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Introduction

Cosmology is currently living a rather exciting season, as many experiments and surveys
have just ended or are about to end, providing us with data of unprecedented quality,
and many more are about to begin, prospecting an even more substantial improvement
coming in the next future. The former list comprises experiments such as the Planck
satellite (Planck Collaboration et al., [2013} 2015), or galaxies redshift surveys such as
BOSS (Dawson et al., 2013), eBOSS (Dawson et al., 2016), VIPERS (Guzzo et al., 2014),
etc...The latter group includes spectroscopic redshift surveys such as spectro-Euclid,
DESI and PFS, and photometric surveys such as J-PAS, LSST, DES or photo-Euclid.

Together with precise observations, however, to maximally extract cosmological in-
formation, also accurate theoretical modelling is required. While the ACDM model has
received in recent years many confirmations, becoming in fact the standard cosmological
model, it is still far from being either perfect or complete.

On the one hand, modelling the small, nonlinear scales, where structures such as
clusters and galaxies form, is of paramount importance, but rather difficult. A large
amount of information is encompassed in such range of scales, in particular regard-
ing the peculiar velocities of these objects, the details of the virialization of dark matter
haloes, its connections with baryon physics, and the physics of galaxy formation.

On the other hand, extremely large scales have been probed only through the obser-
vation of the cosmic microwave background (CMB), and therefore general relativity on
cosmological scales has not still received robust confirmations from observations of the
large scale structure (LSS). This in principle leaves some room for modifications of the
laws of gravity, provided that on galactic scales general relativity is recovered.

On a more fundamental side, the two main components of the current standard
model, the cold dark matter and the dark energy, are still unknown. The desired prop-
erties of cold dark matter are very clear in the model: it must be heavy to become non-
relativistic very early, and very weakly interacting to be almost pressureless and not
emit. However, no candidate particle has been detected yet. Dark energy as well is
poorly understood. Such mechanism is invoked to model the accelerated expansion the
universe is undergoing right now, and is described as a fluid with negative pressure and
equation of state w = —1. However, the profound nature of this mechanism is not clear.
Moreover, even in this standard fluid description of dark energy, its properties have not
been characterised precisely enough, and, for example, the equation of state could be
evolving in time.

Next generation surveys have been designed to shed light into these issues, but this
will happen only if theory will join the effort and push the predictive power of models.
In order to obtain accurate predictions, one must consider also that accounting for the
presence of cosmological massive neutrinos modifies several cosmological observables.
Therefore, in recent years, the study of the effects of neutrinos has gained more and
more importance and, now, neutrinos can no longer be neglected when considering the
standard picture.

xi



xii Thesis overview

The presence of massive neutrinos modifies the expansion rate of the universe, shift-
ing the time when the radiation energy density fell below the matter energy density.
They also modify the number of relativistic species present in the universe, Neg, which
affects the Cosmic Microwave Background angular power spectrum. Moreover being
very likely light particles, neutrinos are characterised by large thermal velocities that
prevent them from clustering on small scales, inducing a overall suppression of the mat-
ter clustering on the same scales.

However, not only neutrinos must be accounted for in order not to introduce system-
atic errors in theoretical models, but Cosmology can also help constraining some of their
properties, which are still open questions in fundamental Physics. As a matter of fact,
the number of neutrino species, their total mass and hierarchy can be constrained fitting
cosmological observations.

Neutrinos, in the Standard Model of Particle Physics, are predicted to be massless.
They come in three flavours, one per each of the leptons of the SM, namely an electronic
neutrino, a muonic neutrino and a tauonic neutrino, v., v, v,. Wolfgang Pauli was the
first, in 1930, to propose the presence of neutrinos to satisfy energy, momentum and spin
conservation laws in 3-decay events of the kind

n—pT+e + e, (1)

but they were not directly observed until the experiment of Cowan et al.[(1956), whose
work was later awarded a Nobel prize. Yet, the experiments active in the 60s, that tried
to measure neutrinos produced in the p-p chain in the sun, posed another challenge,
when the observed neutrino fluxes were around one third of expectations.

The solution to the missing neutrino problem resides in considering a non-diagonal
mixing matrix, which makes neutrinos oscillate from one flavour to the other. The the-
oretical formalism of neutrino flavour oscillation in vacuum was developed by Pon-
tecorvo in the 60s, and the generalization to oscillations in matter was presented as the
MSW effect (Wolfenstein, [1978; Mikheyev and Smirnov[1985).

The non-diagonal terms of the mixing matrix are interpreted as mass, leading to the
evidence that neutrinos must be massive. Experiments measuring neutrino oscillations,
such as Kamiokande, SNO, Super-Kamiokande, measuring the mass splitting of neu-
trino mass eigenstates, have bound the lower limit of the sum of neutrino masses,

M, =Y my, > 0.06eV 2)

at 95% level (Gonzalez-Garcia et al., 2014; Forero et al., 2014; |[Esteban et al.,2017). How-
ever, oscillation experiments provide no upper bound to the total neutrino mass.
Experiments investigating -decay offer a different approach to measure the neutrino
mass spectrum, in principle being capable of setting an upper bound to the total mass.
For example, in the Mainz neutrino experiment, the energy spectrum of neutrinos is
inferred by measuring the energy carried by the electrons produced in decays like

ST — SH +e + 7. (3)

Results from this experiment (Kraus et al., [2005) have set an upper bound on the elec-
tronic neutrino mass of
m(ve) < 2.2eV 4)

at 95% confidence level. Other future experiments, as well based on tritium decay, are ex-
pected to increase sensitivity by at least an order of magnitude, such as KATRIN, whose
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expected sensitivity is ~ 0.2 eV. Other experiments, like PTOLEMY, aim at a slightly
different strategy: instead of studying the $-decays coming from a laboratory source of
tritium, PTOLEMY is designed to directly detect cosmological neutrinos, exploiting the
process of neutrino capture on tritium,

ve +3T — SHe" +e™. 5)

In this experiment two populations of electrons are collected, the one coming from the
neutrino capture, and the other coming from the natural S-decay of the tritium source.
The comparison of the two populations is expected to allow us to detect the cosmic
neutrino background and constrain the total neutrino mass.

However, current cosmological data can already constraint the value of the total neu-
trino mass. From CMB temperature and polarization anisotropies, the upper bound at
95% level has been found to be M,, = >~ m,, < 0.49 eV (Planck Collaboration et al.| 2015).
Galaxy clustering measurements, analyised jointly with CMB data, have provided even
more stringent constraints, for example |Pellejero-Ibanez et al.{(2016) found M, < 0.22eV
at 95% level. Also fitting the 1D power spectra of distant quasars (the Lyman-« forest)
has provided very tight constraints on the 95% upper bound of the neutrino total mass,
such as M, < 0.12 eV (Palanque-Delabrouille et al., 2015).

In this work I will present some aspects of the effects of neutrinos on the large scale
structure of the universe, aiming both at improving the cosmological model and at con-
straining the neutrino total mass through cosmology.

In Chapter[I|T will introduce some of the tools that I have used. In particular, I will
focus on the statistical properties of random a field, the fluid description of the linear
growth of perturbations, and some approaches to describe nonlinearities. Section
will be entirely devoted to neutrinos, their effect on the background and on the growth
of fluctuation, once again described as an expanding perturbed fluid. I will present,
in the last part of this chapter, the matter power spectrum in the presence of massive
neutrinos.

In Chapter 2} I will present my work on understanding and possibly correcting sys-
tematic errors introduced, by some common approximations, in cosmological simula-
tions that include a neutrino component. I will employ a two-fluid approximation to
produce rescaled power spectra to be used for the generation of initial conditions that
correct for the unavoidable approximations employed in Newtonian N-body codes.

In chapter[3] I will present my work on the clustering ratio, a cosmological observable
that I extended to neutrino cosmologies. I will show here the optimal scales needed to
maximise neutrino effects in the clustering ratio, while minimizing potential uncertain-
ties. I will then apply the clustering ratio to observed data, end to a Euclid-like synthetic
galaxy catalogue to investigate its constraining power.

Finally, chapter ] will be devoted to the description of my work about populating
dark matter + neutrino N-body simulations with galaxies, in order to study the linear
and nonlinear bias between galaxies and the underlying matter distribution.






CHAPTER 1

The concordance model of Cosmology

Since the beginning of the Twenties, new means to measure the distance of far-way ob-
jects have opened our eyes to an unexpectedly vast cosmos. In particular, the velocity-
distance relation, intensively studied by Edwin Hubble, not only was a powerful tool to
create the first 3-dimensional galaxy maps, but was also an evidence of the fact that our
universe is expanding. More recently, thanks to yet another method to measure distances,
which exploits SuperNova explosions as standard candles, such expansion was shown
to be accelerated, a discovery worth a Nobel prize (Riess et al., [1998; |Perlmutter et al.,
1999).

Cosmology precisely aims at describing the geometrical properties, the dynamics
and the evolution of such an expanding universe. The assumption on which the cos-
mological model is based upon, called the cosmological principle, states that the universe,
on sufficiently large scales, is isotropic and homogeneous in a statistical sense. If it is
so, then the expansion appears in every direction of the sky to each possible observer,
wherever they might be located.

The current cosmological model describes a universe that, starting as extremely hot
and dense, expands and cools down as time passes by. The primeval density fluctua-
tions, whose amplitude is enhanced during a early-phase called inflation, are the seeds
driving the growth of structures. A confirmation of the inflationary model is provided
by the Cosmic Microwave Background (CMB), the radiation produced at the time when
photons and baryons, which in the early universe formed a ionized plasma, decoupled,
and photons became free to travel. This radiation has a temperature that is extremely
isotropic, which corroborates the cosmological principle. Moreover, the observation of
the distribution of galaxies in space (in the late-time universe) shows us a picture that,
albeit granular and complex on small scales, is very homogeneous on scales larger that
~ 150 h~* Mpc (Marinoni et al., 2012), corroborating the assumption of homogeneity.

However, CMB temperature shows some anisotropies, which are the imprint of the
density perturbations present in the photon-baryon plasma right before the time of de-
coupling. Such fluctuations are very small, of order AT/T ~ 1075, and, on large scales,
are distributed in very good agreement with the spectrum of fluctuations expected to be
generated in the inflationary phase (Planck Collaboration et al., 2013} [2015).

In this work I will focus on the universe after the time the CMB was emitted. In this
respect, the small temperature fluctuations in the CMB constitute the initial conditions
for the gravity-driven growth of matter perturbations, which eventually forms collapsed
structures. In this chapter I will review the fundamental aspects of the cosmological
model needed to describe the Large Scale Structure of the universe.



2 1.1 Background properties of the universe and their evolution

1.1 Background properties of the universe and their evolution

Einstein’s field equation In the standard ACDM model, gravity is described by means
of Einstein’s General Relativity. The field equations link the geometry of the universe to
its mass-energy content (the stress-energy tensor 7},,), and have the form

1 8rG
R/w - le“/R + g/wA = CTT/UA (11)

where R, is the Ricci tensor, R the Ricci scalar, accounting for the local curvature of
the universe, and g,,,, is the metric. A is called the cosmological constant, which, having
inverse sign with respect to the effects of gravity, describes the (accelerated) expansion
of the universe. In fact, before observations showed that the universe is undergoing
an accelerated expansion, the cosmological constant had already been introduced by
Einstein, with the purpose of making the universe static.

We still need to specify how to describe the space-time, i.e. we need to choose a met-
ric. The metric adopted to describe the universe must obey the cosmological principle,
therefore must be invariant under rotations and translations. It must also be able to de-
scribe a expanding (or contracting) space-time. The most general metric that satisfies
these requirements is the one derived by Friedman, Lemaitre, Robertson and Walker
(called the FLRW metric). The line element of this metric, valid for a class of comoving
observers, in hyperspherical coordinates reads

ds? = —cdt? + a*(t) {da® + Sk (r)(d¥* +sin® ¥ dp?) } (1.2)

where angular distances depend on the curvature through the term

sin(y/[k[z)//]k] if K =—1
Sk(r)=1=z if K=0 (1.3)
sinh(vVEz)/VE if K =+1,

in which K = {-1,0,1} correspond to a negatively curved, flat and positively curved
universe respectively.

The spatial term is modulated by the scale factor a(t), that accounts for the expansion
of the space-time. The normalized expansion rate H = a/a is called the Hubble rate (or
Hubble function). The quantity & is linked to the curvature of the universe. If we choose
it to have units of length 2, it can be written as

Kc?
k= eyl (1.4)
where a9 = a(t = to) and Hy = ag/ap are the scale factor and the Hubble rate at the
present time. With this choice « has units of length, a(t) is dimensionless, and we can fix
the value of the scale factor today to ap = 1. In this case, the spatial term,

d2? = {da® + S% (z)(dv” + sin® ¥ de?) }, (1.5)

measures comoving distances, which are distances projected on the coordinate system to-
day.
For example, the comoving radial distance between two events can be expressed as

2 0 dt
x:/tl Ok (1.6)
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Since the comoving distance is projected on the distance scale today, to obtain the cor-
responding proper distance at an earlier time we need to rescale the comoving distance
using the scale factor at the time of interest

r=al(t) x. (1.7)

Since physical scales, therefore, depend on time, also the wavelength of light will be
affected depending on the time of its emission.

Cosmological redshift. In an expanding universe, the light emitted by a source at a
given wavelength will be stretched as the space-time itself expands. As a consequence,
the farther away a source is from us, the more the light it emits is shifted towards the red
end of the spectrum.

A far-away source emits two wave-crests at different times, ¢, and ¢, + A./c. The two
waves, which travel the same (comoving) distance « and keep the same relative phase,
are received at times ¢¢ and ¢y + Ao/c by an observer today. As a consequence,

to ¢ dt totdo/e o gt
v / cdt / cdt (1.8)
te a(t) tet+Ae/c a(t)
This implies that
tetAe/c dt to+Xo/c dt
/ A / A (19)
te a(t) to a(t)

We can consider the period of this waves way smaller that the expansion rate of the
universe, and, in each interval, factor the a(t) term out of the integral,

1 /tn+)\e/c 1 /t0+)\g/c )\e AO
- dt = —— a = - : (1.10)
alte) Ji, a(to) Js, a(te)  alto)

which means that ratio between the observed wavelength and the emitted one is equal

to the ratio between the scale factor of the universe at the time of observation and the

one at emission. As the definition of redshift is
Ao — Ae

1.11
- (111)

and assuming a(ty) = 1,the scale factor of the universe can be linked to the redshift of
the light emitted by a source at time ¢ as

1
T 142z

a(t) (1.12)
Such relation is extremely powerful as it allows us to link a quantity measurable to great
precision, the redshift of the emitted light of galaxies, to the size the universe had when
this light was emitted. Moreover, if we know the evolution of the scale factor a(t) in time,
we can link the redshift to the time at which the object emitted the light we measure and,
therefore, exploiting the integral presented in Eq. to the comoving radial distance
of the observed object from us. As a consequence, describing the time evolution of the
scale factor a(t), the velocity with which it changes a(t) and its acceleration a(t) is of
paramount importance.



4 1.1 Background properties of the universe and their evolution

Friedmann equations. To find the time evolution of the scale factor we need to solve
the field equations, Eq. They can be explicitly written introducing the metric, Eq.
From the initial 10 equations, only 2 independent equations are left (one coming from the
time-time components and one coming from the space-space components), commonly
referred to as the Friedmann equations. The first Friedmann equation describes the ex-
pansion rate of the universe and reads

SN 2
a 7G k2 A2
(a>'-:;P‘a2+3’ (1.13)

where p = )~ p; is the total mass-energy density coming from the stress-energy tensor
(i.e. the sum of the densities of all the species present in the universe).

The second Friedman equation, instead, describes the acceleration of the scale factor
and reads

. . 2 2 2
a 1 (a) :_471'G 1ke Ac? (1.14)

a 2 \a 2 PToe 2’

where p is the total pressure, p = > p;, which, for a perfect fluid with no shear, is linked
to the total mass-energy density through an equation of state of the kind

p=wpd. (1.15)

The interpretation of the acceleration becomes easier if we look at the linear combination
of the first and second Friedmann equations, which is

a 47 G P Ac?
f_——(p+3c—2>+7. (1.16)

The presence of mass-energy makes the expansion decelerate, eventually causing the
universe to contract. The cosmological constant has opposite sign. If it exactly compen-
sate the amount of matter and positive pressure, it makes the universe static (which we
know is not the case in reality). However, if its value dominates on the other term, it can
make the universe expand, with a positive acceleration of the scale factor.

In Eq.s the terms regarding the cosmological constant can be absorbed in
the total density and pressure introducing the energy density

A c?
= 1.17
PA = 3 (1.17)
and the pressure
pA = —pa . (1.18)
In the same fashion the energy density of curvature can be introduced
3kc?
Pk = SrGaZ’ (1.19)

allowing us to absorb the curvature term into the total density. A quite general expres-
sion of the total density comprehends, therefore, the contribution of radiation, matter,
curvature and cosmological constant,

pla) = Z pi(a) = pr(a) + pm(a) + pr(a) + pala). (1.20)
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Looking at Eq. (in which I am now absorbing the cosmological constant in the
total density, but leaving the curvature density explicit) and recalling the definition of
Hubble rate, H = a/a, it can be rewritten as

14 ke 8nG
2H? ~ 302"
where on the left hand side I have isolated the geometrical properties of the universe
and on the right hand side its energy density. An important limiting case is given by a
universe with total energy density

(1.21)

&
pcrlt - 87TG7

that must therefore have a flat geometry, with & = 0. Such limiting value of the density

is called critical density. In a ACDM universe with present day H = 67 km s~! Mpc™*,

the critical density has value peir ~ 1.25 x 101! Mg, Mpe 3.
The different components of the universe contribute with different relative abun-

dance to the total energy density. We can define the normalized energy density

(1.22)

Q) = L) (1.23)

leading to the fact that, in a flat universe,
> Qi) =1 (1.24)

In a non flat universe, instead,

1= Q1) =) (). (1.25)

To completely describe the evolution of the Hubble rate in time, we still need to
describe the evolution of the energy density of the different species in the universe. To
this end, we can start from the first Friedmann equation, Eq. differentiate it with
respect to time,

2H (t) (Z - H2(t)) = ?,’;, (1.26)
and plug the second Friedman equation, Eq. into it, obtaining

. t

bl =3 100 o)+ 2] 127)

which is called the fluid equation. If the different species in the universe can be described
as perfect, non-interacting fluids (for example there is no matter conversion into photons
or vice versa), then Eq. [1.27]is valid for each species separately.

Such equation can be expressed in a more useful way by recalling that p = w p 2
and turning derivatives in time into derivatives with respect to the scale factor of the
universe. By integrating this differential equation, the evolution of a fluid with equation
of state w; in an expanding universe is generally described as a function of the scale
factor of the universe itself as

pila) = pio a=® (Wi tD), (1.28)
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In the standard ACDM model the universe contains photons and massless neutrinos
(that often go under the umbrella term radiation); pressureless dust, which we gener-
ally call matter, is in fact composed of cold dark matter, supposed to be pressureless to
very good approximation, and baryonic matter, which instead, on small scales, does not
truly satisfy this approximation; a dark energy component, that in the standard picture
is associated to a cosmological constant, described by a fluid with negative pressure. In
addition, to the curvature of the universe, for the sake of simplicity, can be associated
a density and a pressure, treating it as an additional fluid. Applying Eq. to these
different fluid and schematically representing their evolution in the following table we
obtain:

radiation w, =1/3 pr=proa?
matter w,, =0 P = Pmoa>
curvature wy = —1/3  pr = proa 2
cosmological constant wp = —1 PA = PAO

Using the results in this table, we can conclude that the early universe, when the scale
factor a was very small, was dominated by the radiation component. It was then dom-
inated by matter for some time until the curvature energy density (if any) became the
leading term in the total energy budget. Finally the cosmological constant becomes im-
portant only at late times.

From Eq. the Hubble rate at a given time — and therefore at a given value of the
scale factor a or of the redshift z — can be written as

81G
H?(a) = R (1.29)

?

Exploiting the definition given in Eq. we can rewrite it as a function of the energy
density parameters today,

H?(a) = H§ > pile) _ pp2 > Qg a3, (1.30)

Pc,0

i
where HE = 87Gperit,0/3 is the present day expansion rate. Therefore

H(a) = Hy{Qoa "+ Qmoa®+Qoa >+ QA,0}1/2 (1.31)

is the expression of the Hubble rate in a standard ACDM cosmology. Hy and the ©;
can be considered as cosmological parameters, linked to the abundance of each species,
which are not given theoretically but can be determined fitting cosmological observa-
tions. For example, the measurement of the present-day temperature of the CMB, T, o =
(2.72548 £ 0.00057) K (Fixsen) 2009), gives a radiation density parameter of Q, oh? =
(2.473 £ 0.002) x 107°. note that this value is multiplied by h?, where h = H,/100, in
order to express it irrespective to the actual value of the Hubble parameter. The fit of
the temperature and polarization anisotropy angular power spectrum measured by the
Planck satellite gives, when the universe is assumed to be flat, (Planck Collaboration
et al.,2015)

Qph? = 0.02225 + 0.00016

Q.h? =0.1193 £+ 0.0014
Q,, = 0.3156 4 0.0091 (1.32)
Q= 0.6844 £ 0.0091
Hy = (67.27 4 0.66) km s~ Mpc™?,
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where errors are 68% limits. When also the curvature parameter is free to vary it has a
constraint €, = —0.04070 537, this time at 95% level, which is very well consistent with
a flat universe.

In Fig. I show the evolution of the different components of a flat universe, whose
present-day densities have been chosen to reproduce the results by Planck, i.e. Q,¢ =
9.3049 x 1077, Q0 = 0.3156 and 2, o = 0.6844.

This figure clearly shows that in the early universe the energy budget was dominated
by the radiation component. Around redshift z ~ 3800, the energy density associated
to radiation fell below the energy density of matter. For this reason, subsequent times
are called the matter-dominated era. Photons of the CMB are emitted in this epoch, at
redshift z ~ 1100. At the time of CMB emission, photons and baryons decouple. In the
next section we will see that this marks the time when baryons become free to fall in
the potential wells created by the cold dark matter. Therefore, in the matter dominated
universe matter perturbations are free to grow and form the structures that today we
observe. Finally, at redshift z ~ 0.32, the matter energy density falls below that of dark
energy. The present day universe is, as a matter of fact, dominated by cosmic accelera-

redshift z
1000
———

109 10*

‘ 100 10 10
o

il R

Y T R R I S S R |

1076 107 1074 1073 0.01 0.1 1
scale factor a

Figure 1.1: The matter density associated to radiation, pressureless matter and cosmological con-
stant as a function of the scale factor of the universe (axis below) or redshift (axis above). The
present-day values of these parameters have be taken to been chosen to give a flat universe with
Qro = 9.3049 X 1077, Qy 0 = 0.3156 and Q4,0 = 0.6844. The two vertical lines mark the time of
matter-radiation equality and of dark energy-matter equality.
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tion.

Despite the cosmological constant being the standard mechanism invoked to explain
the accelerated expansion of the universe, it is not the only possibility. Non-minimal
modifications to Einstein’s gravity are under investigation and represent valid alterna-
tives to the standard scenario. However, they are beyond the scope of the present work.

In the next section, I will review the formalism of structure formation that describes
the growth of matter perturbations in the matter dominated era.

1.2 The inhomogeneous universe

The overdensity field. Up to now we have only considered the smooth background
of the universe, intended as the superposition of the different fluids associated to the
different components, whose evolution only depends on time. However, we expect to
find perturbations growing and propagating on top of that.

In particular, in the inflationary framework, the original quantum fluctuations present
in the primeval energy density are stretched during inflation and leave a characteristic
distribution of perturbations, distributed according to a power law.

When describing perturbation of a relativistic fluid, relativistic effects cannot be ne-
glected, and the common approach is to write the phase-space distribution function of
the species of interest (photons, neutrinos...) and solve the Einstein-Boltzmann equation
numerically (Seljak and Zaldarriaga), [1996; Lewis et al., 2000; |Lesgourgues, 2011a). As
in this work I am mainly interested in matter perturbations, however, I will follow the
custom of the field and adopt a fluid description, modelling CDM and baryons as two
fluids, whose perturbations expand as waves and obey the conservation of mass and
momentum. In this framework, gravity is well described in Newtonian terms (Peebles,
1980) and the fluid feels its own self-gravitation through the Poisson equation.

Given a fluid with average background density p(t), an overdensity is defined as

o(r,t) = -1 (1.33)

Equations of motion. To describe the evolution of the overdensity field we need to
start from the fluid equations that guarantee the conservation of mass (continuity equa-
tion) and momentum (Euler equation) and that describe its auto-gravitation (Poisson
equation). An additional assumption is that of single stream, which ensures that only one
velocity vector can be associated to each point in space. In the physical spatial coordi-
nates r and cosmic time ¢, with v = dr/dt, these equations read

op B

E + Vr : (p'U) =0

0 1

87,: + (U : Vr)v = _;V’I“P - Vrgotot (134)

Vit = 47Gp.
However, it is better to pass from physical coordinates, r, to the comoving ones, « . They
are linked through r = a(t) «, where a(t) is the scale factor at the considered time. This

is very important since the physical velocity contains both the contribution due to the
expansion of the background and the proper motion,

v=ar+axt=aHx+u, (1.35)
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where u is called the peculiar velocity.
In the new coordinate system, we need to change derivatives with respect to spatial
coordinates and time according to
0 0

1
V,+ V. ad oo -HaV, (1.36)

respectively, where V denotes derivatives with respect to the x coordinates. Since in
what follows spatial derivatives will always be wrt the comoving coordinates, I will drop
the subscript, so that V = V.

Using these new coordinates we can rewrite the set of equations presented in [1.34]
Since we are interested in the evolution of perturbations, we can write densities, veloci-
ties, pressures and the gravitational potential in the form

pla,t) = p(t)[1 +d(,t)] ,

v=aHx +u,
(1.37)
P=p+dp,
2nGpr?
Ptot = 3 + ¢,

where §, u, 0p and ¢ represent the perturbations over the smooth background. Note that
the factor 2rGpr? /3 in the gravitational potential guarantees its Laplacian to be 47Gp.
The resulting set of equations is

a5 1

@JFEV'[(U”S)U]_O

du 1 ___Vvp 1 (1.38)
at—I—Hu—i—Q(u Viu = w7110 ana

V2p = 4nGpa’s .

In Euler’s equation still appears a pressure gradient term. This can be expanded consid-
ering that pressure variations in principle depended on density and entropy,

= g—zép—l-%ds:cg op (1.39)
where §s = 0 because we are considering adiabatic perturbations.

The pressure gradient term, anyway, is often neglected. CDM, whatever candidate
particle we consider, is thought to only interact via gravity and the weak force, with
extremely small cross section (wWhose exact value depends on the considered candidate).
For this reason the interaction rate of CDM falls below the expansion rate of the universe
very early, allowing us to consider CDM as a pressureless fluid almost at all times.

