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Abstract 

A large number of cardiovascular events are not prevented by current therapeutic regimens. In 

search for additional, innovative strategies, immune cells have been recognized as key players 

contributing to atherosclerotic plaque progression and destabilization. Particularly the role of innate 

immune cells is of major interest, following the recent paradigm shift that innate immunity, long 

considered to be incapable of learning, does exhibit immunological memory mediated via epigenetic 

reprogramming. Compelling evidence shows that atherosclerotic risk factors promote immune cell 

migration by pre-activation of circulating innate immune cells. Innate immune cell activation via 

metabolic and epigenetic reprogramming perpetuates a systemic low grade inflammatory state in 

cardiovascular disease that is also common in other chronic inflammatory disorders. This opens a 

new therapeutic area in which metabolic or epigenetic modulation of innate immune cells may result 

in decreased systemic chronic inflammation, alleviating cardiovascular disease and its co-morbidities. 
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Introduction 

Cardiovascular diseases (CVD) are a major health challenge for modern societies. An estimated 

number of 17 million people die due to CVD each year, representing ≈ 30% of all deaths worldwide. 

The high burden of CVD is attributable to the increasing incidence of atherosclerosis, caused amongst 

others by worldwide adoption of the Western lifestyle1. In parallel, the incidence of chronic 

inflammatory diseases (CID) such as rheumatoid arthritis (RA) is rising. Since CID are accompanied by 

a 2 to 3-fold higher CVD-risk2, the increased CID prevalence further contributes to the overall CVD 

burden. Traditionally, risk factors for atherosclerosis are considered to be dyslipoproteinemia, as well 

as smoking, hypertension, diabetes and obesity. Subsequently, therapeutic measures have focused 

on lowering the most atherogenic cholesterol, predominantly low-density-lipoprotein cholesterol 

(LDL-C), which has successfully lowered CVD-risk by 25 to 35%3. This success rate, however, also 

discloses a large residual risk not adequately addressed by current cholesterol-lowering treatment 

alone.  

 

Atherosclerosis is a chronic inflammatory disease  

Atherosclerosis, formerly considered a lipid storage disease, involves a chronic, low-grade 

inflammatory response of the arterial wall, initiated by lipid accumulation in the intimal layer4. 

Subsequent activation and recruitment of innate immune cells contributes to plaque progression, 

and eventually plaque destabilization5. In more detail, it has been demonstrated that following 

accumulation of cholesterol in the arterial wall, the subendothelial lipids are modified leading to the 

formation of active signaling moieties. Particularly oxidized derivatives trigger a variety of 

inflammatory pathways, immune cells and mediators6 that drive atherogenesis and co-morbidities of 

this disease. As the atherosclerotic lesion advances, the presence of immune cells in the lesion 

increases proportionally, creating a localized pro-inflammatory milieu within the subendothelial 

compartment7. In addition to excessive amounts of lipids, atherosclerotic lesions thus harbor all 

classes of immune cells and moreover, serum levels of inflammatory mediators are linked to 
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coronary heart disease8. Recent advances in preclinical research have established a fundamental role 

for cellular inflammation throughout all stages of this disease from initiation through progression 

and, ultimately, the thrombotic complications following plaque rupture or erosion5, 9-11. A key role for 

innate immunity is illustrated by studies showing that monocytes and macrophages are abundantly 

present in atherosclerotic plaques12, and moreover, inhibiting monocyte-entry into the plaque 

drastically attenuates atherogenesis13
 as well as CVD-risk7, whereas immune cell stimulation 

accelerates atherosclerosis10.  

In parallel, systemic monocyte production and circulating monocyte number increase 

progressively with advancing disease14, 15. These innate immune cells help drive the formation of an 

extensive microvascular network penetrating the more advanced atherosclerotic lesions. These 

leaky, immature vessels provide an easy communication and access network for both cellular as well 

as humoral elements16. The extravasated immune cells also have an intricate impact on plaque 

phenotype by contributing substantially to endothelial dysfunction, oxidative stress and extracellular 

matrix degradation7. From a therapeutic perspective, several randomized clinical trials are currently 

underway that will determine whether nonspecific anti-inflammatory therapies with for instance 

interleukin-1-neutralising antibodies or methotrexate can reduce the risk of cardiovascular events in 

patients with atherosclerosis17-19.  

