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ENGLISH ABSTRACT 

Epigenetic conversion is a powerful technique that allows a mature somatic cell to 

switch into a different and alternative functional phenotype. The result is acquired 

without any transgenic modification, nor the acquisition of a stable and irreversible 

pluripotent state, making this approach very valuable for regenerative medicine. The 

protocol is robust, reproducible and ensures good functional efficiency, however, cells 

obtained are not completely mature and the optimal scale up conditions are needed for 

clinical translation. 

Aim of the present PhD project was to investigate whether the use of ambient 

conditions that try to closely mimic the physiological milieu, and limit the differences 

between in vitro and in vivo situations, may generate terminally differentiated cells and 

boost efficiency. To this purpose, physiological oxygen and different glucose 

concentrations were tested in order to assess cell responses and conversion ability in the 

different environments. In parallel, the use of three-dimensional (3D) culture systems 

was investigated, with the specific aim to study the impact of stiffness on epigenetic 

conversion and the acquisition of a functional, mature phenotype. The data obtained 

suggest that genetic background has a profound effect on the response to oxygen during 

the differentiation process and that conversion efficiency is strictly dependent on the 

glucose concentrations applied at cell isolation from the original tissue. 3D culture 

systems that match the stiffness typical of the original organ were able to increase 

differentiation and favored the acquisition of a mature pancreatic phenotype, distinctive 

of terminally differentiated cells. Last but not least, key molecular informations deriving 

from the ongoing gene editing experiments are expected to further clarify and 

substantiate the data obtained. Altogether, the information derived in this PhD project 

may find useful applications in order to design the best in vitro conditions and obtain a 

powerful scale-up protocol for pre-clinical studies and regenerative medicine of 

diabetes.  
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ITALIAN ABSTRACT 

La conversione epigenetica è una tecnica promettente che consente ad una cellula 

somatica matura di passare ad un fenotipo funzionale diverso ed alternativo rispetto a 

quello di origine. Questo risultato viene perseguito senza alcuna modificazione 

transgenica e senza l'acquisizione di uno stato di pluripotenza stabile e irreversibile, 

caratteristiche che rendono questo approccio molto prezioso per la medicina 

rigenerativa. Il protocollo di conversione epigenetica è robusto, riproducibile e assicura 

una buona efficienza ed il conseguimento di un fenotipo funzionale. Tuttavia, le cellule 

ottenute non sono completamente mature e differenziate ed è necessario identificare le 

migliori condizioni per realizzare uno “scale-up” che permetta l’applicazione in studi 

preclinici. Lo scopo del presente progetto di dottorato è stato quello di individuare 

condizioni di coltura fisiologiche, limitando le differenze tra l’ambiente in vitro e quello 

in vivo, al fine di aumentare l'efficienza del processo di differenziamento. Più 

precisamente, sono state testate concentrazioni fisiologiche di ossigeno e di glucosio per 

poter valutare l’efficienza di conversione cellulare nei diversi ambienti. Parallelamente, 

è stato valutato l'uso di sistemi di coltura tridimensionale (3D), con lo scopo di studiare 

il loro impatto sull’efficienza di conversione e sull'acquisizione di un fenotipo 

funzionale e maturo. I dati ottenuti suggeriscono che il “background genetico” ha un 

effetto significativo sulla risposta cellulare alle diverse condizioni di ossigeno durante il 

processo di differenziamento. D’altro canto, l'efficienza di conversione è risultata 

strettamente dipendente dalle concentrazioni di glucosio utilizzate durante l’isolamento 

delle cellule dal tessuto di origine. Inoltre, l’utilizzo di sistemi di coltura 3D, che 

riflettono la rigidità e l’elasticità proprie dell'organo in vivo, ha dimostrato un effetto 

positivo per l'acquisizione di un fenotipo pancreatico maturo, tipico delle cellule 

terminalmente differenziate. Infine, le informazioni molecolari ottenute dagli 

esperimenti di “genome editing” (ancora in corso) dovrebbero ulteriormente chiarire e 

corroborare i dati ottenuti.  

Complessivamente, i risultati di questa tesi possono fornire informazioni utili sia per la 

comprensione dei meccanismi di base che regolano la crescita e il differenziamento 

cellulare, così come per la messa a punto di un protocollo di “scale-up” da utilizzare 

nella realizzazione di studi preclinici finalizzati alla medicina rigenerativa del diabete. 
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1. INTRODUCTION 

1.1 Diabetes 

The diabetes cases are increasing worldwide due to population growth, aging, 

urbanization and increasing prevalence of obesity and physical inactivity. Diabetes 

represents one of the most highly widespread disease. Indeed, it is estimated that the 

total number of diabetes cases will rise from 171 million in 2000 to 366 million in 2030 

(Wild et al., 2004). 

There are three main typology of diabetes: 

 Type 1 Diabetes 

 Type 2 Diabetes 

 Gestational Diabetes 

Type 1 Diabetes (T1D) used to be called juvenile-onset diabetes. It is mainly caused by 

an autoimmune reaction where the body’s immune system attacks insulin producing 

cells (β cells), destroying them. The development of T1D involves several years of a 

“pre-diabetic” state associated with gradual worsening in glucose regulation. T1D in 

usually associated with other common autoimmune disease such as celiac disease, 

Addison’s and thyroid disorders (Barker, 2006). People affected by T1D need daily 

insulin injections in order to control their blood glucose level. If people with T1D do 

not have access to insulin, they will die. Moreover, diabetes is an important risk factor 

for several disease like atherosclerosis, vascular damage including non-occlusive 

macroangiopathy (angiopathy affecting large blood vessels) and microangiopathy 

(angiopathy affecting small blood vessels). T1D can also involve severe damages as 

blindness, heart attacks, renal failure and even amputation (Kota et al., 2013). 

Type 2 Diabetes (T2D) accounts for at least 90% of all diabetes cases; it is used to be 

called non-insulin dependent diabetes or adult-onset diabetes and it is characterized by 

insulin resistance and relative insulin deficiency (Kota et al., 2013). People affected by 

T2D can often initially manage their condition through exercise and appropriate diet 

(W.-X. Li et al., 2016). T2D is recognized as a progressive disorder, which means that it 

is associated with decreasing pancreatic function over time. Early recognition of the 

disease is very important in the clinical management of the disorder because, depending 
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on the stage, effective control may require lifestyle modification such as: oral agent 

therapy, oral agents combined with insulin, or insulin alone (Cefalu, 2006). Type 2 

diabetes is also a risk factor for blindness, cardiac and vascular complication, and renal 

failure (W.-X. Li et al., 2016).  

Gestational Diabetes (GDM) is a diabetes form consisting of high blood glucose levels 

during pregnancy. GDM usually disappears after pregnancy but women and their 

children with GDM have major probability to develop Type 2 diabetes later in life. 

1.2 Therapies for diabetes 

Except for the exogenous administration of insulin, which can mimic the effects 

produced by the endogenous hormone, at present, there are no definitive therapies for 

patients suffering from T1D. However, in some patients this therapy does not allow to 

achieve and maintain an adequate glycemic control. In these patients, the administration 

can be replaced by an insulin pump that allows the administration of insulin in a 

continuous manner and in variable doses according to the necessity.  

This therapy is generally effective, but patients can be affected by episodes of 

hypoglycemia, which cause a number of serious side effects. The lack of sugar 

determines problems in brain functionality, which, in turn, leads to blurred vision, 

dizziness, headache, concentration difficulties and other neurological symptoms. 

Hypoglycemia also triggers the release of hormones, such as epinephrine and 

norepinephrine that cause tachycardia, tremor, hunger, sweating and anxiety. It is not 

possible to completely eliminate these complications of insulin administration, nor this 

therapy leads to a cure of the disease, therefore it is considered only palliative (DeWitt 

& Hirsch, 2003). 

Pancreas transplant may represent a valid alternative solution to treat the most serious 

form of diabetes. The pancreas transplant can be carried out alone or in association with 

a kidney transplant. An obvious limitation to this intervention appears to be the large 

number of healthy pancreas needed to cure the many diabetics in the world. In addition, 

patients must be in good clinical conditions, in order to be able to face the surgery 

(Ludwig & Kersting, 2013).  

Another possibility, characterized by an easier implantation technique, is represented by 

the transplantation of pancreatic islets. This allows to obtain a normal balance of sugar 

metabolism without the continuous need of insulin administration. However, this 
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therapy requires two or three donors for each receiver in order to obtain satisfactory 

results. Moreover, the processes of isolation and purification to obtain the pancreatic 

islets are still not optimal and can damage the islets (Schenker & Viebahn, 2009). 

The greatest complication in islet or pancreas transplantation is the immune rejection of 

the transplanted organ that is recognized and attacked by the patient’s immune system. 

To avoid this type of reaction an immunosuppressive therapy is required. It begins 

during surgery and must continue for life. This will prevent organ rejection by 

controlling the activity of the immune system but, at the same time, it exposes the 

patients to a high risk of infection (Malaise et al., 2008). 

Considering the huge limitations that characterize the currently available therapies 

described above, researchers have been studying alternative methods to treat this disease 

for years. Currently the focus is heavily concentrated on the study of cell therapy that 

uses new cells to repair or substitute the damaged tissues (Kirchstein & Ruth, 2001). 

1.3 Stem cells  

A stem cell is an undifferentiated cell able to self-replicate for indefinite periods, often 

throughout the life of the organism. Under specific conditions, or signals, stem cells can 

differentiate into one or more cell types of the organism.  

1.3.1 Adult Stem Cells 

Adult Stem Cells persist for the whole lifetime and fulfill the functions of replacing 

cells that are eliminated following their natural turnover or traumatic events. These cells 

can be isolated from different adult tissues.  

Research on Adult Stem Cells has attracted much interest for their abilities to divide 

indefinitely and to generate all cell types specific of the organ from which they 

originate, potentially regenerating the entire organ from few cells. Unlike embryonic 

stem cells, the isolation of Adult Stem Cells does not require the destruction of an 

embryo, therefore their use in research and therapy is not ethically controversial (Bhatia, 

2007). Adult Stem Cells are found in specific niches placed in several tissues such as 

muscles, brain, heart, epithelium and others. However, a limitation for the use of Adult 

Stem Cells is that their isolation may be impractical as, for example, in the case of 

neural cells from a patient’s brain (Choumerianou et al., 2008). Other Adult Stem Cells, 

such as those isolated from the muscle, are difficult to expand in culture. Another issue 
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is that the cells multipotency is difficult to be maintained in vitro (Westerman et al., 

2010). 

The bone marrow and the umbilical cord are a source for both Hematopoietic Stem 

Cells (HSCs), and Mesenchymal Stem Cells (MSCs). These are amongst the most 

widely studied stem cells because they are able to differentiate into several cell types of 

the mesenchymal lineage, such as chondrocytes, osteoclasts and adipocytes. Recently, it 

has been demonstrated that MSCs can differentiate also into neuronal cells and muscle 

cells if cultivated under specific conditions (Jackson et al., 2007).  

In vitro differentiation of MSCs into pancreatic islets was attempted by several groups 

(Zhang & Dou, 2014; Kadam et al., 2012; Phadnis et al., 2011; Bhartiya, 2016). 

Gopurappilly et al. (2013) used pancreas isolated MSCs to differentiate into islets. Fetal 

islets can be expanded in culture to obtain MSCs (Joglekar et al., 2009). To evaluate the 

ability of cord blood mononuclear cells to differentiate into islets, Parekh et al., (2009) 

used cord blood samples concluding that a sub-set of ‘pancreas committed cells’ existed 

and increased after mice underwent partial pancreatectomy. Overall, however, all these 

attempts have remained inefficient since MSCs originate from mesoderm whereas β 

cells from endoderm and this concept remains controversial. Although phenotypic 

differentiation of MSCs into islets are reported, functional ability of the differentiated 

islet-like structures has not been demonstrated. MSCs have also been injected directly in 

the pancreas and being niche providing cells, helping, through several mechanisms, to 

alleviate diabetes symptoms like nephropathy, neuropathy, diabetic foot, etc. However, 

the effect of MSCs injection appears to be due to a generalized “niche effect” rather 

than to a real regeneration (Hashemian et al., 2015).  
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1.3.1.1 Pancreatic Stem Cells 

Unlike other tissue-specific stem cells, Pancreatic Stem Cells (PSCs) were proposed 

only relatively recently (Peck et al., 2000) and their presence and origin has been hotly 

debated (Dor et al., 2004). Βeta cells are regenerated during obesity, partial 

pancreatectomy and pregnancy and the observed regenerations led to the birth of the 

PSCs concept (Bonner-Weir et al., 2002). The existence of PSCs is also suggested by 

the continuous islets regeneration activity following transplantation (Ryan et al., 2002, 

2005) and this suggests that PSCs and/or functional β cells are capable of self-

duplication. 

Further studies should determine the biological potential and the molecular signature of 

these self-renewing cells. Increasing evidence shows that insulin gene expression is not 

a β cells exclusively functional marker since it has been detected in multiple cell types 

mainly responsible for development of mature islet cells, like PDX1+ and Ngn3+ 

progenitors cells (Jiang et al., 2010). Therefore, insulin-expressing cells represent 

developmentally heterogeneous populations. It has been reported that a few Ngn3+ cells 

in the developing pancreas co-express insulin in mouse (Hara et al., 2006). Consistently 

with this observation, some NGN3+ cells co-express insulin also in human fetal 

pancreas between 10 and 21 weeks (Lyttle et al., 2008). Moreover, the insulin-

expressing cells in the developing pancreas gave rise to other islet cell types in addition 

to β cells (Alpert et al., 1988). So, basically, insulin gene expression is not an exclusive 

marker of functional β cells. Transplantation studies or lineage-tracing, performed using 

marker cells labelled under the control of other mature β-cell specific genes promoters, 

will be important to confirm the self-duplication of functional β cells.  

In vitro evidence has indicated that “pluripotent PSC” may be present in all three major 

pancreas compartments, i.e. islets, acinar tissue and ductal epithelium (Zulewski et al., 

2001; Seaberg et al., 2004; Peck et al., 2000; Cornelius et al., 1997; Suzuki et al., 2002). 

This evidence comes from studies of both rodent and human pancreas. For example, a 

potential PSC candidate has been purified by flow cytometry in the developing and 

adult mouse pancreas. These cells are identified by expression of the receptor for 

hepatocyte growth factor, c-Met, and absence of blood cell surface markers such as Flk-

1, TER119, CD45 and c-Kit. These cells can differentiate in vitro into multiple 

pancreatic lineage cells from individual cells, whereas, following transplantation in 

vivo, are able to give rise to pancreatic acinar and endocrine cells (Suzuki et al., 2002). 
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Anyway, the molecular characteristics and the in vivo localization of these c-met 

expressing cells are largely unknown and clonogenesis at the single cell level has not 

been definitively proved. 

Since fetal mouse pancreatic cells are believed to be a rich source for potential PSC 

their differentiation and proliferation has been studied. Results indicate that bone 

morphogenetic proteins promote the development of pancreatic cystic epithelial 

colonies, containing β cells and pancreatic precursors (Jiang et al., 2002; Jiang & 

Harrison, 2005a). This process is similar to islet cells’ delamination taking place during 

duct formation in vivo. Moreover, colony formation can be stimulated by various 

isoforms of epidermal growth factors (Jiang & Harrison, 2005b). These data indicate 

that various growth factors’ families can modulate fate changes of pancreas 

precursor/stem cells, like other stem/progenitor systems. However, currently, these 

colony-forming cells can be considered precursors rather than stem cells because in 

vitro self-renewal has not been established yet. 

In conclusion, current data from literature indicate that a pancreatic stem cell population 

has not been identified and, therefore, at present, cannot be considered as a viable 

candidate for a regenerative medicine approach. 

1.3.2 Embryonic Stem Cells (ESCs) 

When Adult stem cells are not available for different reasons, an alternative approach is 

represented by Embryonic Stem Cells (ESCs), which are derived from the Inner Cell 

Mass (ICM) of a blastocyst. They are capable of unlimited and undifferentiated 

proliferation in vitro (Evans & Kaufman, 1981). In particular, ESCs are defined by the 

capacity for repeated generation of two classes of progeny: daughter cells with 

equivalent proliferative and developmental potential and daughters specified for 

differentiation. ESCs have an indefinite proliferative life span, and long-lived subclones 

obtained by single-cell expansion retain pluripotency (Martello & Smith, 2014). This 

undifferentiated state is maintained by several factors. Firstable, the cytokine leukemia 

inhibitory factor (LIF), an interleukin 6 class cytokine (IL-6) that affects cell growth by 

inhibiting differentiation (K. Onishi & Zandstra, 2015). In particular, soon after the 

initial derivation of mouse (m) ESCs it was discovered that their in vitro propagation 

required the activity of LIF (Smith et al., 1988; Williams et al., 1988), drived by 

activating the Janus kinase-signal transducer and activator of transcription 3 (JAK-
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STAT3) signaling pathway (Boeuf et al., 1997; Niwa et al., 1998). JAK-STAT signaling 

is mediated primarily through the IL-6 family that signal via either non-signaling α-

receptors or as signaling receptors. LIF, for instance, first binds to its signaling receptor, 

LIF-R (Gearing et al., 1991), and recruits another signaling receptor, glycoprotein 130 

(GP130), to form a heterodimer that mediates downstream signal transduction. Upon 

dimerization, the signaling receptors recruit and phosphorylate JAKs (JAK1, JAK2, 

JAK3 and Tyk2) which phosphorylate STAT3. This cascade culminates in the 

dimerization of phosphorylated STAT3 ( pSTAT3), its translocation to the nucleus and 

the direct regulation of the transcription of a wide range of genes, included the JAK-

STAT inhibitor suppressor of cytokine signaling 3 (SOCS3) (Naka et al., 1997; Starr et 

al., 1997). Furthermore, inhibition of STAT3 is also independently mediated through 

protein inhibitor of activated STAT3 (PIAS3) (Chung et al., 1997). On the other hand, 

JAK-STAT signaling also the transcription of STAT3, JAK1, GP130 and LIF-R (Davey 

et al., 2007; He et al., 2005). These autoregulatory aspects of JAK-STAT signaling are 

capable of cycling between dormancy and activity in response to specific developmental 

cues and to external stimuli postnatally.  

However, LIF-STAT3 pathway is not sufficient. In fact, in vitro, if serum is removed 

from ESCs, they continue to proliferate but progressively loose ES cell features and 

differentiate over five to six days, mostly into neural precursors and neurons (Ying et 

al., 2003a). The implication is that serum provides an additional signal to LIF that is 

required to fully suppress differentiation, in particular to the neural lineage. Bone 

morphogenetic proteins (BMPs) are potent antagonists of neural specification in 

vertebrate embryos and they can replace serum and sustain self-renewal in combination 

with LIF (Ying et al., 2003b). This effect of BMP had been elusive because BMP alone 

promotes nonneural differentiation (Malaguti et al., 2013; Wiles & Johansson, 1999), 

and the self-renewal action is apparent only in the presence of LIF.  

Moreover, the fibroblast growth factor (FGF) pathway is operative in ESC cultures and, 

in particular, ESCs produce appreciable amounts of FGF4. Although initially 

considered as a potential autocrine self-renewal stimulus, characterization of ESCs 

deleted for FGF4 highlighted a role in differentiation (Wilder et al., 1997). Another 

important factor, the glycogen synthase kinase-3 (GSK3), was also implicated as an 

antagonist of ESCs self-renewal (Doble et al., 2007; Sato et al., 2004). 

Inhibition/deletion of GSK3 combined with LIF allowed efficient ES cell self-renewal. 
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GSK3 is a negative regulator of many basic cellular processes, restraining several 

intracellular signaling pathways (Doble & Woodgett, 2003), most notably canonical 

Wnt/β-catenin (Clevers, 2006). In particular, Wnt signaling and Wnt proteins are 

important for the maintenance of stem cells of various lineages (Nusse et al., 2008). The 

Wnts comprise a large family of protein ligands that affect several processes such as 

embryonic induction, generation of cell polarity and the specification of cell fate (Logan 

& Nusse, 2004). In stem cell biology, the interactions between Wnts and membrane are 

likely of great importance in understanding how niches control stem cell fate, 

commonly thought to be in close cell to cell configurations. In particular, several 

studies, mostly coming from mouse ESCs research, demonstrated that Wnt signaling 

components are involved in ESCs control (Pereira, et al., 2006; Hochedlinger et al., 

2005; Kielman et al., 2002).  

Therefore, ESCs are a possible source of cells for many regenerative medicine 

applications, including diabetes. The use of ESCs in cell therapy is conceptually simple 

and involves their differentiation into pancreatic progenitors for transplantation. 

However, the pancreatic progenitors derived from ESCs needs to be packed in immuno-

isolating capsules prior to the subcutaneous transplantation, to avoid life-long immuno-

suppressive therapy because they would be exogenous to the patient. These 

encapsulated cells (expected to mature into islets on transplantation) will have the 

ability to secrete appropriate amount of insulin in a glucose-responsive manner over a 

period of time. This would represent a more physiological approach compared to daily 

insulin injections and are expected to remain functional over a long time (Bhartiya, 

2016). Jiang et al. observed that about 30% of transplanted mice showed reduction in 

hyperglycemia on transplanting insulin positive cells (obtained by ESCs 

differentiation), for over six months (Jiang et al., 2007). Thus, proof of concept for use 

of human ES cells for diabetes was established but, however, the process remains highly 

inefficient. 

Moreover, ESCs are difficult to control since, once transplanted in vivo, they can form 

tumors. This issue represents a huge limitation in their use for therapy. Furthermore, 

their derivation involves several ethical and legal issues (Wobus, 2001).  
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1.3.2.1 ESCs pluripotency factors 

The mainteinance of pluripotency in ESCs is regulated by several factors.  

First of all, the preeminent pluripotency factor is the POU-domain transcription factor 

Oct4 (Pou5f1). This was the first transcription factor identified and characterized as a 

regulator of pluripotency (Okamoto et al. 1990, Schöler et al., 1990). Oct4 is expressed 

in oocytes and early embryos and it is maintained exclusively in the germ cell lineage 

(Martello & Smith, 2014). In vitro Oct4 is found only in embryonal carcinoma (EC), ES 

and embryonal germ (EG) cells. Upon deletion of Oct4, pluripotency fails to become 

established in the embryo and, in particular, ICM cells lose their identity and 

differentiate into trophectoderm (Nichols et al., 1998), which is not a common fate for 

ES cells (Niwa et al., 2000). However, forced expression of Oct4 does not consolidate 

or enhance ESCs self-renewal. On the other hand, even modest overexpression 

precipitates differentiation (Niwa et al., 2000). Conversely, previous works showed that 

reduced levels of Oct4 impaired ESCs differentiation, without affecting self-renewal 

(Karwacki-Neisius et al., 2013; Radzisheuskaya et al., 2013).  

Moreover, the SRY-box transcription factor Sox2 is also essential for ESCs self-

renewal. As a matter of fact, Sox2 inactivation in ESCs results in trophoblast formation, 

as in Oct4 deletion (Masui et al., 2007). In particular, it was demonstrated that Sox2 is 

an Oct4 partner (Ambrosetti et al., 1997) and it physically interacts with Oct4 protein 

(Pardo et al., 2010; van den Berg et al., 2010). Sox2 binds DNA together with Oct4 at 

Oct/Sox elements (Chen et al., 2008) and positively regulates Oct4 transcription (Masui 

et al., 2007). However, Sox2 is much more broadly expressed than Oct4, and, in 

addition to the pre- and post-implantation epiblast, it is expressed in trophectoderm 

(Keramari et al., 2010) and later on by all neuroectodermal cells and in several 

endodermal and epithelial tissues. Furthermore, overexpression of Sox2 predisposes 

ESCs to differentiation (Kopp et al., 2008; Zhao et al., 2004), suggesting that, like Oct4, 

Sox2 expression levels should be constrained for efficient self-renewal. 

