–2% of subjects with compound heterozygosity for C282/H63D develop iron 

overload. H63D homozygosity is unlikely to cause clinical disease in the absence of other 

factors, such as viral hepatitis and alcohol consumption. 

In HFE-related hemochromatosis, widespread excess iron deposition occurs in parenchymal 

cells, especially in those of the liver, pancreas and heart, and can lead to organ damage and 

variable clinical outcomes. Among them, hepatomegaly, cirrhosis, arthropathy involving the 

metacarpophalangeal joints, progressive increase in skin pigmentation, diabetes mellitus, and 

cardiomyopathy can occur. Other common but less specific manifestations include abdominal 

pain, weakness, lethargy, and weight loss. Men may develop erectile dysfunction consequent 

to hypogonadotropic hypogonadism secondary to pituitary involvement [20]. 

 

3.2.1.2 Non HFE- related hemochromatosis 

Other genetic disorders of iron metabolism result from mutations occurring outside the HFE 

gene. 

 

3.2.1.2.1 Juvenile Hemochromatosis or type 2 hemochromatosis 

Juvenile hemochromatosis (JH) is a rare autosomal recessive disease characterized by massive 

hepatocellular iron deposition as well as iron deposition in endocrine glands. Unlike classical 

HFE-related hemochromatosis, patients with JH present clinical disease early in life, usually by 

the third decade. This syndrome affects both genders equally and has a more rapid and severe 

course. Depending on the gene involved, JH is divided into two subtypes, although the clinical 

presentation is indistinguishable. Type 2A is due to mutations in the hemojuvelin (HJV) gene 

encoding protein hemojuvelin on the long arm of chromosome 1. Type 2B is due to mutation 

in the hepcidin gene on chromosome 19. The protein HJV, in particular, is expressed in the liver, 

heart and skeletal muscles, and is considered as an upstream regulator of hepcidin. Indeed, HJV 
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acts as a BMP co-receptor and enhances the phosphorylation of the SMADs, thereby increasing 

hepcidin expression. Therefore, when the HJV protein is mutated, the expression of hepcidin is 

inhibited and little or no hepcidin is detectable in plasma [18]. 

 

3.2.1.2.2 Transferrin receptor 2 or type 3 hemochromatosis 

Type 3 hemochromatosis is a rare disorder resulting from mutations in the TfR2 gene located 

on the long arm of chromosome 7. It was first described in southern Italy and is inherited in an 

autosomal recessive fashion with an adult onset. TfR2 is mainly expressed in the liver and has 

a lower affinity for iron uptake compared with TfR1, but has a higher capacity to transport the 

complex Tf-iron to hepatocytes. As discussed above, it is involved, together with HFE protein, 

in the induction of hepcidin expression under conditions of iron excess. The TfR2 gene 

mutations impair the ability of the receptor to sense iron levels resulting in a decrease of 

hepcidin expression and in an increment of iron accumulation. However, in these patients, the 

reduction of hepcidin is not so huge and, as a result, the development of the iron overload 

phenotype is more gradual. Fatigue, arthralgia and cirrhosis and diabetes mellitus are the 

clinical manifestation of this disorder. Some individuals can present the symptoms in the 

second decade [4, 15, 18, 21]. 

 
3.2.1.2.3 Ferroportin disease or type 4 hemochromatosis 

Type 4 hemochromatosis, also called ferroportin disease and originally identified in three 

families in Italy, is the second most common inherited iron overload syndrome after HFE-

related hemochromatosis. It differs from the other types for having an autosomal dominant 

transmission and for not affecting hepcidin expression. Indeed, it is caused by mutations in the 

SLC40A gene, encoding the FPN, which result in a loss of protein function. It is characterized by 

hyperferritinemia, normal Tf saturation and iron accumulation in macrophages [15]. 

Furthermore, gain of function mutations in the SLC40A gene cause the so called “nonclassical 

ferroportin disease”, which can be associated with type 4 haemochromatosis. This disorder is 

similar to the ferroportin disease and the main signs are (i) increased serum Ft concentration, 

(ii) elevated Tf saturation, and (iii) iron accumulation in parenchymal cells [15, 18, 21]. 
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3.2.2 Secondary iron overload syndromes 

Iron overload can also be determined by secondary causes including alcohol abuse, obesity and 

insulin resistance, chronic hepatitis C, hemolytic and dyserythropoietic anemias and chronic 

transfusional therapy [22, 23]. Here some examples of secondary iron overload syndromes are 

presented. 

 

3.2.2.1 Iron loading anemias 

The definition “iron loading anemias” encompasses a group of inherited and acquired anemias 

characterized by ineffective erythropoiesis, excessive iron absorption and secondary iron 

overload. Two examples of these conditions are the thalassemic syndromes and the 

sideroblastic anemias [24]. 

 

3.2.2.1.1 β-Thalassemia 

Thalassemia syndromes are a group of inherited hematological disorders which are caused by 

genetic defects in globin genes and are therefore characterized by the deficiency of the 

production of either the α- or β-globin chains. Specifically, β-thalassemia is a heterogeneous 

group of disorders caused by mutations occurring within one or two beta-globin genes or the 

immediate flanking sequences which lead to decreased or absent beta-globin production and 

the consequent abnormal hemoglobin formation. In β-thalassemia there is a quantitative 

reduction of structurally normal β globin chains in erythroid precursors. Instead, the synthesis 

of normal α-globin chains continues as normal, resulting in the accumulation within the 

erythroid precursors of an excess of unmatched α-globin. The free α-globin chains are not able 

to form viable tetramers and tend to form insoluble aggregates which precipitate within the 

developing erythroid cell at the bone marrow level with the final result of an ineffective 

erythropoiesis. The resulting anemia stimulates erythropoietin production, which in turn 

causes massive expansion of erythroid precursors, but fails to correct the anemia because the 

precursors undergo apoptosis [12]. 

Severe cases of β-thalassemia require regular blood transfusion to reduce the chronic anemia; 

but multiple blood transfusions together with increased hemolysis of red blood cells and 

increased gastrointestinal iron absorption, lead to iron overload, which is the major cause of 

serious morbidity and mortality in this disease. However, a severe iron overload disorder can 
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occur in most patients with β-thalassemia, even if they do not receive blood transfusions. In β-

thalassemia, iron overload is treated with chelators, even if they have serious adverse effects 

and patient compliance is frequently a problem. Therefore, in recent years, new therapies are 

being studied. Among them, there are the allogeneic hematopoietic stem cell transplantation, 

the gene therapy or the induction of fetal hemoglobin. Interestingly, levels of hepcidin in β-

thalassemic patients have been shown to be extremely low. This leads to a hyperabsorption of 

dietary iron, resulting in overloading. Therefore, hepcidin supplementation may become an 

alternative or an addition to the chelation therapy, at least in untransfused patients, in which 

hepcidin levels are normal or even increased, although still deficient considering the iron 

overload [12, 18, 25, 26].  

 

3.2.2.1.2 Sideroblastic anemias 

The sideroblastic anemias are a heterogeneous group of disorders characterized by anemia of 

varying severity and the presence of ring sideroblasts in the bone marrow. These latter are 

erythroblasts with an irregular accumulation of iron in mitochondria, which are clustered 

around the nucleus. Most of the iron deposited in ring sideroblasts is very likely present in the 

form of mitochondrial Ft, whereas normal erythroblasts lack this protein. The sideroblastic 

anemias include both inherited and acquired conditions. To date, mutations of genes involved 

in heme biosynthesis, Fe–S cluster biogenesis, or mitochondria biology have been reported in 

congenital sideroblastic anemia. Impaired function of these genes is speculated to result in an 

impaired utilization of iron, leading to accumulation of the metal in mitochondria. Conversely, 

the mechanisms by which ring sideroblasts are formed in acquired sideroblastic anemia are not 

fully clarified [27, 28]. 

 

3.2.2.2 Chronic liver disease 

Iron can be a cofactor in chronic liver diseases, like hepatitis C virus (HCV), nonalcoholic fatty 

liver disease (NAFLD), alcoholic liver disease and porphyria cutanea tarda.  

HCV infection is a major cause of chronic liver disease; its severity varies from asymptomatic 

chronic infection to cirrhosis and hepatocellular carcinoma. The mechanism by which hepatic 

iron overload develops in patients with chronic HCV infection remains unclear [29]. Indeed, the 

pathophysiology of iron overload in this disorder is likely a combination of iron release from 

necrotic hepatocytes, a direct effect of HCV on iron homeostasis, for example via the hepatic 
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overexpression of TfR1, presence of HFE mutations and dysregulation of hepcidin expression 

[18, 29]. 

NAFLD is considered to be the hepatic manifestation of metabolic syndrome. Approximately 

one third of patients show signs of impaired iron homeostasis as indicated by elevated serum 

Ft with normal or mildly elevated Tf saturation. Mild hepatic iron deposition is the typical 

histological finding in these subjects [30] and can occur in Kupffer cells as well as in hepatocytes. 

Mesenchymal iron deposition is more frequent than hepatocellular iron accumulation but 

mostly both compartments are affected [31]. Iron accumulation in NAFLD is multifactorial and 

is influenced by age, diet, race, HFE status and environmental factors [32]. It is mainly due to 

inhibition of iron mobilization from hepatocytes and Kupffer cells. Impaired iron export is 

related to inflammation and metabolic derangements and appear to impact iron regulators, 

such as hepcidin, FPN and, to a lesser degree, Tf receptor, Ft and copper [30]. Moreover, also 

genetic factors, such as HFE and beta-globin mutations can be involved [33], and a proposed 

mechanism to explain the hepatic iron deposition in NAFLD is an insulin-mediated cellular iron 

uptake through the redistribution of intracellular TfRs to the plasma membrane [29]. Indeed, 

metabolic alterations such as hyperinsulinemia, dysglycemia, dyslipidemia and insulin 

resistance worsen the clinical picture and progression of NAFLD [34]. 

Alcoholic liver disease is one of the major liver diseases in the developed countries and is 

characterized by hepatic iron overload in approximately 50% of patients [35]. According to the 

literature, chronic alcohol consumption in moderate to excessive amounts is associated with 

elevation of serum Ft concentration and Tf saturation, and can result in increased hepatic iron 

stores. Hepatic siderosis is frequently present with a typical mixed distribution in both 

hepatocytes and Kupffer cells. In these patients, low hepcidin levels are usually found along 

with iron deposition in macrophages. Additionally, increased intestinal iron absorption has also 

been documented. The mechanisms by which alcohol interferes with iron metabolism have not 

been fully elucidated, yet. Oxidative stress plays a key role in the pathogenesis of alcoholic liver 

disease and both iron and ethanol can cause oxidative stress and lipid peroxidation. Therefore, 

these two elements interact synergistically and exacerbate liver injury. Interestingly, in patients 

affected by alcoholic liver disease, alcohol consumption may cause suppression of hepcidin 

expression and that could represent a mechanism underling the iron accumulation in subjects 

affected by alcoholic liver disease [35, 36]. 
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Porphyria cutanea tarda is a relatively rare condition caused by a decrease in uroporphyrinogen 

decarboxylase (UROD) activity, the fifth enzyme in the heme biosynthetic pathway. This results 

in an accumulation of the byproducts of heme biosynthesis, namely porphyrins. Patients have 

moderate to severe photosensitivity and the disease manifests in a chronic, gradually 

progressive manner with cutaneous vesicles, bullae, erosions, crusts, scars, particularly on the 

hands, after exposure to sunlight; liver disease may also be detected. Mild to moderate iron 

overload is almost always present, and iron depletion leads to reversal of the clinical 

manifestations. In particular, iron may exert a pathogenic role in different ways, such as 

increasing the rate of porphyrins formation, also through the ROS production, and decreasing 

the UROD activity. However, porphyria cutanea tarda is often induced in susceptible patients 

and known risk factors include UROD mutations, alcohol, smoking, hepatic tumors, estrogens 

and hepatitis C virus infection [36, 37]. 

 

3.2.2.3 Miscellaneous disorders 

Aceruloplasminemia is a rare autosomal recessive disorder of iron metabolism which is due to 

a mutation in the ceruloplasmin gene. Ceruloplasmin is a plasmatic multicopper ferroxidase 

synthesized in the hepatocytes. It catalyzes the oxidation of ferrous iron to the ferric form, 

reaction that allows the metal to be released from intracellular stores and to be transported by 

Tf. Absence or dysfunction of ceruloplasmin leads to iron accumulation, mainly in the liver, 

pancreas and central nervous system. The classic triad of aceruloplasminemia is comprised of 

retinal degeneration, neurological symptoms and diabetes mellitus. Patients present elevated 

hepatic iron and serum Ft concentrations with low serum iron levels [18, 38]. 

African iron overload was originally described in individuals from southern and central African 

countries. Initially, it was attributed to consumption of food, or more significantly to large 

quantities of traditional beer prepared in iron-rich pots. Later, several studies hypothesized 

that the pathophysiology of such disease would probably be more complex and it has been 

suggested that African iron overload may have a genetic component. In particular, a mutation 

of the FPN gene SLC4OA1, restricted to Africans and African Americans, was taken into account. 

Moreover, alcoholic beverages could participate to the development of this disease. African 

iron overload is characterized by hepatic and probably, systemic iron overload. It is a frequent 

cause of cirrhosis and hepatocellular carcinoma and confers susceptibility to tuberculosis and 

other infections [18, 39, 40]. 
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3.2.3 Treatment of iron overload 

The treatment of pathological conditions associated with iron overload strongly improved with 

the introduction of different methods for evaluating the iron overload degree. These analyses 

include: the measurement of serum Ft levels, the detection of iron concentration through 

biopsy, the superconducting quantum interference device (SQUID) and the magnetic resonance 

imaging (MRI). The simplest way to quantify iron overload is to measure serum Ft level which 

correlates with iron stores in body. However, Ft level is variable in several non-iron overloaded 

conditions, including acute and chronic inflammatory disorders, infections, vitamin C 

deficiency, NAFLD, neoplastic disease, HCV, alcohol abuse and, for this reason, the reliability of 

this method is questionable [24, 41]. Liver iron concentration (LIC) is a reliable indicator of body 

iron concentration and can be measured by performing a liver biopsy or, noninvasively, by 

biomagnetic liver susceptometry through the use of SQUID [42, 43]. Another safe, noninvasive, 

and accurate alternative to liver biopsy is represented by MRI, which, similar to SQUID, is 

sensitive to the magnetic susceptibility of tissues. It can be applied, not only at the hepatic level, 

but also in other organs, such as pancreas, spleen, and vertebral bone marrow, providing new 

insights into the pathophysiology of systemic iron distribution [18, 43, 44].  

Thanks to these techniques is then possible to routinely monitor body iron concentration with 

the consequent important possibility to adjust the therapy minimizing the potential for adverse 

side effects and avoiding serious complications of iron overload, such as hepatic, 

endocrinological and cardiac dysfunctions.  

Among the most prescribed therapies, phlebotomy and chelation treatment are the most 

representative. Phlebotomy is a strategy including two phases, an initial induction phase to 

induce iron depletion followed by maintenance phase to prevent excess iron re-accumulation. 

However, some patients, such as those affected by β-thalassemia and hereditary 

hemochromatosis, cannot undergo this treatment because of their anemia. Moreover, 

phlebotomy can worsen hepcidin deficiency with the increased iron absorption and the need 

for further therapeutic phlebotomies and, also, it is not suitable for all patients because of poor 

vascular access and adverse physiological responses [12, 18]. 

Instead, iron chelators work by neutralizing unbound iron and removing excess iron from the 

tissues [41, 43]. 

Several iron chelators have been designed to excrete tissue iron by forming complexes [41]. 
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Among them, deferoxamine, deferiprone and deferasirox are approved by the US Food and 

Drug Administration (FDA). 

 

3.2.3.1 Deferoxamine 

Deferoxamine (DFO, Desferal®), is a non-toxic iron chelator which is clinically approved and 

effective for long-term iron chelation therapy in iron overload syndromes. It is the first iron 

chelator used in treatment of iron toxicity and it has been the treatment of choice for iron 

overload for the last 40 years. It is a hexadentate chelator that can bind to all the six active sites 

of iron, achieving the complete inactivation of a single atom of iron at a 1:1 molar ratio. DFO 

can chelate iron irrespective of the metal accumulation site. Indeed, for example, it can 

precipitate iron present in old red blood cells leading to its excretion through urine or it can be 

internalized by hepatic parenchymal cells, where it binds to excess iron to facilitate its 

elimination through the bile. 

Despite it can be orally absorbed, the pharmacokinetic of oral forms is not optimal. Similarly, it 

has been resulted to be ineffective after its intramuscular injection. Therefore, to be clinically 

effective, DFO must be administered as a subcutaneous, or less often an intravenous, infusion 

for several hours per day.  

The treatment has remarkable effects on the reduction of serum Ft level and hepatic iron 

content and, more broadly, on the reduction of body iron load with the consequent prevention 

of iron-induced complications and even the reversion of some organ-damage due to iron 

deposition. The principle disadvantages associated with DFO are: (i) a low adherence to the 

therapy due to its short half-life and parenteral administration; (ii) the adverse effects, 

especially at high doses, such as skin reactions, abdominal pain, diarrhea, nausea, vomiting, 

hypotension, ocular toxicity and ototoxicity or, rarely, growth retardation, renal impairment 

and pulmonary fibrosis; (iii) the high cost of this drug [41, 45]. 

 

3.2.3.2 Deferiprone  

Deferiprone was the first oral iron chelator to be used and works by forming stable complexes 

with plasma iron that can be excreted through urine. Like DFO, deferiprone has a short half-life 

and requires multiple daily dosing.  
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3.2.3.3 Deferasirox 

Deferasirox is a tridentate chelator available for routine use. Unlike DFO, it can be rapidly 

absorbed after an oral administration and has a bioavailability of about 70% with a long half-

life which allows a unique administration daily [46]. Two molecules of deferasirox are required 

to bind one of iron (2:1 ratio), and the final bound iron is excreted mainly through the feces 

[41, 45]. 

 

 

3.3 IRON OVERLOAD AND ENDOCRINOPATHIES  

Among the several complications associated with iron overload syndromes, the most common 

endocrinopathies are the hypogonadotropic hypogonadism and the type 2 diabetes mellitus.  

 

3.3.1 Male reproductive axis 

Hypogonadotropic hypogonadism (HH) is a disease associated with a dysfunction at the 

hypothalamic-pituitary-gonadal (HPG) axis. Regarding this latter, it plays vital roles in 

reproduction and steroid hormone production. The neuroendocrine HPG axis integrates 

information from extrinsic and intrinsic cues in order to allocate energy and nutrient resources 

to reproduction as well as to synchronize reproduction-related life events such as sexual 

differentiation or time to maturation. 

The HPG axis consists of three levels: hypothalamus, pituitary and gonads. 

 

3.3.1.1 Hypothalamus 

The hypothalamus regulates fundamental aspects of physiological homeostasis and behavior. 

In particular, it has integral developmental and functional connections with the pituitary gland, 

through which it controls endocrine hormone release. Some of the basic body functions 

regulated by pituitary hormones and their targets in the adrenal glands, thyroid and gonads 

include fluid balance, stress response, reproduction and growth. In addition, the hypothalamus 

makes neural connections via the autonomic nervous system and other pathways to regulate 

sleep, body temperature and feeding. The hypothalamus is anatomically configured to allow 

neurons and other cells to detect circulating factors, hormones, and metabolites in order to 

adjust homeostatic function in response to stressors and physiologic perturbations. Therefore, 

it has been seen as a center for responding to the body's physiological status. Dysfunction of 
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the hypothalamus can thus have a profound effect on diverse areas of health, including energy 

imbalance, diabetes insipidus and sleep disorders. The hypothalamus constitutes the ventral 

part of the diencephalon, it is located between the optic chiasm and the cerebellar peduncles 

and contains a rich supply of fenestrated capillaries with an attenuated blood-brain barrier 

(BBB) [47]. In contrast to other regions of the central nervous system (CNS) such as the cortex 

and spinal cord, which are composed of columnar structures, the hypothalamus comprises 

various nuclei expressing many different neurotransmitters and peptide hormones. The adult 

mammalian hypothalamus can be anatomically divided into four rostrocaudal levels and three 

mediolateral zones. From rostral to caudal, the four regions are preoptic, anterior, tuberal and 

mammillary hypothalamus, each of which has a lateral, medial and periventricular zone. Each 

hypothalamic region possesses distinct patches of nuclei and associated functions. The preoptic 

area is known to control thermoregulation, reproduction and electrolyte balance. The anterior 

hypothalamus, including the supraoptic nucleus (SON), suprachiasmatic nucleus (SCN), 

paraventricular nucleus (PVN) and anterior periventricular nucleus (aPV), regulates feeding, 

circadian rhythms and other homeostatic processes. The tuberal hypothalamus includes the 

arcuate nucleus (ARC), median eminence (ME), and ventromedial (VMH) and dorsomedial 

(DMH) hypothalamus, and plays a role in energy balance, stress response and aggression. 