To date, little is known on the mechanism(s) maintaining the chronic inflammatory state in CV 

patients. Recent data have moved our focus from immune cells within the atherosclerotic plaque 

towards a systemic pro-inflammatory state, characterized by increased production and mobilization 

of innate immune cells by hematopoietic organs10, 20, lipoprotein-driven activation of innate immune 

cells already within the plasma compartment21, and rapid, increased influx of immune cells into 

atherosclerotic plaques in patients22, collectively driving the inflammatory state in the atherosclerotic 

plaque.  

Whereas the contribution of immune cells to atherogenesis has been well established, it remains 

elusive why the strong inflammatory response in the arterial wall persists over time. In the adaptive 
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arm of the immune system, dendritic cells in the plaque promote adaptive immune responses by 

presenting antigens, leading to enhanced T-cell function both in experimental and clinical 

atherosclerosis23. The interplay between activated T-cells and resident macrophages perpetuates a 

local inflammatory cascade within the subendothelial compartment4, 24. In addition, increasing body 

of evidence directs towards a role for impaired resolution of inflammation25-27.  

From a therapeutic standpoint, however, interventions targeting the adaptive immune system 

directly are hampered by a markedly increased incidence of infectious complications28, 29. A better 

understanding of the role of the innate immune system in the chronic inflammatory characteristics of 

atherosclerosis may overcome these limitations. However, boosting the adaptive immune system 

using vaccination strategies has therapeutic potential and is currently being studied for 

atherosclerosis treatment23, 30.  

 

Multi-level systemic immune cell activation contributes to atherogenesis and cardiovascular risk 

The challenges in targeting inflammation in any chronic disease lie in three properties that are 

critical for evolutionary survival: redundancy, compensation and necessity. Targeting one component 

may not be sufficient to attenuate a pro-inflammatory reaction. Inflammation is a carefully tuned 

process that has multiple feedback loops; thus, inhibition of a critical pathway may trigger a 

compensatory pro-inflammatory response. Finally and most importantly, the inflammatory response 

is critical for host defense, and even if the previous two challenges have been met, the risk-benefit 

ratio may still be unacceptable, exposing for example to an elevated risk of infections. Accordingly, 

broad immune pathway targeting is unlikely to confer therapeutic benefits. Therefore, developing 

anti-inflammatory therapies involves identifying suitable pathways in mice, pre-clinical testing of 

whether the pathway can be neutralized without causing collateral damage, translational studies 

identifying similarly relevant pathways in humans, and, finally, clinical trials. This challenging drug 

discovery path can be negotiated more efficiently with the help of immune system imaging, 

especially of immune cells, their subsets and their migration, production and function.  
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The rate of progression of atherosclerotic lesions is critically dependent on the number and 

characteristics of the circulating monocyte pool31. In view of the short half-life of innate immune 

cells11, attention has shifted towards a more prominent role of bone marrow mobilization and 

activation of immune cell progenitors10 and local proliferation11. Recently, acute events, both 

myocardial infarction10 and stroke32 were found to elicit a spike in neutrophil and monocyte 

production in experimental models, which subsequently accumulated in the infarcted areas. In 

apoE−/− mice with advanced atherosclerosis, acute local events were also found to augment 

inflammation in atherosclerotic plaques at a distance, increasing plaque size and inducing a more 

vulnerable lesion morphology with higher inflammatory cell content. An increased supply of innate 

immune cells was identified as the principal driver for this phenomenon10. However, the residence 

time of innate immune cells in ischemic tissue was estimated to be 19 hours, implying the continued 

need for new immune cells to maintain the high cell number in atherosclerotic lesions33. To support 

this demand, in mice after coronary ligation, increased sympathetic nervous activity released 

upstream precursors from bone marrow niches10. Markedly, both the increased monocyte count and 

the pro-inflammatory changes in systemic plaques persisted for several months, the mechanism for 

which remains yet to be established.  