Then, a coregulated target identified later is the gene encoding Nanog, a classic 

pluripotency-maintaining factor. Nanog is a homeodomain-containing transcription 

factor and its expression, in vivo, is more restricted to the naive pluripotency 

compartment compared to Oct4 and Sox2 (Silva et al., 2009), although it is reexpressed 

exclusively in the early egg cylinder and is present in primordial germ cells (PGCs). In 

addition, the forced expression of Nanog in ESCs confers the ability to self-renew in the 
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absence of LIF (Chambers et al., 2003). On the other hand, loss of Nanog destabilizes 

pluripotent cells both in vitro and in vivo, as measured by impaired colony forming 

capacity (Chambers et al., 2007) of “Nanog null ESCs” and the failure of “Nanog null 

embryos” to generate the epiblast (Mutsui et al., 2003; Silva et al., 2009).  

Definitely, Oct4, Sox2 and Nanog have been shown to cross-regulate each other (Figure 

1) and consequently are proposed to form a core triad that maintains the pluripotent 

state (Young, 2011). However, it is not sufficient to explain the observed properties of 

ES cells. As a matter of fact, a number of transcription factors specific to naıve epiblast 

and ground state ESCs have been identified. Among these factors, Esrrb, Klf4, Klf2, 

and Tbx3 have been functionally implicated in ESCs self-renewal through forced 

expression studies (Nichols & Smith, 2012). These transcription factors are 

interconnected each other and with Oct4, Sox2, and Nanog (Chen et al., 2008; Marson 

et al., 2008). Like Nanog, their deletion can be tolerated by ESCs, although self-renewal 

is heavily compromised. 

  

 

Figure 1: combinatorial signaling pathways involved in maintaining ESC pluripotency.  

(Cell signaling) 
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1.3.3 Induced Pluripotent Stem cells (iPSCs) 

The ethical difficulties related to the use of human embryos, as well as the problem of 

tissue rejection following transplantation in patients, can be circumvented by the 

generation of pluripotent cells directly from the patient’s own cells. It has been 

demonstrated that the factors that play an important role in the maintenance of ESCs 

identity also play an essential role in the induction of pluripotency in somatic cells. This 

is achieved by the retroviral transfection of four genes, responsible for the maintenance 

of ESC identity, into adult somatic cells. The introduction of Oct4, Klf4, Sox2 and v-

myc avian myelocytomatosis viral oncogene homolog (c-MYC) (Meissner et al., 2007; 

Okita et al., 2008; Takahashi et al., 2007; Takahashi and Yamanaka, 2006), ensure the 

transformation of any adult somatic cells in ESC-like cells, that are known as Induced 

Pluripotent Stem Cells (iPSCs) (Figure 2) (Takahashi & Yamanaka, 2006).  

Resulting iPSCs can be transcriptionally, epigenetically and functionally equivalent to 

ESCs (Okita et al., 2007; Takahashi & Yamanaka, 2006; Wernig et al., 2007). 

Reprogramming provides an alternative system to gauge the relative contribution of 

transcription factors controlling the naıve pluripotent state. In particular, transcription 

factors associated with the ESCs state have been extensively implicated in 

reprogramming. For example, epiblast stem cells (EpiSCs), which already express Oct4 

and Sox2, can be efficiently converted to naıve iPS cells forcing the expression of 

Nanog, Klf4, Klf2, Esrrb, Tfcp2l1, Tbx3 or Gbx2 (Festuccia et al., 2012; Guo et al., 

2009; Hall et al., 2009; Martello et al., 2013; Silva et al., 2009; Ye et al., 2013) or by 

hyperactivation of Stat3 (Onishi et al., 2014; Yang et al., 2010). 

Definitely, the potential of iPSCs is enormous but, however, many obstacles remain 

before their medical and pharmaceutical applications can be fully realized. In fact, their 

ability of unlimited self-renewal and the ability to differentiate into all body cell types 

(Ezashi et al., 2009; Esteban et al., 2009) constitute a limitation for their use in 

regenerative medicine, since the attenuation of proliferative and differentiation controls 

may increase the risk of a neoplastic transformation after transplantation. Moreover, the 

requirement of permanent integration of viral vectors (retroviruses or lentiviruses), into 

the host genome to generate iPSCs (Yamanaka, 2007), poses a severe limit to their 

current therapeutic use (Okita et al., 2007). These problems have stimulated the 

development of several protocols for a virus-free iPSC derivation (Zhou et al., 2009; 

Okita et al. 2008) but, at present, these approaches are generally more technical 
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demanding and less efficient (Lengner, 2010). Therefore, overall, the use of pluripotent 

stem cells derived, either from an embryo or from the genetic manipulation of a somatic 

cell, is still characterized by several problems that drastically limit their use in the cure 

of diabetes, as well as of any other disease. However, finding new sources of β-cells 

remains at the forefront of goals in diabetes research. Several alternative strategies to 

generate β-cells are currently being pursued and one of the most promising is epigenetic 

conversion. 

 

 

Figure 2: iPSCs creation  

(Yamanaka & Blau, 2010)  
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1.4 Pancreas organogenesis 

1.4.1 Pancreas structure 

Pancreas is a elongated and flattened soft gland, 12-20 cm in length in human and it is 

covered with a thin connective tissue. The pancreas head is on the right side and lies 

within the duodenum curvature. In the rear abdomen is possible to identify neck, body 

and tail of the pancreas that lies obliquely, with the tail extending as far as the gastric 

surface of the spleen (Longnecker, 2014). Pancreas is composed by peculiar structures 

called lobules, which are connected by connective tissue septa containing blood vessels, 

nerves, lymphatic and excretory ducts (Figure 3). 

 

 

 

 

Figure 3: anatomic relationships of the pancreas with surrounding organs and structures  

(Longnecker, 2014) 
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Pancreas is composed by two portions: 

- Exocrine pancreas, the portion that produce and secrete digestive enzymes into 

the duodenum. This includes acinar and duct cells with associated connective 

tissue, nerves and vessels. The exocrine components comprise more than 95% of 

the pancreatic mass (Longnecker, 2014). Moreover, exocrine pancreas has 

numerous secretory (zymogen) granules, containing several digestive enzymes, 

including amylases, lipases, proteases and nucleases. All these enzymes are 

secreted in the digestive tract (Slack, 1995). 

- Endocrine pancreas, the portion that make and secrete insulin, glucagon, 

somatostatin and pancreatic polypeptide into the blood (the islets). Islets are 

compact spheroidal clusters embedded in the exocrine tissue, comprising 1-2% 

of pancreatic mass (Longnecker, 2014).  

There are four principal types of endocrine cells (Figure 4):  

- α (or A or A2) cells secreting Glucagon; 

- β (or B) cells secreting Insulin, C peptide, Islet amylod polipeptide (IAPP or 

amylin) and Gamma-aminobutyric acid (GABA); 

- δ (or D or A1) cells producing Somatostatin (SS); 

- ε (or E) cells which secrete Ghrelin; 

- PP (or F) cells which secrete pancreatic polypeptide (PP). 

  

 

Figure 4: exocrine and endocrine pancreatic cells. 
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1.4.2 Overview of pancreas development 

1.4.2.1 Mouse pancreas development 

Pancreas is a compound gland derived from the endoderm. Prior to organogenesis, the 

gut endoderm becomes grossly regionalized into distinct organ fields by a series of 

anteroposterior and dorsoventral patterning events (Pan & Wright, 2011). Then, such 

events are usually drived by extrinsic signals from adjacent mesodermal derivatives, as 

well as by intrinsic events regulated by specific factors expressed within the endodermal 

cells themselves. In particular, during gastrulation, the dorsal pancreatic region first 

receives inductive signals from the mesoderm, then, permissive signals from the nearby 

notochord and, finally, proliferative signals from the pancreas mesenchyme (Figure 

5A). On the other hand, the ventral pancreas patterning is regulated by distinct sets of 

signals from the lateral plate mesoderm, cardiac mesoderm, and septum transversum, as 

visible in figure 5B (Pan & Wright, 2011).  

 

 

 

 

Figure 5: early pancreas development: anteroposterior and dorsoventral patterning events. 

(Pan & Wright, 2011) 
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In particular, pancreas development is clearly first evident at Embryonic day 9.5 (E9.5) 

in mouse, when the dorsal foregut endoderm thickens and evaginates bulging into the 

surrounding mesenchyme. This is followed at E10 by the emergence of the anlage of the 

ventral pancreas bile duct, from the ventral foregut endoderm. Specifically, rodent 

pancreas formation has been classically divided into two overlapping waves of 

development. The first one, occurring between E9.5–E12.5, is characterized by a broad 

morphogenetic change of the pancreatic epithelium (Pan & Wright, 2011). In particular, 

during this first transition, is possible to observe an active proliferation of pancreatic 

progenitors that generate a stratified epithelium. Then, the formation of multiple 

microlumens (and their subsequent coalescence) give rise to the first differentiated 

endocrine cells in the dorsal bud, mainly glucagon-producing cells (Herrera, 2000; 

Kesavan et al., 2009; Villasenor, Chong, Henkemeyer, & Cleaver, 2010). Subsequently, 

around E11.5, the gut tube begins to coil, allowing the conjoining of dorsal and ventral 

buds into a single organ. Then, at E12.5, the densely packed epithelium starts to 

undergo active plexus remodeling, continued epithelial expansion and production of 

more plexus, sending finger-like protrusions into the mesenchyme and over the entire 

organ (Figure 6). Concurrently, compartmentalization of the ‘‘protodifferentiated’’ 

pancreatic epithelium commences, with the segregation of the epithelium into distinct 

‘‘tip’’ and ‘‘trunk’’ domains. While the tip domains contain multipotential pancreatic 

cells (MPC), which are later destined to change into acinar-fated progenitors, the 

adjacent trunk epithelial region consists of an endocrine-duct bipotential progenitor pool 

(Zhou et al., 2007) (Figure 6). 

Starting at E13.5, the epithelium undergoes a striking morphogenetic event called the 

‘‘secondary transition’’, characterized by a massive differentiation wave towards the 

three main pancreatic lineages. Firstly, acinar cells derive from the extending tip 

epithelium and continue to undergo active proliferation to increase their number (Pan & 

Wright, 2011), producing a great numbers of acini throughout the organ (Figure 6). 

Secondly, endocrine cells become committed from the trunk epithelial region, going 

through a not well defined epithelial exit process that involve an epithelial-to-

mesenchymal transition (EMT) (Rukstalis & Habener, 2007). Thus, endocrine cells 

organize themselves into clustered endocrine islets, often located nearby to their parent 

ducts.  
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After the secondary transition, at E16.5, the epithelium expands further, largely driven 

by acinar proliferation. In particular, the competence of the trunk epithelium to give rise 

to endocrine cells of various types changes according to the developmental stage 

(Johansson et al., 2007). Finally, during late gestation and in the first few weeks of 

postnatal life, endocrine cells start to coalesce and round up into mature islets. In the 

mouse, β-cells form the islet core surrounded by a coat composed by α, δ and PP-cells, 

whereas the very minor ε-cell population is dispersed throughout the islet. About 80% 

of the islet cell mass present at birth is generated by the proliferation and differentiation 

of endocrine progenitors, with the other 20% coming from islet cell proliferation 

(Bouwens & Rooman, 2005).  

 

 

 
 

Figure 6: mouse pancreas development.  

(Pan & Wright, 2011) 
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1.4.2.2 Human pancreas development 

A wealth of data and reviews exist on mammals pancreas development, primarily mice 

and other vertebrates, but, in contrast, human pancreatic development has been less 

reviewed (Jennings et al., 2015). It seems obvious that a detailed understanding of 

human model could be crucial for learning the best methods of in vitro directed 

differentiation of hES/iPS cells towards functional β-cells.  

Despite ethical constraints on procurement of human fetal tissue, pioneering studies 

from Scharfmann’s group provide precious informations on human pancreas 

organogenesin, including early differentiation and proliferation of endocrine cell types 

(Polak et al., 2000), ex vivo analysis of endocrine and exocrine differentiation in human 

fetal pancreas grafted under the kidney capsule (Castaing et al., 2001; Castaing et al., 

2005), establishment of in vitro culture system for human fetal pancreas (Ye et al., 

2005) and, finally, in vivo lineage tracing system for labeling β-cells (Scharfmann et al., 

2008). In general, human pancreas organogenesis largely mimics the mouse process. In 

particular, dorsal and ventral pancreas budding is first evident at 26–35 dpc (day post 

coitum) and their fusion occurs around 6 weeks of gestation (G6w) (Pan & Wright, 

2011). Specifically, the dorsal bud produces most of the head, body and tail of the 

mature pancreas, whereas the ventral bud contributes to the inferior part of the head of 

the organ (Piper et al., 2004; Polak et al., 2000; Slack, 1995). In contrast to the typical 

mouse pancreatic development characterized by two overlapping waves, in human 

pancreatic development there may be a single, extended transition. As a matter of fact, it 

is difficult to assume that there is an equivalent of these transitions, in terms of 

morphology or any broad changes in endocrine-specific transcription regulator 

expression (Sarkar et al., 2008). Furthermore, there are important functional differences 

between the human ‘‘mixed-islet’’ architecture and the canonical core (β-cell) and 

mantle (other endocrine) structure that is found in mice. Islet-like clusters appear from 

approximately G11w in human pancreas. Unlike the mixed-islet architecture observed 

in human adult pancreas, the aggregated insulin and glucagon-expressing cells in the 

human fetal islets (around G14– 16w) seem to be arranged similarly to the mouse adult 

islet (Jeon et al, 2009). However, at G19w, it is proposed that a transient separation of 

the peripheral α and δ-cells occurs, away from the β-cell core, to form homogeneously 

mono-hormone-producing clusters. Presumably, the mono-hormone islets reintegrate 

amongst each other after G22w, and there is significant intermixing to generate the adult 
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islet architecture (Jeon et al., 2009). Moreover, there are also comparative studies 

showing the differential distribution of endocrine cells amongst the various regions of 

the human and mouse pancreas. In particular, greater numbers of PP cells are located in 

the human head region, with more α-cells and β-cells in the neck, body and tail regions 

(Brissova et al., 2005). Finally, human islets contain 50% β-cells, 40% α-cells, 10% δ-

cells and a few PP cells, while mouse islets are composed by 75% β-cells, 20% α-cells, 

and 5% other endocrine cells (Brissova et al., 2005).  

The importance of these differences is still unclear, and any relevance to endocrine cell 

function and glucose/energy metabolism requires further detailed analysis.  
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1.4.3 Transcriptional regulation of endocrine pancreatic cells 

development 

During embryogenesis, pancreas development occurs following several differentiation 

stages, as visible in Figure 7. 

 

 

Figure 7: in vivo endocrine pancreatic development stages. 

(Bruin et al., 2015) 

 

Along this process, a number of transcription factors are activated at each stage (Figure 

8), as described below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: differentiation of pancreatic endocrine cells from human ES cells. Transcription factors  

expressed at each stage proposed by D’Amour et al. (2006) (A) and Kroon et al. (2008) (B). 
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1.4.3.1 Definitive endorderm transcription factors  

The pancreas develops from the definitive endoderm (DE) germ layer, which is 

generated during the gastrulation stage of embryogenesis (Tam et al., 1993).  

Among all transcription factors expressed during this stage, two of these are the most 

studied:  

Forkhead box A2 (FOXA2)  

During early pancreatic development, the FOXA2 transcription factor is consistently 

expressed from week 4 forward, as revealed by recent studies carried out on human fetal 

pancreas (Jennings et al., 2013; Jeon et al., 2009; Lyttle et al., 2008). This expression 

profile is similar to broad mouse FOXA2 expression throughout pancreatic 

development. Furthermore, FOXA2 persists in all mature pancreatic cell types of both 

mice and humans (Cano et al., 2014; Pan & Wright, 2011).  

SRY (sex determining region Y)-box 17 (SOX17)  

In contrast to FOXA2, expression of SOX17 is observed immediately before 4 weeks in 

humans and is then excluded from pancreatic cells about 1 week later, similar to the 

down-regulation of SOX17 during mouse pancreatic development (Rachel E. Jennings 

et al., 2013; Piper et al., 2004). Studies in mice have indicated that, although early 

SOX17 expression is necessary for endoderm formation, it later represses the pancreatic 

fate (Spence et al., 2009).  

1.4.3.2 Primitive gut tube transcription factors 

DE initially consists of a flat sheet of cells that has anterior-posterior pattern 

information (Conrad et al., 2014). Then, this peculiar structure forms a primitive gut 

tube, along which the domains for various endoderm organ primordia are specified 

(Wells & Melton, 1999). In particular, during the primitive gut tube formation, the 

expression of two important factors was detected: 

Hepatocyte nuclear factor 1 homeobox b (HNF1b)  

A high level of HNF1b expression begins as early as 7 weeks in humans, persisting 

throughout pancreatic development (Jeon et al., 2009). Interestingly, heterozygous loss-

of-function HNF1b mutations (termed MODY5) result in diabetes in humans but only 

homozygous mutations produced diabetes in mice (Horikawa et al., 1997). This could 

be due to a potentiated single wave of human endocrine differentiation versus the two 
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phases observed in rodents, rendering human cells more sensitive to HNF1b dosage 

(Cano et al., 2013). 

Hepatocyte nuclear factor 4α (HNF4α) 

In rodents, HNF4α is nuclear hormone expressed in the primitive endoderm at E4.5, in 

the gut endoderm at E8.5, in the pancreatic epithelium at E9.5 and, postnatally, in both 

endocrine and exocrine cells (Duncan et al., 1994; Nammo et al., 2008). Similar 

expression pattern occurs in human.  

1.4.3.3 Posterior foregut transcription factors 

Then, pancreas develops from the posterior foregut, emerging as buds from the dorsal 

and ventral sides of the gut tube. At this early stage, formation of the pancreatic anlage 

depends on retinoid signaling and on inhibition of hedgehog signaling (Lau et al., 2006; 

Stafford et al., 2004).  

The developing organ mainly express the following transcriptional factors: 

Hepatocyte nuclear factor (HNF6)  

Recent sudies demonstrated that HNF6 is consistently expressed in 7–21 weeks human 

pancreas aged (Jeon et al., 2009; Lyttle et al., 2008). In parallel, mouse HNF6 

expression is visible starting from the E8.5, with broad expression throughout 

development, directing endocrine allocation until just before birth when it becomes 

restricted to alfa and acinar cells (Zhang et al., 2009).  

Pancreatic and duodenal homeobox 1 (PDX1)  

Also known as insulin promoter factor 1 (IPF1), PDX1 has been studied for its role 

throughout all phases of pancreatic development. PDX1 is largely expressed at around 4 

weeks with a high level of expression being restricted later to adult human β cells 

(Rachel E. Jennings et al., 2013; Lyttle et al., 2008). Based on the staging of the 

surrounding tissue morphology, PDX1 appears slightly later in human development 

than in mice. In humans, its expression is only evident after the notochord and aorta 

separation from the dorsal foregut (Rachel E. Jennings et al., 2013; Jeon et al., 2009). 

On the other hand, in the mouse, PDX1 expression compares in the pre-pancreatic 

endoderm, around E8.5 (Ahlgren et al., 1996). Mouse lineage-tracing studies 

demonstrated that PDX1+ cells mark progenitors of all the mature pancreatic cell types 

including endocrine, acinar and ductal cells (Gu et al. , 2002).  
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SRY (sex determining region Y)-box 9 (SOX9)  

SOX9 is found in PDX1+ cells in early human and mouse pancreas by about 4 weeks 

and E9, respectively, and is then excluded from mature endocrine cells (Cano et al., 

2013; Rachel E. Jennings et al., 2013; Pan & Wright, 2011). Furthermore, in mice, 

SOX9 is necessary for the maintenance of multipotent progenitor populations (Rachel 

E. Jennings et al., 2013; McDonald et al., 2012; Pan & Wright, 2011; Piper et al., 2002).  

1.4.3.4 Pancreatic endoderm and endocrine precursors transcription factors 

The next phase of pancreas development is endocrine cell specification, which occurs 

through inhibition of Notch signaling in the pancreatic epithelium, allowing expression 

of the pro-endocrine genes (Ahlgren et al., 1996).  

Neurogenin 3 (NGN3)  

NGN3 is expressed in all endocrine progenitors (Gu et al., 2002), initiating a cascade of 

transcription-factor expression, driving endocrine cell differentiation. Coincident with 

SOX9 loss, in pancreatic epithelial cells, endocrine cell specification initiates with 

NGN3 expression, in both human and mouse models (Gradwohl et al., 2000; Jennings 

et al., 2013; Lyttle et al., 2008). In human, NGN3 is seen as early as 8 weeks and 

becomes more highly expressed at around 11 weeks. Then, expression declines to only 

low levels at 19 weeks (Capito et al., 2013; Gradwohl et al., 2000; Rachel E. Jennings et 

al., 2013; Jeon et al., 2009). Later induction of human transcription factors near week 15 

(ISL1, NEUROD1, MAFB, NKX2.2 and PAX6) indicates that NGN3 expression 

precedes the expression of these factors that are implicated in late endocrine cell 

differentiation (Jeon et al., 2009).  

NK6 homeobox 1 (NKX6.1).  

Human NKX6.1 is expressed in early multipotent pancreatic progenitors after 4 weeks, 

once SOX17 is excluded from the pancreatic buds (Rachel E. Jennings et al., 2013). 

Then, its expression becomes restricted to β cells by 14–16 weeks (Brissova et al., 2005; 

Rachel E. Jennings et al., 2013). Similarly, early rodent NKX6.1 expression is broad, 

then gradually becomes beta cell specific (Jennings et al., 2013; Sander et al., 2000).  
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Paired box gene 4 (PAX4) 

Human PAX4 expression is evident by 9 weeks in whole fetal pancreatic mRNA analy-

sis (Jeon et al., 2009). Although its spatial pattern has yet to be reported in humans, 

PAX4 is found in mouse endocrine progenitors and later in β cell precursors, as a 

regulator of β cell commitment (Sosa-Pineda et al., 1997).  

Paired box gene 6 (PAX6) 

PAX6 is induced by 14–16 weeks in human and is then maintained in all adult islet cells 

(Ahlqvist et al., 2012; Lyttle et al., 2008). This is similar to the known PAX6 expression 

pattern in mice (Sander et al., 1997).  

Neurogenic differentiation factor 1 (NEUROD1) 

NEUROD1 is expressed at week 15 and is then found in all endocrine cell types of adult 

islets (Rachel E. Jennings et al., 2013; Jeon et al., 2009; Lyttle et al., 2008). However, 

NEUROD1 expression occurs relatively earlier in mouse development – by E10.5 – but 

is similarly restricted to the endocrine compartment (Gu et al., 2010; Naya et al., 1995).  

V-maf musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB)  

Unlike in mice, where β cell MAFB expression diminishes postnatally, in humans 

MAFB increases from 7 to 21 weeks and, then, remains in mature α and β cells (Dai et 

al., 2012; Hang & Stein, 2011; Jeon et al., 2009). Sustained MAFB expression may 

have functional implications in β cell development and identity. Indeed, severe 

reductions in MAFB levels were found in human T2DM islet α and β cells, suggesting a 

role in their functional maintenance (S. Guo, Dai, Guo, & Taylor, 2013).  

NK2 homeobox 2 (NKX2.2) 

Another key difference between mice and humans is seen with NKX2.2 expression 

(Rachel E. Jennings et al., 2013). Indeed, in human, its expression first appears at 8 

weeks with later increased transcription by 14–16 weeks, whereas, in rodents, NKX2.2 

expression is observed earlier around E9.5 (Rachel E. Jennings et al., 2013; Lyttle et al., 

2008; Sussel et al., 1998). Only later, rodent NKX2.2 being restricted to β cellls and a 

subset of α and PP cells (Rachel E. Jennings et al., 2013; Lyttle et al., 2008; Sussel et 

al., 1998).  
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Insulin gene enhancer protein ISL-1 (ISL1).  