Finally, the mammillary hypothalamus, which includes the mammillary bodies, is involved in 

arousal and stress response, as well as spatial and episodic memory [48]. 

A                  B                     

 

A. SEER Training Modules / U. S. National Institutes of Health, National Cancer Institute 

B. Modified by Xie Y. et al. Development. 2017; 144(9):1588-1599 [48]. 

 

Fig. 3. A Structures of the diencephalon. B Lateral view of the forebrain showing hypothalamic divisions. Four 

rostrocaudal regions are delineated by solid gray lines, and selected hypothalamic nuclei are outlined by dashed 

red lines. ARC, arcuate nucleus; DMH, dorsomedial hypothalamus; LHA, lateral hypothalamic area; ME, median 

eminence; PVN, paraventricular nucleus; SCN, superchiasmatic nucleus; VMH, ventromedial hypothalamus. 
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The hypothalamic-pituitary axis is mainly regulated by two types of neuroendocrine neurons: 

the parvocellular and the magnocellular neurons. The first ones are located in the tuberal 

nuclei, preoptic nuclei, ARC, aPV and PVN, and project axons to the ME where these neurons 

secrete releasing or inhibiting hormones into a small portal blood system, the hypothalamic – 

hypophyseal portal system, connected to the anterior pituitary (adenohypophysis). Instead, the 

magnocellular neurons are located in the PVN and SCN and they project to the posterior lobe 

of the pituitary (neurohypophysis) to directly release oxytocin, which regulates a range of 

physiologic processes, including eating behavior, metabolism as well as smooth muscle 

contraction, and vasopressin, which has also may physiological actions, such as the control of 

fluid homeostasis and urine concentration [48].  

Among the several hypothalamic functions, the hypothalamus is also involved in the regulation 

of the sympathetic nervous system activity. In particular, the activation of nuclei located in the 

hypothalamic frontal part lead to bradycardia, hypotension, increased sweating and salivation, 

gastric and intestinal hyperactivity, whereas when the posterior hypothalamic nuclei are 

activated, the result is an increment of sympathetic tone and the consequent effects are 

opposite to those listed above [49]. 

 

3.3.1.2 Pituitary 

The pituitary gland is known as the “master gland” of the body, acting as central endocrine 

regulator of numerous physiologic processes, such as growth, reproduction, metabolism, water 

balance and response to stress. It is an intermediary organ for physiological signal exchanges 

between the hypothalamus and the peripheral organs. In particular, this gland can control the 

adrenals, gonads, and thyroid gland via secretion of specific regulating hormones into the 

systemic circulation [50, 51]. 

The pituitary is a bean-shaped gland located at the base of the brain in the midline. Females 

tend to have larger glands, especially during or after pregnancy. This small organ lies in the 

bony cavity called sella turcica, that surrounds it inferiorly and laterally and it is covered by a 

dural fold named diaphragm sellae, a reflection of the dura mater. Lateral to the sella are the 

cavernous sinuses; anteroinferior is the sphenoid sinus; anterosuperior is the optic chiasm; 

superior to it is the hypothalamus [50]. In particular, the pituitary gland is functionally and 
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anatomically connected to the hypothalamus by the ME via the infundibular stalk through 

which the hypothalamic factors reach the pituitary gland [52].  

The pituitary is composed of two anatomically and functionally distinct parts: an anterior lobe, 

the adenohypophysis with an epithelial derivation, and a posterior lobe, the neurohypophysis, 

with a neuronal origin [50]. 

 

 

 

Asa SL. Endotext. 2000 [50]. 

 

Fig. 4. a) The pituitary gland hangs from the pituitary stalk (arrow), an extension of the hypothalamus that 

traverses the diaphragm of the sella turcica. (b) A horizontal section of the gland identifies the anterior lobe (A), 

the posterior lobe (P) and the vestigial intermediate lobe (I), poorly developed in humans. This gland demonstrates 

"basophil invasion" of the posterior lobe, proliferation of corticotrophs into the neurohypophysis (arrows) that is a 

normal feature in older patients. 

 

The neurohypophysis is composed of the infundibulum, which directly connects the pituitary 

to the hypothalamus, the pituitary stalk, and the pars nervosa of the pituitary. The cell types of 

the neurohypophysis include pituicytes, which are modified glial cells, and the axonal processes 

of neurons, whose cell bodies are located in the hypothalamus and which end in fenestrated 

capillaries, where they release hormones. To this regard it is important to highlight that the 

neurohypophysis is one of the regions of the CNS which lacks the BBB. Hence, at this level, the 

axons are directly in contact with capillaries, with a fenestrated endothelium [49]. The 

neurohypophysis is responsible for storing and secreting vasopressin and oxytocin [50, 53]. 

The adenohypophysis is composed of three regions, the pars distalis or anterior lobe, the 

largest portion of the adenohypophysis, the pars intermedia or intermediate lobe, located in 
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the marginal area between the anterior pituitary and the posterior pituitary and the pars 

tuberalis, an extension of epithelium that wraps around the infundibulum of the pituitary stalk. 

The adenohypophysis is composed of acini that contain the specialized cell types, all of which 

have their own unique hormonal function and characteristics [50, 52]. These cells and their 

specific hormones are: lactotrophs, which produce prolactin (PRL), somatotrophs, which 

produce growth hormone (GH), corticotrophs, which produce adrenocorticotropic hormone 

(ACTH), thyrotrophs, which produce thyroid stimulating hormone (TSH) and gonadotrophs, 

which produce gonadotropins [51, 53]. These, in particular, produce the two gonadotropins, 

follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and they account for 10% of 

adenohypophysial cells. They are scattered throughout the pars distalis and pars tuberalis. With 

increasing age, these cells tend to undergo oncocytic and squamous metaplasia [50]. LH, FSH 

and TSH are called pituitary glycoproteins and consist of two subunits. The alpha-glycoprotein 

subunit is common to the three hormones and the beta subunit is specific to each one [51, 53]. 

The pituitary receives its vascular supply from the superior, middle, and inferior hypophyseal 

arteries, all of which originate from the internal carotid arteries. The superior hypophyseal 

arteries vascularize the hypothalamus, flow through the infundibulum of the neurohypophysis 

and form the portal vessels that transport regulatory hormones from the hypothalamus to the 

pituitary gland. The middle hypophyseal arteries supply blood directly to the adenohypophysis, 

while the inferior hypophyseal arteries supply the pars nervosa [50]. Thanks to this 

hypothalamic-hypophyseal portal system, hypothalamic stimulatory and inhibitory factors, 

together with feedback signals derived from target organs (which include hormones and 

nonhormonal neurotransmitting agents), converge with the auto- and paracrine factors, to 

induce transcriptional regulation, translation, and secretion of the pituitary hormones [52].  

 

3.3.1.3 Gonads 

In male, the term “gonads” is referred to the testes. The testis is an essential organ of the male 

reproductive system because of its ability to produce sperm and androgens. From an anatomic 

point of view, the testis lies within the scrotum and is covered on all surfaces, except its 

posterior border, by a serous membrane, called the tunica vaginalis, which represents the 

remnants of the processus vaginalis into which the testis descends during fetal development. 

Along its posterior border, the testis is linked to the epididymis which at its lower pole gives 

rise to the vas deferens. Below the tunica vaginalis, the testis is surrounded by a fibrous 
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connective tissue capsule called the tunica albuginea. This latter is particularly thick at the 

posterior part of testis where it forms the mediastinum. From the internal surface of the tunica 

albuginea several septa originate and run in a posterior direction to join the mediastinum, 

dividing the testis into 200–300 small segments, called lobules. Each of these lobules contains 

several highly convoluted tubes, called seminiferous tubules. These latter consist of a basement 

membrane lined by Sertoli cells, interspersed with germ cells at various stages of maturation. 

The seminiferous tubules form loops ending as straight tubular extensions, the tubuli recti, at 

the mediastinum level in a network of tubules called the rete testis. From the rete testis, a series 

of six to twelve fine efferent ducts join to form the duct of the epididymis. This duct is 

extensively coiled and forms the structure of the epididymis that can be divided into the head, 

body and tail of the epididymis, from which the vas deferens originates [49, 54]. 

 

  

Sèdes L. et al. Mol Aspects Med. 2017; 56:101-109 [55]. 

 

Fig. 5. Schematic representation and histological view of the structure of the testis. 

 

Relative to the blood circulation at the testicular level, the arterial supply to the testis arises at 

the level of the second lumbar vertebra from the aorta on the right and the renal artery on the 

left and these vessels descend retroperitoneally to form, through the inguinal canal, part of the 

spermatic cord. The testicular artery enters the testis on its posterior surface sending a network 

of branches that follow the lobular division of seminiferous tubules, so that each lobulus is 

supplied by one recurrent artery; segmental arteries and capillaries become branched between 

the Leydig cells and then give rise to the venous system. The venous drainage passes posteriorly 

and emerges at the upper pole of the testis as a plexus of veins termed the pampiniform plexus 

[54, 56]. At this level, the convoluted testicular artery is surrounded by several veins coiling 
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around the artery many times. In this way, the arterial blood is cooled down by surrounding 

venous blood and the testicular temperature is maintained lower than the all body one [56]. 

Moreover, at the testicular level an important ultrastructure is present, the blood-testis barrier 

(BTB), essential for spermatogenesis. It is formed by tight junctions between adjacent Sertoli 

cells, located near the basement membrane in the seminiferous epithelium [57, 58]. The 

peculiarity of this barrier is that, unlike most other tissue barriers, it is not only comprised of 

tight junctions, but these coexist and cofunction with ectoplasmic specializations, 

desmosomes, and gap junctions to create a unique microenvironment for the completion of 

meiosis and the subsequent development of spermatids into spermatozoa via spermiogenesis 

[59]. In this way, the BTB creates an immunological barrier that separates advanced germ cells 

within the testis from the immune system, that would otherwise recognize them as “foreign” 

[60]. Moreover, the BTB divides the epithelium into two distinct compartments, the basal and 

apical (adluminal) ones. In this way, it functions also as a physiological barrier that regulates 

the passage of nutritional substances (ie. sugars, acids), vital molecules (ie. hormones, 

electrolytes) and toxic compounds (ie. drugs, chemicals) between the basal and the apical 

compartments (transcellular barrier), and also between adjacent Sertoli cells (paracellular 

barrier) [55, 58]. 

From a functional point of view, testes exert both endocrine (steroidogenesis, the production 

of the steroid hormones that support male reproductive development and function) and 

exocrine functions (production of spermatozoa). 

Regarding the endocrine functions, the main secretory product of the testis is testosterone, 

which is the major source of circulating androgens. Beside it, estrogen and progesterone are 

also produced at the testicular level.  

The testicular exocrine function, instead, consists in a process called spermatogenesis, through 

which undifferentiated germ cells multiplie and differentiate to form spermatozoa [56]. As 

mentioned above, in the seminiferous epithelium, the germ cells are sequentially organized 

from the base of the tubule to the lumen, according to their stage of development. The BTB 

regulates the flow of nutrients and growth factors that are required for the development of 

these germ cells [56, 61]. Once the immature sperm is formed, it is transferred through 

different ducts into the epididymis, where the spermatozoa mature into a form ready for 

ejaculation [62]. 
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3.3.2 The hypothalamic-pituitary-gonadal axis 

Precise regulation of testicular function is conferred by the HPG axis in an elegant feedback 

loop in which the secretion of pituitary gonadotropins is (i) stimulated by gonadotropin-

releasing hormone (GnRH) from the hypothalamus and (ii) modulated by testicular hormones, 

such as testosterone and estradiol. 

In detail, the decapeptide GnRH is produced by scattered GnRH neurons located mainly in the 

preoptic area (POA) of the hypothalamus and it is released from axon terminals in the ME and 

infundibulum, where they enter the hypophyseal portal system. Thus, GnRH is taken to the 

anterior pituitary, precisely to the gonadotrophs, where it binds to its receptors leading to the 

release of FSH and LH into the systemic circulation. These two hormones reach the testis by 

testicular arteries to promote gametogenesis and steroidogenesis [55, 56, 63, 64]. LH acts on 

Leydig cells in the testicular interstitium to promote the synthesis of testosterone (T), while FSH 

affects the Sertoli cells thereby stimulating spermatogenesis, acting also as the main stimulator 

of seminiferous tubule growth during development. Moreover, the HPG axis is characterized 

by the presence of a negative feedback which further regulates the secretion of testicular 

hormones. Indeed, they decrease gonadotropin release both by reducing GnRH production and 

the sensitivity of the pituitary to GnRH stimulation; this process leads to a decreased 

stimulation of their own secretion [55, 56, 63] [Fig. 6].  
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Fig. 6. Schematic representation of the male hypothalamic–pituitary–gonadal (HPG) axis. The blue arrows 

represent stimulation and the orange arrows illustrate the negative feedback control of the HPG axis. 

Gonadotrophin releasing hormone (GnRH) is released from hypothalamus and acts on anterior pituitary gland, 

causing the release of two gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH). These 

hormones, in turn, act on gonads, precisely, FSH at the Sertoli cells level stimulating spermatogenesis and LH on 

Leydig cells promoting the synthesis of testosterone. The HPG axis is regulated by a negative feedback exerted by 

several gonadal hormones, ie testosterone and inhibin, on the secretion of GnRH by the hypothalamus and FSH 

and LH by the pituitary gland. 

 

 In humans, the HPG axis is active in the mid-gestational fetus, but silenced towards the end of 

gestation. This restraint is removed at birth, leading to reactivation of the axis with an increase 

in gonadotropin concentrations. These concentrations then gradually decrease towards 6 

months of age. In boys, T concentration rises to a peak at age 1–3 months, but then falls in 

conjunction with the falling LH concentration. Prenatal and postnatal activation of the HPG axis, 

in male, is associated with penile and testicular growth and testicular descent, it is therefore 

important for the development of male genitalia. 

At about age 6 months in boys, there is an active inhibition of GnRH secretion, which persists 

throughout childhood. Puberty is then initiated by a sustained increase in pulsatile release of 

GnRH from the hypothalamus after this quiescent period [65]. 
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3.3.2.1 Gonadotropin-releasing hormone  

Gonadotropin-releasing hormone (GnRH) is a decapeptide produced by GnRH neurons. They 

derive from the olfactory placode and, after entering the forebrain during early embryonic 

development, they reach the hypothalamus at the POA level and in more caudal areas in the 

mediobasal hypothalamus (MBH). At this level, they extend processes to the ME, which is in 

contact with the pituitary gland by the presence of a network of blood [66-68].  

GnRH has a pulsatile secretion and a half-life of approximately 10 minutes, and it is secreted 

into the hypothalamic-hypophyseal portal blood system, which carries GnRH to the pituitary 

gland [66]. Once secreted, GnRH acts on the pituitary gonadotrophs by binding G-protein 

coupled receptors that activate phospholipase-C resulting in inositol trisphosphate and 

diacylglycerol production. This step triggers a biphasic increase in intracellular calcium, which 

is closely paralleled by and is required for LH release. FSH, in contrast, is sorted to the 

constitutive secretory pathway and is therefore released in direct association with its synthesis 

[67, 69]. The GnRH-receptor complex undergoes intracellular degradation; thus, the cell 

requires some time to replace the receptors, which is reflected by the 60-90 minutes interval 

between GnRH pulses [66]. 

There are several mechanisms governing GnRH release. One of the most important is 

kisspeptin, a hypothalamic peptide encoded by the KISS1 gene. This neuropeptide acts as a 

pivotal regulator in the onset of puberty and in the control of fertility. Kisspeptin has been 

recognized to act upstream of GnRH, stimulating GnRH neurons to release GnRH after 

interaction with its receptor. GnRH further stimulates gonadotrophs in the pituitary gland to 

secrete FSH and LH into the peripheral circulation [56, 70]. 

The KISS1 gene is located on human chromosome 1 (1q32) and produces a 145 aminoacid 

precursor peptide (prepro-kisspeptin), which is cleaved to 54 amino acid protein (kisspeptin-

54, Kp-45). Kp-54 may be further cleaved to lower molecular weight forms of kisspeptins, Kp-

14, Kp-13, and Kp-10, sharing a common C-terminal sequence of arginine-phenylalanine-NH2 

motif which is sufficient to fully activate GPR54, the kisspeptins receptor. This latter, called 

KISS1R, is expressed by GnRH neurons and it is encoded by the gene KISS1R. Kisspeptin-

synthesizing neurons, in humans, are mainly located in two regions of the hypothalamus, the 

rostral periventricular area of the third ventricle and the ARC [68, 70].  

Kisspeptin neurons have been suggested to act as a GnRH pulse generator, required to support 

the reproductive function in both sexes, such as follicular development, sex steroid production, 
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and spermatogenesis. It has been hypothesized that the pulsatility originates in ARC kisspeptin 

neurons containing neurokinin B and dynorphin (KNDy neurons) by reciprocal interplay of 

stimulatory neurokinin B signals and inhibitory dynorphin inputs. Accordingly, the output of the 

pulse generator may be transmitted from the ARC to the GnRH neuronal network by release of 

kisspeptin from axonal terminals originating from KNDy neurons [67]. 

 

3.3.2.2 Gonadotropins 

Gonadotropins FSH and LH are glycoproteins consisting of a common α-subunit and a hormone-

specific β -subunit, which are associated through noncovalent interactions. While the β-

subunits determine the functional specificity of gonadotropins, their intrinsic bioactivity is 

largely determined by their degree of glycosylation. Weakly glycosylated forms of the 

hormones have a short circulatory half-time, and although totally deglycosylated 

gonadotropins are able to interact with their receptor, they are unable to evoke generation of 

a second messenger signal. Highly glycosylated isoforms (acidic) display longer half-life and 

stronger biologic power.  

Gonadotropins are essential for spermatogenesis and secretion of testicular androgens. More 

precisely, FSH, in men, targets Sertoli cells to regulate spermatogenesis, as it maintains normal 

testicular size, seminiferous tubular diameter, and sperm number and motility. In parallel, LH, 

acting directly on the Leydig cells, stimulates the production of gonadal hormones, including T.  

Once synthesized, LH and FSH are stored in granules in the pituitary gland. GnRH induces 

exocytosis of the granules and the release of these hormones into the circulation. A low GnRH 

pulse frequency tends to preferentially release FSH, whereas higher frequencies are associated 

with preferential secretion of LH [66]. Both FSH and LH act through classic protein hormone 

receptor mechanisms, involving a G-protein associated transmembrane receptor. LH, in 

particular, leads to the transcriptional activation of target genes such as the steroidogenic acute 

regulatory (StAR). LH, stimulating the synthesis of StAR protein, accelerates the transfer of 

cholesterol from the outer to the inner mitochondrial membrane, the first step in steroid 

hormone biosynthesis [55, 63]. 

Tonic LH secretion is composed of intermittent secretory episodes of the hormone, which 

reflect a corresponding pattern of pulsatile GnRH release by the hypothalamus [71]. During the 

development, in male fetus, the expression of LH increases from week 10, reaching a peak 

before week 20 and decreasing slowly thereafter. After delivery, there is a surge in 
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gonadotropin levels due to the withdrawal of maternal-derived estrogen. In male infants, LH 

peaks at 1–3 months of age, declining rapidly thereafter and reaching a nadir at ∼4–9 months 

of age. In the year or two preceding puberty, the GnRH pulse generator begins to mature and, 

in response, there is a gradual increase in the frequency and amplitude of nocturnal LH pulsatile 

secretion. With pubertal progression LH is released with a more regular pulsatility throughout 

the day. The increase in gonadotropin activity during puberty drives gonadal steroidogenesis 

[72]. In adult men, secretion of LH is pulsatile with a mean frequency of approximately one 

event per hour or one every 90–120 min. On the contrary, FSH secretion is predominantly basal, 

and it seems to be not directly coupled to GnRH pulses [56]. 

 

3.3.2.3 Testosterone 

Testosterone, in male, is responsible for virilization of the reproductive tract, promoting the 

formation of the ductus deferens, epididymides, seminal vesicles and ejaculatory ducts. It is 

produced by the Leydig cells, located in the interstitial compartment between seminiferous 

tubules [55]. The receptor for this hormone is the steroid nuclear hormone receptor, androgen 

receptor (AR). The T signaling consists in the binding of the hormone to the cellular AR, followed 

by the translocation of the ligand–receptor complex to the nucleus where it binds to androgen 

response elements (AREs) in the regulatory regions of genes to modify their translation [73]. 