In humans, several lines of evidence support similar pathways. The number of circulating innate 

immune cells was shown to be a strong predictor of future CV-risk in patients34. Following an acute 

myocardial infarction, bone marrow activity as well as inflammatory signals in distant atherosclerotic 

lesions were found to be increased20, implying a systemic cellular mobilization comparable to 

experimental data10. In advanced atherosclerotic lesions, immune cell accumulation is also markedly 

increased, implying a role for systemic immune cell activity in maintaining the increased 

inflammatory state in the arterial wall22. Furthermore, not only the monocyte number, but also the 

monocyte phenotype may be affecting atherogenesis. In vitro, several atherogenic risk factors were 

shown to induce a persistent activated state in monocytes35, which can further contribute to arterial 

wall inflammation.  
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Trained innate immunity and epigenetic reprogramming: a memory for innate immune cells  

In the classical immunological paradigm, activation of the innate immune cells (monocytes and 

macrophages) provides a rapid first line defense against infectious episodes, followed by a ‘memory’ 

response mediated by the adaptive immune system. Recently, Netea et al. challenged the classical 

dichotomy of innate versus adaptive immunity36-38 by showing that brief exposure to microbial 

products induces a long-term pro-inflammatory phenotype in monocytes, which was found to be 

linked to metabolic and epigenetic reprogramming. After vaccination of healthy subjects with BCG, 

monocytes showed a profound pro-inflammatory phenotype, that persisted even three months after 

vaccination and could be observed even several months after the initial exposure39, 40. The concept 

that the innate immune system is incapable of mounting adaptive responses41 has already been 

contradicted by studies showing that organisms lacking a specific immune system are still capable of 

responding adaptively to infections42. Epigenetic reprogramming, accompanied by markers of histone 

modifications such as methylation of histone 3 at lysine residue 4 (H3K4) or H3K27 acetylation, has 

been proposed as the molecular mechanism responsible for long-term memory of innate immunity 

and this process has been termed ‘trained immunity’37, 40, 43.  

Epigenetic control denotes the regulation of gene transcription without altering the nucleotide 

sequence of the DNA by the modification of the chromatin structure. These modifications result in 

specific chromosomal regions becoming more or less accessible to transcription factors, leading to 

prolonged alterations in downstream gene-products. There are many different epigenetic 

modifications that are tightly regulated by a wide array of specific epigenetic writers and erasers that 

function in a lineage specific manner44, 45. Importantly, these modifications are reversible, making 

chromatin modifying enzymes a potentially interesting therapeutic target46. The drug development 

area of inhibitors targeting histone deacetylases (HDACs) and DNA methyltransferases (DNMTs) in 

various disease states is expanding rapidly47, 48, though not yet in the cardiovascular arena. 

Interestingly, the epigenetic modulators suberoylanilide hydroxamic acid (SAHA, or Vorinostat) and 
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valproic acid (HDAC inhibitors) have already been approved by the FDA for cancer treatment and 

epilepsy, respectively49, 50. In the past years, the potential for epigenetic intervention by targeting 

specific histone methyltransferases has increasingly received attention51.  

In the cardiovascular domain, pro-atherogenic stimuli such as oxLDL and lipoprotein(a) [Lp(a)] 

have recently been shown to induce a prolonged, ‘primed’ or ‘trained’ state of the innate immune 

cells, already in the plasma compartment. In patients with elevated Lp(a), a major CV risk factor, 

monocytes showed a primed state by increased pro-inflammatory cytokine production upon ex vivo 

stimulation. In vitro priming of healthy monocytes with Lp(a) showed a training capacity: six days 

after first exposure to Lp(a), monocytes showed an increased pro-inflammatory phenotype. In vivo, 

this trained state coincided with activated monocytes which accumulated more rapidly into the 

arterial wall in vivo52. In line, oxLDL also induced trained immunity via epigenetic reprogramming, 

eliciting an activated monocyte phenotype. Incubation of monocytes with oxLDL was associated with 

increased H3K4me335. The time course for the induction of these pro-inflammatory changes remains 

to be established. Because monocytes and macrophages have life spans in the order of hours to days, 

their upstream progenitors, including bone marrow hematopoietic progenitor cells (HSPCs), should 

also be investigated. Interestingly, recent findings by van der Valk et al. and Nahrendorf et al. did 

reveal a persistent inflammatory state in the arterial wall, as well as increased metabolic activity in 

the bone marrow more than 3 months after an acute myocardial infarction53. These findings, 

supported by experimental data, imply that epigenetic changes in short-lived monocytes are likely to 

be maintained by similar changes in the hematopoietic precursor cells in the bone marrow (HSPC)53. 