ISL1, also called ISLET1, appears to be required for pancreatic development, in both 

human and mouse pancreas development (Shimomura et al., 2000). In particular, in 

humans, its expression has been observed at 8–10 weeks fetal pancreas and, then, 

transcription gradually increases from mid-gestation (Jeon et al., 2009; Lyttle et al., 

2008). This is similar in mice, where ISL1 is first expressed broadly at E9 and, then, it 

is maintained in the mature hormone+ endocrine cells (Ahlgren et al., 1996).  

Pancreas transcription factor 1A (PTF1A) 

PTF1A expression is barely detectable until mid-gestation in whole human fetal 

pancreas, presumably due to its enriched expression at that timepoint in acinar cells. It 

is better characterized in mice, with broad expression at E9 in dorsal and ventral 

pancreatic buds that is later restricted to acinar cells only (Jeon et al., 2009; Obata et al., 

2001).  

1.4.3.5 Endocrine cell differentiation and maturation transcription factors  

Pancreatic hormone expression first occurs about 8 weeks into human gestation, with 

the onset of Insulin+ cells, which become more abundant by week 9 when Glucagon+ 

cells also appear (Jeon et al., 2009; Polak et al., 2000). On the other hand, in rodents, 

two waves of endocrine development have been observed. In detail, a first wave starting 

from about E9.5–12.5 is characterized by Insulin and Glucagon coexpressing cells, 

whereas the second wave, from about E12.5 to birth, produces endocrine cells that will 

populate mature islets (Herrera, 2000).  

As mentioned above, the mature islets comprise five endocrine cell types: α, β, δ, PP 

and ε cells, which produce the hormones glucagon, insulin, somatostatin, pancreatic 

polypeptide and ghrelin respectively. The mechanisms that control the specification of 

these endocrine cell types from NGN3-expressing progenitors are not well understood 

(Conrad et al., 2014). Once formed, the hormone-expressing endocrine cells undergo 

further differentiation to a mature functional state, which, for a β-cell for example, 

involves the ability to release Insulin in response to elevated glucose concentrations.  
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1.5 Epigenetic cell conversion  

1.5.1 Epigenetic mechanisms 

In a complex multicellular organism, all cells have the same genome. However, in the 

body, there are many different cell types, obtained through the adoption of a specific 

specialization in several tissues. This is the result of cell differentiation processes that 

are regulated by the expression of several genes, responsible for a specific phenotype 

(Brevini et al., 2015). In particular, gene expression is regulated by extrinsinc and 

intrinsic factors (Swain et al., 2002): the first ones include environmental cues that can 

originate from the organism’s ambient (e.g. temperature and oxygen) or from other cells 

within the organism (e.g. small molecules, secreted proteins). In contrast, intrinsic 

regulation takes place through the cell’s own machinery that chemically modifies the 

DNA. These changes are used to be called epigenetic modifications since they do not 

alter the primary DNA sequence, but, instead, affect gene expression by changing the 

accessibility of genes to transcription factors, in either a positive or negative manner. 

Two main mechanisms are involved in these regulatory processes: DNA methylation 

and histone modifications (Goldberg et al., 2007). DNA methylation is a biochemical 

process where a methyl group (CH3) is added to the cytosine or adenine DNA 

nucleotides. The covalent addition of a CH3 group at the 5-carbon of the cytosine ring is 

controlled by a specific family of enzymes: the DNA methyltransferases (DNMTs). In 

particular, DNMT3a and DNMT3b are required for the establishment of de novo DNA 

methylation patterns (Okano et al., 1999), whereas DNMT1 appears to be responsible 

for their maintenance (Takeshita et al., 2011). 

The second mechanism involved in transcriptional regulation is histone modification. 

Histones are subject to a complex and dynamic set of covalent modifications, including 

acetylation, methylation, phosphorylation, SUMOylation, citrullination, ADP 

ribosylation and ubiquitination (Spivakov & Fisher, 2007). Binding of different 

molecules to the histone tail allows or inhibit transcription factors and other proteins to 

access the DNA. 

During the embryo/fetus development, all cells undergo a further specification process 

characterized by differential gene expression and epigenetic restrictions that gradually 

limits cell potency to a more limited phenotype-related expression pattern, producing 

specialized committed populations (Waddington Conrad Hal, 1957). The acquisition of 
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epigenetic marks culminates with the fixation of a distinct lineage fate that has been 

considered stable and potentially irreversible for many years (Figure 9). 

1.5.2 Reversal of cell fate 

Mature cells of an adult organism acquire a differentiated state through a specification 

process that takes place during development of the embryo/fetus. This process is 

characterized by differential gene expression and epigenetic restrictions that gradually 

limit cell differentiation potency (Hemberger et al., 2009) to a more limited phenotype-

related expression pattern, resulting in a progressive restriction in cell options (Zhou 

and Melton 2008) and finally producing highly specialized committed populations. 

This final state is achieved and maintained through the epigenetic mechanisms that 

regulate gene expression (Li et al., 2012). Furthermore, because this series of events is 

extremely stable, a complete reversal of cell fate requires a wide reprogramming 

process that makes it inefficient and prone to errors (Plath and Lowry, 2011). Indeed, 

although cellular differentiation is usually unidirectional in vivo, it can be reversed in 

vitro (De Carvalho et al., 2011). In particular, terminally differentiated somatic cells can 

be reprogrammed using defined factors to generate induced pluripotent stem cells 

(iPSCs). Cell reprogramming requires higher levels of gene expression than those 

needed once the pluripotent state is reached, and equivalent to what is defined as 

‘activation energy’ (Hemberger et al., 2009). This reflects the need to initiate epigenetic 

reprogramming events by using retroviral vectors carrying the transcription factors 

needed to reach the pluripotent state (Oct4, KLF4, SOX2 and c-MYC). Retroviral 

vectors integrate in the host genome and force ectopic overexpression of these 

reprogramming factors, resulting in reactivation of endogenous genes and regaining a 

developmental potency, comparable to that of ESCs. Unfortunately, as reported 

previously in this thesis, this approach suffers from severe limitations that prevent its 

possible use in regenerative medicine (Yamanaka, 2009).  

To bypass these troubles, alternative gene factor delivery systems have been proposed, 

including non-integrating adenoviruses (Stadtfeld et al., 2014), plasmid transfection 

(Okita et al., 2008), a doxycycline-inducible excisable piggyBac (PB) transposon 

system (Woltjen et al., 2009) and non-integrating episomal vectors (Kaji et al., 2009). 

Nonetheless, other concerns associated with the risk of tumours onset remain unsolved. 
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Indeed, iPS cells display low differentiation efficiency that rarely exceeds 30%, leaving 

mature cells mixed with undifferentiated cells (Cohen and Melton, 2011). 

Furthermore, the acquisition of a stable pluripotent state is not physiological and 

appears to be difficult to handle. To bypass this problem, a new strategy, termed 

‘transdifferentiation’, has been introduced. This technique consists of direct conversion 

of one fully differentiated adult cell type into another without an intermediate 

pluripotent state, but rather through simultaneous downregulation of one genetic 

program and upregulation of the new one (Jopling et al., 2011). However, all these 

promising approaches involve the use of retrovirus for the overexpression of one or 

more specific transcription factors (Cohen and Melton, 2011), leading to several 

limitations and making cells unsuitable for use in cell therapy and regenerative 

medicine. 

1.5.3 Epigenetic direct conversion 

In recent years several protocols that avoid the use of virally or non-virally introduced 

exogenous factors have been developed. Recently, a novel technique was reported by 

Lim et al. (Lim et al., 2011) for isolating ESCs from mammalian preimplantation 

embryos by altering the epigenotype of embryonic explants with 5-aza-cytidine (5-aza-

CR). These findings have opened the way to new approaches in which small molecules 

and, more recently, epigenetic modifiers are used to directly convert cells from one type 

into another.  

Recently, in the Laboratory of Biomedical Embryology UNISTEM where I carried out 

my Ph.D project, alternative protocols have been developed in order to directly convert 

an adult mature cell into another differentiated cell type, avoiding a stable pluripotent 

state and the related limitations (Brevini et al., 2016; Pennarossa et al., 2016; Brevini et 

al., 2014; Pennarossa et al., 2014; Pennarossa et al., 2013; Harris et al., 2011). This 

approach is based on the concept that, among the different mechanisms involved in 

lineage commitment and differentiation, DNA methylation plays an essential role, both 

during early embryonic development and cell lineage specification. Based on this idea, 

we investigated and demonstrated that brief exposure to a demethylating agent can push 

cells to a less committed state, increasing their plasticity (Brevini et al., 2016; Brevini et 

al., 2014; Pennarossa et al., 2014; Pennarossa et al., 2013). To this end, we selected 5-

aza-cytidine (5-aza-CR), a well-characterized DNMT inhibitor used previously to 
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‘boost’ progenitor cell differentiation (Galvez et al., 2008; Lefebvre et al., 2010; Naeem 

et al., 2013). This drug is a chemical analogue of cytosine and it is known to be a direct 

inhibitor of methyltransferase activity at low doses, as well as of methylation in newly 

synthesized DNA. These features give 5-aza-CR the ability to induce DNA 

hypomethylation, because the molecule substitutes for cytosine into DNA, blocking 

DNMT function (Stresemann and Lyko, 2008). On these bases, it has been 

demonstrated that exposing terminally differentiated cells to the demethylating agent 5-

aza-CR induces a transient phase of high plasticity. This technique avoids a stable 

pluripotent state, is highly efficient, is applicable to different species and does not 

involve the use of viral vectors (Brevini et al., 2016; Pennarossa et al., 2014; Pennarossa 

et al., 2013). In particular, we demonstrated that adult skin fibroblasts exposed to 5-aza-

CR for 18 h changed their phenotype, exhibiting reduced dimensions, increased nuclear 

volume and highly decondensed chromatin (Brevini et al., 2016; Brevini et al., 2015; 

Pennarossa et al., 2014; Pennarossa et al., 2013). These morphological features are 

distinctive of a highly permissive state, with cells containing more loosely packed 

chromatin than their differentiated counterparts to maintain genes in a potentially open 

state and prepare them for future expression (Tamada et al., 2006). These morphological 

modifications were accompanied by a specific and consistent gene regulatory response, 

which highlights the acquisition of increased plasticity. These observations indicate 

that, in response to an epigenetic modifier (e.g. 5-aza-CR), cells are pushed into a brief 

and transient ‘highly permissive state’. Once they have entered into this higher plasticity 

window, they can easily be directed towards a different phenotype exposing them to 

specific differentiation stimuli (Brevini et al., 2016; Brevini et al., 2014; Pennarossa et 

al., 2014; Pennarossa et al., 2013). More specifically, in the diabetes care context, we 

were able to convert fibroblasts towards endodermic lineage commitment using a three-

step induction protocol that allows cells to transit from the early pancreatic 

differentiation stage to mature endocrine cells, expressing the main pancreatic hormones 

(Brevini et al., 2016; Pennarossa et al., 2014; Pennarossa et al., 2013). Firstly, the use of 

Activin A was able to drive 5-aza-CR treated fibroblasts towards the endodermic 

lineage commitment. Subsequently, stimulating cells with a combination of Activin A 

and Retinoic Acid lead cells into the early pancreatic differentiation stage. These 

changes are underlined by an evolving pattern of gene expression that begins with the 

expression of endoderm (SOX17, FOXA2) and primitive gut tube (HNF4) markers. 
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Then, further differentiation towards the pancreatic lineage was induced by B27 

supplement, basic fibroblast growth factor (bFGF), and insulin transferrin selenium 

(ITS). This resulted in the rearrangement of cells, with the formation of large three-

dimensional spherical structures that tended to detach and float freely in the culture 

medium, reminiscent of in vitro-cultured pancreatic islets. These morphological changes 

were accompanied by the activation of transcription for advanced pancreatic genes, 

namely NKX6.1, MAFA, ISL1, PAX6, NEUROD, PCSK1, and PCSK2, and, most 

importantly, the converted cells expressed hormone and glucose sensor genes 

characteristic of mature endocrine pancreatic cells (Somatostatin, Insulin, Glucagon, 

Pancreatic Polypeptide and Glucokinase) (Brevini et al., 2016; Pennarossa et al., 2014; 

Pennarossa et al., 2013). The newly acquired phenotype supported a profound and 

functional change in the epigenetic converted cells. Moreover, changes in the culture 

environment, such as stimulation with hyperglycemic medium, were able to trigger the 

active release of Insulin in cell supernatants, showing a dynamic response similar to 

pancreatic β-cells, in which changes in ambient glucose represent the primary and 

physiological stimulus for insulin secretion.  

Converted cell functionality was also demonstrated in vivo after injection into 

immunodeficient severe combined immunodeficiency (SCID) mice whose β-cells had 

been selectively destroyed with streptozotocin. Cell transplantation restored normal 

glycemic levels in these diabetic mice and stably maintained them (Pennarossa et al., 

2013). The possibility to convert a skin cell into one that produces pancreatic hormones 

in a simple and safe way, suggests a great potential of this approach for the treatment of 

diabetes.  

Therefore, this method opens the possibility to obtain any cell type using different 

induction protocols, starting from cells treated with 5-aza-CR. For example, in a 

different study, human granulosa cells exposed to 5-aza-CR were addressed toward 

muscular differentiation. The starting cell population showed significant morphological 

and structural changes, resulting in cells that exhibit muscular phenotype (Brevini et al., 

2014). These results confirm the efficiency of the epigenetic conversion protocol.  

However, the cells obtained through the epigenetic conversion are not fully mature and 

terminally differentiated in vitro and there is the need to optimize these protocol in order 

to improve cell differentiation and, at the same time, closely mimic β-cells in vivo 

environment. 
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Figure 9: from totipotent to terminally differentiated cells and back: a multi-directional process.  

(Pennarossa et al., 2016) 
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1.6 Physiological environment aspects 

Regenerative medicine represents a promising approach for a wide variety of diseases, 

diabetes included, and its main goal is to maximize functionality of cells.  

For this purpose, one strategy is to improve in vitro conditions in order to mimic as 

closer as possible the in vivo environment.  

1.6.1 The role of oxygen 

In mammals embryonic development takes place in low oxygen conditions where 

Hypoxia-inducible factors (HIF) activate genes responsible for cell morphogenesis 

(Dunwoodie, 2009). 

Hypoxia regulates gene expression to alter cell homeostatic functions on normal or 

cancer cells. A fundamental component of the low oxygen response is the activation of 

the hypoxia-inducible factor 1 (HIF-1) (Semenza, 2014), together with the synergistic or 

antagonistic effects of the tumor suppressor protein P53, retinoblastoma protein (Rb) 

and the interplay between check-point control factors on cell cycle regulation for pro-

survival or pro-death state (Figure 10) (Sermeus & Michiels, 2011). However, the 

mechanisms responsible for this state transition remain obscured and it seems to be 

related to the cell types and depends on the severity of the hypoxic condition.  

Anyway, in uterine environment oxygen levels are usually included in a range between 

1% and 5% (0.5-30 mmHg) (Fraker et al., 2007). In murine embryos, cells in hypoxia 

conditions (oxygen ≤2%) are very spread (Lee et al., 2001; Pringle et al., 2007), until 

around mid-gestation where the maternal blood is interfaced to the embryonal one. 

From that moment onward, cells in hypoxic state are still present in specific embryo’s 

regions, including heart, skeleton and intestine. Moreover, hypoxic regions are also 

present in extra-embryonic tissues such as the yolk sac, allantois and placenta (Lee et 

al., 2001). In particular, the yolk sac develops in hypoxic conditions from the earliest 

stages of gestation. This phenomenon suggests the presence of a particular relation 

between blood vessel formation process (angiogenesis) and low oxygen condition. 

Indeed, several studies have demonstrated the presence of hypoxic conditions in several 

organs such as brain, heart and somites where angiogenesis is essential for proper blood 

supply (Noden, 1989). The hypothesis that hypoxia is maintained during embryogenesis 

and that it represents an important stimulus for embryonic angiogenesis is supported by 

previous studies where HIF-1a knockout mice showed defects in neural development, in 
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addition to the lack of erythropoiesis, vasodilation and angiogenesis induction (Maltepe 

et al., 1997). Hypoxia affects the proliferation and differentiation of various stem cell 

and progenitor cell populations (Bruick, 2003), deeply affecting stem cells 

development, promoting the differentiation of some cell type or inhibiting others. This 

phenomenon was originally described in the Neural Crest Stem Cell cultures where 

hypoxic condition (5% oxygen) was able to increase cell proliferation, compared to the 

same cells maintained in high oxygen (20%) (Bruick, 2003). Furthermore, it was 

demonstrated that in Central Nervous System precursor cells a hypoxic condition 

promotes cell proliferation, reducing cell death. In contrast, low oxygen concentrations 

inhibit adipocytes differentiation (Yun et al., 2002). Several studies performed on HSCs 

showed a hypoxic situation in the bone marrow where these cells reside in adult 

mammals (Cipolleschi et al., 1993; Parmar et al., 2007). Moreover, recent studies have 

shown that HSCs grow better in 1,5% of oxygen and they are able to repopulate the 

hematopoietic organ in immune-compromised recipient mice (Danet et al., 2003). 

Despite these results, the exact location of HSCs in the bone marrow is still 

controversial and it was supposed that these cells require different oxygen 

concentrations, depending on where their niche is placed (Simon and Keith, 2008). 

Finally, low oxygen promotes ESCs proliferation. In particular, this phenomenon was 

observed for the first time in bovine blastocysts. In detail, it was demonstrated that in 

hypoxic conditions ICM significantly increase its development and efficiency, 

compared to a blastocyst maintained in high oxygen concentration (Harvey et al., 2004). 

Furthermore, a subsequent work has shown that even the human ESCs proliferate better 

in hypoxia (3-5%) (Ezashi et al., 2005). Therefore, these results suggest the existence of 

a general link between the hypoxia state and the maintenance of a pluripotent state, but 

the cellular mechanisms involved are still unclear.  

As a consequence, hypoxia is today routinely adopted in several protocols for different 

stem cell populations culture in order to improve both cell proliferation and functional 

efficiency (Rajan et al., 2003). 

Definitely, oxygen tension plays an important role during several cell differentiation 

processes.  
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Figure 10: hypoxia regulation of cell cycle.  

(www.genetex.com) 
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1.6.2 The role of glucose 

In addition to oxygen tension, another important environment aspect to be addressed for 

therapeutic approach is represented by the use of the correct and physiological glucose 

concentrations. Currently, in the regenerative medicine applications, including our 

protocols, most of the culture media used contain high and unphysiological glucose 

levels. 

Several studies displayed that glucose, as a preferred carbon source, regulates a large 

number of genes in many cell types, especially in liver and pancreatic β cells (Girard et 

al., 1997; Vaulont et al., 2000). Also, high glucose has been demonstrated to promote 

adipogenic differentiation of muscle derived stem cells (Aguiari et al., 2008). Glucose 

concentration has been indicated to be a crucial factor in regulating the differentiation, 

although this activity depends on the cell type considered. For example, high glucose 

has been demonstrated to promote adipogenic differentiation of muscle derived stem 

cells (Aguiari et al., 2008). On the other hand, another study has demonstrated that 

neural stem cells highly differentiated into a higher variety of neurons and astrocytes in 

low glucose concentrations (Horie et al., 2004). Furthermore, it has been shown that 

differentiation of mouse ES cells by embryoid bodies (EBs) based protocols does not 

need high level of sugar while ES cell differentiation in monolayer conditions depends 

on glucose concentration (Mochizuki et al., 2011). Also, physiological low glucose 

concentration promotes EB-based differentiation of ES cells toward neuronal lineage 

(Mochizuki et al., 2011). Similarly, another study has demonstrated that neural stem 

cells highly differentiated into a higher variety of neurons and astrocytes at the presence 

of low glucose concentration (Kazuyuki, 2004).  

Moreover, high glucose has been shown to cause abnormalities during embryogenesis 

by reducing inositol levels (one of the principal second messenger of insulin action) and 

increasing oxidative stress (Wentzel et al., 2001).  

Hyperglycemia stimulates signal transduction of Angiotensin II (ANG II) through the 

JAK/STAT pathway leading to an increase in stem cell proliferation (Kim and Han, 

2008). Another study has suggested that high glucose stimulates PI3-K/Akt and MAPKs 

pathways which results in increased embryonic stem cell proliferation (Kim et al., 

2006). Also, hyperglycemia can stimulate calcification of vascular smooth muscle cells 

(Chen et al., 2006).  
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Moreover, some researchers have shown that reduction in glucose concentrations led to 

decreased apoptosis and an increased rate of MSCs proliferation (Stolzing et al., 2006).  

In vitro studies have shown that α and β cells are highly influenced by the presence of 

glucose which can regulate endocrine development. One of these demonstrate that 

glucose plays a major and specific role in pancreatic endocrine cell development. In 

particular, using an in vitro model where both acinar and endocrine cells develop in 

culture from rat embryonic pancreas, it was demonstrated that glucose does not have a 

main effect on pancreatic acinar cell development but, on the other hand, it is crucial for 

both alpha and beta cells development (Guillemain et al., 2007). Moreover, this study 

demonstrated that glucose controls endocrine cells development by regulating specific 

steps of pancreatic endocrine cell differentiation and not by controlling cell proliferation 

(Guillemain et al., 2007). 

These observations led us to apply physiological glucose concentrations during the 

epigenetic conversion of fibroblasts into insulin secreting cells, in order to closely 

represents the in vivo milieu. As a matter of fact, in our standard protocols, 

differentiation procedure was performed by applying an unphysiological condition of 

high glucose concentration (17,5 mM). Besides, at the end of the differentiation process, 

cells were usually stimulated with hyperglycemic medium (20 mM) in order to test their 

efficiency, in terms of insulin release in response to glucose variations. In this way, cells 

are able to release insulin but this condition is not compatible with the physiological 

glucose levels. As a matter of fact, in healthy physiological condition, blood glucose is 

tightly maintaining from 5,5 mM for fasting and it can rise up to 7,0-8,5 mM after 

eating (Ceriello & Colagiuri, 2008). Furthermore, when these cells were transplanted 

into streptozotocin (STZ)-induced diabetic mice, the hyperglycemia is normalized 

within a week. During this week, mice suffer the hyperglycemia state and cells failed to 

immediately respond secreting insulin. Failure of an immediate response to release 

insulin may reflect on different glucose concentrations during cell conversion in vitro, 

compared to physiological glucose conditions in vivo.  

This potential weakness might limit cell therapy approach.  
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1.6.3 The role of three-dimensional (3-D) environment  

Tissues are viscoelastic structures, composed by cells embedded in a complex 

microenvironment. Most of the cells are attached by anchor specific sites called focal 

adhesions, which bind them to neighboring cells and to surrounding extracellular matrix 

(ECM). In particular, ECM shows a specific and defined elasticity, normally 

represented by the elastic modulus (Young's modulus), which varies from 0.1 kPa in the 

brain to several hundred MPa in the calcified bone (Engler et al., 2006; Samani et al., 

2003). On the contrary, in vitro cell culture is usually carried out on rigid polystyrene or 

glass surfaces characterized by thousands MPa stiffness.  