For baryons this is not the case. As long as they are coupled to photons in the
primeval plasma, the radiation pressure prevents them from collapsing and makes per-
turbations oscillate with a characteristic speed of sound

OP. 2 3p\ "
Ao 0 = <1 + ) . (1.40)
ANpy+py)ls 3 4 py

However, after baryons decouple from photons, such pressure becomes negligible. For
this reason, being I interested in the growth of matter perturbations after the epoch of
recombination, I will consider the baryon fluid as pressureless.

op
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Linear perturbation theory. The simplest possible way to solve these equations con-
sists in linearising them. In the linear regime overdensities are very small, meaning that
0 < 1. Furthermore, only first order terms in 6 and « will be considered. Under these
assumption Eq.s[I.38 become

96 1

2
0 | = GVO 1o (1.41)
ot p a

These equations are independent, and we can combine them by taking the divergence of
the Euler equation and plugging the other two in it. First we obtain

06 v

ata=?

oV V25 1 1.42
A HY = -8 _y? (142)
ot * ap aVSO

V3¢ = 4rGpa®s ,

where ¥ = V - u. Recombining them, we obtain the linear equation of growth of fluctu-
ations 925 o5 —
00 o0 _ &V
ot? ot a’p
When ¢; = 0, this is the equation of an harmonic oscillator, where the right-hand
side, gravity, ‘compresses the spring’, while the expansion of the universe, which enters
through the term in H, is the friction contrasting the contraction of the spring itself. On
the other hand, when ¢, # 0, oscillations are damped by the pressure support.
To explicitly see the scale of the suppression, we can perturb this equation with a
plane wave

+ 47 GpS . (1.43)

(@, t) = g e'FPn, (1.44)
We are left with the following dispersion relation,

2
W? + 2iwH = Sk — 4nGp. (1.45)
a

Since we are interested in the propagation of pressure waves, which we expect to occur
on time scales much smaller than the expansion of the universe itself, we consider at

each redshift H < w, hence
2

w? = %kz — 4nGp. (1.46)
The oscillatory solutions have w? > 0, and correspond to waves whose gravitational
collapse is contrasted by the pressure support of the fluid. On the other hand, solutions
with w? < 0 correspond to overdensities that grow exponentially in time, meaning that
such solutions correspond to the gravitational collapse of these perturbations. The case
when gravity and pressure are balanced corresponds to w = 0 and gives a characteristic

wave-mode,
4rGp(a)a?
kJ(a):\/iiz() ; (1.47)
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corresponding to waves with wavelength A; = 27 /k;. This is usually called the Jeans
scale (Jeans, |1902). Perturbative waves with wavelength larger than this (k¢ < kj) have
w? < 0 and are therefore free to grow under the effect of gravity. On the other hand,
waves with wavelength smaller than the Jeans scale (k > kj) have w? > 0, and are
therefore in a oscillatory regime, with gravity and pressure contrasting each other.

While this ideal plane-wave perturbation is very informative on the physics of the
growth of a density perturbation, it is very common in cosmology to describe the same
effect in terms of decomposition in Fourier modes of the overdensity §. The advantage
of this approach is that, describing perturbations as a superposition of waves, allows us
to investigate how different scales differently contribute to the total inhomogeneity. To
this purpose, I define the Fourier couple

R 3y ) A
S(k) = / (gﬂ)g e kT 5(r), 5(r) = / A3k e* T (k). (1.48)

This defines the convention on the normalization of the Fourier transform that I adopt

throughout this work. Moreover, note that quantities with a hat ( *) are in Fourier space,

while quantities without it are in configuration space.

Taking the Fourier transform of Eq|1.43| we obtain
%5 (k) dé(k)

o t2H— = AnGp(a)d(k) [1

c2k? ]
- 772
d7Gp(a)a (1.49)

2
= 4nGp(a)d (k) [1 - ZQ] ,
J
which corresponds to the result shown before. Once again, for perturbations described
by Fourier modes with k < k; the pressure support is negligible, and the growth is
only driven by the gravitational collapse. For perturbations with k >> kj, however, the
growth is contrasted by the pressure term.

The details of the propagation of perturbations through density waves that move
with velocity ¢; depends on the characteristics of the species considered. When baryons
were coupled with photons, ¢; was the one presented in Eq. At that time, therefore,
baryon perturbations would oscillate on scales smaller than the sound horizon of the
photon-baryon plasma, which poses a problem for explaining the formation of small
scale structures.

For this reason, another matter component must be present, which is dark matter.
However, if dark matter was hot (i.e. it became non-relativistic after it decoupled), its
sound horizon would coincide with the speed of light, and, according to Eq. fluc-
tuations would be damped on scales smaller than this. Once again, this prevents small-
scale fluctuations from forming and growing, which would leave us with a top-down
scenario, where only large perturbations grow and then fragment to form smaller struc-
tures. Yet, cosmology heads towards a bottom-up scenario, where the extremely small
perturbations imprinted in the CMB grow and form matter haloes and galaxies.

This can be achieved if the dark matter is cold. In this case, it becomes non-relativistic
before decoupling. Moreover, to very good approximation, it is pressureless. In such
conditions, ¢, = 0 for this species, meaning that, in the epoch when matter energy-
density dominates the energetic budget of the universe, while the photon-baryon fluid
oscillates, the CDM fluid has perturbations that are free to grow. After photon decou-
pling, baryons lose the radiation pressure support, and their sound speed falls to (al-
most) zero. For this reason, in the subsequent epoch, baryons are free to fall into the
potential wells previously created by the cold dark matter [Peebles|(1980).
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If ¢, = 0, the evolution of density perturbations is self-similar. This means that the
perturbation at a given time can be written as

(t) = D(t)do , (1.50)

where Jy is the value of the perturbation at an arbitrary time (for convenience usually
chosen to be the present time), and D(t) is the growth factor, i.e. a time dependent function
that encloses the evolution in the given cosmology. The growth factor D therefore is as
well a solution of Eq.

This is not the case (as will be clear in section when ¢; # 0. In this case we can
expect the growth to be scale dependent, to account for the damping induced by the
pressure support.

1.2.1 Description of the growth of fluctuations on nonlinear scales

Small scales, below a few Megaparsecs, are interested by a nonlinear growth of density
perturbations. This is due to the fact that collapsing objects, which dominate on such
scales, are characterised by high values of the density contrast, § > 1, and large veloci-
ties, induced by the in-halo virialization. For these reasons, Eq. [1.38cannot be linearised
and, therefore, lacks an analytic solution.

There are many possible approaches to try to describe structure formation and evo-
lution on these scales. One is to apply a power series development to the equations
in and solve for increasingly higher orders, as is common in perturbation theory.
Another way is to try to solve the nonlinear equations numerically through numerical
simulations.

Nonlinear perturbation theory

The perturbation theory approach (following Bernardeau et al.,[2002; |Scoccimarro|, [2004;
Crocce and Scoccimarro|, 2006) starts from the fluid equations, Eq. Since the nonlin-
ear growth of fluctuations becomes important in the matter dominated universe, I will
present here the simplified case in which ©2,,, = 1 (corresponding to a Einstein-de Sitter
universe). For convenience of writing, we can define a new time variable

n=1Ina (1.51)
and a normalized velocity
U
=—= 1.52
v, (152)
that corresponds to a normalized divergence of the velocity field,
¥
0=—— 1.53
= (159
where H(a) = aH (a). Poisson equation can be recast as
V2¢ = 4nGpd = g;%s (1.54)
With these definitions, the equation of motion can be recast in
5
& _ © =V (év)
n (1.55)
00 3 '

1
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The equation of motion in Fourier space look like

D) _ &) = F{v - (60)}
aga(?k) 3 1 (1.56)
o~ 30k) + 50k) = F{V[(w- )]},

where quantities with a hat ( * ) are in Fourier space. Both the right-hand sides com-
prehend multiplications of densities and velocities. This means that, in Fourier space,
we expect these terms to become convolutions. Therefore, the main consequence of non
linearising the equations of motion is that now it is no longer possible to describe the
evolution of densities and velocities on each scale independently, while, in fact, different
modes are coupled and power leaks into the small scales.

The first mode coupling term in Fourier space can be explicitly written as

F{V - (v)} = // A®ky d3ky 6p (K12 — k) k”k'%'” 5(k1) O(ky), (1.57)

where I adopted the convention that k12 = k1 + k2. The second mode coupling term,
becomes

(k1-k2)(ki2 - k2)

252 O(k1)O(ks). (1.58)

F{V[(v - V)v]} = // d3ky A3k 0p(k — k12)

We are therefore left with the following system of equations

86 // d*ky d3kq 6p (k12 — k) k12k.2k2 d(k1) O(k2)
86('“) - §5( k) + // Bk BPky 6p(k — ko) Uk - kz);k;? L2 O(k1)O(ksy).
on 2 kiks

(1.59)

Since the left-hand side of this equation does not contain time-dependent parame-

ters, we can seek recursive solutions for the purely growing mode for both the density
contrast and the divergence of the velocity field in Fourier space. They have the form

0" (k) = /d3q1 . dPq, 0p(k—aqy. ) Fulay ... q,) 0%(qy) ... 0%(q,)
(1.60)

o" (k) = /d3q1 . d®qy Sp(k —qy._,) Gulgy - a,) 0%(aqy) ... 0%(a,),

where 67 is the linear density contrast, which is a solution of Eq. F,, and G,, are the
kernels that include the nonlinear mode coupling.

It is not obvious that this series converges to the true nonlinear density contrast evo-
lution. Moreover, the physically motivated description of matter as a fluid will inevitably
break down below a certain scale (for example, inside haloes the velocity dispersion can
become quite important).

Numerical N-body Simulations

The other, essential method to investigate the nonlinear evolution of the matter field is
given by numerical simulations.
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N-body simulations assume a fluid description of dark matter. The dark matter fluid
is sampled with a set of macro-particles (each particle with mass of the order of mil-
lions of solar masses or more). At the initial time of the simulation, the particles must
reproduce a given initial setup. To do so, the simplest method is to place these particles
on a regular grid and compute initial displacements such that the resulting particle dis-
tribution has the same power spectrum as the desired one. Such displacements can be
computed in Lagrangian perturbation theory, since this approach is devised to describe
the final positions and velocities of a set of particles in terms of their initial positions.
In this case, initial positions (gq) are the grid points. Stopping the expansion at the first
order, the so called Zel’dovich approximation is obtained (Zel’dovich,|1970), which de-
scribes the displacements 1) to be applied to the grid points in terms of the local density
at each original location 6(g) and the growing solution of the growth factor D(a) (which
is a solution of Eq. [1.43). This displacement is defined by (see for example [Bernardeau
et al.,[2002)
x)=-V - 9. (1.61)

Moreover, imposing the continuity equation, also peculiar velocities in the final position
can be obtained solving

u=—a H(a) f(a) ¥y, (1.62)

where f = 0lnD/0Ina is the growth rate. Moreover, more refined results can be
achieved adding higher order information, for example stopping at second order in the
expansion (2LPT) or at third order (3LPT). This can alleviate possible transients intro-
duced in the initial conditions, since the higher the PT order employed, the more rapidly
such transients decay (Scoccimarro, |1998; Crocce et al., 2006).

There exist also other methods to set-up the initial particle distribution, such as the
glass method proposed by White|(1994). In this case, instead of beginning with particles
on a grid, they are first distribute as a Poisson sampling, and then evolved with a grav-
itational force with inverted sign until residual forces have become negligible. At this
point, this particles can be initialized to reproduce the required initial power spectrum.
The main advantage is given by the fact that the evolved simulation will not carry any
trace of the initial regular grid, thus avoiding the emergence of a non-Poisson shot noise.

At this point, the actual simulation can start. It follows the gravitational evolution of
this set of particles, computing, at each new time step, the force exerted on each particle
and consequently updating its position and velocity. Several strategies exist to limit the
required computational expense, which can easily become prohibitive if the direct com-
putation of the force between a particle and all the others is attempted (particle-particle
algorithms) . One of the cheapest and fastest techniques to overcome this problem is to
assign particles, at each time, to a density grid, that can be then Fourier transformed to
solve Poisson’s equation in Fourier space (avoiding in this way the need to take deriva-
tives). Once the grid is set-up, the force on each particle can be computed (particle-mesh
algorithms, [Klypin and Shandarin| (1983); White et al.| (1983). This method, albeit fast,
has an accuracy that largely depends on the resolution of the chosen grid. One attempt
at speeding up calculations while keeping grid-resolution effects under control is given
by the P3M (particle-particle, particle-mesh) algorithm (Eastwood et al.|[1984; Efstathiou
et al [1985). In this case, for each particle the force exerted by nearby neighbours is
computed directly (particle-particle), while for the long-range force a particle-mesh al-
gorithm is applied. Yet another method is to employ hierarchical trees (Appel, 1985;
Barnes and Hut, 1986; Dehnen/ [2000) to resolve the force on a almost particle-by-particle
basis for particles in the vicinity, using instead larger and larger blocks of particles (col-
lapsed in their center of mass) for distant contributions. A successful combination is the
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so called TreePM hybrid method (Xul |[1995), that uses the tree algorithm to compute the
short-range force acting on each particle and the particle-mesh technique to compute
long-range forces.

These methods have made possible studying the fully nonlinear evolution of the dark
matter distribution. On the one hand they allow us to test the limits of validity of per-
turbative approaches |Crocce and Scoccimarro| (2006). On the other hand, specific fitting
formulae can be calibrated to reproduce such nonlinearities (such as the halofit fitting
formula [Smith et al.,|2003; Takahashi et al., 2012).

1.3 Cosmological neutrinos

In the ACDM model neutrinos have usually been considered to be massless, neglecting
their peculiar behaviour but for their contribution to radiation. In fact, as I will briefly
review in this section, the effects that the presence of massive neutrinos induce on the
evolution of the universe (and on the cosmological observables that we ultimately mea-
sure) is far from tiny. Only fairly recently, thanks to the increasing precision in cosmolog-
ical measurements that calls for models as accurate as possible, neutrinos have drawn
a fair amount of attention, to the point of becoming, nowadays, part of the standard
picture. [Lesgourgues and Pastor| (2006, 2012} 2014) presented extensive reviews about
cosmological neutrinos, which go beyond what is needed in this work.

The effects of neutrinos can be divided into two general categories: the modifications
they induce on the background evolution of the universe and the imprint they leave on
the growth of structures.

1.3.1 Effects on the background

The background evolution of the universe is governed by the evolution of the energy
densities of the different species that compose it. The Hubble rate, the normalized veloc-
ity of the expansion, is the function we use to parametrize the evolution of the energetic
budget of the universe. Therefore, to properly include neutrinos in the Hubble rate, we
need to understand the evolution of their energy-density parameter.

In the early universe neutrinos are a relativistic species (with kinetic energy way
larger than rest-mass energy) and their momenta are distributed according to a Fermi-
Dirac distribution function. For neutrinos of mass m,, momentum p and temperature
T, it reads

1

STRTTT (1.63)

fu(z,p, 2) =
where T, (z) is the neutrino temperature at redshift z, ¢ the speed of light and kg the
Boltzmann constant. In principle, in the momentum distribution function we should also
include the chemical potential, but it has been shown to be negligible for cosmological
neutrinos (see for example Dolgov et al.,2002; Wong| 2002} |Abazajian et al., 2002).

The goal of this section is to write the proper Hubble rate for a cosmology including
massive neutrinos. I will start explicitly deriving the photon energy density, since neu-
trino evolution is often expressed in terms of corrections to the photon evolution. I will
then fix two fundamental times: the redshift of the neutrino decoupling and the redshift
of their non-relativistic transition. After this, I will derive the neutrino mass-energy den-
sity p, (%) and density parameter normalized to the critical density Q,(z). The latter is
the key quantity that enters the Hubble rate in presence of neutrinos.
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Photon density

It is often useful to express the neutrino energy density and temperature in terms of
the photon energy density and temperature. To this purpose we need to start from the
photon phase-space distribution function, in this case a Bose-Einstein distribution,

1

T (1.64)

f“/(w7p72) =

The photon number density and energy density are then given by the two following
equations,

3
n,(z) = 97/(;;71;)3 fy(z,p,2)

1.65
&) D (1.65)

d3
67(2) = gw/ﬁ fy(:c,p, z)E(p) = gv/(?ﬂ'h)?’ epc/ksT, _ 1"

Here g, = 2 is the state degeneracy of photons, which accounts for the two possible
polarizations. The factor (27h)® comes from Heisenberg’s uncertainty principle and
marks the minimum volume element required to know at the same time the photon
position and momentum. Note that the usual (mass-like) photon density is recovered as
py = Eq/C?

The last integral in Eq. can be conveniently manipulated defining x = pc/kgT,,

3

g °° x
(2) = g T () [ ae (1.6

where the change of coordinates is made possible by the assumption that momenta are
isotropically distributed. Now the solution can be given in terms of the Riemann-Zeta
function and the I" function, obtaining

-~
= gt BT (T () = () i T+ 9 (167
As a consequence, once the value of the photon temperature today is fixed, the pho-
ton energy density at all times is automatically given. The temperature of the CMB has
been measured to exquisite precision, Ty o = (2.72548 £ 0.00057) K (Fixsen, [2009). In the
rest of this work I will always assume T’, o = 2.7255 K.
Finally,

831G d
le) = f-ffi) T 3H2(2) <15> 27756]7;305 (kpTo0)'(1 +2)" (1.68)

is the photon energy density parameter normalized to the critical density of the universe.
By parametrizing the Hubble constant today as Hy = h 100 km s~! Mpc~!, the photon
energy density parameter today can be expressed as

Q. 0h? = 2.469 x 1077, (1.69)

where I have introduced all the values of the physical constants, photon degeneracy
parameter an photon temperature today.
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Neutrino decoupling and non-relativistic transition

Neutrinos decouple when their interaction rate falls below the expansion rate of the
universe. The neutrino interaction rate can be written as

I'=n,(vo,(E)), (1.70)

where n,, is the neutrino number density, v the velocity of the particle and o, (E) the
energy-dependent cross section. Assuming that their only channel of interaction is through
weak force, their cross-section has the form

— G% (kBTbg)2

where G is the Fermi coupling. By equating the interaction rate I" and the expansion
rate of the universe H, we obtain that neutrinos decouple when the background temper-
ature is around Tj,; ~ 1 MeV. This roughly corresponds to a redshift

1+ Zgee ~ 10°. (1.72)

As the universe expands and the background temperature drops down, the kinetic en-

ergy of neutrinos eventually becomes lower than their rest-mass. By equating m, c? ~

T, (1 + z) we find the redshift when neutrinos turned non-relativistic,

1+ 2, ~ 1890 [

)

o (1.73)

Here I have assumed that the neutrino temperature today is 7, o = 1.95 K. In appendix
[A]I present a derivation of the neutrino to photon temperature ratio, justifying this num-
ber. There I also briefly discuss the limitations of modelling neutrino decoupling like a
instantaneous event and the most common corrections employed to alleviate them.

The interesting fact is that neutrinos are hot, meaning that when they decouple they
are still relativistic. As a consequence, we expect we can use equation to describe
the distribution of neutrino momenta even after they become non-relativistic, since this
phase-space distribution function remains frozen for all times after neutrino decoupling.

Neutrino density

Starting from the phase-space distribution function in Eq. the neutrino number
density can be written as

n(mz)—2/dgpf(w z) (1.74)
v Y - (27Th)3 v 7p? ) *
and their energy density is
2 d®p 2 d3p p2c? + m2ct
py($72) - 072 / W fll(m7paz) E(p) - 672/ (27Th)3 epc/kpT, +1 (175)

Note that the phase-space distribution used here is the one valid for relativistic neutri-
nos. This is justified because, as seen in the previous section, neutrinos become non-
relativistic after decoupling, which freezes their momentum distribution to the relativis-
tic one.
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In order to link the neutrino density to the photon one we are missing the relation
between neutrino and photon temperature. The two temperatures can be linked as

TV(Z) = FVT’Y<Z)7 (1.76)

where the value of I', is derived in appendix [A| The neutrino density can therefore be
expressed in terms of the photon one as

) = (37 ) Tl (170, .77

where

2 2 2 2
f(y)Z/dwix vty e (1.78)

e +1 T kpToo(l+2)

The parameter y depends on time, with y < 1 corresponding to times when neutri-
nos are relativistic, and y > 1 describing non-relativistic neutrino. The non-relativistic
transition occurs when y ~ 1.

Equation has two interesting limiting cases. At early times neutrinos are rela-
tivistic and we can consider m, < T, o(1 + 2),

lim F(y) = ZC(4)1“(4) _r (1.79)
v TR T8I '
In this case the early time neutrino density is given by
7
pff(z) = é1",,p7(z) o (14 2)* (1.80)

and neutrinos evolve like radiation. In this regime, the density parameter of radiation in
the universe, €2,, is given by the sum of the photon density parameter and the neutrino
one. The neutrino density parameter for the relativistic case is directly derived by Eq.
1.80} As a consequence, for NV, ;'31 = 3 massless neutrinos, the radiation density parameter
reads

7

Q.(2) = Q,(2) {1 + N;elgrﬁ} : (1.81)

Here, following appendix|A} we should use the value of I',, that accounts for the reheat-

ing given by the e® recombination in the non-instantaneous decoupling scenario. It is

customary, though, to use use instead the neutrino to photon temperature ratio obtained

in the case of instantaneous decoupling, I', = (4/ 11)4/ 3 and absorb the correction in

the number of relativistic species, that therefore becomes an effective number of relativistic
species,

N, T4
Neg = -2
RRNCYDEE

This leads to the customary formula for the radiation density parameter in case of rela-

tivistic neutrinos
7/ a\Y3
1 + Neﬁg (11) . (183)

= 3.046. (1.82)

() = O, (2)

The late-time limit of equation corresponds to non-relativistic neutrinos with
my, > T, (1 + 2),

lim F(y) = y§C(3). (1.84)

y—>oo 2
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The late-time neutrino density therefore reads

15 3
) = (55 TE5CE )] o, (14 2 (1.8
At late times neutrinos therefore evolve like matter. In this regime, they contribute to the
gravitational potential, and modify the growth of matter perturbations.

Their present time density parameter, accounting for all the neutrino species, can be

approximated from Eq. as

>l 4G(ky T, 0)?
Qyog=—"--"— = _—

T pcrit(z = O) N C( ) T H2 3 ¢d M, (186)

which becomes, after introducing the values of the different physical constants,

— MV
T 93.14eV

In Fig. [L.2]1 show the evolution of the neutrino density and of the two limiting cases
presented above, as a function of redshift.

We can now combine the neutrino and radiation density previously computed to
express the redshift dependent Hubble function in cosmologies that include massive
neutrinos.

We can express the neutrino density from Eq. as a density parameter in units of
the critical density of the universe, obtaining

Q0 b° (1.87)

0u(2) = (33) T, (7 (0, (1.8

The Hubble function at each redshift can therefore be expressed as
H?(2) = H§ {Q0(1 + 2)* + Qu(2) E?(2) + Qepo (1 + 2)> + Qa } - (1.89)

Written this way, the Q,(z) term automatically accounts, at each redshift, for both the
fraction of neutrinos that are still relativistic (and that add on top of the photon density
term) and for the fraction that is already non-relativistic.

1.3.2 Fluid description of neutrino perturbations

The growth of neutrino perturbation can be described adopting a fluid formalism, as
much as it is customary with CDM. Unlike CDM, though, we expect we will need a
pressure term to model the small scale behaviour of neutrinos. While the description
of the evolution of perturbations in the presence of massive neutrinos dates to back to
Bond et al|(1980); Ma and Bertschinger| (1995); [Wong| (2008), the description of cosmic
neutrinos as a fluid has first been introduced in|Shoji and Komatsu|(2010) and employed,
more recently, in Blas et al.|(2014).

Such a neutrino fluid will obey the usual fluid equations, which here will be consid-
ered in their linearised form (valid for small overdensities and velocities), see Eq. [T.4]]
In the framework of a fluid description, we need to understand how to treat the speed
of sound that appears in these equations. We can introduce the pressure of the neutrino
fluid, linked to its density though an equation of state, such as

by = wVpV027 (1.90)
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Figure 1.2: The evolution of the neutrino density with the scale factor a (axis below) and redshift
z (axis above). Here a neutrino of mass m, = 0.1 eV is considered. The cyan solid line shows the
correct solution for p, (z), while the red and blue dashed lines respectively show the early and late
time limit of the correct solution. The early time limit is proportional to (1 + 2)*, underlining that
at early times neutrinos are relativistic and behave like radiation. The late time limit, instead, is
proportional to (1 + 2)3, following the same evolution of radiation. The gray vertical line marks
the non-relativistic transition for neutrinos of this given mass.



The concordance model of Cosmology 21

where w,, is uniquely defined by the equation
dlnp, = (1+3w,) dlna, (1.91)

where a is the scale factor of the universe. Thanks to the latest equation, we can obtain

1 Q(y)}
w, == |1—y2W | 1.92
3 [ YFy) (192
where y is the same defined in Eq. y = m, /ksT,, and I have defined
0 g2(g2 4 y2)-1/2
Gy) =y /0 dz ——=— (1.93)

Note that when we take the early-time limit of[1.92} with y — 0 and G(y) — 0, we obtain
we® — 1/3. On the other hand the late-time limit has y — oo and G(y) — 3¢(3)/2 and
results in w'! — 0. Consistently with what we said before, the early-time behaviour of
neutrinos is that of a radiative species, while at late times they behave as pressureless
dust.

Having introduced an effective neutrino pressure, we need to define the speed at
which pressure waves propagate in the neutrino fluid, namely the speed of sound. Un-
der the assumption that there are no entropy perturbations, we can express the speed of

sound as
ey = 2P 134493 (1 1 2) {1 ev} km s~?, (1.94)
8py my

see for example Blas et al.| (2014).

The speed of sound of neutrinos introduces a typical scale, called free streaming scale.
Below this scale, neutrino velocities prevent them from clustering, as they freely stream
through the gravitational potential wells without being trapped. On scales larger than
that of free streaming, however, they follow the same evolution driven by the CDM fluid
and their growth is indistinguishable.

In the fluid formalism the free streaming scale is the scale where pressure and gravity
are balanced. We can refer to Eq. to see that, for a neutrino fluid, the effective Jeans
length, called in this case the free-streaming scale, is

2 2772
ks = \/47era = \/3 a H* . (1.95)

Since we characterised neutrino pressure, we are now able to express what fraction
of the whole neutrino distribution is non-relativistic at all times. In Newtonian terms,
we expect only this fraction to contribute to gravity. This can be done considering that
the fraction of neutrinos that contributes to the energy budget of relativistic species, at
each redshift, is given by

O (2) = 3w, (2)Q,(2), (1.96)

where 2, (2) is computed according to Eq. and w,(z) according to Eq. As a
consequence, the fraction of non-relativistic neutrinos at each redshift is given by

O (2) =1 — 3w, (2)] Q(2). (1.97)
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The effective matter density parameter therefore is
O (2) = Qeam (2) + W(2) + [1 — 3w, (2)] Qu(2) (1.98)

Note that this scale does not only affect the growth of neutrino perturbations. As a
matter of fact, if we considered the coupled growth of two fluids, one composed of dark
matter (CDM and baryons) and the other one of neutrinos, it is described by the system
of equations

2

Ooey (a)55cb - §QmH2(a)5tot(a)

gz P25~ =5 (1.99)
9%, 2 )551/ _évQ(s ( )+§Q H?(a)b0t(a) |
o2 Dor T gz YT w0 a)

where 6yt = (1 — f,)0cp + f.0, is the growth factor of the total matter component, €,,, is
the one defined in Eq. accounting only for the non-relativistic fraction of matter in
the universe at any given redshift. Both the solutions for é., and §, obtained from this set
of equations are scale dependent, meaning that the free streaming of neutrino through
the growing matter perturbations also affects the evolution of dark matter overdensities.

1.4 Random fields

The fluid description adopted up to now is a very powerful tool to model the evolution
of overdensities in the universe. However, it is ultimately impossible to follow any single
perturbation. For this reason, we must adopt a statistical description of the evolution
of matter fluctuations. To this end, cosmological fields (such as the overdensity, or the
velocity of a cosmological fluid) can be described as random fields, which evolve in time.

A random field is fully characterized by its n-point probability distribution. The 1-
point moments of a random field ¢ at a given position can be written as

(") = / do p(6) 6" . (1.100)

where p(¢) is the probability density distribution of the field. The mean value of the field
is its first 1-point moment, ¢ = (¢), while its variance is related to the second and first
moment according to ai = (¢*) — (¢)*. Hear the brackets () denote ensemble averages.