The testicular content of T in an adult man is approximately 50 mg/testis and, since the daily 

production rate, under physiological condition, is 3–10 mg in men [74], it is assumed that this 

hormone is continuously produced and released into the circulation. 

T is transported in plasma bound to circulating proteins. Sex hormone binding globulin (SHBG) 

is the most important one, with a high-affinity but low-capacity for this hormone. Under 

physiological conditions, 30–45% of circulating T is bound to SHBG and the remainder is bound 

to proteins, such as albumin and corticosteroid binding globulin, which, unlike SHBG, are low-

affinity, high-capacity binding proteins. Only approximately 2% of total testosterone circulates 

in blood without being bound to any protein.  

The secretion of testosterone follows a circadian rhythm: the highest level of secretion is in the 

early morning and lower levels are found in the circulation during afternoon [55, 56].  

Moreover, T plasma levels are strictly correlated to LH levels, as demonstrated by the fact that 

individual LH pulses in peripheral blood were found to precede T pulses in the spermatic vein 
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by 80 min. On the other hand, the increase in testosterone level leads to quite a prompt 

decrease in LH level due to the feedback interplay within the GnRH–LH–T axis [56]. More 

broadly, the circulating T levels change during the development with three peculiar peaks which 

follow the three separate waves of increases and declines of Leydig cell numbers. The first one 

occurs at week 12–14 of gestation, during the fetal differentiation of Leydig cells and then the 

hormone levels decline until the early neonatal period. The second peak occurs at 2 months 

postpartum and it is associated with renewed Leydig cell proliferation and, subsequently, T 

levels decrease precipitously, falling below the limit of detection by 6 months of age [72]. Leydig 

cells then atrophy a second time, and, for the next decade, the interstitium is populated by 

steroidogenically inactive precursor cells. The adult generation of Leydig cells differentiates 

pubertally and is complete by 12–13 years of age. In parallel, during puberty the third peak of 

T occurs and its secretion continues to maintain virilization and spermatogenesis [62]. 

 

3.3.3 Hypogonadotropic hypogonadism  

Hypogonadism in men is a clinical syndrome that results from failure of the testis to produce 

physiological levels of T (androgen deficiency) and a normal number of spermatozoa due to 

disruption of one or more levels of the hypothalamic-pituitary-testicular axis [75]. This disorder 

can be congenital or acquired; the latter form is more common than the former and it is usually 

apparent during adulthood [76]. Hypogonadism is classically divided in primary or secondary 

hypogonadism. The first (hypergonadotrophic hypogonadism) is the result of testicular failure 

to produce adequate levels of T with an impaired spermatogenesis and is identified by low T 

and elevated gonadotropin levels. Secondary hypogonadism (hypogonadotrophic 

hypogonadism) is the result of gonadotropin or luteinizing hormone-releasing hormone (LHRH) 

deficiency (eg, pituitary or hypothalamic failure), which may be congenital or may arise from 

various pathological processes. It is characterized by low T levels, impairment of 

spermatogenesis, and low or low-normal gonadotropin levels [75, 77]. These classical 

definitions of hypogonadism that are based on specifying a testicular or a pituitary-

hypothalamic site of failure may not apply to a large portion of hypogonadal men assessed in 

population-based studies and seen in clinical practice. Indeed, some individuals can present a 

failure at both the testicular and hypothalamic-pituitary levels. For this reason, several medical 

societies have proposed revised terminology to clarify the identification, categorization, 

diagnosis, and treatment of hypogonadal men. The Endocrine Society adds to the classical 
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dichotomy, the combined primary and secondary testicular failure, which is characterized by 

low T levels, impairment of spermatogenesis, and variable gonadotropin levels, depending on 

whether primary or secondary testicular failure predominates [75, 77].  

Interestingly, the clinical phenotype can be identical for primary and secondary hypogonadism, 

whereas it could vary according to the age of hypogonadism onset. Thus, an alternative 

classification of male hypogonadism is based on the period of life in which the gonadal function 

begins to fail. According to this new age-of-onset-based classification, male hypogonadism can 

be subclassified in very-early-onset hypogonadism (VEOH), early-onset hypogonadism (EOH) 

and late-onset hypogonadism (LOH). When VEOH is present, hypogonadism occurs during the 

early fetal life. It could result in an almost complete female phenotype, due to the lack of 

sufficient levels of testis hormones during the critical window of male sex differentiation or to 

a complete androgen insensitivity. This phenotype is characterized also by virilization defects, 

such as micropenis or cryptorchidism, which occur when the secretion or the activity of GnRH 

are impaired. EOH occurs during the peripubertal age and it is characterized by the absence or 

the arrest of pubertal development. Due to milder central or peripheral defects, such as 

androgen insufficiency, body proportions are typically eunuchoidal with a high-pitched voice, 

scant body hair, small testis, reflecting lack or arrest of spermatogenesis, penis and prostate 

[78, 79]. Finally, LOH occurs with ageing; the most common features are decreased libido, loss 

of muscle mass and strength, increased body fat, decreased bone mineral density and 

osteoporosis, as well as physical activity and performance decline, reduction of some cognitive 

abilities, decreased vitality, depressed mood and sexual dysfunction [78-80]. 

 

3.3.3.1 Iron overload and hypogonadotropic hypogonadism 

Chronic iron overload and tissue accumulation are able to contribute to the development of 

endocrine disorders. Among them, hypogonadism is the second most common endocrine 

abnormality, after diabetes, associated to iron overload. Its frequency in the literature ranges 

from 10 to 100% [81].  

According to McDermott and Walsh, hypogonadism occurs at a relatively advanced stage of 

iron overload. Biochemical and histologic evidence suggests that the cause of hypogonadism in 

this context is the iron-induced cellular damage. Findings of autopsy studies have shown that 

the anterior pituitary gland and, especially, the gonadotrophs, usually contain stainable iron. In 

contrast, the testes, even when atrophic, usually contain no excess iron or have iron deposits 
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confined to the vessel walls, leaving the germinal epithelium and the Leydig cells uninvolved 

[82]. However, from a functional point of view, most studies have found defects in either 

testicular or pituitary, with little direct evidence of hypothalamic dysfunction as source of 

hypogonadism. 

Regarding the hypothesis of a gonadic origin of hypogonadism, Lucesoli et al. reported in vivo 

experiments on rat testis response to acute iron overload: histopathology showed an iron 

deposition in the interstitial tissue at the periphery of seminiferous tubules and a rarefication 

of germ cells at this level. Authors also highlighted an association between a moderate iron 

increase in the testis and an increase in testicular oxidative stress with oxidative damage to 

lipids, proteins, and DNA. These observations confirmed the importance of the BTB in the 

protection of germ cells against iron overload. These results also emphasized the possibility of 

testicular damage directly related to iron deposition, suggesting the potential involvement of 

testes in the pathogenesis of hypogonadism associated with iron overload [81]. 

Conversely, Siminoski et al. described a case of a hypogonadal male with hemochromatosis 

with a probably defect in pituitary function and in hypothalamic gonadotropin regulation. 

Indeed, the patient was presenting low levels of T and normal LH values. The authors excluded 

the involvement of a testicular impairment by detecting an increase in serum T after a human 

chorionic gonadotropin (hCG) administration. LH secretion normally raised in response to GnRH 

administration, while, on the contrary, the FSH response was only partial, suggesting the 

pituitary defect. The absence of an increase in LH and FSH following clomiphene stimulation, 

finally, implied a functional defect at the hypothalamic level [83].  

Interestingly, it is important in HH patients determine whether the origin of gonadal 

insufficiency is hypothalamic or pituitary. To this purpose the study of gonadotropin secretion 

before and after long-term GnRH administration can be useful. This was demonstrated in 

patients with idiopathic hemochromatosis which showed a weak or absent pulsatile LH activity 

before pulsatile GnRH treatment for two or four weeks, together with the absence of a 

significant increase in LH level during treatment and in T levels following chronic pulsatile GnRH 

administration. This unresponsiveness to GnRH suggested that a pituitary rather than 

hypothalamic defect occurred in these hypogonadal subjects [84]. 

There are also several studies regarding the possible recovery of reproductive function in 

patients affected by HH caused by iron overload. Siemons et al. described a case report about 

a man with a diagnosis of HH due to idiopathic hemochromatosis, who underwent an 
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aggressive phlebotomy. This treatment resulted in restoration of normal T, LH and FSH levels 

and return of potency and libido [85]. In this context, the most important factor determining 

whether HH can be reversible is the severity of iron overload. Indeed, it is possible that there is 

a transient, reversible phase affecting GnRH and gonadotropins secretory dynamics early in the 

natural history of HH, but when iron overload becomes more severe, the HH is likely 

irreversible. An example of this situation is given by thalassemic patients which depend on 

repeated blood transfusions for their survival; the transfusional iron overload progressively 

damages the HPG axis in an irreversible way [86]. The importance of an early treatment of iron 

overload has been highlighted also in a patient with HH and juvenile hemochromatosis, who 

responded quickly and successfully to the venesection therapy, probably because the 

treatment was introduced early and continued intensively [87]. Furthermore, Piperno et al., 

analyzing patients with genetic hemochromatosis, hypothesized that hypothalamic dependent 

gonadal dysfunction can develop in the early stage of the disease. Then, with the increasing 

iron overload, endocrine alterations probably worsen and pituitary hypogonadism, as well as 

testicular failure develop. Also these results suggest that the reversibility of endocrine 

dysfunctions in hemochromatosis is possible in the early stages of hypothalamic-pituitary 

damage [24]. 

Finally, the best strategy for a rapid improvement in a patient’s health status and quality of life 

appears to be the combination of iron depletion and hormonal replacement therapy. This latter 

helps to maintain a physiological level of T and its metabolites (including dihydrotestosterone 

and estradiol) to optimize the maintenance of libido and sexual function. In addition, the 

correction of iron overload by phlebotomy is not always sufficient to normalize pituitary 

function [81]. 

 

3.3.4 Iron, insulin resistance and type 2 diabetes 

It is increasingly recognized that iron influences glucose metabolism, as shown by studies 

demonstrating a positive association between body iron stores and the development of glucose 

intolerance, type 2 diabetes mellitus (T2DM) and gestational diabetes [88]. The existence of 

this link is supported by evidence collected in iron overload patients, which present impaired 

glucose metabolism, characterized by higher insulin concentration and insulin resistance (IR) 

[17].  
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In particular, since elevated serum Ft levels are being associated to increased levels of body 

iron stores, several authors focus their attention on the possible correlation existing between 

this marker and an impaired gluco-metabolism. In this context, increased Ft levels are 

associated with surrogate measures of both impaired β cell function and decreased insulin 

sensitivity [89] and are positively correlated with serum glucose [88]. Therefore, Ft levels are 

associated with the risk to develop metabolic syndrome and T2DM. In particular, in patients 

affected by hereditary hemochromatosis, circulating levels of Ft are inversely correlated with 

insulin sensitivity. In contrast, lowering the levels of Ft (i.e., using iron chelators such as DFO) 

protects against T2D [89]. In turn, acquired abnormalities of iron metabolism can lead to the 

dysmetabolic hyperferritinemia, characterized by normal to mildly elevated Tf saturation 

without intrahepatic iron deposition, as well as to the dysmetabolic iron overload syndrome 

(DIOS). This latter is a common cause of hyperferritinemia with mild to moderate hepatic iron 

concentration, characterized by fatty liver, increased Ft levels and increased body iron stores 

in the presence of IR. It is a frequent condition predisposing to metabolic, cardiovascular and 

hepatic damage, characterized by preserved up-regulation of hepcidin. The pathogenesis of 

iron accumulation in DIOS has been related to altered iron trafficking associated with steatosis, 

hepatic inflammation, and IR. Also in this context, iron removal, through, for example, 

phlebotomy or iron chelation therapy, could improve insulin sensitivity [33, 90]. 

It has long been recognized that iron overload can increase the risk of diabetes, particularly in 

iron overload syndromes such as hemochromatosis and thalassemia. Diabetes mellitus, in 

particular, is the most common endocrinopathy associated to iron overload. The association 

between this condition and diabetes was first proposed in the mid-nineteenth century based 

on patients with hereditary hemochromatosis, which was also termed “bronze diabetes” due 

to the pigmentation that occurs with the disease [91]. Functionally, iron overload-mediated 

diabetes is characterized by both IR and insulin deficiency and may therefore mimic both T2DM 

and idiopathic type 1 diabetes [89]. 

The role of iron in the pathogenesis of diabetes is suggested by 1) an increased incidence of 

T2DM in diverse iron overload syndromes and 2) reversal or improvement in diabetes (glycemic 

control) with a reduction in iron load achieved using either phlebotomy or iron chelation 

therapy. The mechanisms underlying iron-induced diabetes are not yet fully elucidated, but 

they may involve impaired insulin secretion from pancreatic β cells, insulin resistance and 
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hepatic dysfunction, associated to decreased insulin sensitivity at the hepatic, muscle, and 

adipose tissue level [89, 92]. 

The liver is the major reservoir of iron in the body. Excess of iron in this organ interferes with 

glucose metabolism, causing hyperinsulinemia via both decreased insulin extraction and 

impaired insulin signaling. In fact, the initial and most common abnormality seen in iron 

overload conditions is hepatic IR [88]. On the other hand, hyperinsulinemia favors the 

intrahepatic deposition of iron. Indeed, insulin enhances the uptake of extracellular iron, 

inducing the redistribution of TfRs to the cell surface while down-regulating hepcidin 

expression [90].  

There is some evidence that iron overload also affects skeletal muscle, the main effector of 

insulin action [90]. Mehdad et al., for example, showed that mice fed an iron-restricted diet for 

78 days had increased expression of the insulin receptor and glucose transporter 4 (Glut4) in 

skeletal muscle, compared to mice fed with iron-supplemented diet [93].  

The mechanisms by which iron overload impairs insulin action in both muscle and liver are not 

yet fully understood. One mechanism is believed to be the activation of stress pathways with 

the formation of ROS, which, via hydroxylation of phenylalanine residues of insulin, results in 

reduced affinity of the insulin receptor for insulin. ROS can also activate, in one side, forkhead 

box protein O1 (FOXO1) leading to IR, and, on the other, AMPK, promoting glucose uptake and 

fatty acid oxidation [89].  

With regard to the adipose tissue, adipocytes require iron for normal function and 

differentiation. Insulin is known to cause a rapid and marked stimulation of iron uptake by fat 

cells, redistributing TfRs from an intracellular membrane compartment to the cell surface [88]. 

Moreover, alterations in adipocyte mitochondrial iron content and mitochondrial Fe-S proteins 

affect adipocyte differentiation and insulin sensitivity. Although the precise mechanism is 

unknown, it is proposed that iron enhances mitochondrial biogenesis in adipocytes, as iron 

chelation leads to reduced expression of genes involved in both mitochondrial biogenesis and 

adipogenesis [89]. Iron overload leads also to an increment of adipocyte ROS formation and 

induces adipocyte dysfunction.  

Besides liver, muscles and adipose tissue, it is interestingly to note that patients with 

transfusional iron overload have increased iron deposition in β cells [89]. In fact, at the 

pancreatic level, islets iron deposition is restricted to β cells and, despite the essential role of 

iron, these latter are highly vulnerable to perturbations in iron homeostasis. There are several 
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plausible reasons for this vulnerability. First, the expression of antioxidant enzymes is relatively 

low in pancreatic islets making the β cells particularly sensitive to oxygen radicals [88, 91]. In 

this context, it has been shown that in a mouse model of hemochromatosis, iron excess led to 

β cell oxidant stress and decreased insulin secretory capacity due to β cell apoptosis and 

desensitization of glucose-induced insulin secretion [94]. These effects were probably due to 

the nearly exclusive reliance on mitochondrial metabolism of glucose for glucose-induced 

insulin secretion together with the above mentioned low expression of the antioxidant defense 

system [92]. Moreover, compared to other tissues, pancreatic islets have low FPN expression 

and high DMT-1 expression, which may render them more susceptible to iron accumulation 

[91]. 

 

3.3.5 Iron and metabolic syndrome 

Metabolic syndrome (MetS) is a cluster of metabolic disorders and according to the 

Harmonization definition, it is characterized by (i) raised blood pressure, (ii) raised triglycerides, 

(iii) lowered high-density lipoprotein cholesterol, (iv) raised fasting glucose, and (v) central 

obesity occur. A clinical diagnosis is done when three out of the five risk factors [95]. 

Hyperferritinemia has been associated with MetS by several authors. Chen L et al. 

demonstrated, in a cross-sectional study, that the number of MetS components was positively 

correlated with increased levels of serum ferritin and that the prevalence of MetS was 

increased in case of hyperferritinemia [96]. Likewise, in a group of 66 male volunteers the 

serum ferritin levels were associated with MetS [97]. Similar results were obtained in a 

prospective, cross sectional study, in which high serum ferritin levels, though within normal 

range, were significantly associated with MetS [98]. 

Recently, adipokines were proposed as novel biomarkers and regulators of MetS, since it is well 

established that individuals that are obese and/or suffer from this syndrome display a 

characteristic imbalance of their adipokine profile [99]. In detail, adipokines are molecules 

produced and secreted by the adipose tissue which act as paracrine or endocrine hormones. 

They are involved in the regulation of appetite and satiety, fat distribution, inflammation and 

blood pressure, among the others. Their secretion may play a role in several obesity-related 

metabolic abnormalities, such as hypertension, T2DM, fatty liver and vascular disease [100]. In 

the context of their link to the pathogenesis of MetS, Zachariah JP et al. demonstrated an 

association between the adipokine panel and the incident MetS in participants in the 

http://www.sciencedirect.com.pros.lib.unimi.it/topics/medicine-and-dentistry/hypertension
http://www.sciencedirect.com.pros.lib.unimi.it/topics/medicine-and-dentistry/fatty-liver
http://www.sciencedirect.com.pros.lib.unimi.it/topics/medicine-and-dentistry/vascular-disease
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community‐based Framingham Third Generation Cohort who attended examination cycle 1 

[101].  

Among the several existing adipokines, it has been reported that leptin is an important factor 

linking obesity, MetS, and cardiovascular disorders [102]. Leptin, a 16 kDa protein of 146 amino 

acids, is a cytokine-like hormone secreted primarily by the white adipose tissue. The first 

described major action of this hormone was the control of body weight and fat deposition, 

through the hypothalamus, by the induction of satiety and the increment of energy expenditure 

[100, 103]. Besides its important role in the regulation of energy metabolism, leptin is also 

involved in the regulation of puberty onset and gonadal function [104]. This hormone circulates 

in the blood in two forms: the monomeric one (free leptin) and the higher molecular weight 

form which is bound to the soluble leptin receptor. Leptin levels exhibit a nocturnal peak and 

multiple smaller ultradian pulses over 24 h. These circulating levels are affected also by gender 

and they are higher in women than in men. This is probably due to the higher percentage of 

body fat and the increased production rate of leptin per unit mass of adipose tissue in female 

subjects [100, 105, 106]. Leptin exerts its effects through a specific transmembrane receptor 

(LepR), which is a member of the extended class I cytokine receptor family and has multiple 

isoforms resulting from alternative splicing. These last have been categorized into short (LepRa, 

LepRc, LepRd and LepRf) and long (LepRb) isoforms which share a common leptin binding 

domain but differ in their intracellular domains [100, 103, 106, 107]. The long-form LepRb has 

a long intracellular domain with putative Janus kinase (JAK)/STAT binding sites, essential for 

intracellular signal transduction and crucial for leptin’s actions. The functions of the short-form 

LepR (a, c, d, and f) and of the secreted form LepRe are less clear, but it is known that this last 

isoform serves as a plasma leptin-binding protein [103, 106]. There are several key pathways 

for LepRb signal transduction including those of (i) the JAKs, (ii) the STATs, (iii) phosphoinositol-

3 kinase and (iv) the mitogen-activated protein kinase (MAPK). Of note, negative regulators of 

leptin signaling have been identified and include suppressor of cytokine-signaling-3 (SOCS3) 

[100, 103, 107]. In humans, serum leptin levels positively correlate with MetS, independently 

of the body mass index and, thus, they may represent a sensitive biochemical marker for the 

identification of the MetS [100, 108, 109]. Interestingly, besides the links between 

hyperferritinemia and MetS and beteween MetS and leptin, it is important to note that several 

studies, performed in both mouse models and humans, demonstrate that iron can also play a 

direct role in determining leptin levels. In particular, Gao Y et al. showed that C57Bl6/J male 

http://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cellular-respiration
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mice fed iron-enriched diet (2,000 mg/kg) were characterized by lower serum leptin levels 

compared to those on the low normal–iron diet (35 mg/kg) for 2 months [110]. In turn, 

Yamamoto K et al. demonstrated that leptin could directly affect iron metabolism. Indeed, 

these authors measured the levels of the central regulator of body iron metabolism, hepcidin, 

in leptin-deficient (ob/ob) mice and leptin receptor-deficient (db/db) mice. Serum hepcidin 

levels were significantly lower in ob/ob mice and db/db mice, demonstrating that the activation 

of leptin receptor plays an important role in hepcidin expression [102]. Regarding clinical 

studies, a significant negative association between ferritin and leptin as well as between serum 

iron and leptin was found in individuals with and without diabetes [110]. Moreover, in a cohort 

of thalassemic patients the mean serum leptin level was found to be significantly lower than in 

control patients [111]. Differently, Kimura Y et al. showed a significant positive association 

between serum ferritin concentrations and leptin concentrations in male Japanese employees 

enrolled in a cross-sectional study [112]. In conclusion, these results demonstrate that iron 

could affect and be affected by leptin levels, suggesting, at least in part, the presence of a link 

between the iron concentrations and risk of metabolic disorders and related diseases. 

