
Adapted deformations and Ekedahl-Oort
stratifications of Shimura varieties

Qijun Yan

Promotor: Prof. dr. Fabrizio Andreatta

Promotor: Prof. dr. Bart de Smit (Universiteit Leiden)

Composition of the Doctoral Committee:

Prof. dr. Aad van der Vaart (Universiteit Leiden)

Prof. dr. Sebastiaan Edixhoven (Universiteit Leiden)
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out at Università degli studi di Milano and Universiteit Leiden.



Adapted deformations and Ekedahl-Oort

stratifications of Shimura varieties

Qijun Yan

Contents

1 Introduction 3

2 Notations and conventions 11

3 Loop groups 13

4 Classifications of p-divisible groups 21

5 Adapted deformations of p-divisible groups 35

6 Shimura varieties of Hodge type 41

7 Construction of a morphism from I+ to D1 47

8 Ekedahl-Oort stratification 61

References 69

Summary 73

Samenvatting 75

Sommario 77

Acknowledgement 79

1



Curriculum Vitae 81

2



1 Introduction

We fix a prime number p > 2 throughout this thesis.

1.1 Ekedahl-Oort stratification

We start by giving a short review of the development of the Ekedahl-Oort
stratification of Shimura varieties, following [GK15].

The Ekedahl-Oort stratification was initially defined and studied by Ekedahl
and Oort for Ag,Fp , the special fibre of the moduli space Ag of principally po-
larized abelian varieties of dimension of g, which can be seen as the Shimura
variety associated to the group GSp2g. In [Oor01] Oort defined a stratifica-
tion for Ag,Fp by isomorphism classes of the BT1’s (BT1 stands for truncated
Barsotti Tate group of level 1). The strata are listed in loc. cit. by the
so called “elementary sequences”. Moonen later on gave a group-theoretical
classification of BT1’s with PEL-structures in [Moo01], where he describes the
isomorphism classes as a certain Weyl cosets JW of the group G of the Shimura
datum associated to the PEL-structure. In a series of papers, Moonen, Wed-
horn, Pink and Ziegler showed that BT1’s with G-structures of certain type
χ give rise to an algebraic stack G-Zipχ, which is isomorphic to a quotient
stack [Eχ\G], where Eχ is some “zip group” (see [MW04], [Wed01], [PWZ11],
[PWZ15]).

In [VW13] Viehmann and Wedhorn generalized and studied the Ekedahl-Oort
stratification for the special fibre of a PEL-type Shimura variety. In his thesis
[Zha13], C. Zhang constructed a universal G-Zip for the special fibre S of a
general Hodge-type Shimura variety, which induces a morphism of algebraic
stacks 1

ζ : S −→ G-Zipχ ∼= [Eχ\Gκ], (1.1.1)

and showed that the morphism is smooth. A detailed review of the construc-
tion is given in Section 8.3.

Definition 1.1.1. An Ekedahl-Oort stratum of S is defined to be a geo-
metric fibre of the morphism ζ in (1.1.1).

In the case of PEL type, the strata thus defined coincide with the Ekedahl-
Oort strata defined in [VW13]. The smoothness (hence openness) of ζ provides
a description of the closure relation of the strata, in terms of the underlying
topological space of the stack G-Zipχ.

1Wortmann slightly modified Zhang’s constructions in his thesis ([Wor13]) and we are
here following his notations. We will also review his constructions in this thesis.
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1.2 Motivations

Let G be a reductive group over Fp and fix a Borel pair (B, T ) of G (namely a
maximal torus T and a Borel subgroup B of G with B ⊃ T ), all defined over
Fp. Let LG and K := L+G be the loop group and the strict loop group of G
respectively (Section 3), and K1 the kernel of the reduction map K→ G. Let
k be an algebraically closed field of characteristic p and denote by W (k) the
ring of Witt vectors of k. Denote by σ : k → k the absolute Frobenius of k
and use the same notation for the ring endomorphism k[[u]]→ k[[u]], which is
σ on k and fixes u ∈ k[[u]]. Write W = NGT (k)/T (k) for the Weyl group of
G, with respect to T .

In [Vie14, Theorem 1.1] Viehmann gives a classification of the K-σ conjugacy
classes in K1(k)\LG(k)/K1(k) in terms of certain Weyl groups. For a domi-
nant cocharacter µ : Gm,k → Tk over k (with respect to Bk), if we denote by
C(G,µ) the set of K-σ conjugacy classes in

K1(k)\K(k)µ(u)K(k)/K1(k),

then the result in loc. cit. implies that there is a 1-1 correspondence between
C(G,µ) and the subset JW of the Weyl group W , where J is the type of the
cocharacter σ−1(µ) : Gm,k → Tk. The precise definitions of J and JW are
reviewed in Section 8.2.

We are interested in the situation where G and µ come from a Shimura variety
S of characteristic p (namely, the reduction modulo p of a Shimura variety).
In this case, as discussed in the previous subsection, the finite set JW can be
seen as the index set of the Ekedahl-Oort strata of this Shimura variety (see
for example [VW13, Section 8.2]), and hence so can be C(G,µ). But note
that such a bijection between JW and C(G,µ) is purely group-theoretic and
a priory there is no direct connection from the Shimura variety in question
to C(G,µ). The main goal of this thesis is to construct a map from S to a
subquotient (stack, preferably) of LG whose geometric points can be identi-
fied with C(G,µ)2, such that the geometric fibres of this map give back the
Ekedahl-Oort strata of S. This goal is basically achieved except that the target
of the map we construct fails to be a stack (see Section 1.5).

What makes us believe that such a connection is possible are the following
observations: (1). p-divisible groups over rings like W (k) can be classified in
term of Breuil-Kisin modules, or equivalently Breuil-Kisin windows in our term
(we give a short review of these in Section 1.4), which are modules over the
power series ring W (k)[[u]] equipped with additional data; (2). Shimura vari-
eties naturally carry families p-divisible groups (with extra structures) which
determine the stratifications we want to define. This belief is also supported

2Our cocharacter µ is in fact a variant of µ in [Vie14], but as explained in Remark 8.4.2
the resulting finite sets C(G,µ) are the same.
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by other evidence; see Theorem 1.4.2 and the paragraph after that. Our phi-
losophy in short is: the Frobenii of Breuil-Kisin windows will give C(G,µ),
and this turns out to be correct (see Remark 1.5.1.(1)).

In [VW13] the authors determined the closure relation of Ekedahl-Oort strata
via that of some truncation strata in LG ([VW13, Corollary 7.2], [Vie14, Corol-
lary 4.7]). Such a criteria again depends on the bijection between JW and
C(G,µ). One of our goals is to remedy this situation by deducing this criteria
in a similar manner as the proof of [Zha13, Proposition 3.1.6]. So far we have
not fully achieved this but we are confident that it can be done (see Remark
1.5.1.(2)).

1.3 Special fibre of a Shimura variety (of Hodge type)

To state our main results, we need to fix some notations on the reduction of
Shimura varieties (of Hodge type). All the technical terminologies and results
used here are discussed or reviewed in Section 6.4 and Section 6.5.

Let (G,X) be a Shimura data of Hodge type, i.e., it can be embedded into a
Siegel-type Shimura data (GSp,S±). Assume that G has good reduction at
a prime number p > 2, i.e., G has a reductive model G over Zp, whose special
fibre is denoted by G. Let K = KpK

p ⊂ G(Af ) be an open compact subgroup,
with Kp = G(Zp) and Kp ⊂ G(Apf ) sufficiently small, and let ShK(G,X) be the
associated Shimura variety over the reflex field E of (G,X).

Fix a place v of E above p. Denote by OE the ring of integers of E. Write
OE,v = W (κ) for the completion of OE at v. Kisin ([Kis10]) and Vasiu
([Vas99]) have showed the existence of the integral canonical model SK(G,X)
of ShK(G,X) over OE,v. Denote by S the special fibre of SK(G,X), which is
a quasi-projective and smooth scheme over κ.

Denote by [χ]C the unique G(C)-conjugacy class of the inverse of any of the
Hodge cocharacters λ : Gm → GC determined by (G,X). Denote by [χ]κ the
reduction over κ of [χ]C (Section 6.5), which is the G(κ)-conjugacy class of
some cocharacter χ : Gm,κ → Gκ of Gκ over κ. We fix such a cocharacter χ
and define the cocharacter

µ := FrobGκ/κ ◦ χ : Gm,κ → Gκ, (1.3.1)

where FrobGκ/κ : Gκ → G
(p)
κ = Gκ is the relative Frobenius of Gκ over κ

(see (9) in Section 2.1). The cocharacter χ defines a parabolic subgroup P+ of
Gκ, defined over κ (cf. Section 6.5) We can and do lift χ to be a cocharacter
χ̃ : Gm,W (κ) → GW (κ) of GW (κ) over W (κ), which in turn defines a parabolic
subgroup P+ of GW (κ), defined over W (κ). Note that our “µ” is different from
the “µ” in [Wor13]: we remind the reader to be careful on this point.
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1.4 Review of Breuil-Kisin windows

Let k be an algebraically closed field extension of κ. Breuil-Kisin modules are
typically used to classify p-divisible groups over a totally ramified extension R
of W (k) (of arbitrary ramification index). But for our application, R is simply
W (k) itself and hence no nontrivial ramification happens.

We give below the definition of Breuil-Kisin modules and Breuil-Kisin win-
dows, together with a classification result. In the thesis we also use relative
Breuil-Kisin modules developed by W. Kim (we call them Kim-Kisin modules,
see Section 4.5) but we will not need them now since the purpose here is to
provide some background knowledge so that we can present our main results
in the next subsection.

Let S = W (k)[[u]] and let ϕ = ϕS : S → S be the ring endomorphism of S
which is the unique Frobenius lift ϕ on W (k) and sends u to up. We write
E(u) = u + p, which generates the kernel of the projection S → W (k) (as
W (k)-algebras) sending u to −p ∈W (k).

Definition 1.4.1. (1) A Breuil-Kisin S-module is a pair (M, ϕM), where
M is a finite free S-module and ϕM : M → M is a ϕ-linear map, such
that the cokernel of the linearization

ϕM ⊗S,ϕ id : ϕ∗M := M⊗S,ϕ S→M

is killed by E(u).

(2) A Breuil-Kisin S window is a triple M := (M,FilM, ϕM), where M is
a free S-module and FilM ⊂ M a S-submodule of M of finite type, and
where ϕM : FilM→M is a ϕ-linear map such that

(a) E ·M ⊂ FilM;

(b) M/FilM is a free W (k)-module;

(c) the subset ϕM(FilM) generates M as an S-module.

A Breuil-Kisin window is also called a filtered Breuil-Kisin module in the
literature, but we prefer the current terminology as it fits well with the windows
theory developed by Lau and Zink.

Denote by BT(W (k)) the category of p-divisible groups over W (k).

Theorem 1.4.2 (Kisin). There are the following equivalence of categories:

BT(W (k))
∼=←−→

{
Breuil-Kisin S-modules

} ∼=←−→
{

Breuil-Kisin S-windows
}

(M, ϕM) 7−→ (ϕ∗M, Filϕ∗M, ϕM ⊗ 1),

where Filϕ∗M is defined in the proof of Proposition 4.5.4 (we will not need it
explicitly in this Introduction). The essential part of the Theorem is the first
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equivalence which is proved quite indirectly and hence we omit its description
here.

Moreover, if (M,FilM, ϕM) is the associated Breuil-Kisin window of a p-
divisible group H over W (k), then (M, ϕM) ⊗ S/(u) is canonically identi-
fied with the (contravariant) Dieudonné module D∗(H)(W (k)) of H, together
with its Frobenius map, and (M,FilM) ⊗ S/(E(u)) is canonically identified
with D∗(H)(W (k)) together with its Hodge filtration (cf. [BBM82, Corollaire
3.3.5]).

There is also a notion of torsion Breuil-Kisin modules, and hence torsion
Breuil-Kisin windows. If M is the associated Breuil-Kisin window of H, then
the reduction modulo p of M is the associated torsion Breuil-Kisin window
associated to the BT1, H[p].

1.5 Main results

(1) We define a subquotient scheme D1 of LG (Section 7.1) and construct a
morphism of schemes over κ (Section 7.4)

θ : I+ → D1.

More details on this morphism will be given in the next subsection.

(2) We define an fpqc quotient sheaf D1/K
� of D1 (obtained from an action of

some group scheme K� on D1, Section 7.1) such that the geometric points
D1(k)/K�(k) are identified with C(G,µ), and we show that θ induces a
morphism of fpqc sheaves (Theorem 7.5.2)

η : S → D1/K
�.

(3) We show that the geometric fibres of η are exactly the Ekedahl-Oort strata
of S by establishing for each algebraically closed field extension k of κ a
bijection

ω : D1(k)/K�(k)→ Eχ(k)\G(k),

fitting into the commutative diagram (Proposition 8.4.1),

D1(k)/K�(k)

ω

��

S(k)

η
55

ζ ((
Eχ(k)\G(k)
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Remark 1.5.1. (1) To construct the global θ, we proceed by constructing
local maps from Zariski open affines of I+ to D1, and then gluing the local
maps together (Section 7.4). For the local maps we use our constructions of
Kim-Kisin windows (we also call them “adapted deformations”) in Section
5.1. But we found afterwards that if one only concerns the map θ itself, the
constructions of Kim-Kisin windows can be totally avoided (the relative
crystalline Dieudonné theory developed in [dJ95] is still needed): this point
will be reflected in the formula (1.6.1) below. But what we think is more
important is the conceptual interpretation of these maps: θ is given by the
Frobenius of Kim-Kisin windows and the Ekedahl-Oort stratification of S
can be defined through Breuil-Kisin windows via η. The maps θ and η
conceptually explain why Shimura varieties can be related to loop groups
directly and why the new invariants C(G,µ) in [Vie14] can be seen as the
index set of Ekedahl-Oort strata of S.

(2) We don’t know yet whether η is smooth but it is expected to be so. Once
this is proven, we can determine the closure relations of the Ekedahl-Oort
strata of S as in [VW13, Corollary 7.2] for free (in fact there is a slight
difference since we are using a different “µ”).

(3) The morphism η cannot be refined to a morphism from S to the quotient
stack [D1/K

�]. Although the quotient stacks [D1/K
�] and [Eχ\G] have

the same topological spaces, they are not isomorphic as stacks for obvious
reasons: the latter is algebraic while the former is not.

1.6 Strategy

We now describe the main idea of the construction of θ and the bijection ω. To
do this, we need to be more precise and hence the text below will be slightly
technical.

Let D be the fpqc sheafification of the subfunctor of LG which sends a Fp-
algebra R to

K+(R)µ(u)K+(R) ⊂ LG(R).

It can be shown that D is represented by an infinite dimensional formally
smooth scheme over κ (Proposition 3.2.3). Then D1 is defined to be the
quotient of D by the free action of K1 by right multiplication. We show in
Section 3.4 that D1 is represented by a smooth κ-scheme of finite type.

We refer to Section 7.2 for the P+-torsor I+ over S and its reduction I+ over
S. Given an element x ∈ I+(k), a lift x̃ ∈ I+(W (k)) gives an isomorphism

βx̃ : Λ∗W (k)
∼= M := D∗(Ax[p∞]) ∼= H1

dR(Ax̃/W (k))

compatible with filtrations and sending tensors sW (k) to tensors sdR. By trans-
port of structure via βx̃, we obtain a (linearized) Frobenius on Λ∗W (k), denoted

8



by F lin
x̃ : ϕ∗Λ∗W (k) → Λ∗W (k). We define

Γlin
x̃ : Λ∗W (k)

∼= ϕ∗Λ∗W (k) = ϕ∗Λ∗W (k),1 ⊕ ϕ
∗Λ∗W (k),0

1/pF lin
x̃ ⊕F

lin
x̃−−−−−−−−→ Λ∗W (k),

where Λ∗W (k)
∼= ϕ∗Λ∗W (k) is the canonical isomorphism since Λ is defined over

Zp. This is an isomorphism preserving tensors sW (k), and hence we obtain an
element in G(k), namely

α(x̃) := (Γlin
x̃ mod p)∨ ∈ G(k).

Here we use the contragredient representation (·)∨ : GL(Λ∗κ) ∼= GL(Λκ) in-
troduced in Section 2.2. Finally, θ(x) is defined to the the image in D1(k)
of

Φ0(ϕ, x̃) := α(x̃)µ(u) ∈ D1(k). (1.6.1)

It turns out that θ(x) is independent of the choice of x̃. The unique Frobenius
lift ϕ of W (k) appears in Φ0(ϕ, x̃) to keep coherence of notations in the relative
setting where the Frobenius lifts are not unique.

The element Φ0(ϕ, x̃) in D(k) has a realization as the reduction modulo p of
the Frobenius of some Breuil-Kisin window isomorphic to the one associated
to Ax̃[p∞]. In other words, Φ0(ϕ, x̃) can be realized as the Frobenius of some
torsion Breuil-Kisin window isomorphic to the one associated to the BT1,
Ax̃[p]. The ambiguity “isomorphic to” here (for Frobenius maps it is the same
as “K-σ conjugate to”) still exists in D1(k), but will be killed after passing to
the quotient D1(k)/K�(k). Such a realization is the hard part of this thesis.

The element µ(u) ∈ LG(k), instead of χ(p)(u) (χ(p) is the “µ” in [Wor13], see
(9) in Section 2.1 for its definition), appears in Φ0(ϕ, x̃) is due to the fact that
the Frobenius lift ϕ : S → S sends the formal variable u to up. This also
explains why the cocharacter “µ” in this thesis is different from the “µ” in
[Wor13].

For an algebraically closed field extension k of κ, the map ω is defined as
follows.