These 1-point moments describe punctual properties of the field. If the field is statis-
tically homogeneous, they do not depend on the position. However, we are also inter-
ested in studying possible correlations between points that are spatially distributed. The
2-point moment considers the field in two different positions r; and 72, and is defined
as

(6" (r1)6™ (12)) = / A(r1) dg(rs) p(d(r1), (1rs)) (1) 6™ (1) (1.101)

In general, for a moment of order higher than 1, we can provide a cluster expansion (Fry,
1984), that is it can be expressed as a combination of moments of lower or equal order.
For the 2-point moment of order n = 1 and m = 1, the cluster expansion reads

(@(r1)o(ra)) = (¢(r1)) (¢(ra2)) + (¢(r1)e(r2)). , (1.102)

where (¢(r1)p(r2)), is the connected expectation value, also called the cumulant moment,
i.e. the term of the expansion that does not depend on any lower order. In case of a field
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with null mean, the 2-point moment corresponds to its connected part. The connected
part of the 2-point moment is also called the 2-point correlation function, §. It represents the
excess probability of finding a non-zero correlation between two given points. Under the
assumption that the universe is homogeneous, the correlation function only depends on
the distance between the two points, (¢(71)¢(r2)),. = £(r1 — r2). If, in addition, the field
is isotropic, then the correlation function only depends on the modulus of the distance
between the points, (¢(r1)¢(r2)), = &(|r1 — r2|).
The generic n-point moment (of order n) is given by

(é(r1). / A6(r1) ... dp(r) p(G(r1), -, B(ra) S(r1) ... S(ra).  (1.103)

Whatever the order, performing the cluster expansion, the connected part of each mo-
ment can be found, which allows us to define n-point correlation functions.

In the particular case of a Gaussian random field, which is a random field whose
probability density function is Gaussian, the field is completely described by its mean
and 2-point correlation function, and all higher-order cumulant moments are zero.

1.4.1 The matter power spectrum

It is often very useful to perform the statistical analysis of the overdensity field in Fourier
space. As a matter of fact, viewing the overall field as a superposition of waves gives us
information about the relative contribution to the overall inhomogeneity of each different
scale. The adopted convention for the Fourier transform is the one introduced in

When we compute the 2-point correlation function of the overdensity field in Fourier
space we obtain

~ 37“1 3’/“2 i —iko-
<(5(k71)6(k72)> /(d ) /(dﬂ_) € ke Tle thama <(5(7"1)(5(’I"2)>
=dp(k1 + k2)
dn( )P(

(1.104)

e~*rT g(r)
ki + ko )

where 6 p is the Dirac delta, » = 71 — 73 is the separation in configuration space, and

3, )
P(k) = / (;W)S e T ¢(r) (1.105)

is the power spectrum. Just like the correlation function, also the power spectrum, when-
ever the additional assumption of isotropy is verified, only depends on the modulus of
the distance between the two wavenumbers in Fourier space.

From Eq. [1.104/we can see that, in linear theory, there is no mode coupling in Fourier
space, and the evolution of each mode can be described independently. The power
spectrum in linear theory can in general be predicted numerically, solving the Einstein-
Boltzmann equation for all the species considered in the universe. There exist some
publicly available codes that undertake this task (Seljak and Zaldarriagal [1996} |[Lewis
et al., 2000; Lesgourgues)} 2011a).

Moreover, we can apply the results obtained in standard perturbation theory (Eq.

1.60) and expand §(k) in a power series. In this case, we can expect that the mode cou-
pling introduced by the kernels will transfer power from large-scale modes into the small




24 1.4 Random fields

scales. The accuracy of the perturbative approach can therefore be tested by comparing
the power spectrum predicted in this way with the matter power spectrum measured in
dark matter cosmological simulation.

1.4.2 Estimation of the matter power spectrum in N-body simulations

Numerical simulations provide us with positions and velocities of a set of dark matter
macroparticles, evolved in time from an initial setup. As a consequence, we need to
estimate the power spectrum from a discrete collection of particles {x1,...,xn,}, dis-
tributed in a finite volume V. For simplicity, let the volume be a cubical box of side L.
the fundamental frequency of the box is given by

(1.106)

and represents the largest scale contained in the given volume. We are going to decom-
pose density fluctuations in the box in terms of a discrete set of Fourier modes, k = n ky,
obtaining

d(k) = /V ((2125)63 SRICOR §(x) = kj Zk: e 25(k) . (1.107)
The overdensity in configuration space is given by
é(x) = i iéD(x —x;) -1, (1.108)
i3

where 67 is a Dirac delta and n = N,,/V. Its Fourier transform consequently reads

Np

D ek gl (1.109)

i=1

5(k) = ﬁ

S =

where 6% is a Kronecker delta (since here the wavemodes are discrete). It follows that
(Peebles, [1980; Jing|, [2005; [Sefusatti et al.,|2016)

(6(k1)d (k) = 5’“}%{’“2 [P(kl) + (2771)271} . (1.110)

The second term in the parenthesis is called the shot noise and represents the autocor-
relation of each point with itself. It is constant term (white noise) and arises from the
discreteness of the particle distribution. In order to estimate the power spectrum, we
need to correct for this spurious contribution by subtracting it, for example defining the

estimator

P(k) =k} [|5(k)|2 - ]H : (1.111)

while the true power spectrum is given by P = <15>

Moreover, in a finite box, high frequency modes can be determined to much better
precision than low frequency ones. This effect is usually called cosmic variance. To visu-
alize it, we can think that, when computing the power spectrum in the discrete Fourier
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space, considering circular bins centred in the fundamental frequency and of given size
Ak, there will be fewer points falling the in bins close to k¢, and more and more points
in farther away bins. It can be quantified when we compute the covariance between the
k bins of the power spectrum,

Cij = (P(ki)P(k;y)) — (P(ki)) (P(k;))

205 _ (1.112)

=N P2(ki) + k3T (i, k)

where 5f§ is a Kronecker delta, Ny, is the number of wavemodes in the i-th bin, and
T'(k;, k;) is the bin-averaged trispectrum (see for example [Scoccimarro et al.,[1999). For
a Gaussian overdensity field the trispectrum is zero, and the covariance matrix of the
power spectrum is diagonal. However, the gravitational growth of fluctuations induces
non-gaussianities that in principle require to account also for the non-diagonal terms.

1.4.3 Effects of neutrinos on the matter power spectrum

Combining the effects of neutrinos on the background evolution and on the growth of
matter perturbations, we expect the matter power spectrum to display a suppression of
the power on scales smaller than the free streaming scale at the time neutrinos became
non-relativistic. This is indeed what can be observed in Fig. for the matter power
spectrum computed in linear theory.

The neutrino suppression is effective on scales below the scale of the neutrino free
streaming at the time they became non-relativistic. Such scale moves towards higher
wavemodes for neutrinos of larger mass, because they become non-relativistic earlier.
Moreover, the suppression is larger for heavier neutrinos. The reason is that more mas-
sive neutrinos become non-relativistic earlier, and therefore their free streaming is inte-
grated over a longer time.

The presence of massive neutrinos therefore introduces a peculiar scale dependence
already in the linear power spectrum (and in the growth factor) of density fluctuation.
Such scale dependence also modifies small-scale, coherent velocities, hence introducing
as well a scale dependence in the growth rate of structures. Moreover, such peculiar
scale dependence evolves with redshift.

Such scale dependence is visible also in the nonlinear power spectrum. For example,
Fig. shows the total matter power spectrum measured in three simulations of the
DEMNUni project (the details of these simulations will be presented in section with
M, = {0,0.16,0.32} eV. On top of the suppression predicted in linear theory, the fully
nonlinear power spectrum shows an additional, spoon-like suppression in the power on
scales k ~ 1 h Mpc~!, which is induced by the presence of neutrinos.
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Figure 1.3: The linear matter power spectrum in the presence of massive neutrinos. Different
colours correspond to different neutrino masses. The lower panel shows the ratio between the
matter power spectrum in the massive neutrino cases with respect to the standard ACDM case.
The matter power spectrum is suppressed by the presence of neutrinos on scales below the scale
of neutrino free streaming at the time they became non-relativistic. Such scale moves to smaller
scales for larger neutrino masses. Moreover, the suppression is larger for larger neutrino masses.
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Figure 1.4: Upper panel: The nonlinear matter power spectrum in the presence of massive neutri-
nos, measured in three of the DEMNUni simulations with M, = {0,0.16,0.32} eV (correspond-
ing to blue, green and red respectively) at redshift x = 0.48551. Lower panel: the ratio between
the power spectrum measured in cosmologies with non-zero neutrino mass with respect to the
ACDM case. In both panels, dotted lines show linear theory predictions, while dashed lines show
a nonlinear prediction obtained with halofit.






CHAPTER 2

Initial conditions for simulations of massive neutrino
cosmologies

In section[1.3|we have seen that massive neutrinos do modify both the expansion history
of the universe and the distribution and clustering properties of the matter contained
in it. Although such differences from a standard ACDM model appear already at linear
level, to fully characterize measurable neutrino effects we need to explore the nonlinear
power spectrum of matter and galaxies in presence of massive neutrinos.

Generally, given the impracticability of an analytic approach to solve the fully non-
linear fluid equations, either semi-analytic techniques or a numerical approach must be
adopted. In particular, N-body simulations allow for solving the gravity-driven evolu-
tion of a given CDM distribution down to very small scales, that, depending on the reso-
lution of the specific simulation, can correspond to 1 or a few h=! Mpec (k ~ 1-5 h Mpc™h).
For this reason N-body simulations are regarded as the state-of-the-art technique to
study the late-time small-scale nonlinear evolution of CDM in the standard ACDM model.

To reach the same level of accuracy in describing the nonlinear growth of structures
when we consider the presence of massive neutrinos, the most natural thing is to include
neutrinos in N-body simulations. There are many possible techniques to do so. Given
that neutrino clustering on small scales is strongly suppressed, one can solve the neu-
trino potential at linear level on a grid and add it to the force computed on the CDM
particles, as in the so-called grid-based approach (Brandbyge and Hannestad, 2009). On
the other hand, in the particle-based approach, neutrinos are regarded as an additional
particle species that, unlike CDM, includes a thermal component in its initial velocities
(Brandbyge et al.,|2008;|Viel et al., 2010;|Villaescusa-Navarro et al.,2013;/Castorina et al.,
2015; Carbone et al.}[2016). Also hybrid versions of grid-based and particle-based meth-
ods exist, as presented in |Brandbyge et al|(2010), or combinations of the particle-based
method with semi-analytic models (Ali-Haimoud and Bird, 2013). Other relevant pos-
sible implementations include the method employed by |[Agarwal and Feldman/ (2011)
and [Upadhye et al.| (2014), who consider only CDM particles but perturb a fraction of
them according to neutrino and baryon transfer functions, or the method presented in
Banerjee and Dalal|(2016), that combines N-body and fluid techniques.

The particle-based method, even if, for its discrete nature, is plagued by shot noise,
has been shown to allow for describing neutrino effects at nonlinear level (Bird et al.,
2012; Villaescusa-Navarro et al}2013) and, at the same time, studying the relative veloc-
ity of neutrinos and CDM (Inman et al., 2015).

In the particle-based approach the starting point is an initial distribution of particles,
usually chosen to describe a universe at an early enough time to consider its fluctua-
tions still small, or, in other words, to be still described by linear theory. Such initial
distribution is then evolved computing, at each step, the Newtonian force among the

29
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particles. The codes that implement this method, therefore, work in the Newtonian
framework and do not include any relativistic feature. This can represent a problem
when setting the initial conditions for the CDM particle distribution, since linear theory
solutions are often provided by codes that solve the Einstein-Boltzmann equation, for
CDM and baryons, in a given gauge in GR.

The standard procedure for running particle-based simulations, at least for ACDM
cosmologies, consists in the following five steps:

1. Choose a target linear power spectrum, commonly at redshift z = 0
2. Compute the linear Newtonian growth factor D(z = Zinitial)
3. Scale the target power spectrum back in time Piyitial(k) = D?(Zinitial) Prarget (k)

4. Use the initial power spectrum to draw initial displacements and velocities of par-
ticles

5. Start the actual simulation, which evolves the initial particle distribution down to
the target redshift computing the intra-particle force with the method of choice.

Being the growth factor Newtonian, the rescaling procedure is consistent with the
dynamics of the simulation itself, and the so-obtained initial power spectrum Ppitiai (k) is
constructed to converge (at linear level, i.e. on large scales) to the target power spectrum,
once it has been evolved by the simulation. We can therefore expect such rescaled initial
power spectrum to differ from the power spectrum computed by a Boltzmann code at
the same redshift.

2.1 Rescaling in the presence of massive neutrinos

The problem when adding massive neutrinos is how to compute the Newtonian growth
factor to perform the rescaling. The scale independent ACDM growth factor cannot be
used in this case, as it would miss the characteristic scale dependence induced by the
presence of neutrinos.

To avoid this issue a possible solution (Viel et al, 2010; [Bird et al., {2012} |Villaescusa-
Navarro et al| 2013} |Ali-Haimoud and Bird} [2013; |Rossi et al.,2014) is to directly use the
output power spectrum of a Boltzmann code at redshift z = zinitial to compute displace-
ments and velocities of the particles at the initial redshift. However, while including the
correct scale dependence induced by neutrinos, this method introduces three possible
systematic errors in the simulations:

1. The initial power spectrum of the simulation is in a given GR gauge (usually the
synchronous gauge), but, when evolved by the Newtonian simulation, the final
power spectrum departs from the z = 0 power spectrum computed by a Boltz-
mann code in the same gauge;

2. The neutrino-induced power suppression in the initial power spectrum is com-
puted by the Boltzmann code by integrating the neutrino distribution function;
typical N-body simulation codes, instead, assume all particles to be non-relativistic,
including neutrinos; therefore, when evolved with a Newtonian code, the neutrino
scale dependence, correct at the initial redshift, does not reproduce the one com-
puted with a Boltzmann code at lower redshifts;
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3. Massive neutrinos modify the expansion rate of the universe, as shown in Eq.
typically in N-body codes, as neutrinos are considered non-relativistic at all times,
the Hubble function is computed consequently; anyway there is usually the possi-
bility to provide a tabulated custom Hubble function, where the effects of neutrinos
can be included.

Such considerations led me and my working group to quantify the systematic effects
introduced in simulation of cosmologies with massive neutrinos by many common ap-
proximations assumed when setting initial conditions and, at the same time, to devise a
possible workaround. This work has been published in|Zennaro et al.| (2017).

The key idea of the method proposed in this paper is to employ a two-fluid for-
malism to describe the joint evolution of CDM and neutrino density perturbations in
a Newtonian framework. This allows us to compute the Newtonian, scale-dependent
growth factor and growth rate that can be used to scale a z = 0 power spectrum back
in time consistently with the simulation dynamics, without losing information about the
neutrino scale dependence.

2.2 Implementation of the fluid approximation

In order to solve the system of fluid equations needed to obtain the required Newtonian
growth rates and growth factors, I have implemented a Runge-Kutta solver. The code,
named reps (rescaled power spectra for initial conditions in cosmologies with massive
neutrinos), is publicly available from https: //www.github.matteozennaro/reps.
It works with a parameter file (examples are provided) that allows the user to choose the
cosmological parameters, the initial redshift, and the intermediate redshifts at which
outputs are requested. The boundary conditions needed for the solutions of the differ-
ential equations can be directly provided by the user or computed automatically, letting
reps call an external build of either camb or class.

Even if for most purposes just two fluids are enough to set initial conditions for sim-
ulations (namely CDM+baryons and neutrinos), reps solves a 3-fluid system, keeping
CDM and baryons as separate, pressureless fluids. This approximations, that cannot
capture the details of the baryon small-scale physics, is still useful to disentangle, at first
order, the different amplitudes of baryons and CDM at relatively small redshift.

Therefore, the system of equations solved by reps reads, at each fixed time,

Dy(k) = —Ou(k)

Oy (k) = AGy(k) — B[, Dy(k) + (1~ ,) Denl()]

Di(k) = ~O.(k)

OLk) = AO.k) ~ Bj,Dy(k) + (1~ §.) Den(k)] @1)
Dy(k) = -0,(k)

O,(k) =A0,(0) =B [(i~ ) Dulk) + (1 =) Dan(k)| -

Primed quantities are derived with respect to the scale factor a(¢t). The convention
adopted here is that D; (k, z) represents the growth factor for the i-th species, and ©;(k, z)
is linked to the growth rate of the same species via

fi(k, z) = = (22)
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I have also introduced, for simplicity of writing, the functions A(z) and B(z), which only
depend on time. The first one comes from the derivative of the Hubble function,

R

= % {Qe(2) + 2Q.(2) [1 + 3wx(2)] Qx(2) + [1 + 3w, (2)] Q(2) — 2}.

2.3)

The second function comes from the Poisson equation and accounts for the background
potential sourcing gravity. In a Newtonian framework, only non-relativistic matter con-
tributes to gravity. For this reason, in the function B(z) we must only include the density
fractions of cold matter and the non-relativistic fraction of neutrinos. As a consequence,
using Eq. [.92 we can write

B(z) = S0 (2) = o {9(2) + [1 — 3 (2)] (=)} 24

The solution is performed using the Fehlberg-Runge-Kutta method of fourth order,
with Dormand-Prince coefficients. This means that given a generic Cauchy’s problem

dy
de F(l‘,y) (2.5)
y(xo) = Yo,

the solutions at each subsequent time step z,+1 = x, + h is obtained by evaluating the
slope of the function in four middle points,
K = F(xnayn) h
h K

KQ:F($n+§7yn+7)h
; = 2.6)
Ky = F(on+ 5.0+ 5 h

Ky = F(xn + h,yn + K3) h,
and the new evaluation of the function is given by

K1+ 2Ky + 2K3 4+ K4
: :

Yn+1 = Yn + (2.7)

Finally, we need to provide the boundary conditions. For a two-fluid problem (which
will be the one of interest in rest of this chapter), these are given in terms of the initial
values for the growth rate of the cold matter component,

_ dln ch (a)
fcb(a/) = W (28)

and of neutrinos d1nD, (a)

nD,(a
fola) = —4p = 29)
along with the ratio between neutrino and cold matter perturbations
D,(a

B(a) = (a) (2.10)
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Figure 2.1: The boundary conditions needed for solving the fluid, newtonian equations in the
presence of neutrinos. The two columns correspond to M, [eV] = {0.15,0.30}, while the rows
show the neutrino to cold matter ratio, 5 = D, /Dc, the cold matter growth rate, f., and the
neutrino growth rate, f,. Different colors/line styles correspond to the results obtained with camb
(solid red lines) and class (dashed blue lines). The vertical black dashed line marks the scale of
the horizon at z = 99.
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We find four independent solutions that we linearly combine by imposing the conditions

atz=0 (1—-f,)Dw+f.D,=D,, =1,

BDw—D, = 0, @.11)
at z = z; Ocb + ferDep = 0,
e, +f,D,= 0,

where we have set the amplitude of the total matter growth factor at = = 0 equal to
unity, since we will be interested in rescaling the power spectrum at that redshift. Fig.
shows an example of the required boundary conditions, generated both with camb
and class.

The boundary conditions for the three-fluid case are the growth rates of baryons, cold
dark matter and neutrinos, along with the baryon to cold dark matter and neutrino to
cold dark matter ratios at the initial redshift, combined in the vary same way as in the
two-fluid case.

2.3 Validation against Boltzmann codes

The first thing needed to proceed with the rescaling method is to make sure that the
fluid description is adequate enough to describe the growth of matter perturbations in
linear regime. To this end I will present some comparisons between the solutions ob-
tained adopting the two-fluid formalism and the ones obtained by two well known pub-
lic Boltzmann solvers, camb (Lewis et al.,[2000) and class (Lesgourgues}2011a). As the
two codes present some inherent differences, and are parameterised in slightly different
ways, in figure[2.2]I check that the settings I am adopting for camb and class really do
correspond to the same cosmology. This is confirmed by the fact that the ratios between
power spectra for different species and at different redshifts are always compatible with
the comparisons presented in [Lesgourgues| (2011b) and |[Lesgourgues and Tram| (2011).
In particular, The two codes agree on the CDM and total matter power spectra at 104
level at almost all scales in the ACDM case, and their agreement is better than ~ 0.2%
for k < 1 h Mpc~! when massive neutrinos are included.

In Fig.s 2.3]2.4]T am showing the comparison between the power spectra obtained
with the fluid approximation with camb and class respectively. The rescaled power
spectra are normalized to match the total matter power spectrum computed by the Boltz-
mann code at redshift z = 0.

Overall the fluid approximation is able to recover the Boltzmann solutions, in both
cases, at 10~ level. Some discrepancies, however, appear:

1. On very large scales the effect of having employed a Newtonian approximation
appears. In particular, on near-horizon and over-horizon scales, the Boltzmann
codes correctly include the effects of radiation perturbations in the chosen gauge
(in this setting, the synchronous gauge), while the fluid approximation does not.
This mismatch amounts to ~ 10% on very large scales at z = 99, maximal because
of my choice of normalizing the spectra zt z = 0.

2. On intermediate scales, within the horizon but for & < 10 A Mpc?, the fluid ap-
proximation agrees with Boltzmann solutions at 0.01 — 0.02% level.

3. On very small scales, k > 10 h Mpc ™!, the two-fluid approximation breaks down.
The level of discrepancy increases as the considered scale increases. This is due to
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Figure 2.2: Comparison between power spectra obtained with camb and class. Columns cor-
respond to cosmologies with three choices of total neutrino mass M, [eV] = {0, 0.15,0.30}, while
rows correspond to the total matter, cold matter and neutrino power spectrum respectively. For
total matter and cold matter the agreement between the two codes is compatible with what pre-
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Scenario Q, Qr f=dnD/dIlna B(a)

S1: No photons, f constant 0 0 00:55 ~ correct

S2: No photons + f(k) 0 0 correct correct

S3a: f constant, f = Q09,5 correct correct 0055 correct

S3b: f constant, asymptotic value correct  correct asymptotic correct

54: Constant mass neutrino particles correct correct correct Q= (Qepo + Ql,‘yo)a_3
S5: No relativistic neutrinos correct 0 correct Q= (Qepo + (2,,‘,0)(1*3

Table 2.1: Different scenarios of the considered, possible approximations in the initial condi-
tions and in the Hubble expansion. B(a) is the source term of the gravitational potential in the
Newtonian approximation defined in Eq. When it is correct, €2, includes only the actual
non-relativistic fraction of neutrinos; otherwise, all neutrino perturbations are considered as non-
relativistic (irrespective of possible relativistic tails) and always act as sources of gravity.

the term accounting for the neutrino effective sound speed, which is proportional
to the wavenumber k, hence becoming more relevant on small scales. However,
the fluid approximation is still reliable up to & ~ 50 h Mpc~!, being the relative
difference still below 0.1 — 0.2%.

An important point is that the agreement found for the cold and total matter compo-
nents between the fluid approximation and the Boltzmann codes, is not confirmed for
the neutrino component. In particular, at ¥ ~ 0.1 h Mpc~' the neutrino power spec-
trum differs from both camb and class by ~ 100%. In fact the agreement with the
neutrino power spectrum largely depends on the version and on the choice of precision
parameters of the Boltzmann codes. Yet, this is not of great importance as no observ-
able or relevant quantity is exclusively dependent on the neutrino perturbations, that
only provide, for instance, sub-percent corrections to the total matter power spectrum.
Moreover, the solution at the initial redshift (which is the one used for setting the initial
conditions for simulations) is always correct and shares the same level of accuracy as the
CDM component, since discrepancies arise only in the the evolution of the initial power
spectrum and grow with time.

2.4 Potential systematic errors from initial conditions

The two-fluid approach allows for investigating the effect of some common approxima-
tions adopted in the setting of initial conditions. The different choices of setup for the
initial conditions can in fact be evolved to low redshift solving the set of differential
equations presented in the previous sections. Being in the Newtonian framework, they
mimic the evolution of a N-body simulations, but at the linear level.

Table 2.1jsummarizes the different scenarios I will consider. Some of them refer only
to cosmologies with a non-zero neutrino mass. Others, however, are more general and
also apply to standard ACDM cosmologies.

The reference growth factor and growth rates are computed in the optimal setup,
which does not include any approximation apart from those unavoidable in a Newto-
nian, fluid description.

I obtain the growth factor and growth rate of each species, normalized to match the
reference power spectra at redshift = = 99. In this way departures from the reference
solution appear in the z = 0 evolved power spectrum. Results are therefore given in
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term of the ratios

2 _ 2 _
?cb(k7 z = O) ’ Z;D(k’ Z = 0) , (212)
ch,rcf(k7Z:0) Du,rcf(k’zzo)
while the total matter growth factor D,, (k, z) is obtained as
Dy (k,z) = (1 —1,) Dep(k, 2) + o Do (k, 2) . (2.13)

for both the reference and approximated solutions.
More in detail, the considered scenarios are presented in the following. Each of them

is shown in Fig.

S1: no radiation and constant, initial growth rates

In the first scenario I neglect the radiation contribution to the Hubble expansion setting
Q0 =0, (2.14)

in Eq. and we impose the constant values for the growth rate
foo = fu = Q7 (z) =1 (2.15)

in the initial conditions, Eq. at z; = 99. The combination of these two assump-
tions is due to the second being a consequence of the first, for ACDM cosmologies, since
Q,,(z;) ~ 1 when no radiation is present. In massive neutrino cosmologies this is not
strictly true because of the scale-dependence of the growth rate and it therefore repre-
sents a further approximation for these models.

In general a larger density of relativistic species leads to a smaller growth of matter
fluctuations. For this reason we expect a higher amplitude of the power spectrum when
we neglect the contribution of radiation to the background. This indeed is what we see
in Fig. 2.5 for S1, where the amplitude of the power spectrum at all scales that were
within the horizon at z;, is larger than the reference case at z = 0 by 3 — 4%. Moreover,
since we are neglecting the scale-dependence of the growth rate in the initial conditions,
we see that the error induced presents, in turn, a peculiar scale-dependence at large but
still observable scales.

S2: no radiation

In the second scenario we consider the case of using the correct growth rate even when
there is no radiation in the background; to this purpose, we compute the Hubble function
setting

Q,0=0, (2.16)

in Eq. The growth rates are computed as numerical derivatives of the power spec-
trum at the initial redshift (i.e. numerically solving Eq.s on each scale). In this
case the resulting error is clearly scale-independent but still corresponds to more than
2% on the low redshift ACDM matter power spectrum, reduced to around 1.5% in the
massive neutrino case, due to the different effective number of relativistic neutrinos con-
tributing to radiation.
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S3: constant growth rate, f

The third scenario is, in a sense, the opposite of the previous one, as we consider the
effect of using the correct background evolution (with radiation and with the proper
contribution of relativistic neutrinos, as in Eq. keeping the growth rate fixed (i.e.
scale independent). In one case, that we call S3a, the constant value of the growth rate is
given by the approximation

feo = f, = Q%%5(2;), scale — independent. (2.17)

which is valid in a ACDM cosmology with no radiation in the background (though we
do have radiation in the background). Here the approximation has actually three impli-
cations: (i) the scale independence does not account for relativistic effects on large scales,
such as the contribution of radiation perturbations, (ii) the scale independence does not
account for the suppression induced by neutrinos at small scales, (iii) this approximate
value is valid only with no radiation in the background. The main discrepancy from the
correct low redshift power spectrum appears at near-horizon scales, which are affected
by about 5 — 6%. On the contrary, for scales within the horizon this approximation re-
sults in a discrepancy of ~ 0.3% in the ACDM case, but becomes more pronounced, and
relevant, being above the percent level, in presence of massive neutrinos.

It is possible, of course, to consider a similar scenario in which the growth rates are
again scale-independent, but they assume the correct asymptotic value of the cold matter
growth rate within the horizon. To do so we numerically compute the growth rate as
in Eq. considering only the asymptotic value towards small scales (therefore, well
within the horizon). We note that for the ACDM case, this procedure corresponds to the
approximation f ~ %:667. In this case, that we name S3b, in the evolved z = 0 power
spectrum, only scales above horizon show a discrepancy with respect to the Boltzmann
solution (of the same amplitude as in S3a), while scales within the horizon agree at 0.01%
level. The slight difference between case S3a and S3b for scales above horizon in the
massive neutrino cosmologies is due to the residual systematic error induced by the fact
that the asymptotic value for neutrinos ignores their scale dependence.

S4: constant mass neutrino particles

This approximation, as the following one, is specific to massive neutrinos models. In fact,
at redshifts as high as z; ~ 100, there is still a significant tail of relativistic neutrinos that
does not contribute to the gravitational potential. Particle-based N-body simulations,
however, assume massive neutrinos to be non-relativistic (i.e. matter) at all redshifts z <
z;. Avoiding this approximation would require to allow the mass of neutrino particles to
vary in time. To the best of our knowledge, however, no code in the literature considered
this possibility.

