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Abstract

This work is aimed to the development and application of a segmentation and analysis
methods for the morphological and functional characterization of the lower limb from
MRI images.

Regarding the morphological characterization, an automatic algorithm was devel-
oped for the segmentation of Skeletal Muscle (SM), Intermuscular Adipose Tissue
(IMAT), and Subcutaneus Adipose Tissue (SAT) compartments from cross-sectional
T1-W MRI images [1], in order to assess thigh regional tissue composition in both
young and elderly subjects with different degrees of body adiposity, including obese
individuals. A fuzzy c-mean algorithm was employed to perform a classification of
the different tissues: SM, Adipose Tissue (AT) and bone. Muscle fascia, which is the
anatomical structure that separates SAT and IMAT compartments, was segmented
using a procedure based on Snake active contour model.

We validated the segmentation framework on 15 datasets from 5 young normal
weight, 5 older normal weight and 5 older obese females using manual segmentations
delineated by an expert operator as gold standard. Segmentation errors were as-
sessed for each structure resulting in mean relative area difference of 1.8%, 2.5% and
2.7% for SM, bone and AT, respectively, and a mean sensitivity for each compart-
ment above 96% in each subject typology. Muscle fascia identification performance
resulted in a mean distance between manual and automatic contours of 0.81mm and
a mean percentage of contour pixels with distance smaller than 2 pixels of 86.2%.
Moreover, manual and automatic IMAT and SAT cross-sectional areas in all subject
typologies were found significantly correlated (p < 0.001). These results indicate that
the proposed automatic segmentation algorithm, adequately performing thigh tissue
discrimination, could be an helpful tool in studies of thigh regional composition. To
our knowledge, this is the first published approach which identifies muscle fascia in its
anatomical position obtaining promising results from a low level based segmentation
perspective.

Regarding the functional characterization of the lower limb, the properties of a
specific region of the SM: the quadriceps femoris was considered representative of the
entire compartment. In this region, size and fat content of 6 normal weight and 5
obese well functioning older females were determined at mid-thigh of the dominant
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leg, by analysing MRI Dixon images. These data as well as peak knee-extension
torque, muscle fascicle length and pennation angle were compared in order to assess
functional differences between the two groups. The study [2] showed that muscle
tissue composition and pennation angle are important determinants of muscle torque
per unit muscle section in well-functioning older women. Moreover, as a result of the
greater gravitational load, active obese elderly women have more muscle mass but
with a higher fat content compared with normal-weight counterparts.

The amount and distribution of SM and AT in different body regions, have a
relevant clinical impact. In particular, the assessment of changes in both SM and AT
amount and distribution are significant as they correlate with processes related to
aging. Namely, a loss of SM mass with an increasing of IMAT have been identified as
a negative correlate of SM quality and strength in lower limb, leading to functional
impairment of different severity. Moreover, the simultaneous presence of such condi-
tions with an abnormal high accumulation of AT in the lower limb has been defined
as sarcopenic obesity and correlated with accelerated functional decline with high risk
of diseases and mortality.

This work represents a step forward not only to the accomplishment of accurate
patient-specific thigh tissues segmentation and quantification, but also to the under-
standing of processes related to aging with the concomitant presence of obesity.
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Chapter 1

Introduction

1.1 Motivation

The amount and distribution of Skeletal Muscle (SM) tissue and Adipose Tissue (AT)
in different body regions, have a relevant clinical impact. In particular, the quantifi-
cation of SM in the lower limb plays a crucial role in the diagnosis and treatment
of neuromuscular diseases [4] as well as being a reliable index for evaluating the suc-
cess of therapies aimed to reduce the progression of pathological conditions involving
muscle atrophy [5]. Moreover, a precise estimation of muscle mass is fundamental in
studies of exercise physiology to obtain reliable estimation of muscle performance in
terms of strength and functionality [6].

The distribution of lower limb AT has been found correlated with the development
of metabolic abnormalities. In particular, the Intermuscular Adipose Tissue (IMAT),
located beneath the fascia lata within and adjacent to SM, has been recognized as an
important prognostic factor for insulin sensitivity and cardiovascular risk [7, 8, 9] .

In addition, the assessment of changes in both SM and AT amount and distribution
are significant as they correlate with processes related to aging. Namely, a loss of
SM mass with an increasing of IMAT has been identified as a negative correlate of
SM quality and strength in lower limb, leading to functional impairment of different
severity [10].

Moreover, the simultaneous presence of such conditions (Sarcopenia) with an ab-
normal high accumulation of AT in the lower limb has been defined as sarcopenic
obesity and correlated with accelerated functional decline with high risk of diseases
and mortality [11].

The tissue morphological characterization, alone, is not sufficient to understand
the pathways by which obesity affects physical functioning in older subjects. Indeed,
Obese (OB) individuals demonstrate more SM and higher muscle strength [12]. How-
ever, the strength normalized for body weight results lower in OB than in non-OB
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CHAPTER 1. INTRODUCTION

adults.
Magnetic Resonance Imaging (MRI) is widely used in clinical practice because of

its property of well distinguishing between different types of soft tissues with high
resolution and non-invasivity. In particular, T1-Weighted Magnetic Resonance Imag-
ing (T1-W MRI) has been recognized as the most effective technique for the study
of body composition and in particular for the assessment of SM and AT distribution
and quantification in different body regions [13, 14, 15, 16]. Thus, it is expected to
have a substantial impact on the detection and follow-up of sarcopenic conditions.
The discrimination of the different tissue compartments of interest, including SM,
Subcutaneous Adipose Tissue (SAT), and IMAT and their quantification through
segmentation processes, is essential to accurately assess tissue composition from MRI
images. In clinical practice, this segmentation is currently performed by manually
tracing the contour of all the structures of interest on each slice of the MRI data. As
a standard MRI study consists of dozens of images, this procedure is time consuming
and it is prone to inter and intra-operator variability. Therefore, tools capable of au-
tomatically extract the regions of interest from T1-W MRI thigh images are strongly
demanded.

Dixon MRI sequence [17], relying on the water/fat chemical shift difference allows
to achieve the water/fat signal separation through postprocessing. It is then possible
to assess the portion of fat present in the SM. This could be an important contribution
to the functional characterization of the SM. Indeed, fat infiltration in SM tissue has
been found correlated to poorer isokinetic SM strenght [18].

Nowadays, thanks to these imaging techniques is thus possible to deeply investi-
gate physiological and pathological processes such as aging and metabolic disorders.
The understanding of these processes is of absolute relevance as life expectancy among
the elderly has been improving for many decades with a very high impact on total
health care spending [19]. In fact, it has been shown that medical costs grown with
age and the population will become increasingly aged over time. However, health
among the elderly is expected to moderate the increases in medical costs, improving
the quality of life of elderly people [20]. In this scenario, the early detection and
an accurate follow up of morphological and functional changes in the musculoskele-
tal system correlated to disorders and pathological conditions is fundamental. As
the amount and distribution of SM and AT in the thigh have been found strictly
correlated with cardiovascular risk and metabolic disorders, and thigh muscles are
essential for gait and physical normal functioning, we concentrated our work on the
morphological and functional characterization of this specific region in order to pro-
vide clinicians a valid support on the understanding and quantification of changes in
regional composition related to metabolic processes characterizing aging.
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1.2 Aim and Contributions

The object of this thesis is the development, validation and application of clinically
feasible strategies for the morphological and functional characterization of the lower
limb from MRI images acquired with different sequences in subjects with different
characteristics in terms of SM and AT distribution. In particular, we have developed
new tools, aiming at supporting the segmentation and analysis of data coming from
images in studies of regional tissue composition and on the thigh particularly.

This work makes the following contributions:

- Thigh Tissues Segmentation: an automatic segmentation framework able to
extract SM, IMAT, and SAT from T1-W MRI of the thigh. For this purpose,
a fuzzy C-mean classification with active contour snake was proposed. We
evaluated the method on young and older women with different degrees of body
adiposity.

An accurate automatic segmentation method is essential for the patient specific
morphological characterization of the thigh, including the quantification of the
different tissues of interest. Currently, no fully automatic and robust solutions
are commercially available and clinicians perform segmentation manually. This
practice, highly time consuming, is unfeasible for a large cohort of patients.
Several works have been proposed to address thigh segmentation, but especially
the identification of the weak edge of muscle fascia which separates SAT and
IMAT is still an open issue. A detailed description of the issues related to thigh
segmentation, the state of art in this field and how our algorithm overcomes the
limitation of previous works is presented on Chapter 3.

- A study of the effects of muscle composition and architecture on specific strength
in OB older women. This SM functional characterization was performed by
measuring the peak Knee Extension Torque (KET), in isometric and isokinetic
conditions, the Mid-thigh Quadriceps Femoris (QF) Cross Sectional Area (CSA)
and muscle tissue fat content from MRI images, muscle Fascicle Length (FL)
and Pennation Angle (PA) for each muscle belly of the QF from Ultrasound (US)
images.

This study had the aim to investigate how obesity affects strength production
in older individuals. A deep understanding of these processes, including muscle
feature changes due to obesity could be of great help for clinicians to better
interpret results from interventional investigations.

3



CHAPTER 1. INTRODUCTION

1.3 Organization

The thesis is so organized: in Chapter 2 an overview of the state of art in imaging
techniques used to investigate human body composition is reported. In particular
MRI contrasts and applications will be described. In Chapter 3, the new automatic
segmentation approach for the discrimination of SM, IMAT and SAT is presented
and validated against manual segmentations. The research concerning this chapter
has been published in one journal [1] and in one conference proceedings [21]. In
chapter 4, the study on the effect of SM composition and architecture on specific
strength in OB older women is described. The research concerning this chapter has
been published in one journal [2] and in two conference proceedings [22, 23]. Finally,
in Chapter 5 results obtained in this work are summed-up and future improvements
are also examined.
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Chapter 2

State of Art In Human
musculo-skeletal imaging

Studies of body composition in humans are usually aimed at assessing deficiencies or
excesses of certain components which are linked to health risks and the development
of certain diseases. Several aspects of body composition, in particular the amount
and distribution of AT and the amount and composition of SM have a relevant clin-
ical impact on the study of processes related to aging and metabolic abnormalities.
Their measurement is increasingly considered in clinical practice thanks to the wide
availability of muskuloskeletal imaging techniques which allow to accurately inves-
tigate these aspects with high spatial resolution. Moreover, thanks to the constant
development of new imaging techniques, it is today possible to acquire SM images
with information content reflecting muscle functionality.