Traditionally, tissue culture has been dominated by growing cells as monolayers. While 

these two dimensional (2-D) systems are well documented and have enabled approaches 

to understanding individual cellular phenomena, they lack the ability to reproduce the 

morphology, three dimensional (3-D) architecture and some biochemical features of 

cells typical of the original tissue. The 3-D environment offers the possibility to explore 

the potential mechanisms that underline the process of tissue formation (migration, 

proliferation, adhesion, differentiation and apoptosis) under conditions that emulate an 

in vivo environment. In addition, the 3-D environment enables cells to form cell-cell and 

cell-matrix interaction and also facilitates biological responses that might not be 

observable on 2-D substrates. For example, the collective cell migration, force 

generation and tissue folding that occurs during gastrulation, the angiogenic sprouting 

of blood vessels and the migration of cancerous cells through stroma and into 

lymphatics during metastasis, are all cases of higher-order cell processes that are 

inherently 3-D (Baker & Chen, 2012). Moreover, several studies demonstrated a direct 

effect of substrate rigidity on lineage commitment and cell differentiation (Engler et al., 

2006; Evans et al., 2009; Huebsch et al., 2010; Gilbert et al., 2010; Hu et al., 2011; Nam 

et al. 2011; Viale-Bouroncle et al., 2011). In particular, the use of surface, which 

matches the stiffness of native tissues, significantly influences cell behavior and might 

be fundamental for a number of specific cellular functions (Schellenberg et al., 2014). 

As a matter of fact, several studies demonstrated the positive effect of more 

physiological culture surfaces. For instance, the use of substrates approximating to the 

elastic moduli of brain (0.1 kPa), pancreas (1.2 kPa), cartilage (3 kPa), muscle (8 to 17 

kPa) and bone tissue (40 kPa), could directly drive stem cells to differentiate into 
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neurogenic, pancreatic, chondrogenic, myogenic and osteogenic lineages, respectively 

(Engler et al., 2006; Narayanan et al., 2014; Wang et al., 2014).  

One important contribution for the “closer-to-in vivo” behaviour of cells when grown as 

3-D cultures is the matrices and scaffolds that are used for obtaining such cultures (Ravi 

et al., 2016). More than 100 types of matrices and scaffolds are being used at present. 

The most commonly used scaffolds are agarose, collagen, fibronectin, gelatin, laminin, 

and vitronectin. Type I collagen matrix is used commonly in 3-D culture system. These 

composites mimic the native extracellular matrix by porosity, fibrosity, permeability 

and mechanical stability (Geckil et al., 2010).  

Among all existing matrices, hydrogels have gained wide popularity as useful substrates 

for studying cellular mechano-transduction due to their ability to mimic salient 

extracellular matrix characteristics including mechanics, water content and the 

facilitation of cell adhesion. These reticulated structures possess high water contents, 

facilitate transport of oxygen, nutrients and waste, as well as transport of soluble factors 

(Nguyen & West, 2002). These hydrogels can be designed to support specific cell types 

growth and function by either trapping cells in an artificial ECM (Jongpaiboonkit et al., 

2008) or allowing cells to migrate from the surface to the interior of the gel (Topman et 

al., 2013).  

Furthermore, an ulterior novel 3-D culture system, namely Liquid Marble (LM) 

microbioreactor, was recently developed. LM, first described by Aussillous & Quéré 

(2001), consists of a drop of liquid encapsulated by hydrophobic powder particles. 

These particles are able to adhere to the surface of the liquid drop, isolating the liquid 

core from the supporting surface and allowing gas exchange between the interior liquid 

and the surrounding environment (Ledda et al., 2016). The coating material acts as a 

confined space which is non-adhesive and allows the cells to freely interact with each 

other.  

The resulting LM are found to behave like a soft solid, and show dramatically reduced 

adhesion to a solid surface (Figure 11) (Aussillous & Quéré, 2001).  
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Figure 11: liquid marble drop.  

(Aussillous & Quéré, 2001) 

 

In the last few years, a number of works showed that LM support the growth of living 

microorganisms (Tian et al., 2013), tumor spheroids (Arbatan et al., 2012), fibroblasts, 

red blood cells (Serrano et al., 2015), embryonic stem cells (Sarvi et al., 2015) and the 

maturation of oocytes (Ledda et al., 2016).  

These observations led us to perform the epigenetic conversion of fibroblasts into 

insulin secreting cells using two different 3-D culture systems: Polytetrafluoroethylene 

micro-bioreactor (PTFE; Sigma) and Polyacrylamide hydrogels (PAA; Cell Guidance) 
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1.7 Genome editing 

Programmable DNA nucleases are recent and powerful tools for precision genome 

editing. Zinc Finger Nucleases (ZFNs) (Gaj et al., 2013; Hockemeyer et al., 2009; Y. G. 

Kim & Chandrasegaran, 1994), the Transcription Activator-Like Effector Nucleases 

(TALENs) (Boch et al., 2009; Bogdanove & Voytas, 2011; Hockemeyer et al., 2012), 

and especially at the moment, the Clustered Regularly Interspaced Short Palindromic 

Repeats-associated nuclease (CRISPR/Cas) (Cong et al., 2013; Haurwitz et al., 2010; 

Mali et al., 2013; J. Zhou et al., 2016) represent the most promising techniques to 

introduce sitespecific modifications in endogenous genoma of living cells and 

organisms.  

In origin, the study of natural DNA repair pathways in bacteria and yeast, as well as the 

mechanisms of DNA recombination (Mansour et al., 1988; Rong, 2000; Scherer & 

Davis, 1979; Smithies et al., 1985), revealed that cells have endogenous machinery to 

repair double-strand DNA breaks (DSBs) that would otherwise be lethal (Choulika et 

al., 1995; Plessis et al., 1992; Rouet et al., 1994; Rudin et al., 1989). Thus, methods for 

introducing precise breaks in the DNA were recognized as a efficient strategy for 

targeted genomic engineering.  

1.7.1 ZFNs 

The first reprogrammable DNA nucleases used were the ZFNs, proteins comprising two 

domains: a DNA-binding zinc-finger protein (ZFP) domain and a nuclease domain 

derived from the Fok1 restriction enzyme. 

In detail, zinc fingers are specific protein motifs capable of DNA binding, whose 

sequence specificity can be predetermined. Each zinc finger, consisting of 

approximately 30 amino acids in a conserved ββα configuration (Beerli & Barbas, 

2002), recognizes 3-4 nucleotides, and, by assembling three or four suitable zinc finger 

motifs, a sequence-specific DNA-binding domain can be created (Papaioannou et al., 

2012). ZFNs are created by joining the DNA-binding region to the catalytic domain of 

the Fok1 endonuclease. Fok1 nuclease activity requires dimerization and, so, the 

customized ZFNs function in pairs. As shown in figure 12, the zinc finger-binding 

domain brings two Fok1 units together over the target sequence, inducing Fok1 

dimerization and target sequence cleavage (Papaioannou et al., 2012). 
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Figure 12: basic structure and design of a zinc finger nuclease (ZFN).  

(Papaioannou et al., 2012) 

 

Recently, a huge number of ZFN gene targeting successes has been reported, including 

the generation of gene-knockout rats and manipulation of human embryonic or induced 

pluripotent stem cells (Jensen et al., 2011; Rahman et al., 2011; Carroll, 2008; M. 

Porteus, 2007; M. H. Porteus, 2006;). However, one problem related to the use of ZFNs 

technique is related to the genotoxicity due to off-target cleavages that may involve and 

disrupt other genes (Mussolino & Cathomen, 2011), although improved screening and 

designs procedures are helping to solve this issue (Pruett-Miller et al., 2009; Sander et 

al., 2011). Furthermore, a second concern is that ZFNs can recleave a repaired site, 

although this can be minimized and controlled by inserting a few silent mutations into 

the donor DNA template in order to impair subsequent ZFN binding (Isalan, 2011). 

Definitely, although ZFNs are effective genome editing tools, they were not widely 

adopted because of the difficulty inherent in validating and designing such proteins for a 

specific DNA locus of interest.  
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1.7.2 TALENs 

TALEN proteins have three characteristic domains: a nuclear localization domain, a 

nuclease domain derived from the Fok1 endonuclease (similar to ZFNs) and a DNA 

binding domain consisting of various numbers of tandem 34 aminoacids repeats (Y. 

Zhou et al., 2016) (Figure 13). Specifically, in the tandem array, each repeat is identical 

except for the two residues located at position 12 and 13, known as the repeat-variable 

di-residue (RVD), which defines the DNA binding specificity using an ‘‘RVD-DNA’’ 

codon (Boch et al., 2009). TALENs are similar to ZNFs since they use DNA binding 

motifs to direct the same nuclease to cleave the genome at a specific locus, but, instead 

of recognizing DNA triplets, each domain recognizes a single nucleotide, thanks to 

RVDs (Moscou & Bogdanove, 2009). The relationship between the preferred binding 

site of a TALE and its successive RVDs constitute a simple code, with each repeat 

specific for its targeted base (Boch et al., 2009; Moscou & Bogdanove, 2009). In 

particular, RVDs, namely NI, NG, HD and NN/NK selectively bound adenine (A), 

thymine (T), cytosine (C) and guanine (G), respectively (Cong et al., 2013; Mali et al., 

2013; Miller et al., 2011; Haurwitz et al., 2010; Boch et al., 2009) (Figure 14).  

 

 

 

Figure 13: basic structure and design of a TALEN. 

(Sanjana et al., 2012) 
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Figure 14: for each RVD (NI, HD, NN, NG, NK), the average frequency of its preferred target base  

is shown above the x axis, whereas frequencies of the remaining bases are shown below the x axis.  

(Miller et al., 2011) 

 

Within the few last years, the TALENs technology was adopted all around the world 

and its wide use has greatly promoted the publication of several studies focused on the 

use of gene editing in a numbers of organisms and cell types, such as hESCs and iPSCs 

(Hockemeyer et al., 2012), rats (Tesson et al., 2011), zebrafish (Bedell et al., 2012), pigs 

(Carlson et al., 2012) and rice ( Li et al., 2012).  

Although TALENs are easier than ZFNs to produce and validate, difficulties of protein 

design, synthesis and validation remained an obstacle to broad adoption of these 

engineered nucleases for routine use (Doudna & Charpentier, 2014). 
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1.7.3 CRISPR/Cas  

1.7.3.1 History and biology of CRISPR-Cas systems 

In the mid-2000s, a few bioinformatics and microbiology laboratories began 

investigating on CRISPR, series of short repeats interspaced with short sequences in the 

E. Coli genome, firstly described in 1987 by Japanese researchers (Ishino et al., 1987). 

Then, CRISPRs were also identified in archaea and bacteria (Mojica et al., 2000) and 

their involvement in DNA repair or gene regulation was hypothesized (Guy et al., 2004; 

Makarova et al., 2002). A revolutionary insight came in 2005, when it was observed 

that most of spacer sequences within CRISPRs derive from plasmids and virus (Bolotin 

et al., 2005; Mojica et al., 2005; Pourcel et al., 2005). Furthermore, together with the 

finding that Cas (CRISPR-associated) genes encode for proteins with specific nuclease 

and helicase domains (Bolotin et al., 2005; Haft et al., 2005; Pourcel et al., 2005; Jansen 

et al., 2002), CRISPR-Cas association was proposed as an adaptive defense system 

regulated by antisense RNAs, as memory signatures of past invasions (Makarova et al., 

2006). This hypothesis was confirmed by several studies carried out on different 

microorganisms, such as Streptococcus thermophilus (Barrangou et al., 2007), E. coli 

(Brouns et al., 2012) and Staphylococcus epidermidis (Marraffini & Sontheimer, 2008). 

In particular, in 2014 Doudna & Charpentier illustrated the CRISPR-Cas loci 

composition, consisting in a CRISPR array characterized by identical repeats 

intercalated with DNA-targeting spacers encoding the CRISPR RNAs (crRNA) 

components and an operon of Cas genes that encode the Cas protein (Doudna & 

Charpentier, 2014).  

In particular, adaptive immunity occurs in three different stages (Figure 15):  

1. Adaptation: insertion of a short invading DNA string as a spacer sequence into 

the CRISPR array;  

2. Expression: transcription of precursor crRNA (pre-crRNA) that undergoes 

maturation to generate individual crRNAs, composed by a specific repeat 

portion and by an invader targeting spacer portion;  

3. Interference: crRNA-directed cleavage of foreign nucleic acid by Cas proteins at 

sites complementary to the crRNA spacer sequence. 
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Figure 15: the three stages of CRISPR–Cas action.  

(Makarova, et al., 2011b) 

 

Within this overall theme, three CRISPR system types (I, II, III) use different 

mechanisms to recognize and cleavage the nucleic acid target (Makarova et al., 2011; 

Makarova et al., 2011b). A short sequence motif adjacent to the crRNA-targeted 

sequence on the invading DNA, known as the protospacer adjacent motif (PAM), plays 

a fundamental role in the adaptation and interference stages in both type I and type II 

systems (Deveau et al., 2008; Horvath et al., 2008; Mojica et al., 2005; Shah et al., 

2013). Moreover, the type I and type III systems use a large complex of Cas proteins for 

crRNA-guided targeting (Brouns S. J. J. et al., 2012; Hatoum-Aslan et al., 2011; 

Haurwitz et al., 2010; Nam et al., 2012; Rouillon et al., 2013). On the other hand, the 

type II system requires only a single protein (Cas9) for RNA-guided DNA recognition 

and cleavage (Gasiunas et al., 2012; Jinek et al., 2012). For this reason, CRISPR type II 

system represent the most suitable and useful tool for genome engineering applications. 
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1.7.3.2 CRISPR type II system: CRISPR/Cas 9  

The Cas9 nuclease, derived from the type II CRISPR system of Streptococcus pyogenes 

(SpCas9), is a universal DNA nuclease protein that can introduce double-strand DNA 

breaks into a genomic locus and, specifically, SpCas9 action is mediated by the 

complementarity of a small guide RNA (sgRNA) (Vad-Nielsen et al., 2016). This 

simple CRISPR/Cas9 RNA-DNA binding system has greatly simplified its design, 

construction and application, revolutionizing biological research in the very recent years 

(Chapman et al., 2015; Feng et al., 2014; Mandal et al., 2014; Platt et al., 2014; Shao et 

al., 2014; Ran et al., 2013). In 2011 (Deltcheva et al., 2011), a small RNA trans-

encoded upstream of the type II CRISPR-Cas locus in S. pyogenes, namely trans-

activating crRNA (tracrRNA), was reported to be crucial for crRNA maturation. 

Moreover, in 2012 (Jinek et al., 2012), the S. pyogenes CRISPR-Cas9 protein was 

shown to be a dual-RNA-guided DNA endonuclease that employs the tracrRNA-crRNA 

duplex (Deltcheva et al., 2011) to specifically cleavage DNA (Jinek et al., 2012). 

Furthermore, DNA target recognition requires both base pairing to the crRNA sequence 

and the presence of a PAM adjacent to the DNA targeted sequence (Gasiunas et al., 

2012; Jinek et al., 2012) (Figure 16). 

 

Figure 16: biology of the type II-A CRISPR-Cas system. (A) The cas gene operon with tracrRNA  

and the CRISPR array. (B) The natural pathway of antiviral defense involves association of Cas9  

with the tracrRNA:crRNA duplexes, RNA co-processing by ribonuclease III, further trimming,  

R-loop formation, and target DNA cleavage. (C) DNA cleavage with the duplex tracrRNA:crRNA.  

(Doudna & Charpentier, 2014) 



 

50 
 

 

Then, the tracrRNA-crRNA duplex was engineered as a single sgRNA that maintain 

two critical features: the 20-nucleotide sequence at the 5′ end of the sgRNA to 

determine the DNA target site (by Watson-Crick base pairing) and the double-stranded 

structure at the 3′ side of the guide sequence that binds to Cas9 (Jinek et al., 2012) 

(Figure 10). This created a simple two-component system in which changes to the guide 

sequence (20 nucleotides in the native RNA) of the sgRNA can be used to program 

CRISPR-Cas9 to target and cleavage any DNA sequence of interest (Jinek et al., 2012). 

In contrast to ZFNs and TALENs, which require protein engineering for each DNA 

target site to be modified, the CRISPR/Cas9 system requires only a change in the 

sgRNA sequence. For this reason, the CRISPR-Cas9 technology has been quickly and 

widely adopted by the scientific community to target, edit or modify a vast number of 

cell types and organisms genomes.  

Presently, CRISPR/Cas9 genome editing system has been applied in various cell types 

and organisms such as plants (Feng et al., 2014; Miao et al., 2013), bacteria ( Yosef at 

al., 2015; Jiang et al., 2013), C.Elegans (Friedland et al., 2014; Dickinson et al., 2013), 

Zebrafish (Hwang et al., 2013; Jao et al., 2013), mice (Platt et al., 2014; Cong et al., 

2013), rats (Chapman et al., 2015; Shao et al., 2014), pigs (Zhou et al., 2015; Hai et al., 

2014;), primates (Niu et al., 2014) and human cells (Cong et al., 2013; Jinek et al., 

2013; Mali et al., 2013), including hiPSCs (Merkle et al., 2015) and human 

hematopoietic stem cells (Mandal et al., 2014).  

In the present PhD project, under the guidance and supervision of prof. Yonglun Luo 

(Department of Biomedicine, Aarhus University, Denmark), the CRISPR/ Cas9 

technique was applied to edit human and murine fibroblasts genome. In particular, the 

aim of these genome editing experiments was to completely delete the pluripotent 

related transcription factor Oct4 (Pou5f1) in human and mouse primary fibroblast cell 

lines, perturbing the pluripotency pathway of these cells. The scope of this alteration is 

to determine whether pluripotency is required for the epigenetic conversion and 

pancreatic induction process.  
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CHAPTER 2:  

AIMS OF THE STUDY 
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2. AIMS OF THE STUDY 

The present PhD project was focused on the characterization of epigenetic conversion of 

adult somatic cells into a different cell type. In particular, the studies here presented 

were aimed to the understanding of the molecular mechanisms driving epigenetic 

conversion and phenotype switch of adult fibroblasts into insulin secreting cells, in 

order to optimize our protocol for preclinical studies. To this purpose, several 

experiments were carried out, subjecting cells to conditions that better reflect the 

physiological environment, in order to improve cell conversion efficiency, maturation 

and differentiation, trying to mimic, as better as possible, the in vivo milieu. 

For these reasons, aims of the present PhD project were focused on:  

1. the assessment of the optimal oxygen tension to be used in culture, 

differentiating cells in low and physiological 5% oxygen, as well as in the 

standard in vitro culture 20%; 

 

2. the establishment of the best glucose concentrations leading to cells that respond 

to glucose variations in a physiological way, converting cells in 5,5 and 8,5 mM 

glucose concentrations (corresponding to normoglycemia before meals and after 

meals respectively), as well as the standard 17,5 mM; 

 

3. the use of 3-D systems and the evaluation of mechanosensing related responses, 

plating cells in Polytetrafluoroethylene micro-bioreactor (PTFE; Sigma) and on 

Polyacrylamide hydrogels (PAA; Cell Guidance), as well as plastic substrates as 

control; 

 

4. the role of the pluripotency related gene Oct4 in the molecular mechanisms 

driving epigenetic conversion and phenotype switch, through the use of 

CRISPR/Cas9 strategy.  

 

The elucidation of these aspects may be useful for a more functional and characterized 

approach to the use of epigenetic conversion for human regenerative medicine in 

diabetes care.  
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CHAPTER 3: 
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3. MATERIALS AND METHODS 

3.1 Assessment of the optimal oxygen tension to be used in 

culture 

3.1.1 Epigenetic conversion and pancreatic induction protocol 

3.1.1.1 Murine skin fibroblasts cell culture 

Fibroblasts were obtained from a primary culture isolated from three different mouse 

strains: 

- NOD (non-obese diabetic) inbred mouse strain from non-disease stage; 

- C57 BL/6J inbred mouse strain; 

- CD-1 outbred mouse strain. 

These cells were cultured in DMEM medium (Life Technologies) supplemented with 

20% (vol/vol) of fetal bovine serum (FBS, Gibco), 2 mM glutamine (Sigma) and 

antibiotics (Sigma) (Table 1). 

PRODUCT COMPANY CATALOG N° COMPOSITION (%) 

DMEM High Glucose 

+ Pyruvate 
Life Technologies 41966-029 78% 

Fetal Bovine Serum Life Technologies 10108-165 20% 

Antibiotic Antimycotic 

solution (100X) 
Sigma A5955 1% 

L-Glutamine solution Sigma G7513 1% 

Table 1: Fibroblast Culture Medium formulation. 

Upon reaching the full confluence, cells were trypsinized and put into other flasks with 

a 1:3 ratio (twice a week). All experiments were conducted on three independent 

replicates of the same cell line. 

3.1.1.2 Cell plating 

Upon reaching the confluence, cells were trypsinized, centrifuged and resuspended in 5 

ml of culture medium. From this solution, 6.6 μl were collected and loaded in a specific 

counting chamber (®KOVA). Based on the number of cells counted, a dilution with the 

culture medium was carried out in order to obtain a concentration of 300’000 cells per 

ml. Subsequently, cells present in this solution were plated in 4-wells plates (Nunc) on 
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0.1% porcine gelatin (Sigma), with a volume equal to 0.5 ml per well (150,000 cells per 

well). 

3.1.1.3 5-Aza CR treatment 

After 24 hours, cells were incubated with a solution of 1 uM of 5-aza-CR (Sigma) for 

18 hours. The concentration and the exposure time were chosen in agreement with 

previous studies (Hattori et al., 2004). 

At the end of the 18 hours exposure to this demethylating agent, cells were washed 

three times with PBS and incubated with High Plasticity medium (HP; Table 2) for 3 

hours. 

 

PRODUCT COMPANY CATALOG N° COMPOSITION (%) 

Ham's F-10 

Nutrient Mix 
Life Technologies 31550-023 40% 

DMEM Low Glucose + 

Pyruvate 
Life Technologies 31885-023 40% 

KnockOut™ Serum 

Replacement 
Life Technologies 10828-028 10% 

Fetal Bovine Serum Life Technologies 10108-165 5%l 

Antibiotic Antimycotic 

Solution (100×) 
Sigma A5955 1%l 

L-Glutamine solution Sigma G7513 1% 

NUCLEOSIDE MIX 

(Table 3) 
--- --- 1% 

MEM 

Non-Essential Amino 

Acids Solution 

Life Technologies 11140-035 1% 

2-Mercaptoethanol Sigma M7522 1% 

ESGRO® (LIF) Millipore ESG1106 0,1% 

Recombinant Human 

FGF basic (bFGF) 
R&D System 233-FB-025 0,1% 

 

Table 2: HP medium formulation. 

 

PRODUCT COMPANY CATALOG N° 
COMPOSITION 

(in 50 ml water) 

Guanosine Sigma G6264 0.042 g 

Adenosine Sigma A4036 0.040 g 

Cytidine Sigma C4654 0.036 g 

Uridine Sigma U3003 0.036 g 

Thymidine Sigma T1895 0.012 g 

Table 3: Nucleoside Mix composition. 
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3.1.1.4 Pancreatic induction protocol 

After the incubation period in HP medium, cells were grown in specific culture media in 

order to induce the pancreatic differentiation. In details, cells were incubated with 

pancreatic medium basal supplemented with specific reagents (Table 4). 

PRODUCT COMPANY CATALOG N° COMPOSITION (%) 

DMEM/F12 Life Technologies 11320-074 92% 

B-27® Supplement Minus 

Vitamin A (50X) 
Life Technologies 12587-010 2% 

N-2 Supplement (100X) Life Technologies 17502-048 1% 

MEM 

Non-Essential Amino 

Acids Solution, 100X 

Life Technologies 11140-035 1% 

Antibiotic Antimycotic 

Solution (100×) 
Sigma A5955 1% 

L-Glutamine solution Sigma G7513 1% 

2-Mercaptoethanol Sigma M7522 1% 

Albumin from bovine 

serum (BSA)** 
Sigma A3311 1% 

Table 4: Pancreatic Medium Basal formulation. 