To reproduce this scenario, therefore, we modify the function B(a) defined in Eq.
which is the source of gravity in the Newtonian approximation,

B(a) = _ng(a)v (218)
using
(@) = (o + Qo) @™ (2.19)

instead of This means that in computing neutrino overdensities all neutrinos are
treated as non-relativistic particles. On the other hand, we do not modify the Hubble rate
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H(a) and the function A(a) (which only depends on the Hubble rate and its first deriva-
tive), defined in Eq. and [2.3| respectively, in order to fully account for relativistic
neutrinos in the background.

This approximation results in a negligible error on the power spectrum of the CDM
component at low redshift. The effect is larger on the neutrino component, and therefore
on the total matter power spectrum. Nonetheless, as neutrinos weight considerably less
that CDM, even on the total matter power spectrum the effect is sub-percent.

S5: no relativistic neutrinos

Finally we consider all effects of neglecting the relativistic neutrino fraction, that is both
on the perturbations (Poisson equation) as on the Hubble expansion, treating neutrinos
as a non-relativistic species also in the background, as usually done in the literature. To
do so, we extend the approximations described in S4 to the computation of the Hubble
rate and of the function A(a) (Eq. 2.3). This means that in this case we always use

Q,(a) = pa? (2.20)

and
wy(a) = 0. (2.21)

The resulting error is only slightly larger than the one of S4, however, our solution is
affected by numerical instabilities in the neutrino sector of the coupled differential equa-
tions.

From this exercise we conclude that, on the scales that at z = z; were within the hori-
zon, the greater impact (> 1%) comes from neglecting the scale dependence in the initial
growth rate of the cold matter perturbations and neglecting the radiation contribution to
the Hubble function. We should notice, in addition, that their combined effect can sum
up to an appreciable level, even when individual errors are sub-percent.

2.5 Initial conditions for accurate N-body simulations

2.5.1 Method

Considering the effects of all the possible approximations from the previous section, I
propose a method to set-up initial conditions for N-body simulations that include mas-
sive neutrinos employing a rescaling technique that minimizes systematic deviations
from predictions at low redshift. In particular, solving the fluid equations employing the
same dynamics and limitations unavoidable in N-body simulations (Newtonian frame-
work, fixed mass neutrino particles...), while at the same time matching the rescaled
power spectra to the desired z = 0 linear prediction, provides us with the initial redshift
spectra to be used to compute initial displacements and velocities.

The power spectrum of cold matter at the initial redshift of the simulation can be
written as
DEb,2FA(k> z;)

ng,ZFA(kv 0)

where the superscript B refers to the power spectrum obtained with a Boltzmann code.

Such initial power spectra differ from the solutions of a Boltzmann code, as they
scaled back in time using different physics. However, when they are evolved in the
simulation, they converge to the expected low redshift power spectra, directly computed
with a Boltzmann code.

Puy(k, z;) = PE(k,0), (2.22)
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Figure 2.5: The impact of five common approximations assumed in simulations on the linear
power spectrum at z = 0 with respect to a reference power spectrum. The vertical gray line
marks the scale of the horizon at z; = 99. The reference power spectrum is the one computed
with the two-fluid approximation, with no further approximation (i.e. it is the power spectrum
shown in figure that agrees with the output of the Boltzmann codes apart from the fact of
being in Newtonian limit). Blue lines show the effect of neglecting photons in the background in
combination with using the ACDM approximated growth rate f = Q2,°> ~ 1 (scenario S1). Light
blue lines show the impact on the low redshift power spectrum of neglecting photons but using the
correct, scale dependent growth rate (scenario S2). Note that, in the left panel, besides photons,
we do not take into account massless (hence relativistic) neutrinos. If we do the contrary and we
include photons in the background but use the ACDM parametrization for the growth rate (sce-
nario S3a) we obtain the light green lines, while a scenario with scale-independent growth rates
where the value is the correct one within the horizon is shown as scenario S3b (dark green lines).
Orange lines show the impact of including the relativistic fraction of neutrinos in the background,
but not in the computation of the peculiar gravitational potential, an unavoidable approximation
in particle-based simulations where neutrinos are implemented as particles with constant mass
(S4). Finally, red lines refer to S5, where we treat neutrinos as a completely non-relativistic specie.
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Figure 2.6: The evolution of two different initial linear power spectra at z = 99: one is directly
taken from camb, the other one is obtained with the proposed method, i.e. the z = 0 power
spectrum from camb has been rescaled to the initial redshift with the two-fluid approximation.
The two spectra are then evolved forward using the two-fluid approximation, thus mimicking
the linear (Newtonian) evolution in a simulation. In the first case, dashed lines, by construction at
high redshift the evolved power spectrum coincides with that from the Boltzmann code, but differs
from it at low redshift (reaching a lack of power > 5% at large scales at z = 0). On the other hand,
our rescaling (solid lines) introduces a discrepancy at high redshift and large scales (due to the
fact that in our Newtonian approximation all photon perturbations are inevitably neglected), but
allows us to recover a sub-percent agreement with the linear power spectrum from a Boltzmann
code at lower redshifts (z < 10).
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Fig. shows the difference between setting the initial conditions directly with a
Boltzmann code or with the rescaling procedure. In this case I show results obtained
using camb, with a total neutrino mass M, = 0.15 eV, but the same holds for class.

In the first case (dashed lines in the plot) the power spectrum at initial redshift by
construction corresponds with the Boltzmann code predictions. However, as redshift
increases, the evolved power spectrum departs from the prediction, reaching a ~ 6%
lack of power on large scales. This is due to the combination of the Newtonian nature of
the evolution, and the non-relativistic approximation adopted for neutrino particles, in
accordance to most N-body codes.

On the other hand, in the second case, the power spectrum at the initial redshift
shows the expected mismatch from the Boltzmann code solution. However, as the spec-
trum is evolved in the Newtonian framework, it converges to the Boltzmann power spec-
trum, with sub-percent accuracy for z < 10.

It is important to note that this procedure introduces a scale dependent correction
on large scales and high redshift. This spurious, albeit motivated, excess of power can
in principle interfere with the nonlinear growth of structures, since it blends together
the contributions of different modes. However, nonlinearities become important at low
redshifts and small scales, and therefore we expect the rescaling technique not to modify
the fully nonlinear growth, since for z < 10 the effects of the rescaling have completely
decayed.

To show that this method allows us to recover the correct nonlinear power, I tested
the method with N-body simulation.

2.5.2 Tests with simulations

I have analysed a set of N-body simulations produced by F. Villaescusa-Navarro, both
with and without massive neutrinos. I provided the initial conditions set using the
rescaling procedure presented above, testing, for the neutrino case, both the scenario
54 (rescaling for a simulation with Hubble function that does not include the relativistic
evolution of the neutrino density) and S5 (rescaling for a simulation that employs the
correct Hubble function, for example reading it from a table).

The simulations have been run using the TreePM code GADGET-III (Springel| 2005).
The size of the periodic simulation box in all our simulations is set to 2 A~ Gpc. We have
run simulations for three different cosmological models: a massless neutrino cosmology
and two models with massive neutrinos corresponding to M, = 0.15 eV and M, = 0.3
eV. The relatively large values of M, are justified by the purpose to test our method. All
simulations share the value of the following cosmological parameters: Q,, = Q¢+, =
0.3175, Qp, = 0.049, Q5 = 0.6825, h = 0.6711, ny = 0.9624 and A, = 2.13 x 10~?. In the
models with massive neutrinos we set Q. = Q,, — ), where Q, = M, /(93.14 eV h?). We
notice that, since all models have the same normalization of the amplitude of the linear
power spectrum at the epoch of the CMB, the value of og will be different in each model:
og = 0.834, 0.801, 0.760 for the models with M,, = 0.0, 0.15, 0.30 eV, respectively.

We follow the evolution of 7683 CDM particles, plus 768% neutrino particles in the
models with massive neutrinos, from z = 99 down to z = 0. In order to carry out
convergence tests, we have also run a second set of simulations with 5123 CDM and
neutrino particles. The gravitational softening length is set to 1/40 of the mean inter-
particle distance, both for CDM and neutrino particles.

Initial conditions are generated at z = 99 by displacing and assigning peculiar ve-
locities to particles, that initially are located on a regular grid, using the Zel’dovich ap-
proximation. For neutrino particles we also add a thermal velocity component. The am-
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Figure 2.7: Ratio of the power spectra measured in the simulations to nonlinear predictions for
ACDM (left panels) and massive neutrinos, M, = 0.15 eV (middle panels) and M, = 0.3 eV
(right panels). Nonlinear predictions are computed from the linear outputs of camb, applying 2-
loop corrections computed with the code RegPT for the CDM+baryon component only. The top
panels show the power spectra of the cold dark matter component, while the bottom ones show
the total matter power spectra. Colours from blue to red correspond to different redshifts, namely
2z =0,1,9,99. Solid lines refer to the simulations with N = 2 x 768° particles, while dotted lines
to the simulation with N = 512° particles.

plitude of the thermal velocities is determined by randomly sampling the Fermi-Dirac
distribution of the corresponding model while the direction is taken randomly within
the sphere. Thermal velocities dominate neutrino dynamics during the first time-steps,
having a dispersion roughly five orders of magnitude larger than the dispersion of pecu-
liar neutrino velocities. Instead of sampling the modes amplitude in Fourier-space using
a Rayleigh distribution (as in a Gaussian distribution), we collapse the distribution to its
mean value. It can be shown that a simulation run with the initial conditions generated
in that way will have the correct 2-point statistics with a lower variance (Angulo and
Pontzen| 2016).

The displacements and peculiar velocities are computed taking into account the scale-
dependent growth factor and growth rate using the procedure described in the previous
section. We have modified the N-GENIC code to achieve this. In the simulations with
massive neutrinos we have generated the initial conditions for the scenarios 54 and S5
(see table ??). The simulations have been run using a tabulated Hubble function, that is
different for each model and scenario, that controls the time evolution of the background
in the simulations.

I show in Fig. [2.7|the relative error between the power spectra of total matter, P, (k),
and cold matter, P, (k), measured in the simulations and their corresponding nonlinear
predictions, for M, = {0,0.15,0.30} eV.

Nonlinear predictions have been obtained feeding the camb power spectra to the
code REGPT (Taruya et al.,[2012), implementing the multipoint propagator expansion of
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Bernardeau et al.|(2008). In particular, the prediction is computed at the 2-loop level. Fol-
lowing|Castorina et al.|(2015), nonlinear corrections in the presence of massive neutrinos
are applied only to the cold matter component, as the neutrino auto power spectrum
and the cold-neutrino cross power spectrum are well described with linear theory at all
redshifts.

The spectra obtained from the simulations show a 1% agreement with predictions
at all redshifts but z = 0 for the more resolved case (N = 7683 particles, solid curves
in the figure). Regarding the z = 0 power spectrum, 2-loop regularized perturbation
theory, such as the one employed here, is known to underestimate the nonlinear power
spectrum (Taruya et al} 2012). An interesting feature is that, in the cases with mas-
sive neutrinos, perturbation theory is more able to reproduce the nonlinear low-redshift
spectrum. This is a consequence of the neutrinos smoothing the gravitational potential,
hence producing a more linear growth of structures.

Regarding the effect of the choice of resolution, Fig. shows that, as expected, a
lower mass resolution results in less accurate estimations of the power spectra. In this
case, at redshifts higher than 0, the agreement between measures and prediction is at
~ 2% level. Moreover, the presence of massive neutrinos seems to worsen the resolution
effect. For example, there is a residual resolution effect on mildly nonlinear scales in
the case with nonzero neutrino mass, that dos not cancel out even in the most resolved
case presented here. However, the trend passing from N = 5123 to N = 768° particles
is clearly of alleviating this problem. Moreover, for higher resolution simulations (like
those in (Castorina et al.,[2015; Carbone et al., 2016), this discrepancy disappears.

The main point of this figure is that the excess of power introduced in the initial
conditions at z = 99 completely corrects the large scale effects due to the Newtonian
nature of the simulation, and allows for recovering, for neutrino N-body simulations,
the same level of accuracy as in a standard ACDM simulation.

This results hold both for the simulations set-up within scenario 5S4 and S5. The two
scenarios differ at large scales, the second beeing closer to the Boltzmann code power
spectrum, as neutrinos enter the Hubble function with no approximation. In this case, at
the initial redshift, the discrepancy from camb amounts to 0.05% at k ~ 0.1 h Mpc™'. At
the same scale, the S4 scenario results in a mismatch of ~ 2%. However, whatever the
choice of the scenario for the rescaling, once the spectra are evolved in a consistent way,
they both converge to the expected power spectrum. As a matter of fact, the difference
between the spectra in the simulation started with S4 and S5 at z = 0 is less than 0.05%
for both neutrino masses.

On last remark regards the total matter power spectrum measured in the simulations
with massive neutrinos. From figure[2.7)it seems not to agree, at high redshift, with the
theoretical prediction, while on the same scale P, has sub-percent agreement. Moreover,
such discrepancy disappears moving to lower redshifts. This apparent discrepancy is
present because the simulation treats neutrinos as completely non-relativistic particles,
while the prediction accounts for their relativistic tail. The total matter power spectrum
can be written as

P (2) = [1 = fu () Pu(2) + 200 (2)[1 = fu ()] Pev (2) + T2, (2) P (2) (2.23)
where §, is the neutrino fraction. The simulation uses as a neutrino fraction

ch 0(1 + Z)S ch 0
o, _ Hebo. 2.24
f QV,0<1 + 2)3 Q1/70 ( )
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Figure 2.8: The largest halo in the first set of the DEMNUni simulations, on the left in the realiza-
tion without massive neutrinos and on the right in the case with M, = 0.53 eV. The image shows
a cube centered in the center of mass of the halo and with side 100 h~! Mpc. Even by eye, the
neutrinoless case appears more clustered and nonlinear, while the case with massive neutrinos
shows a smoother matter distribution. This picture has been produced with SPLASH (Price}2007).

while the prediction is computed using the redshift dependent

ZORE =1

where Q, () is computed solving Eq. Combining the measurements of the different
components using the latter definition of f, makes this mismatch completely disappear.
However, | present measurements as they are, since the former definition of the neutrino
fraction is consistent with the physics implemented in the simulation.

(2.25)

2.6 Application to the DEMNUni simulations

The Dark Energy and Massive Neutrino simulations (DEMNUni, |Castorina et al., |2015;
Carbone et al.||[2016) are a set of large N-body simulations that explore different choices
of neutrino total mass and of dynamical dark energy parameters wy and w,, where the
equation of state of dark energy is always w = wy + (1 — a) w,. They have been produced
by Carmelita Carbone at the CINECA supercomputing facility.

The first set of 4 simulations is mainly focused on the effects of massive neutri-
nos, exploring the range M, = {0,0.17,0.3,0.53} eV. Each simulation has a box size
of 2000 2~ Mpc and contains 2048 cold matter particles and, if present, 2048° neutrino
particles. The softening length is set at 20 A~ kpc, and the mass of the cold matter par-
ticle is around 8.27 x 10'° h=1 My. As an example of the insight on the neutrino effects
that these simulations provide, in figure[2.8|I show the same dark matter halo at z = 0 in
the realization with M, = 0 eV and M, = 0.53 eV. Already by eye, the case with nonzero
neutrino mass shows a smoother distribution of dark matter, whereas the ACDM case
shows a more clustered and nonlinear structure.

The second set of simulations is more focused on the interplay between neutrinos and
dynamical dark energy. In this case, 10 simulations explore the possible combinations of
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DEMNUm II, snap = 048, z = (0.48551
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Figure 2.9: The matter power spectrum at z ~ 0.5 measured in the DEMNUni simulations and
compared to linear predictions from camb and nonlinear predictions obtained with halofit.
Different colors correspond to different combinations of [M,, wo, w,]. In the bottom panel, solid
lines are ratios with respect to the nonlinear prediction while dotted lines refer to the linear theory.

M, ={0,0.16} eV, wy = {—1.1,—1,—-0.9} and w, = {0,+0.3}. The simulation box side,
number of particles, softening and mass resolution are the same as in the previous set.

For this second set of simulations, I have produced the rescaled power spectra em-
ploying the technique described in the present chapter. As a result, this is the first large
set of simulations including massive neutrinos that can be directly compared to theoret-
ical predictions computed by a Boltzmann code, with sub-percent accuracy.

As an example, I report in Fig. -the matter power spectrum measured at z >~ 0.5 in
the different cosmologies of the second set of DEMNUni simulation, and in Fig. 2.10]the
mass function of spherical overdensities (defined with respect to d200, the overdensity
200 times denser than the mean) and of FoF haloes, fitted with the models of Tinker et al.
(2008) and (Crocce et al.[(2010) respectively.

As these spectra and mass function show, some of these combinations of cosmo-
logical parameters can mimic a ACDM universe, despite being, in terms of parameters,
quite far from that. Hence the importance of accurate simulations to address possible de-
generacies and study combinations of cosmological probes that are capable of breaking
them.
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Figure 2.10: The mass function, at z ~ 0.5, of spherical overdensities (defined by a contrast 200
times denser than the average) and of FoF haloes, in the upper and lower panels respectively.
While plots on the left show the actual mass function, plots on the right show ratio taken respect
the ACDM case. The model fitted to the SOs is the one by [Tinker et al](2008), while FoF groups

are fitted following|Crocce et al.{(2010).







CHAPTER 3

The galaxy clustering ratio

In Chapter [I we have seen that it is possible to predict many statistical properties (the
variance, two-point correlation function and/or power spectrum, and also higher order
statistics) of the matter field. However it cannot be directly observed. In fact, we must
rely on the observation of galaxies and clusters of galaxies, which form in the densest
peaks of the matter overdensity field and, as a consequence, represent a biased sampling
of the underlying matter distribution.

One of the challenges of present-day Cosmology is, therefore, to connect the predic-
tions of the clustering properties of matter to the measured galaxy clustering. This task is
made even more difficult to accomplish since, on small scales, the biasing function might
be extremely complicated to predict, being modified by nonlinearities of the matter field,
nonlinearities of the galaxy formation processes and stochasticity of the sampling.

One possible approach to tackle such a problem is to try to parametrize the bias and
fit it to observations. In this case, it can be considered as a nuisance parameter that
is eventually marginalized over. On the other hand, one can search for cosmological
observables which are blind to such small scale complications. The latter option, which
is the main topic of the present chapter, complements, without substituting, the other
approach. In fact, the next chapter, |4} will present some work on the modelling of the
nonlinear galaxy bias.

A possible approach to describe the biasing function is the one proposed by [Fry and
Gaztanagal|(1993). It consists in considering that the matter overdensity ¢ can be mapped
into the galaxy overdensity J, with a local, deterministic function ¥, such that

5,(@,t) = F(3(x, 1)) . (3.1)
Assuming that the function F' is smooth enough, it can be Taylor expanded as

dg(x,t) = i b 5 (x, 1), (3.2)

i!
i=0

where the b; coefficients are called bias parameters of order i. The zeroth-order term
guaranties that, whatever the order we choose to stop the expansion, the mean of the
galaxy density contrast is zero, thus

iy Ay T
Sg(m,t) = 7' §'(x,t), with by=—>_ ; (6% (3.3)
i=0 i=2

Although recent studies have shown that this is not the most accurate approach, it nev-
ertheless offers a good description of the bias (Bel and Marinoni, 2014). For a more
comprhensive review on bias see, e.g., Desjacques et al.| (2016).
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3.1 Definitions

In this section I will always consider the smoothed density field. As a matter of fact, we
want to link the matter overdensities J(x) to the overdensities in the discrete galaxy
distribution ¢4 (x). While the former can be obtained as a theoretical prediction, it is not
possible to measure the latter. A more feasible approach is to measure, instead of the
overdensity in a point, the overdensity in a sphere.

Assuming there is a mean density N of galaxies (or, for this matter, any structure) in
the universe, then the overdensity of galaxies in a sphere of radius R is given by

dg,r(,t) = N]‘{]’jﬁg;) -1, (3.4)

where N, r(x,t) is the number of galaxies in a sphere centred in « and of radius R, and
N, r = N, 47 R?/3 is the mean number of galaxies in a sphere of radius R.

At this point, also for the matter field we must define a smoothed overdensity, which
corresponds to applying a top-hat filtering to the matter overdensity field. It can be

written as

o
Sn(x) :/5(9:)14/('”” R‘” |) 432, (3.5)
where
r 1 1 <R
Wl—=)=+—— - 3.6
<R) %WGR3 {0 otherwise . (36)

Thinking the matter overdensity field as a superposition of waves, this corresponds to
a low-pass filter that selects only the waves with wavelength smaller than the size of
the sphere. On the other hand, since we collapse all the information of the sphere in
one point, when looking at the smoothed overdensity field we expect to have lost all the
information coming from scales smaller than the size fo the spheres. As a consequence,
fixing a smoothing scale corresponds to fixing the minimum scale from which we can
extract information.
In Fourier space the top-hat window function becomes a modulation,

Wk, R) = 3[Sin(kR)(;£)1§ cos(kR)] _ %jl(kR), 37)

Jj1 being the first order Bessel function.

In the framework of the hierarchical growth of fluctuations, in which smaller per-
turbations sum up to create larger ones, each higher order statistics can be expressed in
terms of combinations of lower order ones. The cumulant

(), = Sp oY 3.8)
and
(07 10"), = Coum ER(r) o T2 (3.9)

In general, one can predict the variance and 2-point correlation function of the smoothed
overdensity field as given by

0% =4r /O k2dk P(k) W2(kR) , (3.10)
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Er(r) =4n /O - k2dk P(k) W2(kR) jo(kr), (3.11)

where jo(2) = sinx/x is the zeroth order Bessel function.
Bel and Marinoni| (2014) defined the clustering ratio as the ratio between the correla-
tion function and the variance of the smoothed field,

() = S (3.12)

ORr

In the remaining part of this section I will review some of the main features of the
clustering ratio, which have been already studied in detail, in ACDM cosmologies, in
the paper cited above.

Defining a quantity as a ratio has several advantages regarding the bias. When the
filtering scale is large enough, one can truncate the bias expansion at leading order. In
this case, the galaxy power correlation functions can be linked to the matter correlation
function through

&g.r(r) = biEr(r), (3.13)

while the variance follows
o) g =biok. (3.14)

As a consequence, the galaxy clustering ratio smoothed on this scale ends up being an
unbiased quantity,

Ng,r(r) = nr(r), (3.15)

the clustering ratio of galaxies being exactly the same as the one predicted for matter.

Relaxing the linear assumption, but still employing the local deterministic bias model,
using the hierarchic relations that connect higher order statistics to variances and corre-
lation functions presented in Eq.s one can obtain, at second order,

Ng,rR(T) ~ Nr(r) — {(SB,R —Clia,r)c2 + ;Cg} Er(r) + %Cg nr(r) Er(r), (3.16)

where c; = by/b; and S3 g and Ci2 g come from the hierarchic relations. Expression
can be employed to asses the contribution of higher order corrections. With a large
enough smoothing scale R, the second order terms are suppressed and the clustering
ratio is unbiased. In addition, note that possible non-local contributions would only
modify ¢ in the above expression (Bel et al.}[2015).

The evolution in time of the clustering ratio is given by the combined evolution of
the correlation function and of the variance. In general, they are very simple to compute
in linear theory, but become more tricky when nonlinearities are considered.

In linear theory, the growth of an overdensity is simply parametrized using its growth
factor D(z) (see Eq. [L.50). The evolution of the linear matter power spectrum can be
written, as a consequence, as

P(k,z) = D*(z) P(k,z = 0). (3.17)
This allows us to write the variance and correlation function according to

) D*(2) Fr

(2 = 0) D*(2) G G18)
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where

[ k2dk P(k)W?(kR)
Fr= "% .

J5° k2dk P(k)W?2(krs)
[ k2dk P(k)W?2(kR) jo(kr) .

J57 k2dk P(k)W?2(krs)

)

(3.19)
Gr(r) =

The clustering ratio can therefore be written as the ratio

~ Gr(r)
=

nr(r) (3.20)

which does not depend on redshift.

However, the nonlinear evolution of the power spectrum introduces a slight depen-
dence of the clustering ratio on redshift. In Fig. [3.1]I show that such evolution, albeit
weak, is nevertheless detectable when the softening scale decreases. Nevertheless, it
allows to easily compare the clustering properties at high and low redshift.

Finally, we must consider the observational effect introduced by the peculiar veloci-
ties of galaxies. In fact, galaxies not only move because they are dragged by the expan-
sion of the space-time, but also posses peculiar motions due to the shape of the grav-
itational potential in which they are embedded. In particular we expect to see a bulk
motion of galaxies, attracted towards the overdense regions of the universe. At the same
time, in the high density, virialized regions, we expect galaxies to acquire thermal ve-
locities, that can be even larger than their cosmological recession velocity. The former,
known as the Kaiser effect (Kaiser, [1987), is well described in linear theory. The latter,
instead, stems from the nonlinear growth of collapsing regions, and therefore is much
harder to describe.

As a consequence of these two effects, when we measure the redshift of a galaxy,
instead of observing its cosmological redshift, zcosmo, We see the sum of z¢osmo and the
apparent redshift due to the Doppler effect induced by the peculiar motion of the galaxy,

Zobs = Zcosmo 1 Zpec- (3.21)

Using redshift measures to assign distances to galaxies, therefore, we displace such
galaxies along the line of sight. This effect introduces distortions in the measured corre-
lation function and power spectrum of galaxies, known as redshift space distortions. Due
to redshift space distortions we cannot consider the observed 2-point statistics of galax-
ies to be isotropic.

Being the clustering ratio a smoothed observable, small scale modes are washed
away. Therefore, by accurately choosing the smoothing radius R, one can neglect the
nonlinear effect, and only take into consideration the Kaiser effect (Kaiser) [1987). In ad-
dition, when measuring the clustering ratio in redshift space I will always consider the
average over all the angles, thus, in Eq. I will replace the configuration space power
spectrum with the monopole of the redshift space power spectrum in the Kaiser limit,

+1
1/ Ps(k)dp = {1+ §f+ éfﬂ P(k), (3.22)

RW=5 [

where 1 is the angle between the line of sight and the wavemode k, f is the growth
rate and P" (k) is the real space linear power spectrum. A desivation of this formula is
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Figure 3.1: The evolution of the clustering ratio with redshift. The clustering ratio is plotted as a
function of the smoothing scale R. Different colors correspond to different redshifts from z = 0 to
10. When computed in linear theory (dotted lines) the clustering ratio shows no redshift evolution,
and all the curves lay on on top of the other. Adding nonlinearities (dashed lines) introduces a
weak, but detectable, redshift dependence.
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presented in appendix|B| The clustering ratio in redshift space on linear scales therefore
becomes

{1 + %f + éﬁ] Er(r)

mp = D L3 B D), 6:23)
IR [1+3f+5f2}0% R

which is the same as in real space.

The clustering ratio, as shown by Bel and Marinoni| (2012), can be estimated with a
count-in-cell method. Assuming spherical cells, with mean number of objects per cell
given by N, then the discrete density contrast is

Sy = — —1, (3.24)

where N; is the number of objects in the i-th cell.
The estimator of the variance in this case is

1 p
5 Z o2 (3.25)
and the one of the correlation function is
Lyy
— 9id; , (3.26)
pq i=1 j=1

where §; and §; are separated by a distance r. Thus, the estimator of the clustering ratio
reads

in(r) = 222, (3.27)

Here we are dealing with discrete quantities, therefore we need to properly account
for the shot noise. We imagine to be dealing with a continuous stochastic field A(x) that
we want to smooth and discretize to reproduce our situation. The density of this field in
a sphere of radius R centered in a point x is

Alzx) = /V Maz')d32/, (3.28)

sphere

while we call the mean density in a sphere A. The density contrast of this smoothed field
is
d(x) = — -1 (3.29)

The discretization of this field can be modelled as a Poisson process with intensity func-
tion A and intensity measure A. In this context A is the number of points expected in
the bounded region of radius R. The factorial moments for a Poisson point process are
given by

(A" =(N(N=1)...(N =k +1)) = ((N)}) (3.30)

and for the two point statistics

(A (@1)AT(@2)) = ((N)F(N2)F ) (3.31)



The galaxy clustering ratio 57

For the variance we have

s (A% (Nev-) (VD1 1 1
<5(a:)>f<A>2 Tl Frre LPE@ 5 63

This is telling us that we need to correct the estimator of the variance to subtract the
shot noise contribution, that is given by the inverse of the mean number of objects per
spheres. Quite sensibly, a sparser sample gives rise to a larger shot noise, while a very
dense sample results less affected.