ω : D1(k)/K�(k) −→ Eχ(k)\Gκ(k)
h1µ(u)h2 7−→ Eχ(k) · (σ−1(h̄2)h̄1),

where for an element h ∈ K(k), we write h̄ = h mod u.

The map ω above (Proposition 8.4.1) is an analogue of the map ζ̄ in [Wor13,
Proposition 6.7]. The fact that ω is a bijection seems to be implied by the
work in [Vie14] (or combined with [Wor13, Proposition 6.7]), but this is not
completely clear to us. Due to the difference of characters in question (our
µ : Gm,κ → Gκ is not minuscule), the proof of [Wor13, Proposition 6.7] cannot
be adapted directly to our setting.

9
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2 Notations and conventions

2.1 General notions

(1) As mentioned earlier, for a prime number p in this paper, we assume that
p ≥ 3.

(2) All Dieudonné crystals and Diudonné modules are contravariant.

(3) If X is a scheme over a ring R (resp. over a scheme S) and R′ is an
R-algebra (resp. S′ is an S-scheme), we often denote by XR′ (resp. XS′)
the pullback of X along the ring homomorphism R→ R′ (resp. along the
structure morphism S′ → S). Sometimes we suppress the subscripts R′

(resp. S′) if the base ring (resp. base scheme) is clear from the context.

(4) Similar convention as in (3) applies for modules, p-divisible groups, stacks,
etc.

(5) If R is a ring of characteristic p or a Zp-flat p-adic ring and ϕR a Frobenius
lift of R (i.e., the reduction mod p of ϕR is the absolute Frobenius of
R/pR), we often suppress the subscript R when it is clear from the context.
Here and everywhere in the sequel a p-adic ring is p-adically complete and
separated.

(6) If ϕ : R→ R is an endomorphism of rings and M is an R-module, we use
the following notations interchangeably

M (ϕ) := ϕ∗M := M ⊗R,ϕ R.

(7) If R is a ring with r ∈ R, and M an R-module, we sometimes simply denote
by M [ 1

r ] the module M ⊗R R[ 1
r ] over R[ 1

r ] and f [ 1
r ] : M [ 1

r ] → N [ 1
r ] the

induced homomorphism of a homomorphism f : M → N of R-modules.

(8) By a linear algebraic group over a ring R we mean an affine group scheme
of finite presentation over R. By a reductive group over R we mean a
connected smooth affine group scheme over R such that for each geometric
point s of SpecR, the pullback Gs is a connected reductive group over s.

(9) Let k be a field of characteristic p. For any k-scheme S, we denote by
FrobS : S → S the absolute Frobenius endomorphism of S, and by ( )(p)

the pull-back along FrobS of a scheme or a sheaf or a morphism over S. For
example, if G is a reductive group over k, we denote by G(p) the pull-back
of G along FrobSpeck; if P is a G-torsor over S, then P (p) is a G(p)-torsor

over S; the pull back λ(p) : Gm,k ∼= G(p)
m → G(p) along FrobSpeck of a

cocharacter λ : Gm,k → G (over k) is a cocharacter of G(p) (over k). In
particular, if G is defined over Fp, then λ(p) is again a cocharacter of G

11



since we then have canonical isomorphism G(p) ∼= G. When k is perfect,
we have an automorphism of X∗(G) := Homk(Gm,k, G), given by

σ : X∗(G) −→ X∗(G), λ 7−→ λ(p). (2.1.1)

Let G be reductive model over Fp of G, i.e., G ⊗ k = G, and σ : k →
k(x 7→ xp) the Frobenius element in the Galois group Gal(k/Fp). Then
the action σ in (2.1.1) is the same as the Galois action of σ ∈ Gal(k/Fp)
on X∗(G), i.e., we have

λ(p) =
(
Gm,k

id⊗σ−−−→ Gm,k
λ−→ G⊗ k id⊗σ−1

−−−−−→ G⊗ k = G
)
. (2.1.2)

(10) If G is a group scheme over a field of characteristic p, and R is a k-algebra,
then for any x ∈ G(R), by σ(x) we mean the image of x in G(p)(R) under
the relative Frobenius G→ G(p). Note that there are two Frobenii σ and ϕ
on LG and on L+G (Section 3). The difference between them is discussed
in Section 3.3.

2.2 Tensors and contragredient representations

We introduce below the “contragredient representations” following Wortmann’s
thesis ([Wor13]) but note that it is used slightly differently in this thesis.

Let R be a ring and M a finite locally free R-module. Denote by M∗ the
dual R-module of M and by M⊗ the direct sum of all R-modules that arise
from M by applying the operation of taking duals, tensor products, symmetric
powers and exterior powers a finite number of times. An element of M⊗ is
called a tensor over M . For an isomorphism f : M1

∼= M2 of finite locally free
R-modules, we have an induced isomorphism (f−1)∗ : M∗1 → M∗2 , and hence
f⊗ : M⊗1 →M⊗2 .

For any M as above, there is a canonical isomorphism of group schemes, called
the contragredient representation of GL(M), defined as

(·)∨ : GL(M) ∼= GL(M∗), g 7−→ g∨ := (g−1)∗.

Through the contragredient representation of M , M⊗ is natually identified
with (M∗)⊗. If s ⊂ M⊗ is a set of tensors over M , which defines a subgroup
G ⊂ GL(M), then they also defines a subgroup {g∨|g ∈ G} ⊂ GL(M∗), when
considered as tensors over M∗. Since M is canonically identified with (M∗)∗,
we also have the contragredient of GL(M∗),

(·)∨ : GL(M∗)→ GL(M),

which we shall use frequently in the thesis.
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3 Loop groups

3.1 Representability of loop groups

Definition 3.1.1. Let k be a field and G a linear algebraic group over k. The
(algebraic) loop group of G, denoted by LG, is the fpqc sheaf of groups
whose A-valued points for a k- algebra A is given by LG(A) = G(A((u))),
where A((u)) is the ring of Laurent series with coefficients in A. Let K :=
L+G ⊂ LG be the subgroup of LG with K(A) = G(A[[u]]), where A[[u]] is
the ring of formal power series with coefficients in A. It is called the (strict)
positive loop group of G. We set K1 to be the kernel of the reduction map
K→ G.

In fact, the functors L+(·) and L(·) can be defined more generally. For exam-
ple, if X is a scheme over k[[u]], and X a scheme over k((u)), we can define
the positive loop functor L+X and the loop functor LX as follows: for
any k-algebra A,

L+X(A) := X(A[[u]]), LX(A) := X(A((u))).

These are the so called the twisted versions in [PR08]) to distinguish the cases
where X and X come from k-schemes. Note that if X does come from a k-
scheme, i.e., X = X0⊗k k[[u]] for some k-scheme X0, then we have L+G(X) =
L+G(X0); the similar assertion holds for the functor L(·) as well. We shall
not need such generalities in the sequel.

In what follows in this section, we let G be a reductive group over k.

Lemma 3.1.2. The positive loop group L+G is represented by an affine group
scheme (of infinite type) over k.

For the proof the preceding lemma, one may see Proposition 3.2.1 in B. Levin’s
thesis [Lev13]. The basic idea is to embed G into GLn,k, and then reduce
to show that L+GLn,k is represented by an affine group scheme and that
L+G ↪→ L+GLn,k is a closed embedding. We refer to the discussion before
Definition 1.1 in [PR08] for the equations defining this embedding.

Following the conventions in [PR08], we call an fpqc sheaf Y over k an ind-
scheme if it is the inductive limit of the functors associated to a directed
system {Yi} of k-schemes. We say Y is strict if in addition, the transition
morphisms are closed embeddings. A group ind-scheme is an ind-scheme
which is a group object in the category of ind-schemes. We say Y is ind-affine
(resp. ind-finite type, ind-projective, etc) if each Yi can be taken to be
affine (resp. ind-finite type, projective, etc).

Proposition 3.1.3 ([Lev13, Proposition 3.2.4.]). The loop group LG is repre-
sented by a strict ind-affine group ind-scheme over k.
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We only explain here the basic idea of the proof. In the case G = GLn,k, this

is well-known (see [BL94]). For each N ≥ 0, denote by GL
(N)
n,k the subfunctor

of LGLn,k given by

GL
(N)
n,k (R) = {M ∈ GLn(R((u)))| both M and M−1 have at most N poles}.

One shows that each GL
(N)
n,k is represented by an affine scheme (not group

scheme, unless N = 0) and the transition morphisms are closed immersions.
Clearly one has then

LGLn,k =

∞⋃
N=0

GLn,k.

For the general case, again we take an embedding G ↪→ GLn,k and set

G(N) = LG ∩GL
(N)
n,k . (3.1.1)

Then one finishes the proof by showing that each G(N) is a closed subscheme

of GL
(N)
n,k .

3.2 A subfunctor D(G, x) of the loop group LG

Take x ∈ LG(k) and let C(G, x) be the subfunctor of LG which associates
to a k-algebra R the subset K(R)xK(R) of LG(R). Denote by D′(G, x) the
fpqc sheafification of C(G, x). We show in this subsection that D′(G, x) is
represented by a subscheme of LG.

Let G(i) be as in (3.1.1), the we have LG = lim
−→

G(i). Since the point x lies in

some G(i)(k), a natural idea is to consider the group action of schemes

ρ : K×K×G(i) → G(i), (g, h, z) 7→ gzh−1 (3.2.1)

and the orbit map

ρx : K×K→ G(i), (g, h)→ gxh−1.

Indeed, if the orbit map ρx has locally closed image, one would like to hope
that the sheaf D′(G, x) is represented by a subscheme (maybe not reduced)
of G(i) with underlying topological space |Im(ρx)|. This idea turns out to be
correct. However, since both K and G(i) are infinitely dimensional and it is
not clear whether the morphisms ρ, ρx are of finite type or not, many of the
techniques and results of algebraic group actions on algebraic schemes (among
them is Chevalley’s theorem on constructible sets) do not apply directly. For
this reason we need to pass to the affine Grassmannians of G

The affine Grassmannian of G, denoted by Gr, is the fpqc sheafification of
the presheaf which, to every k-algebraR, associates the quotient LG(R)/K(R).
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Let LG = lim
−→

G(i) be as above. If we denote by (G(i)/K)◦ the presheaf R 7→

G(i)(R)/K(R) and Gr(i) the fpqc sheafification of (G(i)/K)◦, then each Gr(i)

is represented by a finite type k-scheme and we have Gr = lim
−→

Gr(i). In

other words, the affine Grassmannian Gr is an ind-scheme of ind-finite type.
Moreover, since G is reductive, each Gr(i) is projective and hence Gr is ind-
projective. In the case of G = GLn, each Gr(i) is a closed subscheme of a finite
disjoint union of usual Grassmannians.

Consider the left action

θ : K× (G(i)/K)◦ → (G(i)/K)◦, (g, xK(R)) 7→ gxK(R)

of K on (G(i)/K)◦ as functors. Then θ extends naturally to a left action of K

on Gr(i), which we denote again by θ. Now we have a commutative diagram
of morphisms of presheaves

K×K×G(i)

pr1×p
��

ρ //

p

��

G(i)

p

��
K× (G(i)/K)◦

id×i
��

θ // (G(i)/K)◦

i
��

K×Gr(i) θ // Gr(i)

where p : G(i) → (G(i)/K)◦ is the natural projection and i : (G(i)/K)◦ ↪→ Gr(i)

is the natural inclusion (note that the presheaf (G(i)/K)◦ is separated). Denote

by x̄ the image of x in (G(i)/K)◦(k) ⊂ Gr(i)(k) and by θx̄ : K → Gr(i) the
orbit map of θ at x̄.

Lemma 3.2.1. The topological image |θx̄(K)| is a locally closed subset of Gr(i).

Proof. Note that we have K = lim
←−

Gj , with

Gj := Res(k[u]/uj)/kGk[u]/uj ,

the Weil restriction of Gk[u]/uj over k. One may check that the action of K

on (G(i)/K)◦ factors through G2i (first do the case of G = GLn and for the
general case, embed G into some GLn as in the definition of G(i)). Hence the

action of K on Gr(i) also factors through G2i. Since G2i is again an algebraic
group over k, one gets the result by applying Proposition 1.52. (b) in [Mil15]

for the induced orbit map G2i → Gr(2i) in question.

We define Ox̄ to be the unique reduced subscheme of Gr(i) with underlying
topological space |θx̄(K)|. The subscheme Ox̄ is usually called the Schubert
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cell of x̄ in Gr. It is clear that the orbit map θx̄ factors through Ox̄ because
the Weil restriction G2i in the proof of Lemma 3.2.1 is again a smooth linear
algebraic group.

Lemma 3.2.2. The orbit map θx̄ : K → Ox̄ is a surjective morphism of fpqc
sheaves.

Proof. It follows from Lemma 9.27 in [Mil15] that the induced orbit mapG2i →
Ox̄ is surjective as fpqc sheaves. But since G is smooth, the projection map
K(R) → G2i(R) is surjective for every k-algebra R. Hence θx̄ is a surjective
map of fpqc sheaves.

Let D(G, x) be the pull-back of Ox̄ ⊂ Gr(i) along the projection map π :=

i ◦ p : G(i) → Gr(i). Then the orbit map ρx factors through D(G, x). Our aim
now is show that D′(G, x) is represented by the scheme D(G, x).

Proposition 3.2.3. The fpqc sheaf D′(G, x) is represented by the formally
smooth subscheme D(G, x) of LG. Moreover, the equation D(G, x)(l) =
K(l)xK(l) holds for any algebraically closed field extension l of k. In particular,
the subscheme D(G, x) ⊂ G(i) has underlying topological space |Im(ρx)|.

Proof. As the induced map of sheaves D′(G, x)→ D(G, x) from the inclusion
C(G, x) ⊂ D(G, x) is injective, for the first part of the claim it suffices to
show that the orbit map ρx : K ×K → D(G, x) is surjective as fpqc sheaves.
Indeed, for any k-algebra R and any point y ∈ D(G, x)(R), by Lemma 3.2.2
fpqc locally its image

π(y) = yK(R) ∈ (G(i)/K)◦(R) ⊂ Gr(i)

comes from a translation of x̄ by an element of K(R). In other words, there ex-
ists a faithfully flatR-algebraR′ such that gxK(R′) = yK(R′) ∈ (G(i)/K)◦(R′).
This implies that the orbit map ρx : K×K → D(G, x) is a surjective map of
fpqc sheaves. In the case of R = l for an algebraically closed field extension l
of k, the same argument shows that D(G, x)(l) = K(l)xK(l) (here we use the
fact that Ox̄(l) = K(l) · x̄).

3.3 Two Frobenii on the loop group

From now on, we let the field k be of characteristic p till the end of this
section. For each i, we still let G(i) be as in (3.1.1) and denote by σG(i) :
G(i) → (G(i))(p) the relative Frobenius of G(i) over k. Then all these σG(i)

induce a homomorphism

σ = σLG : LG→ (LG)(p) := lim−→
i

(G(i))(p).
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On the other hand, for each k-algebra A, and each y ∈ LG(A), if we see y as a
morphism y : SpecA((u))→ G, then the composition σG◦y gives an element in
LG(p)(A). This induces a homomorphism ϕ(A) : LG(A) → LG(p)(A). Since
ϕ(A) is functorial in A, we obtain another homomorphism

ϕ : LG→ LG(p) ∼= (LG)(p).

In particular, if G is defined over Fp, then for each i, (G(i))(p) is canonically
isomorphic to G(i). And hence we have canonical isomorphisms

LG(p) ∼= (LG)(p) ∼= LG.

This is the case which we will mostly concern in the sequel. Note that there
is a difference between ϕ and σ as illustrated as follows: if we take G = Gm
and let R be a k-algebra, then for any f =

∑
aiu

i ∈ LGm(R) we have

ϕ(f) =
∑

api u
pi, σ(f) =

∑
api u

i. (3.3.1)

In fact, given a perfect k-algebra R (i.e., the absolute Frobenius of R is bi-
jective), the homomorphism σ(R) : LG(R) → (LG)(p)(R) is an isomorphism
since for each i, the homomorphism G(i)(R)→ (G(i))(p)(R) is an isomorphism.
But this is almost never the case for ϕ(R).

Lemma 3.3.1. Suppose that G is defined over Fp and R a perfect k-algebra.

Take x ∈ LG(R), which corresponds to a morphism SpecR((u))
x−→ G. Then

under the homomorphism σ−1 ◦ ϕ : LG(R)→ LG(R), the image (σ−1 ◦ ϕ)(x)
corresponds to the morphism

SpecR((u))
π−→ SpecR((u))

x−→ G,

where π : SpecR((u)) → SpecR((u)) corresponds to the R-endomorphism of
R((u)) which sends u to up.

Proof. The claim is clear for G = GLn; see (3.3.1). For the general case, we
let ι : G ⊂ GLn be a closed embedding of group schemes over Fp.

Denote by σG : G → G(p) ∼= G the relative Frobenius of G over k. Then we
have the following commutative diagram

G

ι

��

σG // G

ι

��
GLn

σGLn // GLn

Recall that σG ◦ x corresponds to ϕ(x) in LG(R). Similarly, ι ◦ σG ◦ x =
σGLn ◦ ι ◦ x corresponds to the image of ϕ(x) in LGLn(R).
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On the other hand, we also have commutative diagram

LG(R)
σ−1
LG //

Lι

��

LG(R)

Lι

��
LGLn(R)

σ−1
LGLn // LGLn(R)

where Lι is the homomorphism induced from ι. Since we know that the state-
ment is true for G = GLn,

Lι(σ−1
LG ◦ ϕ(x)) = σ−1

LGLn
(Lι(ϕ(x)))

corresponds to the morphism

SpecR((u))
π−→ SpecR((u))

x−→ G
ι−→ LGLn.