Detailed in vivo studies on HSPCs are, however, absent to date.  

How do these pro-atherogenic stimuli modify epigenetic markers? Accumulating evidence points 

to a pivotal role for rewiring of intracellular metabolism in innate immune cells (Stienstra et al, Cell 

Metab 2017 in press). Various intermediate metabolites act as important cofactors for epigenetic 

enzymes, including NAD+, acetylCoA, SAM, FAD, fumarate54-56. Trained immunity by BCG or beta-

glucan requires a shift from oxidative phosphorylation to aerobic glycolysis57, 58. In addition, 
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accumulation of fumarate due to anaplerotic replenishment of the TCA cycle by glutamine projects 

onto epigenetic changes by inhibition of the lysine demethylase KDM559. The relevance of these 

metabolic changes for the development of atherosclerosis is illustrated by the upregulation of 

glycolytic pathways in monocytes and macrophages isolated from patients with atherosclerosis60, 61. 

For a more detailed description of the role of immunometabolism in the (epigenetic) reprogramming 

of innate immune cells in the context of atherosclerosis, we refer to recent excellent reviews on this 

topic62 (Stienstra et al, Cell Metab in press 2017). 

In parallel, in CID, the increased inflammatory responsiveness of monocytes and macrophages 

due to trained immunity is likely to play a central role63. The abundantly present danger associated 

molecular patterns (DAMPs) in CID and particularly in RA, including biglycan64, S100 proteins65, 

HMBG166, citrullinated proteins67, heat shock proteins68, and tenascin-C69 might induce a trained 

state of innate immune cells, leading to prolonged hyper responsiveness mediated at least partly via 

histone modifications. Interestingly, synovial fibroblasts from affected joints in RA also showed 

distinct global and promoter-specific changes in DNA methylation70, collectively pointing towards a 

role for epigenetic modulation being involved in the persistent pro-inflammatory state in CID.  

From this perspective, the capacity of innate immunity to mount adaptive responses both 

redefines the function of innate immunity and provides a potential therapeutic target in chronic 

inflammation, including atherosclerosis and RA. This also echoes the highly feared recurrent CV-

events in the first months after an initial CV-event, attributed largely to persistent inflammatory 

activity71. As active participants in arterial wall inflammation, ‘trained’ innate immune cells may 

represent promising therapeutic targets72-74. Targeting innate immune cells is likely to also offer a 

wider therapeutic window compared to the adaptive immune system, since patients with innate 

immune deficiencies are much less prone to infectious complications compared to those with 

disturbances in the adaptive immune system.  

In the Horizon2020 project REPROGRAM75, we propose that trained immunity is an important 

pathway promoting an activated state of innate immune cells in the context of atherosclerotic 
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cardiovascular disease. Hence, modulation of the trained immunity pathway may offer an attractive 

strategy to effectively attenuate the chronic inflammatory state in atherosclerosis as well as other 

CID (figure 1). 

 

Common immune responses in atherosclerosis and CID  

Many CIDs are associated with altered monocyte phenotype and function, which may alter the 

potential of these cells to influence atherogenesis76. For example, in patients with well-controlled 

human immunodeficiency virus (HIV), arterial wall inflammation in the aorta is increased, associated 

with circulating markers of monocyte and macrophage activation77. Furthermore, resident 

macrophages and Toll-like receptor (TLR) signaling play an important role in rheumatoid arthritis78, 

atherosclerotic tissue79
 and acute coronary syndromes80. MRP8/14, a physiological TLR4 ligand 

released by activated macrophages, is a prognostic biomarker in both RA81
 and acute coronary 

syndromes82. In mice, experimental osteoarthritis induced increased levels of Ly6C-high, as well as 