On the other hand, for the 2-point statistics we have

C(AN@)A (=2)) L (NING) L e
(6(1)d(m2)) = ) 1= o uqujZ&laj (3.33)

hence we can conclude that the correlation function does not need a correction, as long
as the spheres used to compute it do not overlap.

Iimplemented the count-in-cell method in a C code. The smoothed variance is com-
puted filling the volume with spherical cells on a regular grid. The radius of each of
these spheres is equal to the chosen smoothing radius. To compute the smoothed cor-
relation function, I surround each cell on the grid (called seed) with a motif of 18 cells
that are isotropically distributed around the seed, the distance of their centers from the
center of the seed being equal to the chosen correlation length.The grid of seed cells is
chosen to guarantee that all the cells in the motif fall within the considered volume.

3.2 Clustering ratio and neutrinos

In chapter [I.3|T have introduced the effects that massive neutrinos induce on the back-
ground evolution and on the growth of structures in the universe. In particular, one
of the most notable consequences is the emergence of a characteristic scale dependence
in the clustering properties of matter and galaxies, due to the neutrino free streaming.
This implies that, comparing two cosmologies with same (2,,, and no other difference
except from the presence of massive neutrinos, the clustering on large scale is the same,
while on scales smaller than the free streaming scale, Arg, the clustering in the neutrino
cosmology is suppressed compared to the standard case.

Such suppression of power is the key signature of the presence of massive neutrinos
since, for the scales on which it takes place and the shape of the transition, it is in prin-
ciple distinguishable from other possible scale dependencies, like the one induced by
baryons on very small scales (see for example Mummery et al.,[2017).

However, the presence of a scale dependence in the growth factor, could spoil the
good properties of the clustering ratio, namely its very weak dependence on redshift,
bias, redshift-space and distortions. For this reason I have employed the DEMNUni
simulations (introduced in section2.6) produced by Carmelita Carbone (Castorina et al.,
2015; |Carbone et al.}|2016) to test the behaviour of the clustering ratio in the presence of
neutrinos.

3.2.1 Bias

To test whether its independence from bias is kept by the clustering ratio also in cos-
mologies with massive neutrinos, I have first looked into the behaviour of the linear bias
in the DEMNUni simulations. The linear bias can be obtained both from the smoothed
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Bin | Muin [102227 1 Mg | Miax [1027~1 M]

0 0.58 1.16
1 1.16 2.32
2 2.32 3.28
3 3.28 4.64
4 4.64 6.55
5 6.55 9.26
6 9.26 30

7 30 100
8 100 -

Table 3.1: Mass bins defined to compare the behaviour of the clustering ratio in different bias
regimes, depending on the mass of the tracer.

correlation function and from the smoothed variance of the halo (friends-of-friends) dis-
tribution, namely

Er.n(r)
by = 4| 2R 3.34
"= Enineo (1) (.39
and
2
by, = Ug"”h(r). (3.35)
UR,theo

In order for the clustering ratio to be unbiased, they must coincide.

In principle this can depend on the considered choice of smoothing radius R, but
also on the mass of the tracer. As a matter of fact, tracers of different mass evolve in
different ways, thus giving rise to differences in the biasing function to be applied to the
underlying matter field. To compare these cases and check which are the bias regimes in
which the local, linear bias approximation breaks down, I have divided the DEMNUni
halo catalogues according to the mass bins shown in table



bin 0 bin 1 bin 2 bin 3 bin 4 bin 5 bin 6 bin 7 bin 8

M, =0.00 eV 0 0 | 2902221 | 3509393 | 2402274 | 1708375 | 2878557 | 758008 | 145410

. — 0.48551 M, =0.17eV 0 0 | 3152025 | 3178910 | 2430866 | 1667315 | 2712374 | 690356 | 122241

M, =0.30eV 0 0 | 3116471 | 3269324 | 2263001 | 1642694 | 2589654 | 634844 | 104539

FoF M, =0.53eV 0 0 | 3273517 | 3026718 | 2144285 | 1501769 | 2334332 | 532432 | 76127
M, =0.00 eV 0 0 | 2571902 | 3039264 | 2003119 | 1358767 | 2044706 | 389064 | 38299

. — 1.05352 M, =0.17eV 0 0 | 2713196 | 2674546 | 1958721 | 1277479 | 1836860 | 328973 | 28852

M, =0.30eV 0 0 | 2620295 | 2674912 | 1767015 | 1218810 | 1679768 | 283298 | 22244

M, =0.53eV 0 0 | 2619539 | 2335248 | 1570202 | 1036782 | 1386909 | 206588 | 13059

M, =0.00eV | 453415 | 2973241 | 2783664 | 2361431 | 1669494 | 1210036 | 2064503 | 527389 | 88178

. — 0.48551 M, =0.17eV | 471602 | 2993986 | 2904400 | 2118437 | 1668026 | 1166042 | 1917029 | 470522 | 72097

M, =0.30eV | 486007 | 2997527 | 2842491 | 2159522 | 1559049 | 1112575 | 1806821 | 424202 | 60046

5O M, =0.53eV | 508713 | 3259563 | 2582711 | 1956593 | 1424500 | 1014066 | 1587591 | 343288 | 41497
M, =0.00eV | 363148 | 2449897 | 2433901 | 2030689 | 1373779 | 952365 | 1446087 | 263959 | 22482

= 1.05352 M, =0.17eV | 359806 | 2376103 | 2479355 | 1766898 | 1330746 | 885172 | 1280841 | 218832 | 16462

M, =0.30eV | 354938 | 2304946 | 2374992 | 1750620 | 1206312 | 819053 | 1157522 | 184575 | 12287

M, =0.53eV | 341645 | 2359735 | 2069025 | 1500656 | 1039892 | 694588 | 932357 | 130319 6834

Table 3.2: Population of the 9 mass bins for he Friend-of-Friends (FoF) and spherical overdensities with respect to the critical density (SO) at redshift

z = 0.48551 and z = 1.05352.
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Table shows how such mass bins are populated by haloes identified with the
firends-of-friends algorithm and by spherical overdensities. For the friends-of-friends
haloes, due to the minimum number of particles required to recognize a halo (in this
case Np min = 32), the first two mass bins are empty. However, for haloes identified as
spherical overdensities, there is no such hard cut, the only limit being given by the mass
resolution of the simulation. For this reason, spherical overdensities do populate also
the first two mass bins.

Figures [3.2| ans [3.3| show the linear bias obtained from the correlation function and
variance measured in simulations at redshift 2 ~ 0.5 and z ~ 1 respectively. Moreover
they also show the measured clustering ratio compared to theoretical predictions. Each
of these quantities is shown both for the standard ACDM case, and for the case with
M, = 0.53 eV, i.e. the most extreme case available.

The linear bias in these figures is obtained with respect to the nonlinear theoretical
prediction from dark matter (halofit). This means that, in the massive neutrino case, I
am using the prediction for cold dark matter + baryons, and not the one for total matter
(see for example Castorina et al., 2015). The bias appears to be flat with respect to scale
for all the mass bins to very good accuracy. The clustering ratio, at redshift z ~ 0.84 is
very well described by the theoretical prediction, up to 3% accuracy on all scales, for the
low-mass bins, while the two highest-mass bins are well described at 10% level. This in
general is due to the fact that these mass bins represent extreme values of the linear bias.
Moreover such bins are also affected by larger statistical errors, as they contain fewer
objects.

Quite notably, the case with M, # 0 shows an even higher concordance between
measures and predictions, probably due to the more linear growth of structures in the
presence of massive neutrinos.

Things are a little different at higher redshift. As a matter of fact, even if for the low-
mass bins the concordance between measures and predictions is very high (better than
at lower redshift, because of smaller and more regular nonlinearities), the two highest-
mass bins are in complete disagreement with predictions. This is most likely due to lack
of mass resolution in the simulations. As a matter of fact, moving back in time, we expect
that not enough haloes of such masses have formed in the simulation. Moreover, in the
massive neutrino case, we expect an even more sever lack of high-mass haloes at high
redshift, which is confirmed also in Fig.

To isolate the dependence of the clustering ratio on the mass of the considered tracer,
in Fig. and I fix the smoothing scale to R = 16 h~! Mpc and the correlation
length as r = 2R = 32 h~! Mpc and plot the clustering ratio in the different mass bins.
In particular Fig. uses the friends-of-friends haloes, while Fig. uses spherical
overdensities. Both figures once again shown that, as redshift increases, the high-mass
bins not only exhibit larger statistical error (due to being sparsely populated) but also a
significant systematic error.

3.2.2 Redshift-space distortions

To test the clustering ratio in redshift space, starting from the FoF and spherical over-
density catalogues in real space, I have constructed the redshift space catalogues. To
do so I have chosen the z-direction as the line-of-sight direction, implicitly assuming a
plane-parallel approximation, thus considering the whole box placed along the line of
sight.

Employing this approximation, assuming the simulation box has cartesian coordi-
nates (r,7y,7.), one only has to modify the . coordinate of the catalogue according to
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Figure 3.2: The linear bias as a function of the smoothing scale for the different mass bins defined
in table obtained using the correlations function (on the left) and the variance (central panel)
of the haloes (friends of friends) in the DEMNuni simulations with M, = 0 and 0.53 eV (above

and below respectively) at redshift z

0.48551. The panel on the right shows the clustering

ratio. Both the bias from the correlation function and from the variance are flat to very good
approximation (the flat lines shown are obtained fitting a straight line to the bias in the range
16 < R/(h~" Mpc) < 22). Black lines are theoretical predictions in linear (dashed) and nonlinear
(solid) theory. The bias is defined here wrt nonlinear theory. The clustering ratio agrees at 3% level
with the predictions for the low-mass bins, while the high-mass bins agree on at 10% level. These
is probably due to both the extreme bias of these objects and their sparsity, the former introducing
a systematic effect and the latter a large statistical error.
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FoF, M, = 0.00, z = 1.05352
i T T

R [h~Mpd]

Figure 3.3: Same as in figure but for redshift z = 1.05352. Again the clustering ratio, in the
low-mass bins, agrees very well with the theoretical preditions. Moving towards tracers of higher
mass, even if the accuracy of the description decreases, it is still acceptable (at 10% level). The
highest mass bins, however, is completely discordant from the predictions, probably because of
mass-resolution effects (at this redshift the simulation has not formed enough haloes of this mass).
This consideration is supported also by the fact that the mismatch with theory increases with the
neutrino mass.
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Figure 3.4: The clustering ratio at fixed scale (smoothing R = 16 h~! Mpc and correlation r =
2R = 32 h™! Mpc) as a function of the mass of the tracer, for friends of friends, at redshift z =
0.48551 (on the left) and z = 1.05352 (on the right). Different colors correspond to the different
cosmologies, with M, = {0,0.17,0.3,0.53} eV. In the upper panel, measures are compared to the
theoretical prediction (straight lines). In the lower panel, it is shown the percentage difference
between measures and predictions. The shaded region corresponds to a 5% discrepancy. Points
are slightly horizontally displaced around the center of the bin in order not to overlap.
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Figure 3.5: Same as Fig. but for spherical overdensities.

the displacement
vz (1 + 2Zbox)
}y(zbox) ,

where v, is the z component of the velocity of the object and zy0x the cosmological red-
shift of the comoving output of the simulation (snapshot).

Fig. B.6]shows the clustering ratio measured in real and redshift space, and their ratio,
for the reference ACDM cosmology and the cosmology with M, = 0.53 eV, at redshift
z = 0.48551 and 1.05352. The case with M, = 0 eV had already been studied in [Bel and
Marinoni|(2014). Here I find the independence from redshift space distortions confirmed
on all scales to better than 3% level, which is in agreement with the results of said paper.
Also for the case with massive neutrinos, the independence of the clustering ratio from
redshift space distortions, on these same scales, is confirmed at 3% level at z ~ 0.5. At
z ~ 1 it reaches 1% level on scales larger than R = 16 h~! Mpc. The higher accuracy at
higher redshift is caused by structures growing in a less nonlinear regime.

The clustering ratio is therefore confirmed as being very weakly dependent on redshift-
space distortions, and even less so in cosmologies with massive neutrinos. As a matter
of fact, as neutrinos tend to reduce the velocity dispersion, in cosmologies with M,, # 0
redshift-space distortions appear in a more linear regime, making the agreement be-
tween the clustering ratio in real and redshift space even better.

(3.36)

S
r,="r,+

3.3 Optimization

One of the most delicate points in the clustering ratio is the choice of smoothing scale R
and correlation length r, the latter being usually expressed as a multiple of the former,



The galaxy clustering ratio 65

z = 0.48551 z = 1.05352

T 1 L B T T[T T T T T T T T T
0.20f 4F .
[ 2\ 1P o ]
[ SN F & AN ]
r \‘ e . ]
0.18F - 8 B o .
~ : \\\ ['] \\\\ + \i \\\ 4
or IS : R :
= 0-16F I T h N ]
s | I T 1 - :
£ 0.4 b 1k .
= [ - . 1 5w ]
& [ e recal space, M, =0 eV \\\\z \\\ﬁ 1r i \x\\i S~ ]
0.12[ o redshift space, M, =0 eV N i 1r '\\\\\! ]
[ real space, M, = 0.53 eV 1t § 1
0.10F ¢ redshift space, M,, = 0.53 eV - ]

1.05 H—H—+—+—+4—+—+—+—+—+—+—+—— 1
= i vl ]
YN R S T N N ]

= . ~

= B s L S B B
= ] s ]
P I Y U H YRRV RPN | U R R R R
' 10.0 12.5 15.0 17.5 20.0 22.5 10.0 12.5 15.0 17.5 20.0 22.5

R [h~" Mpc] R [h~! Mp(]

Figure 3.6: Upper panels: the clustering ratio in real and redshift space (filled and empty markers
respectively) measure in the ACDM simulation (red circles) and in the M, = 0.53 eV simulation
(blue diamonds). Dashed lines represent the predicted clustering ratio in the two cosmologies,
using the nonlinear power power spectrum (halofit). Lower panels: the ratio between the clustering
ratio in redshift and real space. The shaded area marks a 3% mismatch. Again, circles are for
ACDM and diamonds for M, = 0.53 eV.
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r = nR. One must find the combination of these parameters that minimizes noise and
uncertainty and maximizes cosmological information.

The smoothing scale, the radius of the spheres used for the smoothing, controls the
scale under which we make the clustering ratio blind to perturbations. A sufficiently
large smoothing scale allows us to screen undesired nonlinear effects, that would com-
promise the effectiveness of the clustering ratio. On the other hand, choosing a smooth-
ing scale that is excessively large would result in very noisy measurements, since in the
same volume we could accommodate fewer spheres. Moreover, if R is too large, most of
the information is screened and the measurement becomes little interesting.

Also for the correlation length, choosing small values implies coping with small-scale
nonlinearities, which risks to invalid the identity expressed in Eq. 3.15] Large values of
r, however, make it difficult to accommodate the entire motif of spheres require for the
measurement in a given volume.

An additional constraint to consider is the fact that if < 2R the spheres of the motif
would overlap. This results in a shot-noise that would affect the correlation function.
For this reason I choose, in this work, to only allow values of n > 2.

The information we want to extract, in this case, is primarily the effect of neutrinos,
in particular the neutrino total mass. This can be quantified as an effective signal to noise
ratio, defined as

(T7 V) — 77R(7"7 ACDM)
o,(ACDM) ’

where ng(r,v) is the clustering ratio measured in a simulation with neutrino mass M,,
nr(r, ACDM) is measured in the reference ACDM simulation and o, ,(ACDM) is the
error measured in the ACDM simulation. This quantity measures how much a neutrino
cosmology is distinguishable from a ACDM, given the typical errors on the measures of
the clustering ratio for the specific box, redshift and for the current choice of R and n.

Fig. shows the (n, R) plane, constructed as a grid of correlation lengths n €
[2,2.75], with step An = 0.05 and smoothing scales R € [15 h~! Mpc, 30 h~! Mpc]|, with
step AR = 1 h~! Mpc. For each point on this grid the value of the S/N is represented
with a color. The effects of massive neutrinos are more appreciable on small scales (both
small R and small n), corresponding to larger difference between the two cosmologies
combined with smaller errors.

While we want to maximizes the S/N quantity, we want to minimize errors. In partic-
ular we can define a theoretical error that measures the mismatch between the measured
clustering ratio and the prediction, like in

S/N = 2 (3.37)

Su = nr(r) — n%(T)7 (3.38)

On

where ng(r) is the clustering ratio measured in a given cosmology, n(r) the prediction
in that cosmology and ¢, the uncertainty on the measurement. In this case we want to
select the regions in the (n, R) plane where such theretical error is minimum, which are
the choices of n and R that guarantee that the identity [3.15]is satisfied.

Fig. shows the theoretical error computed in the same (n, R) parameter space.
Here small values of R and n are associated with the highest mismatch between mea-
sures and theory, since on such small scales, where nonlinearities are quite important,
the assumptions made on the bias break down.

It is seminal, at this point, to find a way of estimating the optimal combination of
(n, R), since to maximize neutrino effects we should look at small scales while to mini-
mize errors we should avoid them. In order to find a sweet-spot I define here a combined
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M, =0.17 eV, z = 0.48551
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Figure 3.7: The effective signal-to-noise measures the distance between the clustering ratio in a
massive neutrino cosmology (in this case M, = 0.17 eV) and in a ACDM cosmology, in terms of
the error on the measure in the ACDM case. The regions in the (n, R) plane that exhibit the reddest
colour are the ones where distinguishing the effects of neutrinos is easiest (large difference and/or
small errors).
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M, = 0.17 eV, z = 0.49
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Figure 3.8: The theoretical error measures the mismatch between the measured clustering ratio
and it prediction, normalized to the error on the measurement. The blue regions represent the
choices of n and R that minimize it.
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percentage error, which accounts both for statistical errors and systematic ones, and as-
sumes the form

v v,th ACDM
beombinea = § e~ _{r) ki . 339
et {nﬁ(r)—nﬁcw(?‘) T — TP )

The quantity in the first parentheses is related to how much the statistical error is impor-
tant with respect to the effects of neutrinos, while the second parenthesis is a weight that
accounts for the typical uncertainty on the measure in a bin of R and n.

We want to minimize this combined error and maximize the effective signal-to-noise
ratio defined in[3.37] Let

o S/N 6combined
¢= max(S/N)  max(Scombined) (349

be the neutrino contrast, then the optimal situation is the one in which C' ~ 1.

Fig [3.9| shows the neutrino contrast in the usual parameter space, for a cosmology
with M, = 0.17 eV, at redshift z = 0.48551. I have repeated the same analysis for all
the available cosmologies (M, = {0.17,0.3,0.53} eV) and for different redshifts from
z = 0.48551 to z = 2.05053. As a result, the most viable candidate is the choice R =
22 h~! Mpcand n = 2.1.

3.4 Parameter estimation

The final goal of this work is, once the properties of the clustering ratio have been con-
firmed also in the presence of massive neutrinos, to employ it to constrain cosmological
parameter, in particular the total neutrino mass M, and/or the dark energy equation of
state w.

The idea is to fully exploit the identity

N,r(r) = nr(r), (3.41)

comparing the clustering ratio measured in a galaxy survey (unavoidably in redshift
space) to the predictions for matter in real space. In particular, the constraining power
comes from the different dependence these two quantities have on cosmological param-
eters.

The measured clustering ratio depends on the parameters that regulate the conver-
sion of redshifts into distances, namely the matter density parameter €2,,, the dark en-
ergy fraction 2, and the Hubble function H(z).

The predicted clustering ratio depends on the full set of parameters of the adopted
cosmological model. I will consider a baseline model with six free parameters, the Hub-
ble parameter today Hj, the CDM density parameter Q.4,,h?, the baryon density pa-
rameter (,h?, the optical depth 7, the spectral index of scalar perturbations n;, and
A, the amplitude of scalar perturbations at the epoch of the CMB at a pivotal scale
kpivot = 0.05 R Mpec~ L. Altogether, they for the vector of parameter of the baseline model

DPraseline = {HOa chmh27 Qbh27 Ty Ns, As} (342)

On top of this vector, I consider two additional free parameters: the total neutrino mass
M, and the dark energy equation of state w. In all cases I will assume the universe to be
flat, fixing Q, = 0.
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Figure 3.9: Neutrino contrast in the (n, R) parameter space. The contrast is obtained as the nor-

malized effective signal-to-noise ratio minus the normalized combined error, and is optimal when
approaches 1.
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I will explore the posterior distribution of the parameters of the model. In general,
given the vector of parameters 1 and a set of observations x, realizations of a random
variable X, the posterior distribution p(d¥|x) is the probability of the considered set of
parameters ¥ given the observations x, and is computed as

p(¥x) = p(z[9) p(9) (19), (3.43)

p(x)
where p(z|9) is the likelihood, i.e. the probability of the observations given the param-
eters, and p(1) is our prior belief about the parameters. Finally p(x) is the probability
of the observations, which is intrinsically not known. To work around our ignorance of
p(z) one can adopt an MCMC approach, in which, independently of the specific algo-
rithm of choice, the parameter space is explored in terms of the ratio of the likelihood in
couples of points. Since the prior is known and the probability of the data p(x) is inde-
pendent on the choice of parameters, the ratio of the likelihoods is equivalent to the ratio
of the posterior in the considered points. For this reason, MCMC chains converge to the
true posterior distribution, even if we do not know the intrinsic probability distribution
of the data.

In|Bel and Marinoni| (2014) the likelihood obtained from the clustering ratio has been
shown to be Gaussian to very good approximation. Here I repeat this analysis to make
sure neutrino effects do not spoil this property.

While in the ACDM case many mock catalogues are available to repeat the measure
in different, independent realizations of the same cosmology, for the case with neutrinos
I only have access to the DEMNUni simulations. Fortunately, they are large enough that
64 jackknife resamplings can be performed, each time subtracting a large enough volume
to affect the measures while, at the same time, keeping enough volume to have a robust
statistics.

Figures[3.10jand 3.1T|show 64 measurements of the clustering ratio at different smooth-
ing scales and correlation length, the former in a ACDM cosmology and the latter in a
cosmology with M, = 0.53 eV. In all cases, I have tested the hypothesis the data are
gaussianly distributed. To do so, I chose a Pearson’s x? test. To perform it, the data must
be binned (here 9 bins are employed). In each bin B; one can measure the observed
frequency

0;=> 1, (3.44)

JEB;

and predict a expected frequency, according to the hypothesis we are testing,
E,=N / dz p(z), (3.45)
B;

where N is the total number of observations and p(z) is the probability density function
corresponding to the probability law considered (in this case a Normal distribution). The
Pearson’s variable is defined as

where n is the number of bins. A property of such variable is that, as the rank of the sam-
ple tends to infinity, it converges to a x? distribution with n — 1 degrees of freedom. For
this reason, we can fix a significance level of the test (in this case oo = 0.05) and compare
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Figure 3.10: CR gaussianity
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Figure 3.11: CR gaussianity
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the Pearson’s variable obtained with the p-value of a x? distribution with significance a.
Hence we have
p(P>xi o(n—1)) =a. (3.47)

In Fig.s the Pearson’s variable is compared to X2 ¢5(8) = 16.92, and when the
hypothesis of gaussianity is accepted a green tick is drawn in the plot, while otherwise a
red mark appears. Only on very large scales, R = 20 h~! Mpec, r = 80 — 88 h~! Mpc, the
test does not confirm the gaussianity of the distribution, probably due to the sparseness
of the sample. In all other cases, the hypothesis of gaussianity cannot be rejected at 5%
significance level.

I therefore approximate the true likelihood with a Gaussian. For simplicity (and
mainly for computational reasons) I will work in terms of the log-likelihood £, which
corresponds to the x?,

ir(r,9) — 0tk (r,9))?
X2(9) = —2L(9) =) i )02’7 i(r9)] 7 (3.48)
i i
where i spans all the measurements of the clustering ratio considered. For measurements
taken at different redshifts, I will neglected the covariance between the different redshift

bins.

3.4.1 Alcock-Paczinriski effect

Since the redshift to distance conversion depends on the choice of cosmological param-
eters, it becomes important to model this dependence, to understand how the measure
would change if performed in a different cosmology.

One approach consists in choosing a reference cosmology, in which the measurement
is performed. This cosmology becomes the fiducial cosmology, with parameters 9. Now
we want to know how the measure would change under a generic choice of parameters
9. The Alcock-Paczinski effect describes exactly how parallel and transverse distances
differ in different cosmologies (Alcock and Paczynski, 1979).

The modification of a regular volume induced by a different choice of cosmological
parameters is given by

V =a3pV7F, (3.49)

where V¥ is the volume in the fiducial cosmology, and aap is a correction factor that can
be written as (Eisenstein et al., 2005)

1/3

]”;((ZZ)) (g%ﬂ . (3.50)

AP =

In appendix[C]I present a derivation of this formula.

The clustering ratio only depends on distances through the smoothing scale R (the
correlation length being taken to be a multiple of the latter, r = nR). For this reason,
the only requirement to scale the measure of the clustering ratio in a cosmology different
from the fiducial one, is to correct the smoothing scale R = aap RY.

In this work I will always fix the fiducial cosmology to compute the measured clus-
tering ratio. I will compare measures obtained assuming this cosmology to predictions
(obtained leaving the cosmological parameters free) that assume the same redshift to
distance relation. The comparison therefore becomes between

Mg, RF (nRF) = Narpr(NaapR). (3.51)
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3.4.2 Constraints using SDSS data

I have explored the likelihood of the vector of parameters defined in Eq. [3.42]in the
parameter space, using the clustering ratio measured in the 7*" (Abazajian et al., 2009)
and 12" (Alam et al.,2015) data release of the Sloan Digital Sky Survey (SDSS).

Details on the computation of the clustering ratio and its errors in the SDSS can
be found in Bel et al.| (2015). The sample is divided into three redshift bins with z =
{0.29,0.42,0.60}. The first redshift bin comes from the DR7 catalogue, while the other
two from the DR12, after removing the objects already present in the other bin.

The fiducial cosmology in which measures are performed has Hy = 67km s~! Mpc™*,
Q,, = 0.32, and Q, is forced to be zero, imposing 25 = 1—,—,,. The choice of smooth-
ing radius and correlation length follows from the previous section, devoted to the
optimization of the clustering ratio, i.e. R = 22 h=! Mpc and r = nR, with n = 2.1.

The measures obtained are

<72<043, n,(r)=0.0945 % 0.0067 ,
0.30 <2< 0.53, 1, r(r) =0.0914 % 0.0055 , (3.52)
<z<0.67, n,r(r)=0.1070+0.0110.

The posterior distribution obtained using these data, compared to the predictions of
the clustering ratio, is shown in Fig. The set of free parameters is the one presented
in however only four, relevant parameters are shown in this figure. In this figure
we can see by eye that the constraints on the total neutrino mass do not improve sig-
nificantly when we add the clustering ratio to the CMB data, while the most significant
improvement is on the cold dark matter density parameter Q.h?.

Besides the baseline parameter set, I have also computed the posterior distribution
leaving also the equation of state of dark energy w as a free parameter. This is because
this parameter is known to be strongly degenerate with the other parameters when only
CMB data are used, since, at the time the CMB photons decoupled, the energy density of
the dark energy fluid was negligible. Therefore, it is interesting to check if a geometrical
probe such as the clustering ratio, which is sensitive to the universe at later times, is
capable of breaking such degeneracies. This additional posterior distribution is shown
in Fig. Already by eye, it is clear that adding the clustering ratio indeed breaks the
degeneracy of w with the other parameters, favouring a universe with w ~ —1. Also the
constraints on the other parameters significantly improve once this degeneracy has been
broken.