In the murine model, the pancreatic induction process requires 10 days of culture and it 

has been developed in this way: 

- DAY 1: pancreatic medium basal + ACTIVIN A (1 µL/mL) 

- DAY 2: pancreatic medium basal + ACTIVIN A (1 µL/mL) + RETINOIC ACID 

(1 µL/mL) 

- DAYS 3-10: pancreatic medium basal + Insulin-Transferrin-Selenium (ITS; 10 

µL/mL) + B27 supplement (20 µL/mL) + bFGF (1 µL/mL) (FINAL MEDIUM) 
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3.1.2 Experimental Plans 

3.1.2.1 Section 1 

In order to evaluate the role of oxygen during the pancreatic differentiation process, 

three different mouse cell lines (NOD; C57 BL/6J; CD-1) were subjected to two 

different oxygen tensions: the standard 20% and the physiological 5% of oxygen 

following the scheme visible in Table 5. 

 

CELL LINE 
0-18 h 

(5-aza-CR) 
18-21 h 

(HP) 
DAY 1 

(Activin A) 
DAY 2 

(Activin A + Retinoic acid) 
DAYS 3-10  

(FINAL medium) 

NOD 20% 20% 20% 20% 20% 

NOD 5% 5% 5% 5% 5% 

C57 BL/6J 20% 20% 20% 20% 20% 

C57 BL/6J 5% 5% 5% 5% 5% 

CD-1 20% 20% 20% 20% 20% 

CD-1 5% 5% 5% 5% 5% 

Table 5: oxygen tensions used in different protocol steps (Section 1 experimental design). 

 

To do this, cells were cultured using two different incubators:  

- a traditional incubator (JOUAN 150 IGO CELLLIFE) powered by the standard 5% 

CO2 in air (Figure 17); 

- a low oxygen incubator (COOK V-MINC 1000) fed with a gas mixture consisting of 

5% O2, 5% CO2 and 90% N2 (Figure 18). 

 

  

 

 

 

 

 

 

 

Figure 18: low oxygen incubator.  

(COOK V-MINC 1000) 

Figure 17: traditional incubator. 

(JOUAN 150 IGO CELLLIFE) 
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3.1.2.2 Section 2 

Since NOD cells did not survive in low oxygen concentrations, it was decided to subject 

these cells to 5% oxygen only after performing differentiation in 20% O2, as shown in 

Table 6. 

CELL LINE 
0-18 h 

(5-aza-CR) 
18-21 h 

(HP) 
DAYS 1-10  

DAY 11 
(FINAL medium) 

DAYS 12-14 
(FINAL medium) 

NOD 20% 20% 20% / / 

NOD 20% 20% 20% 20% / 

NOD 20% 20% 20% 5% / 

NOD 20% 20% 20% 20% 20% 

NOD 20% 20% 20% 5% 5% 

Table 6: oxygen tensions used in different protocol steps (Section 2 experimental design). 

 

3.1.3 Analysis 

3.1.3.1 Cell morphology and viability 

Cell morphology was evaluated using a Nikon Eclipse TE200 inverted microscope. 

A cell viability test was performed using Trypan blue (ThermoFisher), following the 

manufactor instructions. 

3.1.3.2 Immunocytochemistry 

Cells were fixed in 4% (wt/vol) paraformaldehyde in PBS (Sigma), rinsed three times in 

PBS and permeabilized with 0.1% and 0.4% (vol/vol) Triton X-100 (Sigma) in PBS, for 

20 min. Samples were treated with blocking solution containing 5% (vol/vol) BSA and 

5% (vol/vol) goat serum in PBS, for 30 min. Then, cells were incubated with anti-C-

Peptide (AbCam) and anti-Oct4 antibodies (AbCam) overnight. The day after, cells 

were incubated with suitable secondary antibodies (Alexa Fluor® 488) for 60 min. 

Nuclei were stained with 4’,6-diamidino-2-phenylindole (DAPI, Sigma). Samples were 

observed under a Nikon Eclipse TE200.  

3.1.3.3 Cell Counting 

The number of immuno-positive cells was counted in 10 randomly selected fields at 

200× total magnification. A minimum of 500 cells were counted in three independent 

replicates. The number of positively stained cells was expressed as a percentage of the 

total cell counted. 
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3.1.3.4 Insulin release after stimulation with hyperglycemic glucose concentrations  

At the end of the differentiation process, cells functional efficiency was assessed by an 

ELISA test, specific for mouse insulin, in order to quantify insulin release after 

stimulation with hyperglycemic conditions (20 mM of D-glucose). In detail, culture 

medium was removed, cells were rinsed with culture medium and then stimulated for 1 

h with 17,5 mM D-glucose (final concentration) in Final medium without ITS. Then, 

media were collected, cells were rinsed with culture medium and then stimulated for 1 h 

with 20 mM D-glucose (final concentration) in Final medium without ITS. Glucose-

dependent insulin release was assessed with Mouse Insulin ELISA Kit (Mercodia) 

following the manufacturer’s instruction. Values were normalized against DNA content, 

measured using PureLink Genomic DNA Mini Kit (Invitrogen). 

3.1.3.5 Statistical analysis 

Statistical analysis was performed using Student t-test (SPSS 19.1; IBM). Data were 

presented as mean ± standard deviation (SD). Differences of p ≤ 0.05 were considered 

significant and were indicated with different superscripts. 
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3.2 Establishment of the best glucose concentrations leading 

to cells that respond to glucose variations in a physiological 

way 

3.2.1 Epigenetic conversion and pancreatic induction protocol 

3.2.1.1 Human/murine skin fibroblasts cell culture  

Adult human and murine fibroblasts, obtained from fresh skin biopsies, were cultured as 

previously described. 

3.2.1.2 Cell plating 

Cells were plated with the same modalities previously described. 

3.2.1.3 5-Aza CR treatment 

Cells were treated with 5-Aza CR with the same modalities previously described. 

3.2.1.4 Pancreatic induction protocol 

After the incubation period in HP medium, cells were grown in specific culture media in 

order to induce the pancreatic differentiation. In details, cells were incubated with 

pancreatic medium basal supplemented with specific reagents (Table 4). 

In the murine model, the differentiation was induced with the same modalities 

previously described.  

By contrast, in the human model, the pancreatic induction process requires 36 days of 

culture and it has been developed in the following way: 

- DAYS 1-6: pancreatic medium basal + ACTIVIN A (1 µL/mL) 

- DAYS 7-8: pancreatic medium basal + ACTIVIN A (1 µL/mL) + RETINOIC 

ACID (1 µL/mL) 

- DAYS 9-36: pancreatic medium basal + ITS (10 µL/mL) + B27 supplement (20 

µL/mL) + bFGF (1 µL/mL) (FINAL MEDIUM) 
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3.2.2 Experimental Plans 

3.2.2.1 Section 1 

During pancreatic differentiation, human fibroblasts were cultured and differentiated in 

three different glucose concentrations: 

- 5,5 mM (normoglycemia) 

- 8,5 mM (normoglycemia after meals) 

- 17,5 mM (standard in vitro culture) 

Several experimental groups were identified and cells were differentiated following the 

scheme visible in Table 7. 

EXPERIMENTAL 

GROUPS 
0-18 h 

(5-aza-CR) 
DAYS 1-6 
(Activin A) 

DAYS 7-8 
(Activin A + Retinoic Acid)  

DAYS 9-36 
(FINAL medium) 

1 25 mM 5,5 mM 5,5 mM 5,5 mM 

2 25 mM 17,5 mM 17,5 mM 5,5 mM 

3 25 mM 5,5 mM 17,5 mM 5,5 mM 

4 25 mM 8,5 mM 8,5 mM 8,5 mM 

5 25 mM 17,5 mM 17,5 mM 8,5 mM 

6 25 mM 8,5 mM 17,5 mM 8,5 mM 

CTRL 25 mM 17,5 mM 17,5 mM 17,5 mM 

Table 7: glucose concentrations used in different protocol steps (section 1 design). 

3.2.2.2 Section 2 

Since human cells did not differentiate in low glucose concentrations, it was designed a 

second experiment in which human cells were subjected to standard (17,5 mM) and low 

glucose concentrations (8,5 mM) untill day 14 of the process, in order to characterize 

them in the early pancreatic differentiation.  

During this period, RNAs of each sample were collected every two days (T0, Post HP, 

Day 2, 4, 6, 8, 10, 12, 14) and the expression of 5 important genes was monitored. In 

particular, the expression of Vimentin (Fibroblast marker), Oct4 (Pluripotency-related 

gene), FOXA2 (Definitive Endoderm marker), HNF4 (Primitive Gut Tube marker) and 

PDX1 (Posterior Foregut marker) was monitored at each time point (Table 8). 

 

 

 

 

 

 

 
Table 8: gene expression in Endocrine Pancreatic differentiation steps. 
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3.2.2.3 Section 3 

The results obtained in the Experiment 2 showed that low glucose affect both the correct 

timing and levels of early pancreatic genes expression. Since a glucose sensitive 

window was identified around day 6-10 of the pancreatic induction process, 

corresponding to the embryonic primitive gut tube/posterior foregut stage in vivo, a 

third batch of experiments was performed.  

Two experimental groups were identified:  

- GROUP A, consisting in cells differentiated in low glucose (8,5 mM) until day 9 

(corresponding to the Activin A and Retinoic Acid steps) and, then, in high glucose 

till the end of the process; 

- GROUP B, consisting in cells differentiated in standard high glucose concentrations, 

as a control (Table 9).  

 

EXPERIMENTAL GROUPS 
0-18 h  

(5-aza-CR) 

DAYS 1-9 
(Activin A + Retinoic Acid)  

DAYS 9-36 
(FINAL medium) 

GROUP A  
(LOW + HIGH GLUCOSE) 

25 mM 8,5 mM 17,5 mM 

GROUP B  
(CTRL) 

25 mM 17,5 mM 17,5 mM 

 

Table 9: glucose concentrations used in different protocol steps.  

 

 

The expression of 6 important genes was monitored for each time point with the same 

modalities adopted in the previous section. In this case, Insulin expression was 

monitored also, in order to compare timing and expression levels of this important 

pancreatic marker in both experimental groups. 
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3.2.2.4 Section 4 

Since the results obtained in the previous section did not clarify the role of glucose in 

the pancreatic differentiation process, it was designed a further experiment in which 

both human and murine skin fibroblasts were directly isolated in low and physiological 

glucose (5,5 mM) (Berglund et al., 2008) as well as standard glucose concentration (25 

mM). Then, cells were differentiated using specific media containing two different 

glucose concentrations: the standard 17,5 mM and the physiological 5,5 mM (Figure 

19).  

In this way, four different experimental groups were obtained: 

-    HG/HG  (cells isolated in high glucose, differentiated in high glucose) 

-    HG/LG  (cells isolated in high glucose, differentiated in low glucose) 

-    LG/LG  (cells isolated in low glucose, differentiated in low glucose) 

-    LG/HG  (cells isolated in low glucose, differentiated in high glucose) 

 

 

 
 

 

 

 

 

 

 

 

 
 

Figure 19: fibroblasts isolation/differentiation with different glucose concentrations  

  



 

64 
 

3.2.3 Analysis 

3.2.3.1 Cell morphology  

Cell morphology was evaluated using a Nikon Eclipse TE200 inverted microscope. 

3.2.3.2 Immunocytochemistry  

At the end of the differentiation process, cells were fixed in 4% (wt/vol) 

paraformaldehyde in PBS (Sigma), permeabilized with 0.1% (vol/vol) Triton X-100 

(Sigma) in PBS and blocked with PBS containing 5% goat serum. Cells were then 

incubated with primary antibodies (Anti-C-Peptide and Anti-Insulin, AbCam). 

Subsequently, cells were incubated with secondary antibodies (Alexa Fluor) and 4′,6-

diamidino-2-phenylindole (DAPI, Sigma) for 60 min and analyzed under a Nikon 

Eclipse TE200 microscope.  

3.2.3.3 Cell Counting 

The number of immuno-positive cells was counted in 10 randomly selected fields at 

200× total magnification. A minimum of 500 cells were counted in three independent 

replicates. The number of positively stained cells was expressed as a percentage of the 

total cell counted. 

3.2.3.4 Gene expression analysis  

Total RNA was extracted using Trizol (Invitrogen) and DNAse I (Invitrogen) was 

added in Lysis solution at 1:100 concentration as indicated by manufacturer’s 

instruction. The effective removal of genomic DNA from each RNA batch was then 

confirmed performing a standard PCR amplification for β-actin, using genomic DNA as 

positive control. Only negative samples were then reverse transcribed with 

Superscript™ II Reverse Transcriptase (Invitrogen). Quantitative Real-Time PCR was 

performed using SYBR® Green. PCR runs and fluorescence detection were carried out 

in a CFX CONNECT (Bio-Rad). β-actin and GAPDH were used as internal standards. 

Except for mouse GLUTs expression values, gene expression levels of all other samples 

evaluated are reported with the highest expression set to 1 and all other time points 

relative to this.  
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3.2.3.5 Insulin release after stimulation with hyperglycemic glucose concentrations 

At the end of the differentiation process, cells functional efficiency was assessed by an 

ELISA test, as previously described.  

In this case, cells were stimulated for 1 hour with the physiological 8,5 mM (blood 

glucose concentration after meal) as well as the standard 20 mM D-glucose in basal 

medium, without ITS. Glucose-dependent insulin release was assessed as previously 

described. 

3.2.3.6 Statistical analysis 

Statistical analysis was performed using Student t and ANOVA tests (SPSS 19.1; IBM). 

Data were presented as mean ± standard deviation (SD). Differences of p ≤ 0.05 were 

considered significant and were indicated with different superscripts. 
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3.3 Use of 3-D systems and evaluation of mechanosensing 

related responses 

In this third part of the present PhD project, the epigenetic conversion of C57 BL/6J 

mouse dermal fibroblasts into insulin producing-cells was performed using two 

different 3-D culture systems, combining also the use of two oxygen tensions. In 

particular, cells were differentiated using the Polytetrafluoroethylene micro-bioreactor 

(PTFE; Sigma) and the Polyacrylamide (PAA; Cell Guidance) hydrogels with different 

stiffness (1 kPa; 4 kPa), maintained either in the standard 20% or in the more 

physiological 5% oxygen tensions. Standard differentiation performed on plastic 

substrates was carried out as a control. 

3.3.1 Mouse skin fibroblasts cell culture  

Adult C57 BL/6J mouse fibroblasts, obtained from fresh skin biopsies, were cultured as 

previously described. 

3.3.2 Epigenetic conversion and pancreatic induction in PTFE system  

3.3.2.1 5-Aza CR treatment 

Firstly, hydrophobic PTFE powder bed was prepared in a 35-mm Petri dish (Figure 

20a). Then, 40000 cells resuspended in 30 μl of 1 μM 5-aza-CR were dispensed over the 

hydrophobic PTFE powder bed. The drop obtained was gently rolled over the PTFE to 

fully coat it by the powder (Figure 20b). Finally, the resulting drop was transferred to a 

35-mm Petri dish, placed within a bigger Petri dish that contains sterile water, to 

prevent evaporation (Figure 20c). 

 

Figure 20: PTFE system preparation.  

(Ledda et al., 2016) 
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At the end of the 18 hours exposure to the demethylating agent, drops were broken and 

the cell aggregates obtained were transferred in a new 35-mm Petri dish and incubated 

with High Plasticity medium (HP; Table 2) for 3 hours. 

3.3.2.2 Pancreatic induction protocol 

After the incubation period in HP medium, cells were grown in specific culture media in 

order to induce the pancreatic differentiation. In details, cell aggregates were transferred 

in new 35-mm Petri dishes and subjected to the standard pancreatic induction process, 

as previously described in Paragraph 3.1.1.4. 

Moreover, cells were maintained either in the standard 20% or in the more physiological 

5% oxygen tensions. 

3.3.3 Epigenetic conversion and pancreatic induction on PAA gels  

3.3.3.1 Cell plating 

Mouse dermal fibroblasts were plated on two different PAA gels (750’000 cells/Petri): 

- Collagen coat SOFT GEL 1 kPa (Petrisoft
TM

 coated petri dish, Cell Guidance); 

- Collagen coat SOFT GEL 4 kPa (Petrisoft
TM

 coated petri dish, Cell Guidance). 

Then, cells plated on both gels were differentiated in low (5%) and high (20%) oxygen 

tensions. 

3.3.3.2 5-Aza CR treatment 

Cells were treated with 5-Aza CR with the same modalities previously described.  

3.3.3.3 Pancreatic induction protocol 

Cells plated on both PAA gels were subjected to the pancreatic differentiation protocol, 

as previously described. 
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In summary, three different system culture (PTFE; PAA gels; PLASTIC as control) 

combined with the use of two different oxygen tensions (20%; 5%) were tested, as 

visible in Table 10: 

 

EXP. GROUPS 
0-18 h 

(5-Aza-CR) 
18-21 h 

(HP) 
DAY 1 

(Activin A) 
DAY 2 

(Act. A + Ret. Acid) 
DAYS 3-10 

(FINAL medium) 

PTFE 
20% O2 

5% O2 

PAA 1 kPa 
20% O2 

5% O2 

PAA 4 kPa 
20% O2 

5% O2 

PLASTIC 
20% O2 

5% O2 

Table 10: three different culture systems combined with the use of two different oxygen tensions. 

 

3.3.4 Analysis 

3.3.4.1 Cell morphology 

Cell morphology was evaluated using a Nikon Eclipse TE200 inverted microscope. 

3.3.4.2 Insulin release after stimulation with hyperglycemic glucose concentrations 

At the end of the differentiation process, cells functional efficiency was assessed by an 

ELISA test, with the same modalities described above. 

3.3.4.3 Gene expression analysis  

Insulin and Ki67 gene expression was measured as previously described. 

3.3.4.4 Immunocytochemistry 

Cells growth in Petrisoft (1 kPa and 4 kPa both) were deposited onto glass slides by 

Cytospin centrifugation (Cytospin 4, Thermo Scientific). Then, samples were fixed in 

4% (wt/vol) paraformaldehyde in PBS (Sigma) and permeabilized with 0.1% (vol/vol) 

Triton X-100 (Sigma) in PBS, for 20 min. Samples were treated with blocking solution 

containing 5% (vol/vol) BSA and 5% (vol/vol) goat serum in PBS, for 30 min. They 
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were then incubated with primary antibodies (anti-Glucagon, anti-Somatostatin and 

anti- Insulin; Abcam).Subsequently, cells were incubated with secondary antibodies 

(Alexa Fluor) and 4′,6-diamidino-2-phenylindole (DAPI, Sigma) for 60 min and 

analysed under a Nikon Eclipse TE200 microscope.  

3.3.4.5 Image analysis 

Image analysis were performed in cells differentiated on 1 kPa gel in low oxygen. In 

particular, Insulin,Glucagon and Somatostatin fluorescence intensity analysis were 

carried out along an arbitrarily set diameter-like axis, through the ImageJ software, in 

order to estimate the mono-hormonality acquired by cells.  

3.3.4.6 Statistical analysis 

Statistical analysis was performed using ANOVA test (SPSS 19.1; IBM). Data were 

presented as mean ± standard deviation (SD). Differences of p ≤ 0.05 were considered 

significant and were indicated with different superscripts. 
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3.4 The role of the pluripotency related gene Oct4 in the 

molecular mechanisms driving epigenetic conversion and 

phenotype switch 

3.4.1 Section 1 

The experiments performed in this section were carried out under the guidance and 

supervision of prof. Yonglun Luo, at the Department of Biomedicine, Aarhus 

University, Denmark. 

3.4.1.1 Designing sgRNA oligos for the all-in-one CRISPR/Cas9 system 

Human and murine Oct4 (Pou5f1) sequences were analyzed with online designing 

software (Zifit and Cas-OFFinder) to identify the best site where to direct the Cas9 

nuclease in order to obtain the complete excision of the gene. Once the most promising 

human and murine sequences have been identified, four sgRNAs were designed 

respectively to target the human and murine Oct4 gene, with two sgRNAs (denoted as 

T1 and T2) targeting the first coding exon and another two sgRNAs (denoted as T3 and 

T4) targeting the last coding exon. 

3.4.1.2 sgRNAs generation 

To generate the CRISPR sgRNA vector, synthesized sgRNA spacer oligos were 

annealed in vitro and cloned in the all-in-one CRISPR/Cas9 vector 

(PX330_pSPCas9(BB)-2A-Puro). Then, the Oct4 CRISPR/Cas9 vectors were 

transformed into E.Coli competent cells. Restriction enzyme digestion and Sanger 

sequencing were performed to verify all Oct4 CRISPR/Cas9 vectors. For in vitro 

CRISPR/Cas9 functional assay, the dual-fluorescent reporter system (C-Check), 

recently established by professor Luo’s group (Zhou et al., 2016), was applied. This 

system allows the quantification and selection of the most efficient CRISPR sgRNAs. 

For C-Check assay, we have transfected the Oct4 C-Check vector with each of the 

CRISPR/Cas9 sgRNAs into Human Embryonic Kidney cells 293 (HEK293T).  

Then, green and red fluorescence were analyzed by fluorescent microscopy and flow 

cytometry analyses 48 hours after transfections. 

Based on the C-Check based in vitro function assay, we selected the most efficiency 

CRISPR pair T1 or T2 paired with T3 or T4. Genotyping of the Oct4 complete 
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disrupted region was carried out by screening PCR using primers centering the T1-T4 

target sites. With the complete disruption, approximately 10k genomic region was 

deleted.  

3.4.1.3 Oct4 KO fibroblasts generation 

To generate the Oct4 KO fibroblasts, in vitro validated CRISPR/Cas9 vectors were 

transfected into the cells using a Lipofectamine Transfection kit (Invitrogen) and their 

effectiveness was tested.  

Then, two procedures have been applied to generate the Oct4 KO cells:  

1. Puromycin selection, dissolving 1:1000 of Puromycin (Invitrogen) in the cell culture 

medium;  

2. FACS-based sorting.  

3.4.1.4 Screening PCR 

Independent clones were derived to generate pure cell lines and DNA extraction and 

amplification have been performed to genotype correct Oct4 KO clones.  

In particular, genotyping of the Oct4 complete disrupted sequence was carried out by 

screening PCR using primers centering the T2-T3 target sites in human cells and T2-T4 

target sites in mouse. 

In order to detect human and mouse correct KO clones, a first screening PCR was 

performed amplifying the whole Oct4 genomic region. In detail, two primers binding 

the Oct4 sequence upstream and downstream were designed, as visible in the following 

picture (Figure 21).  

 

 

 

 

 

 

 

 

 

Figure 21: amplification of whole Oct4 genomic region scheme.  

 

 1° EXON                                LAST EXON 

5’ For-KO primer 3’ 

 T1             T2   
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 T1             T2   

 T3             T4   

 T3             T4   

AMPLIFIED REGION 
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Then, after traditional PCR followed by gel electrophoresis, two different bands were 

expected:  

- the first one with a higher DNA molecular size (⁓ 10k bp) corresponding to Wild 

Type (WT) cells where the deletion did not occur; 

- the second band with a lower DNA molecular size (⁓ 400 bp), corresponding to the 

correct Oct4 knockout clones. 

Furthermore, to confirm the presence of KO clones, a second PCR screening was 

performed. In particular, to detect the deletion of T2-T4 region in mouse cells, T3-

Forward and Reverse-KO primers were used (Figure 22).  

 

 

 

 

 

 

Figure 22: amplification of T3–downstream mouse Oct4 genomic region scheme. 

 

On the other hand, to verify the deletion of T2-T3 region in human cells, T2-Forward 

and Reverse-KO primers were used (Figure 23). 

 

 

 

 

 

 

Figure 23: amplification of T2–downstream human Oct4 genomic region scheme. 
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3.4.1.5 5-aza-CR treatment 

Both Knockout (KO) and Wild Type (WT) cells were treated with 5-Aza CR with the 

same modalities previously described. 