In this chapter we will give an overview of the main techniques involved on mus-
culoskeletal imaging.

2.1 Introduction

Imaging techniques have assumed increasing importance in the study of musculoskele-
tal system and in particular for the study of body composition and muscular physi-
ology and functionality. These techniques include Computer Tomography (CT), US,
and MRI. Both MRI and US are radiation-free approaches and therefore totally non-
invasive. US is a real-time methodology and dynamic features of a muscle can be
investigated. MRI, being a 3D technique, allows for better imaging of deep struc-
tures and by applying different sequences, different contrasts can be obtained so that
different kind of images can be acquired of the same specific tissue. Both MRI and
US are more commonly used than CT scanning. CT scans can detect AT infiltration
and SM atrophy, characteristic of aging and metabolic disorders, with a very high
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spatial resolution. However, CT scan exposes the subjects to ionizing radiation with-
out advantage over MRI or US in terms of evaluation of muscular properties. In the
next section, the operating principles of these three techniques are briefly reported.
Then, based on the information typology the different protocols can provide three
class of methodologies will be described:

- Methods evaluating body or regional composition and the specific dimension of
the investigated muscles

- Methods evaluating muscle composition and intramuscular fat content

- Methods evaluating muscle architecture

- Methods evaluating muscle activity

2.2 Operating Principle of imaging techniques

2.2.1 CT

CT [24] is a computerized x-ray imaging procedure where the subject is irradiated
typically by a cone beam of x-rays which quickly rotates around the volume to be im-
aged, and a system of flat panel detectors intercepts the X-ray beam passing through
the imaged volume. The signal is processed through adequate algorithm (e.g Feld-
kamp algorithm for cone beam [25]) to reconstruct cross-sectional images of the im-
aged volume. CT images represent the distribution of the attenuation coefficient of
X-ray in the volume imaged in a predefined section. This attenuation coefficient is
highly correlated to the density of the tissue composing the imaged volume. CT is
a quantitative technique, as the image pixel value are expressed in a scale related to
radiodensity of distilled water: the Hounsfield Unit (HU):

µ(HU) =
µ− µH2O

µH2O
× 1000

Therefore, soft tissues with attenuation similar to water have pixels values around
zero; cortical bone has high positive values and air assumes values near −1000.

2.2.2 US

US technique [26] is a very common and widespread musculoskeletal imaging tech-
nique. This technique consists in sending a pulse of ultrasounds into the volume to
be imaged and waiting for an echo to return. These returning echoes, produced by
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tissue interfaces, are then elaborated to produce an image of internal structures. Ul-
trasounds can be described as longitudinal mechanical waves which cause particles to
oscillate back and forth and produce a series of compressions and rarefactions. These
waves propagate through a medium with a velocity dependent on the medium density
and acoustic impedance. As the velocity of ultrasounds is considered constant in soft
tissues, the time between emitting a pulse and receiving an echo is used to determine
the depth of the interface. On the other hand, the amplitude of the receiving echoes
gives an indication of the difference of the acoustic impedance between the interfaces.

2.2.3 MRI

MRI technique [27] is based on the interaction between protons nuclei of hydrogen
atoms and magnetic fields. Once inside the powerful magnetic field produced by the
MRI scanner, the proton magnetic moments tend to align with this magnetic field.
With the use of radiofrequency signals, the aligned protons are pulsed and some of
them absorb this energy and flip. When the radiofrequency field is switched off,
the protons release the energy and tend to realign with the more powerful magnetic
field generated by the MRI scanner. MRI images are obtained by analyzing the
spectrum of the signal related to the absorption and emission of energy. Many kinds
of contrasts can be obtained with MRI technique by varying the excitation sequences.
The signal spacial localization is obtained by exciting the volume with radiofrequency
pulse variations in the phase and frequency.

2.3 Body or regional composition or the specific

dimension of the investigated muscles

This class of methods aims at distinguishing the different tissues of interest and in
particular the AT from SM and are used for their correspondent amount estimation.
The main methodologies used in this field are T1-W MRI and CT.

2.3.1 CT

CT imaging has been widely used in the past in the field of body composition and
in particular for the assessment of AT and SM [13, 28], but in the last years has
largely been replaced by MRI. CT is easy to apply and is characterized by small
acquisition time allowing a good and standardized assessment of the morphological
characterization of the tissues of interest as well as shape and size changes. Despite
the very high resolution that can be obtained, CT images present a limited contrast
between soft tissues of different types; this makes automatic segmentation processes
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less effective. Finally, the fact that CT exams imply a high ionizing radiation exposure
of the subjects makes this technique not safe, especially for repeated measurements.
An example of a CT image is reported on Fig.2.1

Figure 2.1: An example of CT image of the thighs.

2.3.2 T1-W MRI

T1-W MRI is one of the basic pulse sequences in MRI and the images reflect the
differences in the T1 relaxation time of tissues. This time constant represents the
amount of time the protons take to realign with the magnetic field after the radiation
pulse is switched off. This technique has been recognized to be the most effective in
the study of body composition, as it provides a large contrast between soft tissues
with high resolution [13, 28]. An example of a T1-W MRI image is reported on Fig.2.2

2.4 Muscle composition and intramuscular fat con-

tent

The amount and distribution of SM and AT are not sufficient to understand processes
related to aging and metabolic disorders. Indeed, there is evidence that in this kind
of processes, an increase of adipose compartments is accompanied by modifications
in SM composition due to a different degree of fat infiltration in muscle tissue which
leads to a deficit in muscle functionality [29, 30]. Therefore, the quantification of this
degree of fat infiltration is essential. Three different techniques can be used with this
aim: CT, DIXON sequence MRI and Magnetic Resonance Spectroscopy (MRS).
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Figure 2.2: An example of T1-W MRI image of the thighs.

2.4.1 CT

CT imaging has been used in the past to assess the amount of adipose and skeletal
muscle tissue and to determine the integrity of the latter [28, 29, 18, 30, 31, 32]. AT
found within SM (intramuscular adipose tissue) causes a decrease in the pixels values
correspondent to SM, affecting the quality of the assessment of this tissue; thus, the
lower the mean HU, the lower the density and, therefore, the greater the fat content.

2.4.2 Magnetic Resonance Spectroscopy

MRS [33] is an imaging technique that allows for the noninvasive molecular character-
ization of a region of interest. In particular, in SM tissue MRS allows to discriminate
and assess intracellular and extracellular lipid compartments as well as many other
metabolites whose signals are located in a different position of the signal spectrum
[34].

This technique is based on the chemical shift effect. This phenomenon consists in a
slightly difference in resonance frequency for protons belonging to different molecules
caused by minimal difference in the magnetic field they experience. This variability
in the magnetic field is caused by the different chemical structure of molecules which
determines their electronic environment. By applying specific pulse sequence, and
analyzing the spectrum of the output signal, the specific amount of various metabo-
lites can be assessed. In Fig.2.3 an example of spectrum signal obtained from a small
region of the thigh acquired with MRS is reported.

This technique is very accurate and it is recognized as the gold standard for
the quantification of fat [35] and in particular for discriminating intracellular and
extracellular lipid compartments in SM tissue [36, 37, 38]. However, the spatial
resolution of this technique is very low as large voxels are required in order to obtain
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high signal to noise ratio. Many protocols foresee the acquisition of a single voxel
for simplicity and to keep the acquisition time short. Multiple voxels can be also
acquired in order to analyze entire compartments necessitating longer acquisition
time and requiring more complex protocols to maintain a strict field homogeneity. It
is also worth to note that, this protocol is not widely available in clinical practice
and in order to reach the maximum accuracy it needs high magnetic fields, usually
available only in research contexts.

Figure 2.3: An example of the spectrum obtained with MRS from a small region of the
thigh which is indicated with a white square in the anatomical image. The horizontal
axis of the spectrum is labeled with frequency expressed in ppm while the vertical axes
represents the amplitude of the signal. The amount of a single metabolite is strictly
related to the correspondent peak amplitude. The intracellular and extracellular lipid
peaks are indicated with IMCL and EMCL, respectively.

2.4.3 Dixon sequence MRI

Chemical shift encoded methods, also referred as Dixon methods [39, 40] allow to
calculate the percentage of fat signal with respect to signal coming from water, by
acquiring separated images of fat and water signal.

Due to different molecular properties, protons of fat and water experience different
magnetic fields leading to a higher resonance frequency of water protons with respect
to those of fat. Chemical shift encoded imaging exploits this difference in terms of
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resonance frequency to produce In Phase (IP) and Out of Phase (OP) images. IP
images, which contain the sum of the signals produced by fat and water protons, are
obtained by acquiring the signal when water and fat protons are in phase coherence.
On the other hand, OP images, whose pixels values represent the subtraction of the
fat signal from the water signal, are obtained by acquiring the output signal when
water ad fat protons are 180◦ out of phase.

The acquisition timing is known, as known are the resonance frequencies of fat
and water protons which vary with the magnetic field amplitude. Water signal and
fat signal images can be obtained by post-processing IP andOP images. The water
images are calculated by performing a voxel to voxel sum of the IP and OP images,
while fat images are obtained by performing a voxel to voxel subtraction of the OP
image voxel values from the corresponding IP image data values.

The technique, above described, is called two-point Dixon technique [17] as two
images are acquired. An example of images obtained with a 2 point Dixon protocol
is shown in Fig.2.4. Dixon protocols with more sets of images have been developed in
order to overcome possible artifacts which affect the images and distort the acquired
signal [39, 40]. As an example, three point Dixon protocol foresees the acquisition of
a third image in order to estimate the magnetic field heterogeneity and compensate
for it [41].

This technique has been proved to be very affective to estimate the adipose compo-
nent in soft tissues even if its accuracy and reproducibility are not enough investigated
[42]. However, in the lasts years Dixon techniques have been extensively used in mus-
culoskeletal field [43, 44, 45] as well as in many other application fields such as liver
[46] and bone marrow [47] fat content investigation. Disadvantages of this technique
are the high acquisition time and the fact that being a recent technique is not widely
available in clinic contexts.