Moreover, also the combination with other cosmological observables can help break-
ing degeneracies and tightening the constraints on the parameters. In particular, I am
going to compare the constraining power of the clustering ratio with two other probes,
the position of the BAO peak in the correlation function measured by the BOSS collabo-
ration (Anderson et al.,2014) and the lensing of the CMB signal due to the intervening
matter between the last-scatter surface and us (Planck Collaboration et al.} 2016). In the
latter case, the amplitude of the lensing potential has been fixed so that A, = 1. Table[3.3]
shows the mean, 68% and 95% levels of the marginalized posterior distribution for all
the free parameters in the eight different probe combinations considered: CMB and clus-
tering ratio with the baseline free parameters, and CMB, clustering ratio, CMB lensing
and BAOs with the additional free parameter w.

To better show the behaviour of the clustering ratio with respect to the other probes
considered, Fig.s and [3.15| particularly focus on w, M, and Hy.

In general, adding the clustering ratio considerably improves on the constraints ob-
tained with CMB data alone, especially when also w is free to vary. In particular, the
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Figure 3.12: The 2D contours of the posterior distribution obtained using jointly the clustering
ratio measured in the SDSS DR7 and DR12 and Planck’s temperature and polarization anisotropies
(TTTEEE). In green blue, the result obtained using only Planck’s data is shown for reference. Only
four of the seven free parameters are shown here. Inner, solid regions correspond to 68% contours,
semi-transparent regions correspond to 95% contours.
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Figure 3.13: The 2D contours of the posterior distribution obtained using jointly the clustering
ratio measured in the SDSS DR7 and DR12 and Planck’s temperature and polarization anisotropies
(TTTEEE). In green blue, the result obtained using only Planck’s data is shown for reference. In this
case the free parameters are p = {Ho, Qcamh?, Quh?, 7, ns, As, w}. Inner, solid regions correspond
to 68% contours, semi-transparent regions correspond to 95% contours.
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Qph? Q.h?
Pl (fixed w) 0.02222  +0.00017 +0.00033 0.11978  +0.00147  +0.00291
Pl+CR (fixed w) 0.02222  40.00016 +0.00031 0.11972  +0.00128  +0.00255
Pl 0.02222  +0.00016 +0.00034 0.11971  £0.00142  +0.00281
Pl+CR 0.02216 ~ +0.00017 +0.00033  0.12042  40.00149  +0.00290
Pl + CLens 0.02217  +0.00017 +0.00035 0.11967  40.00153  +0.00299
Pl + BAO 0.02225  +0.00015 +0.00030 0.11949  40.00134  +0.00263
Pl+CLens + CR  0.02213  40.00016 +0.00032 0.12026  +0.00145  +0.00288
Pl+ BAO+CR  0.02223 40.00015 +0.00030 0.11965 =+0.00132  +0.00261
T M,
P (fixed w) 0.07851  +0.01713 +0.03355 0.16722 < 0.19150 < 0.49402
Pl+CR (fixed w) 0.07801 40.01744 +0.03330 0.15795 < 0.18088 < 0.47835
Pl 0.07737  4+0.01793 +0.03483 022153 < 0.26698 < 0.60851
Pl+CR 0.07469  +0.01754 +0.03403  0.20304 < 0.24510 < 0.53081
Pl + CLens 0.06927 +0.01749 +0.03420 0.32882  40.19711 < 0.67219
Pl+BAO 0.07728  +0.01705 +0.03304 0.11571 < 0.14235 < 0.30423
Pl+CLens + CR  0.06909 40.01681 +0.03237 0.29440 +0.17524 < 0.59471
Pl+BAO+CR 007731 40.01666 +0.03147 0.10844 < 0.13143 < 0.28339
w In(100Ay)
Pl (fixed w) -1.00000 — - 3.09167  +0.03332  £0.06510
Pl + CR (fixed w) -1.00000 — — 3.09042  40.03375  £0.06497
Pl -1.68615  +0.29543  40.59285  3.08881  +0.03490  +0.06751
Pl+CR -1.25376  +0.24254  +0.52000 3.08537  +0.03368  £0.06550
Pl + CLens -1.67628  +0.35984 +0.66750 3.07148  +0.03387  +0.06578
Pl+BAO -1.05867 +0.07959 +0.16354 3.08846  +0.03305  +0.06428
Pl+CLens + CR  -1.22298 40.23981 +0.51234 3.07259  +0.03189  +0.06176
Pl+BAO+CR  -1.05267 40.07749 +0.15731 3.08903  +0.03209  +0.06098
Ng Hy
P (fixed w) 0.96531  +0.00478 +0.00951 66.36205 193320 4314533
Pl + CR (fixed w)  0.96550 40.00456 40.00906 66.47015  T-72733 4293440
Pl 0.96500  +0.00473 40.00953 86.91446  TiZH208 41559971
Pl+CR 0.96389  +0.00487 +0.00967 73.04263 +6.83317 +14.51362
Pl + CLens 0.96452  40.00502 40.00978 84.62450  TLLE138 41685512
Pl+BAO 0.96612  +0.00451 +0.00886 68.60048 +1.67361  +3.36935
Pl+CLens + CR 096385 40.00493 +0.00946 71.08454 =+6.31034 +13.48706
Pl+ BAO+CR 096595 40.00453 +0.00888 68.42143 +1.63637  +3.26416

Table 3.3: Mean, 68% and 95% levels for each parameter of the marginalised posterior.
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Figure 3.14: The degeneracy between Ho and w (left) and between Y m, and w (right) using the
posteriors obtained employing only Planck’s data (blue) or adding the clustering ratio (green),
BAOs (orange) and both (red). The 68% and 95% contours are shown.
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Figure 3.15: The degeneracy between Ho and w (left) and between " m, and w (right) using the
posteriors obtained employing only Planck’s data (blue) or adding the lensing of the CMB (green),
the clustering ratio (orange) and both (red). The 68% and 95% contours are shown.
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Qyh2 Q.h?

Pl 0.02244 40.00016 +0.00034 0.11948  +0.00157 +0.00314

Pl1+CR 0.02242 +0.00015 =£0.00030 0.11950 =£0.00136  =+0.00265
T M,

Pl 0.09332  40.01644 +0.03291 020477 < 0.26441 < 0.42993

Pl1+CR 0.09199 +0.01659 =+0.03229 0.20843  +0.11909 < 0.41013
w In(1019Ay)

Pl -1.00000 — - 3.05893  +0.03169  +0.06381

Pl+ CR -1.00000 — — 3.05620  +0.03264  +0.06422
Ng Hy

Pl 0.95937  40.00518 #0.01015 66.65175 +£1.43657 +£2.67394

PI1+CR 095969 +0.00458 4+0.00918 66.60347 +1.23252 +£2.41851

Table 3.4: Joint posterior obtained using Planck temperature and polarization data and the clus-
tering ratio. Bestfits here are fixed, errors for Planck come from the publicly available covariance
matrix, error on the clustering ratio have been compute in SDSS DR7 and 12.

clustering ratio is able to break the degeneracy between w and the other cosmological
parameters that affects the constraints drawn with the sole CMB data. On the other
hand, the clustering ratio does not seem to improve much on the constraints on M, ob-
tained both by the CMB lensing and BAO peak position.

The clustering ratio proves to be extremely sensitive to the cold dark matter fraction
Qcam, as adding the clustering ratio information to the CMB analysis results in a 12%
improvement on the 95% confidence level.

To improve the level of understanding of these results, however, it is important to
check how well the clustering ratio is able to recover a known cosmology. To do so, I use
the measures of the clustering ratio in one of the DEMNUni simulations, the one with
M, = 0.17 eV, which represents the closest case to the current available constraints on
the neutrino total mass. The clustering ratio is measured in the simulation at the same
redshift, and with the same binning, as in the SDSS data. The error on the measurements
here is the one from the SDSS measures.

For the CMB data, in this case, I approximate the likelihood with a gaussian covari-
ance matrix and I fix the best fits to match the cosmological parameters of the simulation.

The posterior distribution obtained with this exercise is shown in Fig. Table
sums up the constraints from the marginalised posterior.

The clustering ratio is able to recover the bestfits of the known cosmology very pre-
cisely. The errors on the parameters, however, are compatible with the ones obtained
from the real data, and the neutrino mass upper limit does not particularly improve.
This points towards the idea that the uncertainties on the SDSS measures are too large
for the clustering ratio to significantly tighten the constraint on the total neutrino mass.
Smaller uncertainties, like the ones expected from future galaxy surveys, could in prin-
ciple lead to more robust neutrino constraints. In the next section, I test this hypothesis,
applying the clustering ratio to a Euclid-like synthetic galaxy survey.
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Figure 3.16: The 2D contours of the posterior distribution obtained fixing a known cosmology.
Planck data are taken to be in a cosmology with same parameters as the M, = 0.17 eV simulation,
with errors given by the covariance matrix provided by the Planck collaboration. The clustering
ratio has been measured in the simulation with M, = 0.17 eV. Only four of the six free parameters
are shown. Inner, solid regions correspond to 68% contours, semi-transparent regions correspond
to 95% contours.
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z V [h=3 Mpc?] N

0.7 2.75625346 x 10°  3.65142000 x 10°
0.8 3.20219789 x 10°  6.54721800 x 10°
0.9 3.60913887 x 10°  7.09283850 x 10°
1.0 3.97413794 x 10°  7.23869700 x 10°
1.1 4.29687503 x 10°  7.09319550 x 10°
1.2 4.57872089 x 10° 6.76143750 x 106
1.3 4.82206481 x 10°  6.40477650 x 106
1.4 5.02984405 x 10°  5.58098550 x 10°
1.5  5.20522534 x 10°  4.65646350 x 10°
1.6 5.35139703 x 10°  3.46346250 x 10°
1.7 5.47143942 x 10° 2.31274650 x 106
1.8 5.56824925 x 10°  2.21206050 x 10°
1.9  5.64450058 x 10°  1.34057400 x 10°
2.0 5.70262958 x 10°  7.46419500 x 10°

Table 3.5: Mean redshift, volume of the bin and number of galaxies contained in each bin for the

synthetic, Euclid-like survey

3.4.3 Forecasts for a Euclid-like galaxy redshift survey

To forecast the expected constraining power of the clustering ratio with future, Euclid-
like data, first of all I have chosen a Euclid-like redshift range, from z = 0.7to z = 2. I
have divided it into 14 redshift bins of width Az = 0.1. Tab. B.5|shows the mean redshift,
the comoving volume and the number of galaxies for each of such bins.

In each bin, the clustering ratio is computed taking the expected value (obtained in-
tegrating a power spectrum produced by a Boltzmann code) and adding a small random
noise (within 1 sigma).

For the errors to associate to the measures, I started from the errors measured in the
same redshift bins in the simualation with M, = 0.17 eV. I then rescaled these errors
following the scaling relation used in [Bel et al.| (2015), that accounts for the difference
in volume and number density between the simulation and the synthetic survey. Such
scaling relation has the form

on

n

In?p

2 ln(0.0Q)} } ’ (3:58)

= AVY? exp {0.14 [lnp —

where V is the volume expressed in h=3Mpc?, pis the object number density in h3Mpe ™3
and A is a normalization factor (obtained from the reference volume and number den-

sity).
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Oy h? Q.h?
Pl 0.02243  +0.00016 +0.00031  0.11942  +0.00146  £0.00290
P1+CR 0.02245 +0.00013 +0.00026 0.11926  +£0.00084 +0.00167
T M,
Pl 0.09335 +0.01747 +0.03445 0.20513 £0.12382 < 0.43157
Pl1+CR 0.09422 +£0.01655 =+£0.03298 0.17749  +0.11133 < 0.37693
w In(100Ay)
Pl -1.00000 — — 3.05859  +£0.03378 +0.06670
P1+CR -1.00000 — — 3.06008 +0.03262 £0.06476
Ng Hy
Pl 0.95983 +0.00491 +0.00964 66.66588 +£1.38464 +2.62998
Pl1+CR 096046 £0.00443 +£0.00854 66.98261 +1.12263 £2.18365

Table 3.6: Mean, 68% and 95% levels of the marginalised likelihoods. Note that in this case bestfits
have been fixed to the ones of the fiducial cosmology, errors for Planck are obtained from the
publicly available Planck parameter covariance matrix and error for the clustering ratio are the
ones predicted for a Euclid-like galaxy survey, following the procedure described in the text.

Thanks to this procedure, the synthetic data for R = 22 h~! Mpc and r = 2.1 R are

nr(r,z = 0.74658) = 0.0977 + 0.0023,
nr(r,z = 0.81056) = 0.1009 + 0.0024,
nr(r,z = 0.87688) = 0.0982 + 0.0021,
nr(r, z = 0.99958) = 0.1000 + 0.0020,
r(r, 2 = 1.12875) = 0.1004 = 0.0020,
r(r, 2 = 1.24679) = 0.9799 =+ 0.0020,
nr(r,z = 1.32910) = 0.0956 + 0.0019,
nr(r, z = 1.39368) = 0.0981 + 0.0020,
( )

( )

( )

( )

( )

( )

3

3

nr(r, z = 1.45825) = 0.1008 £ 0.0020,
r(r,z = 1.59455) = 0.1003 + 0.0021,
nr(r,z = 1.73842) = 0.0956 + 0.0023,
nr(r,z = 1.81435) = 0.0988 £ 0.0021,
nr(r, z = 1.89027) = 0.0970 £ 0.0024,
nr(r, z = 2.05053) = 0.1004 £ 0.0027.

3

(3.54)

Using this data, in combination with the Planck covariance matrix, with best fits fixed
to the ones of the reference cosmology, I obtain the posterior distribution shown in Fig.
Table [3.6/shows the means, 68% and 95% limits for the free parameters.

In this case there is a much larger improvement on all the constraints. The neutrino
total mass improves by 14% on the 2-¢ limit with respect to using Planck alone. Most
notably, the constraint on the cold dark matter density parameter, ¢4, h?, improves by
over 40%. Also the spectral index ns shows a 10% improvement and the constraint on
the Hubble constant H, improves by 20%.
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Figure 3.17: The 2D contours of the posterior distribution obtained using jointly the cluster-
ing ratio expected for a Euclid-like galaxy survey and Planck’s temperature and polarization
anisotropies (TTTEEE). In blue, the result obtained using only Planck’s data is shown for refer-
ence. Inner, solid regions correspond to 68% contours, semi-transparent regions correspond to
95% contours.



The galaxy clustering ratio 85

This means that, when new data, covering a larger volume, will be available, the
clustering ratio is expected to contribute to a significant improvement on the constraints
on the parameters of the cosmological model.

Note also that, as more different observations are carried out, it becomes very in-
teresting to enhance the constraining power of the clustering ratio also combining its
measurements in different datasets. This can be easily done since the clustering ratio is
a single measure, thus scarcely dependent on the survey geometry.






CHAPTER 4

Effects of neutrinos on the galaxy power spectrum

In the previous chapter, I addressed the problem of describing the galaxy-matter bias-
ing function choosing a smoothed cosmological observable, the clustering ratio, that on
certain scales is blind to bias and to nonlinear effects. However, this approach precludes
the information coming from the small scale clustering of galaxies. A complementary ap-
proach, aimed at exploiting the large amount of information encompassed in the small
scale range, is to model the galaxy power spectrum in the fully nonlinear regime. This
task is not simple since the galaxy-matter relation and the galaxy formation details are
in large part unknown. Moreover, when we add new parameters to describe the nonlin-
ear galaxy bias, we incur the risk that they can mimic neutrino effects. In this case, the
degeneracy between bias parameters and the neutrino total mass might undermine the
constraining power of the galaxy power spectrum.

To model the nonlinear clustering of galaxies, once again we need simulations. Hy-
drodynamical simulations, which evolve at the same time both the dark matter and the
baryonic (gas) components, can be used to study the processes of galaxy formation in-
side dark matter haloes (one recent example being given by the BAHAMAS simulations,
McCarthy et al.,|2017). However, such simulations, being quite expensive, often do not
cover large volumes.

Another approach, which nevertheless benefits from calibration with hydrodynami-
cal simulations, is to search for models to populate the dark matter haloes of a N-body
simulation with galaxies. One of the fundamental frameworks in which such models
can be developed is the Halo Occupation Distribution (HOD), which is naturally de-
fined within the formalism of the Halo Model (Press and Schechter), [1974; |(Cooray and
Sheth, |2002; Berlind and Weinberg), [2002; Zheng et al., 2005). In the HOD approach the
galaxy population is split into centrals and satellites. The number of central and satellite
galaxies in each halo only depends on the mass of the host halo itself. On top of that,
within the framework of semi-analytic models, we try to develop recipes, calibrated on
some physical observables (such as the angular correlation function), to describe galaxy
formation processes and assign sensible characteristics to these galaxies, such as lumi-
nosities, colors, stellar populations, star formation rates and so on (see, for example, the
review by |Baugh| |20006).

Finally, yet a different approach is represented by the Sub-Halo Abundance Match-
ing (SHAM). This is a class of models that place galaxies in the deepest wells of the
gravitational potential, employing a matching between a galaxy property and a halo
property. For example, [Vale and Ostriker| (2004) assumed galaxy luminosities to be a
monotonic function of halo mass, or |Guo et al.[(2010) showed that the stellar mass of a
galaxy is well described by a function of the maximum mass ever attained by its halo.
More recent implementations of SHAM flavours have subsequently been developed, for
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example by matching the luminosity function of galaxies to the circular velocity of sub-
haloes (Irujillo-Gomez et al., 2011). One interesting point about the SHAM approach
is that many galaxy properties (such as positions and velocities, but also the number
of satellites in a dark matter halo) directly come from the simulation itself, and are not
assigned ad-hoc.

In this chapter, I will employ the sub-halo abundance matching technique to popu-
late the first set of the DEMNUni simulations with galaxies. To this purpose I will use
the sub-haloes produced by C. Carbone by post-processing these simulations with the
subfind code, which is part of the GADGET suit (Springel, 2005). This code analyses
haloes found with a Friend-of-Friends algorithm and determines the sub-haloes corre-
sponding to local minima in the potential. While haloes in the DEMNUni simulations
are composed of a minimum number of particles N/, ;. = 32, sub-haloes are formed
at least of N3, = 20. After producing the galaxy catalogues, I will study the galaxy
power spectrum in the presence of neutrinos, comparing it to some popular models of
galaxy bias.

4.1 Sub-Halo Abundance Matching

Sub-Halo Abundance Matching is a technique employed to populate a dark matter sim-
ulation with galaxies. Its basic idea is to connect properties of a dark matter sub-halo
with properties of the galaxy living in it. In practice, the dark matter sub-halo acts as a
proxy of the depth and shape of the potential well, so that galaxies, in the SHAM for-
malism, are placed in the center-of-mass of such sub-haloes and inherit their velocities.

One of the most common choices is to place galaxies according to the maximum of
the Newtonian circular velocity of sub-haloes at a given redshift,

G M(< R)

7 ; (4.1)

VUcirc,max — Max

which is sensible both to the depth and to the shape of the profile of local minima in the
gravitational potential.

There exist also other possible flavours of SHAM, which differ in the choice of the
proxy for the potential wells. |(Chaves-Montero et al.| (2016) thoroughly examines many
possible choices, investigating their consequences by comparing to hydrodynamic sim-
ulations.

In this work, I populate the first set of the DEMNUni simulations with galaxies, us-
ing the SHAM technique and choosing the maximum of the circular velocity defined in
Eq. as the SHAM parameter. I force the galaxy population to match three different
choices of number density, namely 7 = {1 x 1073,3 x 10=*,1 x 10~*} h* Mpc~®. Each
of these choices is not a randomly sparser sample, but a more biased sampling of the
original population, since each of them correspond to a higher cut in vgirc,max. The mass
function of sub-haloes with the different cuts in vcirc max 1S shown in Fig. Indeed,
as the number density decreases, the low-mass end is depleted, meaning that we are
selecting more biased objects.

As a result of the selection, we expect the three samples to represent complete galaxy
populations, each of them reproducing a specific HOD model, with given number of
central and satellite galaxies per halo mass. Fig. 4.2|shows the number of sub-haloes per
halo of a given mass, for the three different samples. As the number density decreases,
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Figure 4.1: Mass function of sub-haloes selected adopting different cuts in the maximum circu-
lar velocity vcirc,max. The cuts correspond to number densities of 7 = {1 x 10,3 x 107%,1 x
10~*} h® Mpc ™.

the minimum mass needed to form a central galaxy increases. Moreover, forcing cos-
mologies with and without massive neutrinos to have the same number density, intro-
duces a scatter in the number of satellite per halo. As a matter of fact, to reach the same
number density, in a cosmology with massive neutrinos a higher number of satellites
needs to be assigned to a halo of a given mass, with respect to the standard ACDM case.

These galaxy catalogues allow for measuring the fully nonlinear galaxy power spec-
trum from simulations with different neutrino masses. Moreover, even if at this stage I
have not assigned physical properties to the galaxies, the three arbitrary cuts in number
densities provide us with samples characterized by different bias properties.

4.2 Galaxy constraining power

The main goal of this work, which exploits the galaxy catalogues created from the DEM-
NUni simulations in the fashion described in the previous section, is to assess the ques-
tion whether the galaxy power spectrum is informative about the value of the total mass
of neutrinos, or the parameters introduced to describe the galaxy-matter bias are degen-
erate with neutrino effects.
To this purpose, | measure the power spectra of the galaxy samples with i = 10733 Mpc™

and 7 = 10~*h® Mpc 3. To measure these power spectra I employ the code presented
in Sefusatti et al. (2016) and publicly avaﬂableﬂ Since the direct summation method is
computationally very expensive when dealing with a large number of objects, I choose

3

Thttps://github.com/sefusatti/PowerI4
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Figure 4.2: Each sub-halo sub-set, selected to reproduce a different number density, corresponds
to a different HOD. The minimum mass required to have a central galaxy increases as the sample
gets sparser. Moreover, forcing the models with and without massive neutrinos to have the same
number density, introduces a scatter in the number of satellites that is not present when the entire
sample is used (solid lines).
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to compute power spectra assigning particles to a density grid in real space, that is sub-
sequently Fourier transformed. The fourth order mass assignment scheme provided in
this code minimizes grid effects, and the interlacing of two grids alleviates the aliasing
due to the finite size of the grid.

The error on the estimation of the power spectrum should in principle account for
the covariance among the different k bins, according to Eq.

The non-Gaussian part of the covariance matrix can be important when nonlinearities
are considered, as they introduce a coupling between different wavemodes. However, at
this stage, I approximate the covariance considering only its Gaussian part, and neglect-
ing the trispectrum. [Blot et al.| (2015) showed that this approach leads to an underestima-
tion of the error on the fitted cosmological parameters. However, the goal of this work
is investigating the degeneracy between nonlinear bias parameters and neutrino effects:
Therefore I will leave the quantification of the impact on the parameter constraints to a
future work. In the remaining part of this chapter I will present Gaussian errors on the
power spectrum, which correspond to the diagonal terms of the covariance matrix.

I will consider different biasing models. In all cases with non-zero neutrino mass, I
will assume the galaxy power spectrum to be connected to the underlying linear cold
matter power spectrum (CDM + baryons), as

P, = F(P%). (4.2)

The fact that the power spectrum of structures depends on the power spectrum of the
cold component only is justified, in the case of dark matter haloes, in |Castorina et al.
(2015). Arguably, on the scale where galaxy formation is effective, neutrino perturba-
tions are negligible (they enter only as long wavelength modes), and the matter distri-
bution is dominated by CDM and baryons, as can be seen in Fig. Moreover, I choose
here to define the bias with respect to the linear theory prediction, even if, from the sim-
ulations, I have access to the fully nonlinear cold matter distribution. This choice relies
on two reasons: first it is an attempt to proceed as in the analysis of real data, when
the information on the underlying field is not accessible; second, nonlinear effects are
described as a function of the variance of the linear power spectrum, usually smoothed
ona 8 h Mpc™' scale, thus making the linear prediction the quantity of interest in this
analysis. For the time being, moreover, I will limit my analysis to the real space power
spectrum, which serves as a proof-of-concept of the method, while I plan to extend this
analysis in the future to the multipoles of the power spectrum in redshift space.

To assess the goodness of the fit of a model to the measured power spectrum, I com-
pute the x?, in the Gaussian-error approximation, with the estimator

N
>A<2 — Z [ng(ki) _Cl?fnodel(ki)]Q . (4.3)

i

Note that this quantity follows a x? distribution with N — N,, degrees of freedom, N,
being the number of parameters of the model. A goodness of fit test with significance
a = 0.05 can therefore be performed stating that

P > XN =Ny) = o, (4.4)

where x3__ (N — N,) is given by

Xi_a(N=N,)
l—a= / dx? x3(N = N,) . 4.5)
0



92 4.2 Galaxy constraining power

DEMNUni - M, = 0.32 eV — z = 0.48551

ol %'{--I-I'EI

[}
i
[]

10%

P(k) [h=3 Mpc?]

100

- \
i \
\
\
L \ ]
\
\
MR A | L TR R B { L A | L L

0.01 0.1 1

Figure 4.3: The power spectrum of total matter, P, (k), of cold matter, P.;(k), and of neutrinos,
P, (k), in the DEMNUni simulation with M, = 0.32 eV, at redshift z = 0.48551. The Gaussian er-
rors on the measured power spectrum are shown in the plot. Dashed lines correspond to the non-
linear prediction for the matter power spectrum, the nonlinear prediction for the cold power spec-
trum and the linear prediction for the neutrino power spectrum. For wavemodes k > 0.1h Mpc™*
nonlinearities in the total matter power spectrum are induced by the growth of dark matter per-
turbations (CDM+baryons) while the contribution of neutrino perturbations is negligible.

As a consequence, if x? > x%__ (N —N,) the model is rejected, otherwise it is not rejected.

For each of the nonlinear biasing models I will first show the minimum scale that can
be included in the fit without rejecting the model. Then, I will try to fit the measurement
of the galaxy power spectrum in the ACDM simulation, computing the model assuming
different neutrino masses. In this way I aim at investigating whether this models can
reject a wrong hypothesis (i.e. a total neutrino mass different from the one in the mea-
sured power spectrum) or, on the contrary, the parameters introduced to describe the
biasing model can mimic the effect of neutrinos and decrease the constraining power of
the galaxy power spectrum.

The fits are performed using emcee, a fast python library that runs MCMC chains
adopting a Goodman-Weare algorithm to explore the posterior (Foreman-Mackey et al.,
2013). I have tested these results against an MCMC C-code developed by me, which
adopts a Metropolis-Hastings algorithm (which is in principle more prone to get stuck
on a local maximum of the likelihood). The two codes give compatible results, and the
ones presented here come from emcee, which can easily be integrated directly in the
plotting routines. In all cases I check the convergence of the chains applying a Gelman-
Rubin test. This is a statistical test that compares the variance of the single chains and
the variance of their combination to provide a rough criterion of convergence.
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4.2.1 Linear bias

The first model is the simple linear bias model,
Py(k) = bt Pgy(k), (4.6)

in which the galaxy-galaxy power spectrum differs from the auto power spectrum of
cold matter only by a multiplicative factor.

Fig. shows the galaxy power spectra measured in the simulations with different
neutrino masses, compared to linear predictions for the cold matter, along with the bias
inferred from the comparison, at redshifst z = 0 and z ~ 0.5, for the case with n =
1x 1073 h3 Mpc ™3

In particular, the first row shows the ratio to the ACDM case of the cold matter power
spectra in cosmologies with M, = {0,0.17,0.30, 0.53} eV. The measured ratio follows the
linear prediction on large scales, while for & > 0.2 h Mpc~' departures appear due to
nonlinearities. In general, the asymptotic small-scale suppression induced by neutrinos
on the cold matter clustering is expected to be of order 10% for the lightest neutrino
choice, and of order 25% for the heaviest (in linear theory). Moreover, this figure shows
the characteristic shape of the scale dependence introduced by neutrinos.