Ly6C-low monocytes, due to increased bone marrow activity83. It has been recently proposed that 

therapeutically targeting interactions between TLRs and foam cell formation may reduce adverse 

cardiovascular outcomes in individuals with CID84. These studies have contributed to uncover novel 

molecular mechanisms that modulate the inflammatory response in atherosclerotic lesions, and 

suggest that a parallel exists with chronic inflammatory diseases, such as rheumatoid arthritis (Figure 

2). Particularly, a prominent role for endogenous danger signals, comprising both pathogen-

associated molecular patterns (PAMPs) as well as DAMPs, in the immunological pathophysiology is 

emerging rapidly85, 86. In RA tissues and synovial fluids, multiple DAMPs are present, most of which 

have the capacity to act as TLR2 and/or TLR4 agonists. 

Several DAMPs have now been shown to contribute to the ‘memory’ response in monocytes, 

mediated by distinct histone modifications87. The correlation between RA disease activity/duration 

and the markedly increased inflammatory activity in the arterial wall in RA patients88
 lends further 

support to a common underlying pathophysiology, eventually translating into a 2 to 3-fold higher CV-
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risk in RA patients which is only partly attributable to known CV-risk factors89. In support of immune 

cell hyperactivity as a causal factor of CVD in patients with RA, Bernelot Moens et al recently 

observed that circulating monocytes in RA patients in remission requiring continued biological 

therapy are characterized by increased expression of activation/adhesion markers, which coincides 

with increased arterial wall inflammation in RA patients88. A potential contribution of epigenetic 

modulation to the persistent inflammatory state in RA as well as its cardiovascular co-morbidity has 

been put forward90, yet the evidence for this concept remains to be delivered. 

 

Multimodal imaging in atherosclerosis and CID 

The optimal method to evaluate the presence or progression of atherosclerosis is to directly 

visualize the target organ for atherosclerosis: the arterial wall. In line with this, imaging modalities 

have been used in patient studies to measure the dimension of the arterial wall, including 

ultrasound91 and magnetic resonance imaging92. With the new insight that inflammation is a key 

component dictating both the progression of atherosclerotic lesions as well as the vulnerability of 

advanced plaques, attention has shifted towards novel imaging modalities able to quantify the 

functional aspects in the arterial wall/atherosclerotic lesions, including the inflammatory activity. In 

this context, 18-Fluordeoxyglucose positron emission tomography with computed tomography (18F-

FDG PET/CT) imaging is increasingly applied to serve as a measure of arterial wall inflammation93. 

Although its primary target is to detect overall metabolic activity, 18F-FDG imaging in patients with 

atherosclerosis robustly correlates with macrophage density as measured by histology94 and 

correlates to plaque macrophage content and distribution95. It is increasingly used to monitor 

inflammation in vascular beds as a function of therapy in patients, particularly in the aorta and 

carotid arteries96-99. 

Clinical credence for PET-based imaging emerged after several retrospective100, 101 and small-scale 

prospective studies showing that PET can identify active culprit lesions102, 103 and predict the risk of a 

recurrent event. In addition, the first intervention studies have been performed using changes in 18F-
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FDG uptake PET to monitor therapeutic efficacy of novel anti-atherosclerotic strategies99, 104. More 

recently, several small 18F-FDG PET/computed tomography studies in patients with AMI reported 

increased PET signals in ischemic myocardial regions in association with higher 18F-FDG uptake in 

remote non-culprit atherosclerotic lesions, as well as in hematopoietic organs105, 106, highlighting the 

systemic inflammation following acute ischemic events, as previously described in pre-clinical 

models. A retrospective trial in patients with atherosclerosis reported that increased splenic 18F-FDG 

also predicted higher cardiovascular event rates20. These trials exemplify the opportunities generated 

by whole-body imaging, including the ability to sample more than one organ system. In order to 

unravel systems-wide immune actions as well as connections between cardiovascular and 

hematopoietic organs, imaging studies allow integration of data from cardiovascular organs, non-

culprit atherosclerotic lesions, spleen, and bone marrow, which can be combined with data derived 

from blood and bone-marrow analyses. In this scenario, whole-body multimodal imaging can 

translate preclinical findings, serve as companion imaging in clinical trials, and help guide 

individualized therapy. 