Interestingly, Dongiovanni et al. demonstrated that in male C57Bl/6 mice an iron-enriched diet 

led to both a significant reduction of serum leptin levels with a significant increment of 

circulating resistin, showing that iron can modulate several adipokines besides leptin [113]. 

Resistin is a 12.5 kDa cysteine-rich peptide hormone, expressed, in humans, predominantly by 

peripheral blood mononuclear cells and macrophages, while in mice, primarily by adipocytes 

[114]. To date, the specific receptor for resistin is still unknown. However, recent reports have 

suggested, as potential receptors for resistin, an isoform of decorin, the mouse receptor 

tyrosine kinase-like orphan receptor 1, the toll-like receptor 4 or the adenylyl cyclase-

associated protein 1 [115]. Similarly, the molecular mechanism of resistin action is still unclear. 

However, it is well known that resistin activates signalling pathways such as Akt, MAPK, STAT-

3 and peroxisome proliferator-activated receptor γ [115]. As for the gender difference of leptin, 

resistin plasma levels are significantly higher in females than in males [116]. Furthermore, in 

humans, resistin circulates in different molecular isoforms and the oligomeric one is considered 

to have a more potent effect on the stimulation of proinflammatory cytokines [117]. 

Experimental evidence associated plasma resistin levels with metabolic disorders. In particular, 

in subjects affected by MetS, resistin levels were higher and positively associated with waist 

circumference and IR, with high resistin level being an independent predictor of the prevalence 

http://www.sciencedirect.com.pros.lib.unimi.it/topics/biochemistry-genetics-and-molecular-biology/iron-metabolism
http://www.sciencedirect.com.pros.lib.unimi.it/topics/medicine-and-dentistry/cysteine
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of MetS [118]. Moreover, obese individuals who generally have greater infiltration of 

macrophages in adipose tissue, showed increased expression of resistin in this tissue level and 

higher circulating levels of the hormone [117]. Unfortunately, few studies regarding the 

possible link between MetS, resistin and iron are present in the literature. However, it is 

important to highlight that in the mouse model presented by Dongiovanni et al. iron overload 

led to an increased expression of resistin at the visceral adipose tissue level and this 

overexpression was associated to the induction of mRNA levels of SOCS3 a target of both 

resistin and hepcidin and an inhibitor of insulin signaling [113].  
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4. AIM 

Iron is an essential trace element, but due to its ability to generate hydroxyl radicals, when in 

excess, it may have toxic effects [119]. Among these, encompassing liver diseases (i.e. hepatic 

fibrosis or cirrhosis), cardiac manifestations (i.e. cardiomyopathy, arrhythmias, heart failure), 

arthropathy and skin hyperpigmentation [18], iron overload syndromes are also associated to 

several endocrinopathies, being diabetes mellitus and hypogonadism the two most common 

[81]. The mechanisms behind the onset of these diseases and the consequent effects are still 

not clarified. In this context, this thesis was aimed to investigate the molecular determinants 

of the reproductive impairment caused by exogenous iron overload. To this purpose, a male 

murine model fed iron-enriched diet (IED) has been characterized. In this in vivo model, the 

presence of a metabolic impairment (evaluated by measuring body weight, food intake, 

perigonadal fat pad, basal glycemia and Homeostatic Model Assessment of Insulin Resistance -

HOMA-IR- index) caused by iron overload and the expression of genes (neuropeptide Y -NPY- 

and anorexigenic pro-opiomelanocortin -POMC-) and adipokines (leptin), representing a link 

between metabolism and reproduction, has been studied. Furthermore, to further clarify which 

sites could be affected by IED, the hypothalamus-pituitary-gonadal axis has been taken into 

consideration. Detailed analysis has been performed to evaluate whether iron overload could 

(i) accumulate at the hypothalamic, pituitary and gonadal levels, (ii) affect iron homeostasis, 

(iii) determine macro- and microscopic alterations in the HPG axis and (iv) modify the gene 

expression of testosterone, luteinizing and follicle-stimulating hormones, all involved in the 

regulation of the reproductive function. 

To further investigate whether iron overload could impact the reproductive function 

mediated by the hypothalamus, we used two in vitro models of gonadotropin-releasing 

hormone (GnRH) neurons. Upon iron overload, iron homeostasis, cell migration, oxidative and 

endoplasmic reticulum stress and related cell signaling pathway have been analyzed. 

The data obtained from this thesis’ work have been published in Molecular and Cellular 

Endocrinology [120]. 
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5. MATERIALS AND METHODS 

5.1 ANIMALS 

All the in vivo experiments were conformed to the European Commission Directive 2010/63/EU 

and were authorized by the Italian Ministry of Health. 

 

Different strategies have been tried to mimic human iron overload and its related complications 

[121]. Among them, the most commonly applied are the use of (i) genetic animal models or 

wild type animals either (ii) with parental or (iii) dietary iron overload. 

i. An example of a genetic animal model is given by HFE-/- mice, resembling human genetic 

hemochromatosis, already above described. 

ii. Parental iron overload induced in rodents is a model of acquired iron-overload. Bacon 

et al. in 1983 suggested that parenteral administration of iron (ferric nitrilotriacetate) 

in rats produced homogenous deposition of iron throughout the hepatic lobule in both 

hepatocytes and Kupffer cells [122]. Among the several iron delivery preparations 

available, iron-dextran possesses unique properties regarding pH stability, low toxicity 

[121] and, therefore, it is frequently used in different studies. Das SK et al. used iron-

dextran to mimic an early and a chronic stage of iron overload. In the first case, they 

injected male C57BL6 mice with 5 mg of iron-dextran per 25 g body weight on a 

5 days/week schedule for a total duration of 4 weeks. In the second one, the authors 

repeated this treatment, at the end of which, they injected 1.25 mg of iron-dextran per 

25 g body weight for 8 weeks [123, 124]. Moreover, Ribeiro Júnior R.F. et al., resembled 

a human condition of chronic iron overload secondary to acquired conditions by 

injecting rats with 100 mg/kg of iron-dextran for 5 days a week. For short-term iron 

overload experiments, in adult C57BL/6 male mice, Frýdlová J et al. administered a 

single intraperitoneal injection of iron dextran at the dose of 1,000 mg/kg [125]. 

iii. In order to resemble a condition of secondary iron overload, administration of iron with 

the diet is a very common approach. To this purpose, several authors choose carbonyl 

iron enriched diet; indeed, this approach can lead to a hepatocellular deposition of the 

metal with a periportal distribution, a condition similar to that seen in patients bearing 

hereditary hemochromatosis [121]. This model can be used to induce stable changes of 
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iron status in mice by adding, to the diet, 8.3 g/kg of carbonyl iron [126]. This latter may 

be used at higher doses as shown by Baum P et al. that fed rats with a standard diet 

complemented with 3% carbonyl iron (29 g/kg) [127]. 

For the present project, healthy five-week-old male C57BL/6J (C57black6J) mice, with an 

average weight of 17g, were purchased from Charles River Laboratories (Charles River, Calco, 

Italy). The animals were housed at Department of Pharmacological and Biomolecular Sciences 

(Università degli Studi di Milano – La Statale, Milan, Italy) at constant room temperature (22 – 

24°C), under 12-h light/dark cycles, with ad libitum access to tap water and food, in compliance 

with the European Union guidelines. Upon arrival, the animals were divided in six cages, with 5 

animals per cage and they were fed with regular chow diet for one week, during the 

acclimatization. Subsequently, the 30 mice were randomly assigned at the two experimental 

groups. The first one represented the control (CTR) group and consisted of 15 mice fed standard 

iron concentration diet in pelleted form, containing 180 mg/kg of iron. The second group was 

the Iron-Enriched Diet (IED) group and consisted of 15 mice fed iron-enriched diet with 3% 

carbonyl-iron, always in a pelleted form. The treatment lasted 11 weeks [113]. The body weight 

of each mouse and the food intake of each cage were monitored weekly. The measure of basal 

glycemia was performed through tail vein blood sampling using the glucometer Accu-Check 

Aviva (Accu-Check, Roche Diagnostic AVIVA, Mannheim, Germany), after an overnight fast, on 

week 5 and 8 of treatment. The Homeostatic Model Assessment of Insulin Resistance (HOMA-

IR) index was calculated as follows: [glucose (nmol/L) * insulin (µU/mL)/22.5], using fasting 

values [128]. Alternatively, it was calculated through the following formula: fasting glucose 

level (mg/dL) × fasting insulin level (ng/mL)/405 [129].  

At the end of the treatment, all mice were sacrificed by decapitation under anesthesia, which 

consisted in a mixture of isoflurane and oxygen. The sacrifice was performed between 10:00 

am to 12:00 pm to avoid circadian variations, after an overnight fast. Trunk blood was collected 

and serum, after being separated by centrifugation (15 minutes at 2,000 rpm), was stored at -

80°C until assayed. Hypothalamus, pituitary and testes were carefully dissected, flash frozen in 

liquid nitrogen and stored at -80°C for RNA extraction. In a subgroup of 3 animals, whole brains 

were isolated and fixed in 4% paraformaldehyde to allow subsequent immunohistochemistry 

analysis. The same procedure was performed to collect testes from a subgroup of 5 animals. 



57 
 

Before the fixation, testicular weight and long diameter, as well as perigonadal fat pad weight, 

were measured. 

For the immunohistochemistry analysis brains from HFE-/- mice (Kindly provided by Prof. L. 

Valenti and Dr P. Dongiovanni) were used as a positive control, since the HFE gene knockout 

model recapitulate both the biochemical abnormalities and the histopathology of human 

genetic hemochromatosis. In particular, this animal model exhibits abnormally high Tf 

saturation and excessive iron accumulation in the liver together with a decreased hepatic 

hepcidin mRNA expression. Histologic examination revealed iron deposition predominantly in 

hepatocytes, but also in spleen and small intestine [18, 130]. 

 

5.2 REPRODUCTIVE HORMONE ASSAYS 

LH and T levels were evaluated by radioimmunoassay (RIA). 50 µL of serum were used to 

determine LH levels through a double-antibody method and RIA kits supplied by the National 

Institutes of Health (Dr. A. F. Parlow, National Institute of Diabetes and Digestive and Kidney 

Diseases National Hormone and Peptide Program, Torrance, CA). In IODO-GEN tubes rat LH-I-

10 was labelled with 125I, following the instructions of the manufacturer (Pierce Chemical Co., 

Rockford, IL). The reference preparation LH-RP-3 was used as standard to quantify LH 

concentrations. Intra- and inter-assay coefficients of variation were less than 8 and 10% and 

the sensitivity of the assay was 5 pg/tube. All samples were measured in the same assay; 

accuracy of hormone determinations was confirmed by assessment of rat serum samples of 

known hormone concentrations [131]. 

A commercial RIA kit from MP Biomedicals (Costa Mesa, CA) was employed to quantify serum 

T levels. The sensitivity of the assay was 1ng/mL, and intra-assay coefficient of variation was 

4.5%. All medium samples were measured in the same assay. 

 

5.3 ELISA ASSAY 

Blood serum was collected and stored at -80°C until assayed. Leptin concentrations were 

measured by using a Mouse/Rat Quantikine® enzyme-linked immunosorbent assay (ELISA) kit 

(R&D systems; Space Import – Export Srl, Milan, Italy). In a polyclonal antibody specific for 

mouse/rat leptin pre-coated microplate, the assay diluent RD1W and 50 µL of standards, 

prepared starting from a stock solution of 4000 pg/mL, of mouse/rat leptin control and of 
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diluted samples (20-fold dilution) were pipetted. The microplate was incubated at room 

temperature for two hours to allow the binding between leptin and the immobilized antibody. 

After washing away any unbound substances, 100 µL of mouse/rat leptin conjugate was added 

to each well. The washing step was repeated and 100 µL of substrate solution, prepared mixing 

a stabilized hydrogen peroxide solution with a stabilized chromogen (tetramethylbenzidine), 

was pipetted into the microplate, followed by an incubation at room temperature for 30 

minutes, protecting the plate form light.  The enzyme reaction yielded a blue product that 

turned yellow when 100 µL of Stop Solution was added. The optical density of each well was 

determined within 30 minutes using a microplate reader set to 450 nm with a wavelength 

correction at 570 nm (Wallac Victor 3 1420 Multilabel Counter, PerkinElmer). Data were 

linearized by plotting the log of the mouse/rat leptin concentrations versus the log of the O.D. 

on a linear scale, and the best fit line was determined by regression analysis. The assay range 

was 62.5 – 4,000 pg/mL with a sensitivity of 22 pg/mL. 

 

5.4 HISTOLOGICAL ANALYSIS AND IMMUNOSTAINING 

Upon dissection, testes and brains were fixed in a solution of phosphate-buffered saline (PBS) 

with 4% paraformaldehyde, pH 7.4, overnight at 4°C. Testes were dehydrated and wax-

embedded for a routine hematoxylin and eosin staining, whereas brains were cryopreserved in 

30% sucrose and OCT (optical cutting temperature) compound-embedded for immunostaining. 

Formaldehyde-fixed tissue sections were incubated in PBS with 10% normal goat serum and 

0.1% Triton X-100 or, with serum-free protein block (DAKO) for primary goat antibodies. 

Cryostat sections of formaldehyde-fixed samples of median eminence were incubated with 

hydrogen peroxide to quench endogenous peroxidase activity before incubation with GnRH 

primary antibody (1:1,000), followed by biotinylated goat anti-rabbit antibody (1:400; Vector 

Laboratories), and then developed with the ABC kit (Vector Laboratories) and DAB (Sigma-

Aldrich) to obtain an immuoperoxidase labelling [132]. 

 

5.5 IMAGE PROCESSING AND QUANTITATION 

To acquire bright-field images, a Zeiss Axiovert 200 with a Photometrics CoolSNAP ES camera 

(survival assays) or a Leica DM microscope with a DC500 digital camera (AP assays, HRP-stained 

sections) were used. Whereas, fluorescence images of mouse tissues were acquired through a 

Leica TCS SPE1 confocal microscope. Then, all images were processed using Photoshop CS4 



59 
 

(Adobe Inc.). To quantify the abundance of GnRH-positive neurites at the median eminence 

level of mice fed chow diet or IED and of mice Hfe-/-, the pixel intensity of GnRH staining was 

measured in 20-μm sagittal sections of median eminence. For immunoblotting, 3 independent 

experiments were performed for each condition, the optical density of signals was measured 

with ImageJ software (NIH) and the mean pixel intensity was calculated. 

 

5.6 CELL CULTURES 

Immortalized murine GN-11 cells (a kind gift of Dr S. Radovick, Children’s Hospital, Division of 

Endocrinology, Boston, MA) are representative of immature GnRH neurons, while the cell line 

GT1-7 (a kind gift of DR R.I. Weiner, Reproductive Endocrinology Center, University of 

California, San Francisco, CA) is a model of mature GnRH neurons. These two cell lines were 

grown in monolayer in a humidified incubator at 37°C with 5% of CO2. The culture medium for 

both these two in vitro models was the Dulbecco’s Minimal Essential Medium (DMEM; Sigma-

Aldrich, Milan, Italy) enriched with D-glucose (4.5 g/L) and supplemented with phenol red 

(0.0159 g/L), L-glutamine (2 mM), sodium pyruvate (1 mM; Biochrom, Berlin, Germany), 

streptomycin (100 µg/mL; Sigma-Aldrich), penicillin (100 U/mL; Sigma-Aldrich) and 10% fetal 

bovine serum (FBS; Life Technologies, Monza, Italy). Medium were replaced every 3 days. Once 

confluent, they were harvested with 0.05% trypsin/0.02% ethylenediaminetetraacetic acid 

(EDTA; Sigma Aldrich) and seeded in 100 mm Petri dish with 12 mL of medium at the density of 

0.1 X 106 cells, in case of GN-11 cells and 3.5 X 106, in case of GT1-7. 

 

5.7 CHEMICALS 

Ferric ammonium citrate (FAC) was purchased from Sigma-Aldrich (Milan, Italy). Desferal® 

(deferoxamine mesylate, DFO) was obtained from Biofutura Pharma (Milan, Italy). U0126, a 

specific and non-competitive inhibitor of mitogen-activated protein (MAP) kinase/ extracellular 

signal-regulated kinase (ERK) 1/2 (MEK 1/2), used in vitro at 10 µM, was purchased from Tocris 

Bioscences (Bristol, UK). 

 

5.8 MEASUREMENT OF TISSUTAL AND CELLULAR IRON CONTENT  

Hypothalamic, testicular and cellular iron content was measured by atomic absorption 

spectrometry (AAS). This is an analytical technique that measures the concentrations of 
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elements in several kinds of samples. It is based on the principle according to which atoms of 

different elements absorb characteristic wavelengths of light. Technically, the sample is 

atomized and targeted by electromagnetic radiation; some of it is absorbed and the greater the 

number of atoms there is in the sample, the more radiation is absorbed. The amount of light 

absorbed is used to calculate the concentration of the element in the sample. 

The iron deposition at the hypothalamic and testicular levels of CTR and IED mice was 

determined at the end of the treatment; the samples, before being assayed, were dried for two 

hours at 100°C. 

To determine the iron accumulation in the in vitro models, GN-11 and GT1-7 cells were treated 

with 200 µM FAC. At the end of the treatment, the cells were washed three times with PBS and, 

in the same buffer, harvested with cell scrapers. Subsequently, lived cells were isolated by using 

Trypan Blue. Indeed, this dye cannot enter lived cells because of their intact cytoplasmic 

membrane, while, conversely, can color the cytoplasm of dead cells. Lived cells were counted, 

centrifuged at 1200 rpm for 5 minutes and the pellet was stored at -20°C. 

The intracellular amount of iron in both tissues and cells was then measured by an atomic 

absorption spectrometer. The total iron concentration has been expressed as µg/100mg of dry 

tissue for hypothalamus and testes and as µg/106 cells for GN-11 and GT1-7. 

 

5.9 CELL VIABILITY ASSAYS 

The effect of iron on cell viability was assessed by using two different techniques: (i) the 

ATPliteTM 1step assay kit (PerkinElmer, Monza, Italy) and (ii) the Trypan Blue exclusion test 

performed with the LUNA™ Automated Cell Counter (Logos Biosystems, Inc., Annandale, VA). 

 

5.9.1 ATPliteTM 1step 

The ATPliteTM 1step (Luminescence ATP Detection Assay System) is an assay employed for the 

quantification of viable cells, which uses adenosine triphosphate (ATP) as a marker for cell 

viability. ATP is ideal because it is present in all metabolically active cells and its concentration 

decreases when the cells undergo necrosis or apoptosis. The ATPliteTM 1step is a luminescence 

test based on the production of light during the reaction between ATP, D-Luciferine and oxygen, 

catalyzed by luciferase. 
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                                               Luciferase (Mg2+) 

ATP + D-Luciferin + O2                                                       Oxyluciferin + AMP + PPi + CO2 + Light 
 
 
The luminescent signal is correlated to the cell number. To perform this assay, GN-11 cells were 

seeded in a 96-well microplate at 0.02 X 106 cells/well and, the day after, exposed to 200 µM 

FAC for 3 or 24 hours. Subsequently, the microplate was equilibrated at room temperature (20 

-22°C) and the solution containing luciferase and D-Luciferin was added to each well. After 

shaking the plate, protected from the light, the luminescence, proportional to ATP 

concentration, was measured and it was expressed as Count per Second (CPS). Comparing the 

value of CPS of cells treated with FAC vs cells CTR (not exposed to FAC), the effect of iron on 

cell viability was determined. 