The second row in Fig. shows the ratio to the ACDM case of the galaxy power
spectrum. Since different neutrino cosmologies can exhibit a different bias, the relative
amplitudes of these power spectra does not correspond to those of the cold matter. I also
recall that the same number density was imposed to the galaxy samples in the different
cosmologies, which justifies the scatter among the lines visible on small-scales. As a con-
sequence, the asymptotic small-scale neutrino suppression is no longer clearly visible.
However, the characteristic scale dependence is still present. Therefore, the comparison
of the entire range of scales seems to help in distinguishing the effect of neutrinos.

The third row in Fig. presents the linear bias. From this figure we can observe
that the larger the total neutrino mass, the larger the bias. This is expected, since haloes
of a given mass are rarer in a cosmology with M, # 0 than in a ACDM one (Massara
et al., 2014).

Finally, the last row shows the ratio to the ACDM case of the linear bias. In the
presence of neutrinos, it does not show a particularly significant scale dependence with
respect to the linear bias in the ACDM cosmology. However, on small-scales, nonlinear-
ities induce a small deviation.

I fit these galaxy power spectra with the linear bias model, with the purpose of find-
ing the minimum scale that the model can reach without being rejected with the x? test
presented in I found that the largest k.« not rejected by the test, both for the sparse
and the dense sample, is k ~ 0.1 h Mpc ™"

The values of the large-scale (k < 0.1 h Mpc 1), linear bias obtained at z ~ 0.5 for
this galaxy sample are

by (M, = 0) = 1.5492 =+ 0.0047,
by (M, = 0 17) = 1.6104 = 0.0047, @
by (M, = 0.30) = 1.6659 =+ 0.0050,
by (M, = 0.53) = 1.7738 + 0.0052 .

Performing the same analysis for the galaxy sample with 2 = 1 x 107% h3 Mpc™?, leads
to similar conclusions. Fig. 4.5|shows the linear bias of this sample, which is in general
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Figure 4.4: Top panels: ratio of the cold matter power spectrum measured in the neutrino simula-
tions to the ACDM case (solid lines), and the same ratio obtained with linear predictions (dotted
lines); the effect of neutrinos appears as a scale-dependent small-scale suppression, enhanced, for
k > 0.2 h Mpc™!, by nonlinearities. Second row: ratio of the galaxy power spectrum measured in
the neutrino simulations to the ACDM case; the typical neutrino scale dependence is still present,
even if the relative amplitudes are not conserved. Third row: the linear bias defined as the ratio
between the galaxy power spectrum and the linear cold matter prediction; massive neutrinos en-
hance the bias. Bottom panel: ratio between the linear bias in the different cosmologies and the
linear bias in ACDM; neutrinos only introduce a slight scale dependence in the bias.
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larger than the previous ones. The values of the large-scale linear bias in this case are

b1 (M, = 0) = 2.3603 + 0.0084,
by (M, = 0.17) = 2.4570 + 0.0087, @8
b1 (M, = 0.30) = 2.5464 + 0.0095, ‘
by (M, = 0.53) = 2.7110 =+ 0.0100 .

As a matter of fact these objects have been selected to have larger circular velocities, and
are therefore placed in deeper potential wells.

4.2.2 Q-model

This model was presented for the first time in|Cole et al.| (2005). The connection between
the cold matter power spectrum and the galaxy power spectrum reads

2
Pty =8 (5% ) A (49)

where by, A and @) are free parameters. Note that in the original article b; was deter-
mined independently and only afterwards A and Q) were fitted. The original result, with
2dFGRS data, was A = 1.7, @@ = 9.6 (real space) and A = 1.4, Q = 4 (redshift space).

First of all, I investigate the minimum scale that can be described using this model
applied to the power spectrum of a galaxy population with 7 = 1 x 1073 h3 Mpc™?,
at redshift = ~ 0.5. This is shown in Fig. for both the ACDM case and the case
with M, = 0.53 eV. The goodness-of-fit test cannot reject the fits performed setting the
minimum scale downto k ~ 0.4 h Mpcfl. As the fit is pushed towards smaller scales,
it is rejected with 0.05 significance. These results are shown also in Tab where the
bestfit, mean and 68% limits are shown for each parameter, along with their y? and the
result of the goodness-of-fit test.

The value of the large-scale linear bias obtained limiting the fit to £ < 0.1 A Mpc™
(in the ACDM case at z ~ 0.5) is

1

by = 1.5782+9-0569, (4.10)

which is compatible with the linear bias found in the previous session.

Fig. [£.7)assesses the determination of the minimum scale of the fit in the sparse galaxy
sample, with 7 = 1 x 10~% h® Mpc™>. Such galaxies constitute a more biased sample,
and are generally more massive objects. For this reason, they trace more closely the
distribution of large dark matter haloes. In this case the fit is able to describe the galaxy
power spectrum up to k ~ 0.8 h Mpc™* in the ACDM case, and up to k ~ 0.6 h Mpc™*
in the case with M, = 0.53 eV.

However, the sensitivity of the power spectrum on the neutrino mass not only de-
pends on the minimum scale of the fit, but also on the maximum scale (i.e. on kp;n).
Including large scales can alleviate some possible degeneracies between models with
different g, which would be degenerate limiting the analysis to small scales. Fig.s
and show the dependency of the fit on the choice of ki, for the case with n =
1 x 1073 2% Mpc™® and 2 = 1 x 10~* h® Mpc ™~ respectively. Each figure includes two
plots: one shows the measures of the galaxy power spectrum in the ACDM simulation,
fitted with the Q-model in a ACDM cosmology, for different choices of k.,in; the other
shows the galaxy power spectrum in the ACDM simulation fitted with the model com-
puted in a cosmology with M, = 0.53 eV, again for different ky,i,. For each choice of
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Figure 4.6: Q-model with the bestfit values obtained with different cuts in kmax for the galaxy
sample with 7 = 1 x 1072 h® Mpc™? at redshift z = 0.48551. Dashed vertical lines mark the
different values of kmax. For each fit, the result of a x? goodness-of-fit test is displayed, denoting
whether the hypothesis assumed to compute the model is rejected or not. This model can describe
the real space nonlinear power spectrum both in the ACDM case (upper figure) and in the most

extreme massive neutrino model considered, M, = 0.53 eV (lower figure), up to k ~ 0.4 h Mpc

The fit is rejected for larger values of kmax.
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Figure 4.7: Same as in Fig but for the sample with 72 = 1 x 10~* h® Mpc™® at z = 0.48551,
for the ACDM case (above) and a case with M, = 0.53 eV (below). In this case the Q-model gives
a good description of the galaxy power spectrum down to k ~ 0.8h Mpc™! in the ACDM case
(k ~ 0.6h Mpc~! for M, = 0.53 eV). This sample, as a matter of fact, only selects the most massive
galaxies, which follow more closely the evolution of large haloes, less affected by nonlinearities.
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Kmax b1 [bf/mean/68%] Q [bf/mean/68%] A [bf/mean/68%] X2 #dof

0.0975 1.5782 / 1.5971 / 139359 16.2383 / 22.2505 / T11-2031  1.8334 / 2.7137 / FZU9M 1.9061 28 v/
0.1979  1.5376 / 1.5414 / TO0199  4.2462 / 4.6427 / T1-5008 0.1132 / 0.2057 / 54550 28.5332 60 v
0.2985 1.5242 / 1.5251 / *391%  2.7904 / 2.8513 / T0:937 ~0.2152 / —0.1982 / T01572 79.7779 2 v
0.3990  1.4910 / 1.4916 / T0:0082  0.3750 / 0.4070 / T347 —0.8428 / —0.8337 / T01899  129.5881 124 v
0.4995  1.4596 / 1.4601 / T.9001  —~1.5030 / —1.4828 / T0:2335  —1.3416 / —1.3359 / 130707 230.8439 156 X
0.5969 14772 / 1.4777 / T000%%  —1.5299 / —1.5120 / 701258 —1.3100 / —1.3045 / T003TT 726.7698 187 X
0.6974  1.5289 / 1.5293 / *3.902T  —0.5598 / —0.5499 / T0-0877  —0.9528 / —0.9493 / TJ0300 21374 x 10> 219 X
0.7980  1.5815 / 1.5817 / T0:0926  0.2984 / 0.3056 / T9-9019 —0.5845 / —0.5818 / 109289 44028 x 10> 251 X

Table 4.1: Galaxy sample with 7 = 1 X 1072 h® Mpc~3, constraints of the parameters of the Q-
model for varying kmax (expressed in [h Mpc™']). For each parameter the bestfit, mean and 68%
limits are shown. The last 3 columns report the x?, the number of degrees of freedom and the
result of a x” test with significance 0.05 (v if not rejected, X if rejected).

Kmin by [bf/mean/68%] Q [bf /mean/68%] A [bf/mean/68%] x? #dof
0.0040 1.6263 / 1.6274 / To:0070  —2.5230 / —2.4749 / 103192 —1.6686 / —1.6569 / T0-s50 1325858 124
0.0098 1.6265 / 1.6273 / T0:007  —2.5141 / —2.4746 / T03508  —1.6664 / —1.6569 / T0:0%5 1322196 122
0.0160 1.6267 / 1.6273 / 30577 —2.5070 / —2.4757 / +3-3520  _1.6647 / —1.6569 / T0985¢  131.9298 120
0.0317 1.6271 / 1.6283 / 00950 —2.4911 / —2.4344 / 133350 —1.6608 / —1.6470 / T0087¢  131.5586 115
0.0567 1.6243 / 1.6253 / T5:0086  —2.6055 / —2.5657 / 103895 _1.6888 / —1.6789 / TO5919  130.6748 107
0.1100  1.6004 / 1.6026 / T0:0168  —3.5897 / —3.4936 / 104310 —1.9240 / —1.9019 / T5:1535  119.3814 90
0.2074 1.5743 / 1.6141 / 70051  —4.6561 / —3.1327 / 33981 —2.1653 / —1.8131 / 75058 77.0048 59

ST NENENENEN

Table 4.2: Galaxy sample with 7 = 1 X 1073 k3 Mpc~3, constraints of the parameters of the Q-
model for varying kmin (expressed in [h Mpc™?']). For each parameter the bestfit, mean and 68%
limits are shown. The last 3 columns report the x?, the number of degrees of freedom and the
result of a x” test with significance 0.05 (v if not rejected, X if rejected).

Emin, the corresponding result of the goodness-of-fit test is shown. Tables and
show the bestfits, means, 68% limits and x? of these fits, along with the result of the
goodness-of-fit test, for the dense and the sparse sample respectively.

In the dense, less biased sample, when trying to fit the ACDM galaxy power spectrum
with a model that assumes M,, = 0.53 eV, the y*-test never rejects the model (apart from
asingle case). This means that the nonlinear bias parameters are able to absorb the effects
of neutrinos, thus lowering the constraining power of the model.

On the other hand, when using the spars, more biased galaxy sample, the y*-test
correctly rejects the wrong hypothesis for all choices of ki, < 0.1 h Mpc™'. Arguably,
the reason resides in the fact that, since with using this sample ky,ax can be pushed down
to smaller scales, the combination of large and small scales in more efficient in breaking
the degeneracy between the nonlinear bias parameters and neutrino effects. If kyin >
0.1 h Mpc™!, however, the lack of large-scale information restores this degeneracy, and
the x? test fails in rejecting the wrong hypothesis.

4.2.3 Nonlocal nonlinear model

This model has been proposed for the first time in McDonald and Roy]| (2009). More
recently, it has then been employed for the analysis of the galaxy power spectrum mea-
sured within the BOSS collaboration (Beutler et al.,[2014;|Gil-Marin et al., 2015).

In Eq. B.3|I introduced the local Eulerian bias, expanded with bias parameters by, b1,
..., by, proposed by Fry and Gaztanagal (1993). However, the bias can in principle be
a nonlocal function. For example, (Chan et al.[(2012) showed that the gravitational evo-
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Figure 4.8: Dependence on the maximum scale of the fit for the Q-model, with different bestfit
values obtained with different cuts in kmin. Upper figure: the galaxy power spectrum in the ACDM
simulation is fitted with the Q-model in ACDM. Lower figure: the galaxy power spectrum in the
ACDM simulation is fitted with the model computed assuming a non-zero neutrino mass, namely
M, = 0.53 eV. For each choice of kmin the result of the x? test with significance 0.05 is reported,
showing whether the hypothesis on the value of neutrino mass assumed when computing the
model is or is not rejected. In the upper figure, the test correctly never rejects the hypothesis. In
the lower figure, the wrong hypothesis is never rejected (apart from the bin kmin ~ 0.1 h Mpc™".
In this case, the nonlinear bias parameters are degenerate with the total neutrino mass, whose
effects are therefore masked.
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Figure 4.9: Same as in figure but for the sample with 7 = 1 x 10™* 2 Mpc™2. In this case,
when the wrong hypothesis is assumed in the model (lower figure) the x? test correctly rejects it
with significance 0.05 for all kmin < 0.2 h Mpc™', while does not reject it for larger kmin. Arguably,
the reason resides in the fact that, with this sample of more massive objects whose growth is more
linear, the fit can be extended to higher wavemodes. As a consequence, the combination of large
and small scales breaks the degeneracy between the nonlinear bias parameters and the effects of
massive neutrinos.
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Kmin by [bf/mean/68%] Q [bf /mean/68%] A [bf/mean/68%] x? #dof
0.0040  2.5899 / 2.5906 / T0:0030  —1.5220 / —1.5191 / T9182  —1.2304 / —1.2291 / T5:0050  421.3859 251
0.0098  2.5900 / 2.5904 / T5:0058  —1.5217 / —1.5195 / T30 —1.2302 / —1.2292 / TH:0047  420.7467 249
0.0192  2.5900 / 2.5906 / *0-00%  —1.5215 / —1.5189 / T0-010%  —1.2302 / —1.2290 / TO0058  419.2585 246
0.0410  2.5905 / 2.5912 / 139630 —1.5206 / —1.5179 / +3-0185  —1.2297 / —1.2285 / T0:0032  414.2243 239
0.0849  2.5950 / 2.5955 / 100032 —1.5112 / —1.5083 / T3-0137  —1.2253 / —1.2240 / T000%T 3762291 225
0.1791  2.6189 / 2.6198 / T0-00%0  —1.4486 / —1.4440 / 35204 —1.1959 / —1.1938 / T35398  237.6218 195
0.3770  2.7273 / 2.7395 / T:03te  —1.0805 / —1.0268 / TJ1202  —1.0130 / —0.9855 / Th.0%er  75.0572 132

WX X X X X X%

Table 4.3: Galaxy sample with 7 = 1 X 10~* k3 Mpc~3, constraints of the parameters of the Q-
model for varying kmin (expressed in [h Mpc™']). For each parameter the bestfit, mean and 68%
limits are shown. The last 3 columns report the x?, the number of degrees of freedom and the
result of a x? test with significance 0.05 (v if not rejected, X if rejected).

lution of the matter field inevitably introduces nonlocality, even if the bias is local at
some early time. Supposing that the bias is local at early times can be approximated
imposing locality in Lagrangian space. Doing so, and comparing against perturba-
tion theory results, leads to finding that the bias in Eulerian space not only depends
on the density in one point, but also on the tidal field. In a region where the tidal
field is particularly high, it can significantly contrast the growth of structures, making
them rarer. The nonlocal term comes from the tidal tensor s%(x) = s;;(x)s;;(x), where
sij(x) = 0;0;®(x) — 5}?6(3:), and @ is the gravitational potential. In Chan et al.| (2012)
it has been shown that the most important contribution to nonlocality comes from the
second order nonlocal bias expansion.

However, in the modelling adopted by the BOSS collaboration (Beutler et al., [2014;
Gil-Marin et al, 2015) also part of the third order contribution is retained, following the
discussion in |McDonald and Roy| (2009). This contribution depends on a combination
of terms in 62, §s2, and s° = 8ijSkSki- Adding these third order contributions, we can
write

5y(@) = bid(x) + %2 [0%(x) - 0] + % [s*(@) = (s*)]
b o ) (4.11)
+5 @) - @]+ 57— (P04 Tl = ()]

Note anyway that s® has been shown to be zero. I do not report the entire derivation of
the third order term, but I only mention that the third order contributions can be grouped
together and described with an effective bias parameter bsy,;.

By Fourier transforming Eq. one can compute (J,(k1)ds(k2)) to understand how
the galaxy power spectrum can be written in terms of the (cold) matter power spectrum
in real space. The result is

Py s6(k) = b Pss(k) + 2b1ba Py, (k) + 2b1bs2 Py, 5(k) + 2b1bgnio3 (k) P™ (k)

412
+ 03Py (k) + 2b2b,2 Py, 2 (k) + b3 Pz, (k) (4.12)
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where the different terms are

Prsth) = [ S PP (= ) 75 .k~ ),

3
Prask) = [ P P (k= a) 7™ 0.k~ @)Saa. b~ )

3
Pl = 5 [ (5P (0) [ 3P0 = Pk~ aSalank ~ )]

f (4.13)
By (k):i/ o Pl(g) | s P(g) ~ P'(1k — q)S3(a.k — q)
b52 2 (277)3 q 9 q q 2\q, q )
1 [ d% ! I
Pi(h) == [ 55 P' @) [P'(@) — Pk = al)].
d3q 5 15 5
2(k) = PYq) |=+— k— —q,k)— = k—
) = [ e @ [+ G Sa(ak~ )Sa(-ak) - JSa(ak—a)].
and we have recalled the (symmetrised) kernel introduced in Eq.
5 lki-ko [k | k] 2 [k k2]
SPT (o o) — 2 4 — 1 B2\ F Rap 2R - Ra 4.14
P k) = 20500 b TR T 7 ks 14

In order to numerically solve Eq.s[.13]it is useful to exploit the symmetries of the power
spectrum and turn them into 2-dimensional integrals.

Fig shows the contributions of the different terms that enter this model. The
matter power spectrum Pss is the leading term on large scales, while the other terms
become important on small scales. The correction scheme is not trivial, as different terms
have different signs, both adding and removing power.

Eq.s can be implemented in a code to compute the model to be compared to
the galaxy power spectrum with the aim of studying the likelihood of the parameters of
the model given the data.

However, not all the bias parameters are independent, which allows us to reduce the
number of free parameters in the model. If we assume that the galaxy bias, even if non-
local in Eulerian space, is perfectly local in Lagrangian space (see eg (Chan et al., |2012;
Baldauf et al.|,[2012), then the second-order nonlocal bias parameters can be linked to the
local linear bias as 4

b = —= (b1~ 1). (4.15)

However, this is quite a strong assumption, and tests with simulations have shown that
even in Lagrangian space there can be departures from locality, which modify this equa-
tion. For example already Chan et al.| (2012) propose a different fitting function

4

be2 = —?(bl —1.43), (4.16)
while more recently Bel et al.| (2015)) found
4

bs2 = —?(bl —-0.8). (4.17)

I will start assuming the approximate b, — b; relation, derived assuming a local La-

grangian bias, and discuss the effect of the fitting formula presented here at the end of
the section.
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Figure 4.10: The contributions of the different terms that enter the non-local, nonlinear bias. Neg-
ative values are represented by dashed lines. The leading term on large scales is the matter power
spectrum (here the solid line is the measured matter power spectrum in the simulation), while the
other terms become important on small scales.
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kmax by [bf/mean/68%] by [bf/mean/68%] x? #dof
0.0975 1.5503 / 1.5494 / T05159  —0.011 / 0.0151 / *5:3322 14028 29 /
0.1979  1.5560 / 1.5558 / 709042 —0.1362 / —0.1350 / 700238 46103 61 v
0.2985  1.5603 / 1.5603 / F3:9926  _0.1642 / —0.1640 / T999%0  13.1030 93 v/
0.3990 1.5668 / 1.5668 / t3-9010  —0.1881 / —0.1879 / 39938  37.5035 125 v
0.4995 1.5733 / 1.5733 / T99015  —0.2045 / —0.2046 / T9:0922  80.7503 157
0.5969 1.5804 / 1.5804 / T0 0013 —0.2182 / —0.2182 / T0 0012 164.0548 188 v
0.6974 1.5873 / 1.5873 / 709011 —0.2289 / —0.2289 / T5.0018 288.7572 220 X
0.7980 1.5918 / 1.5918 / T05010  —0.2348 / —0.2348 / T0-5008  373.7237 252 X

Table 4.4: Galaxy sample with 7 = 1 x 107® h® Mpc™3, constraints of the parameters of the
nonlocal nonlinear model for varying kmax (expressed in [h Mpc™']). For each parameter the
bestfit, mean and 68% limits are shown. The last 3 columns report the x?, the number of degrees
of freedom and the result of a x? test with significance 0.05 (v if not rejected, X if rejected).

Also for the third order nonlocal bias parameter a relation can be established with
the linear local bias. For example Beutler et al.|(2014); Saito et al.|(2014) find

2
b = —2 (b1 — 1),

4.1
315 (4.18)

Once again, I start from determining the minimum scale that can be described using
this model. In Fig. and [4.12] I fit the model to the galaxy power spectrum (7 =
1x 1073 h3 Mpc™?, z ~ 0.5), letting kpax vary in the range [0.1, 0.8] h Mpc ™, for galaxies
measured in cosmologies with A, = {0,0.17,0.30,0.53} eV. Tab. shows the results of
the fit in the ACDM case, displaying the bestfit, mean and 68% limits of each parameter,
along with the x* and the result of the x? test.

For the sparse case with 2 = 1 x 10~* h* Mpc™? Fig shows the fit in the ACDM
case, the parameter constraints being reported in Tab. The minimum scale allowed
for the fit when M, # 0 is the same as the ACDM one.

This model can be pushed down to smaller scales than the Q-model analysed in the
previous section. In particular, for the dense sample the maximum kp,,x for which the
x? test does not reject the model is 0.6 h Mpc™'. Once again, for the sparse, more biased
galaxy sample the minimum scale can be pushed even more towards small scales, up to
Emax ~ 0.8 h Mpc™1.

Using these values of kmax, | now study the dependence on kmin, i.e. the largest
scale included in the fit. In the same fashion adopted in the previous section, I fit the
galaxy power spectrum measured in the ACDM simulation with the model computed
assuming M, = {0,0.17,0.3,0.53} eV. The goal is to verify in which cases the x>-test is
able to correctly reject the wrong hypothesis.

The fits with the model assuming different neutrino masses are shown in Fig.s
and [4.15for the galaxy sample with 7i = 1 x 10~ h® Mpc~>. The constraints on the pa-
rameters of the model (bestfit, mean, 68% limits, x? and result of the x? test) are reported
only for the most extreme case (measures in ACDM and model assuming M, = 0.53 eV)
in Tab. Moreover, Fig. and Tab. show the results of the fit for the sparse
sample, only in the most extreme case.

Both in the sparse and in the dense cases, the x? test is able to reject the wrong hy-
pothesis of neutrino mass M, = 0.30 ans 0.53 eV, when scales kp,i, < 0.03 h Mpc_1 and
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Figure 4.11: Nonlocal, nonlinear model with the bestfit values obtained with different cuts in kmax
for the galaxy sample with 4 = 1 x 1073 h® Mpc™? at redshift z = 0.48551. Dashed vertical lines
mark the different values of kmax. For each fit, the result of a x? goodness-of-fit test is displayed,
denoting whether the hypothesis assumed to compute the model is rejected or not. This model
can describe the real space nonlinear power spectrum both in the ACDM case (upper figure) and
in the massive neutrino case with M, = 0.17 eV (lower figure), up to k ~ 0.6 h Mpc~!. The fit is
rejected for larger values of kmax.



Effects of neutrinos on the galaxy power spectrum

107

n=1x10"3 h® Mpc >

o I S I! o Measured I':’(Vk,'l{fl,/lz ().30)IZ
I i Model P(k, M, =0.30) |
1 1 1 ]
— 10% : .
o F —— kuax = 0.10 h Mpc ™!, accepted v 8 E
[} r 7
= [ —— kmax = 0.20 h Mpc’l, accepted v/ E ]
7 [ kmax = 0.30 b Mpc™!, accepted v | i 1
L ! ! ]
= 3 Fmax = 0.40 h Mpc™!, accepted v/ i E i
= 10° 3 Fmax = 0.50 h Mpc™!, accepted v/ i i i E
& r kmax = 0.60 h Mp(:’l, accepted v/ i i i \ 1
[ —— kmax = 0.70 h Mpc™!, not ac(:optm! X i i 1‘ i :
—— onax = 0.80 7 Mpc ™!, not accepted X P b
100 o 1 MR | I S R I i
1‘5 F T UL L | T T T LI B ! E ? T T 1 : E T J:
0 L i o i ]
AV i b ¥ ]
\_‘ 1 1 [
= 1.0 7//;\,\/\'—‘_‘““‘,‘“\#—# it
QS I 1 1 } [ -
g L 1 1 1 [ ]
< | R .
o5 e Loty o
0.01 0.1 1
k [h Mpc™]
[ 2 .~ I! e Measured I"()ﬂ,'ifl,,lz ().53)?
I i i Model P(k, M, = 0.53)
I 1 1 1
1 1
1

5 104

T T

103

P(k) [h Mpc?

T T

T

Fmax = 0.10 b Mpc™!,
Fnax = 0.20 b Mpc ™,
Fmax = 0.30 h Mpc ™,
Fnax = 0.40 h Mpc ™,
kmax = 0.50 h Mpc

Fmax = 0.60 h Mpc ™,
Fmax = 0.70 h Mpce ™,
Fnax = 0.80 h Mpc ™,

! accepted v/ i

accepted
1
accepted v |
1
accepted v |

1
accepted v |
1

not a(:cepte(! X
not ;L(:(:(‘,ptc(! X

not ‘d(ﬁ(?CptC(I X

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

100E e Lol 4
LT R
S | R
~ o 1 [ 1
:31‘()_—7//—\:\,/%“%‘;“‘-"-‘\%_ = ]
< o]
| e Lol N
0.01 0.1 1

k [h Mpc™!]