If (σ−1◦ϕ)(x) = (σ−1
LG◦ϕ)(x) corresponds to a morphism y : SpecR((u))→ G.

Then we have ι ◦ y = ι ◦ (x ◦ π) and hence y = x ◦ π.

Lemma 3.3.2. Let G be a linear algebraic group over a field k of characteristic
p > 0 and let K and K1 be as in Definition 3.1.1. Then for any k-algebra R
and any element g ∈ K(R), we have ϕ(g)K1(R) = σ(g)K1(R).

Proof. We may assume G = GLn. For any g ∈ K(R) = G(R[[u]]), write
g = g0(1 + uM) with g0 ∈ G(R) and M ∈ Mn(R). It is easy to see that in
fact 1 + uM lies in K1(R). Hence we have ϕ(g)K1 = σ(g)K1(R) since they
are both equal to σ(g0)K1(R).

3.4 Fpqc sheaves D(G, x)/K+ and D1(G, x)/K
�

Let G, k be as in the preceding lemma. We have a semidirect product of affine
group schemes K+ := (K1×kK1)okK induced by the right action defined for
each k-algebra R by

K1(R)×K1(R)×K(R) −→ K1(R)×K1(R)(
(α, β), γ

)
7−→ (γ−1αγ, ϕ(γ)−1βϕ(γ))

More explicitly, for any two elements (α, β, γ), (α′, β′, γ′) ∈ K+(R), the multi-
plication is given by(

α′, β′, γ′
)
·
(
α, β, γ

)
=
(
γ−1α′γα, ϕ(γ)−1β′ϕ(γ)β, γ′γ

)
.

We refer to Section 3.2 for the notations D(G, x) and D′(G, x) and for what
follows we simply write

D := D(G, x) = D′(G, x). (3.4.1)
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There is an action of the (infinite-dimensional) affine group scheme K+ on D

given on local sections by

D×K+ −→ D

(t, (α, β, γ)) 7−→ α−1γ−1tϕ(γ)β

Let D1 := D/K1, (resp. G(i)/K1) be the quotient of D (resp. G(i)) by K1,
which by definition is the fpqc sheafification of the presheaf

R 7→ K(R)zK(R)/K1(R),
(
resp. R 7→ G(i)(R)/K1(R)

)
Since G(i)/K1 is represented by a proper k-scheme of finite type, by a similar
argument as in the proof of Lemma 3.2.1 and Lemma 3.2.2, one sees that D1

as a K ×k K-orbit of x̄ is represented by a smooth k-scheme of finite type,
where x̄ is the k-point of G(i)/K1 induced by x. In fact, D1 is a G = K/K1-

torsor in the étale topology over Ox̄′ ⊂ Gr(i) (here x̄′ denotes the image of

x in Gr(i)(k)), as it is the pull-back of the G-torsor G(i)/K1 over Gr(i). In
particular, D1 is a smooth k-scheme of finite type.

Write K� := K1okK, seen as a quotient group of K+ modulo the second direct
summand K1. Recall that K = lim

←−
Gj , with Gj the restriction of Gk[u]/uj over

k. If we denote by Hi the kernel of the natural reduction modulo u map
Gj → G, then we have

K� = lim
←−

K�i , with K�i := Hi ×k Gi.

Let us consider the right action induced by ρ in (3.2.1)

ρ1 : D1 ×k K� −→ D1,
(
tK1, (α, γ)

)
7−→ α−1γ−1tϕ(γ)K1.

One may check that the action of K� on D1 factors through K�2i+1 (see the
hint in the proof of Lemma 3.2.1), which is an affine smooth k-scheme.

Again by a similar argument as in Lemma 3.2.1, Lemma 3.2.2 and Proposition
3.2.3 we have the following lemma.

Lemma 3.4.1. (1) The K�-orbit Oȳ of a point ȳ ∈ D1(k) is represented by a
smooth k-scheme of finite type.

(2) If ȳ comes from an element y ∈ D(k) the pull-back of Oȳ under the natural
projection D→ D1 is the K+-orbit Oy of y in D.

(3) For any algebraically closed field extension l of k, we have Oy(l) = y·K+(l).

(4) For any algebraically closed field extension l of k, there is a commutative

19



diagram of bijective maps

{K�-orbits of D1,l} oo
1−1 //

OO

1−1

��

{K+-orbits of Dl}OO

1−1

��
D1(l)/K�(l) D(l)/K+(l),

where the top horizontal map commutes with the operation of taking clo-
sures.

Proof. Here we only show (4). Indeed there is a 1-1 correspondence

{K�-orbits of elements in D1,l(k)} oo 1−1 // {K+-orbits of elements in Dl(k)}.
(3.4.2)

But the left hand side of (3.4.2) is insensitive to algebraically closed field
extensions. Hence every algebraic K+-orbit of D is a K+-orbit of some k-
point of D.
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4 Classifications of p-divisible groups

4.1 General notions of frames and windows

Frames and windows were introduced by Zink in [Zin01] and greatly gener-
alized by Lau in [Lau10]. Below we introduce these notions mainly following
[CLA17].

Definition 4.1.1. A Frame S = (S,FilS,R, ϕ, ϕ1, $) consists of the following
data:

− a ring S and an ideal FilS of S such that FilS + pS is contained in the
Jacobson radical of S.

− the quotient ring R= S/FilS.

− a ring endomorphism ϕ : S → S whose reduction modulo p is the absolute
Frobenius map S/pS → S/pS (in other words, the pair (S, ϕ) is a simple
frame).

− a ϕ-linear map ϕ1 : FilS → S.

− $ is an element in S such that ϕ = $ϕ1 on FilS.

We say the frame S satisfies the surjectivity condition if the image of ϕ1

generates the unit ideal of S.

Let S′ = (S′,FilS′, R′, ϕ, ϕ1, $
′) be another frame. A homomorphism of

frames from S → S′ is a homomorphism of rings f : S → S′ compatible with ϕ
and ϕ1. Note that a morphism of frames here is called a strict homomorphism
in literatures; see for example, [Lau10].

A frame S is called a lifting frame if every finite projective R-module lifts
to a finite projective S-module. We shall only concern lifting frames in the
sequel.

Definition 4.1.2. A window M = (M,FilM,ϕM , ϕM,1) over a lifting frame
S consists of a finite projective S-module M , an S-submodule FilM ⊂M , and
ϕ-linear maps ϕM : M → M and ϕM,1 : FilM → M subject to the following
constraints

(1) there exists a decomposition of S-modules M = N ⊕ L with FilM =
N ⊕ (FilS)L;

(2) if s ∈ FilS and m ∈M then ϕM,1(sm) = ϕ1(s)ϕM (m);

(3) for all m ∈ FilM, ϕM (m) = $ϕM,1(m);
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(4) ϕM,1(FilM) + ϕM (M) generate M as an S-module.

A homomorphism of windows is an S-linear map that preserves the filtra-
tion FilM and commutes with ϕM and ϕM,1.

A decomposition in (1) is called a normal decomposition of M (or of M).

Let f : S → S′ be a homomorphism of frames. The base change of a
window M over S is defined as M ′ = (M ′,FilM ′, ϕM ′ , ϕM ′,1), where

• M ′ = M ⊗S S′, ϕM ′ = ϕM ⊗S ϕ : M ′ →M ′;

• FilM ′ is the submodule of M ′ generated by FilS′ ·M ′ and the image of FilM
in M ′;

• ϕM ′,1 is determined by

ϕM ′,1(m⊗ x) = ϕ(x)ϕM,1(m), m⊗ x ∈ FilM ⊗ S′ ⊂ FilM ′,

and condition (2) in Definition 4.1.2.

For the dual of a window the reader may refer to Definition 2.1.7 in [CLA17]
or Section 2.1 in [Lau14], or Section 2 in [Lau10]. It will appear again but we
shall not use it in detail.

Remark 4.1.3. We give several remarks on definitions aboves.

(a) Once we have a normal decomposition M = N ⊕ L of M , we also have

FilM = N + (FilS)M.

It follows then that any decomposition M = N ⊕ L′ of S-modules is a
normal decomposition of M .

(b) If S is a lifting frame, the requirement (1) is equivalent to

(1)′ (FilS)M ⊂ FilM and M/FilM is a projective R-module.

(c) If S satisfies the surjectivity condition, the condition (2) implies (3).

Indeed, if 1 =
∑
aiϕ1(bi) ∈ S with all bi ∈ FilS, then

ϕM (m) =
∑

aiϕ1(bi)ϕM (m) =
∑

aiϕM,1(bim) =
∑

aiϕ(bi)ϕM,1(m) = $ϕM,1(m).

In this case, condition (4) means that ϕM,1(FilM) generates M and ϕM
is determined by ϕM,1. In many cases condition (2) can be replaced by
condition (3).
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Lemma 4.1.4 ([Lau10, Lemma 2.6]). Let S be a frame as in Definition 4.1.2.
Suppose we are given a finite projective S-module M , an S-submodule FilM ⊂
M and a normal decomposition M = N ⊕ L. Then to give a pair (ϕM , ϕM,1)
such that M = (M,FilM,ϕM , ϕM,1) is an S window is equivalent to give a
ϕ-linear isomorphism Ψ : N ⊕ L→M by the assignment

Ψ(n+ l) = ϕM,1(n) + ϕM (l)

for n ∈ N and l ∈ L.

Proof. We refer to [Lau10, Lemma 2.6] for the whole proof but only give here
the inverse of this equivalence. Given a ϕ-linear isomorphism Ψ : N⊕L→M ,
the corresponding ϕM and ϕM,1 are given as follows

ϕM (n+ l) = $Ψ(n) + Ψ(l), ϕM,1(n+ al) = Ψ(n) + ϕ1(a)Ψ(l) (4.1.1)

for all n ∈ N, l ∈ L.

4.2 Frobenius lifts and the frame S

For the convenience of future discussions, we devote one subsection to the
setting of algebras. Till the end of this section we let k be a perfect field
of characteristic p > 0 and denote by ϕ : W (k) → W (k) the unique ring
automorphism of W (k) inducing the absolute Frobenius of k.

Frobenius lifts

Lemma 4.2.1. Let R0 be a k algebra which (Zariski) locally admits a finite
p-basis ([dJ95, Definition 1.1.1], or [BM07, Définition 1.1.1]). The following
holds:

(1) There exists a p-adic flat W (k)-algebra R lifting R0 (i.e., R/pR ∼= R0),
which is formally smooth over W (k) with respect to the p-adic topology.
Such an R is unique up to (nonunique) isomorphisms and we call it a lift
of R0.

(2) There is a ring endomorphism ϕ = ϕR : R → R lifting the absolute
Frobenius of R0, which is compatible with ϕ : W (k)→W (k).

(3) Let R0, R and ϕR be as above and A0 an étale R0 algebra. Then there
exists an R-algebra A, unique up to unique isomorphism, such that A
lifts A0 and the structure ring homomorphism R → A lifts the structure
homomorphism R0 → A0. Moreover, ϕR : R → R extends uniquely to a
ring endomorphism of ϕA : A→ A, lifting the absolute Frobenius of A0.
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(4) If m is a maximal idea of R, then ϕ extends uniquely to a ring endomor-

phism of the m-adic completion R̂m of R, lifting the absolute Frobenius of
the m-adic completion R̂0,m of R0.

Proof. For the proof of (1) and (2), one may refer to [dJ95, Remarks 1.2.3], or
[Kim15, Lemma 2.1], where deformation theory developed in [Ill71] is essen-
tially used in the proof. Or one may see [BM07, 1.1] for an explicit construction
of the lifts. The statement (3) is the first part of [Kim15, Lemma 2.5] (take
I = (p) and the R0 in loc. cit. to be our R here). For (4), note first that
ϕ(m) ⊂ m. This follows from the fact that m contains p, and the fact that
the morphism SpecR0 → SpecR0 induced by the absolute Frobenius of R0 is
identity on topological spaces. Now we define ϕR̂m

: R̂m → R̂m by sending an
element

(ri)i ∈ lim←−
i

R/mi = R̂m

to (ϕ(ri))i ∈ R̂m. The element (ϕ(ri))i does lie in R̂m since ϕ(m) ⊂ m. One
checks that ϕR̂m

is the desired ring endomorphism.

Definition 4.2.2. (1) A ring endomorphism ϕ of R in Lemma 4.2.1, (2) is
usually called a Frobenius lift of R over W (k). But note that such a lift
ϕ : R→ R is in general NOT unique.

(2) For any k-algebra R0 (not necessarily admitting a finite p-basis), we call
a pair (R,ϕ) satisfying conditions (1) and (2) in Lemma 4.2.1 a simple
frame of R0 over W (k) (compare Definition 4.1.1 and [Kis06, (A.3)]).

(3) A homomorphism of simple frames (R,ϕ) → (R′, ϕ) is a ring homo-
morphism f : R→ R′ compatible with Frobenius lifts.

Example 4.2.3. (1) Let R̃ be a smooth integral Z(p)-algebra of finite type and

R the p-adic completion of R̃. Then R is a formally smooth flat Zp-algebra

which lifts R̃/pR̃.

(2) The crystalline Dieudonné functor D∗ is compatible with change of simple
frames. This will be used frequently in the sequel.

The frame S

Let R0 and k be as in Lemma 4.2.1 and (R,ϕ) a simple frame of R0. We
associate a lifting frame

S(R) := (S(R), E ·S(R), R, ϕ, ϕ1, ϕ(E))

to (R,ϕ) by setting:

• S(R) = R[[u]], E = E(u) = u+ p ∈ S(R);
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• ϕ = ϕS(R) : S(R) → S(R) is an extension of ϕR by sending u to up and
ϕ1(Ex) = ϕ(x).

Every morphism of simple frames f : (R,ϕ)→ (R′, ϕ) induces a morphism of
lifting frames S(f) : S(R)→ S(R′).

Example 4.2.4. (1) For any étale R0-algebra A0, we have a morphism of
lifting frames S(R)→ S(A) (cf. (3) in Lemma 4.2.1).

(2) If m is a maximal idea of R, then we have a morphism of lifting frames

S(R) → S(R̂m), where R̂m is the completion of R with respect to m (cf.
(4) in Lemma 4.2.1).

From now on we use the notation S(R) for R[[u]] for an arbitrary ring R, and
we often just write S instead of S(R) when there is no risk of confusion.

4.3 Classification of p-divisible groups over R0

We continue to let R0 and k be as in Lemma 4.2.1 and (R,ϕ) a simple frame of
R0. Let R be a lifting frame naturally associated to the simple frame (R,ϕ),
defined as follows

R := (R, pR, ϕ, ϕ1, p), with ϕ1 =
1

p
ϕ.

We denote by Ω̂R the module of p-adically continuous differentials of R, i.e.,

Ω̂R := lim←−
n

Ω1
(R/pnR)/W (k).

It is a projective R-module of finite type due to the finite p-basis assumption on
R0. We denote by Win(R,∇) the category of tuples (M,FilM,ϕM , ϕM,1,∇M ),
where a tuple (M,FilM,ϕM , ϕM,1) is a window over the frame R, and ∇M :

M →M ⊗R Ω̂R is an integrable topologically quasi-nilpotent connection over
the p-adically continuous derivation dR : R→ Ω̂R of R, with respect to which
ϕM is horizontal, i.e., ∇M ◦ ϕM = (ϕM ⊗ dϕ) ◦ ∇M .

For any p-divisible group H0 over R0, we denote by D∗(H0) the Dieudonné
crystal of H0. Denote by D∗(H0)(R) its evaluation at the canonical PD-
thickening R� R0 and by D∗(H0)(R0) its evaluation at the trivial PD thick-
ening idR0 : R0 → R0. Write

M = D∗(H0)(R), M0 = D∗(H0)(R0).

Denote by FM : M → M, FM0 : M0 → M0 the Frobenius endomorphism
of M and of M0 respectively. We write FilM for the preimage of the Hodge
filtration of M0 under the canonical projection M �M0. Denote by

(
BT/R0

)
the category of p-divisible groups over R0. The following classification result
is known.
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Theorem 4.3.1. For any p-divisible group H0 over R0, there exists a natural
connection ∇M : M →M ⊗R Ω̂R such that the tuple

M = (M, FilM, FM , FM/p, ∇M ) (4.3.1)

is an object in Win(R,∇). Moreover, such an assignment gives an equivalence
of categories (

BT/R0

) ∼=−−→Win(R,∇).

Proof. This follows from the combination of [dJ95, Theorem 4.1.1] and [CLA17,
Theorem 2.6.4]. Note that [CLA17, Theorem 2.6.4] deals with filtered Dieudonné
crystals as defined in [CLA17, Definition 2.4.1] but when the scheme T in loc.
cit. is of characteristic p, this notion is equivalent to the version without
filtrations as defined in [dJ95, Definition 2.3.2].

4.4 Classification of p-divisible groups over R (via Dieudonné
theory)

We continue to let R0 and k be as in Lemma 4.2.1 and (R,ϕ) a simple frame
of R0. Let R0 be another lifting frame naturally associated to (R,ϕ), defined
as follows

R0 := (R, 0, ϕ, 0, p).

The frame R0 does not satisfy the surjectivity condition. We denote by
Win0(R,∇) the category of tuples (M,FilM,ϕM , ϕM,1,∇M ), where a tuple

(M,FilM,ϕM , ϕM,1) is a window over the frame R0, and ∇M : M →M⊗R Ω̂R
is an integrable topologically quasi-nilpotent connection over the p-adically
continuous derivation dR : R→ Ω̂R of R such that

(1) FilM ⊂M is a direct summand, lifting ker(ϕM ⊗ ϕR0
) ⊂M ⊗R R0.

(2) ϕM is horizontal with respect to ∇M (i.e., ∇M ◦ϕM = (ϕM ⊗ dϕ) ◦∇M ).