 

5.9.2 LUNA™ Automated Cell Counter 

The LUNA™ Automated Cell Counter measures the concentration (expressed as number of 

cells/mL) of total, live and dead cells. This instrument uses a counting algorithm, shows green 

and red circles to indicate, respectively, live and dead cells and creates a cell size distribution 

histogram. To obtain viability information, Trypan Blue was used. 

For the Trypan Blue exclusion test, GN-11 cells were seeded in 6-well plates at 0.3 X 106 

cells/well and, after 24 hours, exposed to 200 µM FAC for 3 or 24 hours. Then, the cells were 

harvested with 200 µL of 0.05% trypsin/0.02% EDTA in PBS without Ca++ and Mg++. 10 µL of this 

cell suspension were mixed with 10 µL of Trypan Blue in the three minutes preceding the count 

and 10/12 µL of this mixture were loaded into the chamber of a LUNA™ Cell Counting Slide, 

inserted, then, into the instrument. The image was adjusted focusing on the cell in order to 

distinguish the live cells, with bright centers and dark edges. Finally, the instrument provided 

an accurate live/dead cell count. 

 

5.10 TISSUE AND CELLULAR RNA EXTRACTION  

5.10.1 Hypothalamus 

Total RNA was harvested from the hypothalamus with the NucleoSpin® RNA/Protein kit 

(Macherey-Nagel, Düren, Germany). The whole hypothalamic samples (6 – 11 mg) were 

homogenized by using the TissueLyser II (Qiagen) for 3 minutes at 30 Hertz in a mixture 
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composed of 350 µL Buffer RP1, containing guanidinium thiocyanate, and 3.5 μL β-

mercaptoethanol, a reducing agent. Then, the lysate was transferred in a NucleoSpin® Filter 

and filtrated by centrifugation for 1 minute at 11,000 x g. 350 µL of 70 % ethanol were added 

to the homogenized lysate before to transfer all the sample in a NucleoSpin® RNA/Protein 

Column. The subsequent centrifugation for 30 seconds at 11,000 x g was required to permit the 

binding of RNA and DNA to the column membrane, with the parallel release of proteins in the 

flow-through. Because of the high degradability of RNA, it was isolated immediately, leaving 

the protein containing flow-through on ice. 350 µL of Membrane Desalting Buffer (MDB) were 

added to the column in order to enhance the effectivity of the following DNA digestion, carried 

out by the rDNase. The membrane was, then, washed with Buffer RA2, inactivating the rDNase, 

and with Buffer RA3. Finally, the RNA was eluted in 40 µL of RNase-free water. 

 

5.10.2 Pituitary, testes, GN-11 and GT1-7 cells 

For the RNA extraction from pituitary, testes and neuronal cells the RNeasy Mini Kit (Qiagen, 

Milan, Italy) was used. This kit guarantees the purification of all RNA molecules longer than 200 

nucleotides. Biological samples are lysed and homogenized in the presence of a highly 

denaturing guanidine-thiocyanate–containing buffer (RLT), which immediately inactivates 

RNases to ensure purification of intact RNA. In particular, to process the pituitary, the whole 

sample was homogenized by using a sonicator (4 cycles, power 60%). Instead, the gonads were 

weighted and 30 mg were disrupted and homogenized with the TissueLyser II (Qiagen) for 3.30 

minutes at 30 Hertz. The pituitary and gonadal lysates were, then, centrifuged for 3 minutes at 

full speed to separate insoluble material eventually present. Instead, both GN-11 and GT1-7 

were seeded in 60 mm Petri dishes, directly lysed in 600 µL of RLT, added with 6 µL of β-

mercaptoethanol, and harvested with cell scrapers. The lysate was homogenized by the 

passage through a blunt 20-gauge needle, fitted to an RNase-free syringe, for at least five times. 

From this step, all the samples were processed in the same way. One volume of 70% ethanol 

was added to the homogenized lysate to provide appropriate binding conditions and the 

mixture was first transferred to an RNeasy Spin Column and then centrifuged for 15 seconds at 

10,000 rpm, leading to the binding of total RNA to the membrane while the contaminants were 

efficiently washed away. Following a washing step with 350 µL of Buffer RW1, an on-column 

DNase digestion was performed with subsequent washes with Buffer RW1 and RPE. The 
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samples were then centrifuged to eliminate any possible carryover of ethanol and Buffer RPE. 

Finally, the RNA was eluted in RNase-free water. 

 

5.10.3 RNA quantification 

The amount of RNA was quantified with a biophotometer (Eppendorf, Milan, Italy), measuring 

the absorbance at 260 nm (wavelength of nucleic acid absorption) and at 280 nm (wavelength 

of nucleic acid and protein absorption). The nucleic acid concentration was calculated assuming 

that an absorbance at 260 nm of 1.0 is equivalent to 40 µg/mL single-stranded RNA. The ratio 

between the two absorbances was used to assess RNA purity: a value of ~2.0 is indicative of 

highly purified RNA. 

 

5.11 REVERSE TRANSCRIPTION – POLYMERASE CHAIN REACTION (RT-PCR) 

The RT-PCR technique was used to evaluate the cellular gene expression of TfR and FtH and to 

determine the X-box binding protein-1 (XBP-1) mRNA splicing at the hypothalamic level and in 

GN-11 cells. 

One µg of total RNA was retro-transcribed into first-strand complementary DNA (cDNA) by 

using the iScriptTM Reverse Transcription Supermix for RT-qPCR (Bio-Rad Laboratories, Segrate, 

Milan, Italy). The reaction was performed in 20 µL final volume, which contained the RNA 

template and the 5X iScriptTM RT supermix. This latter was composed of (i) iScript RNase H+ 

MMLV reverse transcriptase; (ii) RNase inhibitor, to avoid the RNA degradation, (iii) 

deoxynucleotide triphosphates (dNTPs), (iv) oligo(dT) and random primers to initiate the 

reverse transcription: oligo(dT) primers anneal to poly(A) tails of mRNA while the random 

primers are often six nucleotides long with random base sequences; (v) buffer, to optimize the 

reaction; (vi) MgCl2, a cofactor for the reaction; (vii) stabilizers. In parallel to this reaction, a no-

RT control reaction, with iScriptTM No-RT Control Supermix and the same amount of total RNA, 

was set up to detect genomic DNA amplicons. Moreover, in all the RTs, a reaction was 

performed replacing the RNA template with water as an internal negative control. The 

complete reaction, mixes were incubated in a thermal cycler (GeneAmp PCR System 2700 and 

2900; Applied Biosystem, Monza, Italy) using the following protocol: 
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Table 3. Conditions for RT reaction. 

 

The ribosomal protein 18S was used as internal control. 

 

At the end of the RT, a final-time PCR was performed with 1 µL of the synthetized cDNA using 

GoTaq® Green Master Mix (Promega, Milan, Italy). The final volume of 25 µL contained:  

 

COMPONENT FINAL CONCENTRATION 

GoTaq® Green Master Mix, 2X 1X 

upstream primer 1 µM 

downstream primer 1 µM 

DNA template 50 ng 

Nuclease-Free Water  

Table 4. Components for a PCR reaction. 

 

The GoTaq® Green Master Mix, 2X, in turn, contained bacterially derived Taq DNA polymerase, 

dNTPs, MgCl2, reaction buffers at optimal concentrations for efficient amplification of DNA 

templates by PCR and two dyes (blue and yellow) that allow monitoring of progress during 

electrophoresis. The conditions used for the amplification by PCR were the follows: 

 

STEP TEMPERATURE TIME CYCLES 

Initial denaturation 95°C 5 minutes 1 

Denaturation 94° 1 minute 40 

(exception:  

13 for 18S) 

Annealing see Table 8 1 minute 

Extension 72°C 1 minute 

Final extension 72°C 10 minutes 1 

Table 5. Conditions for PCR reaction. 

 

STEP TEMPERATURE TIME 

Priming 25°C 5 minutes 

Reverse transcription 42°C 30 minutes 

RT inactivation 85°C 5 minutes 
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The sequences of primers and the relative annealing temperature used are listed in table 8. 

 

Subsequently, amplification products were separated by 2% (4% in case of XBP-1) agarose gel 

electrophoresis and detected by ethidium bromide fluorescence on a UV trans-illuminator (Bio-

Rad Laboratories). A Step Ladder (Sigma Aldrich) was used as electrophoresis marker for DNA. 

It contained 17 bands ranging from 50 bp to 3000 bp and it was chosen based on the size of 

amplification products obtained. 

 

5.12 REAL-TIME QUANTITATIVE PCR (qRT-PCR) 

qPCR, using 1 µL of cDNA, was carried out by using either a dye-based method (SYBR Green) or 

a probe-based one (TaqMan). Both these two techniques utilize a fluorescent signal to measure 

the amount of DNA in a sample. The real-time PCR detection system used was CFX96 C1000 

TouchTM Real-Time (Bio-Rad Laboratories) and all the reactions were performed in triplicate in 

96-well PCR plates. For each primer set or probe, no-template controls, obtained replacing the 

cDNA with water, and -RT controls were included to detect possible contaminations. The 

ribosomal protein 18S was used as internal control. Relative differences in target mRNA levels 

between control and treated conditions were calculated with the ΔΔCt method. 

 

5.12.1 SYBR Green 

The reactions were carried out in 10 µL final volume containing:  

 

COMPONENT FINAL CONCENTRATION 

iTaqTM Universal SYBR® Green Supermix (2X) 

(Bio-Rad Laboratories) 
1X 

sense primer 

(Sigma-Aldrich) 
500 nM (exception: 300 nM for 18S) 

antisense primer 

(Sigma-Aldrich) 
500 nM (exception: 300 nM for 18S) 

DNA template 50 ng 

Nuclease-Free Water  

Table 6. Components for a SYBR Green qRT-PCR. 
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The iTaqTM Universal SYBR® Green Supermix (2X) was composed of: antibody-mediated hot-

start iTaqTM DNA Polymerase, dNTPs, MgCl2, SYBR® Green I Dye, enhancers, stabilizers and a 

blend of passive reference dyes (including ROX and fluorescein). 

Table 8 reports the sequences of primers and the relative annealing temperature used whereas 

those of probes are listed in table 9. 

 

5.12.2 TaqMan 

The reactions were carried out in 20 µL final volume containing:  

- cDNA template (50ng) 

- 10 µL of SsoFastTM Probes Supermix (2x) (Bio-Rad Laboratories) containing antibody-

mediated hot-start Sso7d-fusion polymerase, dNTPs, MgCl2, enhancers and stabilizers. 

- 1 µL of the specific probe (20X) consisting in a reporter dye (6-Carboxyfluorescein, FAM) 

on the 5’ end and in a minor groove binder (MGB), nonfluorescent quencher on the 3’ 

end (Custom Applied Biosystems™ TaqMan® MGB probes; Life Technologies, Inc., 

Milan, Italy). The probes are listed in Table 9. 

- 8 µL of nuclease-free water 

The thermal cycling protocol was: 

STEP TEMPERATURE TIME CYCLES 

Polymerase Activation, 

DNA Denaturation 
95°C 2 minutes 1 

Denaturation 95° 10 seconds 
40 

Annealing and extension 60°C 30 seconds 

Table 7. Conditions for TaqMan qPCR detection method. 

 

Table 8 

Gene T° Forward Primer (5’ – 3’) Reverse Primer (5’ – 3’) 

CHOP 57°C GTCCCTAGCTTGGCTGACAGA TGGAGAGCGAGGGCTTTG 

FSHβ 59°C ATGGATTGTTCCAGGCAGAC TCACTGCATGTGAGGGAAAG 

FtH 57°C CGAGATGATGTGGCTCTGAA GTGCACACTCCATTGCATTC 
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GnRH 57°C GGCCGGCATTCTACTGCTG CTGCCTGGCTTCCTCTTCA 

Gpr54 55°C CAGTCCCAGGACACAATCCT ACCAATGAGTTTCCGACCAG 

KISS1 54°C AGCTGCTGCTTCTCCTCTGT GCATACCGCGATTCCTTTT 

LHβ 59°C TGGCCGCAGAGAATGAGTTC CTCGGACCATGCTAGGACAGTAG 

SOD2 57°C TCTGGCCAAGGGAGATGTTA CCTCCAGCAACTCTCCTTTG 

TfR 57°C TCGCTTATATTGGGCAGACC CCATGTTTTGACCAATGCTG 

XBP-1 64°C TGAGAACCAGGAGTTAAGAACACGC TTCTGGGTAGACCTCTGGGAGTTCC 

18S 57°C CTCGCTCCTCTCCTACTTGG CCATCGAAAGTTGATAGGGC 

Table 8. Primer sequences. 

 

Table 9 

Gene Applied BiosystemsTM Custom TaqMan® 5′ FAM - 3′ MGB Probes  

Assay ID 

GnRH1 Mm01315605_m1 

IL-6 Mm00446190_m1 

KISS1 Mm03058560_m1 

NPY Mm03048253_m1 

POMC Mm00435874_m1 

TNFα Mm00443258_m1 

18S Hs99999901_s1 

Table 9. Probes. 

FAM: 6-carboxy-fluorescein (reporter fluorescent dye).  

MGB: minor-groove-binder moiety. 

 

5.13 GN-11 CELL MIGRATION STUDY 

Cell migration studies were performed with a 48-well Boyden’s chamber (Neuro Probe Inc, 

Gaithersburg, MD) on GN-11 cells, since this cell line is representative of immature GnRH 

neurons and is characterized by migratory properties. This study was specifically focused on 

the analysis of GN-11 microchemotaxis, which consists in cell migration along a chemical 

concentration gradient toward the highest concentration of chemoattractant. 

The Boyden’s chamber is composed by: 

- an acrylic bottom plate with 48 wells of 25µL volume and a diameter of 3.2mm  
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- a single 25 x 80 mm piece of filter membrane between the top and bottom plates with 

a gasket positioned over the filter to create a seal 

- a top plate with 48 holes which forms the upper wells when the chamber is assembled 

To perform this assay, 28µL of 1% FBS were placed into the lower compartment of the chamber 

as chemoattractant. In this way, a slight positive meniscus was formed to prevent air bubbles 

from being trapped when the filter was applied. To this regard, a polyvinyl-pyrrolidone-free 

polycarbonate porous membrane (8 µm pores; Neuro Probe) was applied above the bottom 

plate. Previously, this membrane was washed once in acetic acid 0.5 M and twice in PBS without 

Ca++ and Mg++. To improve the cell-adhesion during the migratory process, the membrane was 

pre-coated with gelatin (0.2mg/mL in PBS without Ca++ and Mg++; Sigma-Aldrich) for 72 hours 

at 4°C. Subsequently, the silicone gasket and the top plate were applied and cell suspension 

was placed in the open-bottom wells of the upper compartment of the chamber. 

In particular, to evaluate the effects of FAC at different doses and different time-points, on cell 

migration, GN-11 cells were treated for 24 h with 200 µM FAC, 200 µM DFO or both. 

Afterwards, cells were harvested in 0.05% trypsin/0.02% EDTA in PBS without Ca++ and Mg++ 

and washed in DMEM with 0.1% bovine serum albumin (BSA; Sigma-Aldrich). 0.10 x 106 cells in 

50µL of DMEM/0.1% BSA were then pipetted into upper wells. 

To investigate whether the MAPK/ERK1/2 signaling pathway was involved in the inhibition of 

iron-driven migration stimulated by FBS 1%, the cell suspension (0.10 x 106 /50µL of 

DMEM/0.1% BSA) was incubated for 30 minutes with 10 µM U0126, treated with FAC for 1 hour 

and then loaded in the open-bottom wells of the upper compartment of the chamber.  

The filled chamber was placed in the cell incubator for 1.5 hours. After this step, the chamber 

was opened, the membrane recovered and the cells migrated trough the pores, thus attached 

to the side of the membrane directly in contact with the chemoattractant agent, were fixed in 

cold methanol for 1 minute. Cells remained on the membrane’s portion close to the top plate 

represented the non-migrated cells and, after being washed with PBS without Ca++ and Mg++, 

they were removed by using a scraper. Whereas, the fixed cells were stained using the Diff-

Quick kit (Biomap, Milan, Italy), the dye excess was eliminated with Milli-Q water and the 

membrane was placed on a microscope slide. For quantitative analysis, stained cells were 

observed using a 20X objective on a light microscope and six random objective fields per well 
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were counted. The mean number of migrated cells/mm2 was expressed as percentage of 

positive control (1% FBS was taken as 100%). 

 

5.14 PROTEIN EXTRACTION 
 
5.14.1 Hypothalamus 

In order to isolate proteins from hypothalamic samples, the flow-through, consisting in the 

ethanolic lysate passed through the RNA binding column and, as such, deprived of nucleic acids, 

obtained with the NucleoSpin® RNA/Protein kit (Macherey-Nagel) was used. In detail, 150 µL 

of this solution were mixed with an equal volume of buffer PP (Protein Precipitator) and 

incubated at room temperature for 10 minutes. Subsequently, this mixture was centrifuged 

and the obtained pellet was washed with 50% ethanol, centrifuged 1 minute at 11,000 x g and 

the precipitate was dried 30 minutes. Subsequently, it was resuspended with 100 µL of PSB-

TCEP (Protein Solving Buffer - Tris(2-carboxyethyl) phosphine hydrochloride, a reducing agent), 

incubated for 3 minutes at 95 – 98°C for a complete protein denaturation. 

The protein quantification was performed by using the Protein Quantification Assay kit 

(Macherey-Nagel). The standard curve was created preparing dilution-series of BSA standards 

starting from a BSA reference protein stock solution (1 mg/mL in Protein Solving Buffer, PSB). 

A Quantification Reagent (QR) was added to standards and protein samples and the relative 

optical densities were measured through a spectrophotometer at 560 nm (Wallac Victor 3 1420 

Multilabel Counter, PerkinElmer). 

 

5.14.2 GN-11 

To evaluate the possible effect of FAC on ERK1/2 signaling pathway, GN-11 cells were seeded 

in 60 mm Petri dish. Once confluent, they were starved (DMEM without FBS) overnight and 

treated with 200 µM FAC for 5 – 180 minutes and 24 hours. To harvest the cells, they were 

washed twice with warm (37°C) PBS containing Ca++ and Mg++ and lysed with 200 µL of 

Mammalian Protein Extraction Reagent (M-PER; Thermo Scientific, Rockford, Il) to which was 

added 1% protease (Complete Mini EDTA-free, Protease Inhibitor Cocktail Tablets; Roche 

Diagnostic, Mannheim, Germany) and phosphatase (PhosSTOP, Phosphatase Inhibitor Cocktail 

Tablets; Roche Diagnostic) inhibitors. The lysis procedure with M-PER was conducted on a 

shaker for 10 minutes at room temperature. Then, the lysate was collected and centrifuged 10 
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minutes at 14,000 rcf at 4°C and the supernatant, containing cytoplasmic and nuclear protein 

extract, was transfer to a new tube for analysis. The Thermo ScientificTM PierceTM BCA Protein 

Assay based on bicinchoninic acid (BCA) was employed for the colorimetric detection and 

quantitation of total proteins. 2mg/mL of albumin standard was used to prepare a set of diluted 

standards in M-PER, used for the creation of the standard curve. The absorbance of standards 

and samples was measured at 550 nm on a plate reader (ELX 800 BioTek, Winooski, VT). Sample 

concentrations were interpolated according to a quadratic polynomial equation (y = a + bx + 

cx2). 

 

5.15 WESTERN BLOT ANALYSIS 

Sample preparation, protein electrophoresis and transfer to a nitrocellulose membrane were 

performed through the Protein Electrophoresis workflow NuPAGE® (Life TechnologiesTM). To 

20 µg protein sample, deionized water, NuPAGE® Sample Reducing Agent (10X) (Novex®, Life 

TechnologiesTM), containing 500 mM dithiothreitol (DTT), NuPAGE® LDS (lithium dodecyl 

sulfate) Sample Buffer (4X) (Novex®, Life TechnologiesTM) were added and then samples were 

heated at 70°C for 10 minutes. In this way, the electrophoresis was conducted in denaturing 

and reducing conditions allowing the separation of proteins by their molecular mass. Samples 

and 7 µL of a Protein Standard (NovexTM Sharp Pre-Stained Protein Standard; InvitrogenTM, Life 

TechnologiesTM) were loaded in a precast polyacrylamide gel (NuPAGETM 4-12% Bis-Tris Protein 

Gels, 1.5 mm, 10-well; InvitrogenTM, Life TechnologiesTM). The gel run using a specific running 

buffer to better resolve small/medium-sized proteins (NuPAGETM MES SDS Running Buffer 

(20X); InvitrogenTM, Life TechnologiesTM), with the addition of an antioxidant (NuPAGETM 

Antioxidant; InvitrogenTM, Life TechnologiesTM) in the upper (cathode) buffer chamber to 

maintain proteins in a reduced state during protein gel electrophoresis. This latter was 

performed with a constant voltage (200 V) and a run time of 35 minutes. 