2.5 Muscle architecture

Muscle architecture is defined as the organization of the muscle fibers within the
muscle relative to the line of force generation [48] and it has been recognized as one
of major factors determining muscle functional performance. Muscle architecture
is mainly described by three parameters: FL, PA and Physiological Cross-Sectional
Area (PCSA) (See Appendix A). These architectural parameters are mainly measured
using B-mode US and Diffusion Tensor Imaging (DTI).

2.5.1 B-mode ultrasound

US represents the standard technique to investigate muscle architecture. Thanks to
this technique it is possible to investigate architectural parameters, such as PA and
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Figure 2.4: An example of images obtained with a 2 point Dixon protocol. From top
to bottom we have: IP, OP, Fat and Water images, respectively.
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FL, in real time. Moreover, this technique is totally non invasive and not expen-
sive. Although the accuracy of this technique in determining muscle architectural
parameters has been validated with anatomical measurements on cadavers [49], some
limitations have to be considered. Firstly, US is an operator dependent approach so
it is subject to reproducibility problems related to intra end inter-operator variability
and distortion of the images can occur if there is too much probe pressure. In ad-
dition, the field of view is limited and the structures of interest can be imaged only
partially. Finally, the US is a 2D technique, but muscle fibers are organized in 3D.

An example of muscle US image is shown in Fig.2.5

Figure 2.5: An example of a muscle US image.

2.5.2 Diffusion Tensor Imaging

DTI [50] technique allows, through specific pulse sequences, to image signal strictly
related to the diffusion of water of the tissues of interest in a certain number of
directions of interest to quantify the directional anisotropy of the diffusion process.
Starting from this kind of signal, through a process referred as tractography, it is
possible to visualize (Fig.2.6) and quantify the macroscopic muscle architecture in
terms of fibre structure and arrangement. Indeed, muscle fiber tractography allows
for a very accurate quantification of architectural parameters such as PA, curvature,
FL, and PCSA [51, 52, 53].
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An example of the result of skeletal muscle tractography is shown in Fig.2.6
A limitation of this technique resides in the fact that the presence of high infil-

tration of fat in the muscle can cause the tractography process to fail as fat that
infiltrates muscle presents a diffusivity lower than their non-infiltrated counterpart.
It has been shown that, in order to obtain an accurate tractography analysis, the
region of interest should contain at least 76% of muscle tissue.

Despite the high cost of instrumentation and facilities and the complex image pro-
cessing required, SM fiber tracking from DTI images is expected to give an important
contribute on the study of muscle structure, becoming the reference technique for the
study of parameters related to muscle architecture.

Figure 2.6: An example of a muscle tractograpy.

2.6 Muscle activation

Muscle activation is commonly measured by mean of ElectroMyoGraphy (EMG) [54]
which detects the muscle’s electrical activity. In the last years, the T2-mapping
technique, also referred as muscle functional Magnetic Resonance Imaging (mfMRI)
[55], has been found correlated with EMG signal.

2.6.1 mfMRI

It is known that exercise induces changes in the amount and distribution of water
in the muscles. These changes produce a variation in the tissues of the transverse
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relaxation time T2 that is a parameter of water protons that can be measured with
MRI. The variation of these values have been found highly correlated with EMG
signal as well as with the torque evoked by electrical stimulation. Moreover, the T2
in muscle increases with the intensity of exercise [56].

The main advantage of the use of mfMRI over EMG is that the activation can be
detected on the entire muscle with an high spatial resolution allowing to fully char-
acterize muscle activation which can reveal the real spatial distribution of activated
muscle fibers during a specific task[57, 58, 59]. This kind of analysis can also be
determinant on the understanding of muscle fiber recruitment patterns and how they
are related to muscle function and architecture.

2.7 Discussion

Musculo-skeletal imaging had an essential role in this work as it allowed us to obtain
the necessary data for our analysis. In Table2.1 the main advantages and disadvan-
tages of the different imaging techniques used for the investigation of the musculo-
skeletal system are reported.

We needed high resolution anatomical images to be able to discriminate the dif-
ferent tissues of the thigh and in particular to detect muscle fascia which separates
IMAT from SAT compartments. We adopted T1-W MRI protocol to this aim. This
technique, totally non-invasive, offers a great contrast between soft tissues allowing
to identify muscle fascia. This protocol is also common to all the MRI scanners and
thus our automatic segmentation method could be potentially used in a wide set of
clinical contexts. The alternative would have been the use of CT protocols. Despite
the similar costs, we would have exposed our subjects to ionizing radiations useless.
Moreover, in CT images the muscle fascia is totally invisible and so IMAT and SAT
cannot be distinguished. For these reasons, CT was totally excluded from the entire
protocol.

In order to investigate SM composition, a three point Dixon sequence was used in
a single slice protocol. This protocol was adopted because, contrarily to MRS, Dixon
sequences allow to investigate a wide muscle region with a high spatial resolution and
accuracy in quantifying the fat component, while keeping the acquisition time short.
A short acquisition time was absolutely required in our study as older people were
involved and they were asked to stay still for all the acquisition time.

Finally, to avoid further elongation of acquisition time in MRI protocol and for
economic reasons US imaging was preferred over DTI to investigate SM architectural
parameters despite the lower accuracy provided by this technique.
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Information Provided Technique Advantages Disadvantages

Body or regional composition

and muscle dimension

CT

High resolution Low contrast

Short acquisition time Ionizing radiation

T1-W MRI

High contrast High costs

High resolution Long acquisition time

Muscle composition and

intramuscular fat content

CT

Quantitative measurement Low contrast

High resolution Ionizing radiation

MRS

High accuracy Low resolution

Complex protocols

Long acquisition time

Dixon

Effective in estimating fat content Long acquisition time

High resolution High costs

Muscle architecture US

Sample protocols Operator dependent

Low costs Limited field of view

DTI

High resolution Long acquisition time

High accuracy Complex protocols

Muscle activation

mfMRI

High resolution Long acquisition time

High costs

Table 2.1: Advantages and Disadvantages of the muscular imaging techniques de-
scribed in this chapter.
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Chapter 3

Automatic Segmentation of the
thigh from T1-Weighted MRI
images

Studies of regional composition are fundamental to understand and monitor processes
related to age and overweight. In particular, changes on the lower limb tissue compo-
sition, such as increase on fat depots and reduction of SM, have been found correlated
to muscle impairment and disability. In last years, MRI has been recognized as the
most effective technique for the study of distribution and quantification of SM and
AT. Manual segmentation of entire MRI datasets, aimed at discriminating the dif-
ferent tissues of interest, is unfeasible because the process is highly time consuming.
In this context, automatic segmentation methods are a compelling need.

In this Chapter we propose an automatic method for the segmentation of SM,
IMAT and SAT compartments in T1-W MRI of the thigh.

3.1 Introduction

In T1-W MRI images high contrast is visible between the AT and the muscle thanks
to their different properties in terms of longitudinal magnetization recovery. However,
this contrast is often significantly corrupted by intensity inhomogeneities caused by
the use of surface coils necessary to investigate large fields of view. On the other hand,
there is no significant intensity difference between adipose tissue belonging to IMAT
and SAT compartments. IMAT compartment includes the fat tissue between muscles
that is enclosed by the muscle fascia, which is a thin layer of fibrous connective tissue
that as a matter of fact separates IMAT from SAT [60]. Therefore, in order to separate
the different adipose compartments, it is essential an accurate segmentation of the
muscle fascia. To this aim, it should be taken into account that the muscle fascia,
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due to its poor water content, should be visualized as an absence of signal, but being
surrounded by the high signal of AT, it is not entirely visible in the images due the
to partial volume effect. Moreover, while in healthy young and Normal Weight (NW)
subjects the muscle fascia is close to muscles, in elderly and OB subjects, due to a
high degree of fat infiltration, it is located at a certain distance from the muscles and
it is split in more layers. These features make automatic muscle fascia detection a
challenging task which could be tricky in certain cases even for an expert eye.

Several works dealt with the automatic segmentation of the thigh [61, 62, 63, 64,
65, 66, 67], using different approaches; in particular some works [61, 62] were focused
only on the muscle detection using a maximum a posteriori classifier and a fuzzy
c-mean approach respectively. Others [63, 64] discriminated AT from muscle without
taking into account the difference between SAT and IMAT relying respectively on
concepts such as shaped histograms, adaptive thresholding and connectivity, and on
the use of a fuzzy clustering algorithm. All these algorithms, exploited the large differ-
ence in intensity values between SM and AT. However, this high contrast is reduced
in elderly and OB subjects which in general present high degree of fat infiltration in
SM. This kind of images, often affected by intensity inhomogeneity artifacts can make
intensity based methods less effective, leading to a misclassification of the tissues of
interest. Only few of the proposed methods addressed the segmentation of IMAT
and SAT and their quantification [65, 66, 67]. All of them separated IMAT from
SAT relying on geometrical criteria instead of attempting to identify the anatomical
position of muscle fascia. Namely, they assumed the internal SAT contour, corre-
spondent to the muscle fascia, adherent to SM. This assumption is in general verified
in healthy young and slim subjects, but leads to an incorrect adipose compartments
classification in all those subjects which present an high fat infiltration degree.

Here we propose a new completely automatic segmentation method for accurately
extract SM, IMAT and SAT depots from cross-sectional T1-W MRI of the thigh that
overcomes the previous works limitations above discussed. Namely, we distinguished
SM from AT by applying a proper correction of intensity inhomogeneity followed
by an intensity classification method based on fuzzy c-mean algorithm. IMAT and
SAT segmentation were performed by adopting a smart snake contour model able to
evolve and converge toward the weak edge of muscle fascia. The study was validated
on a dataset composed of young and elderly subjects with different degrees of body
adiposity, including OB individuals.