A morphism in Win0(R,∇) is a morphism of windows over R0, which is
compatible with connections.

For each p-divisible group H over R, we write H0 = H ⊗R R0. Note that
the Dieudonné module M := D∗(H0)(R) is equipped with the Hodge filtration
FilM ⊂ M which lifts the (Hodge) filtration ker(ϕM ⊗ ϕR0

) ⊂ M ⊗R R0. If
we let (FM ,∇M ) be as in Theorem 4.3.1, then we obtain a natural functor

P :
(
BT/R

)
−→Win0(R,∇). (4.4.1)

by sending a p-divisible groupH overR to the tuple (M := D∗(H0)(R),FilM,ϕM , 1/pϕM ,∇M )
described above.
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A combination of Theorem 4.3.1 and Grothendieck-Messing deformation the-
ory ([?, Chapter V, Theorem (1.6)]) gives the following classification result on
p-divisible groups over R.

Theorem 4.4.1. The functor P in (4.4.1) is an equivalence of categories.

Breuil’s ring S

Breuil’s ring S to be defined below is closely related to the Kim-Kisin windows
to be discussed in the next subsection. We will give a classification of p-divisible
groups over R in term of S-modules with extra structures and then discuss
the relation between such a classification and that given by Theorem 4.4.1.

Write S = S(R) and let $1 : S → R be the R-algebra homomorphism
sending the formal variable u to p (here we see S as an R-algebra through
the embedding R ↪→ S). Let S be the p-adic completion of the divided power
envelope of S with respect to the kernel of $1 (namely the ideal E = E(u) =
u+ p).

The ring S is Zp-flat and is a subring of S[ 1
p ] (see [Kim15, Section 3.3] for

an explicit description of S). Let π1 : S → R be the natural projection of
R-algebras sending u to p and denote its kernel by FilS. Then FilS is topo-

logically generated by the divided powers {E(u)n

n! }n≥1 of E(u). The Frobenius
lift ϕ : S→ S extends uniquely to a Frobenius lift ϕ = ϕS : S → S of S, and
we have ϕ(FilS) ⊂ pS. The tuple

S := (S,FilS, ϕ,
1

p
ϕ, p)

is a frame satisfying the surjectivity condition (in fact, ϕ(E)
p is unit in S). In

addition to the natural projection π1 : S → R which sends u to p, there is
also another natural projection π2 : S → R of R-algebras which sends u to
0. The kernel of π2, denoted by Fil′S, is topologically generated by u and all
{u

n

n! }n≥1. Moreover, Fil′S is ϕ-stable and hence p2 induces a homomorphism
of simple frames (S, ϕ)→ (R,ϕ). Note that π1 and π2 are two sections of the
natural embedding R ↪→ S and they induce two morphisms of PD thickenings

(S � R0)
π1−→ (R� R0), (S � R0)

π2−→ (R� R0), (4.4.2)

which are two sections of the PD morphism (R� R0) ↪→ (S � R0). Here we

use (S � R0)
π1−→ (R� R0) to denote a commutative diagram

S

π1

��

// // R0

R // // R0.
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The embedding R→ S induces homomorphisms of frames

R = (R, pR, ϕ, 1
pϕ, p) −→ S = (S,FilS, ϕ, 1

pϕ, p);

R0 = (R, 0, ϕ, 0, p) −→ S.
(4.4.3)

The second map in (4.4.2) induce a homomorphism of frames

S −→ R0. (4.4.4)

Denote by Win(S,∇0) the category of tuples (M,FilM, ϕM, ϕM,1,∇M⊗S,π2R),
where a tuple (M,FilM, ϕM, ϕM,1) is a window over S, and ∇M⊗S,π2R : M⊗S,π2

R→ M⊗S,π2R⊗R Ω̂R is an integrable topologically quasi-nilpotent connection

over the p-adically continuous derivation dR : R → Ω̂R of R, with respect to
which ϕM⊗S,π2R := ϕM ⊗ ϕR is horizontal.

For each object M = (M,FilM,ϕM , ϕM,1,∇M ) in Win0(R,∇), we can asso-
ciate to M an object (M,FilM, ϕM, ϕM,1,∇M⊗S,π2R) in Win(S,∇0) by setting
(M,FilM, ϕM, ϕM,1) to be the base change of the window (M,FilM,ϕM , ϕM,1)
along the homomorphism of frames R0 → S in (4.4.3), and ∇M = ∇M⊗S,π2R.
Note that by definition FilM = FilM ⊗R S + FilSM and hence FilM is also

the preimage of FilM under the projection M = M ⊗R S
idM⊗π1−−−−−→ M . Such

associations are functorial and hence induces a functor

X : Win0(R,∇) −→Win(S,∇0).

Write Q = X ◦ P :
(
BT/R

)
−→Win(S,∇0).

Theorem 4.4.2 ([Kim15, Theorem 3.17]). The functor X :
(
BT/R

)
−→

Win(S,∇0) is an equivalence of categories.

Remark 4.4.3. Note that we are in the simplest situation of [Kim15] since in
our situation here no ramification happens and hence we can identify R with
S/(E(u)). To be precise, our R, S/(E(u)) play the role of R0, R in [Kim15]
respectively and p ⊂ S/(E(u)) plays the role of $ in loc. cit. Though in
our case we can identify R with S/(E(u)), sometimes it is still necessary to
distinguish them. In the general situation as in loc. cit., π1 and π2 have
different targets.

It follows immediately from Theorem 4.4.1 and Theorem 4.4.2 that the functor
X is also an equivalence of categories. To give an explicit inverse functor of X,
we need the following fact: for the S-module M in an object M of Win(S,∇0),
we have a canonical isomorphism of R-modules

M⊗S,π1
R ∼= M⊗S,π2

R. (4.4.5)
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This is due to the crystalline interpretation of M via Theorem 4.4.2. Indeed,
we may assume M = D∗(H0)(S) for some p-divisible group H0 over R0. Then
we have a canonical isomorphism

M⊗S,π1 R
∼= D∗(H0)(R) ∼= M⊗S,π2 R.

Define a functor

Y : Win(S,∇0) −→Win0(R,∇) (4.4.6)

(M,FilM, ϕM, ϕM,1,∇M⊗S,π2R) 7−→ (M := M⊗S,π2R,FilM,ϕM⊗ϕR,
1

p
(ϕM⊗ϕR),∇M ),

where ∇M⊗S,π2R is sent to itself (since we set M := M ⊗S,π2
R), and FilM is

the image of FilM under the projection

M→ M⊗S,π1 R
∼= M⊗S,π2 R = M.

It is trivial to check that X and Y are inverse to each other.

4.5 Kim-Kisin windows and Kim-Kisin modules

Breuil-Kisin modules, as defined in [Kis06, (2.2.1)], play a vital rule in the de-
velopment of integral p-adic Hodge theory. They are typically used to classify
p-divisible groups over a totally ramified extension R of W (k) (of arbitrary
finite ramification index). Such a classification was conjectured in a precise
form by Breuil (see [Bre98]) and was first proved by Kisin in [Kis06]. A simi-
lar classification result was generalized by Brinon and Trihan ([BT08]) to the
case where R is a p-adic discrete valuation ring with imperfect residue field
admitting a finite p-basis. The case where R is a regular local ring with per-
fect residue field is studied in a series of paper by Cais, Lau,Vasiu and Zink
([VZ10], [Lau14], [CLA17]), using the theory of displays and windows. W.
Kim in [Kim15] generalized the classification results aforementioned to a rel-
ative setting (e.g., R is a p-adic ring with R/(p) locally admitting a finite
p-basis), where he essentially used the method developed in [CL09]. We call
the relative version of Breuil-Kisin modules Kim-Kisin modules (cf. [Kim15,
Definition 6.1]). In the following we are dealing with the simplest relative
situation in the sense that no nontrivial ramification occurs.

We retain the notations in Section 4.2 and let S := S(R) be the lifting frame
associated to a simple frame (R,ϕ).

Definition 4.5.1. A Kim-Kisin S window, or simply a Kim-Kisin win-
dow

M = (M,FilM, ϕM, ϕM,1,∇M )

is a 5-tuple where
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(1) (M,FilM, ϕM, ϕM,1) is an S-window.

(2) M is defined to be M ⊗S S/(u) and ∇M : M → M ⊗R Ω̂R is an inte-
grable topologically quasi-nilpotent connection over the p-adically contin-
uous derivation dR : R → Ω̂R, with respect to which the ϕ-linear endo-
morphism FM := ϕM ⊗S ϕR of M is horizontal.

Remark 4.5.2. The following remarks will be needed in the sequel.

(a) For a Kim-Kisin S window M, we have ϕM,1 = 1
ϕ(E)ϕM on FilM since

ϕ(E) ∈ S is not a zero divisor, and hence the map ϕM,1 is determined by
ϕM; see (c) in Remark 4.1.3.

(b) For any normal decomposition M = N⊕L of M, by definition the ϕ-linear
map ϕM has the decomposition

ϕM =
(
N ⊕ L

E·idN⊕idL−−−−−−−→ N ⊕ L
Γ−→M

)
, (4.5.1)

where

Γ =
1

E
ϕM|M ⊕ ϕM|L

is a ϕ-linear isomorphism (Lemma 4.1.4). The linearization of (4.5.1) is
the following

ϕlin
M =

(
N(ϕ) ⊕ L(ϕ) ϕ(E)·id⊕id−−−−−−−→ N(ϕ) ⊕ L(ϕ) Γlin

−−→M
)
, (4.5.2)

where ϕlin
M , Γlin are the linearizations of ϕM and Γ respectively, and where

Γlin is an S-isomorphism.

Definition 4.5.3. A Kim-Kisin S module M is a triple (M, ϕM,∇M ) where

(1) M is a finite projective S-module;

(2) ϕM : M→M is a ϕ-linear map such that the cokernel of the linearization
(1⊗ ϕM) : ϕ∗M→M is annihilated by E ∈ S.

(3) M is defined as

M := M⊗S,ϕ S/(u) = ϕ∗M⊗S,$2
R

and ∇M : M → M ⊗R Ω̂R is an integrable topologically quasi-nilpotent
connection which commutes with the ϕ-linear endomorphism of M ,

FM := (ϕM ⊗ 1)⊗S,$2
ϕR.
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Denote by Win(S,∇0) the category of Kim-Kisin-windows and by Mod(S,∇0)
the category of Kim-Kisin S-modules, both with respect to (R,ϕR). Here we
emphasize the simple frame (R,ϕR), especially the Frobenius lift ϕR, because
later we are going to study the effect of different Frobeni on Kim-Kisin win-
dows.

Proposition 4.5.4. There is an equivalence of categories

Win(S,∇0) −→Mod(S,∇0),

(M,FilM, ϕM, ϕM,1,∇M ) 7−→ (FilM, E · ϕM,1,∇M ),

where the second ∇M is justified via the isomorphism ϕM,1⊗1 : ϕ∗FilM→M.
This equivalence preserves exactness and duality.

Proof. This follows from an exactly same argument as in [CLA17, lemma
2.1.15], though connections are not concerned in loc. cit. We sketch here
how to obtain the inverse of the equivalence of categories.

For any Kim-Kisin module (M, ϕM,∇M ). There is a unique S-linear map
ψ : M→ ϕ∗M such that

ϕM ◦ ψ = E(u) · idM, ψ ◦ ϕM = E(u) · idϕ∗M.

We obtain a Kim-Kisin window M = (M,FilM, ϕM, ϕM,1,∇M ) by setting

M := ϕ∗M, FilM : = ψ(M), ϕM := ϕM ⊗ idS;

ϕM,1(ψ(x)) = x⊗ 1, for any x ∈M.

Theorem 4.5.5 ([Kim15, Corollary 6.7]). There is an equivalence of categories(
BT/R

)
→Mod(S,∇0).

It is compatible with duality. Moreover, if (R,ϕ) → (R′, ϕ) is morphism of
simple frames, then the equivalence commutes with base change of frames
along S(R)→ S(R′).

Then it follows immediately that:

Corollary 4.5.6. There is a category equivalence

Z :
(
BT/R

)
→Win(S,∇0).

It is compatible with duality. Moreover, if (R,ϕ) → (R′, ϕ) is morphism of
simple frames, then the equivalence commutes with base change of frames from
S(R)→ S(R′).
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Remark 4.5.7. (1) In Corollary (4.5.6) there is no obvious map from either
of the left and the right hand sides to the other.

(2) The classification of p-divisible groups over R in terms of Kim-Kisin S-
modules gives rise to a classification of (p-power order) finite flat group
schemes over R in terms of torsion Kim-Kisin S-modules (by no means
trivial, see [Kim15, 9.8]). We will not explicitly use it. But note that
taking the reduction modulo p of the Kim-Kisin module of a p-divisible
group H over R one obtains exactly the Kim-Kisin module associated with
the p-kernel of H. We will take such operations frequently in the future
without further explanation.

The following lemma describes the basic relations between Kim-Kisin modules
and its crystalline Dieudonné modules.

Lemma 4.5.8. Let (M,FilM, ϕM, ϕM,1,∇M ) be the Kim-Kisin window as-
sociated to a p-divisible group H over R. We have the following canonical
identifications.

(1) (M, ϕM)⊗S,$2
R is canonically identified with the (contravariant) Dieudonné

module D∗(H) of H, together with its Frobenius map.

(2) (M,FilM)⊗S,$1 R is canonically identified with D∗(H) together with its
Hodge filtration (cf. [BBM82, Corollaire 3.3.5]).

The combination of Proposition 4.5.4, Theorem 4.5.5, and Theorem 4.3.1 gives
below a commutative diagram.(

BT/R
) ∼= //

mod p

��

Mod
(
S,∇0

) ∼= //Win
(
S,∇0

)
mod u

��(
BT/R0

) ∼= //Win
(
R,∇

)
(4.5.3)

where we simply use “∼=” to denote an equivalence of categories, and where
the right vertical functor “mod u” denotes the base change of windows along
the homomorphism of lifting frames

S
mod u−−−−−→ R.

Proof. This follows from the discussions between Remark 3.13 and Lemma
3.14 in [Kim15, Corollary 6.7], [Kim15, Corollary 6.7] and [Kim15, Corollary
6.7] together with the erratum [Kim15b].
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4.6 A comparision of classification results

In the remaining of this section, we compare the classification result given in
Theorem 4.4.1 and that given in Corollary 4.5.6 by establishing an explicit
functor from Win(S,∇0) to Win0(R,∇).

Let $2 : S→ R be the homomorphism of R-algebras sending u to 0. Clearly
we have a homomorphism of simple frames (S, ϕ) → (S, ϕ) induced by the
embedding S→ S, and (S, ϕ)→ (S, ϕ) induced by $2. The compositions of
the embedding S→ S with π1 and π2 are equal to $1 and $2 respectively.

We now define a functor from Win(S,∇0) to Win(S,∇0) as follows.

W : Win(S,∇0) −→Win(S,∇0)

(M,FilM, ϕM, ϕM,1,∇M⊗S,$2
R) 7−→ (M := M⊗SS,FilM, ϕM := ϕM⊗ϕS ,

1

p
ϕM,∇M⊗S,$2

R),

where the connection ∇M⊗S,$2
R on the right hand side makes sense since by

definition of M we have M⊗S,π2
R = M⊗S,$2

R.

Theorem 4.6.1. The functor W is well defined and is an equivalence of cate-
gories. Moreover, we have the following commutative diagram(

BT/R
)

Q

((

Z //Win(S,∇0)

W

��
Win(S,∇0)

(4.6.1)

Proof. To see that W is well defined, we need to check that ϕM := 1
pϕM makes

sense. To see this, let M = N ⊕ L be a normal decomposition of M, then we
have FilM = N ⊗S S + FilS ·M. Since ϕM(N) ⊂ ϕ(E)M, we have

ϕM(N ⊗S S) ⊂ ϕ(E)M =
ϕ(E)

p
· pM = pM.

Here we use the fact that ϕ(E)
p is a unit in S. Now it follows from the inclusion

ϕ(FilS) ⊂ pS that the functor W is well defined.

The fact that W is an equivalence of categories is due to [Kim15, Proposition
6.6] and [Kim15, Corollary 6.7]. Indeed, using the notations in loc. cit., the
equivalence between ModS(ϕ,∇) and MFS(ϕ,∇) induces trivially an equiva-
lence W 0 : ModS(ϕ,∇0)→ MFS(ϕ,∇0)), which translated into our language
via the equivalence in Proposition 4.5.4 is the W defined above.

The commutativity of (4.6.1) is due to the way in which the equivalence in
Corollary 4.5.6 is deduced (see the remark below).
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Remark 4.6.2. In fact, Theorem 4.5.5 is deduced in [Kim15] by first proving
Theorem 4.4.2 and then showing the equivalence

Mod(S,∇0) −→Win(S,∇0)
W−−→Win(S,∇0).

Now a direct computation gives the following corollary.

Corollary 4.6.3. The composition of W and Y gives an equivalence of cate-
gories

Pr : Win(S,∇0) −→Win0(R,∇) (4.6.2)

(M,FilM, ϕM, ϕM,1,∇M⊗S,$2
R) 7−→ (M := M⊗S,$2

R,FilM,ϕM := ϕM⊗ϕR,
1

p
ϕM ,∇M ),

where FilM is the image of FilM under the projection

M→M⊗S,$1
R ∼= M⊗S,$2

R = M.

Here the isomorphism M⊗S,$1 R
∼= M⊗S,$2 R is due to (4.4.5) and is thus

also canonical.

Remark 4.6.4. It is not clear to us how to give a direct construction of the
inverse functor of Pr, even when R is W (k) itself.
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5 Adapted deformations of p-divisible groups

We continue to follow notations in Sections 4.2, 4.3, and 4.5. Let (R,ϕ) be a
simple frame of a k-algebra R0, which locally admits a finite p-basis. We fix a
p-divisible group H0 over R0.