After performing electrophoresis, proteins were transferred to a nitrocellulose membrane (0.2 

µm pore size) (iBlotTM Transfer Stacks, InvitrogenTM, Life TechnologiesTM) using a dry transfer 

device (iBlotTM Gel Transfer Device; InvitrogenTM, Life TechnologiesTM), selecting the P3 method, 

which allows a run of 7 minutes and 40 seconds at 20 V. Subsequently the membrane was 

washed in TBST (Tris-buffered saline, 0.1% Tween 20) and blocked in a solution of 5% BSA in 

TBST for 1 hour and 30 minutes. The primary antibody was diluted in either 5% BSA or 5% milk 
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solution and the membrane incubated overnight at 4°C. The day after, the membrane was 

washed in TBST and incubated for 1 hour and 30 minutes at room temperature with the 

horseradish peroxidase (HRP)-conjugated secondary antibody diluted in a 5% milk solution. 

After further washing steps, the membrane was exposed to chemiluminescence substrates 

(ClarityTM Western ECL Substrates; Bio-Rad) for 5 minutes. The images were acquired through 

the ChemiDocTM XRS System (Bio-Rad) and analyzed by using the Image LabTM 3.0 Software 

(Bio-Rad).  

To evaluate the expression of several proteins on a same membrane, this latter was incubated 

10 minutes at room temperature with the NewBlotTM Nitrocellulose 5X Stripping Buffer (LI-COR, 

Carlo Erba Reagents, Milan, Italy) before re-probing it with a different primary and subsequent 

secondary antibody. 

The antibodies used in this project are listed in Table 10. 

 

Table 10 

NAME kDa PRIMARY ANTIBODY SECONDARY ANTIBODY 

Anti-pERK1/2 42 – 44 1:150 1:6,000 (anti-mouse) 

Anti-ERK1/2 42 – 44 1:1,000 1:9,000 (anti-rabbit) 

Anti-Tubulin 55 1:2,000 1:8,000 (anti-mouse) 

Table 10. Dilutions of used antibodies. 

pERK1/2 and ERK from Santa Cruz Biotechnology, Inc., Dallas. Texas, USA 

Tubulin from Sigma-Aldrich 

 

5.16 ANALYSIS OF THE DATA 

Statistical analysis was performed using the Prism statistical analysis package (GraphPad 

Software, San Diego, CA). Data are expressed as mean of obtained values ± standard error of 

the mean (SEM). With regard to tables 11 and 12 showing the effects of iron-enriched diet (IED) 

on body weight and food intake, respectively, data are expressed as mean of obtained values 

± standard deviation (SD). Differences between treatment groups were evaluated by Student's 

t-test when the comparison was made between two groups, or by ANOVA, followed by post-

hoc Dunnet’s or Tukey’s test, for multiple comparisons; differences were considered significant 

at p < 0.05. Results are representative of three independent experiments. 
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6. RESULTS 

6.1 ANIMAL STUDIES 

6.1.1 Effect of IED on metabolic phenotype 

Increased body iron stores and dietary iron intake have been associated with insulin resistance 

and type 2 diabetes mellitus and, as previously demonstrated by our research group [113], 

C57Bl/6 mice fed IED for 16 weeks developed a 40% increase in glucose levels. To confirm that 

in the animal model used in the present project, 11 weeks of IED could induce a dysmetabolic 

phenotype, mice were fasted overnight and, then, the basal glycemia was measured. IED led to 

a +57% increment of basal glycemia compared to control (CTR) mice, specifically 77.50 ± 4.16 

mg/dL in CTR vs 122.0 ± 11.31 mg/dL in IED mice; p = 0.0042 [Fig. 7 A]. Moreover, IED was also 

associated to an increased Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) 

index (+67%, p = 0.0038) [Fig. 7 B]. 

 

                                                         

Fig. 7. Effect of iron enriched diet (IED) on metabolic phenotype. Basal glycemia was measured after an overnight 

fasting in mice fed IED compared to mice fed chow diet at week 11 of treatment. White bar is CTR mice and the 

black one represents IED mice. Data are representative of 15 mice and are expressed as mean ± SEM. Differences 

between treatments were assessed by Student’s t-test, **p<0.01. 
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6.1.2 Phenotypic effects of IED 

The carbonyl-iron supplementation was well tolerated, although a significant reduction of body 

weight was found in IED mice compared to the CTR group. Specifically, body weight differences 

between the two groups were already significant after 1 week of IED (-2.5 g vs CTR, p<0.05) and 

progressively increased throughout the 11-week time frame until reaching 5.41 g of difference 

at the end of the treatment [Table 11; Fig 8]. This result is in line with previous studies using 

the same supplemented diet [113, 133]. 

 

 Body weight (g)   

Weeks of diet CTR 

(Mean ± SD) 

IED 

(Mean ± SD) 

Δ 

(mean CTR - 

mean IED) (g) 

p value 

1 18.79 ± 1.406 16.29 ± 1.891 2.50 0.04493 

2 20.40 ± 1.324 17.18 ± 1.697 3.22 0.01009 

3 21.79 ± 1.300 17.59 ± 1.637 4.19 0.00204 

4 22.32 ± 1.378 17.63 ± 1.612 4.69 0.00113 

5 22.69 ± 1.148 18.49 ± 1.530 4.20 0.00117 

6 23.22 ± 1.352 18.48 ± 1.745 4.74 0.00135 

7 23.85 ± 1.247 19.13 ± 1.787 4.72 0.00129 

8 24.66 ± 1.244 19.21 ± 1.660 5.45 0.00037 

9 24.46 ± 1.168 19.38 ± 1.795 5.09 0.00072 

10 24.64 ± 1.080 19.48 ± 1.706 5.16 0.00045 

11 25.29 ± 1.256 19.88 ± 1.519 5.41 0.00028 

 

Table 11. Effect of iron-enriched diet (IED) on body weight. Mice were fed chow-diet (control - CTR - group) or IED 

(3% carbonyl-iron), respectively, for 11 weeks. Body weight difference between CTR and IED is reported for each 

week. Fifteen mice per group were analyzed. Differences between the two groups were assessed by Student’s t-

test and the p values are reported. Data are expressed as mean ± SD. 
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Fig. 8. Effect of iron-enriched diet (IED) on body weight. Mice were fed chow-diet (control group - CTR) or IED group 

(3% carbonyl-iron) for 11 weeks, respectively. White circles are controls; black squares are IED mice. Fifteen mice 

per group were analyzed. Data are expressed as mean ± SEM. Differences between treatments were assessed by 

Student's t-test, *p < 0.05, **p < 0.01 and ***p < 0.001. 

 

In parallel with the lower body weight gain, IED mice showed a significant decreased weekly 

food intake (17.9 ± 0.98 g per mouse) if compared to the CTR group (23.8 ± 0.97 g, p< 0.0001) 

[Table 12]. This latter finding could explain the reduced body weight associated to IED-feeding. 

 

 CTR IED  

Weeks of diet Food intake 

per mouse (g) 
Mean ± SD (g)  

Food intake 

per mouse 

(g) 

Mean ± SD (g) p value 

1 22.46 23.84 ± 0.972 17.43 17.99 ± 0.976 p < 0.0001 

2 23.17  19.03   

3 23.56  19.08   

4 24.13  19.73   

5 23.69  18.08   

6 22.55  17.93   

7 23.74  17.45   

8 23.62  17.18   

9 24.58  16.42   

10 25.23  17.35   

11 25.48  18.23   
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Table 12. Effect of iron-enriched diet (IED) on food intake. Mice were fed chow-diet (control group - CTR) or IED 

(3% carbonyl-iron) for 11 weeks, respectively. Data are expressed as weekly food intake per mouse and mean food 

intake per group. Fifteen mice per group were analyzed. Differences between the two groups were assessed by 

Student’s t-test and the p value is reported. Data are expressed as mean ± SD. 

 

The effect of IED on perigonadal fat pad weight was in line with reduced body weight and food 

intake. Indeed, IED mice showed a significant decrement of perigonadal fat pad weight (CTR: 

0.80 ± 0.1 g; IED: 0.46 ± 0.04 g) [Fig 9]. 

 

                                                    

Fig. 9. Effect of iron-enriched diet (IED) on perigonadal fat pad. Mice were fed chow-diet (control group - CTR) or 

IED (3% carbonyl-iron) for 11 weeks, respectively. White bar is CTR; black bar is IED group. Fifteen mice per group 

were analyzed. Data are expressed as mean ± SEM. Differences between treatments were assessed by Student's t-

test, ****p < 0.0001.  

 

Serum leptin levels were reduced in mice fed with IED (-56% vs CTR, p < 0.05) [Fig 10]. 

    

                                                             

Fig. 10. Effect of iron-enriched diet (IED) on serum leptin levels. Mice were fed chow-diet (control group - CTR) or 

IED (3% carbonyl-iron) for 11 weeks, respectively. White bar is CTR; black bar is IED group. Fifteen mice per group 
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were analyzed. Data are expressed as mean ± SEM. Differences between treatments were assessed by Student's t-

test, *p < 0.05. 

 

Upon the collection of these data, which confirmed an IED-induced dysmetabolic phenotype, 

the hypothalamic gene expression of the orexigenic signal neuropeptide Y (NPY) and of the 

anorexigenic pro-opiomelanocortin (POMC), both involved in the regulation of energy balance, 

appetite and reproductive function, were evaluated. IED led to a significant increment of NPY 

mRNA levels (+ 158% vs CTR, p < 0.05) [Fig 11 A] as well as to a reduction of POMC gene 

expression, though not reaching a statistical significance (-52% vs CTR, p = 0.247) [Fig 11 B]. 

 

                       

Fig. 11. Effect of iron-enriched diet (IED) on hypothalamic gene expression of neuropeptide Y (NPY) and pro-

opiomelanocortin (POMC). Mice were fed chow-diet (control group - CTR) or IED (3% carbonyl-iron) for 11 weeks, 

respectively. White bars are CTR and black bars are IED mice. Fifteen mice per group were analyzed. Data are 

expressed as percentage of control (mean ± SEM). Differences between treatments were assessed by Student's t-

test, *p < 0.05.  

 

6.1.3 Effect of IED on iron homeostasis on the hypothalamus-pituitary-gonadal 

axis 

To evaluate the effect of iron overload on the reproductive axis, a detailed analysis of testes, 

pituitary and hypothalamus was performed.  

First of all, to investigate whether IED had an impairment at the testicular level, at sacrifice 

testes were isolated and their weight and length evaluated. IED led to a significant reduction (-

22%) in testicular weight (CTR: 0.21 ± 0.018 g; IED: 0.16 ± 0.022 g; p < 0.01; [Fig. 12 A]) and in 

longer diameter (-21%; CTR: 7.73 ± 0.45 mm; IED: 6.1 ± 0.42 mm; p < 0.01; [Fig. 12 B]). Since 
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the IED-fed mice showed a reduction of their body weight, probably due to a decreased food 

intake (as shown in table 12), the data collected from this testicular analysis were adjusted for 

body weight, which was, in turn, normalized for the food intake. Interestingly, the differences 

were maintained for both the testicular weight and long diameter. When compared to CTR 

mice in the first case, iron overload led to a reduction of 30% (CTR: 0.21 ± 0.011 g; IED: 0.14 ± 

0.018 g; p < 0.001; [Fig. 12 C]). With regard to the testicular long diameter, IED was associated 

to a decrement of 29% (CTR: 7.45 ± 0.28 mm; IED: 5.27 ± 0.32 mm; p < 0.001; [Fig. 12 D]). 

 

Fig. 12. Effect of iron-enriched diet (IED) on testes. Panels A and B show absolute values of testes weight (g) and 

long diameter (mm), respectively. Panels C and D show normalized testes weight (g) and long diameter (mm), 

respectively. White circles are CTR mice and black squares are IED mice. Panels A and C are representative of 5 

mice whereas that of panels B and D were 3. Data are expressed as mean ± SEM. Differences between treatments 

were assessed by Student's t-test, **p < 0.01 and ***p < 0.001. 

 

To further investigate a possible gonadal defect mediated by iron overload the testicular 

morphology of both groups was analyzed. To this purpose, in a subgroup of 5 animals, eosin 

and hematoxylin were used to stain the seminiferous tubules and this technique revealed that 

IED led to a reduction of the seminiferous tubules’ number. As shown in figure 13B, that were 
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significantly reduced (-20%, p < 0.01) in mice fed IED compared with CTR. A representative 

stained section is reported in figure 13A. 

                                  

 

Fig. 13. Effect of iron-enriched diet (IED) on seminiferous tubules’ number. White bar is control (CTR) mice and the 

black one is IED mice. Data are representative of 5 mice. Data are expressed as mean ± SEM. Differences between 

treatments were assessed by Student's t-test, **p < 0.01. sem, seminiferous; tub, tubules. 

 

The project continued analyzing possible impairments in hormones involved in the 

reproductive function. In particular, circulating level of testosterone (T) and luteinizing 

hormone (LH) were evaluated. As shown in figure 14, 11 weeks of IED were associated to a 

pronounced reduction of serum levels of both T (IED: 0.24 ± 0.10; CTR: 1.39 ± 0.55 ng/mL; p = 

0.058; [Fig. 14 A]) and LH (IED: 0.25 ± 0.15; CTR: 1.82 ± 0.43 ng/mL; p < 0.01; [Fig. 14 B]). 
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Fig. 14. Effect of iron-enriched diet (IED) on reproductive function. White bars are control (CTR) mice and the black 

ones are IED mice. Data are representative of 15 mice. Data are expressed as mean ± SEM. Differences between 

treatments were assessed by Student's t-test, *p < 0.05 and **p < 0.01. 

 

Pituitary levels of LH, together with those of follicle-stimulating hormone (FSH), were also 

specifically measured. Since these two gonadotropins consist of a common α-subunit and a 

hormone-specific β-subunit, which confers the specific actions of the glycoproteins, LHβ and 

FSHβ were taking into account for the analysis. Dietary iron overload did not affect pituitary 

mRNA levels of FSHβ (p = 0.745 [Fig. 15 A]), whereas those of LHβ showed a trend toward 

reduction without reaching a statistical significance (-25% vs CTR, p = 0.156; [Fig. 15 B]). 

 

                 

Fig. 15. Effect of iron-enriched diet (IED) on reproductive function. White bars are control (CTR) mice and the black 

ones are IED mice. Data are representative of 15 mice. Data are expressed as percentage of control (mean ± SEM). 
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6.1.4 Iron accumulation at the hypothalamus-pituitary-gonadal axis 

 

6.1.4.1 Testes 

To elucidate the effect of iron overload on the hypothalamic-pituitary-gonadal (HPG) axis, these 

three different compartments were analyzed in both the CTR and the IED group. 

Starting from testes, the atomic absorption spectrometry (AAS) showed that 11 weeks of IED 

led to a significant accumulation (+47%) of the metal at this level with respect to mice fed with 

standard diet (IED: 9.80 ± 0.82; CTR: 6.57 ± 0.83 µg/100 mg dry tissue [Fig. 16 A]). 

Physiologically, iron balance is controlled by mechanisms involving the Iron Regulatory Proteins 

(IRPs) and the Iron Responsive Elements (IREs). When an excess of this metal is present, the 

IRP/IRE system leads, on one side, to a decrease in transferrin receptor (TfR) mRNA expression 

and, on the other side, to an increment of the translation of ferritin (Ft) mRNA. This results in a 

reduction of iron internalization together with the storage of excessive intracellular iron into 

Ft. 

Eleven weeks of IED did not impair the testicular gene expression of TfR (p = 0.131; [Fig. 16 B]) 

and of Ft, specifically FtH (p = 0.517; [Fig. 16 C]). 

          

Fig. 16. Evaluation of iron content and homeostasis in testes. Panel A shows testes iron content evaluated by atomic 

absorption spectrometry. Panel B and C report testicular gene expression of transferrin receptor (TfR) and ferritin 

H (FtH), respectively. White bars are control (CTR) mice and the black ones are iron-enriched diet (IED) mice. Data 

are representative of 15 mice. In panels A data are expressed as mean ± SEM. In panels B and C, data are expressed 

as percentage of control (mean ± SEM). Differences between treatments were assessed by Student's t-test, **p < 

0.01. 
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6.1.4.2 Pituitary 

At the pituitary level, iron content was not quantified by AAS because of its size and 

methodological limitations. Therefore, since Ft is widely considered as a surrogate biomarker 

of iron content [134], mRNA levels of FtH were used to this purpose. RT-qPCR showed that 11 

weeks of dietary iron overload resulted in a significant increment of pituitary gene expression 

compared to CTR mice (+48%, p < 0.05; [Fig. 17]), suggesting iron accumulation at this site. 

 

                                                 

Fig. 17. Evaluation of iron content in pituitary. White bar represents control (CTR) mice and the black one the iron-

enriched diet (IED) mice. Data are representative of 15 mice. Data are expressed as percentage of control (mean ± 

SEM). Differences between treatments were assessed by Student's t-test, *p < 0.05.  

 

6.1.4.3 Hypothalamus 

Following the evaluation of iron accumulation at the testicular and pituitary levels, AAS was 

performed on whole hypothalamus. No differences in iron content were found between IED 

and CTR mice (IED: 6.37 ± 1.91; CTR: 6.37 ± 2.28 µg/100 mg dry tissue; [Fig 18 A]). 

Furthermore, to exclude the possibility that 11 weeks of dietary iron overload could determine 

a hypothalamic iron accumulation, the gene expression of TfR and FtH was evaluated. RT-qPCR 

did not show any change in TfR (p = 0.261 [Fig 18 B]) and FtH (p = 0.245 [Fig 18 C]) mRNA levels 

between IED and CTR mice. 
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Fig. 18. Evaluation of iron content and homeostasis in hypothalamus. Panel A shows hypothalamic iron content 

evaluated by atomic absorption spectrometry. Panels B and C show hypothalamic transferrin receptor (TfR) and 

ferritin H (FtH) mRNA levels, respectively. White bars are control (CTR) mice and the black ones are iron-enriched 

diet (IED) mice. Data are representative of 15 mice. In panel A data are expressed as mean ± SEM. In panels B and 

C data are expressed as percentage of control (mean ± SEM). 

 

6.1.5 Effect of IED on hypothalamic and pituitary factors controlling 

reproduction 

Since IED led to an accumulation of iron in the pituitary, the following step was to evaluate 

whether iron overload had an impact on central factors governing the reproductive system, 

even in the absence of a significant deposition of this metal at the hypothalamic level. To this 

purpose the hypothalamic gonadotropin-releasing hormone (GnRH) gene expression was 

evaluated together with the mRNA levels of kisspeptin (KISS1) and the related G protein-

coupled receptor 54 (GPR54), which are two master key regulators of reproduction and, acting 

upstream of GnRH, they control the GnRH release. 

Mice fed with IED showed a significant increment in hypothalamic GnRH gene expression 

(+34%, p < 0.01; [Fig. 19]) compared to mice fed with a standard diet. Conversely, the RT-qPCR 

performed on hypothalamic samples showed that the levels of Kiss1 and GPR54 were not 

different between the IED and the CTR group [Fig. 19]. 
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Fig. 19. Effect of iron on reproductive system. White bars are control (CTR) mice and the black ones are iron-

enriched diet (IED) mice. Data are representative of 15 mice. Data are expressed as percentage of control (mean ± 

SEM). Differences between treatments were assessed by Student's t-test, **p < 0.01. 

In adults, GnRH neurons project to the median eminence (ME), where they release GnRH into 

the portal blood vessels of the pituitary gland. Therefore, since the gene expression of GnRH 

was increased in mice fed with IED, the presence of GnRH neurons projections at the ME was 

assessed by measuring the GnRH pixel intensity in ME neurites of IED and CTR mice. The ME of 

mice fed with IED was much more innervated (1.5 fold) by GnRH-positive neurites with respect 

to mice fed a standard diet [Fig. 20]. A possible explanation for this increment is the lack of a 

negative feedback driven by circulating T. Moreover, as a positive control, the GnRH pixel 

intensity was evaluated also in ME of HFE-/- mice, a model of human genetic hemochromatosis. 