3.2 DataSet

Our dataset was composed of eighteen voluntary females subjects with different ages
and body adiposity. Namely, we had seven Young Normal Weight (Y-NW) (age:
27±3, Body Mass Index (BMI): 20.3±1.8kg/m2), five Older Normal Weight (O-NW)
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(age: 73 ± 2, BMI: 24.3 ± 1.8kg/m2), and six Older Obese (O-OB) (age: 73 ± 4,
BMI: 36.3 ± 2.0kg/m2) subjects. After a fully explanation regarding the nature
of the protocol, each of them signed the informed consent form approved by the
Institutional Review Board of San Raffaele hospital. The protocol consisted in a
thigh MRI acquisition on an MRI Philips Achieva 1.5T scanner using a torso XL coil.
A T1-W turbo spin echo sequence was implemented, with relaxation time = 550 msec,
echo time = 15 msec, number of excitations = 4, echo train length 53, and bandwidth
equal to 564kHz. The scan included the entire thigh, including the volume comprised
between the anterior superior iliac spine to the tibial tuberosity. Cross-sectional
images (orthogonal to the long axis of the body) were acquired with subjects in
supine position. Between 57 and 68 slices were acquired for each subject, with a slice
thickness of 6mm without interslice spacing, based on subject specific thigh length.
The field of view was also optimized based an specific subject anatomy, leading to an
in-plane spatial resolution between 0.81 and 1.28 mm with a correspondent matrix
size in the range 220× 220 and 352× 352. An entire acquisition time varied between
11 and 14 minutes.

3.3 The Algorithm

The proposed entirely automatic segmentation method [1] was entirely implemented
using the Image Processing Toolbox of MatLab v. 2011a (MathWorks, Natick, MA).
For each image volume dataset, the algorithm was applied on each image slice in-
cluded in the volume delimited proximally by the insertion of the gluteus maximus
muscle and distally by the end of the rectus femoris muscle, which represented the
anatomical volume of interest for the automatic segmentation method. The tuning
of the segmentation algorithm parameters, detailed in the following paragraphs, was
carried out using a training set composed of two Y-NW and one O-OB subjects ( BMI:
24kg/m2, 20.1kg/m2, and 38.1kg/m2, respectively), in order to assess the parameter
values set which allowed the algorithm to reach the best segmentation performance
as visually assessed by an expert in muscle imaging. Some parameter values were
not fixed, yet varied automatically during the execution of the algorithm based on
the BMI of the subject. The BMI, defined as the ratio between body mass and the
square of body height, was automatically calculated by extracting subject height and
body mass from the header of DICOM images.

A complete schema of our completely automatic segmentation method for dis-
criminating SM, IMAT and SAT is shown in Fig.3.1. Firstly, the dataset was cor-
rected for intensity inhomogeneities using Local Entropy Minimization with a bicubic
Spline model (LEMS) algorithm (Section 3.3.1). Then, a rough tissue classification (
SM, AT and background) was performed using the fuzzy c-mean algorithm (Section
3.3.2). Starting from the background component (Background mask), the bone was
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Figure 3.1: Schema of the algorithm
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segmented through connected component analysis and the application of morpho-
logical operators (Section 3.3.3). SM segmentation was obtained by subtracting the
bone segmentation to the SM mask processed using connected component analysis
and morphological operators (Section 3.3.4). The muscle fascia was detected adopt-
ing a smart snake contour model (Section3.3.5) whose initial contour was obtained
by processing the SM segmentation. IMAT was identified as the area enclosed by
muscle fascia excluding SM and the bone. SAT corresponded to the filled AT mask
excluding the area enclosed by muscle fascia. In the following sections the algorithm
description with all details for implementation are reported.

3.3.1 Preprocessing

Intensity inhomogeneities are defined as a slow non-anatomic intensity variation of
the same tissue over the image domain [68] and often affect MRI images, especially
those acquired with surface coils. This artifact, if not corrected, could hindered
the performance of segmentation and classification processes especially those based
on intensity information. Since our segmentation approach is based only on the
exploitation of low level information, before segmentation, we corrected our volumes
by applying the correction algorithm LEMS [69], already successfully used with T1-W
images of the calf [62].

The image signal model used is:

yi = xibi + ni

where yi is the intensity value of the image pixel, bi is the bias field and ni is
the noise. The bias field is described by a bicubic spline which allows to control the
smoothness, with proper spacing of the mesh defining the control points in the image,
and describes accurately the intensity spatial inhomogeneity, simultaneously account-
ing for the eventual steep signal inhomogeneity. The bicubic spline parameters are
estimated by iteratively minimizing local entropy, starting with areas with high Signal
to Noise Ratio (SNR) and progressively merging neighboring areas with next highest
SNR. LEMS is totally automatic and being based on entropy minimization, contrary
to methods based on tissue classification, is robust and independent from initial con-
ditions. Fig.3.2 shows an sample image and its correspondent histogram, before and
after the intensity inhomogeneities correction. As can be observed, the histogram
intensity peaks (SM and AT) after correction become more sharp, indicating a more
homogeneous intensity distribution of the different tissues.

3.3.2 Initial Fuzzy Classification

T1-W images are characterized by a very high intensity contrast between SM and
AT. Moreover, the cortical bone due to its poor water content, is characterized by
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Figure 3.2: A T1-W MRI image of the thigh and its correspondent histogram before
and after the application of the intensity homogeneities correction method LEMS.

the absence of signal. These properties were exploited to perform a rough initial
classification of the tissues of interest by applying a standard fuzzy-c-mean algorithm
[70]. The algorithm taking as input a predefined number of classes C (In this work
set equal 3 as the tissues of interest are: SM, AT and Marrow bone, Sponge bone and
Background), assigned to each image pixel yi a partial membership value relative to
each class j by minimizing the following cost function

HFCM = (U, V ) =
N∑
i=1

C∑
j=1

(ui.j)
m ‖yi − vj‖

where U is the membership function, V is the vector of class centers and m is the
weighting exponent (in our case equal two) which regulates the classification fuzziness
degree. The membership values associated to each pixel, for the three classes of
tissue, represent the probability of the pixel to belong to the correspondent tissue.
Therefore, to obtain an objective classification, a thresholding was performed to the
three membership function components obtaining three different binary masks, one
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(a) (b) (c)

Figure 3.3: An example of binary masks: a) AT mask, b) SM mask, c) Background
mask (which include the sponge bone).

for each tissue of interest. In particular, each pixel was set to 1 when its correspondent
membership function component was greater than 0.4, 0.5 and 0.5 for AT, SM and
sponge bone-background, respectively. An example of the obtained masks is shown
on Fig.3.3

3.3.3 Bone segmentation

(a) (b) (c)

Figure 3.4: The bone segmentation process: a) the background mask b) the corti-
cal bone region identified by the connected component analysis, c) the bone region
segmentation.

The bone is mainly composed of two different tissues characterized by very differ-
ent intensity values in T1-W MRI. In particular, as previously mentioned, the cortical
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bone is characterized by an absence of signal, while marrow bone, enclosed by cortical
bone, gives rise to a hyper intense signal, very similar to AT. The cortical bone was
segmented by applying morphological operators to the background mask (Fig.3.4a).
In particular, in this mask, a connected component analysis was performed and the
cortical bone was identified as the second larger connected component ( Fig.3.4b, the
largest one represented the image background). Then, a morphological dilation with
a Disk shaped Structuring Element (D-SE) of Radius (R) of 6 Pixels was applied to
include in the segmentation very thin cortical bone areas where the pixel intensities
were heavily affected by partial volume effect with the close bone marrow tissue, and
thus not included in the background mask. The region enclosed by the cortical bone
(correspondent to the marrow bone) was included in the segmentation with a filling
process and finally a morphological erosion operation was performed with the same
structuring element used for previous dilation operation (Fig.3.4c).

(a) (b) (c)

Figure 3.5: The SM segmentation process: a) the SM mask, b) the removal of the
skin, c) the SM segmentation.

3.3.4 SM segmentation

The SM segmentation was obtained by applying morphological operator to the SM
mask. In order to remove the skin, a logical AND operator was performed between
the SM mask and the filled AT mask (Fig.3.5a).

Eight connected component analysis was performed, connected components with
area smaller than 50 pixels were removed (typically small vessels) and small holes
with area smaller than 16 pixels were filled (Fig.3.5b). Finally, a subtraction of the
bone region from the obtained SM mask was performed obtaining the final SM seg-
mentation (Fig.3.5c). A further morphological closing operation (D-SE, R=2 Pixel)
was applied to OB subjects (BMI> 30) in order to obtain a plausible smooth SM
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segmentation. Indeed, this subject typology presented a very high SM fat infiltra-
tion, leading to an intensification of the partial volume effect which caused a tissue
misclassification of the pixels located at the interface between SM and AT.

3.3.5 SAT and IMAT segmentation

The external contour of the SAT was set correspondent to the contour of the filled
AT mask after a morphological closure operation (D-SE, R=2 Pixels). This last
operation was executed in order to remove small irregularities, typically due to small
subcutaneous vessels.

The muscle fascia which delimited SAT internally was detected through the use
of an active snake evolution [71]. Starting from an initial curve v0(s) the active snake
contour iteratively evolved toward a convergence curve by minimizing the following
energy function:

E =

∫ 1

0

Eint

(
v(s)

)
+ Eext

(
v(s)

)
ds

where

Eint =
α|vs(s)|2 + β|vs(s)|2

2

and
Eext = −∇I

(
x(s)

)
Eint is the internal energy of the snake and reflects properties of the curve itself.
Specifically α and β are the weighting parameter that control the curve tension and
stiffness, respectively. Eext is the External energy that is computed from the image
data and drives the Snake evolution toward the contour of interest. k is its correspon-

dent scaling factor. In our case, I
(
x(s)

)
was a modified version of the T1-W MRI

image. In particular, we created an image where all pixels not belonging to AT
assumed an intensity value equal to the AT mean intensity and the AT pixels main-
tained intensity value correspondent to the T1-W image (Fig.3.7a). The mean AT
intensity value was calculated by multiplying the T1-W image by the AT mask and
then averaging all the AT intensities.This smart image preprocessing step, allowing
the enhancement of the intensity contrast between AT and the muscle fascia con-
nective tissue simultaneously reducing contrast between AT and SM, facilitated the
snake evolution towards regions where muscle fascia was positioned not strictly close
to SM.

A rough muscle fascia segmentation was elaborated in order to initialize the snake
contour evolution. As muscle fascia enclosed SM, a morphological closing (D-SE, R=
25 Pixel) and a dilation operation (D-SE, R= 2 Pixels) were carried out to the the

25



CHAPTER 3. AUTOMATIC THIGH SEGMENTATION FROM T1-W MRI

(a) (b) (c)

Figure 3.6: The snake initialization process: a) the SM segmentation mask, b) the
division of the SM segmentation mask in four equal height compartments after closure
and dilation operations, c) the snake initialization mask.