5.1 Adapted deformations

We have seen in Theorem 4.3.1 that H0 corresponds to an R-window, together
with a natural connection, namely

M = (M := D∗(H0)(R), FilM, ϕM , ϕM/p, ∇M ).

We let λ : Gm,R → GL(M) be a cocharacter over R of weights 0 and 1, such
that the reduction modulo p of λ, denoted by λ0 : Gm,R0 → GL(M0), induces
the Hodge filtration of M0 := D∗(H0)(R0) as the weight 1 submodule of M0.
Let M = N ⊕L be the splitting induced by λ, where N and L are submodules
of M with weights 1 and 0 respectively.

Write S = S(R). In the following we shall construct a Kim-Kisin window M

over S. The construction is analogous to the construction of Kisin’s “GW -
adapted deformations” in [Kis13, Prop. (1.1.13)]. We first give each of the
datum in M as below.

• M = M ⊗R S, N = N ⊗R S, L = L⊗R S;

• FilM = N ⊕ E · L;

• ϕM : M→M is the following composition

M→M(ϕ) = N(ϕ) ⊕ L(ϕ)
ϕ(E)·id

N(ϕ)⊕id
L(ϕ)−−−−−−−−−−−−−→ N(ϕ) ⊕ L(ϕ) = M (ϕ) ⊗R S

M (ϕ) ⊗R S
Γlin⊗idS−−−−−−→M ⊗R S = M.

Here if we denote by F lin : M (ϕ) → M the linearization of the Frobenius
F : M →M then Γlin is defined as

Γlin =
1

p
F lin|N(ϕ) ⊕ F lin|L(ϕ) : N (ϕ) ⊕ L(ϕ) →M. (5.1.1)

• ϕM,1 = 1
ϕ(E) · ϕM;

• ∇M : M →M ⊗R Ω̂R is already given as part of the data in M .

Lemma 5.1.1. The tuple M = (M,FilM, ϕM, ϕM,1,∇M ) is indeed a Kim-
Kisin window.
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Proof. The nontrivial part is to verify condition (4) in Definition 4.1.2, i.e., we
need to check that the the linearization

ϕlin
M,1 : FilM(ϕ) →M

is surjective (equivalently an isomorphism). A simple calculation shows that
one only needs to show that the map Γlin in (5.1.1) is an isomorphism. To see
this we apply Lemma 5.1.3 below by letting P = N (ϕ) and Q = L(ϕ).

The following (probably well-known) lemma will be used in the proof of Lemma
5.1.3.

Lemma 5.1.2. Let (A,ϕ) be a simple frame of a k-algebra A0. Then for
any homomorphism f : A0 → B0 of k-algebras, there exists a (canonical)
homomorphism of simple frames (A,ϕ)→ (W (B0), ϕ) which lifts f .

Proof. By Proposition 2, a) of [Bou06, Chap. IX, Sec. 1], the ring homomor-
phism (namely the ghost map)

ΦA : W (A)→
∞∏
i=0

A

in loc. cit. is injective and by c) in the same proposition the image of the ring
homomorphism

α :=

∞∏
i=0

ϕi : A −→
∞∏
i=0

A, a 7−→ (a, ϕ(a), ϕ(ϕ(a)), · · · )

lies in the image of ΦA, and hence the composition β := Φ−1
A |ΦA(W (A))◦α gives

a section (as a ring homomorphism) of the canonical projection W (A) → A.
Moreover, by formula (25) in loc. cit. β is compatible with Frobenius lifts.
Now the composition map

(A,ϕ)
β−→ (W (A), ϕ)→ (W (A0), ϕ)→ (W (B0), ϕ)

gives the desired homomorphism of simple frames.

When R0 is a perfect field, the following lemma is a classical result. In the
general situation as below, it is also known but for lack of good references, we
give a proof.

Lemma 5.1.3. Let M0 = N0 ⊕ L0 be the normal decomposition induced by
λR0

and let M (ϕ) = P ⊕ Q be any decomposition whose reduction modulo p

is identified with the decomposition M
(ϕ)
0 = N

(ϕ)
0 ⊕ L(ϕ)

0 . Then the R-linear
homomorphism

Γlin :=
1

p
F lin|P ⊕ F lin|Q : M (ϕ) →M (5.1.2)

is an isomorphism.
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Proof. To see Γlin is an isomorphism we need only to show that Γlin⊗idRm
is an

isomorphism for each maximal ideal m of R (m necessarily contains p since R is

p-adically complete). Denote by R̂m, R̂0,m the m-adic completion of Rm, R0,m

respectively, and k(m) their residue field. If we let k(m) be an algebraic closure
of k(m), then by Lemma 5.1.2, there exists a homomorphism of simple frames

(R̂m, ϕ)→ (W (k(m)), ϕ), lifting the composition R̂0,m → k(m)→ k(m). Since
the Dieudonné functor D∗ commutes with homomorphisms of simple frames,
using the fact that the assertion holds for the classical case where R0 is a
perfect field (see for example [Zha13, Lemma 2.2.6] for a proof), one sees
that Γlin ⊗ id

W (k(m))
is an isomorphism. In particular, Γlin ⊗ id

k(m)
is an

isomorphism, and hence by faithfully flat descent, so is Γlin ⊗ idk(m). Now by

Nakayama’s lemma, Γlin is an isomorphism.

It is easy to see that by taking the reduction modulo p of frames S→ R one re-
covers the associated window M in (4.3.1) of H0. Hence by the commutativity
of diagram (4.5.3) the p-divisible group corresponding to Kim-Kisin window
M constructed above is a deformation over R of H0. We call M the adapted
deformation of H0 with respect to the pair (ϕR, λ). Here we emphasize the
Frobenius lift ϕR because later we will study the effect of Frobenius lifts on
M. To emphasize the pair (ϕR, λ) we may as well write

Φ(ϕR, λ) := ΦM(ϕR, λ) := ϕlin
M . (5.1.3)

Remark 5.1.4. We give a few remarks concerning the construction above,
which will become useful in the sequel.

(a) There is another way to see the construction of ϕ-linear maps ϕM and
ϕM,1. Indeed the ϕ-linear map

Γ :=
1

p
F |N ⊕ F |L : M →M

is a ϕ-linear isomorphism since its linearization is (5.1.1). Hence the base
change Ψ := Γ⊗R ϕS is also a ϕ-linear isomorphism. It is direct to check
that the pair (ϕM, ϕM,1) constructed above is exactly the one induced by
Ψ via Lemma 4.1.4. If we denote by λ(ϕ) : Gm,R → GL(M (ϕ)) the pull
back along ϕR of λ. Then it is clear that

Φ(ϕ, λ) = λ(ϕ)(E) ◦Ψ. (5.1.4)

(b) It is direct to check that we have

Φ(ϕ, λ) =
(
ϕ∗N ⊕ ϕ∗L f−→ ϕ∗N ⊕ ϕ∗L F lin⊗idS−−−−−−→M ⊗R S

)
, with

(5.1.5)

f =
ϕ(E)

p
id|ϕ∗N ⊕ id|ϕ∗L (5.1.6)
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Strictly speaking, such a decomposition only makes sense after base change

to S[ϕ(E)
p ] ⊂ S[ 1

p ].

5.2 Functoriality of adapted deformations

Let R′0 be another k-algebra, locally admitting a finite p-basis and R0 →
R′0 a homomorphism of k-algebras. Let (R′, ϕR′) a simple frame of R′0 and
α : (R,ϕR) → (R′, ϕR′) a homomorphism of simple frames over W (k), which
induces the structure homomorphism R0 → R′0. By Example 4.2.3 (2) we have

D∗(H0 ⊗R′0)(R′) ∼= M ⊗R R′,

and hence one checks easily that the adapted deformation of H0⊗R′0 w.r.t. the
pair (ϕR′ , λR′) is the base change of M along the homomorphism S→ S(R′)
induced from α. In particular, we have

Φ(ϕR′ , λR′) = Φ(ϕR, λ)⊗R′.

5.3 Comparisons of different Frobenii and different de-
compositions

Notations are as in Section 5.1. Denote by (M0, ϕ
lin
M0

) the reduction modulo p

of the pair (M, ϕlin
M ). Note that by our convention in (5.1.3) we write ϕlin

M =
Φ(ϕR, λ). Similarly we write ϕlin

M0
= Φ0(ϕR, λ). We are mainly interested

in the Frobenius Φ0(ϕR, λ) and for our purpose we shall study how the pair
(ϕR, λ) should affect Φ0(ϕR, λ).

Lemma 5.3.1. Let ϕ1, ϕ2 be two Frobenius lifts of R and λ1, λ2 two cochar-
acters of GL(M) over R of weights 0, 1 such that the weight submodules of
M are free R-modules and that the reductions modulo p of λ1, λ2 induce the
Hodge filtration of M0 as weight 1-submodule. Suppose that λ1 = λ2 mod p.

Then there exists a unique automorphism η : M
(ϕ)
0 → M

(ϕ)
0 whose reduction

modulo u is identity, such that

Φ0(ϕ1, λ1) = Φ0(ϕ2, λ2) ◦ η.

Proof. The uniqueness of η follows from the fact that Φ0(ϕ1, λ1), Φ0(ϕ2, λ2)
become isomorphisms after inverting u ∈ S(R0). We show below the existence
of η. Write

c = ϕ1(E) = ϕ2(E) = up + p.

Since Φ(ϕ1, λ1) and Φ(ϕ2, λ2) become isomorphisms after inverting c there
exists a unique isomorphism

η̃ : (ϕ∗1M)[
1

c
]→ (ϕ∗2M)[

1

c
] such that Φ(ϕ1, λ1)[

1

c
] = Φ(ϕ2, λ2)[

1

c
] ◦ η̃.
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To show the existence of η it is sufficient to show that the reduction modulo

p of η̃, which is a priori only an automorphism of M
(ϕ)
0 [ 1

u ], comes from an

automorphism of M
(ϕ)
0 . We show this in two steps: in the first step we let

λ1 = λ2 while in the second step we let ϕ1 = ϕ2.

Step 1: Assume λ = λ1 = λ2. Let M = N ⊕L be the decomposition induced
by λ.

Recall that from Remark 5.1.4, (b), for each i = 1, 2 we have

Φ(ϕi, λ) = (F lin
i ⊗ idS) ◦ fi,

where F lin
i : ϕ∗M → M is the linearization of the Frobenius Fi : M → M of

M with respect to the Frobenius lift ϕi, and fi is defined as

fi =
c

p
id|ϕ∗iN ⊕ id|ϕ∗iL.

By Dieudonné theory there exists a unique isomorphism χ : ϕ∗1M → ϕ∗2M of
R-modules such that

F lin
1 = F lin

2 ◦ χ with χ⊗ idR0
= id

M
(ϕ)
0
.

Hence we have the following commutative diagram, where we omit [ 1
c ] every-

where.

ϕ∗1M

η̃

��

ϕ∗1N ⊕ ϕ∗1L
f1 // ϕ∗1N ⊕ ϕ∗1L ϕ∗1M ⊗R S

χ⊗idS

��
ϕ∗2M ϕ∗2N ⊕ ϕ∗2L

f2 // ϕ∗2N ⊕ ϕ∗2L ϕ∗2M ⊗R S

(5.3.1)

Let m1, · · · ,mr ∈ N be an R- basis of N , and mr+1, · · · ,mr+s ∈ L an R-basis
of L. Let

B(ϕi) := (ϕ∗im1, . . . , ϕ
∗
imr+s),

B(ϕi) ⊗ 1 := (ϕ∗im1 ⊗ 1, . . . , ϕ∗imr+s ⊗ 1),

be the induced basis for ϕ∗iM and for ϕ∗iM respectively. Then f1, f2 have the
same matrix representation

X =

( c
pIr 0

0 Is

)
in the sense that fi sends the basis B(ϕi) ⊗ 1 to (B(ϕi) ⊗ 1)X. Let

Y =

(
Ir + pA pB
pC Is + pD

)
(5.3.2)
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be the matrix representation of χ under the basis B(ϕ1) and B(ϕ2), where
A,B,C,D are matrices with entries in R. A direct computation shows that η̃
has matrix representation

Z =

(
Ir + pA p2

c B
cC Is + pD

)
If we denote by Z0 the reduction modulo p of Z, then it is clear that Z0 lies
in the kernel of the reduction map

GLr+s(S(R0))
mod u−−−−−→ GLr+s(R0).

Step 2. Assume ϕ = ϕ1 = ϕ2. Let

M = N1 ⊕ L1, M = N2 ⊕ L2

be the normal decompositions of M induced by λ1 and λ2 respectively. Write

Ni = Ni ⊗S, Li = Li ⊗S.

Then we have the following commutative diagram

ϕ∗M

η̃

��

ϕ∗N1 ⊕ ϕ∗L1
f1 // ϕ∗N1 ⊕ ϕ∗L1 ϕ∗M ⊗R S

ϕ∗M ϕ∗N2 ⊕ ϕ∗L2
f2 // ϕ∗N2 ⊕ ϕ∗L2 ϕ∗M ⊗R S

(5.3.3)

Here fi by definition is given by

fi =
c

p
id|ϕ∗Ni ⊕ id|ϕ∗Li .

Let mi,1, · · · ,mi,r ∈ Ni be an R- basis of Ni, and mi,r+1, · · · ,mi,r+s ∈ Li an
R-basis of Li such that

m1,j = m2,j mod p, j = 1, . . . , r + s.

Here we use the assumption λ1 = λ2 mod p. We let

B
(ϕ)
1 := (ϕ∗m1,1, . . . , ϕ

∗m1,r+s),

B
(ϕ)
1 ⊗ 1 := (ϕ∗m1,1 ⊗ 1, . . . , ϕ∗m1,r+s ⊗ 1),

be the induced basis for ϕ∗M and for ϕ∗M which are on the top of diagram

(5.3.3). In a same way we can define B
(ϕ)
2 , B

(ϕ)
2 ⊗ 1, and take them as

the basis for ϕ∗M and for ϕ∗M which are on the bottom of diagram (5.3.3),
respectively. Now the right vertical identity homomorphism has the same
matrix representation as Y in (5.3.2). Then we finish the proof by following a
similar matrix computation as in Step 1.
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6 Shimura varieties of Hodge type

6.1 Shimura data and Shimura varieties over C

Definition 6.1.1. Let G be a connected reductive group over Q and X a
conjugacy class of homomorphism of algebraic groups over R

h : S = ResC/RGm → GR.

(1) A pair (G, X) as above is called a Shimura datum if it satisfies the
following conditions:

(a) Let g denote the Lie algebra of GR. Then the composite

S→ GR → Gad
R → GL(g)

defines a Hodge structure of type (−1, 1), (0, 0), (1,−1).

(b) h(i) is a Cartan involution of Gad
R . This means that we require the real

form of Gad defined by the involution g 7→ h(i)ḡh(i)−1 to be compact.

(c) G has no factor defined over Q whose real points form a compact
group.

(2) A morphism i : (G1,X1)→ (G2,X2) of Shimura data is a map of groups
G1 → G2, which induces a map X1 → X2.

The requirement (a) in Definition 6.1.1 means that under the action of C× on
gC = g⊗R C by conjugation through h0, we have a decomposition

gC = V −1,1 ⊕ V 0,0 ⊕ V 1,−1,

where z ∈ C× on V p,q via multiplication by z−pz̄−q. This implies that for any
h0 ∈ X the stabilizer K∞ ⊂ G(R) of h0 is compact modulo its center, and
G(R)/K∞ ∼= X has a complex structure.

Let Af denote the finite adeles over Q, and Apf ⊂ Af the subgroup of adeles
with trivial component at a prime p. Let K = KpK

p ⊂ G(Af ) be a compact
open subgroup, where Kp ⊂ G(Qp), and Kp ⊂ G(Apf ) are compact open
subgroups. A theorem of Baily-Borel asserts that when Kp is small enough

ShK(G,X)C := G(Q)\X×G(Af )/K (6.1.1)

has a natural structure of an algebraic variety over C. We will always assume
in the following that Kp is small enough.
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6.2 Shimura varieties over number fields

Let (G,X) be a Shimura datum and E = E(G,X) the reflex field of (G,X)
(see [Mil04, Definition 12.2]).

Remark 6.2.1. Any subfield F of Q̄ over which the group G splits contains
E. This is because if T is a split maximal torus of G over F , then the set
W\Hom(Gm, T ) does not change if we pass from k to Q̄. It follows that E is
a finite field extension of Q; i.e., E is a number field.

Results of Shimura, Deligne, Milne and others imply that, up to isomorphism,
ShK(G, X)C has a unique quasi-projective smooth model ShK(G,X) over the
number field E.

A morphism j : (G1,X1)→ (G2,X2) of Shimura data induces a morphism of
schemes

ShK1
(G1,X1)→ ShK2

(G2,X2), (6.2.1)

provided that the compact open subgroups are chosen so that K1 maps into
K2. This map is defined over the composite of the reflex fields E(G1,X1)
and E(G2,X2). If the morphism j is an embedding, i.e., the homomorphism
G1 → G2 associated to j is a closed embedding, then for any K1, the subgroup
K2 can always be chosen so that (6.2.1) is a closed immersion of schemes.

Sometimes people also consider the pro-varieties

ShKp(G,X) := lim←− ShK(G,X),

where K runs through compact open subgroups as above with a fixed factor
Kp at p, and

Sh(G,X) := lim←− ShK(G,X),

where K runs through all compact open subgroup of G(Af ). But we shall not
consider such towers by fixing soon a Shimura datum (G,X) and a compact
open subgroup K ⊂ Af .