As expected, it was more intense with respect to CTR mice (1.4 fold) [Fig. 20]. 
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Fig. 20. Effect of iron on reproductive system. Panel A shows GnRH neurites staining in the median eminence of 

mice fed standard diet or IED and HFE-/- mice. Pictures are referred to sagittal sections of 20 mm. Panel B reports 

the GnRH quantification expressed as pixel intensity. White bar is control (CTR) mice and the black ones are iron-

enriched diet (IED) mice. Data are representative of 3 mice.  Data are expressed as percentage of control (mean ± 

SEM). Differences between treatments were assessed by one-way ANOVA, **p < 0.01. In panel A, scale bar was 50 

mm. 

 

6.1.6 Effect of IED on hypothalamic oxidative and endoplasmic reticulum stress 

Despite the essential roles of iron, this transition metal can lead to the generation of hydroxyl 

radicals, triggering oxidative stress, lipid peroxidation, and DNA damage. Therefore, it was 

evaluated whether 11 weeks of dietary iron overload could cause oxidative and endoplasmic 

reticulum stress.  

Superoxide dismutase (SOD) is a major antioxidant enzyme which neutralizes superoxide 

anions forming hydrogen peroxide and molecular oxygen. Among the different existing 

isoforms of SOD, SOD2 is one of the most important. It is localized within mitochondria and acts 

as primary mitochondrial antioxidative enzyme, eliminating the superoxide generated from 

molecular oxygen in the respiratory chain [135]. For these proprieties, SOD2 was analyzed as 

an indicator of oxidative stress. Relative to the endoplasmic reticulum (ER) stress, briefly, it 

consists in an imbalance between the protein folding capacity of the organelle and the 

functional demand that is placed on it. This imbalance leads to accumulation of unfolded or 
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misfolded proteins in the ER lumen. In order to restore ER homeostasis, cells trigger the ER 

stress response, also known as the unfolded protein response (UPR) [136]. Since a prolonged 

or excessive ER stress induces the expression of CAAT/enhancer binding protein (C/EBP) 

homologous protein (CHOP), which, in turn, promotes apoptotic cell death, the expression of 

this gene was studied to analyze the possible ER stress induced by iron overload. Moreover, 

UPR can activate several pathways, among which the Inositol Requiring Enzyme 1 alpha (IRE1α). 

Once activated, this latter induces an unconventional splicing of the mRNA encoding the X-box 

Binding Protein-1 (XBP-1) transcription factor, which subsequently regulates the transcription 

of genes involved in ER homeostasis [137]. Therefore, XBP-1 was studied as an index of early 

stage endoplasmic reticulum stress response.  

In the current project IED did not change the hypothalamic gene expression of SOD2 (-18% vs 

CTR, p = 0.095; [Fig. 21 A]). Similarly, no differences between IED and CTR mice were detected 

when mRNA levels of CHOP (p = 0.342; [Fig. 21 A]) and the XBP-1 spliced form (corresponding 

to a 300-bp band; [Fig. 21 B]) were analyzed. These results suggest that iron overload did not 

cause oxidative and ER stress at central level. 

 

 

Fig. 21. Effect of iron on hypothalamic oxidative and endoplasmic reticulum stress. White bars are control (CTR) 

mice and the black ones are iron-enriched diet (IED) mice. Data were obtained by 5 different mice belonging to 

each group and data in panel A are expressed as percentage of control (mean ± SEM). 

 

6.1.7 Effect of IED on the inflammatory pathway 

Dietary iron overload did not impact the hypothalamic gene expression of the pro-

inflammatory cytokine interleukin-6 (IL-6) (p = 0.752; [Fig. 22 A]) when compared to control 

mice. Conversely, the mRNA levels of TNFα were significantly increased in IED mice (+102%, p 

< 0.05; [Fig. 22 B]). 
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Fig. 22. Effect of iron on inflammation. White bar is control (CTR) mice and the black one represents iron-enriched 

diet (IED) mice.  Data are representative of 15 mice. Data are expressed as percentage of control (mean ± SEM). 

Differences between treatments were assessed by Student's t-test, *p < 0.05. 

 

 

6.2 IN VITRO STUDIES 

GnRH neurons can be analyzed in vitro using immortalized GN and GT1 cell lines. These in vitro 

models, obviously lacking blood-brain barrier (BBB), have been used as a tool to further 

investigate the iron overload effects. These cells were isolated from brain tumors induced in 

transgenic mice by genetically targeting the expression of the simian virus-40 (SV40) large T 

antigen oncogene fused with a portion of the promoter region of rat (GT1 cells) and human (GN 

cells) LHRH gene. Of note, GT1 cells have been derived from a tumor developed in the 

hypothalamus, the site reached by LHRH neurons at the end of their migration and, for this 

reason, they are representative of post-migratory neurons. Conversely, GN cells were obtained 

from the olfactory bulb, where the LHRH neurons still possess their migratory ability. Therefore, 

this cell line retains the phenotypic characteristics of immature LHRH neurons and show high 

migratory activity in vitro, responding to fetal bovine serum (FBS) as a chemotactic stimulus 

[138, 139]. In the current project, the subclones GT1-7 [Fig. 23 A], polygonal and branched cells, 

which grow in colonies interconnected by neurite processes, and GN-11 [Fig. 23 B], with a 

bipolar shape, which grow homogeneously without forming clusters, were employed.  
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Fig. 23. In vitro cell-based models. Panel A shows GT1-7 cells; Panel B shows GN-11 cells. 

 

Because of their characteristics, in the current project, GT1-7 cells were employed to measure 

the secretion of the hormone GnRH, while GN-11 cell line was used as a tool to study neuronal 

migration. 

To generate a hypothalamic model of in vitro iron overload, cells were treated with Ferric 

Ammonium Citrate (FAC). This compound is a soluble form of low-molecular weight iron and it 

is a relatively stable formulation of ferric citrate, a species of free iron that increases in 

hereditary hemochromatosis and other conditions of iron overload [140]. Moreover, FAC is the 

main form of non-transferrin bound iron (NTBI), which can promote oxidative injury [141]. For 

all these properties, FAC is often used in in vitro experiments to mimic an iron overload 

environment. 

 

6.2.1 Iron accumulation in GT1-7 and GN-11 cells 

Initially, the basal intracellular iron concentration was measured in both GT1-7 and GN-11 cell 

lines. After 24 hours in their culture medium (DMEM + 10% fetal bovine serum – FBS –), the 

iron content of GN-11 cells (0.013 ± 0.018 µg/106 cells, ie 203.7 µg/L) was almost the double 

compared to that determined in GT1-7 cell line (0.0077 ± 0.46 µg/106 cells, ie 103.5 µg/L) [Fig. 

24]. 

Moreover, to evaluate whether FAC could lead to iron accumulation in these two in vitro 

models, GT1-7 and GN-11 cells were treated for 24 hours with 200 µM of FAC and, 

subsequently, AAS was used to quantify the intracellular iron concentration. As shown in figure 

24, iron content was significantly increased by 5-fold in FAC-treated GT1-7 cells (0.042 ± 0.46 

µg/106 cells, ie 382.7 µg/L; p < 0.0001) and by 10-fold in GN-11 cells treated with FAC (0.13 ± 
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0.52 µg/106 cells, ie 3043.2 µg/L; p < 0.0001) compared to their respective controls (no FAC) 

[Fig. 24]. 

                         

 

Fig. 24. Effect of 24-h treatment with ferric ammonium citrate (FAC; 200 mM) on neuronal immature (GN-11) and 

mature (GT1-7) murine cells iron accumulation. White bars are controls and the black ones are FAC treated. n = 6 

per group. Data are expressed as mean ± SEM. Differences between treatments were assessed by Student's t-test, 

****p < 0.0001. 

 

After assessing iron accumulation in the two in vitro cell-based models, the possible cellular 

toxicity of FAC was evaluated. Since iron levels were higher in GN-11 cell line compared to GT1-

7 cells, both in basal condition and after FAC treatment, the effect of FAC on cell viability and 

morphology was analyzed specifically in GN-11 cell line. These cells were treated with FAC 200 

and 500 µM for 3 and 24 hours and viability was assessed through two methods: the ATPliteTM 

1step assay and the Trypan Blue exclusion test. As a result, FAC at any dose and time did not 

affect GN-11 viability, as shown in figure 25 panels A and B (no differences in ATP content) and 

in figure 25 C and D (no differences in cell number). Similarly, 200 and 500 µM FAC for 24 hours 

did not change the cell morphology [Fig. 25 E, F, G]. 
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Fig. 25. Effect of ferric ammonium citrate (FAC) on GN-11 viability and morphology. ATPliteTM 1step assay was 

used to evaluate the effect of 200 and 500 µM FAC for 3 and 24 hours on GN-11 viability, respectively (Panels A 

and B). Trypan Blue exclusion test was used to test the effect of 200 and 500 µM FAC for 3 and 24 hours on GN-11 

viability, respectively (Panels C and D). Panels E, F and G show the morphology of GN-11 cells in basal condition 

(panel E), after 24 hours of treatment with 200 µM FAC (panel F) and with 500 µM FAC (panel G). White circles are 

controls (no FAC), black squares are FAC treated. n = 6 per group. Data are expressed as mean ± SEM. 

 

6.2.2 Effect of FAC on iron homeostasis in GN-11 and GT1-7 cells 

To further evaluate whether GN-11 and GT1-7 cells could be suitable models to study iron 

overload, the expression of genes involved in iron homeostasis was assessed in the two cell 
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lines cultured in basal conditions (DMEM +10% FBS). In detail, a final-time PCR was performed 

to analyze the gene expression of TfR and FtH; the ribosomal protein 18S was used as internal 

control and water as an internal negative control. As a result, both the cell lines express 

essential genes for iron internalization (TfR) and storage (FtH) [Fig. 26], confirming the validity 

of these models for the study of iron overload effects. 

                                     

Fig. 26. Expression of TfR and FtH in GN-11 and GT17 cells. MW, molecular weight; bp, base pairs. 

 

The ability of the two cell lines to adapt to exogenous iron overload was investigated by 

analyzing possible variations of TfR and FtH mRNA levels. In particular, in GN-11 cells, treatment 

with 200 and 500 µM FAC for 24 hours led to a significant reduction of TfR gene expression 

(FAC 200 µM: -58% vs CTR, p < 0.0001; FAC 500 µM: -47% vs CTR, p < 0.0001; [Fig. 27 A]) and, 

conversely, to an increment of FtH mRNA levels (FAC 200 µM: +83% vs CTR, p < 0.05; FAC 500 

µM: +151% vs CTR, p < 0.01; [Fig. 27 B]). 

             

Fig. 27. Effect of 24 hours treatment with ferric ammonium citrate (FAC) on GN-11 cells. White bars are controls 

(no FAC) and the black ones are FAC treated. n = 6 per group. Data are expressed as percentage of control (mean 
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± SEM). Differences between treatments were assessed by one-way ANOVA, *p < 0.05, **p < 0.01 and ****p < 

0.0001. 

 

Similarly, in GT1-7 cells, 200 µM FAC for 24 hours caused the reduction of TfR gene expression 

(-75% vs CTR, p < 0.001) and the increment of FtH mRNA levels (+92% vs CTR, p < 0.05 [Fig. 28]) 

when compared to cells without FAC treatment (controls). 

 

                                 

Fig. 28. Effect of 24 hours treatment with 200 µM ferric ammonium citrate (FAC) on GT1-7 cells. White bars are 

controls (no FAC) and the black ones are FAC treated. n = 6 per group. Data are expressed as percentage of control 

(mean ± SEM). Differences between treatments were assessed by Student's t-test, *p < 0.05 and ***p < 0.001. 

 

6.2.3 Effect of FAC on GnRH expression 

To study whether the results obtained in the in vivo model were, at least in part, reproducible 

in the in vitro one, the gene expression of GnRH was evaluated in both the cell lines. 24-hour 

FAC treatment did not affect GnRH mRNA levels in GN-11 cells, either at 200 µM or at 500 µM 

[Fig. 29 A]. Similarly, exogenous iron (FAC 200 µM, 24 hours) did not change GnRH gene 

expression in GT1-7 cells [Fig. 29 B]. 
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Fig. 29. Effect of 24 hours treatment with ferric ammonium citrate (FAC) on GnRH gene expression. White bars are 

controls (no FAC) and the black ones are FAC treated. n = 6 per group. Data are expressed as percentage of control 

(mean ± SEM). 

 

6.2.4 Effect of FAC on pro-inflammatory cytokines  

The RT-qPCR analysis revealed that IL-6 gene expression was up-regulated in GN-11 cells 

treated with 24-hours FAC, both at 200 µM (+46% vs CTR, p< 0.05) and 500 µM (+175% vs CTR, 

p < 0.01) [Fig. 30 A]. Conversely, the same result was not obtained when mRNA levels of TNFα 

were analyzed. The gene expression was not affected by a 24-hours FAC treatment (200 µM) 

(p = 0.497; [Fig. 30 B]). 
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Fig. 30. Effect of 24 hours treatment with ferric ammonium citrate (FAC) on pro-inflammatory cytokines gene 

expression. Panel A shows the analysis of IL-6 and Panel B shows the analysis of TNFα. White bars are controls (no 

FAC) and the black ones are FAC treated. n = 6 per group. Data are expressed as percentage of control (mean ± 

SEM). Differences between treatments were assessed by ANOVA, **p < 0.01. 

 

6.2.5 Effect of FAC on oxidative stress  

In GN-11 cells, exogenous iron caused a significant increment of SOD2 mRNA levels in a dose-

dependent manner. Indeed, 24-hours FAC treatment 200 µM, when compared to untreated 

cells, led to increased mRNA levels of SOD2 (+51%, p < 0.05) and increasing the FAC dose at 500 

µM determine a higher SOD2 gene expression (+89% vs CTR, p < 0.01) [Fig. 31 A]. Conversely, 

the same treatment did not affect mRNA levels of CHOP and of alternative splicing of XBP-1 

[Fig. 31 B and C]. 

 

           

Fig. 31. Effect of iron treatment on GN-11 cells oxidative stress. Panels A and B show the effect of 24-hours 

treatment with ferric ammonium citrate (FAC; 200 and 500 µM) on gene expression of oxidative and endoplasmic 

reticulum stress (superoxide dismutase 2 - SOD2 and CAAT/enhancer binding protein (C/EBP) homologous protein 
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- CHOP, respectively) as well as that of X-box binding protein-1 (XBP-1), an index of early stage endoplasmic 

reticulum stress response. White bars are controls (CTR) and the black ones are FAC treated. In panels A and B, n = 

6 per group. In panels A and B data are expressed as percentage of control (mean ± SEM). Differences between 

treatments were assessed by one-way ANOVA, *p < 0.05 and **p < 0.01. 

 

6.2.6 Effect of FAC on GN-11 chemomigration 

GnRH neurons derive from the olfactory placode and, during the embryonic development, they 

migrate to the hypothalamus at the preoptic area level and in more caudal areas in the 

mediobasal hypothalamus. Among the cell lines used in the current project, GN-11 are 

representative of immature neurons and possess migratory properties. For this reason, all the 

studies focused on the evaluation of the effect of FAC on chemotaxis were conducted in these 

cells. Through the Boyden chamber-based microchemotaxis assay, to obtain a migratory 

response GN-11 cells were exposed to 1% FBS, an effective chemoattractant [142]. This 

condition was assumed as internal positive control, in terms of percentage of migrated cells. 

GN-11 cells were pretreated for 24 hours with FAC at different concentrations (100, 200, 500, 

1000 µM) and then exposed for 1.5 hours to 1% FBS in Boyden’s chamber. As a result, FBS-

induced chemotaxis was not affected by 100 µM FAC, but it was significantly reduced by 200 

µM FAC (-17%, p<0.01), 500 µM FAC (-24%, p<0.01) and 1000 µM FAC (-22%, p<0.01) [Fig. 32 

A]. 

A shorter pre-treatment with FAC was also tested. In detail, GN-11 cells were pre-treated for 1 

hour with 200, 500 and 1000 µM FAC before exposure to 1% FBS. The results were similar to 

those obtained with a 24 hours pre-treatment, as demonstrated by the significant reduction of 

chemotaxis in response to 200 µM FAC (-34%, p<0.001), 500 µM FAC (-38%, p<0.001) and 1000 

µM FAC (-14%, p<0.01) compared to control [Fig. 32 B]. 

Subsequently, longer pretreatments (24, 48 and 72 hours) with 200 µM FAC were performed, 

before exposing GN-11 cells to 1% FBS for 1.5 hours in Boyden’s chamber. FAC significantly 

inhibited the 1% FBS-induced chemotaxis in a time-dependent manner, starting from a 

decrease of 23% (p < 0.01) in response to a 24-hours pretreatment, to reach -36% (p < 0.001) 

after a 72-hours pretreatment [Fig. 32 C]. 

The negative contribution of FAC on neuronal migration was confirmed by a 24-hours 

cotreatment of GN-11 cells with FAC and deferoxamine mesylate (DFO; 200 µM), an 

hexadentate chelator, at a 1:1 ratio, before Boyden’s chamber assay. The association 

completely counteracted the inhibition mediated by FAC on 1% FBS-induced GN-11 migration. 
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As expected, the incubation with 200 µM DFO for 24 hours significantly inhibited the 1% FBS-

induced chemotaxis (-49 %, p < 0.001) [Fig. 32 D]. 

 

Fig. 32. Effect of iron treatment on GN-11 cells migratory capacity. n = 6 per group. Data are expressed as 

percentage of control (mean ± SEM). Differences between treatments were assessed by one-way ANOVA (panels 

A, B and D) and by Student's t-test (panel C), *p < 0.05, **p < 0.01 and ***p < 0.001. 

 

6.2.7 The possible involvement of ERK1/2 cell signalling pathway 

After assessing the negative effect of iron overload on cell migration, the possible concomitant 

activation of cell signaling pathways was investigated. Since the extracellular signal-regulated 

kinase (ERK) 1/2 cell signaling could be involved in cell migration [142], the impact of FAC 

treatment on this pathway was investigated. 



96 
 

Initially, GN-11 cells were starved overnight (15 hours in DMEM without FBS) and then treated 

with 200 µM FAC for 5, 10, 20, 30, 60 minutes, 3 and 24 hours. Subsequently the levels of ERK 

1/2 phosphorylation were evaluated and normalized for basal ERK 1/2, constitutively present 

in this cell line. As shown in figure 33, the protein phosphorylation was significantly increased 

after 5 minutes of FAC treatment and this increment was more significant after 10 and 20 

minutes of treatment. Conversely, in cells exposed to exogenous iron for 30, 60 and 180 

minutes the phosphorylation levels of ERK 1/2 progressively decreased, reaching basal values 

after 24 hours of treatment [Fig. 33]. 

 

 

Fig. 33. Effect of iron treatment on extracellular signal-regulated kinases 1 and 2 (ERK1/2) phosphorylation 

(pERK1/2) in GN11 cells. All experiments and statistical analysis described in this figure were performed as follows: 

cells were serum starved for 15 hours and then exposed to FAC 200 µM for 5 – 60 minutes, 3 and 24 hours. 20 µg 

of protein extract was analyzed by Western Blotting. One representative blot and the densitometric analysis 

corresponding to three independent experiments are shown. pERK1/2 levels were normalized to total ERK1/2. Data 

are expressed as percentage of control (mean ± SEM). White bars are controls and black ones are FAC-treated. 

Differences between treatments were assessed by one-way ANOVA, *p < 0.05, **p < 0.01.  

 

Since, in the present model, ERK 1/2 phosphorylation was modulated by exogenous iron, the 

possible involvement of this pathway in the FAC-inhibited chemotaxis was evaluated. To this 
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purpose a Boyden chamber-based microchemotaxis assay was performed, treating GN-11 cell 

with 200 µM FAC and a selective inhibitor of MEK 1/2 (U0126, 10 µM). In detail, cells were 

pretreated with U0126 for 30 minutes, treated with 200 µM FAC with or without U0126 for 1 

hour and, finally, exposed for 1.5 hours to 1% FBS in Boyden’s chamber. As a result, the 

exposure to the ERK 1/2 inhibitor reduced the 1% FBS-induced chemotaxis (-30% vs CTR, p < 

0.0001) as obtained treating cells with FAC (-39% vs CTR, p < 0.0001). Similarly, the association 

of U0126 and FAC significantly inhibited the GN-11 migratory capacity (-39% vs CTR, p < 0.0001) 

[Fig. 34]. 

 

                                               

                                                

Fig. 34. Involvement of ERK 1/2 in the FAC-inhibited GN-11 migration. n = 6 per group. Data are expressed as 

percentage of control (mean ± SEM). White bar is representative of control (CTR, without FAC and U0126) and grey 

bar is representative of FAC-treated cells. Differences between treatments were assessed by one-way ANOVA, 

****p < 0.0001 vs CTR; ° p < 0.05 vs FAC; + p < 0.05 vs U0126. 
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7. DISCUSSION 

This study addressed the issue of the possible contribution of hypothalamic derangement to 

the impairment of the hypothalamus-pituitary-gonadal (HPG) axis induced by dietary iron 

overload.  