SM mask segmentation, obtaining a smooth compact shape positioned in proximity
of the muscle fascia. Then, this area was sectioned horizontally in four equal height
subareas (Fig.3.6b) and a convex hull operation was executed to the superior and
inferior compartments obtaining a typical muscle fascia shaped like mask (Fig.3.6c).
In OB subjects, a further morphological dilation operation (D-SE, R= 3 Pixels) was
applied to the inferior compartment as this was the area where the fat infiltration
was mainly concentrated and the muscle fascia tended to be located at a certain
distance from SM. The contour extracted from this mask was used as the snake
contour initialization v0(s) (Fig.3.7a). An example of final muscle fascia detection is
shown on Fig.3.7b. The parameter values used in this work are shown in Table3.1.
α, β, k were obtained by segmenting the training set with different combinations
of these three parameters and visually assessing the best segmentation results. The
number of iteration was set big enough to allow the active contour to reach a stable
convergence. We observed that the algorithm is not sensitive to small variations of
these parameters.

The IMAT compartment was obtained by subtracting from the area delimited
by the segmented muscle fascia the SM and the bone areas. An example of IMAT
delineation is shown of Fig.3.7c.

3.4 Segmentation Accuracy

The proposed segmentation algorithm was applied to 15 subjects: 5 Y-NW, 5 O-NW
and 5 O-OB subjects composing the test set (from this set of data were excluded

26



3.4. SEGMENTATION ACCURACY

Parameter NW OB

α 0.20 0.20

β 0.20 0.20

k 0.04 0.04

Iterations 7000 8000

Table 3.1: The parameters values used for the snake evolution.

(a) (b) (c)

Figure 3.7: Muscle fascia and IMAT delineation: a) The snake initialization curve

(red) superimposed to I
(
x(s)

)
, b) Convergence of the snake active contour to muscle

fascia location superimposed to T1-W image c) IMAT delineation superimposed to
T1-W image.

all the dataset composing the training set used in the parameter setting proce-
dure). Based on the femoral length of the subject, between 8 and 15 equally spaced
slices were extracted for each data set volume and for each slice a physiologist
expert in muscular imaging manually outlined all the contours of interest (Bone,
SM, Muscle fascia and external SAT contour) using the free software MIPAV 7.0.1
(http://mipav.cit.nih.gov/). These manual drawn contours were used as ground truth
to estimate the algorithm accuracy in classifying the different tissues of interest (bone,
SM and AT) and the accuracy of the algorithm in extracting the muscle fascia contour.

In order to evaluate the algorithm performance in classifying the tissues of interest
the following accuracy indexes were calculated:

Sensitivity = TP
TP+FN

Specificity = TN
TN+FP
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Accuracy = TN+TP
TN+TP+FN+FP

Precision = TP
TP+FP

Relative Area Difference (RAD) between automatic A and reference segmentation
R:

RAD = 100
|A| − |R|
|R|

where True Positive (TP) is the number of pixels correctly classified by the pro-
posed algorithm, False Negative (FN) is the number of pixels that the algorithm
erroneously excluded from tissue segmentation, False Positive (FP) is the number of
pixels that the algorithm erroneously included in tissue segmentation, and True Neg-
ative (TN) is the number of pixels that the algorithm correctly excluded from tissue
segmentation.

The evaluation of the algorithm accuracy in detecting muscle fascia contour for
the discrimination of IMAT and SAT compartments was assessed in terms of:

Average Symmetric Distance (ASD) [72] between automatic and manual segmenta-
tion. It is defined by the following formula:

ASD(A,M) =
1

|C(A)|+ |C(M)|

( ∑
CA∈C(A)

d(cA, C(M)) +
∑

CM∈C(M)

d(cM , C(A))

)

where C(A) and C(M) represent all the pixels belonging to the automatically
extracted contour A and the manually delineated contour M , respectively;
d(v, C(U)) indicates the shortest distance between an arbitrary pixel and a
generic contour U , calculated through the use of a 3D Euclidean distance map
[73], able to detect the closest point on the test contour from each reference
contour point.

Percentage of contour pixels with distance from the reference contour smaller than 2
Pixels (Less 2 Pixels)[74]. In a perfect segmentation this index assumes a value
of 100% .

The correspondence degree between IMAT and SAT CSAs obtained from automatic
and manual segmentations was assessed by performing a Pearson correlation analysis.

Finally, the automatic segmentation results obtained in the entire volume of in-
terest were used to perform a preliminary study of thigh tissue composition. In
particular, for each subject the following data were considered: age, BMI, Body Fat
percentage, CSA of IMAT, SM and SAT and the ratio between IMAT and SM. The
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percentage of Body Fat was assessed through bioelectrical impedance analysis per-
formed with a Handy 3000 DS medica device. The data required by the instrument
as input: sex, age, weight and height, were previously assessed for each subject. The
body fat percentage was calculated from the impedentiometric data using the Segal
equation [75] for NW and the Gray equation [76] for OB subjects. A Kruskal Wallis
test and the post hoc Dunn Bonferroni were performed on mean CSAs of IMAT, SM
and SAT of the three subject classes in order to investigate significant dissimilarities
between group pairs. The statistical significance was set p < 0.05.

Figure 3.8: Examples of results obtained by automatic classification. On top, from
left to right, original T1-W images belonging to a Y-NW, a O-NW and a O-OB
subject are shown. On the bottom the correspondent automatic tissue classification
are highlighted. Green indicates AT while red and blued indicate SM and bone tissue,
respectively.

3.5 Results

Qualitative examples of tissue classification results are shown in Fig.3.8 for the three
classes of subjects included in our test set. In Table3.2 the correspondent quantitative
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analysis are summarized; the accuracy indexes were calculated for each subject ty-
pology as well as for the entire dataset. A mean sensitivity above 96% with a RAD of
2.5%, 1.8% and 2.7% in segmenting bone, SM and AT proved a good correspondence
between automatic and manual segmentations. The overall segmentation accuracy
was found similar for each class of subjects.

Tissue Group subjects sensitivity[%] Specificity [%] Accuracy [%] Precision [%] RAD [% ]

SM

All 96.6± 0.2 99.7± 0.2 99.2± 0.5 98.0± 0.8 1.8± 1.1

Y-NW 98.3± 0.7 99.9± 0.4 99.8± 0.0 98.6± 0.4 1.0± 0.5

O-NW 95.7± 1.0 99.6± 0.1 98.8± 0.2 98.4± 0.5 2.8± 0.4

O-OB 96.0± 1.1 99.5± 0.1 98.9± 0.2 97.0± 0.5 1.7± 0.5

AT

All 96.0± 1.7 99.1± 0.7 98.8± 0.7 95.3± 2.0 2.7± 1.9

Y-NW 94.5± 2.0 99.9± 0.0 99.7± 0.1 96.5± 0.6 2.3± 1.3

O-NW 97.1± 0.8 98.5± 0.5 98.3± 0.4 93.8± 2.2 3.9± 2.6

O-OB 96.4± 0.8 99.0± 0.3 98.5± 0.2 95.7± 1.9 2.0± 0.9

BONE

All 96.8± 1.1 99.9± 0.0 99.9± 0.1 98.6± 0.8 2.5± 1.0

Y-NW 96.8± 1.3 99.9± 0.0 99.9± 0.1 98.0± 0.8 2.5± 0.9

O-NW 96.5± 1.2 99.9± 0.0 99.1± 0.1 99.2± 0.3 2.7± 1.4

O-OB 97.0± 0.9 99.9± 0.0 99.9± 0.1 98.8± 0.6 2.2± 0.9

Table 3.2: Algorithm accuracy result in classifying SM, At and Bone. Data are
presented as mean ± standard deviation.

A good correspondence between automatic and manual segmentation was ob-
tained for muscle fascia as it is shown in Fig.3.9, where examples of muscle fascia
segmentation in Y-NW, O-NW and O-OB subjects are reported, and in Table3.3
where quantitative results are summarized. Namely, we obtained an overall mean
ASD of 0.81mm, lower than pixel resolution and a mean Less 2 Pixels of 86.2%. The
algorithm showed slightly lower performance with O-OB subjects where a mean ASD
of 1.14 mm was obtained. This result, however, remains in the order of magnitude of
pixel resolution.

Fig.3.10 shows the results of correlation analysis performed on CSA of IMAT and
SAT compartments assessed from manual and automatic segmentation. In particular,
for each group of subjects the scatter plot with the correspondent linear regression are
reported. Highly significant Pearson correlation coefficients were found correlating
CSA obtained from automatic and manual segmentations in all group of subjects
(p < 0.001). It is worth to note that SAT correlation is always higher than IMAT
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Figure 3.9: Some example of muscle fascia segmentation results in Y-NW (right),
O-NW (center) and O-OB(left) subjects.Automatic segmentation indicated in red is
superimposed to manual segmentation indicated in green.

Group subject ASD[mm] Less 2 Pixels

All 0.81± 0.37 82.6± 10

Y-NW 0.50± 0.06 96.2± 2.9

O-NW 0.79± 0.20 84.8± 5.0

O-OB 1.14± 0.41 77.5± 9.3

Table 3.3: Results for the proposed method for the segmentation of muscle fascia
reported as mean ± standard deviation for each subject typology.

correlation. This can be explained considering that the SAT CSA is one order of
magnitude larger than IMAT CSA. Therefore, the same absolute error in the two
different compartments corresponds to a very different error measurement expressed
in terms of percentage leading to a lower correlation for IMAT.

Table3.4 reports the preliminary results of the thigh composition analysis obtained
by quantifying the different compartments of interest from the automatic segmenta-
tion results. As expected, in general, IMAT/SM ratio increased with age, BMI, and
body adiposity. Indeed, Y-NW subjects presented more SM and less SAT and IMAT
than O-NW subjects; O-OB subjects presented more SM and much more IMAT and
SAT mass than O-NW, although statistical significance was reached only in the com-
parison of adipose components (IMAT: p=0.04 for Y-NW vs. O-NW, p=0.001 for
Y-NW vs. O-OB, SAT: p=0.01 for Y-NW vs. O-OB).
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Figure 3.10: Correlation analysis, separately carried out for the three typologies of
subjects, on CSA of IMAT and SAT compartments extracted from automatic and
manual segmentations.