6.3 Shimura datum of Hodge type

Suppose that V is a finite-dimensional Q-vector space with a perfect alter-
nating pairing ψ and write GSp = GSp(V, ψ) the corresponding group of
symplectic similitudes. Then we get a Shimura datum (GSp,S±) with S± the
Siegel double space, which is defined to be the set of maps S→ GR such that

(1) The C× action on VR gives rise to a Hodge structure of type (−1, 0) and
(0,−1).

(2) (x, y) 7→ ψ(x, h(i)y) is (positive or negative) definite on VR.
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Definition 6.3.1. A Shimura datum (G,X) is said to be of Hodge type
if there is an embedding of Shimura data i : (G,X) ↪→ (GSp,S±) for some
(GSp,S±) as above.

The reflex field of (GSp,S±) is just Q. We fix a Z-lattice VZ of V and write

VẐ = VZ⊗Ẑ with Ẑ the profinite completion of Z. If VẐ is stable by K ⊂ G(Af ),
then for Kp small enough ShK(GSp,S±) can be seen as the moduli space of
abelian varieties.

6.4 Good reduction of Shimura varieties of Hodge type

We will mainly study the special fibre of the integral model of some Shimura
variety of Hodge type. Let us fix some notations and some basic assumptions,
following [KW14, 4.1] and [Kis13, (1.3.3)].

We fix a Shimura datum (G,X) of Hodge type and let i : (G,X) ↪→ (GSp,S±)
be an embedding of Shimura data (we do not fix this embedding for the mo-
ment). Fix a prime p > 3 and let K = KpK

p ⊂ G(Af ) be an open compact
subgroup such that Kp ⊂ G(Qp) is a hyperspecial subgroup and such that
Kp ⊂ G(Apf ) is sufficiently small. The condition that Kp is hyperspecial means
that there is a reductive group G over Z(p), which we fix from now on, such
that Kp = G(Zp). Then by [Kis10, (2.3.1), (2.3.2)] there is an Z(p)-lattice Λ of
V such that the embedding i is induced by some embedding i : G → GL(Λ).
By Zarhin’s trick we may assume after changing (V, ψ) and λ that ψ induces
a perfect Z(p)-pairing on Λ (cf. [Kis10, (1.3.3)]), still denoted by ψ. Now we
have an embedding ι : G → GSp(Λ, ψ) of reductive group schemes over Z(p).
The condition that Kp is sufficiently small guarantees that the double quotient
in (6.1.1) has a structure of smooth quasi-projective complex variety and hence
admits a canonical model ShK(G,X) over the reflex field E of (G,X).

From now on we fix this embedding ι (and hence i). By [Kis10, Proposition
(1.3.2)], G is then the schematic stabilizer of a set of tensors s ⊂ Λ⊗. From
the discussion in Section 2.2, we may identify Λ⊗ with (Λ∗)⊗, and hence we
have

G = {g ∈ GL(Λ)
∣∣g∨(s) = s pointwise}. (6.4.1)

Set K̃p = GSp(Zp). By [Kis10, (2.1.2)] there exists an open compact subgroup

K̃p ⊂ GSp(Af ) containing Kp such that ι induces an embedding of Shimura
varieties over E

ε0 : ShK(G,X) ↪→ ShK̃(GSp,S±).

Moreover, if K̃p is sufficiently small, ShK̃(GSp,S±) has a quasi-projective
smooth integral canonical model over Z(p), denoted by

S̃ := S̃K̃(GSp,S±),
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which has an explicit moduli interpretation ([Kis10, (1.3.4)]) and admits a
universal abelian scheme A → S̃. We always assume that K̃p is sufficiently
small for what follows.

Fix a place v of the reflex field E of (G,X) above p. Denote by OE the ring
of integers of E and OE,(v) its localization at v. Write κ := k(v) the residue
field of OE,(v) and OE,v the completion of OE at v. The existence of the
hyperspecial subgroup Kp implies that E is unramified at p ([Mil94, Corollary
4.7]), and hence we have

OE,v = W (κ),

we shall use these two notations interchangeably. Kisin showed the existence
of the integral canonical model

S := SK(G,X)

of ShK(G,X) over OE,(v) by taking S to be the normalization of the closure of

ShK(G,X) in S̃⊗Z(p)
OE,(v) and proving that it is smooth over OE,(v) ([Kis13,

(1.3.4), (1.3.5)]). In particular, we obtain a finite morphism of schemes over
OE,(v)

ε : S→ S̃. (6.4.2)

We call the pull-back to S of the universal abelian scheme A the universal
abelian scheme of S, still denoted by A. Denote by

S := SK, S̃ := S̃K̃, ε0 : S → S̃, A0

the pull-back to Specκ of S, S̃, ε and A respectively. We also call A0 the uni-
versal abelian scheme of S. In particular, S is a quasi-projective, smooth
scheme over κ.

6.5 Reduction of Hodge cocharacters

We retain notations from Section 6.4. Then for any h ∈ X, there is an associ-
ated Hodge cocharacter

νh : Gm → GC

by the formula νh(z) := hC(z, 1). More precisely, for any C-algebra R, we have
R⊗R C = R× c∗(R) where c denotes complex conjugation. Then on R-points
the cocharacter νh is given by

R× ↪→ (R× c∗(R))× = (R⊗R C)× = S(R)
h−→ GC(R).

Denote by [χ]C the unique G(C)-conjugacy class in HomC(Gm,C,GC) which
contains all the νh. Every element h ∈ X defines a Hodge decomposition
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VC = V (−1,0) ⊕ V (0,−1) via the embedding X ↪→ S±. By definition νh(z)
acts on V (−1,0) through multiplication by z and on V (0,−1) as the identity.
Consequently VC has only weight 0 and −1 with respect to any cocharacter
λ ∈ [χ]C.

Denote by G the special fibre of G, i.e.,

G = GFp = {g ∈ GL(ΛFp)|g∨(sFp) = sFp pointwise}. (6.5.1)

It is a reductive group over Fp. We describe in the following how to obtain
a G(κ)-conjugacy class of cocharacters of Gκ over κ from the Shimura datum
(G,X), as it plays an important role for the study of reductions of Shimura
varieties.

As a preparation for what follows, we let Z := HomZ(p)
(Gm,Z(p)

,G) be the
fppf sheaf of cocharacters, and Ch := G\Z the quotient sheaf of Z by the
adjoint action of G. Then by [DG, Chapter XI, Corollary 4.2], the sheaf Z
is represented by a smooth separated scheme over Z(p), and it is shown in
[Zha13, Proposition 2.2.2] that Ch is represented by a disjoint union of finite
étale (and hence proper) scheme over Z(p).

Note that the reductive group GZp is quasi-split over Zp and splits over a
finite étale extension of Zp, as is the case for any reductive group over Zp
([Con11, Corollary 5.2.14]). Identifying the conjugacy class [χ]Q̄ with a point
in Ch(Q̄), then this point has a unique lift c in Ch(E). Let cv be the pull back
of c in Ch(Ev). Then by the properness of Ch, cv lifts uniquely to a point
c̃v ∈ Ch(OE,v). Let c̄v be the reduction of c̃v in Ch(k). As Gκ is quasi-split
over κ, it follows from [Kot84, Lemma 1.1.3] that there exists a cocharacter
χ : Gm → Gκ such that the G(κ)-conjugacy class of χ, denoted by [χ]κ, is
identified with the point c̄v ∈ Ch(κ). It is clear that [χ]κ is uniquely determined
by the Shimura datum (G,X).

For any λ ∈ [χ]κ, LieGκ has only weights 0 and 1 with respect to the adjoint
action of Gm through λ. If λ, via the embedding i : G→ GSp(Λκ), induces a
weight decomposition Λκ = Λ−1

κ ⊕Λ0
κ, then the cocharacter ( )∨ ◦ λ induces a

weight decomposition

Λ∗κ = Λ∗,1κ ⊕ Λ∗,0κ , with Λ∗,1κ = (Λ−1
κ )∗ and Λ∗,0κ = (Λ0

κ)∗, (6.5.2)

through the contragredient representation (·)∨ : GL(M) ∼= GL(M∗) (cf. Sec-
tion 2.2).

We fix a cocharacter χ = χκ : Gm,κ → Gκ over κ in [χ]κ and define the
cocharacter

µ := FrobGκ/κ ◦ χ : Gm,κ → Gκ, (6.5.3)

where FrobGκ/κ : Gκ → G
(p)
κ = Gκ is the relative Frobenius of Gκ over κ, and

where we identify Gκ with G
(p)
κ since it is defined over Fp. The cocharacter χ
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determines a couple of subgroups of Gκ. We introduce here all these subgroups
though not all of them will be used immediately.

Denote by P+ (resp.P−) the parabolic subgroup of Gκ which is characterized
by the property that Lie(P+) (resp. Lie(P−)) is the sum of the non-negative
(resp. non-positive) weight spaces with respect to the adjoint operation of χ
on Lie(Gκ). Let U+ (resp. U−) be the unipotent radical of P+ (resp. P−)
and let M be the common Levi subgroup of P+ and P−, which is also the
centralizer of χ in Gκ.

Since the scheme Z is smooth, χκ lifts to a cocharacter

χ̃ : Gm,W (κ) → GW (κ) (6.5.4)

of GW (κ), which we fix from now on. We define a cocharacter µ̃ over W (κ) of
GW (κ) as

µ̃ := χ̃(p) : Gm,W (κ)
∼= G(p)

m,W (κ) → G
(p)
W (κ)

∼= GW (κ), (6.5.5)

where we identify G
(p)
W (κ) with GW (κ) since the latter is defined over Zp and

similarly for Gm,W (κ).

As in practice it is often convenient to work over the completion OE,v = W (κ),
the “integral model S” appearing in the sequel will always mean the pull back
S⊗O(v)

Ov unless otherwise stated.
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7 Construction of a morphism from I+ to D1

7.1 Recall of notations

We retain notations from Section 6.4 and Section 6.5. We specify from now
on the field k and the group G in Section 3 to be κ and Gκ respectively. Now
we can form the ind-scheme LG over κ and the following infinite dimensional
group schemes, all over κ:

K = L+G, K1, K
+, K�.

Also we can form the schemes

D := D(G,µ(u)), D1 := D1(G,µ(u)),

where D is an infinite dimensional subscheme of LG, D1 is a smooth scheme
of finite type over κ, and D is a K1-torsor over D1.

For any κ-algebra A, we continue to denote by ϕ : S(A) → S(A) the abso-
lute Frobenius of S(A) while we use σ : S(A) → S(A) to denote the ring
endomorphism of S(A), which is the absolute Frobenius on A and sends the
variable u to itself. We have seen in Section 3.3.2 that there are two natural
Frobenii σ and ϕ on LG and on L+G. Seeing G as a subgroup of GL(Λκ),
here we write down explicitly σ and ϕ. For any κ-algebra A, and any element
g ∈ L+G(A), seeing as an isomorphism g : ΛS(A)

∼= ΛS(A) preserving tensors
sS(A), we have

σ(g) = ε1 ◦ σ∗g ◦ ε1, ϕ(g) = ε2 ◦ ϕ∗g ◦ ε2, (7.1.1)

where σ∗g is the pull back along σ : S(A)→ S(A) of g and similarly for ϕ∗g,
and where

ε1 : Λ
(σ)
S(A)

∼= ΛS(A), ε2 : Λ
(ϕ)
S(A)

∼= ΛS(A)

are canonical isomorphisms since Λ is defined over Zp. We have similar de-
scriptions for those g ∈ LG(A).

Note that we use σ, ϕ : G(A) → G(A) interchangeably for the relative (=
absolute) Frobenius of G(A).

7.2 Some torsors over S and S

Write V = H1
dR(A/S) and C ⊂ V the Hodge filtration of V. Recall that V

comes with a finite set of tensors sdR ⊂ V⊗. Recall also that we have fixed
a cocharacter χ̃ : Gm,W (κ) → GW (κ) over W (κ) in Section 6.5 which is a
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lift of χκ. The cocharacter ()∨ ◦ χ̃ induces a Z-grading of W (κ)-modules:
Λ∗W (κ) = (Λ∗)0

χ̃ ⊕ (Λ∗)1
χ̃. From this grading we obtain a descending filtration

Fil0χ̃ := Λ∗W (κ) ⊃ Fil1χ̃ := (Λ∗)1
χ̃ ⊃ Fil2χ̃ := 0. (7.2.1)

We can then define two schemes over S from this filtration,

I := IsomS

(
[Λ∗W (κ), sW (κ)]⊗OS, [V, sdR]

)
,

I+ := IsomS

(
[Λ∗W (κ), sW (κ),Fil•χ̃]⊗OS, [V, sdR,V ⊃ C]

)
.

Let P+ be the stabilizer of Fil•χ in G. It is a parabolic subgroup of G over
W (κ), and has a similar description as P+ (cf. Section 6.5).

Lemma 7.2.1. Let A be a p-adic W (κ)-algebra and write X = SpecA. Then
for any morphism of schemes X → S over W (κ), the fullback I+,X is a P+-
torsor over X. Moreover, for any closed point x of X, if we denote by x̂ :
SpecÔX,x → S the induced morphism, then the pullback to SpecÔX,x of I+,

denoted by I+,x̂, is a trivial P+-torsor over SpecÔX,x.

Proof. Note that if G is a smooth group scheme over a scheme S, then a
scheme Y of finite presentation over S is an fppf G-torsor over S if and only
if the action of G on Y is free and transitive and Y is faithfully flat over S.
Indeed if Y → S is faithfully flat, then it is an fppf cover of S and the scheme
Y ×S Y is a trivial G×S Y -torsor over Y since Y ×S Y has a Y -point given by
the diagonal map Y → Y ×S Y and the action of G ×S Y on Y ×S Y is free
and transitive.

For a closed point x of X, we also denote by x : SpecOX,x → S the induced
morphism. By definition of I+, the action of P+ on I+ is free and transitive.
Hence due to the discussion above, for the first assertion in the lemma it suffices
to show that for each closed point x of X, the pullback I+,x is a P+-torsor
over SpecOX,x. Since A is p-adically complete, the image in S of x, denoted
by s, necessarily lies in the special fibre S.

On the other hand, by [Zha13, Lemma 2.3.2, 2)], if s′ is any closed point of
S which is a specialization of s (s′ exists since S is (locally) noetherian, see

[Sta, Tag 01OU]), the fibre I+,ŝ′ is a trivial P+-torsor over ÔS,s′ . But since the

canonical morphism SpecÔS,s → S factors through SpecÔS,s′ → S, the fibre

I+,ŝ is also a trivial P+-torsor over ÔS,s. In particular, I+,ŝ is faithfully flat over

ÔS,s. Now by faithfully flat descent for SpecÔS,s → SpecOS,s, the fibre I+,s is
also faithfully flat over SpecOS,s. Now the first assertion follows from the fact
that x : SpecOX,x → S factors through the canonical embedding SpecOS,s → S

while the second assertion follows from the fact that x̂ : SpecÔX,x → S factors

through SpecÔS,s → S.

48



Remark 7.2.2. A similar statement holds true for I (with respect to G). The
lemma above is in a sense an ad hoc one, since we believe that the following
slightly stronger statement holds true: I+ is a P+-torsor over S and I is a G-
torsor over S. In fact, the stronger assertion here concerning I follows readily
from the combination of [Zha13, Lemma 2.3.2, 1)] and (3.2.1) in [Kim13]. We
hope to give a whole proof of this stronger version in the future.

Write V0 = H1
dR(A0/S) and C0 ⊂ V0 the Hodge filtrations of V0. By functori-

ality of the de Rham cohomology one knows that C0 ⊂ V0 is the pullback to S
of C ⊂ V. Denote by s̄dR ⊂ V⊗0 the reduction of the set of tensors sdR ⊂ V⊗,
and by s̄ the base change to (Λ∗κ)⊗ of s ⊂ (Λ∗)⊗. Now we define the following
schemes over S,

I := IsomS

(
[Λ∗κ, s̄]⊗OS , [V0, s̄dR)

]
, (7.2.2)

I+ := IsomS

(
[Λ∗κ, s̄,Fil•χ,κ]⊗OS , [V0, s̄dR,V0 ⊃ C0]

)
, (7.2.3)

where the Fil•χ,κ denotes the base change to S of the filtration Fil•χ̃ in (7.2.1).
Clearly I, I+ are base changes to S of I, I+ respectively. By Theorem 2.4.1, 2)
in [Zha13], I is a G-torsor over S and I+ is a P+-torsor over S.

7.3 Frobenius invariance of tensors sdR

Let R0 be a κ-algebra as in Lemma 4.2.1, i.e., R0 locally admits a finite p-basis
(e.g., R0 is a smooth κ-algebra of finite type), and (R,ϕ) a simple frame of R0.
Assume from now on that R is noetherian. Let x : SpecR→ S be a morphism
of W (κ)-schemes. Write H = Ax[p∞] and H0 = H ⊗R R0.

By Theorem 4.4.1, associated to the p-divisible group H is a tuple (M,N,F =
FM ,∇), where

• M = D∗(H0)(R) ∼= H1
dR(Ax/R) = Vx;

• F = FM : M →M is the Frobenius endomorphism of M (c.f. Section 4.3.1);

• N ⊂ M is the Hodge filtration of M , i.e., N is the preimage of Cx in M
under the canonical isomorphism M ∼= Vx;

• ∇ = ∇M : M →M⊗RΩ̂R is an integrable topologically nilpotent connection
over dR : R → Ω̂R, whose existence is stated in Theorem 4.3.1, and with
respect to which F is horizontal.

By identifying the filtered modules M ⊃ N with Vx ⊃ Cx we also obtain a set
of tensors sdR,R ⊂M⊗ over M .