3.4.1.6 Immunocytochemistry analysis 

At the end of the 5-aza-CR treatment, both KO and WT cells were fixed in 4% (wt/vol) 

paraformaldehyde in PBS (Sigma), permeabilized with 0.1% (vol/vol) Triton X-100 

(Sigma) in PBS and blocked with PBS containing 5% goat serum. Cells were then 

incubated with primary antibody Anti-Oct4 (Abcam). Subsequently, cells were 

incubated with secondary antibody (Alexa Fluor) and 4′,6-diamidino-2-phenylindole 

(DAPI, Sigma) for 60 min and analyzed under a Nikon Eclipse TE200 microscope.  

3.4.1.7 Pancreatic induction  

Both KO and WT cells were subjected to the standard pancreatic induction protocol, 

with the same modalities previously described. 

3.4.2 Section 2 

3.4.2.1 Designing sgRNA oligos for the all-in-one CRISPR/Cas9 system 

Human and murine Oct4 (Pou5f1) sequences were analyzed and sgRNA were designed 

as previously described.  

3.4.2.2 sgRNAs generation 

sgRNAs were generated with the same modalities previously described. 

3.4.2.3 Oct4 KO fibroblasts generation 

To generate the Oct4 KO fibroblasts, in vitro validated CRISPR/Cas9 vectors were 

transfected into the cells using a Lipofectamine Transfection kit (Invitrogen) and their 

effectiveness was tested, as previously mentioned. In this case, in both mouse and 

human plasmids, all four gRNAs (T1-T2-T3-T4) were inserted in order to improve the 

sequence deletion. Moreover, GFP and Puromycin expression cassettes were inserted as 

well.  
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Furthermore, fibroblasts were plated and tranfected on plastic and on 1 kPa PAA gel as 

well, in order to test whether a more physiological matrix could improve the 

transfection efficiency.  

Then, to generate the Oct4 KO cells, Puromycin selection has been applied, as 

previously described. 
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CHAPTER 4:  

RESULTS 
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4. RESULTS 

4.1 Assessment of the optimal oxygen tension to be used in 

culture 

4.1.1 Section 1 

4.1.1.1 Cell morphology and viability 

During differentiation, three murine cell lines (NOD; C57 BL/6J; CD-1) were cultured 

either in the standard in vitro culture 20% of oxygen or in the lower and physiological 

5% of oxygen. Our results showed that NOD cells, which are physiologically 

predisposed to the onset of diabetes, differentiate in 20% of oxygen (Figure 24) but not 

in low oxygen (Figure 25) and they died after three days of culture. On the other hand, 

C57 BL/6J and CD-1 cells remain viable during the differentiation process and they 

were able to differentiate into insulin secreting cells in both oxygen levels (Figures 26-

29). 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24: NOD 20% O2, day 10. Figure 25: NOD 5% O2, day 3. 

Figure 26: C57BL/6J 20% O2, day 10. Figure 27: C57BL/6J 5% O2, day 10. 
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In particular, NOD cells maintained in hypoxic conditions showed a very low cell 

viability percentage, more precisely equal to 5,2% ± 1,21%. In contrast, NOD cells 

cultured in 20% of oxygen showed a viability percentage equal to 88,14% ± 5,76%. On 

the other hand, C57 BL/6J and CD-1 cells did not show viability differences when 

subjected to both oxygen tensions (Table 11; Histogram 1).  
 

 
 
 
 
 
 
 

 
Table 11: cell viability percentage in different experimental groups  

(cell viability percentage is expressed as mean value ± SD). 

Different superscripts indicate statistical differences among the samples (SPSS software, p≤0,05). 

 
 

 

 

 

 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

Histogram 1: cell viability percentage in different experimental groups 

(viability is expressed as mean value ± SD). 

 Different superscripts indicate statistical differences among the samples (SPSS software, p≤0,05). 

EXP. GROUPS CELL VIABILITY (%) 

NOD 20% O2 88,14 ± 5,76 (a) 

NOD 5% O2 5,2 ± 1,21 (b) 

C57 BL/6J 20% O2 89,56 ± 4,5 (a) 

C57 BL/6J 5% O2 88,75 ± 5,37 (a) 

CD-1 20% O2 87,15 ± 4,13 (a) 

CD-1 5% O2 88,01 ± 5,04 (a) 
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Figure 28: CD-1 20% O2, day 10. Figure 29: CD-1 5% O2, day 10. 
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4.1.1.2 Immunocytochemistry 

4.1.1.2.1 Oct4 immune-localization 

Immunostaining analysis for Oct4 performed after 5-azacytidine treatment, showed the 

presence of this important pluripotent-related marker in both oxygen tensions, with no 

significant differences (Figures 30-31). 

 

  

 

 

 

 

 

 

 

 

Figure 30: immunostaining analysis for Oct4 in 20% O2 after 5-Aza CR treatment. 

Clear signal of Oct4 (red) and DAPI (blue). 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 31: immunostaining analysis for Oct4 in 5% O2 after 5-Aza CR treatment. 

Clear signal of Oct4 (red) and DAPI (blue). 
 

 

Specifically, 5-azacytidine treated fibroblasts displayed an average of 88% ± 2,65 of 

Oct4 positive cells in high oxygen and 83% ± 3,44 in low oxygen (Histogram 2).  

 

Histogram 2: Oct4 positivity cell rate in murine cells maintained in 20%) and 5% O2. 
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4.1.1.2.2 C-Peptide immune-localization 

Immunocytochemistry analysis for C-Peptide, carried out at the end of the pancreatic 

induction (day 10), showed the presence of this pancreatic marker in all experimental 

groups, except for NOD 5% O2 that was not able to complete the differentiation 

process. In particular, no significant differences among groups were detected with cells 

able to express C-Peptide with an average of 34,28% ± 1,70 (Figure 32).  

 

 

 

 

 

 

 

 

 

 
 

Figure 32: representative image of immunostaining of murine cells at the of the differentiation process.  

Clear signal of C-Peptide (green) and DAPI (blue). 
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4.1.1.3 Insulin Release 

At the end of the pancreatic differentiation process, an ELISA test specific for Insulin 

was performed, after cell stimulation in hyperglycemic conditions. The data obtained 

showed that all experimental groups were able to release insulin. In particular, C57 

BL/6J cells differentiated in high oxygen showed a significant lower insulin release 

(2,95 ± 0,09 µg INS/µg DNA), compared to the other samples (p≤0,05). (Table 12; 

Histogram 3). 

 
Table 12: insulin release in different experimental groups (insulin release is expressed as mean value ± SD). 

Different superscripts indicate statistical differences among the samples (SPSS software, p≤0,05). 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Histogram 2: insulin release (µg/µg DNA) in C57 and NOD cells growth in different oxygen tensions.  
(insulin release is expressed as mean value ± SD) 

No statistical differences were detected among the samples (SPSS software, p≤0,05) 

 
 

 
Histogram 3: insulin release in C57, NOD and CD-1 cells differentiated 

in different oxygen tensions (insulin release is expressed as mean value ± SD). 
Different superscripts indicate statistical differences among the samples (SPSS software, p≤0,05). 

 

 

 EXP. GROUPS 17,5 mM (µg INS/µg DNA) 20 mM (µg INS/µg DNA) 

NOD 20% O2  0,47 ± 0,18 4,44 ± 0,44 (a) 

C57 20% O2 0,20 ± 0,12 2,95 ± 0,09 (b) 

C57 5% O2 0,26 ± 0,10 4,41 ± 0,20 (a) 

CD-1 20% O2 0,27 ± 0,09 4,98 ± 0,35 (a) 

CD-1 5% O2 0,38 ± 0,04  5,20 ± 0,13 (a) 
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4.1.2 Section 2 

These experiments were carried out subjecting NOD cells to 5% oxygen only after their 

differentiation performed in 20% O2, since these cells did not survive in low oxygen 

concentrations during the pancreatic induction process. 

4.1.2.1 Insulin Release 

ELISA tests were performed in these experimental groups as well, using the same 

modalities described before.  

The results obtained showed that NOD cells remain viable for up to four days in 

hypoxic conditions. However, their ability to release insulin significantly decreases to 

concentrations ranging around 1,58 ± 0,27 µg INS/µg DNA (Table 13; Histogram 4). 

 

Table 13: insulin release in different experimental groups (insulin release is expressed as mean value ± SD) 

Different superscripts indicate statistical differences among the samples(SPSS software, p≤0,05). 

 

 

 

 
 

 
 
 

 
 

 

 
 

 

Histogram 4: insulin release in NOD cells maintained in different oxygen tensions  

(Insulin release is expressed as mean value ± SD). 

Different superscripts indicate statistical differences among the samples (SPSS software, p≤0,05) 

 

 

EXP. GROUPS 17,5 mM (µg INS/µg DNA) 20 mM (µg INS/µg DNA) 

NOD 20% (ctrl) 0,40 ± 0,11 4,38 ± 0,24 (a) 

NOD 20% + Day 11 20% 0,32 ± 0,08 4,55 ± 0,33 (a) 

NOD 20% + Day 11 5% 0,14 ± 0,02 4,39 ± 0,14 (a) 

NOD 20% + Day 11-14 20% 0,3 ± 0,03 3,38 ± 0,03 (b) 

NOD 20% + Day 11-14 5% 0,13 ± 0,01 1,58 ± 0,27 (c) 
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4.2 Establishment of the best glucose concentrations leading 

to cells that respond to glucose variations in a physiological 

way 

4.2.1 Section 1 

4.2.1.1 Cell morphology and viability 

Human dermal fibroblasts were isolated in high glucose concentrations (25 mM), plated 

on plastic and differentiated in the standard 17,5 mM glucose as well as  in 5,5 and 8,5 

mM of glucose.  

At the end of the differentiation process, cells cultured in low glucose concentratrions 

(both 5,5 and 8,5 mM) showed an unusual arrangement (distinct parallel pattern), 

characterized by a thin and elongated structure (Figure 33), compared to those 

maintained in high glucose (spheric cell clusters, pancreatic islet structure; Figure 34). 

 

 
 
 
 
 
 
 
   
 
 
 

 

 

 

 

 

  

Figure 33: representative image of cells 

differentiated in low glucose concentrations 

(5,5 mM), day 36. 

Figure 34: representative image of cells 

differentiated in high glucose concentrations 

(17,5 mM), day 36. 
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4.2.1.2 Immunocytochemical analysis  

Immunostaining analysis performed on cells differentiated in high glucose 

concentrations (CTRL) showed the expression of C-Peptide (Figure 35) and Insulin, 

with an average of 38,15% ± 3,51 and 37,55% ± 4,13 of positive cells respectively. On 

the other hand, cells cultured in low glucose (Samples 1-6) displayed a negative 

expression of Insulin and C-Peptide.  

 

 

 

 

 

  

B 

Figure 35: immunostaining of CTRL (day 36): C-Peptide (green) and DAPI (blue) (A).   

Immunostaining of Low Glucose samples (day 36): C-Peptide is not present, DAPI in blue (B). 
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4.2.1.3 Insulin Release  

At the end of the pancreatic differentiation process, an ELISA test specific for insulin 

was performed, after cell stimulation in hyperglycemic conditions. The data obtained 

showed that cells differentiated in high glucose (CTRL) were able to release an average 

of 6,55 ± 0,22 µg INS/µg DNA. On the other hand, cells cultured in low glucose 

(Sample 1-6) were not able to produce insulin in response to the hyperglycemic 

stimulation (Histogram 5). 

 
 

 
 
 
 
 
 
 
 
 
 

          
 
 
 
 

 

 
 Histogram 5: insulin release in human cells differentiated in low glucose conditions (samples 1-6)  

and high glucose (CTRL). (Insulin release is expressed as mean value ± SD). 

Different superscripts indicate statistical differences among the samples(SPSS software, p≤0,05). 
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4.2.2 Section 2 

4.2.2.1 Gene expression at different time points 

Since the results obtained from the previous experiment showed that cells in low 

glucose were not able to differentiate, it was designed a second experiment in which 

human cells (isolated in standard 25 mM glucose) were subjected to standard and low 

glucose concentrations untill day 14 of the process. Along this period, the expression of 

5 important genes was monitored, in order to characterize them during the early 

pancreatic differentiation. 

The results obtained displayed an alteration of the expression of these genes in low 

glucose samples (Histogram 6).  

 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Histogram 6: gene expression at different time points in high glucose (blue) and low glucose samples (red) 

(gene expression levels are reported with the highest expression set to 1 and all others relative to this). 

 

In particular, in low glucose samples Vimentin transcription decrease after 5-aza 

treatment but its expression was visible again starting from day 6, in contrast to the 

control where Vimentin expression disappeared along the process. This particular 

Vimentin transcription pattern in low glucose samples indicate that a cell type reversion 

occurs during the early differentiation, with a substantial part of cells returning to 

express this typical fibroblast marker instead of carrying on towards the pancreatic 

lineage.  

HIGH GLUCOSE  

LOW GLUCOSE 
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In contrast, Oct4 expression trend was similar in both glucose concentrations with a 

peak after 5-aza treatment, followed by a sharp decrease along the process. FOXA2, 

HNF4 and PDX1 expressions were altered in low glucose samples. These samples 

displayed higher levels of these early pancreatic genes, the expression of which appears 

to be prematurely turned on. So, low glucose affect both the correct timing and levels of 

early pancreatic genes expression. In particular, a glucose-sensitive window was 

identified around day 6-10 of in vitro differentiation, corresponding to the embryonic 

primitive gut tube/posterior foregut stage in vivo.  
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4.2.3 Section 3 

Since a glucose sensitive window was identified around day 6-10 of the pancreatic 

induction process, it was performed a third experiment subjecting cells (isolated in 

standard 25 mM glucose) to low glucose concentrations during the first two pancreatic 

differentiation steps only (Activin A medium and Activin A + Retinoic medium; day 1-

9; Table 9). 

4.2.3.1 Morphology and viability 

Cells from GROUP A, consisting in cells differentiated in low glucose (8,5 mM) until 

day 9 (corresponding to the Activin A and Retinoic Acid steps) and, then, in high 

glucose till the end of the process, did not complete their differentiation and began to 

detach from the support on day 23 (Figure 36). 

In contrast, cells from GROUP B, consisting in cells differentiated in standard high 

glucose concentrations (Table 9), successfully proceeded along the pancreatic 

differentiation and displayed the expected aggregates (Figure 37).  

 
 
 

 
 
 
 
 
 
 

 
 
 

  

Figure 36: representative image of cells from 

GROUP A, day 23. 

Figure 37: representative image of cells from 

GROUP B, day 23. 

100 µm 100 µm 
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4.2.3.2 Gene expression at different time points 

Gene expression results showed that cells from GROUP A displayed a gene expression 

trend comparable to that one illustrated in Section 2, with both the correct timing and 

levels of early pancreatic genes expression affected (Histogram 7).  

Furthermore, although these cells were able to release Insulin, they did not complete the 

differentiation process and began to detach from the culture dish at day 23. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Histogram 7: gene expression at different time points in Group A (red) and Group B (blue)  

(gene expression levels are reported with the highest expression set to 1 and all others relative to this). 

 

 

The results obtained in these first three sections indicate that low glucose environment 

interferes with the normal differentiation process, altering the expression of some early 

pancreatic genes, resulting in cells not able to complete their conversion towards the 

pancreatic lineage.    
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4.2.4 Section 4 

4.2.4.1 Mouse model 

4.2.4.1.1 Cell morphology 

Murine dermal fibroblasts were isolated both in high (25 mM) and low glucose 

concentrations (5,5 mM), plated on plastic and differentiated both in the standard 17,5 

mM and in 5,5 mM of glucose. At the end of differentiation, cells from all experimental 

groups lost the typical elongated shape of untreated fibroblasts and acquired an 

epithelioid morphology (Figure 38), with no significant differences.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38: representative image of murine fibroblasts isolated and differentiated  

in all conditions (end of differentiation, day 10). 

 

 

 

 

HG/HG 

 LG/HG 

HG/LG 

 LG/LG 



 

90 
 

4.2.4.1.2 Immunocytochemistry  

Cells displayed positivity for Insulin in all experimental groups, with different 

immune-positive percentage. Efficiency towards β cell differentiation, measured by 

counting cells that expressed Insulin, was 40 ± 4,4% in HG/HG, 25 ± 3,5% in 

HG/LG, 83 ± 3,4% in LG/LG and 72 ± 4,1% in LG/HG (Figure 39). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39: immunolocalization of Insulin in all mouse experimental groups  

(end of differentiation, day 10)  
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4.2.4.1.3 Insulin Gene expression  

Cells isolated and differentiated in all conditions were able to express Insulin at the end 

of the differentiation process (Histogram 8). However, significantly higher Insulin 

levels were expressed in cells isolated and differentiated in low glucose (LG/LG; 1 ± 

0,001 fold), compared to those isolated in low glucose and differentiated in high glucose 

concentrations (LG/HG; 0,84 ± 0,07 fold). Furthermore, cells isolated in high glucose 

and differentiated in both glucose concentrations showed a significant lower Insulin 

expression (HG/HG 0,51 ± 0,08 fold; HG/LG 0,28 ± 0,05 fold). 

 

 

Histogram 8: insulin gene expression in all different experimental groups.  

(gene expression levels are reported with the highest expression set to 1 and all others relative to this). 

Different superscripts indicate statistical differences among the samples (SPSS software, p≤0,05). 
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4.2.4.1.4 Insulin release  

In this experiment, cells were stimulated for 1 hour with the physiological 8,5 mM 

(mouse blood glucose concentration after meal) as well as with the standard 20 mM D-

glucose. All samples were able to respond to 1 hour exposure to 8,5 mM and 20 mM 

glucose both and actively release Insulin in cell supernatants conditions (Table 14; 

Histogram 9). Furthermore, basal insulin release was measured collecting media used 

during the differentiation (5,5 mM in HG/LG and LG/LG; 17,5 mM in HG/HG and 

LG/HG).  

EXP. GROUPS 

5,5 mM  

(basal) 

(µg INS/µg DNA) 

8,5 mM 

(µg INS/µg DNA) 

17,5 mM 

(basal) 

(µg INS/µg DNA) 

20 mM 

(µg INS/µg DNA) 

HG/HG - ND 0,28 ± 0,07 (a) 5,88 ± 0,46 (b) 

HG/LG 0,38 ± 0,10 (a) 2,81 ± 0,35 (c) - 4,11 ± 0,43 (d) 

LG/LG 0,42 ± 0,08 (a) 7,46 ± 0,38 (e) - 10,41 ± 0,63 (f) 

LG/HG - ND 0,33 ± 0,11 (a) 9,37 ± 0,45 (f) 

Table 14: insulin release in different experimental groups (insulin release is expressed as mean value ± SD) 

Different superscripts indicate statistical differences among the samples (SPSS software, p≤0,05). 

(ND = not detected) 

 

 
Histogram 9: insulin release in all different samples (Insulin release is expressed as mean value ± SD) 

Different superscripts indicate statistical differences among the samples (SPSS software, p≤0,05). 
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4.2.4.1.4.1 Insulin release after stimulation with 8,5 mM glucose 

Fibroblasts isolated in high glucose and differentiated in low glucose conditions 

(HG/LG) were able to release Insulin even when stimulated with physiological 

hyperglycemic levels (8,5 mM), producing 2,81 ± 0,35 µg INS/µg DNA. On the other 

hand, HG/HG and LG/HG cells were not able to produce insulin when stimulated with 

8,5 mM glucose. 

Interestingly, fibroblasts isolated and differentiated in low glucose (LG/LG) ensure a 

significantly increase of insulin release when stimulated with 8,5 mM of glucose. As a 

matter of fact, these cells appear to be more responsive to insulin challenge, even when 

stimulated with 8,5 mM, with a significantly higher release (7,46 ± 0,38 µg INS/µg 

DNA), compared to the other experimental groups described above.  

4.2.4.1.4.2 Insulin release after stimulation with 20 mM glucose 

After differentiation, cells from all experimental groups, stimulated with 20 mM of 

glucose, were able to respond releasing Insulin. Once again, the highest Insulin release 

values were obtained in cells isolated in low glucose and differentiated in both 

conditions, respectively equal to 10,41 ± 0,63 µg INS/µg DNA in LG/LG and 9,37 ± 

0,45 µg INS/µg DNA in LG/HG. On the other hand, cells isolated in high glucose were 

able to produce significantly lower insulin amounts (5,88 ± 0,46 µg INS/µg DNA in 

HG/HG and 4,11 ± 0,43 µg INS/µg DNA in HG/LG).  
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4.2.4.1.5 Class 1 Glucose Transporters (GLUT 1-4) gene expression  

The expression of four glucose transporters (GLUT1, GLUT2, GLUT3, GLUT4) was 

measured in all experimental groups, including untreated fibroblasts isolated in high (T0 

HG) and low glucose (T0 LG), as visible in Histogram 13.  

4.2.4.1.5.1 GLUT1 expression 

All samples were able to express GLUT1 at the end of the differentiation process, with a 

significant higher expression in cells isolated in high glucose and differentiated in both 

glucose conditions (HG/HG 1,03 ± 0,08 fold; HG/LG 0,86 ± 0,11 fold; Histogram 9), 

compared to the others. On the other hand, cells isolated in low glucose and 

differentiated in both glucose concentrations showed a significant lower expression of 

GLUT1, respectively 0,59 ± 0,10 fold in LG/HG and 0,40 ± 0,12 fold in LG/LG 

(Histogram 10). Finally, the expression of GLUT1 appear to be more evident in 

untreated fibroblasts isolated in low glucose (T0 LG) than those isolated in high glucose 

(T0 HG). 

 

 

 

 

 

 

 

 

 

 

 

 

Histogram 10: GLUT1 gene expression in all experimental groups. 

Different superscripts indicate statistical differences among the samples (SPSS software, p≤0,05). 
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4.2.4.1.5.2 GLUT2 expression  

The expression of GLUT2 was observed in all experimental groups, with a significant 

higher expression in cells isolated in high glucose (1,21 ± 0,07 fold in HG/HG and 0,89 

± 0,05 fold in HG/LG; Histogram 11). On the other hand, cells isolated in low glucose 

were able to express GLUT2 too, although they displayed a significant lower expression 

(0,15 ± 0,03 fold in LG/LG and 0,49 ± 0,04 fold in LG/HG; Histogram 10), compared 

to those isolated in high glucose. Finally, the expression of this gene in T0 HG and T0 

LG was not detected. 

 

 

 

 

 

 

 

 

 

 

 

 

Histogram 11: GLUT2 gene expression in all experimental groups. 

Different superscripts indicate statistical differences among the samples (SPSS software, p≤0,05). 

 

4.2.4.1.5.3 GLUT3 expression 

GLUT3 expression was not detected in all experimental groups. 

4.2.4.1.5.4 GLUT4 expression 

Excluding untreated fibroblasts (T0 LG and T0 HG), the expression of GLUT4 was 

observed in all experimental groups, with varying yields (Histogram 12). In particular, 

LG/LG showed a significant overexpression of GLUT4 (12,85 ± 1,49 fold) compared to 

LG/HG (2,58 ± 0,51 fold), HG/LG (0,28 ± 0,08 fold) and HG/HG (0,04 ± 0,01 fold) 

(Histogram 12). 
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These results suggest that cell isolation performed in low glucose promotes the 

expression of GLUT4 at the end of the pancreatic differentiation carried out both in low 

and high glucose concentrations.  

 

 

 

 

 

 

 

 

 

 

 

 

Histogram 12: GLUT4 gene expression in all experimental groups. 