AGE BMI[kg/m2] Body Fat[%] IMAT[cm2] SM[cm2] SAT[cm2] IMAT/SM[%]

Y-NW 27± 4 19.5± 1.0 21.9± 4.6 5.0± 1.3 99.8± 15.1 53.6± 21.1 5.1± 1.6

O-NW 73± 2 24.3± 1.8 33.4± 1.9 12.8± 2.7 87.6± 7.7 72.1± 11.0 14.5± 2.3

O-OB 74± 4 36.0± 2.0 42.4± 3.0 20.6± 7.2 99.7± 9.7 115.4± 35.1 20.4± 6.7

Table 3.4: Result of thigh composition analysis. All data are reported as mean ±
standard deviation for each subjet typology

3.6 Discussion

In this chapter we addressed the segmentation of the different tissue compartments
of the thigh. A new completely automatic segmentation method, based on fuzzy
intensity classification and active snake contour, was proposed to differentiate SM,
bone, IMAT, and SAT from T1-W MRI images, in subjects with widely different
features in terms of age, BMI, and body adiposity. This method was developed with
the aim of providing a reliable tool able to automatically distinguish the different
tissue compartments for detecting and monitoring changes in regional composition
caused by aging and metabolic abnormalities.

Many works in previous literature have been proposed with the aim to distinguish
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SM and AT from MRI images of the lower limb. All of them exploited the very
large intensity contrast between these two tissues of interest by proposing different
methodologies based on low level information [61, 62, 63, 64]. In particular, Urricelqui
et al [63] proposed a multilevel classification approach based on shaped histograms
and adaptive thresholding to distinguish SM from AT. They validated the algorithm
on a dataset composed of young OB women using manual segmentation as reference
and obtained a mean precision of 90%. Brunner et al [61] concentrated their work
on the segmentation of SM proposing a probabilistic classification approach where
prior probabilities are based on voxel-derived texture features. They validated the
algorithm on images acquired in patients affected by peripheral arterial disease using
a semi-automatic segmentation as reference and obtained accuracy, sensitivity, and
specificity of 88.32%, 93.31%, and 87.29%, respectively. SM segmentation was also
faced by Makrogiannis et al [65] proposing an approach based on intensity centroid
clustering and morphological operators. They validated the algorithm on male and
female middle-age subjects comparing the automatically obtained SM area at the
mid-thigh with a semi-manual segmentation performed on a correspondent CT im-
age. They reported a mean ASD equal to 4.39%. Comparing these results with the
accuracy of the segmentation method proposed in this work on SM, it seems our ap-
proach reached comparable or better performance for each group of subjects. Indeed,
we reported an average ASD between the areas extracted from reference and auto-
matic segmentation of 1.8% and an accuracy, sensitivity, specificity, and precision of
96.63%, 99.7%, 99.2%, and 98.0%, respectively.

A comparison, regarding bone segmentation results, between the proposed ap-
proach and previous literature cannot be carry out as no data has been reported in
this sense. However, our approach proved to be accurate and reliable. Indeed, we
obtained an average sensitivity of 96.8% with an accuracy, specificity, and precision
above 99% without encountering bone segmentation failures as contrarily reported
by previously presented approaches [67, 66]. A failure of bone segmentation, which
in most cases is due to very thin cortical region that assumes an intensity range typ-
ical of SM, leads to an important overestimation of IMAT compartment and a less
significant overestimation of SM.

Despite the relevant significance of IMAT quantification in the study of processes
related to aging and obesity, the automatic discrimination of IMAT and SAT is still
a challenging task. Indeed, only few works faced the problem [65, 66, 67], and all
of them identified the muscle fascia, which separates IMAT from SAT, using a ge-
ometrical definition. Namely, they assumed the muscle fascia as a structure which
smoothly envelops SM with a perfect adherence in the external SM parts, resulting
in an underestimation of IMAT in all those subjects where a condition of high degree
of fat infiltration is present. Following this assumption, [66] proposed an approach
based on morphological operators with a fixed scale structuring element, while [65, 67]
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used approaches based on active contour models: the balloon deformable model and
the gradient vector flow respectively. They reported qualitative good performance of
their methods but they lacked in performing exhaustive analysis on quantitative seg-
mentation accuracy. However, a direct comparison of segmentation accuracy between
our approach and previous works would still be cumbersome, especially regarding
conceptual differences, discussed above, on the definition of muscle fascia. We believe
that our approach, based on the detection of muscle fascia in its anatomical position,
results more robust with respect the variability of subject features, and nevertheless
more accurate in presence of high degree of fat infiltration. In fact, thanks to the
preprocessing step, aimed at rising the contrast between muscle fascia and AT and
at the same time reducing the contrast between SM and AT, the snake evolution is
driven toward the weak edge of muscle fascia both when it adhere to SM and when
it is separated from SM by a layer of AT.

Despite the good accuracy reached by our algorithm, certain limitations should
be recognized.

Due to the high difficulty found in recruiting appropriate volunteers, the high costs
of MRI examinations and the huge demands on time required for manual segmen-
tations, we performed the parameter setting procedure qualitatively and using three
datasets. A quantitative parameter setting procedure, including the comparison be-
tween manual and automatic results, will allow to further improve and demonstrate
the accuracy of our algorithm. For the same reasons, we validated our algorithm
in a dataset with limited size (15 studies). Even if the dataset was composed of
subjects with a wide variety in terms of age, body composition and fat infiltration
degree, a confirmation of our result in an extended dataset should be performed. An
extended manual segmented dataset would also allow to perform a cross validation
study, avoiding problems of asymmetric samples typical of datasets split in only two
parts. In addition, it would be of interest to validate our algorithm in subjects af-
fected by neuromuscular disorders, as this kind of tools are strongly demanded also
in such contexts.

The use of a classical T1-W spin echo protocol instead of a sequence, which pro-
vides a clear separation between fat and water signal, could be seen as a limitation.
However, T1-W protocols are present on every MRI machinery and are the preferred
technique in studies of regional composition, and therefore our methods could have a
major relevance in clinical practice as well as in retrospective studies. It is also worth
to note that the contrast between AT and muscle fascia is similar in both T1-W spin
echo and in fat images acquired with chemical shift encoded protocols; therefore we
could speculate that our algorithm could be easily adapted and applied to IP images
obtaining similar performances.

An aspect that should be improved is the performance of the algorithm in terms
of run-time as it was not optimized in the present study. However, our method
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is not operator time consuming, as it is totally automatic, making this aspect not
critical. At the same time, it would be of interest to quantify the time saved from
the operator by using our automatic approach, by comparing the time spent by the
operator for delineate all the contour of interest with the run-time of our algorithm
which is equal to 60 sec per slice. It is also worth to note that our algorithm was
validated by using as reference segmentations the manual contours delineated by a
single operator. This is the consequence of the fact that, the manual segmentation
process is very time-consuming and the involvement of more imaging experts was
for us impossible. Being the manual segmentation an operator dependent process, it
would be interesting to investigate the intra and inter operator variability in order to
prove the interchangeability between our automatic approach and an expert operator.

Finally, it should be considered that our algorithm is likely to fail on datasets
coming from subjects with metallic orthopedic devices or implants, which by inter-
fering with the MRI magnetic field induce a large signal distortion causing saturation
regions (bright and dark areas) on the image in the neighborhood of the magnetic
material. However, MRI protocols in this king of subjects are usually avoided.

Our preliminary results obtained in terms of quantitative characterization of thigh
regional tissue composition provide an example of the effectiveness of the method for
practical use; it is possible to appreciate a decrease of SM for effect of age-related
sarcopenic processes (Y-NW vs. O-NW) and, at the same age, an opposite effect
of obesity (O-NW vs. O-OB), in line with previous reports based on a definitely
more complex and time-consuming image analysis [29]. Consistent variations can
be appreciated also for AT, with an overall increase due to the effect of both age
and obesity. Moreover, the capability of the method to perform an adequate IMAT
analysis is of particular interest, due to the predictive value of this AT component for
metabolic degeneration associated with overweight and obesity [7, 8, 9].

In conclusion, our findings evidence the accuracy of the proposed method and
the effectiveness of its application on real MRI data. The use of this approach to
automatically extract tissue components allowing the assessment of thigh regional
composition from T1-W MRI data makes possible a reduction of the contouring time
with respect to manual delineation while permitting an accurate definition of IMAT
and SM compartments.
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Chapter 4

Effects of muscle composition and
architecture on specific strength in
obese older women

The morphological characterization of the different tissue compartments and their
correspondent quantification is not sufficient to fully explain the dynamics of pro-
cesses related to aging and obesity which cause a reduction of muscle functionality.
Therefore, in muscle performance analysis, functional features, such as architectural
parameter and muscle composition, must be considered. In this chapter an analysis
on structural and architectural muscle parameters will be performed in OB and NW
older females in order to investigate the effect of obesity on strength production in
older women [2].

4.1 Introduction

The effect of obesity on physical functioning in older people is poorly understood. It
has been shown that OB adults have more muscle mass and higher muscle strength
than NW adults [12]. However, the strength normalized with respect to body mass
is lower in OB than in non OB individuals indicating that muscles in OB subjects
suffer from functional deficit. Some of factors that are found to be correlated with
muscle functional deficit are muscle architecture and composition. Indeed, muscle
architecture is recognized as an important factor in concentric strength deficit in
older individuals [77, 78]. Namely, the relationship between strength and velocity
of SM depends on sarcomeres both in parallel, represented by CSA, and in series,
represented by muscle FL [48]. It has also been shown that FL is shorter in older
compared with young adults [79, 80].
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In addition, it is known that the increase in muscle size affects muscle architecture
by increasing the fascicle PA in both young and older individuals [81, 82, 83, 84].

A correlation between muscle composition and strength production in older adults
was found by [30]. They found that lower muscle attenuation, measured at mid-thigh
by computed tomographic scanning and indicating greater fat infiltration in muscle
tissue, was negatively correlated with isokinetic muscle strength.

The aim of this study was to investigate if changes on muscle architecture and
composition in older OB women can result in a lower strength production despite
increased muscle mass.

4.2 Subjects

The present study included eleven healthy female elderly volunteers, six NW and
five OB. After a fully explanation regarding the nature of the protocol, each of
them signed the informed consent form approved by the Institutional Review Board
of Istituto Auxologico Italiano. Volunteers with declared myopathic, cardiovascular,
inflammatory and neurological condition were excluded.

For each participant, height and weight were measured and the total body fat
percentage was assessed with dual-energy X-ray absorptiometry. In addition, the
International Physical Activity Questionnaire (IPAQ) was filled by all participants
in order to evaluate their daily physical activity level. Table4.1 summarized the
participants characteristics within the groups.