Lemma 7.3.1. The Frobenius endomorphism FM : M → M , after inverting
p, preserves the tensors sdR,R pointwise.
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Proof. This essentially follows from the discussion in [Kis10, 1.5.4]. Indeed, for
any maximal idea m of R, by Lemma 4.2.1, (4) the Frobenius lift ϕ : R → R
induces a simple frame (R̂m, ϕ) of R̂m, compatible with (R,ϕR). Note that
R̂m is necessarily p-adically complete ( since m contains p). Hence it suffices
to show the lemma after base change to R̂m for all m. In particular, we may
assume that R is a local ring.

Let s′ ∈ S be the image of the closed point of SpecR, which necessarily lies in
the special fibre S ⊂ S. As in the proof of Lemma 7.2.1, there exists a closed
point s ∈ S such that s is a specialization in S of s′. Then the morphism
x : SpecR → S facts through the canonical embedding s : SpecÔS,s → S.
We know from the proof of Corollary 2.3.9 in [Kis10] (the second paragraph)

that ÔS,s is isomorphic to the deformation ring RGW of the p-divisible group
H0,s := As[p

∞]⊗
ÔS,s

k(s) (equipped with Tate tensors) over k(s) induced by

the embedding s. The ring RGW is defined in the the proof of Proposition
3.5 in loc. cit. but note that there is a notation difference since this ring is
irrelevant of our R in question: in order to avoid confusion we will denote it
by A.

We may identify ÔS,s with A. The ring A is in fact a quotient of Faltings’s
versal deformation ring B of H0,s, which is isomorphic to a ring of power series
over W (k(s)) (Section 1.5 of loc. cit.). One may arrange so that A = B/I,
with I ⊂ B an ideal generated by some formal variables of B. Then if we
denote by ϕB : B → B the Frobenius lift of B obtained by sending all formal
variables of B to their p-th powers, ϕB induces a Frobenius lift ϕA : A → A,
i.e., we obtain a homomorphism of simple frames (B,ϕB) → (A,ϕA). Write
p : B → A for the canonical projection. Let (N,FN ,∇N ) be the Dieudonné
module of the tautological p-divisible group HB over B as in [Kis10, Section
1.5] (denoted by (M,ϕ,∇) in loc.cit.). Then the triple

(L := N ⊗B A,FL := FN ⊗ ϕA,∇N ⊗ idA)

corresponds to the Dieudonné module of p∗HB over A. Let g : A→ R be the
induced homomorphism and write f = g ◦ p. Since ϕR ◦ f and f ◦ ϕB become
the same after modulo p, we obtain from the definition of Dieudonné crystals
a canonical isomorphism

ε : ϕ∗Rf
∗N ∼= D∗(ϕ∗Rf∗HB ⊗R R0) = D∗(f∗ϕ∗BHB ⊗R R0) ∼= f∗ϕ∗BN.

Now we have the following identifications:

M = N ⊗B R, ∇M = ∇N ⊗B idR, F lin
M = (F lin

N ⊗ idR) ◦ ε = (F lin
L ⊗ idR) ◦ ε.

Note that the tensors sdR,R are obtained from the tensors sdR over N by base
change, i.e., sdR,R = sdR ⊗B 1. By [Kis10, 1.5.4], one finds

ε
(
sdR ⊗B 1⊗R,ϕR 1

)
= sdR ⊗B,ϕB 1⊗B 1 = sdR,A ⊗A,ϕA 1⊗A 1 ∈

(
ϕ∗AL⊗A R

)⊗
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On the other hand, we know that F lin
L ⊗ idR sends the tensors sdR,A ⊗A,ϕA 1

to sdR,A (see [Wor13, Corollary 4.8] for a clear statement though the proof is
essentially in [Kis10]). Hence F lin

M sends the tensors sdR,R ⊗R,ϕR 1 to sdR,R.
In other words, sdR,R is FM -invariant.

Each element x ∈ I(R) by definition gives an isomorphism βx : Λ∗R
∼= M ,

sending the tensors sR to the tensors sdR,R pointwise. We can transform the
Frobenius map F to Λ∗R via βR by defining

Fx := β−1
x ◦ F ◦ βx.

Note that we have a canonical isomorphism ε : (ϕ∗Λ∗R, ϕ
∗sR) −→ (Λ∗R, sR).

Define

F lin
x :=

(
V ∗R

ε−1

−−→ ϕ∗V ∗R = V ∗R ⊗R,ϕ R
Fx⊗id−−−−→ V ∗R

)
, (7.3.1)

which by Lemma 7.3.1 preserves the tensors sR, i.e., we have (F lin
x )∨ ∈ G(R[ 1

p ]).
For the next lemma, one may recall the definition of the cocharacter µ̃ :
Gm,W (κ) → GW (κ) in (6.5.5).

Lemma 7.3.2. For any x ∈ I+(R) we have (F lin
x )∨ ∈ G(R)µ̃(p) and for any

x ∈ I(R) we have (F lin
x )∨ ∈ G(R)µ̃(p)G(R).

Proof. We show only the first part of the claim since it implies the second
part.

For any x ∈ I+(R), the weight decomposition Λ∗R = Λ∗,1R ⊕ Λ∗,0R (cf. (6.5.2))
induced by the cocharacter χ̃R : Gm,R → GR induces via βx a decomposition
M = N ⊕ L. It suffices to show the following:

F lin
x = Γlin

x ◦
(
µ̃(p)

)∨
, with Γlin

x := β−1
x ◦ Γlin ◦ ϕ∗(βx) ◦ ε, (7.3.2)

where Γlin is defined as in (5.1.1). Indeed this can been seen from the following
commutative diagram

V ∗R

ε

��

(
µ̃(p)
)∨

// V ∗R

ε

��

Γlin
x // V ∗R

βx

��

ϕ∗V ∗R
ϕ∗
(
χ̃(p)∨

)
//

ϕ∗(β)
��

ϕ∗V ∗R

ϕ∗(β)
��

N (ϕ) ⊕ L(ϕ) p·id⊕id // N (ϕ) ⊕ L(ϕ) Γlin
// M
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7.4 The morphism θ : I+ → D1

As suggested by the title, in this subsection we construct a morphism of κ-
schemes from I+ to D1. We also give an explicit description of θ on geometric
points, where we skip the notion of Kim-Kisin windows and adapted deforma-
tions.

Main Construction θ : I+ → D1

Affine open coverings for I+.

Take an affine open covering {SpecR̃i → S}i∈I of the integral model S over
W (κ) such that

CR̃i ⊂ VR̃i are free modules over R̃i for each i. (7.4.1)

Since S is quasi-projective (hence separated), the intersection of SpecR̃i and
SpecR̃j is again affine, and hence is the spectrum of some W (κ)-algebra, say

R̃ij . For each i, j, since the torsors I+,R̃i , I+,R̃ij are affine over R̃i and over

R̃ij respectively, we can write

I+,R̃i = SpecÃi, I+,R̃ij = SpecÃij (7.4.2)

for some W (κ)-algebras Ãi and Ãij . Denote by Ri,0, Ai,0, Rij,0, Aij,0 the re-

duction modulo p of R̃i, Ãi, R̃ij , Ãij respectively. Clearly, we obtain affine open
coverings

{SpecRi,0 → S}i∈I , {SpecAi,0 → I+}i∈I (7.4.3)

for S and for I+ respectively, with

SpecRi,0 ∩ SpecRj,0 = SpecRij,0, SpecAi,0 ∩ SpecAj,0 = SpecAij,0.

In the following we do the construction in four steps.

Step 1: Preparations

Write Hi,0 := A[p∞]Ai,0 and let Ai, Aij be the p-adic completions of Ãi, Ãij
respectively. The induced morphism xi : SpecAi → I+ gives an isomorphism
of free Ai-modules,

βxi : Λ∗Ai
∼= Mi,

which respects the filtrations and sends the tensors sAi to the tensors sdR,Ai

pointwise. Here as usual Mi is defined as

Mi := H1
dR(AAi/Ai)

∼= D∗(Hi,0)(Ai).
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We write
Si = S(Ai), Sij = S(Aij).

Denote byMi,0,Si,0,Sij,0, xi,0 and βxi,0 the reduction modulo p ofMi,Si,Sij , xi
and βxi respectively. For each i ∈ I we choose a Frobenius lift ϕi for Ai and
denote by χxi : Gm,Ai → GL(Mi) the cocharacter of GL(Mi) over Ai in-
duced by χAi : Gm,Ai → GAi via βxi . Consider the adapted deformation
Mi = (Mi,Φ(ϕi, χxi), . . .) of Hi,0 w.r.t. the pair (ϕi, χxi)

3. We refer to Sec-
tion 5 for details on the Kim-Kisin window Mi but recall that we use

Φ0(ϕi, χxi) : M
(ϕ)
i,0 →Mi,0 (7.4.4)

to denote the reduction modulo p of the Frobenius Φ(ϕi, χxi) : M
(ϕi)
i → Mi,

where

Mi := Mi ⊗Ai Si, Mi,0 := Mi,0 ⊗Ai,0 Si,0.

Step 2: Construction of local morphisms θi : SpecAi,0 → D1.

For each i ∈ I, we construct a morphism of κ-schemes θi : SpecAi,0 → D1,
equivalently, an element θi(xi,0) ∈ D1(Ai,0), in the following way. Define

Φ0(ϕi, xi) :=
(
(βxi,0 ⊗ idSi,0)−1 ◦ Φ0(ϕi, χxi) ◦ ϕ(βxi,0 ⊗ idSi,0)

)∨
(7.4.5)

which after inverting u ∈ Si,0 lies in GL
(
ΛSi,0 [ 1

u ]
)
, where we use the contra-

gredient representation

(·)∨ : GL
(
Λ∗Si,0 [

1

u
]
)
−→ GL

(
ΛSi,0 [

1

u
]
)
.

By Lemma 7.4.1 below, Φ0(ϕi, xi) lies in D(Ai,0). Now we define

θi(xi,0) := Φ0(ϕi, xi), (7.4.6)

where Φ0(ϕi, xi) denotes the image in D1(Ai,0) of Φ0(ϕi, xi) ∈ D(Ai,0). By
Lemma 5.3.1, the element θi(xi,0) is independent of the choice of the Frobenius
lift ϕi of Ai.

Lemma 7.4.1. Φ0(ϕi, xi) lies in D(Ai,0).

Proof. We show this by giving a formula for Φ0(ϕi, xi). We use the notation
Γlin
xi as in (7.3.2). Define

α(xi) := (Γlin
xi mod p)∨ ∈ G(Ai,0).

3Here in the Kim-Kisin window Mi we omit all terms except the underlying S(Ai)-module

Mi and its Frobenius Φ(ϕi, χxi ) : M
(ϕi)
i → Mi.
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Then by Remark 5.1.4. (a) we have

Φ0(ϕi, xi) = α(xi)µ(u) ∈ D(Ai,0). (7.4.7)

Step 3: Gluing of the local morphisms

We shall show that for all i, j ∈ I, we have

θi(xi,0)|Aij,0 = θj(xj,0)|Aij,0 .

By the way we construct the morphisms θi and θj , we need only to show that
the two homomorphisms

Φ0(ϕi, χxi)⊗Si,0 idSij,0 , Φ0(ϕj , χxj )⊗Sj,0 idSij,0 : M
(ϕ)
ij,0 →Mij,0

differ by an automorphism of M
(ϕ)
ij,0 whose reduction modulo u is the identity

map, where

Mij,0 := Mi,0 ⊗Si,0 Sij,0 = Mj,0 ⊗Sj,0 Sij,0.

This is in fact clear from the functoriality of adapted deformations. Indeed, if
we still denote by ϕi the Frobenius lift of Aij induced by ϕi. Then by Section
5.2 we have

Φ(ϕi, χxi)⊗Si idSij : = Φ(ϕi, χxi,Aij )

Φ(ϕj , χxj )⊗Sj idSij : = Φ(ϕj , χxj ,Aij )

But since we have βxi,Aij = βxj ,Aij , and hence χxi,Aij = χxj ,Aij , the conclusion
follows from Lemma 5.3.1. Finally we obtain a morphism of κ-schemes

θ : I+ −→ D1.

Step 4: θ is independent of the affine open covering of S

This follows from a standard argument. Given another affine open covering
of S satisfying the requirements (7.4), which by the construction above, gives
a morphism θ1 : I+ → D1. Note that the union of these two affine open
coverings is again an affine open covering of S, satisfying (1), (2) in Section
7.4, and hence induces another morphism θ2 : I+ → D1. But we have then
θ = θ2, θ1 = θ2, and therefore θ = θ1. This finishes the proof.

Remark 7.4.2. (1) We remark here that to give the morphism θ : I+ → D1

one may simply use abstract formulas for Φ0(ϕi, xi) as in (7.4.7), without
relating to adapted deformations (or Kim-Kisin windows), as it seems to
be much more direct. In fact, one shall see this more clearly in Section 7.4
below. Nonetheless, the connection with adapted deformations provides a
conceptual interpretation of the abstract objects Φ0(ϕi, xi), and hence of
the morphism θ : I+ → D1.
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(2) Consider the morphism x : SpecA → I+ as in Step 1 (here we omit the
subscript i), that gives a p-divisible group H = Ax[p∞] over A. A natural
question one may ask is: is the adapted deformation M “the” Kim-Kisin
window corresponding to H? The answer is “yes”, up to an isomorphism
in Win(S,∇0). This follows from Corollary 4.5.6. But note that the
construction of M really depends on the point x ∈ I+(A) (not only the in-
duced point in S(A)), and hence is not canonical. As a complement of the
remark in (1), it is necessary to point out that it is the explicit construc-
tions of the adapted deformations that allows us to do the computation in
Lemma 5.3.1 so that we can eventually construct the map θ : I+ → D1.

Description of θ : I+ → D1 on geometric points

Let k be an algebraically closed field extension of κ. Write S = S(W (k)) and
S0 for its reduction modulo p. Given an element x ∈ I+(k), a lift x̃ ∈ I+(W (k))
of x gives an isomorphism

βx̃ : Λ∗W (k)
∼= M := D∗(Ax[p∞])(W (k)) ∼= H1

cris(Ax̃/W (k)) (7.4.8)

compatible with torsors and filtrations. Similarly we have βx = βx̃ ⊗ idk. As
in (7.4.5) we can then form

Φ0(ϕ, x̃) :=
(
(βx ⊗ idS0)−1 ◦ Φ0(ϕ, χx̃) ◦ ϕ(βx ⊗ idS0)

)∨ ∈ D(k), (7.4.9)

where ϕ : W (k)→W (k) is the unique Frobenius lift of W (k).

Lemma 7.4.3. The following holds:

θ(k)(x) := Φ0(ϕ, x̃), (7.4.10)

where Φ0(ϕ, x̃) denotes the image in D1(k) of Φ0(ϕ, x̃).

Proof. The corresponding morphism x : Speck → I+ factors through some
SpecAi,0 in the covering {SpecAi,0 → I+} of I+ (cf. (7.4)). We may drop the
subscript i in Ai,0 and write A0 = Ai,0. We fix a Frobenius lift ϕA : A → A
of A. Then there is a unique homomorphism of simple frames (A,ϕA) →
(W (k), ϕ) over W (κ) lifting the ring homomorphism A0 → k corresponding to
x. Denote by x̆ : SpecW (k)→ I+ the corresponding lift of x. Let x̃ : SpecA→
I+ be the structure morphism. By our construction of θ in Theorem 7.4, θ(x)
is defined to be the image in D1(k) of

Φ0(ϕA, x̃)⊗S(A0) S(k) ∈ D(k).

But by the functoriality of the formation of Φ0(ϕA, χx̃) we have

Φ0(ϕA, x̃)⊗S(A0) S(k) = Φ0(ϕ, x̆).

55



Now by Lemma 5.3.1, the two elements in D(k), namely Φ0(ϕ, x̆) and Φ0(ϕ, x̃),
have the same image in D1(k).

We can also define Γlin
x̃ and α(x̃) as in Lemma 7.4.1 and have the following

formula

Φ0(ϕ, x̃) = α(x̃)µ(u) ∈ D(k).

7.5 The morphism η : S → D1/K
�

Our main aim in this subsection is to show that the composition morphism

of fpqc sheaves I+
θ−→ D1 → D1/K

� is P+-invariant, and hence induces a
morphism of fpqc sheaves η : S → D1/K

�. To do this, we first investigate the
behavior of θ(k) : I+(k) → D1(k) under the P+(k)-action on I+(k), where as
in Section 7.4, k is an algebraically closed field extension of κ.

The following is a continuation of our discussion in Section 7.4. We will need
some group theoretic results first.

Let U+ be the unipotent radical of P+ and fix a maximal torus T of GW (k)

such that the cocharacter χ̃W (k) : Gm,W (k) → GW (k) factors through T. Let M
be the centralizer of χ̃W (k) in P+, which is a Levi subgroup of P+. Note that
T necessarily splits over W (k) since W (k) is strictly Henselian. Let Φ be the
set of roots of GW (k) with respect to T. Recall that for every root α ∈ Φ, there
is an embedding of algebraic groups Uα : Ga,W (k) → GW (k), unique up to an
element in W (k)× (here W (k)× acts on Ga,W (k) by multiplication), such that

if A is a W (k)-algebra we have tUα(x)t−1 = Uα
(
α(t)x

)
for all x ∈ Ga(A) = A

and all t ∈ T(A). We will also use the notation Uα for the image of Uα. Then
we have the following isomorphisms of closed subschemes of GW (k),∏

〈α,χ〉>0

Uα
∼−−→ U+,W (k),

∏
〈α,χ〉<0

Uα
∼−−→ U−,W (k), (7.5.1)

sending an element (uα)α in
∏
〈α,χ〉>0 Uα to the product

∏
〈α,χ〉>0 uα ∈ U+,W (k),

where α ∈ Φ runs over all possible roots of GW (k), and where the products
can be taken in any fixed order; the second isomorphism in (7.5.1) is defined
in a similar way. In particular, for each α1, α2 ∈ Φ with 〈α1, χ̃W (k)〉 > 0,
〈α2, χ̃W (k)〉 < 0 we have

χ̃(p)Uα1(W (k))χ̃(p)−1 ⊂ K1(k), χ̃(p)−1Uα2(W (k))χ̃(p) ⊂ K1(k), (7.5.2)

whereK1(k) denotes the kernel of the reduction modulo pmap G(W (k))
mod p−−−−−→

G(k).