Figure 4.12: Same as in Fig. but for the n = 1 x 10~® h* Mpc™® sample. The model can
describe the real space nonlinear power spectrum up to k ~ 0.6 A Mpc™' in the massive neutrino
case with M, = 0.30 eV (upper figure) and to k ~ 0.5 h Mpc™! in the case with M, = 0.53 eV
(lower figure). The fit is rejected for larger values of kmax. This agrees with what found for M, =0

and 0.17 eV.
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Figure 4.13: Nonlocal, nonlinear model with the bestfit values obtained with different cuts in kmax
for the galaxy sample with 7 = 1 x 10~* A% Mpc~2 at redshift z = 0.48551. Dashed vertical lines
mark the different values of kmax. For each fit, the result of a x* goodness-of-fit test is displayed,
denoting whether the hypothesis assumed to compute the model is rejected or not. This model
can describe the real space nonlinear power spectrum in the ACDM case up to k ~ 0.8 h Mpc™'.
Once again, this sample results less affected by nonlinearities, and the model can therefore pushed
down to rather small scales.

kmax by [bf/mean/68%] by [bf/mean/68%] x? #dof

0.0975  2.3679 / 2.3667 / 0015 —0.3548 / —0.3264 / TO5251 43885 29
0.1979  2.3627 / 2.3622 / TO508¢  —0.2508 / —0.2482 / "0 9186 11.9365 61 v
0.2985  2.3662 / 2.3661 / T3:9058  —0.2626 / —0.2623 / *39182  20.2056 93 v
0.3990  2.3769 / 2.3770 / 135045 —0.3034 / —0.3034 / FJ0058 52,5292 125 v
0.4995 2.3874 / 2.3874 / T0 0010 —0.3324 / —0.3324 / T0 0038 86.0188 157
0.5969  2.3971 / 2.3971 / T00055  —0.3527 / —0.3528 / T0.0059  128.3500 188
0.6974 2.4034 / 2.4033 / T0 0053 —0.3636 / —0.3635 / T 005 166.8112 220 v
0.7980  2.4054 / 2.4053 / 700029 —0.3664 / —0.3663 / 700022  178.0375 252

Table 4.5: Galaxy sample with 7 = 1 x 10™* h3 Mpc™?, constraints of the parameters of the
nonlocal nonlinear model for varying kmax (expressed in [h Mpc™']). For each parameter the
bestfit, mean and 68% limits are shown. The last 3 columns report the x?, the number of degrees
of freedom and the result of a x” test with significance 0.05 (v if not rejected, X if rejected).
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Figure 4.14: Dependence on the maximum scale of the fit for the nonlocal, nonlinear model, with
different bestfit values obtained with different cuts in kmin. Upper figure: the galaxy power spec-
trum in the ACDM simulation is fitted with the model computed assuming a ACDM cosmology.
Lower figure: the galaxy power spectrum in the ACDM simulation is fitted with the model com-
puted assuming M, = 0.17 eV. For each choice of kmin the result of the x? test with significance
0.05 is reported, showing whether the hypothesis on the value of neutrino mass assumed when
computing the model is or is not rejected. In the upper figure, the test correctly never rejects the
hypothesis. In the lower figure, the wrong hypothesis is never rejected. In this case, the nonlinear
bias parameters are degenerate, within the errorbars, with the total neutrino mass, whose effects

are therefore masked. Fig. presents the same test with M, = 0.30 and 0.53 eV.
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Figure 4.15: Same as in Fig. but the wrong hypothesis tested in this case are M, = 0.30 eV
(upper figure) and M, = 0.53 eV (lower figure). Unlike the case with Mv = 0.17 eV, presented in
Fig. in this case both neutrino masses have effects large enough to be detected. As a matter of
fact, with M, = 0.30 eV, the wrong hypothesis is rejected for all kmin < 0.035 h Mpc~!, and, with
M, = 0.53 eV, it is rejected for all kmin < 0.07 hmpc. For these choices of maximum and minimum
scale of the fit, the combination of large and small scales is able to break the degeneracy between
nonlinear bias parameters and massive neutrino effects.
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Kmin by [bf/mean/68%] bo [bf/mean/68%] X2 #dof
0.0040 1.7809 / 1.7809 / T09018  —0.1392 / —0.1392 / T0:0523  377.5786 188
0.0098 1.7810 / 1.7809 / T00015  —0.1392 / —0.1392 / T0-0023  375.8991 186
0.0192 1.7811 / 1.7811 / TJ901%  —0.1394 / —0.1393 / 700525  368.9647 183
0.0347 1.7816 / 1.7816 / T5012  —0.1400 / —0.1401 / T0:9523  343.1870 178
0.0723  1.7840 / 1.7840 / T3501%  —0.1433 / —0.1432 / 700523 267.5744 166
0.1446  1.7918 / 1.7919 / T3901T  —0.1534 / —0.1535 / T00923  152.8032 143
0.2953 1.8129 / 1.8129 / T05020  —0.1784 / —0.1784 / T0.50%5  42.0083 95

W X X X X X

Table 4.6: Galaxy sample with 7 = 1 X 1072 k3 Mpc~3, constraints of the parameters of the non-
local nonlinear model for varying kmin (expressed in [h Mpc™']). For each parameter the bestfit,
mean and 68% limits are shown. The last 3 columns report the x?, the number of degrees of
freedom and the result of a x” test with significance 0.05 (v if not rejected, X if rejected).
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Figure 4.16: Same as in Fig.sand but for the sparsest sample with 2 = 1 x 10™*h* Mpc 2.
This time, only the most extreme case is shown (ACDM galaxy power spectrum, M, = 0.53 eV
assumed in the model). The wrong hypothesis is rejected for all kmin < 0.08 hmpc. For these
choices of maximum and minimum scale of the fit, the combination of large and small scales is
able to break the degeneracy between nonlinear bias parameters and massive neutrino effects.
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kmin by [bf/mean/68%] by [bf /mean/68%] x? #dof
0.0040 2.7303 / 2.7303 / 709032 —0.3291 / —0.3291 / T0.0032 4362728 252 X
0.0098  2.7304 / 2.7305 / T000%1  —0.3291 / —0.3292 / TO00%2  434.6227 250 X
0.0192  2.7307 / 2.7306 / T000as  —0.3293 / —0.3202 / T0 0059 429.3541 247 X
0.0410 2.7325 / 2.7325 / 139034 _0.3307 / —0.3306 / t3:9952  401.4248 240 X
0.0849 2.7417 / 2.7418 / +9:99%%  _0.3376 / —0.3376 / *3:9932  307.7749 226 X
0.1791  2.7718 / 2.7719 / T3504%  —0.3587 / —0.3587 / TO903¢  143.4567 196
0.3770  2.8077 / 2.8075 / T9:0088  _0.3809 / —0.3808 / F5:99%  63.2133 133 v

Table 4.7: Galaxy sample with 7z = 1 X 1073 h® Mpc~3, constraints of the parameters of the non-
local nonlinear model for varying kmin (expressed in [h Mpc™']). For each parameter the bestfit,
mean and 68% limits are shown. The last 3 columns report the Xz, the number of degrees of
freedom and the result of a x* test with significance 0.05 (v if not rejected, X if rejected).

kmin < 0.07 h Mpc*1 respectively are included in the fit. However, when M, = 0.17 eV
is wrongly assumed in the model, the test does not reject the hypothesis, for both the
galaxy samples.

If we relax the assumption that the bias is perfectly local in Lagrangian space, we can
slightly modify Eq. I have repeated this analysis (for the sparsest galaxy sample)
assuming the fitting formula which allows for pushing kpmax to ~ 0.5 h Mpc~ ! in
ACDM, and gives very similar results as obtained with the local-Lagrangian relation.
If instead I assume Eq. the minimum scale that can be included in the fit moves
to the smallest one allowed in the present analysis, kynax ~ 0.8 & Mpc™!, implying that
this fitting formula better captures the relation between nonlocal and local parameters.
However, the results in rejecting the wrong hypothesis do not change, and only M, =
0.30 and 0.53 eV are rejected, while M, = 0.17 eV is still not rejected. Nonetheless, it is
important to note that with all the three assumptions on the relation between nonlocal
and linear bias considered the wrong hypothesis with M, > 0.30 eV is still rejected,
implying that, the approach chosen to describe the nonlocal bias does not significantly
spoil the constraining power of the model.

4.3 Future prospects

In this chapter I have presented the galaxy catalogues I have produced through the
SHAM technique, starting from the first set of the DEMNUni simulations. I have used
them to study the linear galaxy bias in the presence of neutrinos. As expected, it is larger
for larger neutrino masses. Moreover, it presents a slight scale dependence, with respect
to the ACDM case, induced by neutrino free-streaming.

I have then fitted these galaxy power spectra with two popular models of the non-
linear power spectrum, concluding that in both cases the parameters of the model can
be degenerate with the effects induced by neutrinos. In general, we need a model able
to describe scales smaller than 0.5 & Mpc ™, so that the combination with large scales
(k < 0.03 — 0.06 h Mpc ') breaks such degeneracy. I have tested when this happens
employing a x? goodness of fit test.

This kind of analysis is, however, not complete. To robustly assess the possible de-
generacies between the parameters of the models and neutrino effects, an MCMC ap-
proach, leaving all these parameters free, would be required. This is indeed the direc-
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tion towards which my work is moving, and I will implement this line-of-work in the
near future. Moreover, the same analysis needs to be extended to redshift space. This is
rather important as recent works (see eg. Villaescusa-Navarro et al.,|2017) have shown
that some degeneracies between cosmological parameters (such as og and M,) can be
alleviated by looking at the quadrupole of the galaxy power spectrum. Such effects, as
well, need to be included in the analysis.

Another path to follow, starting from this work, is to better characterize the galaxies
obtained with the SHAM technique. As a matter of fact, one can apply some recipes to
match luminosity functions and colour distribution of galaxies to observations (see, eg.,
Carretero et al.,[2015| and references therein). In this way, the past light-cone can be pop-
ulated with a realistic distribution of galaxies, from which either mock catalogues or all-
sky 2D maps can be extracted. These tools are of paramount importance to study galaxy
clustering and dynamics in non-standard cosmologies, as well as to study the cross cor-
relations between signals such as the CMB lensing, weak lensing or the Integrated Sachs
Wolf effect and the Large Scale Structure (Carbone et al., 2016). Being these probes sensi-
tive to different systematics, their cross-correlation is expected to be extremely powerful
in breaking parameter degeneracies and tightening the constraints on the cosmological
parameters.






Conclusions

In this thesis I presented my work on the effects of massive neutrinos on the large scale
structure of the universe (LSS). This is a rather active field in contemporary cosmology,
as the neutrino mass has recently entered the standard cosmological picture. In fact,
properly accounting for their presence not only leads to more accurate constraints on
the parameters describing the underlying cosmological model, but also, even more im-
portantly, provides us with unique information about the nature of these elusive, but
fundamental, particles. Given their effects on the evolution of cosmic structure, it comes
as no surprise that the most stringent bounds on the total neutrino mass come indeed
from cosmology.

The field being rather wide, I have tackled three main topics: on the cosmological
simulation side, I developed a code for setting initial conditions that avoid systematics
introduced by some approximations commonly assumed in simulations including mas-
sive neutrinos; on the modelling side, I extended the clustering ratio (the ratio of the
correlation function over the variance of an overdensity field) to cosmologies with mas-
sive neutrinos, measuring the galaxy clustering ratio from real data, and constraining the
parameters of the cosmological model; finally, I have devoted the last part of my work
to study the effects of neutrinos on the galaxy power spectrum, employing the so-called
SHAM technique.

Within my work on systematics in neutrino simulations, I have shown that starting
a simulation with a matter power spectrum, computed with a Boltzmann solver (camb,
class) at the initial redshift of the simulation, introduces order 10% discrepancies in
the simulation matter power spectrum at low redshift and large scales. This is due to
the lack of horizon crossing and radiation perturbations in simulations implementing
Newtonian dynamics. Moreover, neglecting radiation in the background evolution in-
troduces a scale independent systematic effect at the 4% level in the matter power spec-
trum at redshift z = 0. Finally, neglecting the neutrino scale dependence in the growth
rate introduces a sub-percent error. The combination of many of these approximations
can lead to important systematic departures from predictions in the output of N-body
simulation, which instead need to reach 1% accuracy for correct modelling in view of
upcoming galaxy surveys, such as Euclid.

By employing a two fluid, Newtonian approximation, I developed a code to rescale
the redshift z = 0 matter power spectrum to the initial redshift of the simulation, ac-
counting for the growth rate scale dependence introduced by neutrino free streaming,
and correcting for relativistic effects unavoidably missing in the dynamics of simulations
in the Newtonian limit. Employing this method, I was able to reach the same level of
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accuracy in neutrino simulations as in the massless neutrino ACDM case, usually taken
as a reference in cosmological analyses.

In addition, I applied this method to produce the initial cold-matter and neutrino
power spectra, together with the corresponding growth rates, needed to generate the
initial conditions of the new set of the DEMNUni simulations by C. Carbone. These
simulations explore many combinations of neutrino masses, and dynamical dark energy
parameters wy and w,. As some combinations of these parameters are degenerate with
a massless neutrino ACDM cosmology, the analysis of such simulation is of paramount
importance for accurate LSS modelling and parameter degeneracy breaking.

My work on the clustering ratio was aimed at extending this formalism to cosmologi-
cal scenarios with massive neutrinos. The clustering ratio, ng(r) = £r(r)/o%, is the ratio
of the smoothed correlation function over the smoothed variance of a overdensity field.
By properly choosing the smoothing scale R and the correlation length r, such ratio can
be considered unbiased, independent from redshift-space distortions, and very weakly
dependent on redshift. For this reason, on such scales, the clustering ratio measured
from galaxies in redshift space can be directly compared to its theoretical prediction for
matter in real space. Besides being very easy to measure and model, the clustering ra-
tio is also very sensitive to the shape of the matter power spectrum, making it a good
candidate to be used for setting cosmological parameter constraints.

I'tested with N-body simulations that these features of the clustering ratio hold also in
cosmologies including massive neutrinos. I also optimized the combination of smooth-
ing radius and correlation length that maximizes the effect of neutrinos on this observ-
able, while minimizing statistical errors, within the range of scales of applicability of the
clustering ratio. Finally, I used the clustering ratio measured in the SDSS DR7 and DR11
samples to draw constraints on the parameters of the cosmological model, considering
a baseline model (assumed geometrically flat) parameterized by the Hubble parameter
Hy, the CDM and baryon densities Q.q4mh?, Qph?%, the primordial amplitude and spectral
index of scalar perturbation As,ns, and the optical width of the universe at reionization
T, with two extensions given by the total neutrino mass M, and the equation of state of
dark energy, w.

I found that, using the current data, the clustering ratio is able to break the degener-
acy between w and the other parameters, which is present when only CMB temperature
and polarization anisotropies are considered. Moreover, it improves the constraint ob-
tained from CMB data alone on the cold dark matter density parameter by nearly 12%.
However, I have not found any appreciable improvement on the neutrino mass con-
straint. By applying the same parameter fitting pipeline to simulations, I showed that
this occurs because errors on the clustering ratio measured in current data are still too
large and spoil, therefore, its constraining power, especially on the neutrino total mass
parameter. Motivated by this consideration, I have forecast the constraining power of
the clustering ratio expected from the Euclid galaxy survey, applying it to a synthetic
galaxy catalogue. In this case, the constraint on the cold dark matter density parameter
improves by over 40% with respect to the results of the Planck collaboration alone, and
the constraint on the total neutrino mass improves by 14%. In addition, I found a 10%
improvement on the constraint of the primordial spectral index n,, and a 20% improve-
ment for the Hubble parameter H.

For the last part of my Ph.D. project, I populated the first set of the DEMNUni simula-
tions with galaxies, using a SHAM technique. First, I studied the linear bias of this sam-
ple of galaxies, in the presence of massive neutrinos. I found that, consistently with ex-
pectations and previous works, to higher values of the neutrino mass correspond higher
values of the galaxy bias. Moreover, I observed that the different bias induced by neu-



trinos, which modifies the overall amplitude of the galaxy power spectrum, can make
cosmologies with different neutrino masses degenerate, when analysis is limited to small
scales. Adding the large scale information, however, reintroduces the scale dependence
that is a unique feature of the presence of massive neutrinos, and that depends on the
total neutrino mass itself.

I fitted the fully nonlinear galaxy power spectrum obtained from the simulations us-
ing two popular models of the nonlinear bias, the Q-model by (Cole et al.[(2005) and the
nonlocal nonlinear model by McDonald and Roy| (2009). I applied them to two galaxy
samples, one sparser and more biased, and one denser and less biased. For both the
models, I studied which maximum wavemode (minimum scale) I could include in the fit,
employing a x? test to evaluate the goodness of the fit. Once I found this minimum scale,
I investigated if these models are sensitive enough to reject a wrong assumption on the
value of the neutrino mass M,,. To this purpose I fitted the galaxy power spectrum mea-
sured in the massless neutrino ACDM cosmology with the models computed assuming
a non-zero neutrino mass, M, = {0.17,0.3,0.53} eV.I found that, in general, the models
are able to reject the wrong hypothesis on the neutrino mass when two conditions are
satisfied, namely if the model can be pushed down to very small scales & > 0.6 h Mpc™*,
and the fit can be extended to include large scales k < 0.03 — 0.06 h Mpc~!, depending
on the neutrino mass.

Using the Q-model model, I was able to reach this optimal conditions only with the
sparse, more biased sample. Even in this case, the model correctly rejected M, = 0.3 and
0.53 eV, while the case with the lightest neutrino mass (M, = 0.17 eV) was degenerate
with the massless case. On the other hand the nonlocal nonlinear model was able to
satisfy these conditions also with the dense, less biased galaxy sample. However, also in
this case, I could not break the degeneracy between M, = 0.0 and M, = 0.17 eV.

This last part of my work is still ongoing. In particular, to assess the degeneracies be-
tween the parameters of the nonlinear bias models and those of the cosmological model,
I plan to repeat the analysis with an MCMC approach, leaving also the latter free. More-
over, I plan to extend this work to redshift space and exploit the quadrupole of the power
spectrum, which will add information for breaking parameter degeneracies.

About the characterization of the galaxy population much more can be done. Em-
ploying techniques that have been presented and studied in the literature, I am moving
towards assigning luminosities, colours and fluxes to the galaxies in the simulations,
hence creating a more realistic realization of structures in non-standard cosmologies.
This work will lead to the construction of mock galaxy catalogues that can be used to
study galaxy properties in the presence of massive neutrinos and dynamical dark en-
ergy. In addition, it will also allow us to build all-sky maps of the large scale structure
of the universe, using well known box-stacking and pixellization techniques (Calabrese
et al}2015). Such maps can be cross correlated with maps of CMB lensing, weak lensing
or Integrated Sachs-Wolfe effect, extracted via ray-tracing codes from the same simula-
tions. The strength of this approach resides in these different observables probing dif-
ferent epochs and scales, and being affected by different systematic effects, which can be
minimized through as many as possible cross combinations.

As new, large galaxy surveys are expected to start in the very next future, aiming
at measuring cosmological parameters with unprecedented precision and accuracy; it is
now time to include all possible effects in our analyses, going in the direction of compar-
ing more precise data to more accurate models. In this respect, the study of the cosmo-
logical effects of massive neutrinos on the LSS is undoubtedly a field worth exploring.






APPENDIX A

Neutrino decoupling

To the end of obtaining the correct neutrino to photon temperature ratio today, and
to compute the correct number of relativistic species in the early universe, we need to
model the process of decoupling of neutrinos.

In Eq. [1.72]1 showed the redshift at which we expect neutrinos to decouple, i.e. when
their interaction rate falls below the expansion rate of the universe.

Before decoupling neutrinos are at equilibrium with the hot, primeval plasma, com-
posed of photons, neutrinos, electrons and positrons. In general, what we expect is that,
after neutrinos decouple, their momentum distribution function is frozen as well as their
temperature, since they can no longer exchange heat. Neutrino temperature, from this
moment on, only decreases due to the expansion of the universe, with 7},  a™!. In this
case, if nothing else happens to the photon temperature, neutrinos, even if decouple,
would end up having the same temperature as photons today.

However, soon after neutrino decoupling, the background temperature approaches
the the rest-mass energy of electrons, 511 keV, allowing electrons and positrons to anni-
hilate. This process frees energy (and entropy), which goes into heating the photon gas.
As a consequence, even if before e* annihilation the temperature of neutrinos and pho-
tons was still the same, T, ~ T, after this process the temperature of photons increases,
while the decoupled neutrinos remain unaffected, leaving us with T, > T,,.

The simplest way to compute by how much 7', > T, is to model neutrino decoupling
as an instantaneous process, which is completely over when e* annihilation happens. In
the rest of this appendix I will make this assumption and derive 7', /T,,.

On the other hand, I want to underline right now that in no way neutrino decoupling
is an instantaneous process. In fact, when e* annihilation starts a tail of neutrinos is still
coupled to the background plasma. As a consequence a fraction of neutrinos gets heated
as well as photons before decoupling, thus lessening the difference in temperature be-
tween the two species. At the end of this appendix I will mention a common approach
to overcome this issue.

Following the second law of Thermodynamics, the entropy of a system is given by

d[p(T)V] + p(T)dV

ds =
S T )

1.1)

where T is the temperature of the background at equilibrium, p its pressure and V' the
volume. The entropy density (entropy per volume unit) is obtained by integrating the
latter equation, and reads

s(T) = =————. (1.2)
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In a gas at statistical equilibrium, the densities of the different species are

2

T gT?* for Bose-Einstein species
_ )30 13
Pea =19 - (1.3)
3309 T*  for Fermi-Dirac species.

Being this plasma still relativistic at the time, the pressure of all these species is simply
given by peq(T') = peq(T")/3. Therefore, we can conveniently rewrite Eq. [1.2|as

272
s(T) = 5 9. T°, (1.4)

where g, is summed over all the species present in the universe,

g= > g (?) + 0y ggi (?) ; (1.5)

i€bosons i€fermions

each species being at temperature 7T; whereas the background temperature is 7T'.

Since the expansion of the universe is expected to be adiabatic, entropy in a given co-
moving volume is conserved. In other words, the entropy density must remain constant,
which implies

gx T? = constant. (1.6)

Under the assumption that all neutrinos are already decoupled when e* annihilation
happens, that they still share the same temperature of the background plasma before it
happens, and that they do not change their temperature due to it, we can write that

T’y,before = Ly, before = Ly after- (17)

Enforcing entropy density conservation we have

1/3

Try,after o <g*,before> (1 8)
= , .

T’y,before Gx,after

which can be recast as
1/3
Gx,before
T'y,after = ( Tl/,after~ (19)

Gx,after

Now we just need to compute the ratio g, before/gx,after-
Before e* annihilation, the species in the system, all sharing the same temperature 7,
are photons, electrons, positrons and neutrinos. Therefore

7 43
Gx,before = Gy + g(ge* + Get+ +9v + gD) = Z (110)

After e* annihilation, we are left with photons and neutrinos, but this time the tem-
perature of neutrinos is no longer that of the background plasma. As a consequence

7 Tu after K 21 Tu after °
after — S \Y9v 12 — =2 — ’ . 1.11
T aft 5 * 8 (g t9 ) <T’y,after) * 4 T’y,after ( )
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We can now write

11 1/3
Tmafter = Z Tl/,after~ (1 12)

The neutrino to photon temperature ratio is therefore defined as

T, 40\ /3
=== ~ 0.7137659 113
T, (11> (119

in the limit of instantaneous decoupling, and gives a neutrino temperature today of
T,o=T, T, =19454K.






APPENDIX B

Redshift-space distortions in the Kaiser limit

In general, the position of a galaxy in redshift space can be obtained from the original
position in real space, if the peculiar velocity of the galaxy is known. To link positions in
redshift space to the original ones, we can consider three different observers, 1, 82 and
23. They are defined such that

e O, is a fundamental observer in the origin 0;
e O, is a fundamental observer, located in a point p;
e (3 is an observer located in p, comoving with the galaxy in p .

When O, observes the galaxy in p, it sees it moving according to its peculiar velocity,
projected along the line of sight connecting them, vp,c. . The spectrum of the light emit-
ted by the object in p is measured by Oj3 in the rest frame. O, on the other hand, sees a
shifted spectrum, the shift being determined by the Doppler effect,

Ao 114 zpec/c v
1 — %2 _ I Tpee/ T 4 TPeCn 21
+ Zpec Ao, 1 — zpec/c + c (2.1)

When O looks at the motion of p, it sees the combined effect of the expansion of the
universe (given by the ratio between the wavelength measured by O, and by O;) and
the Doppler stretching of the spectrum (given by the ratio of the wavelengths measured
by O3 and O5). The redshift observed by O; is therefore

Aoy _ Aoy Aoy
/\03 )‘02 )‘03

1+ zops = = (1 + Zcos)(l + Zpec)- (22)

By combining the two previous equations one obtains

Upec u

Zobs = Zcos T T(l + Zcos)- (23)

The comoving radial distance between the origin 0 and p is given by

Zobs c dZ
0 H(z)

7(Zobs) = n, (2.4)

where 1 is the versor directed along the line of sight connecting 0 and p. which can be
split into

Zobs oy Zeos ¢ dy . /zcos—FUpiC “(142c0s) @ qy 25)
o H(2) o H(2) z ‘

H(z) H(z)

cos
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While the first two integrals are just the comoving distances from an observer today
to a point located at the observed and at the cosmological redshift respectively, to carry
out the last integral we need to introduce some assumptions. In particular, we can note
that, as long as the modification to the observed redshift induces by peculiar velocities
is way smaller than the cosmological redshift of the observed object, the Hubble func-
tion between z.os and zpec does not change significantly. Therefore we approximate the
last integral by considering the Hubble function at the cosmological redshift, H(zcos),
obtaining

7 (Zobs) = (2e0s) + [z + ”"Z" U1+ Zeos) — Zeos| - (2.6)

_°c
H (Zcos)
In the end we are left with

Upec 1 (1 + Zcos) a

H (7o) , (2.7)

T(Zobs) - T(Zcos) +

which, following the convention of naming positions in redshift space with s and in real
space with r, can be written as

s=r+”"“}{((i)+z)ﬁ. 2.8)

The number density in real space in the point r is given by

5y ="y, 29)
oy
while in redshift space it is
5(s) = ne(s) 4 (2.10)
Ns

Even if they are not necessarily the same, the number of objects (or the mass) is con-
served, meaning that
[1+0(s)] d®s = [1 + 6(r)] d®r. (2.11)

We need to impose this condition while recalling that the peculiar velocity, in linear
theory, is simply linked to overdensities through

04
V - Vpec = 5= ¢ f(a) H(a)é, (2.12)
where a is the scale factor and f = dlog D/dloga is the growth rate. To take care of the
divergence, it is convenient to pass in Fourier space, so that we can write

0% (k) = (1+ fu?) 0" (k), (2.13)

where, on the left-hand side, we have the Fourier transform of the overdensity in redshift
space, while on the right-hand side the Fourier transform of the overdensity in config-
uration space, modulated by the so called Kaiser factor. Here f is the growth rate, and
’i)pec -k
= = = COSs 19 (2.14)
g [Opec - Kl
is the cosine of the angle between the Fourier transform of the peculiar velocity vector
and the considered wavemode.
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As a consequence, the power spectrum in redshift space has the form
P(k) = [1+ fu?)? P (k), (2.15)

which explicitly depends on the direction of the vector k, and therefore it is no longer
isotropic even on linear scales.

However, one can recover isotropy giving up a certain part of the information con-
tained in the power spectrum. As a matter of fact, taking the angular average of the
power spectrum, hence its monopole, it is possible to remove the dependence on the
angle,

+1
P (k) = %[1 P(k) dp = {H §f+ éfﬂ P (k). (2.16)






APPENDIX C

Alcock-Pacziniski correction

Assuming different cosmological parameters leads to different relations linking the ob-
servable quantities (redshift and angles) to distances. To understand how distances
transform under a change of cosmological parameters, we need to start from the quanti-
ties that do not depend on the model, namely redshifts and angles. We need to link them
to parallel and transverse distances. I recall the FLRW line element (defined in Eq. [1.2),
which is

ds? = —2dt? + @ () {dr® + SE(r)(d¥? + sin® ¥de?) } (3.1)
where the Gaussian curvature, is
2
k= —% = H2Qpo, with K ={-1,01}, (32)
0

and therefore
sin(+/|k|r)/\/|k| if K =-1
Sk(r)y=«(r fK=0 (3.3)
sinh(Vkr)/VE  if K = +1.

The comoving radial distance, given by Eq. [1.6] is
fo ¢ dt e cdz
r= | S [T g2 (3.4)
/te a(t) Jo H(2)

where t. and z, are the time end redshift at which a signal was emitted, and ¢, and z, = 0
are present day time and redshift.
The angular diameter distance is given by

Sk (7“)
Dy = 3.5
A 1 s ) ( )
which, in a flat universe, reduces to
r
Dy = . .
A 1+=2 (36)

To link these quantities to redshifts and angles, we need some assumptions. The two
working assumptions I will introduce now are small redshift intervals and small angles.
If the redshift interval is not large, we can safely assume that the Hubble function does
not vary much, and transform the comoving radial distance integral into

5ry ~ HL 52, (3.7)

(2)
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where I have explicitly marked this as the distance parallel to the line of sight. The
angular diameter distance, if angles are not to big, can be written as

5r1 = D 89, (3.8)

where §, denotes the transverse distance.
The quantities §z and Jy do not depend on the model, while §r and ér, do. For this
reason, considering both the fiducial cosmology and a generic one, it must be valid that

F
0z = HoE"(2) 57{ = HoE(z) or|
c
sy OE oL ¢
DY Da’
This leads to linking a generic cosmology to the fiducial one with
F
5T’H Eé‘((’;) 57"5 3
N (3.10)
by = DA gr
== 6.
A
Regular volumes, therefore, change under a change of cosmology, as
EF(2) (D4\*
— 2 _ Fos F\2 _ 3 1/F
Hence, the Alcock-Pacziniski correction is given by
1/3
EF(2) (Da\®
= = 12
o= (o8) ] o

which is indeed the factor introduced in chapter 3| to correct the considered smoothing
scale.
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