Different superscripts indicate statistical differences among the samples (SPSS software, p≤0,05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Histogram 13: GLUTS gene expression in all experimental groups. 
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4.2.4.2 Human model 

4.2.4.2.1 Cell morphology 

Human dermal fibroblasts were isolated both in high glucose (25 mM) and in low 

glucose concentrations (5,5 mM), plated on plastic and differentiated in both standard 

and low glucose levels. Significant cell morphology differences were visible among all 

experimental groups (Figure 40).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40: human fibroblasts isolated and differentiated in all glucose conditions, day 36. 

 

 

In particular, HG/HG cells aggregated in spheric cell clusters (similar to the pancreatic 

islet structure), as expected from this experimental group. On the other hand, HG/LG 

cells showed an unusual arrangement, characterized by a thin and elongated structure, 

comparable with the results obtained in Section 1 (Paragraph 4.2.1.1; Figure 33). 

Finally, fibroblasts isolated in low glucose and differentiated in both glucose levels 

(LG/HG; LG/LG) remain viable and began to organize themselves in cell clusters (as 

HG/HG sample) but, interesting, they failed to complete their aggregation process, also 

when maintened in culture for more than standard 36 days (Figure 40). 
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4.2.4.2.2 Insulin Gene expression  

HG/HG, LG/HG and LG/LG experimental groups were able to express Insulin at the 

end of the differentiation process (Histogram 14). Significantly higher Insulin levels 

were expressed in cells isolated and differentiated in high glucose (HG/HG; 1 ± 0,001 

fold), compared to those isolated in low glucose and differentiated in both high and low 

glucose concentrations (LG/LG 0,66 ± 0,04 fold; LG/HG 0,59 ± 0,08 fold). 

 

 

 

 

 

 

 

 

 

Histogram 14: insulin gene expression in all different experimental groups.  

(gene expression levels are reported with the highest expression set to 1 and all others relative to this). 

Different superscripts indicate statistical differences among the samples (SPSS software, p≤0,05). 

(ND = not detected) 
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4.2.4.2.3 Insulin release  

At the end of the pancreatic differentiation process, cells were stimulated for 1 hour 

with 8,5 mM as well as 20 mM D-glucose, with the same modalities described above. 

Glucose-dependent insulin release was assessed as previously described. HG/HG, 

LG/HG and LG/LG samples were able to respond to 8,5 and 20 mM glucose challenge 

both and actively release insulin in cell supernatants (Table 15; Histogram 15). 

EXP. GROUPS 
5,5 mM  

(µg INS/µg DNA) 

8,5 mM  

(µg INS/µg DNA) 

17,5 mM  

(µg INS/µg DNA) 

20 mM  

(µg INS/µg DNA) 

HG/HG - ND 0,20 ± 0,04 (a) 6,77 ± 0,16 (c) 

HG/LG ND ND - ND 

LG/LG 0,18 ± 0,05 (a) 2,75 ± 0,18 (b) - 4,14 ± 0,23 (d) 

LG/HG - ND 0,16 ± 0,06 (a) 3,89 ± 0,27 (d) 

Table 15: insulin release in different experimental groups (insulin release is expressed as mean value ± SD) 

Different superscripts indicate statistical differences among the samples (SPSS software, p≤0,05). 

(ND = not detected) 

 

 
 

 

Histogram 15: insulin release in all different samples (Insulin release is expressed as mean value ± SD) 

Different superscripts indicate statistical differences among the samples (SPSS software, p≤0,05). 
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4.2.4.2.3.1 Insulin release after stimulation with 8,5 mM glucose 

Fibroblasts isolated in high glucose conditions (HG/HG; HG/LG) were not able to 

produce insulin when stimulated with 8,5 mM glucose. On the other hand, cells isolated 

and differentiated in low glucose (LG/LG) were able to produce an average amount of 

Insulin equal to 2,75 ± 0,18 µg INS/µg DNA. Conversely, LG/HG cells were not able to 

release insulin when stimulated with 8,5 mM of glucose. 

4.2.4.2.3.2 Insulin release after stimulation with 20 mM glucose 

At the end of pancreatic differentiation process, HG/HG, LG/LG and LG/HG cells were 

able produce Insulin, after stimulation with 20 mM of glucose.  

In human model, a significant higher insulin release was obtained in cells isolated and 

differentiated in high glucose (HG/HG), as opposed to what happened in the mouse 

model. More precisely, HG/HG differentiated cells were able to produce an average of 

6,77 ± 0,16 µg INS/µg DNA while LG/LG and LG/HG 4,14 ± 0,23 and 3,89 ± 0,27 µg 

INS/µg DNA respectively. 
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4.3 Use of 3-D systems and evaluation of mechanosensing 

related responses  

4.3.1 Cell morphology 

4.3.1.1 PTFE culture system 

Cells differentiated in PTFE showed no morphological differences between samples 

maintained in both oxygen tensions. In particular, cells aggregated in spherical 

structures and maintained this organization along the differentiation process (Figure 41). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41: cell morphology of mouse fibroblasts differentiated in PTFE in 20% and 5% oxygen. 
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4.3.1.2 PAA gels culture system 

Cells differentiated on 1 kPa soft gel in high oxygen (1 kPa 20), maintained the 

monolayer morphology for the first days of the process and, then, they organize 

themselves into several spherical clusters. On the other hand, cells differentiated on 4 

kPa and on 1 kPa gel in low oxygen (1 kPa 5; 4 kPa 20; 4 kPa 5) maintained the 

monolayer morphology along the entire process (Figure 42).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42: cell morphology of mouse fibroblasts differentiated  

on PAA gels (1kPa; 4kPa)  in 20% and 5% oxygen. 
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4.3.1.3 Standard plastic culture system (CTRL) 

Cells differentiated on plastic dishes (as control) showed the typical morphology of 

mouse fibroblasts converted into insulin-producing cells. In particular, after 5-aza-CR 

treatment, cells changes their morphology, with the typical elongated morphology of 

untreated fibroblasts being replaced by a round or oval shape and with cell size 

becoming considerably smaller. Along the process cell populations acquired an 

epithelioid morphology in both high and low oxygen concentrations (Figure 43).  

No significant morphological differences between samples maintained in different 

oxygen tensions were observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 43: cell morphology of mouse fibroblasts differentiated  

on standard plastic dishes in 20% and 5% oxygen. 
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4.3.2 Insulin release 

At the end of the pancreatic differentiation process, an ELISA test specific for Insulin 

was performed, after cell stimulation with hyperglycemic conditions. The data obtained 

showed that all samples were able to respond to glucose challenge and actively release 

Insulin in cell supernatants (Table 16; Histogram 16). In particular, cell differentiated in 

PTFE in low oxygen (PTFE 5) displayed a significant higher Insulin than those in PTFE 

in high oxygen (5,71 ± 0,15 and 2,58 ± 0,21 µg INS/µg DNA respectively). Similarly, 

cells converted on 1 kPa PAA gels increase their ability to release Insulin, especially in 

low oxygen (6,25 ± 0,21 µg INS/µg DNA). In contrast, cells differentiated on 4 kPa 

PAA gels display a significant lower amount of Insulin in both oxygen tensions, 

compared to the other experimental groups, controls included.  

EXP. GROUPS 17,5 mM (µg INS/µg DNA) 20 mM (µg INS/µg DNA) 

PTFE 20 0,44 ± 0,18 2,58 ± 0,21 (a) 

PTFE 5 0,26 ± 0,06 5,71 ± 0,15 (b) 

1 kPa 20 0,21 ± 0,04 5,62 ± 0,13 (b) 

1 kPa 5 0,28 ± 0,09 6,25 ± 0,21 (c) 

4 kPa 20 0,13 ± 0,05 1,85 ± 0,09 (d) 

4 kPa 5 0,15 ± 0,03 1,63 ± 0,18 (d) 

CTRL 20 0,19 ± 0,08 3,47 ± 0,12 (e) 

CTRL 5 0,30 ± 0,11 4,86 ± 0,19 (f) 

Table 16: Insulin release in all experimental groups (Insulin release is expressed as mean value ± SD). 

Different superscripts indicate statistical differences among the samples(SPSS software, p≤0,05). 

 

Histogram 16: Insulin release in all experimental groups (Insulin release is expressed as mean value ± SD). 

Different superscripts indicate statistical differences among the samples (SPSS software, p≤0,05). 
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4.3.3 Gene expression 

4.3.3.1 Ki67 expression 

The expression of Ki67 (gene that encode for a nuclear protein associated to the cellular 

proliferation) showed a balanced relation between cell death and proliferation in all 

experimental groups, compared to untreated fibroblasts (T0). This data showed us that 

cells did not increase their number maintaining a constant cell density during the 

differentiation (Histogram 17).  

 

Histogram 17: Ki67 gene expression in all experimental groups. 

4.3.3.2 Insulin expression 

The results obtained showed that 1 kPa gel and PTFE system induced significant higher 

Insulin expression than plastic and 4 kPa gel, especially in low oxygen (Histogram 18). 

Furthermore, comparing the efficiency of the two systems tested, 1 kPa PAA gel 

ensured a higher Insulin transcription than PTFE.  

 

 

 

 

 

 

 

 

Histogram 18: Insulin gene expression in all experimental groups. 
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4.3.4 Immunocytochemistry 

Immunocytochemistry analysis performed on the PAA gel samples confirmed the 

presence of three main pancreatic hormones (Insulin; Glucagon; Somatostatin), 

especially in 1 kPa soft gel maintained in both oxygen tensions (Figures 44-45).  

A 

B 

A 

B 

Figure 44: Immunostaining of cells differentiated on 1 kPa soft gel in 20% oxygen, day 10.  

Clear signal of Insulin (green), Glucagon (red) and DAPI (blue) (A).  

Immune-localization of Somatostatin (green), Glucagon (red) and DAPI (blue) (B). 

 

Figure 45: Immunostaining of cells differentiated on 1 kPa soft gel in 5% oxygen, day 10.  

Clear signal of Insulin (green), Glucagon (red) and DAPI (blue) (A).  

Immune-localization of Somatostatin (green), Glucagon (red) and DAPI (blue) (B) 
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The results obtained in the 4 kPa gel samples showed a significant lower immune-

localization of these pancreatic markers compared to those visible in 1 kPa soft gel 

(Figures 46-47). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 47: Immunostaining of cells differentiated on 4 kPa soft gel in 5% oxygen, day 10.  

Signal of Insulin (green), Glucagon (red) and DAPI (blue) (A). 

Immune-localization of Somatostatin (green), Glucagon (red) and DAPI (blue) (B). 

 

Figure 46: Immunostaining of cells differentiated on 4 kPa soft gel in 20% oxygen, day 10.  

Signal of Insulin (green), Glucagon (red) and DAPI (blue) (A).  

Immune-localization of Somatostatin (green), Glucagon (red) and DAPI (blue) (B). 
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4.3.5 Image analysis 

Fluorescence intensity analysis for Insulin and Glucagon showed compartmentalization 

of the signal and increased mono-hormonality of the cells (Figure 48; Histogram 19). 

The increasing presence of cells able to produce only one pancreatic hormone indicates 

a high cell maturity and differentiation level and this represents one of the most eligible 

goal for the cell therapy.  

 

 

 

 

Figure 48: immunostaining of cells differentiated on 1 kPa soft gel in 5% oxygen, day 10.  

Immune-localization of Insulin (A), Glucagon (B) and merged picture of Dapi, Insulin and Glucagon (C).  

 

 

 

 

 

 

 

Histogram 19: fluorescence intensity analysis for Insulin (A), Glucagon (B) and Insulin/Glucagon (C).  
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Similarly, fluorescence intensity analysis for Somatostatin and Glucagon showed an 

analogue compartmentalization of the signal and increased mono-hormonality of the 

cells (Figure 49; Histogram 20), reinforcing the concept previously described in Insulin-

Glucagon image analysis. 

 

 

 

 

Figure 49: immunostaining of cells differentiated on 1 kPa soft gel in 5% oxygen, day 10.  

Immune-localization of Somatostatin (A), Glucagon (B) and merged picture of Dapi,  

Somatostatin and Glucagon (C).  

 

 

 

 

 

 

 

Histogram 20: fluorescence intensity analysis for Somatostatin (A), Glucagon (B)  

and Somatostatin/Glucagon (C). 
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4.4 The role of the pluripotency related gene Oct4 in the 

molecular mechanisms driving epigenetic conversion and 

phenotype switch 

4.4.1 Section 1 

4.4.1.1 In vitro functional assay of the Oct4 CRISPR/Cas9 vectors 

To investigate whether our Oct4 CRISPR/Cas9 vectors were functional active, a dual 

fluorescent reporter system (C-Check), based on CRISPR/Cas9 induced-DNA double 

strand breaks in an episomal vector (Zhou et al., 2016), was used. In particular, two C-

Check vectors (for human and murine Oct4 respectively) were generated, carrying 

synthetic Oct4 CRISPR/Cas9 target sites. The generated C-Check vectors were then 

transfected into HEK293T cells and results obtained led us to choose T2 and T3 

CRISPR/Cas9 sgRNAs in human model (Figures 50-51) and T2 and T4 CRISPR/Cas9 

sgRNAs in murine model (Figures 52-53). 

 

 

 

 

 

 

Figure 50: Oct4 C-Check vector with human T2 CRISPR/Cas9 sgRNAs into HEK293T cells (A):  

expression of Green Fluorescent Protein (B) and mCherry Fluorescent Protein (C). 

 

 

 

 

 

 

Figure 51: Oct4 C-Check vector with human T3 CRISPR/Cas9 sgRNAs into HEK293T cells (A): 

expression of Enhanced Green Fluorescent Protein (B) and mCherry Fluorescent Protein (C). 

 

 

 

 

A B C 

A B C 



 

111 
 

 

 

 

 

 

  

 

Figure 52: Oct4 C-Check vector with mouse T2 CRISPR/Cas9 sgRNAs into HEK293T cells (A):  

expression of Enhanced Green Fluorescent Protein (B) and mCherry Fluorescent Protein (C). 

 

 

 

 

 

 

 

 

 

Figure 53: Oct4 C-Check vector with mouse T4 CRISPR/Cas9 sgRNAs into HEK293T cells (A):  

expression of Enhanced Green Fluorescent Protein (B) and mCherry Fluorescent Protein (C). 
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4.4.1.2 Oct4 KO fibroblasts generation 

Once the most promising human and murine sgRNAs couples have been identified (T2-

T3 in human and T2-T4 in murine model), fibroblasts were plated and, when these cells 

achieved about 70% confluence, in vitro validated CRISPR/Cas9 vectors were 

transfected into the cells, in order to generate Oct4 KO fibroblasts.  

Then, 24 hours after, cell transfection effectiveness was tested through fluorescent 

analysis for GFP protein (included into vectors), marker of vector integration efficiency 

(Figures 54-55).  

 

 

 

 

 

 

 

 

Figure 54: representative image of transfected mouse fibroblasts:  

bright-field (A) and GFP positive cells (B). 

 

 

 

 

 

Figure 55: representative image of transfected human fibroblasts:  

bright-field (A) and GFP positive cells (B). 

 

The results obtained showed a GFP-positive cell rate equal to 15% in human model and 

10% in mouse transfected fibroblasts (Figures 54-55), indicating that transfection 

efficiency was not very high.  
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Moreover, both human and mouse transfected cells showed a normal growth and their 

morphology was not different from untreated fibroblasts, with their typical elongated 

and spindle structure (Figures 56-57). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 56: untreated human fibroblasts (A) and transfected human fibroblasts (B). 

 

 

 

 

 

 

 

 

Figure 57: untreated mouse fibroblasts (A) and transfected mouse fibroblasts (B). 

 

Then, Puromycin selection has been applied in order to generate pure Oct4 KO clones 

and to obtain pure KO cell lines. In particular, at the end of the selection process, eleven 

clones were obtained in the mouse altogether but, in contrast, selection carried out in 

human fibroblasts gave unsatisfactory results and cells suffered significantly during the 

puromycin selection. 

Furthermore, FACS-based sorting has been applied also but, unfortunately, 

unsatisfactory results were obtained in both human and mouse samples.  
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4.4.1.3 Screening PCR after Puromycin selection (Mouse model) 

At the end of the selection process, DNA extraction and amplification have been 

performed to genotype correct Oct4 KO clones. Firstly, the amplification of the whole 

Oct4 genomic area was performed and, subsequently, a further screening PCR was 

carried out, amplifying the T3–downstream genomic region, with the modalities 

described above (Section 3.4.1.4). Eleven clones were obtained in the mouse altogether, 

with varying yields. PCR screening demonstrated 2 clones (KO1; KO3), in particular, 

displaying a high KO cell rate, although a heterogeneous population also composed by 

WT cells still persist, as visible in Figures 58-59 (correct KO clones circled in red).  

 

 

Figure 58: amplification of whole Oct4 genomic region in mouse treated cells.  

Correct Oct4 KO clones are circled in red (⁓ 400 bp). 

 

 

Figure 59: amplification of T3–downstream genomic region in mouse treated cells.  

Correct Oct4 KO clones are circled in red. 
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4.4.1.4 Immunocytochemistry 

The most promising KO clones (KO 1; KO 3) and WT mouse cell lines were subjected 

to the 5-azacytidine treatment, as previously described. 

Immunocytochemistry analysis for Oct4 performed after 5-azacytidine treatment, 

showed the presence of this pluripotent-related marker in both mouse KO and WT 

samples, as visible in figures 60 and 61 respectively. 

 

 

 

 

 

 

 

 

 

 

 

In particular, a rate of 86% ± 4,11 of cells expressing Oct4 was observed in WT mouse 

cell line (Figure 60). On the other hand, it was observed an Oct4 expression decrease in 

KO cells, with 65% ± 5,35 of cells expressing Oct4 (Figure 61), confirming the 

presence of a consistent KO cell population. 

 

 

 

 

  

DAPI OCT4 OCT4DAPI 

OCT4 OCT4DAPI DAPI 

Fig.60: representative image of immunocytochemical localization of Oct4 in KO mouse fibroblasts  

(KO 1 clone). 

Fig.61: Representative image of immunocytochemical localization of Oct4 in WT mouse fibroblasts. 
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4.4.1.5 Screening PCR at the end of pancreatic induction process (Mouse model) 

Both KO (KO 1; KO 3) and WT mouse cell lines were subjected to the pancreatic 

induction protocol, as previously described. Then, at the end of the differentiation 

process, DNA extraction and amplification have been performed to verify the 

maintenance of the Oct4 genomic region deletion in KO clones. The genotyping of WT 

lines was performed too, as a control.  

 

 

 

 

 

Figure 62: amplification of whole Oct4 genomic region in KO and WT mouse samples. 

 

 

 

 

 

Figure 63: amplification of T3–downstream mouse Oct4 genomic region  

in KO and WT mouse samples. 

 

 

The results obtained displayed the persistence of Oct4 genomic sequence positivity in 

KO clones, showing a genomic profile comparable to WT cells. In particular, DNA 

amplification of both whole Oct4 and T3-downstream sequences displayed that a small 

number of non-KO cells probably escaped the selection and actively proliferated, 

outnumbering the KO ones (Figures 62-63). 

  

KO 1     KO 3    WT 1    WT 2     

KO 1   KO 3  WT 1 WT 2     



 

117 
 

4.4.2 Section 2 

4.4.2.1 Oct4 KO fibroblasts generation 

In this second experiment, human and mouse fibroblasts were plated both on plastic and 

on 1 kPa PAA gels. When these cells achieved about 70% confluence, cells were 

transfected with the same modalities previously described but, in this case, all four in 

vitro validated CRISPR/Cas9 vectors (T1-T2-T3-T4) were used.  

No significant morphological differences were observed between cells plated on plastic 

and on 1 kPa PAA gel, as visible in figures 64 and 65. 

 

 

 

 

 

 

 

 

 

Figure 64: human fibroblasts plated and transfected on plastic (A) and on 1 kPa PAA gel (B). 

 

 

 

 

 

 

 

 

Figure 65: mouse fibroblasts plated and transfected on plastic (A) and on 1 kPa PAA gel (B). 
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Then, 24 hours after trasfection, fluorescent analysis for GFP protein were performed to 

quantify GFP-positive cell percentage and, as a consequence, to test the transfection 

effectiveness (Figures 66-67). 

 

 

  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 66: GFP expression in human transfected fibroblasts plated on plastic (A, B)  

and on 1 kPa PAA gel (C,D). 
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Figure 67: GFP expression in mouse transfected fibroblasts plated on plastic (A, B)  

and on 1 kPa PAA gel (C, D). 

 

Fluorescence analysis displayed a very few number of fibroblasts expressing the GFP 

signal, with a positive cell rate equal to 2% in human and 3% in mouse transfected 

fibroblasts (Figures 66-67), indicating that transfection efficiency was too low in all 

samples. 

However, an interesting aspect observed is related to the particular and unconventional 

morphology acquired by both mouse and human transfected fibroblasts maintained on 1 

kPa gels. As a matter of fact, the few GFP-positive cells present in culture after 

treatment displayed a peculiar and “dendritic-like morphology” (Figures 66C, 66D, 67C 

and 67D). On the other hand, transfected fibroblasts cultured on plastic maintained their 

morphology, as visible in pictures 66A, 66B, 67A and 67B. 
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Then, Puromycin selection has been applied in all transfected samples but, 

unfortunately, it was impossible to establish a pure KO cell line because of the 

insufficient number of transfected cells remained viable after selection. Thus, these cells 

were not able to proliferate and increase their number and, for this reason, it was 

impossible to apply the pancreatic differentiation process. 
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CHAPTER 5:  
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5. DISCUSSION  

5.1 Assessment of the optimal oxygen tension to be used in 

culture 

It is generally accepted that mammalian development occurs at very low oxygen levels 

prior to the onset of blood circulation (Simon & Keith, 2008). Therefore, it is reasonable 

to expect that pancreatic development take place at similar low oxygen concentrations, 

at least until the advent of blood flow in the organ (Colen et al., 1999).  

The results obtained in this thesis showed that oxygen plays a role in the epigenetic 

conversion and pancreatic induction process. This is particularly evident in cells derived 

from NOD mice, which are physiologically predisposed to the onset of diabetes, and 

whose cells differentiated in 20% oxygen only and were unable to adapt a pancreatic 

phenotype in low oxygen conditions, that resulted highly unfavorable for their viability. 

As a matter of fact, NOD derived cells suffered and died by day 3 in low oxygen 

(Figure 24, Histogram 1). On the other hand, if moved to 5% of oxygen, after 

differentiating in normal oxygen conditions, they remained viable for up to four days 

even in hypoxic conditions, although with a decreased ability to release Insulin 

(Histogram 4).  