 

Therapeutic implications of epigenetic reprogramming of innate immune cells 

CID are the most common diseases of ageing and represent one of our major health threats. 

These include most forms of CVD, RA, type 2 diabetes and virtually all neurodegenerative diseases. In 

these disease states, a non-autoimmune primary pathological process determines disease 

progression; for example, inflammation promotes the formation of oxidized phospholipids that may 

serve as DAMPs in atherosclerosis86. As with autoimmune diseases, inhibition of inflammation could 

reduce the rate of disease progression to the point of substantial clinical benefit despite not altering 

the underlying pathogenic process. In contrast, in primary inflammatory or autoimmune diseases 

there is little evidence as yet for efficacy of this approach in humans. 

The increased inflammatory responsiveness of monocytes and macrophages due to trained 

immunity is likely to play a central role in CIDs. From this perspective, the adaptive capacity of the 
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innate immune system provides a potential therapeutic target in human diseases. It is thus essential 

to improve our understanding of the pathophysiology and cellular and molecular mechanisms 

common to chronic inflammation, starting with atherosclerosis. Moreover, it is essential to 

understand the cellular and molecular mechanisms that mediate trained immunity, in hopes of 

harnessing their therapeutic potential. An important finding in that respect is that trained immunity 

is characterized by a metabolic shift from oxidative phosphorylation to aerobic glycolysis, which 

closely interacts with the epigenetic reprogramming57. This opens doors for new potential 

therapeutic possibilities. To prevent training, this mechanism can be targeted, for example using 

inhibitors of glycolysis107, or inhibitors of micro RNAs that dictate the balance between glycolysis and 

OXPHOS108.  

New knowledge about inflammatory signaling, particularly in the areas of endogenous 

homeostatic pathways and inflammation resolution also provides the promise for new therapeutic 

options that can adequately meet the therapeutic challenges in CID and atherosclerosis. The 

abundant presence of epigenetic alterations in both CID and atherosclerosis underlines the potential 

for clinical applications. In line with this, the potential of epigenetic alterations as molecular 

biomarkers are being explored for CVD risk evaluation, early detection, prognosis stratification, and 

treatment response prediction. On the other hand, unlike genetic mutations, epigenetic changes, 

including DNA methylation and histone modifications, are pharmacologically reversible, making them 

attractive targets in therapeutic strategies.  

Novel insights that will develop by a systems biology approach of trained monocytes is highly 

likely to identify novel therapeutic targets to prevent or treat atherosclerosis72. Several preclinical 

studies have already provided proof-of-concept data that drugs that modulate the activity of 

epigenetic writers or erasers, such as HDAC inhibitors, can modulate the development of 

atherosclerosis109, 110. Furthermore, BET-inhibitors such as RVX-208, JQ1 and I-Bet that inhibit the 

interaction of BET proteins with acetylated histone tails, showed a repression of pathways that 

contribute to cardiovascular disease and inhibition of atherogenesis in mouse models111-113. Major 
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advances have been made in the field of oncology with aberrant DNA methylation profiles and 

alterations in histone modification being linked to specific cancers and tumor progression, some of 

which are already used in the clinic114. The discrepancy between major advances in the oncology field 

and scarcity of data in the cardiovascular and rheumatology field illustrates that an organized effort 

to address the potential of epigenetic modulation in atherosclerosis and CID is long overdue. 

In conclusion, innate immune cell activation via epigenetic reprogramming perpetuates a systemic 

low grade inflammatory state in cardiovascular disease that is also common in other chronic 

inflammatory disorders. This opens a new therapeutic area in which epigenetic modulation of innate 

immune cells will result in a decrease of systemic chronic inflammation, alleviating cardiovascular 

disease and its co-morbidities. 
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Legend to the Figures 

 

Figure 1. Innate immune cell activation via epigenetic reprogramming as a common pathway 

perpetuating the upheld inflammatory state in atherosclerosis and other chronic inflammatory 

disease states. 

 

Figure 2. Different chronic inflammatory disease states and atherosclerotic DAMPs can trigger 

monocyte phenotype to change into a long-term activated monocyte. In the bone marrow, these 

PAMPs and DAMPs might even alter the phenotype of the HSCs.  
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