Group n Age[years] Weight[kg] Height[cm] BMI[kg/m2] Body fat[%] IPAQ [SCORE]

OB 5 72.4± 2.3 82.9± 4.9 150.2± 4.0 36.8± 1.9 41.9± 2.9 1659± 1331

NW 6 72.7± 1.9 60.3± 4.8∗ 155.4± 3.0∗ 24.3± 1.8∗ 33.4± 1.9∗ 1655± 647

Table 4.1: Characteristics of the subjects involved in the present study. Data are
presented as mean ± standard deviation. * indicates statistically significant difference
from OB with p < 0.05.

4.3 Experiments

4.3.1 Muscle dimension and fat content

For each participant, size and percentage of fat content of the muscle QF were assessed
at the mid-thigh of dominant leg from Dixon MRI images. Subjects underwent thigh
MRI investigation on an MR Philips Achieva scanner. They were positioned supine
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with their knee fully extended in the magnet. A coronal scout image was initially
acquired in order to identify the mid-thigh position located on the middle of femur
length. This length corresponds to the distance from the bottom of the lateral femoral
condyle and the most proximal edge of the greater trochanter. A three-point Dixon
sequence [41] was used to image the section correspondent to mid tight. The MRI
scanner, after performing an elaboration of the three acquired images, provided the
resulting images of water and fat. Fat and water images were loaded into MIPAV
program, and quantitative fat percent images were computed as following:

fatpercentage = fatimage/(fatimage+ waterimage)

In these images, an expert operator manually delineated the QF contour. The area
of the correspondent region was the QF CSA and the average of the pixels intensity
values represented the Percentage of fat content of quadriceps femoris (MF).

Group CSA[cm2] MF[%]

OB 45.8± 4.6 10.8± 1.9

NW 39.1± 2.4∗ 8.4± 1.6∗

Table 4.2: Dimension of the QF expressed in terms of CSA and the correspondent
percentage of fat content MF. Data are presented as mean ± standard deviation. *
indicates statistically significant difference from OB with p < 0.05.

4.3.2 Muscle Architecture

The muscle architectural parameters considered in this study were PA and FL and
were assessed using two-dimensional B-mode ultrasonography (MyLabFive, Esaote,
Italy). During the acquisition protocol the subjects were positioned supine with
their knee fully extended. Firstly, the proximal and distal edges of Rectus Femoris
(RF), Vastus Intermedius (VI), Vastus Medialis (VM) and Vastus Lateralis (VL),
which are the four muscle bellies composing QF, were identified by the operator
by moving the probe along the thigh. These reference points were marked on the
subject skin. Then, the length of each muscle belly was measured, divided into three
portions (proximal,middle and distal) and marked on the skin. For each muscle site,
the operator moved the probe to obtain a correct alignment with muscle fascicles.
Appropriate probe alignment was achieved when several fascicles could be traced
without interruption across the image. US images were obtained from each site for
each muscle belly.
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(a)

(b)

Figure 4.1: Two examples of PA and FL measurement from US images of two different
muscles. a) The entire length of the fascicle is visible in the image. b) The fascicle is
partially visible in the image and the interpolation procedure is shown.

MIPAV software was used to measure the muscle architectural parameters from
images. PA was measured as the angle between the muscle fascicular paths and
their insertion into the deep aponeurosis (fibrous structure, expanded tendon, giving
attachment to muscle fibres), which is representative of the muscle’s axis of force
generation (Fig.4.1). When the field of view of the image included the entire fascicle,
the FL was directly measured (Fig.4.1a). On the other hand, when the fascicle
extended off the field of view the FL was determined through a linear interpolation
of fibres and aponeurosis [85] (Fig.4.1b). The entire procedure was carried out in
four fascicles in a single image and the mean value of the extracted parameters was
considered representative for the image. The relative contribution of each muscle belly
to the total QF volume was obtained from the literature [86]. For each parameter,
a weighted mean for the relative volume of each muscle belly was calculated and
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considered representative of the entire QF.

Parameter Group RF VL VI VM QF

PA[deg]
OB 15.9± 2.7 12.5± 1.3 9.0± 2.4 13.8± 1.8 12.3± 0.8

NW 12.1± 1.5∗ 10.6± 2.0 8.0± 0.9 9.5± 2.6∗ 9.8± 1.4∗

FL[mm]
OB 53.3± 7.5 80.1± 12.7 65.6± 13.8 73.3± 15.2 70.6± 13.8

NW 56.1± 10.3 70.2± 15.4 65.0± 6.1 86.7± 15.3 70.7± 13.2

Table 4.3: Architectural parameters PA and FL assessed for the entire QF and mea-
sured in the four muscle bellies composing QF: RF, VL, VI, VM. Data are presented
as mean ± standard deviation. * indicates statistically significant difference from OB
with p < 0.05.

4.3.3 Muscle isometric and isokinetic torque

After muscle characterization, muscle strength was assessed in terms of peak KET
using a Cybex dynamometer (Cybex International, Medway, MA, USA) on the dom-
inant leg of each subject. Participants were seated comfortably in the dynamometer
chair, so that a 90 deg angle at the knee joint was obtained. The rotational axis of the
dynamometer was aligned with the lateral femoral epicondyle of the subject’s knee,
with the resistance pad positioned proximally to the lateral malleolus of the ankle
joint. The trunk of the subject was erect and fastened by a belt. A second belt was
placed around the thigh, to prevent any accessory movement during knee extension.

Before starting the test, the torque passively generated by the gravitational pull
of the lower leg was recorded with the knee fully extended. The KET recorded during
the test was corrected to the gravitational load.

Following a familiarization session, each subject performed one isometric knee-
extension test at 90 deg of knee flexion, and four isokinetic tests at 240, 180, 120
and 60 degs−1. For each of them, three attempts were made, but only the highest
peak KET was selected for further statistical analysis. Between attempts, 1 min of
recovery was observed.

Starting from KET, a measure of specific capability of muscle strength production
was obtained by accounting for the ratio of torque to muscle dimensions (specific
torque, KET/CSA).

The correlations betweenKET/CSA and compositional and architectural parame-
ters were investigated separately for isometric (KET0/CSA) and isokinetic tests. In
order to have a single value representative of all investigated dynamic conditions, for
each subject the specific torque–velocity data were fitted by the equation [3]:
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k = (KET/CSA+ a)× (v + b)

where k, a and b are constants and v is the angular velocity. By extrapolating the
function back to zero velocity, a single value representative of dynamic conditions
(KETDYN/CSA) was obtained.

Knee-extension torque[Nm]

Group 240degs−1 180degs−1 120degs−1 60degs−1 Isometric

OB 35.9± 11.3 44.6± 16.1 64.5± 18.4 85.1± 22.6 106.5± 15.3

NW 50.7± 13.8 64.5± 16.3 80.4± 17.7 102.5± 14.4 115.7± 13.0

Table 4.4: Absolute KET values during isokinetic and isometric test. Data are pre-
sented as mean ± standard deviation. No statistically significant differences were
found between the two groups.

4.3.4 Parameters Overview

For the sake of clarity, an overview of the parameters measured in this study is
reported on Table4.5.

4.3.5 Statistical analysis

Data of OB and NW subjects were compared using a Mann-Whitney test with statis-
tical significance set to p < 0.05. Correlation between parameters were investigated
by means of linear regression analysis.

4.4 Results

Table4.1 reported the anthropometric differences between OB and NW subjects. The
two groups have the same level of habitual physical activity, having no significant
differences on IPAQ score. The OB are slightly shorter than NW and as expected are
heavier with a greater amount of body fat.

The obtained average results regarding QF size and composition in the two groups
are reported on Table4.2. The MRI image analysis showed that, OB had a QF CSA
size 17% bigger than their NW counterpart (p < 0.05) with a higher MF (28.7%p <
0.05).
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Parameter Description

CSA[cm2] It is the mid thigh cross sectional area of the quadriceps femoris.
It is an indicator of the quadriceps femoris dimension.

MF[%] It is the percentage of fat tissue measured on the mid thigh cross
sectional area of the quadriceps femoris. It is an indicator of muscle
composition.

PA[deg] Pennation angle is a muscle architectural parameter. It is the angle
of the muscle fibers within the muscle with respect to the angle of
pull. It has been estimated for the quadriceps femoris, starting
from the measured four muscle belly PA.

FL[mm] Fascicle length is a muscle architectural parameter. It is the mus-
cle fiber length. It has been estimated for the quadriceps femoris,
starting from the measured four muscle belly FL.

KET[Nm] Knee-extensor torque. Is is an indicator of the force developed by
the quadriceps femoris. It has been measured both in isometric
(KET0) and isokinetic conditions at different angular velocities.

KET0/CSA Knee-extensor torque in isometric condition normalized to quadri-
ceps femoris CSA. It is an indicator of the normalized force devel-
oped by the quadriceps femoris.

KETDYN/CSA Knee-extensor torque in isokinetic condition normalized to quadri-
ceps femoris CSA. This single parameter representative of the nor-
malized force developed by the quadriceps femoris in dynamic con-
ditions was estimated with the Hill equation [3].

Table 4.5: Overview of the parameters measured in this study
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Table4.3 summarizes the architectural data obtained for the single muscles and
for the QF overall. No statistically significant difference was found between the FL
of OB and NW. On the other hand, the PA of OB in the whole QF was 24.9% bigger
than those of NW (p < 0.05).

Figure 4.2: The results of the analysis of isometric and isokinetic specific muscle
knee-extension torque (KET/CSA) Left: The graph shows muscle quality expressed
as isometric specific muscle knee-extension torque (KET/CSA) in NW (white column)
and OB subjects (black column). Right: the graph shows KET/CSA as a function of
knee-extension angular velocity in NW (white circles) and OB subjects (black circles).
Hill equation [3] was used to fit the experimental values: continuous line indicates
OB subjects; dashed line indicates NW women. Peak power/CSA was calculated as
KET/CSA × (angularvelocity/57.3). * indicates statistically significant difference
from OB with p < 0.05.

Table4.4 shows the results of the KET analysis. No statistically significant differ-
ences were found between the absolute strength developed by NW and OB subjects,
despite the bigger amount of SM found in OB. Consequently the KET normalized
on CSA (Specific torque) resulted higher for NW in all test performed (Fig.4.2).