Despite many reports describe a major influence of oxygen on pancreatic islet survival 

and function (Carlsson et al., 2003; Carlsson et al., 2002; Chase et al., 1979; Kazzaz et 

al., 1999; Ko et al., 2008; Papas et al., 1996), the first systematic study on oxygen 

participation in the development of the pancreas was available only recently (Fraker et 

al., 2007). This may be due to the inability of standard culture methods to deliver 

oxygen in a physiological way, which has complicated the appropriate design of in vitro 

studies. This limitation was finally overcome with the development of novel culture 

vessels (perfluorocarbon-based culture devices - PFC/Si) designed to maintain relatively 

constant oxygen levels throughout cellular aggregates (Fraker et al., 2007). In particular, 

Fraker et al. performed their experiments on mouse pancreatic buds demonstrating that 

enhanced oxygenation (either 21% or 35% O2) promotes cell differentiation in vitro 

(Fraker et al., 2007). Besides, this study shows that high oxygen enhances pancreatic 

bud growth, without oxygen-related stress, promoting endocrine over exocrine 

differentiation. In addition, the gene expression profile of pancreatic buds cultured in 

this way was largely indistinguishable from that observed during normal native 
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development at corresponding time points, suggesting that physiological oxygenation is 

critical for appropriate pancreatic development (Fraker et al., 2007). Furthermore, a 

recent study carried out on human Induced Pluripotent Stem Cells (hiPSCs) and on 

mouse Embryonic Stem Cells (mESCs) (Hakim et al., 2014) demonstrates that a very 

high oxygen tension (60% O2) facilitates and promotes the differentiation of these cells 

into Insulin-producing cells and into endocrine progenitors with a clear expression 

increase of several early pancreatic markers (SOX17, FOXA2, PDX1, Ngn3). In line 

with this, Shah et al. showed that enhanced oxygen delivery after the inflow of blood 

would seem a likely permissive factor for initiating differentiation, with endocrine areas 

that ended to be more highly oxygenated (Shah et al., 2011). Similarly, subjecting 

pregnant rats in vivo to a hypoxic environment, by gradually decreasing the O2 level 

from 21% to 8%, indicated that pancreatic cell differentiation depends on cell 

oxygenation, with hypoxia decreasing β-cell development (Heinis et al., 2010). This is 

not limited to rodents, since Heinis et al. showed that mouse and human fetal pancreases 

displayed very few β cells at 3% O2. Altogether, these data demonstrate that hypoxia 

decreases β-cell differentiation in a conserved manner between rats, mice and humans 

(Heinis et al., 2012) and highlight the importance of high oxygen conditions during the 

pancreatic differentiation process. These results are fully in agreement with those 

obtained in our NOD model, where cells need high oxygen levels to complete their 

differentiation and, to this regard, we may hypothesize that this may be due to the high 

metabolic consumption required by late stages of pancreatic differentiation. Then, 

further studies are required in order to elucidate this aspect and, to this regard, a distinct 

possibility could be related to the evaluation of the involvement of HIF signaling 

pathway, which has been described to have a key role during β-cell differentiation 

(Heinis et al., 2012; Fraker et al., 2009; Diez et al., 2007; Czech, 2006; Gunton et al., 

2005; Levisetti & Polonsky, 2005; Pugh & Ratcliffe, 2003).   

Interestingly, these results are likely to be specific for pancreatic differentiation since 

other differentiation processes require hypoxia condition in order to increase cell 

proliferation, viability and functional efficiency. A clear example is represented by the 

Neural Crest Stem Cells (Morrison et al., 2000), Hematopoietic Cells (Adelman et al., 

1999; Cipolleschi et al., 1993; Parmar et al., 2007), Bone Marrow Mesenchymal Stem 

Cells in rats (Lennon et al., 2001) and ESCs cultures (Ezashi et al., 2005; Harvey et al., 

2004). There is no clear explanation for this point and further experiments are 
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mandatory in order to clarify the relation between oxygen specific concentration and 

distinct differentiation pathway. In addition, the data obtained in the present project, 

show a completely different trend when C57 BL/6J and CD-1 mice cells were used. In 

both populations, differentiation to Insulin secreting cells succeeded regardless to 

oxygen tensions. In detail, C57 BL/6J cells maintained in low oxygen conditions 

ensured a significantly higher Insulin release than those cultured in 20% oxygen tension 

(Histogram 3). CD-1 cells were able to release higher but not significantly different 

Insulin amount in low oxygen, compared to those differentiated in high oxygen 

(Histogram 3). Therefore, oxygen did not appear to be a critical point for the success of 

the differentiation process in both cells types. These results disagree with those 

described above, however are in line with a recent study aimed to the in vitro 

differentiation of umbilical cord blood mesenchymal stem cells (UCB-MSCs) into 

Insulin producing cells, where hypoxia was shown to effectively direct MSCs 

differentiation into early β-cell progenitors and endocrine cells (Sun et al., 2015). 

Similarly, adipose derived MSCs (AMSCs) differentiated in 3% oxygen displayed an 

increased number of cells expressing pancreatic transcription factors (Yoo et al., 2014). 

Altogether, these data suggest that genetic background and cell type may have a 

profound effect in the responses to local oxygen concentrations. Cell type-specific 

behavior can be appreciated along differentiation processes and, more in particular, 

during the in vitro pancreatic induction process, in the presence of different oxygen 

tensions. 
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5.2 Establishment of the best glucose concentrations leading 

to cells that respond to glucose variations in a physiological 

way  

In healthy physiological condition, blood glucose is tightly maintained from 5.5 mM for 

fasting to 7.0-8.5 mM after eating (Ceriello & Colagiuri, 2008). However, most of the 

protocols used in vitro (Shi et al., 2005; D’Amour et al., 2006; Zhang et al., 2009; 

Rezania et al., 2012; Pennarossa et al., 2013; Pagliuca et al., 2014;) differentiate cells in 

high glucose concentration (17.5 mM), which is a very un-physiological condition but 

results in good efficiency. It must be considered, however, that  high glucose has been 

shown to be deleterious for Stem Cells functions and a cause of abnormalities during 

embryogenesis, due to an increase of oxidative stress and a reduction in inositol levels, 

one of the principal second messenger of Insulin action (Wentzel et al., 2001). Based on 

these considerations, we attempted to test the effect of physiological glucose 

concentration on endocrine pancreatic cell differentiation, converting human and mouse 

fibroblasts both in 5.5 mM (fasting blood glucose level) and in 8.5 mM (blood glucose 

level after meal). The results obtained showed that glucose plays a major and specific 

role in pancreatic endocrine cell development. Cells maintained in low glucose levels 

were not able to differentiate into insulin producing ones and displayed an unusual thin 

and elongated morphology, arranging in a distinct parallel pattern and peculiar structure 

(Figure 33). Moreover, immunocytochemical analysis showed a positive expression of 

Insulin and C-Peptide in cells differentiated in standard high glucose levels but not in 

those cultured in hypoglycemic conditions (Figure 35), that were unable to respond to 

20 mM glucose challenge (Histogram 5). This finding is in agreement with a study 

showing that glucose is necessary for embryonic pancreatic endocrine cell 

differentiation and development, as well as crucial for both α and β cell specification 

(Guillemain et al.,  2007). In addition, previous studies demonstrated that high glucose 

promotes β-cell replication in vitro and in vivo at the 20 to 30-mmol/l concentration 

(Bonner-Weir et al., 1989). Those observations have been supported by Zalzman et al. 

that demonstrated that high glucose (25 mmol/l) culture of immortalized PDX1-

expressing human fetal hepatocytes promoted the production, storage and release of 

Insulin in a regulated manner (Zalzman et al., 2003). Expression pattern of early 

pancreatic markers also showed an alteration in low glucose samples (Histogram 6). In 
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particular, hypoglycemic conditions appeared to increase the levels of expression of 

crucial early pancreatic genes, such as FOXA2, HNF4 and PDX1, that were stimulated 

by low glucose levels and prematurely turned on. When analysis was performed at later 

days, FOXA2 and HNF4 marker continued to be overexpressed in low glucose cells 

whereas, PDX1 was transcribed at higher level in high glucose concentration. Although 

it is difficult to explain these results, it must be noted that during embryonic life, the 

final number of β-cells will depend on the proliferation of early PDX1-positive 

pancreatic progenitor cells (Bernard et al., 1999; Bhushan et al., 2001) and it is possible 

low glucose may cause a wrong timing in the regulation of transcription. In support to 

this observation, Cao et al. demonstrated that high glucose is necessary for complete 

maturation of PDX1-VP16-Expressing Hepatic Cells into functional Insulin-Producing 

Cells (IPCs) (Cao et al., 2004). Interestingly enough, even limiting the use of low 

glucose concentration to the early step of differentiation (day 1-9), cells were unable to 

complete the process, began to detach from the growth support around day 23 (Figure 

36) and died. This is in agreement with a study demonstrating that culture in low-

glucose concentrations induced apoptosis in pancreatic β-cells (Van De Casteele et al., 

2003).  

One key point, in our understanding is represented by the conditions adopted during the 

isolation and establishment of primary cultures. According to our findings, when cells - 

both of human and murine origin - were directly isolated in low and physiological 

glucose concentrations they successfully differentiated in these conditions as well as in 

high glucose. The initial environment appeared to set cell future behavior and response 

to glucose levels, with cells being able to adapt to similar or higher concentrations 

(LG/LG; LG/HG; HG/HG), but unable to cope with lower glucose ones (HG/LG). 

Altogether this suggests that pancreatic differentiation efficiency was mainly affected 

by the starting derivation conditions, regardless to the glucose conditions used during 

the endocrine pancreatic induction process.  

Cell ability to respond to glucose stimulation, requires the presence of specific 

receptors, namely the Class I Glucose Transporters family (GLUT 1-4), that are intrinsic 

membrane proteins which differ in tissue-specific expression and response to metabolic 

and hormonal regulation (James D.E, 1994; Muekler, 1994). Consistent with the results 

described above, the widely expressed isoform GLUT1 was detected in all experimental 

groups (Histogram 10) indicating that converted cells procure their basal glucose 
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requirement through a canonic pathway (Muekler, 1994). These data are in agreement 

with previous works, indicating that GLUT1 is ubiquitously expressed in adult 

mammalian cells and tissues ( Cura & Carruthers, 2013; Mueckler, 1994; James D.E, 

1994; Gould & Holmant, 1993; Hudson et al., 1992; Piper, R.C. et al., 1992; Asano, T., 

et al, 1992; Bell & Lin, 1990). GLUT2 expression was detected in all samples as well, 

with a significantly increased level in samples isolated in high glucose (HG/HG and 

HG/LG; Histogram 11). This gene represents the major glucose transporter isoform 

expressed in pancreatic β-cells, hepatocytes, kidney and absorptive epithelial cells of the 

intestinal mucosa ( Cura & Carruthers, 2013; Mueckler, 1994; Tal et al., 1992; Thorens, 

1992; Thorens et al., 1988; Fukumoto et al., 1988). Its presence in converted fibroblasts 

confirms that cells underwent an epigenetic switch and adopted a pancreatic phenotype, 

and is in line with previous works that demonstrated GLUT2 gene expression in ESCs 

differentiated toward the pancreatic lineage (Pilar Vaca et al., 2006; T León-quinto et 

al., 2004).  In contrast to these results, the expression of GLUT3 was not detected in any 

of the samples. However this is not surprising since the transporter is distinctive of 

brain, placenta, spermatozoa and testis membranes, where it is strongly expressed 

(Haber et al., 1993). 

Finally, the data obtained in relation to the expression of GLUT4 appear very intriguing. 

This gene was significantly up-regulated in LG/LG and LG/HG groups, while a 

negligible expression was observed in HG/HG; HG/LG samples (Histogram 12). 

GLUT4 is expressed specifically in muscles and fat tissues and is classically referred to 

as the "Insulin-responsive" transporter (Kraegen et al., 2010; Slot et al., 1991). In our 

understanding, it is therefore not surprising that the highest GLUT4 expression levels 

were detected in those groups that showed the highest Insulin release (LG/LG and 

LG/HG) and suggest the possibility that the high concentration of available insulin may 

result in the induction of this hormone responsive transporter. Even more interesting is 

the observation that up-regulation of GLUT4 was detected in the groups where lower 

GLUT2 expression was measured. (LG/LG and LG/HG), Although, further evidence is 

required, we may hypothesize the occurrence of a switch between these two glucose 

transporters in cells isolated in low glucose.  
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5.3 Use of 3-D systems and evaluation of mechanosensing 

related responses 

In vivo, cells are surrounded by a 3-D organization, mainly composed by extra cellular 

matrix and neighboring cells (Geckil et al., 2010) but, traditionally, tissue culture has 

been dominated by growing cells as monolayers. While these 2-D systems are well 

documented and have enabled approaches to understanding individual cellular 

phenomena, they lack the ability to reproduce the morphology, 3-D architecture and 

some biochemical features of cells in the original tissue. In order to create an in vitro 

environment that attempt to replicate a “closer-to-in vivo” behavior, cells may be 

cultured on matrices and scaffolds (Ravi, Kaviya, & Paramesh, 2016). Several studies 

demonstrated the positive effect of more physiological culture surfaces. For instance, 

the use of substrates approximating to the elastic moduli of brain (0.1 kPa), pancreas 

(1.2 kPa), cartilage (3 kPa), muscle (8 to 17 kPa) and bone tissue (40 kPa), could 

directly drive stem cells to differentiate into neurogenic, pancreatic, chondrogenic, 

myogenic and osteogenic lineages, respectively (Engler, Sen, Sweeney, & Discher, 

2006; Narayanan et al., 2014; Wang, Lai, Han, Tong, & Yang, 2014). The results 

obtained in the present work indicate that matrix elasticity may have a profound 

influence on the epigenetic conversion and endocrine pancreatic differentiation process. 

In particular, significantly higher Insulin transcription and release were visible in cells 

differentiated on 1 kPa gel and in PTFE systems (Histograms 16, 18). These data are 

consistent with recent studies that demonstrated the ability of stiffness substrate to 

influence cell fate and differentiation, and suggested that soft gel systems may enhance 

cell differentiation towards the endodermal lineage (Candiello et al., 2013; Jaramillo et 

al., 2015; Richardson et al., 2014), providing a biologically active environment for the 

cells to proliferate, differentiate and secrete cell specific components (Schellenberg et 

al., 2014). The significant and positive impact of the use of a correct stiffness and an 

adequate 3D environment, is also demonstrated by the results obtained with immune-

cytochemical analysis. The latter showed a compartmentalization of the signals for 

Insulin, Glucagon and Somatostatin, demonstrating an increase in mono-hormonality of 

the cells that were differentiated on 1 kPa PAA gel (Figures 48-49; Histograms 19-20). 

Interestingly, hormone compartmentalized localization is considered to be suggestive of 

a mature phenotype and to be distinctive of terminally differentiated cells (Bocian-

Sobkowska et al., 1999; Riopel et al., 2014). Similarly, it has been observed that 
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primitive endocrine cells, typical of early fetal stages, co-express Insulin and Glucagon, 

while they mature into a mono-hormonal phenotype later in development (Piper et al., 

2004; Polak et al., 2000). Our results demonstrate that soft substrates significantly boost 

the acquisition of a mono-hormonal phenotype, supporting the possibility that 

epigenetic conversion lead to the derivation of matutre pancreatic, differentiated cells. 

This observation is consistent with recent studies that demonstrated hydrogel 

encapsulation system ability to enhance cell differentiation towards the endodermal 

(Candiello et al., 2013; Jaramillo et al., 2015; Richardson et al., 2014) and the 

pancreatic lineage (Davis et al., 2012; Jin et al., 2013; Mason et al., 2009; Niknamasl et 

al., 2014).  

Altogether, these data suggest that the use of an appropriate substrate has a general 

effect on the differentiation of epigenetically erased fibroblasts and indicate a positive 

impact both on conversion efficiency and on the promotion of a mono hormonal 

population. 
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5.4 The role of the pluripotency related gene Oct4 in the 

molecular mechanisms driving epigenetic conversion and 

phenotype switch 

Epigenetic conversion is a very powerful and promising technique for regenerative 

medicine. A thorough understanding of the mechanism driving the applied process, is 

however indispensable when potential applications in clinical management of disease 

are hypothesized. In order to understand the role of the pluripotency marker Oct4 in the 

experiment discussed in the present section, we used CRIPR-Cas 9 to delete its genomic 

region and investigate the result of its KO. In particular, the idea behind this, was to 

determine whether pluripotency was required for the epigenetic conversion process. The 

results obtained, although encouraging, were not completely satisfactory. In particular, 

we obtained a rather low transfection efficiency, especially in the human model. On the 

other hand, mouse KO cell lines were obtained however, after 5-aza CR treatment, no 

significant reduction in Oct4 expressing cell percentage was observed. (Figures 60-61). 

A possible explanation may be that a small number of non-KO cells escaped the 

selection and actively proliferated, outnumbering the KO ones. This is supported by the 

observation that, at the end of the experiments, DNA analysis indicated the persistence 

of Oct4 genomic sequence positivity (Figures 62-63), showing a comparable genomic 

profile in KO and WT cells.  

Presently, there is a paucity of reports related to pluripotency gene deletions obtained 

through  CRISPR/Cas9 approach and we find it difficult to understand the data we 

generated. Indeed, only very recently Fogarty el al. focused on the use of editing to 

investigate the function of the pluripotency transcription factor Oct4. However this was 

applied to human and mouse embryos and did not involve somatic cells (Fogarty et al., 

2017), making it difficult to translate their results to our models.  

Even the use of a 3D culture system that would improve cell behavior and responses led 

to a very few number of KO fibroblasts (Figures 66-67), indicating a limited and 

inadequate transfection efficiency. Based on these results, it was impossible to establish 

a pure KO cell line and apply the pancreatic differentiation process. An interesting 

aspect observed is related to the particular and unconventional morphology acquired by 

both mouse and human transfected fibroblasts maintained on soft gels, that displayed a 

“dendritic-like morphology” (Figures 66C, 66D, 67C and 67D). This observation is 
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fully in agreement with several works, affirming that fibroblasts plated on a 3-D 

collagen matrix formed dendritic extensions (Grinnell et al., 2003; Jiang and Grinnell, 

2005; Rhee et al., 2007; Rhee, 2009). In particular,  Grinnell et al. observed a new type 

of “normal” fibroblast morphology and cells projected and retracted a dendritic network 

of extensions, developeing the appearance of neuronal cells. These morphological 

changes in fibroblasts were not observed in our previous experiments dedicated to 

elucidate the role of mechanosensing in epigenetic conversion (see section 3), where 

mouse cells, plated and differentiated on PAA gels, displayed a classical morphology, 

typical of fibroblasts and with no indications of neural related changes (Paragraph 

4.3.1.2; Figure 42). A possible interpretation about these two different cell behaviors 

may be related with the confluence used in the experiments. As a matter of fact, the 

confluence obtained after Puromycin selection is significantly lower than that typical of 

protocols focused on the use of matrices (Figures 42; 66-67).  

In conclusion, although still preliminary, the results obtained support the possibility to 

establish CRISPR/Cas9 mediated Oct4 gene knock out models. It is undeniable that 

further experiments are mandatory to optimize genome editing efficiency and, 

eventually, determine whether and how Oct4 deletion may interfere with the acquisition 

of 5-Aza-CR induced high plasticity.  Furthermore, it will be necessary to understand 

whether the expression of Oct4 during the brief “high plasticity stage” induced by 5-

Aza CR is required for the success of the differentiation process. Data obtained in 

parallel in our laboratory strongly point to the key role played by the TET proteins and 

advocate the involvement of specific families of histones, suggesting an even more 

complex scenario coupling pluripotency, epigenetic erasing and mechano-sensing 

responses.  
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6. CONCLUSIONS 

The data reported in the present thesis reveal some of the mechanisms driving the 

epigenetic conversion of mammalian fibroblasts into Insulin-secreting cells. These 

results, beside their impact in the understanding of cell fate commitment and 

differentiation, may find useful application to increase yield and improve conditions to 

be applied during cell phenotype switch. In particular, we demonstrated that using 

culture environments that closely resemble the physiological milieau we may favorably 

influence the process and improve scaling up. Firstly, our data provides evidence that 

oxygen plays a role. However, a distinct response is detected in relation to the strain 

used in the experiments, suggesting that genetic background has a profound effect on 

the role of oxygen during the in vitro differentiation process. This reflects a different 

susceptibility to the diabetic disease of the strains used in the experiments and it needs 

to be further expanded with researches applied to the human. Even more intriguing are 

the data generated with the experiments where we used different concentrations of 

glucose. These indicated that efficiency was not strictly dependent on the concentration 

used during differentiation, but, rather, by the conditions applied at cell isolation from 

the original tissue and early culture. A key point is also represented by the use of 3-D 

culture systems that match the stiffness typical of the original tissue. In particular, the 

results achieved suggest that the use of a soft substrate (mimicking pancreatic Young’s 

modulus) was able to increase differentiation and favored the acquisition of a mature 

pancreatic phenotype, distinctive of terminally differentiated cells. Last but not least, the 

parallel and pioneer experiments, focused on genome editing of fibroblasts through the 

CRISPR/Cas9 technique, although still preliminary, appear very promising. They will 

be further developed in order to clarify the role of the pluripotency master gene Oct4 in 

epigenetic erasing and the control of somatic cell plasticity. 

Altogether, the evidences here presented demonstrate that the use of appropriate and 

physiological conditions greatly promote cell differentiation and boost efficiency. The 

thorough understanding of the mechanisms involved are mandatory both for 

fundamental research as well as for regenerative medicine applications. 
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Scientific posters: 

 Zenobi A., Zhou Y., Liu Y. , Luo Y., Brevini T.A.L.,  Gandolfi F. 
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investigate pluripotency control in epigenetically converted fibroblasts”, 2015, 

Meeting of Cost Action BM1308 Sharing Advances on Large Animal Models – 

SALAAM, Poznan (PL); 

 Zenobi A., Luo Y., Brevini T.A.L.,  Gandolfi F. “Use of CRISPR/Cas9 to edit 
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2016, EpiConcept Conference 2016,  Giardini Naxos  (IT); 

Abstracts:  
 

 Tiziana A.L. Brevini, Elena F.M. Manzoni, Alessandro Zenobi and Fulvio 
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International Conference on Stem Cells, 2017, Rhodes (Greece); 

 Manzoni E.F.M, Pennarossa G., Zenobi A., Ledda S., Gandolfi F. and Brevini 
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 Zenobi A., Gandolfi F., Brevini T.A.L. “Matrix stiffness and oxygen tension 
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producing cells”. 2017, International Journal of Health, Animal Science and 

Food Safety; 

 Zenobi A., Luo Y., Brevini T.A.L.,  Gandolfi F. “Use of CRISPR/Cas9 to edit 

OCT4 gene and investigate high plasticity of epigenetically erased fibroblasts”, 
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 Brevini T.A.L., Pennarossa G., Manzoni E.F.M., Zenobi A., Gandolfi F. 
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 Zenobi A., Gandolfi F., and Brevini T.A.L. "High glucose concentrations are 
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fibroblasts". 2016, International Journal of Health, Animal Science and Food 

Safety; 

 Waszkiewicz E., Zenobi A., Pennarossa G., Gandolfi F., Brevini T.A.L., 

Franczak A. “Expression of octamer-binding transcription factor 3/4 (oct 3/4) in 
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TH 

Winter 
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 Zenobi A., Zhou Y., Liu Y. , Luo Y., Brevini T.A.L.,  Gandolfi F. 

“Establishment of a CRISPR-CAS9 mediated Oct4 gene knock out model to 

investigate pluripotency control in epigenetically converted fibroblasts”, 2015, 

Meeting of Cost Action BM1308 Sharing Advances on Large Animal Models – 
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Papers: 
 

 Ghiringhelli M., Zenobi, A., Brizzola S., Gandolfi F., Bontempo V., Rossi S., 

Brevini T.A.L., Acocella F. “Simple and quick method to obtain a 

decellularized, functional liver bioscaffold”, 2017, Methods Mol. Biol.; 

https://doi.org/10.1007/7651_2017_97; 

 Brevini T.A.L. ,  Pennarossa G.,  Manzoni E.F.M.,  Zenobi A.,  Gandolfi F. 

“Mountain high and valley deep: Epigenetic controls of pluripotency and cell 

fate”, 2017, Animal Reproduction 14(1):61-68; https://doi.org/10.21451/1984-

3143-AR899; 

 Brevini T.A.L.,  Pennarossa G.,  Manzoni E.F.M.,  Gandolfi C.E.,  Zenobi A.,  
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cells”, 2016, Veterinary Journal 211: 52-56; 
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 Pennarossa G.,  Zenobi A., Gandolfi C.E., Manzoni E.F.M., Gandolfi F., Brevini 

T.A.L. “Erase and rewind:: epigenetic conversion of cell fate” 2016,  Stem Cell 
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 Brevini T.A.L., Pennarossa G., Maffei S., Zenobi A., and Gandolfi F. 
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(109);   https://doi.org/10.3791/53880. 
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