First of all, to study the effect of iron overload on the reproductive axis, a murine model 

fed with iron-enriched diet (IED) was used. Briefly, Dongiovanni P. et al. [113], in 2013, 

demonstrated that serum iron and hepatic iron content were higher in IED mice compared to 

controls (+49% and +95%, respectively) and iron overload caused hepatocellular and non-

parenchymal siderosis. IED was associated to an increased release of hepcidin, one of the main 

regulators of iron homeostasis decreasing plasma iron concentrations. Thus, these data support 

the validity of IED as a tool to induce iron overload in a murine model. Moreover, in these mice, 

hepcidin up-regulation affected visceral adipose tissue metabolism decreasing the gene 

expression of lipoprotein lipase and increasing that of suppressor of cytokine signaling-3 

(SOCS3), the latter being involved in insulin resistance and hypertriglyceridemia. 

Hypogonadism in men can be defined as a clinical syndrome that results from failure of 

the testis to produce physiological levels of testosterone (T) and normal number of 

spermatozoa. This defect is caused by the disruption of one or more levels of the HPG axis [75]. 

According to the site of the HPG axis primarily affected, hypogonadism can be classified as 

primary or secondary. The first one is a condition characterized by a testicular failure usually 

known as hypergonadotropic hypogonadism. The level of T is low, but, because the negative 

feedback to the HPG axis is usually not functional, luteinizing hormone (LH) and follicle-

stimulating hormone (FSH) concentrations are elevated. Instead, the main feature of secondary 

hypogonadism is a defect in the hypothalamus or pituitary, which results in low T levels because 

of insufficient stimulation of the Leydig cells, with low or low-normal FSH and LH levels. It is 

usually called hypogonadotropic hypogonadism [79, 143]. 

Hypogonadism is the second most common endocrine abnormality, after diabetes mellitus, in 

iron overload syndromes, such as hemochromatosis and β-thalassemia [81]. Although a 

testicular origin of this type of hypogonadism has been suggested, a central involvement cannot 

be excluded [81]. Indeed, a possible iron accumulation at the hypothalamic-pituitary level may 

impair GnRH neurons and/or pituitary cells leading to hypogonadotropic hypogonadism. 

Accordingly, focusing on the pituitary involvement, experimental data suggest that, although 
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iron deposition at this level can occur in gonadotroph, somatotroph, lactotroph, corticotroph 

and thyrotroph cells, it is more pronounced in the first cellular subtype leading to a defect of 

FSH and LH production that explains hypogonadism [144]. Moreover, patients affected by 

hemochromatosis are characterized by low basal serum T, FSH and LH concentrations which do 

not increase after chronic pulsatile GnRH administration, highlighting a pituitary 

unresponsiveness [84]. 

Overall, the findings of this thesis are concordant with those reported in the literature [82, 144]. 

Indeed, in the in vivo model employed, dietary iron overload affected both the testes and the 

pituitary. Relative to testes, IED determined a phenotypical impairment, as shown by 

significantly reduced weight and length with a concomitant local iron accumulation. However, 

the mRNA levels of both the transferrin receptor (TfR) and ferritn (Ft) proteins, involved in 

internalization and storage of iron, respectively, were not affected by iron overload. 

Subsequently, possible impairments at the structural level were studied. In particular, 

seminiferous tubules play important roles hosting spermatogenesis and assuring sperm 

transport to the efferent duct [145]. Therefore, they were analyzed to evaluate whether iron 

overload could have negative effects at this level. Eosin and hematoxylin revealed a reduced 

number of seminiferous tubules as a consequence of IED, suggesting a possible defect in the 

reproductive function. A possible limitation in these findings lies in the technique used since 

fibrosis and hyalinization of the seminiferous tubules as well as the hyperplasia of the 

interstitium would have been analyzed. These data were in line with those obtained analyzing 

the iron overload effect on pituitary gland. First of all, the increment in the gene expression of 

FtH suggested an iron accumulation at this site. Indeed, the atomic absorption spectrometry 

(AAS) could not be performed due to methodological limitations, namely the reduced size of 

the gland and, therefore, FtH was used a surrogate biomarker of iron content [134]. Following 

the finding of this accumulation, levels of gonadotropins secreted by pituitary were evaluated. 

In particular, FSH and LH were taken into consideration because of their involvement in 

reproductive process and since in hypogonadic patients their level can be altered [75]. 

Specifically, their β subunit was quantified, given that the α one is common to other 

gonadotropins, such as human chorionic gonadotropin (hCG) and thyroid-stimulating hormone 

(TSH) [146]. In pituitary, iron accumulation did not affect FSHβ gene expression, whereas 

reduced that of LHβ even without reaching a statistical significance. 
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To further investigate whether iron overload could impact the reproductive system, circulating 

level of T and LH were evaluated. They were significantly lower in IED mice compared to the 

control group, confirming the negative effect of iron overload on the HPG axis. These data 

suggest that, at least in a murine model, IED impairs HPG with the specific involvement of 

gonads and the pituitary gland.  

Conversely, data relative to the involvement of hypothalamus in iron-driven hypogonadism are 

still controversial. In 1992 Piperno et al. evaluated the endocrine alterations in patients in early 

stage of genetic hemochromatosis. Regarding the analysis of the HPG axis, these subjects 

showed low levels of serum T compared to controls, but, after hCG stimulation test, these levels 

return to the normal range, indicating the absence of a gonadal defect. To investigate whether 

there was an impairment at the central level, basal FSH and LH levels were measured and 

resulted significantly reduced in patients with hemochromatosis. These findings suggested 

either the presence of a pituitary or a hypothalamic damage; thus, a LHRH stimulation test was 

performed. As such, LH levels were increased proving a correct functionality of pituitary and 

suggesting a possible hypothalamic impairment which could be the cause of the gonadal 

dysfunction found in patients in early stage of hemochromatosis [147]. Similarly, Siminoski et 

al. hypothesized a possible role for hypothalamus in the onset of hypogonadism in the context 

of idiopathic hemochromatosis. The intact functionality of Leydig cells was tested 

demonstrating the increment of T level following the hCG administration. Conversely, although 

the pituitary secretion of LH was normal in response to GnRH stimulation, LH and FSH levels did 

not increased after administration of clomiphene, an antagonist of estrogen receptors in 

hypothalamus and pituitary [83, 148]. This test is used to verify the central functionality 

because clomiphene is thought to stimulate pituitary gonadotropin release by excluding 

estradiol from hypothalamic and pituitary receptor sites. This interaction neutralizes the 

normal negative feedback control of estrogen and results in enhanced secretion of LH and FSH 

[149]. Therefore, the negative response to clomiphene administration, in presence of a normal 

pituitary secretion of gonadotropins, let the authors hypothesize a possible defect in the 

hypothalamic GnRH response [83]. 

Recently, Rossi et al. investigate whether acute iron overload could interfere on the HPG axis 

of female rats. Although this study is quite different from the current project, the purpose of 

the investigation was similar. Specifically, differences lay in the way in which iron overload was 

induced (intraperitoneal injection of iron-dextran vs dietary iron overload), in the duration of 
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the treatment (acute vs chronic iron overload) and in the animal model employed (female rats 

vs male mice) [23]. In line with data presented in this thesis, Rossi et al. showed a dose-

dependent iron accumulation at the pituitary and gonadal levels. Interestingly, hypothalamus 

was also mainly involved in this deposit. Differently from this evidence, in the in vivo model 

presented in the current thesis, IED did not cause a hypothalamic accumulation of iron, as 

shown by AAS performed on whole hypothalamus of IED mice compared to control mice. 

Accordingly, at the hypothalamic level also the regulating mechanisms of iron homeostasis 

were not affected by iron overload; TfR and FtH mRNA levels did not change between control 

group and iron-fed mice. A possible explanation could be the presence of blood-brain barrier 

(BBB) which protects the hypothalamus against iron accumulation. However, the analysis of 

this compartment continued, moving to the evaluation of genes controlling reproductive 

function. Interestingly, the gonadotropin-releasing hormone (GnRH) gene expression, which 

regulates the secretion of FSH and LH, was significantly increased in iron overloaded-mice. This 

change was not accompanied by variations in the upstream GnRH regulator Kisspeptin (KISS1) 

and its related G protein-coupled receptor 54 (GPR54). Based on the increased mRNA 

expression of GnRH, GnRH neurons were further evaluated. Physiologically, GnRH axons extend 

to the external zone of the median eminence (ME) where they release GnRH peptide close to 

the fenestrated capillary bed of the pituitary portal blood; this allows GnRH to be transported 

to the pituitary gland [150]. In IED mice, the ME was much more innervated by GnRH-positive 

neurites when compared to mice fed a standard diet. This increment was comparable with that 

one obtained in HFE-/- mice, a model of human hemochromatosis. This evidence suggests that, 

in IED mice, low levels of circulating LH and T are related to primary defects downstream of the 

hypothalamus. Moreover, the increased hypothalamic gene expression of GnRH and presence 

of GnRH neurons projections at the ME are likely to be primarily due to the lack of a selective 

negative feedback driven by T. Thus, our findings seem to rule out the involvement of the 

hypothalamus in iron-driven hypogonadism. 

In the context of reproduction, an important role is played by leptin. This is a polypeptide 

hormone that is secreted primarily by adipose tissue and it is involved in several processes, 

such as mediation of food intake, suppression of lipogenesis in adipose tissue, modulation of 

immune response, but, also, of gonadotropin secretion. Indeed, it was proposed that reduced 

pulsatility of LH during the night may be related to low leptin levels present during this time-

frame [151]. Moreover, leptin-deficient ob/ob mice are characterized by a morbid obesity with 
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sterility in males and females that is corrected by continuous leptin injection [152]. In particular, 

leptin-treated males had significantly elevated serum levels of FSH, increased testicular and 

seminal vesicle weights and elevated sperm counts compared to controls [153]. These results 

corroborate the suggestion that leptin may serve as a permissive signal to the reproductive 

system, acting as a signal of energy reserve essential for normal reproductive function. 

Regarding iron overload, it was shown that patients affected by β thalassemia failed to maintain 

adequate leptin production [110] and that hypogonadotropic hypogonadism in this disease 

could be also due to iron toxicity in adipose tissue, associated to an impairment of leptin levels 

[154].  

Upon IED, mice showed a significant decrement of serum leptin levels with associated reduced 

amount of perigonadal fat pad. This latter evidence could be probably due, at least in part, to 

the reduced food intake of IED mice, which, in turn, may be the cause of their reduced body 

weight. A possible reason for the reduced food intake could be the low palatability of the iron 

enriched diet. Moreover, IED resulted associated to the onset of insulin resistance, as detected 

by the increased Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) index and 

basal glycemia. Since the orexigenic signal neuropeptide Y (NPY) and the anorexigenic pro-

opiomelanocortin (POMC) are involved in the integration of energy homeostasis and 

reproduction, their mRNA levels were evaluated. Iron overload led to significant increase of 

NPY gene expression and decrement of that of POMC. Although the role for NPY on food intake 

is well investigated, the effects of NPY on GnRH neurosecretion are probably dual, involving 

both negative and positive feedback [155]. However, experimental evidence suggested a major 

inhibitory action of NPY, as demonstrated by Catzeflis et al., who showed that chronic 

administration of NPY inhibited gonadotropin secretion and sexual function in female rats 

[156]. Accordingly, infusion of NPY to lean control animals leads to a reduction in GnRH and LH 

release and a disturbed reproductive function [157]. Given this important role of NPY further 

investigations are necessary to understand whether the observed increase in hypothalamic NPY 

expression may play a role in the suppression of LH levels in IED male mice. 

Furthermore, excess iron is thought to have a pro-oxidant activity in promoting hydroxyl radical 

generation. Thus, to study the effect of dietary iron overload on the onset of oxidative and 

endoplasmic reticulum stress, superoxide dismutase (SOD), CAAT/enhancer binding protein 

(C/EBP) homologous protein (CHOP) and the X-box Binding Protein-1 (XBP-1) transcription 

factor were evaluated at the central level. As a result, gene expression of these markers did not 
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change between control and IED group, suggesting that IED did not activate hypothalamic 

oxidative and endoplasmic reticulum stress. Similarly, iron overload did not induce the mRNA 

expression of pro-inflammatory cytokine interleukin- (IL-6), although those of tumor necrosis 

factor α (TNFα) were significantly increased at the hypothalamic level. Moreover, it should be 

underlined that hypothalamus is an extremely heterogeneous tissue comprised of astrocytes, 

oligodendrocytes, microglia, endothelial cells, ependymal cells as well as numerous neuronal 

subgroups and, therefore, the identification of the exact site, in which TNFα is activated, 

becomes fundamental [158]. 

Overall these in vivo data suggest that dietary iron overload could impair the HPG axis with a 

possible involvement of pituitary and testes, without a relevant contribution of the 

hypothalamic compartment. One of the possible reason for this extrahypothalamic mechanism 

could be the presence of BBB as a protection of hypothalamus from iron accumulation.  

To further confirm that iron overload effects were not mediated by hypothalamus, two in vitro 

models of GnRH neurons were used. Indeed, these cell lines, obviously lacking BBB, 

represented a useful tool to reproduce in vivo results, excluding the functional protective role 

of BBB. These consist of immortalized murine GN-11 cells, representative of immature GnRH 

neurons, and GT1-7, a model of mature GnRH neurons. Furthermore, GN-11 cells were 

specifically employed to investigate whether iron overload could affect the cell migration [159] 

and, eventually, whether the extracellular signal-regulated kinase (ERK) 1/2 cell signaling could 

be involved. 

To induce iron overload in these cell lines, ferric ammonium citrate (FAC) was used [160] 

showing that in GN-11 cells the iron content was the double compared to GT1-7. 

As in the in vivo model, the main proteins involved in iron homeostasis were analyzed. In 

response to exogenous iron overload, the mRNA levels of TfR in GN-11 and GT1-7 cells were 

decreased whereas that of FtH were increased. These data indicate that both the cell lines are 

a valid tool to study iron overload given their ability to modulate expression of their genes in 

order to counteract the effects of the metal accumulation. Indeed, the reduction of TfR could 

be explained as an attempt of cells to minimize the cellular iron uptake, while increasing FtH 

could increase intracellular iron storage. 

Interestingly, in contrast to data obtained in vivo, the evaluation of main regulators of 

reproductive system revealed that cellular GnRH gene expression was not modified by massive 

iron deposit. 
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Also in the in vitro models, the possible activation of oxidative and endoplasmic reticulum 

stress, as well as, of the pro-inflammatory pathway by iron overload was investigated. The 

experimental condition used to mimic iron overload did not impact the expression of TNFα, 

whereas, conversely to what obtained in vivo, the only evidence of a possible activation of 

inflammation, was given by increased mRNA levels of IL-6.  

Exogenous iron overload also induced oxidative stress in vitro, as shown by the increased gene 

expression of SOD2, without involving the endoplasmic reticulum. 

Moreover, the GnRH neurons migration was also analyzed since, physiologically, this process is 

essential for a correct reproductive function. It occurs during the embryonic development, 

when GnRH neurons migrate from the forebrain to the hypothalamus at the preoptic area level 

and in more caudal areas in the mediobasal hypothalamus [67]. Interestingly, FAC treatment 

resulted in inhibition of the fetal bovine serum (FBS)-induced chemomigration. This evidence 

was confirmed by using the iron chelator deferoxamine mesylate (DFO). Indeed, when cells 

were cotreated with this compound associated to FAC, the basal migration was restored. 

Interestingly the neuronal migration was drastically reduced when cells were exposed to DFO 

alone, maybe because DFO deprived cells of the martial content required for normal biological 

functions. 

Finally, the activation of ERK 1/2 pathway was analyzed in the presence of exogenous iron 

overload, given its involvement in GN-11 cell migration [142]. Iron significantly induced 

phosphorylation of ERK 1/2 after short (5 and 10 minutes) FAC treatments. The involvement of 

ERK 1/2 on GN-11 cell migration was confirmed by using a selective ERK 1/2 inhibitor, the 

compound U0126. This latter determined an inhibition of FBS-induced chemomigration, even 

if the effect was less to what obtained with FAC treatment. Conversely, when GN-11 cells were 

treated with both U0126 and FAC, the inhibition of neuronal migration was comparable to that 

produced by FAC.  
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8. CONCLUSIONS 

Our results demonstrated that, in male mice, iron overload can lead to a severe impairment of 

the hypothalamic-pituitary-gonadal (HPG) axis possibly resulting in an hypogonadal condition, 

a feature possibly deriving from iron deposition in pituitary and/or gonads via 

extrahypothalamic mechanisms. This finding represents a further step in understanding how 

iron overload leads to this endocrinopathy. Indeed, controversial data are present in the 

literature regarding the possible involvement of hypothalamus, pituitary or both the sites in 

the pathophysiology of iron-driven hypogonadism. The results of this thesis confirm that, at 

least in a mouse model, iron overload could lead to pituitary changes, associated to a direct 

impairment of testicular function, excluding the contribution of hypothalamus to the massive 

HPG axis suppression caused by IED. In particular, pituitary and gonads were directly affected 

due to iron accumulation at both these organs. This resulted in an impairment of reproductive 

function, as suggested by decreased levels of LH and T, which can be associated to the onset of 

hypogonadism [75]. 

At the testicular level, iron overload led to macro- and microscopic alterations suggesting a 

possible role of gonads, in the onset of hypogonadism. Conversely, the hypothalamus seemed 

to be protected from systemic iron overload; iron did not accumulate at this level and genes 

involved in iron homeostasis were not affected. Interestingly, the low levels of circulating T may 

account for the lack of a selective negative feedback driven by T; this condition could explain 

the increment in both GnRH mRNA levels and GnRH neurons projections at the median 

eminence. In this context, the use of in vitro GnRH neurons, which functions were impaired by 

iron accumulation, leaves open questions relative to the role of BBB in the protection of the 

central region (hypothalamus). 

Trying to translate these findings in humans, it is important to highlight that Farmaki K. et al. 

demonstrated how intensive iron chelation therapy, using combined desferrioxamine and 

deferiprone, which leads to the reduction of total body iron concentration, improves 

hypogonadism in adult thalassemic patients [161]. These results are in line with other studies 

suggesting that the iron chelator deferasirox can reverse endocrinopathies in adults with β-

thalassemia major [162]. Based on this evidence, the effect of a chelation therapy in the in vivo 

model used in the current project should be evaluated. 
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In addition, from a metabolic point of view, the IED animal model showed (i) increased basal 

glycemia and HOMA-IR index, (ii) reduced amount of perigonadal fat pad, (iii) decreased serum 

leptin levels, (iv) increased NPY gene expression and reduced POMC mRNA levels. Thus, further 

studies are required to clarify possible mechanisms linking this metabolic impairment to 

alterations of the reproductive system. 
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9. FUTURE PERSPECTIVES 

One of the major user of cellular iron is the mitochondrion, which, in turn, plays a central role 

in iron metabolism. Since iron can promote the formation of hydroxyl radicals, the 

mitochondrial iron level must be tightly regulated to avoid iron-dependent damage and 

maintain mitochondrial functionality [163]. Defects in mitochondrial function may have 

deleterious consequences, given the fundamental role for cell life of this organelle. In iron 

overload disorders, iron could accumulate into mitochondria, agglomerate and/or precipitate 

within the organelle [164]. Mitochondrial iron burden is responsible for damage to Fe/S cluster 

as well as mitochondrial DNA that encodes proteins critical for oxidative phosphorylation [163]. 

In this context, it should be interesting evaluate whether in both the in vivo and in vitro models 

presented in this thesis, iron overload could affect mitochondrial functionality. To this purpose, 

some of the parameters that could be evaluated are (i) mitochondrial DNA content, (ii) 

expression of genes controlling the mitochondrial fusion and fission, (iii) the OXPHOS subunits, 

and (iv) cellular oxygen consumption. 

• To further investigate the metabolic impairment driven by iron overload, body 

composition of IED and control mice could be analyzed through the dual-energy X-ray 

absorptiometry (DEXA), which provides a noninvasive approach to assess body fat and 

lean tissue contents [165]. Moreover, several parameters, such as oxygen consumption, 

carbon dioxide production, respiratory exchange ratio, activity level and caloric heat 

production could be studied by using the Comprehensive Laboratory Animal Monitoring 

System (CLAMS). 

In particular, during my PhD program I spent 15 months in the laboratory of Prof. Patti 

Mary-Elizabeth, at Joslin Diabetes Center, affiliate of Harvard Medical School, Boston, MA, 

USA, where I learnt the assays listed in the above reported points. 
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