The correlation analysis between both specific isometric and dynamic torque and
muscle architectural parameters are reported in Table4.6 while correlation between
both specific isometric and dynamic torque and muscle fat content are summarized
in Fig.4.3. A good significant inverse correlation was found between KET0/CSA and
both MF (p < 0.05) and PA (p < 0.05), but not with FL. On the other hand,the
KETDYN/CSA was found inversely and significantly (p < 0.01) correlated with MF,
but no significant correlations with architectural parameters were detected.
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Parameter FL PA

KET0/CSA −0.034 −0.608∗

KETDYN/CSA −0.335 −0.362

Table 4.6: Pearson correlation coefficient between specific muscle isometric and isoki-
netic KET and architectural parameters of QF muscle.

Figure 4.3: Correlation analysis of KET/CSA and quadriceps femoris MF. a) The
graph shows the scatter plot and the correspondent linear regression of MF and
torque values normalized to CSA extrapolated back to zero velocity starting from
isokinetic torque values using the Hill equation [3]. b) The graph shows the scatter
plot and the correspondent linear regression of MF and KET/CSA recorded during
the isometric test.

4.5 Discussion

In this work, the effects of obesity on skeletal muscle architecture and composition in
older women were evaluated.

In agreement with previous works [87, 12, 29], we found that OB have more
muscle mass than NW subjects. The larger muscle mass in OB can be explained by
considering the larger body mass as a constant stimulus for muscles which induces the
muscle grown and consequently the development of larger absolute strength. However,
due to the concomitant increase in AT, the fraction of SM reduces as well as the
strength normalized to body weight [87, 12, 88].

In this study, we found comparable values of KET in OB and NW subjects which
resulted in a larger KET/CSA in NW as already reported in [87, 89]. This difference
indicates that strength production is influenced by not only muscle size but also by
other factors. Fat infiltration has been found to be one of such a factors [30]. In this
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study, the MF quantification obtained through Dixon MRI images analysis revealed a
significantly greater amount of fat in OB than NW subjects. Moreover, a significant
negative linear correlation was detected between MF and KET/CSA in both isokinetic
and isometric conditions.

In our data, PA, measured by means of US appeared to be significantly greater
in OB than in NW subjects. The same result was obtained by [84]. It is also been
shown that an increase in muscle size induces an increase in PA [81, 79, 90]. In
pennate muscles, as it is QF, the fascicles move obliquely to the axis of shortening
of the muscle belly during contraction; therefore, the force they develop is used only
partially for muscle shortening [91]. In subjects specifically trained for muscle hyper-
trophy, force relative to muscle CSA was negatively related with PA [90], although a
concomitant increase in CSA occurring in these conditions [81] has an opposite effect
on overall muscle strength, and the net balance between these factors can hardly
be described with simple linear models [91]. Accordingly with these evidences, an
increased PA can be considered as a possible determinant of the lower KET/CSA
observed in OB subjects and our study supports this theory. In fact, during isometric
test, the negative effect of PA on KET0/CSA was confirmed, while during isokinetic
contractions no significant effect of PA on KETDYN/CSA was clearly detected. It
is possible that the negative effect of steeper PA on muscle strength generation may
be less detectable in isokinetic conditions, when the disadvantage of a large PA in
the transmission of force is counterbalanced by the advantage for muscle shortening
velocity [92]. However, these results need to be confirmed in a more numerous cohort
of subjects.

It has been shown that FL decreases with age [48] causing a deficit in strength
development [78]. However, we did not found significantly differences in terms of FL
between our groups indicating that obesity in older women does not induce additional
effects on FL and then FL seems not to be involved in the reduction of specific strength
observed in OB compared with NW older women.

In conclusion, we can state that muscle composition and architecture seem to
be important factors on the development of strength in elderly women. Due to the
effect of obesity overload, OB women have a larger muscle size than NW women, but
disadvantageous muscle composition and architecture. The higher MF and steeper PA
observed in OB women are associated with reduced levels of muscle specific strength.
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Chapter 5

Conclusions

This thesis was aimed at the development and application of segmentation and auto-
matic analysis methods for the morphological and functional characterization of the
lower limb from MRI images in physiological field, and in particular for the study of
processes related to aging concomitant to obesity condition.

The continuous development of imaging technique, and in particular the extraor-
dinary progresses made in MRI field has allowed to make giant steps on the study
of muscular physiologic processes. In fact, with the many MRI techniques today
available which allow to obtain many contrasts it is possible to investigate SM mor-
phological and functional aspects as well as to map these aspects in 3D in entire body
regions.

This enormous amount of data has lead to the need of tools aimed at automatically
extracting information of interest from the images. As an example, the morphological
characterization of the tissues of interest, which is the first step in the study of
physiological processes related to aging and obesity leading to low muscle functionality
and so disability, is performed through a segmentation process aimed at discriminating
and quantifying the different tissues of interest. This process, if manually executed
is extremely time consuming and results unfeasible in ordinary clinical contexts.

In Chapter 3 we presented a segmentation algorithm aimed at automatically seg-
menting the thigh tissues from T1-W MRI images in both young and elderly subjects
with different characteristics in terms of body adiposity, including OB subjects. In
particular, the algorithm was able to classify bone, SM and AT. In addition, the 2
compartments of AT: IMAT and SAT were discriminated by identifying the muscle
fascia. The segmentation approach is based on fuzzy c mean algorithm for tissue
classification and on active snake evolution for the identification of the muscle fascia.
Thanks to a smart process aimed at reducing the contrast between AT and SM and
simultaneously obtaining an enhancement of the relative contrast between muscle
fascia and AT we drove the active contour to converge in the weak edge of muscle
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fascia. To our knowledge, this is the first published approach which identifies muscle
fascia in its anatomical position obtaining promising results from a low level based
segmentation perspective.

The quantitative evaluation of the segmentation method was performed using
different similarity metrics adopted in previous works, and its superiority against the
other state-of-art methods demonstrated. However, it is worth to note that a fair
comparison, especially on IMAT and SAT segmentations, is not possible because of
the different assumptions made on reference segmentations. Due to the high accuracy
shown in our results, we are confident that our method could offer reliable performance
in the field of thigh regional composition.

As a second research line dedicated to the muscle functional characterization,
we presented in Chapter 4 a study aimed at investigating the effects of obesity on
the muscle strength developed by elderly women. Namely, functional and structural
features of the QF were evaluated against peak KET measured in isometric and
isokinetic condition in NW and OB women with the same degree of physical activity.
In particular, for each subjects, QF muscle size and percentage of fat content were
measured by analyzing Dixon MRI images while architectural parameters PA and FL
were assessed by processing US images.

The analysis showed that muscle tissue composition and PA strongly influence
the specific muscle torque in healthy elderly women. Namely, a steeper PA and a
higher fat infiltration in the muscle are negatively correlated with both isometric and
isokinetic contractions.

OB presented a larger muscle mass than NW subjects, due to the greater constant
body mass load. Moreover, OB subjects demonstrated a bigger PA with a larger fat
content in the QF leading to a reduction of the developed specific strength.

Nowadays, health among the elderly is of absolute relevance for the health care
systems all over the word, since life expectancy among the elderly has been improving
for many decades and medical costs grown with age. Therefore, the early detection
and an accurate follow up of morphological and functional changes in the muscu-
loskeletal system correlated to disorders and pathological conditions is fundamental.
We believe that in this context our research could have an important clinical impact.

Firstly, our automatic algorithm, able to accurately segment the thigh tissues and
in particular to distinguish IMAT from SAT could be potentially introduced in clinical
practice to quantify SM, IMAT and SAT in protocols aimed at understanding and
monitoring processes related to age and overweight. The fact that the algorithm is
totally automatic allows clinicians to have a specific tissues quantification for a large
cohort of patients, potentially leading to the design of patient specific intervention
and monitoring programs.

As a second contribution in clinical application, the identification of changes on
muscular parameters due to obesity and correlated with poor muscular functioning
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and disability could be of interest in the design of specific protocols aimed at re-
habilitating muscle physiology. Moreover these parameters can provide important
information for interpretation of results from interventional investigations.

Finally, we can conclude that this work represents a step forward not only to the
accomplishment of accurate patient-specific segmentation of the thigh, but also to the
understanding of processes related to aging with the concomitant presence of obesity.

5.1 Future Work

The first improvement of this work should be a confirmation of our results in a
larger sample of subjects. Then, the algorithm could be extended to the calf by
adapting the bone segmentation procedure and resetting the parameters properly.
Important future development could be also the comparison between different state
of art segmentation algorithms in order to design the extension of our segmentation
algorithm in 3D. In addition, starting from the SM segmentation, the different muscles
could be distinguished, in order to study the distribution of atrophy and determine
if this condition affects preferential regions. Atlas based methods could be a valid
candidate for this task.

With respect to functional muscle characterization, it would be of interest to
study the relationship between muscle composition and the correspondent activation.
A protocol involving Dixon technique and mfMRI could give important information
regarding this physiological question.
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Appendix A

Muscle Architecture

Muscle architecture is defined as the organization of the muscle fibers within the
muscle relative to the line of force generation [48] and it has been recognized as one
of major factors determining muscle functional performance. Therefore, the under-
standing of this structure–function relationship has a relevant clinical importance. In
fact, it clarifies the physiological basis of force production and movement, provides a
scientific rationale for surgery that may involve tendon-transfer procedures, provides
guidelines for electrode placement during electromyographic measures of muscle ac-
tivity, explains the mechanical basis of muscle injury during normal movement, and
aids in the interpretation of histological specimens obtained from muscle biopsies.
In Fig.A.1 the structural organization of the muscle tissue is shown. The muscle
belly contains the sum of all the muscle fibers; large muscles such as quadriceps are
composed of different muscle bellies. The muscle fibers are grouped into bundles of
around 150 fibers called fascicles. In pennate muscles, fascicles are attached obliquely
to their tendon and the parameters related to this disposition are correlated with
muscle functionality. This parameters are mainly FL, PA, and PCSA. The PA is
defined as the angle between the fascicle and the force-generating axis parallel with
tendon (See Fig.A.2), and the PCSA is the sum of the traverse areas of single muscle
fibers measured perpendicular with respect to their longitudinal direction.
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Figure A.1: The structural organization of the muscle

Figure A.2: Pennation angle
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