Now a combination of (7.5.1) and (7.5.2) gives the inclusions

χ̃(p)U+(W (k))χ̃(p)−1 ⊂ K1(k), χ̃(p)−1U−(W (k))χ̃(p) ⊂ K1(k). (7.5.3)
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Lemma 7.5.1. Let p+ ∈ P+(k) be such that (x, p+) ∈ (I+ ×S P+)(k). Then
there exists an element c ∈ K�(k) such that θ(x ·p+) = θ(x) ·c. 4 In particular,

the map I+(k)
θ(k)−−→ D1(k)→ D1(k)/K�(k) is P+-invariant, and hence induces

a map

η(k) : S(k)→ D1(k)/K�(k).

Proof. Note that we have a decomposition of algebraic groups over κ, P+ =
U+ oM , and hence we may uniquely write p+ = u+m, with u+ ∈ U+(k),
m ∈M(k). We shall find such a c in the statement of the lemma by calculation.

By 7.3.2, if we write gx̃ =
(
F lin
x̃

)∨
and ∆x̃ =

(
Γlin
x̃

)∨
, then we have gx̃ =

∆x̃µ̃(p) ∈ G(W (k)[ 1
p ]), where ∆x̃ lies in G(W (k)) and the reduction modulo p

of ∆x̃ is α(x̃).

Let p̃+ = ũ+m̃ ∈ (U+ o M)(W (k)) be a lift of p+, such that (x̃, p̃+) lies in
(I+ ×S P+)(W (k)). Then we have

gx̃p̃+ = (p̃+)−1gx̃σ(p̃+)

= (p̃+)−1∆x̃µ̃(p)σ(ũ+)σ(m̃)

= (p̃+)−1∆x̃σ(m̃)Ωµ̃(p), where

Ω : = µ̃(p)σ(m̃)−1σ(ũ+)σ(m̃)µ̃(p)−1.

It follows from (7.5.3) that Ω actually lies in K1(k). Hence we have

θ(xp+) = p−1
+ α(x̃)σ(m)µ(u) ∈ D1(k).

To continue our calculation, we need to use the equicharacteristic analogue of
(7.5.3). To be precise, we have

µ(u)u+µ(u)−1 ∈ K1(k) for every element u+ ∈ U+(k) (∗).

We have then

θ(xp+) = p−1
+ α(x̃)σ(m)µ(u)

= α(x̃)µ(u)σ(u+)−1 · (1, p+)

= α(x̃)yα(x̃)−1θ(x) · (1, p+)

= θ(x) ·
(
α(x̃)y−1α(x̃)−1, p+

)
,

where we let y := µ(u)σ(u+)−1µ(u)−1 and (∗) is used to deduce that the
element α(x̃)y−1α(x̃)−1 lies in K1(k). We write

d(x̃, p+) := α(x̃)yα(x̃)−1 = Φ0(ϕ, x̃)σ(u+)Φ0(ϕ, x̃)−1.

4We intentionally mention the element c as it will serve for Theorem 7.5.2 below.

57



Finally, we may take

c =
(
d(x̃, p+), p+

)
∈ K�(k). (7.5.4)

Theorem 7.5.2. The composition of morphisms of fpqc sheaves I+ → D1 →
D1/K

� is P+-invariant, and hence induces a morphism of fpqc sheaves, η :
S → D1/K

�, fitting the following commutative diagram

I+
θ //

��

D1

��
S

η // D1/K
�.

Proof. To keep coherence with notations we write x : I+ ×κ P+ → I+ for
the first projection and p+ : I+ ×κ P+ → P+ for the second projection and
x · p+ : I+ ×κ P+ → I+ for the P+-action on I+. We need to show the
commutativity of the diagram

I+ ×κ P+

θ◦(x·p+) //

θ◦x
��

D1

��
D1

// D1/K
�.

(7.5.5)

Since each SpecAi,0 in the covering {SpecAi,0 → I+}i∈I is P+-invariant, we
may assume that I+ = U , where U runs over all SpecAi,0 in the covering. For
the discussion below we may suppress the subscript i in Ai,0, θi, etc. We fix a
Frobenius lift ϕA : A → A of A and write x̃ : SpecA → I+ for the structure
morphism.

We define an element in LG(U ×κ P+) as follows

d = Φ0(ϕA, x̃)σ(u+)Φ0(ϕA, x̃)−1.

where σ(u+) is the morphism

U ×κ P+
p+−−→ P+ → U+ → U

(p)
+ ,

and where Φ0(ϕA, x̃) ∈ D(U) is defined in (7.4.5), but here we see it as an
element in D(U×κP+) by precomposing the first projection x : U×κP+ → U .

Claim: d lies in K1(U ×κ P+).

Indeed, since U ×κ P+ is reduced and K1 is a closed subscheme of LG, the
morphism d : U ×κ P+ → LG lies in K1 if and only if its set theoretic image
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lies in K1. But we have seen from the proof of Lemma 7.5.1 that the image of
d on geometric points do lie in K1. Hence the claim is proved.

Denote by
Γθ◦(x·p+), Γθ◦x : U ×κ P+ → D1 ×κ (U ×κ P+)

the graph of θ ◦ (x · p+), θ ◦ x : U ×κ P+ → D1 respectively. We shall show
the commutativity of the following diagram

D1 ×κ (U ×κ P+)

·c

��

U ×κ P+

Γθ◦(x·p+)

44

Γθ◦x

**
D1 ×κ (U ×κ P+),

(7.5.6)

where the right vertical morphism ·c is the translation by

c = (d, p+) ∈ K�(U ×κ P+),

which is an automorphism of D1 ×κ (U ×κ P+) over U ×κ P+. Note that the
commutativity of (7.5.6) implies that θ ◦ (x ·p+) = θ ◦x since we also have the
commutative diagram

D1 ×κ (U ×κ P+)
pr1 //

·c

��

D1

''
D1/K

�.

D1 ×κ (U ×κ P+)
pr1 // D1

77

But as U ×κ P+ and D1×κ (U ×κ P+) are of finite type over κ and U ×κ P+ is
smooth, hence geometrically reduced, it is enough to check the commutativity
of (7.5.6) on geometric points (see for example Exercise 14.15 of [GW10]).
Now the conclusion follows from Lemma 7.5.1 and the formula for the c in
(7.5.4)

59



60



8 Ekedahl-Oort stratification

The definition of the Ekedahl-Oort stratification for a general Shimura va-
riety of Hodge type is based on the theory of G-zips developed in [PWZ11]
and [PWZ15]. We review first the definition and basic properties of G-zips.
Notations are as in Section 6.4 and Section 6.5.

8.1 G-zips of a certain type χ

Definition 8.1.1 ([PWZ15, 3.1]). Let T be a scheme over κ.

(1) A G-zip of type χ over T is a quadruple I = (I, I+, I−, ι) consisting of a

right G-torsor I over T , a P+-torsor I+ ⊂ I, and P
(p)
− -torsor I− ⊂ I, and

an isomorphism of M (p)-torsors:

ι : I
(p)
+ /U

(p)
+
∼= I−/U

(p)
− .

(2) A morphism I → I′ = (I′, I′+, I
′
−, ι
′) of G-zips of type χ over T consists of

an equivariant morphism I → I′ which sends I+ to I′+ and I− to I′−, and
which is compatible with the isomorphisms ι and ι′.

With the natural notion of pullback, the G-zips of type χ, as T varies, form
a category fibred in groupoids over the category of κ-schemes. We denote
this fibred category by G-Zipχ. It is shown in [PWZ15, Proposition 3.1] that
G-Zipχ is a stack over κ.

The stack G-Zipχ has an interpretation as an algebraic stack as below. To G
and χ one can also associate a natural algebraic zip datum which we shall
not specify (see [PWZ15, Definition ]), and to such an algebraic datum there
is an associated zip group Eχ := EG,χ, given on points of a κ-scheme T by

Eχ(T ) := {(mu+,m
(p)u−)

∣∣m ∈M(T ), u+ ∈ U+(T ), u− ∈ U (p)
− (T )} ⊂ P+(T )× P (p)

− (T ).

The group Eχ is a linear algebraic group over κ and it has a left action on
Gκ by (p+, p−) · g := p+gp

−1
− . With respect to this action one can form the

quotient stack [Eχ\Gκ].

Theorem 8.1.2 ([PWZ15, Proposition 3.11, Corollary 3.12]). The stacksG-Zipχ

and [Eχ\Gκ] are naturally equivalent. They are smooth algebraic stacks of
dimension 0 over κ. In particular, the isomorphism class of G-zips over any
algebraically closed field extension k of κ are in bijection with the Eχ(k)-orbits
in G(k).

Remark 8.1.3. This realizes G-Zipχ as an algebraic quotient stacks. While
the language of G-zips is more “motivic” (see [Zha13, Chapter 0, 0.3]), the
realization as a quotient stack will help to give a combinatory description of
the topological space of G-Zipχ (see the next section).
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8.2 Combinatory description of the topological space G-
Zipχ

Let k be an algebraically closed field extension of κ. We shall see that the topo-
logical space of [Eχ\Gκ] is identified with a subset JW of the Weyl group W ,
which will later play the part of “index set” of the Ekedahl-Oort stratification.

As a preparation for what to follow, we let T ⊂ B be a maximal torus, re-
spectively a Borel subgroup of Gk. Let W = NGT (k)/T (k) be the finite Weyl
group of Gk with respect to Tk, and let I := I(B, T ) ⊂W be the set of simple
reflections associated to the pair (B, T ). As the pair is unique up to a con-
jugation by G(k), the Coxeter system (W, I) is, up to unique isomorphism,
independent of the choice of the pair (B, T ) (see [PWZ11, Section 2.3] for a
detailed explanation). Moreover, for any field extension k → k′, the canonical
map (

W (Gk, B, T ), I(Gk, B, T )
)
→
(
W (Gk′ , Bk′ , Tk′), I(Gk′ , Bk′ , Tk′)

)
is an isomorphism.

Recall that the length of an element w ∈W is the smallest number l(w) such
that w can be written as a product of l(w) simple reflections. By definition of
the Bruhat order ≤ on W , we have w′ ≤ w if and only if for some (equiva-
lently, for any) reduced expression of w as a product of simple reflections, by
leaving out certain factors one can get an expression of w′.

For any subset J ⊂ I we denote by WJ the subgroup of W generated by J .
For any w ∈ W , there is a unique element in the left coset WJw (resp. right
coset wWJ) which is of minimal length; if K ⊂ I is another subset, then there
is a unique element in the double coset WJwWK which is of minimal length.
We denote by JW (resp. WK , resp. JWK) the subset of W consisting of
w ∈ W which are of minimal length in WJw (resp. wWK , resp. WJwWK).
Then we have JWK = JW ∩WK and JW (resp. WK , resp. JWK) is a set
of representatives of WJ\W (resp. W/WK , resp. WJ\W/WK). Denote by
w0, w0,J the unique element of maximal length in W and in WJ respectively,
and let xJ := w0w0,J . For any w ∈W , we denote by ẇ a lift of w in NGT (k).

Definition 8.2.1. For any two elements w,w′ ∈ JW , we write w′ � w if there
exists a y ∈WJ , such that y−1w′σ(xJyx

−1
J ) ≤ w.

The relation � defines a partial order on JW ([PWZ11, Corollary 6.3]). This
partial order “�” defined above induces a unique topology on JW .

For any standard parabolic subgroup P of Gk (the word “standard” means P
contains B), there is an associated subset J := J(P ) ⊂ I, defined as J = {g ∈
I
∣∣gT (k) ⊂ P (k)}, called the type of P . If we view I as the set of simple roots

of G with respect to the pair (B, T ), then the type J of P is simply the set of
simple roots whose inverse are roots of P . It is a basic fact that two parabolic
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subgroups of Gk are conjugate if and only if they have the same type. For
a cocharacter λ : Gm,k → Gk over k, the type of λ is defined to be the type
of the parabolic subgroup P = P+(λ) (see Section 6.5 for the formation of
P+(λ)). It only depends on the G(k)-conjugacy class of λ.

We let J := J(χk) be the type of the cocharacter χk : Gm,k → Gk. Recall
that the finite set Eχ(k)\G(k) as orbit spaces is naturally equipped with the
quotient topology of G(k). Following [PWZ15, Section 3.5] (see also [Wor13,
Section 6.4] for a clear statement) one can define a map

π : JW −→ Eχ(k)\G(k) ∼=
∣∣[Eχ\Gκ]k

∣∣, w 7−→ Eχ(k) · ẇẇ0σ(ẇ0,J). (8.2.1)

Lemma 8.2.2. The map π in (8.2.1) is a bijection preserving partial order
relations and hence is a homeomorphism of topological spaces. Hence there is
a homeomorphism between JW and

∣∣G-Zipχk ∣∣.
8.3 Definition of Ekedahl-Oort stratification

Recall that to give a morphism of stacks over κ from S to G-Zipχ is equivalent
to give an object in G-Zipχ(S), namely to give a G-zip of type χ over S. C.
Zhang defines a classification map of Ekedahl-Oort strata ζ : S → G-Zipχ by
constructing a universal G-zip over S, from which he gives the definition of
Ekedahl-Oort stratification of S by taking geometric fibres of ζ (see Definition
8.3.1 below). Wortmann gives in [Wor13] a slightly different construction
(replacing the Zp lattice Λ by its dual Λ∗). We recall Wortmann’s construction
in the following.

Recall that the de Rham cohomology V0 comes with a Hodge filtration C0.
Denote by D0 ⊂ V0 the conjugate filtration of V0. Recall that we have fixed
an embedding (cf. Section 6.4)

ι : G ↪→ GL(ΛFp) ∼= GL(Λ∗Fp).

The cocharacters ()∨ ◦ χ and ()∨ ◦ χ(p) induce Z-gradings (cf. Section 6.5)

Λ∗κ = (Λ∗κ)0
χ ⊕ (Λ∗κ)1

χ, Λ∗κ = (Λ∗κ)0
χ(p) ⊕ (Λ∗κ)1

χ(p) .

From this we get a descending and an ascending filtration

Fil0χ := Λ∗κ ⊃ Fil1χ := (Λ∗κ)1
χ ⊃ Fil2χ := 0,

Filχ
(p)

−1 := 0 ⊂ Filχ
(p)

0 := (Λ∗κ)0 ⊂ Filχ
(p)

1 := Λ∗κ.

Then P+ (resp. P
(p)
− ) is the stabilizer of Fil•χ (resp. Filχ

(p)

• ) in Gκ. Denote

by s̄dR ⊂ V̄⊗ the reduction of the set of tensors sdR ⊂ V⊗, and by s̄ the base
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change to (Λ∗χ)⊗ of s ⊂ (Λ∗)⊗. Now we define

I := IsomS

(
[Λ∗κ, s̄]⊗OS , [V0, s̄dR]

)
,

I+ := IsomS

(
[Λ∗κ, s̄,Fil•χ]⊗OS , [V0, s̄dR,V0 ⊃ C0]

)
,

I− := IsomS

(
[Λ∗κ, s̄,Filχ

(p)

• ]⊗OS , [V, s̄dR,D0 ⊂ V0]
)
,

where I and I+ were defined already in Section 7.2 and here we just repeat the
definitions for the convenience of readers. The group Gκ acts on I from the
right by t · g := t ◦ g∨ for any S-scheme T and any sections g ∈ G(T ) and t ∈
I(T ). This action induces the action of P+ (resp. P

(p)
− ) on I+ (resp. I−). The

Cartier isomorphism on V0 induces an isomorphism ι : I
(p)
+ /U

(p)
+
∼= I−/U

(p)
−

and it is shown in [Zha13, Theorem 2.4.1] (see [Wor13, 5.14] for necessary
changes of the proof) that I := (I, I+, I−, ι) is a G-zip of type χ over S, which
induces a morphism of stacks

ζ : S −→ G-Zipχ ∼= [Eχ\Gκ].

Moreover, Zhang shows that the morphism ζ is a smooth morphism of stacks
over κ ([Zha13, Theorem 3.1.2]).

Definition 8.3.1. For any geometric point w : Speck → G-Zipχ, the Ekedahl-
Oort stratum of Sk associated to w, denoted by Swk , is defined to be the fibre
of w under the classifying morphism ζk : Sk → [Eχ\Gκ].

The Ekedahl-Oort stratification of Sk is by definition the disjoint union

Sk =
⊔

w∈JW

Swk (8.3.1)

by taking the fibre of the stratification

[Eχ\Gκ]k =
⊔

w∈JW

[Eχ\Ow],

where each Ow is the Eχ-orbit in Sk corresponding to w ∈ W (cf. Lemma
8.2.2), and where each Swk is the fibre along ζk of [Eχ\Ow]. Each Swk is a
locally closed subscheme of Sk.

Remark 8.3.2. As remarked in [Wor13, Remark 5.16] (the proof is actually
already given there), though the definition of ζ depends on the choice of a
cocharacter χ ∈ [χ]κ, the resulting map ζ(k) : S(k)→ JW is in fact indepen-
dent of the choice of χ.

Remark 8.3.3. We list here some properties of Ekedahl-Oort stratification
following [Wor13] and [KW14].

(1) Each Ekedahl-Oort stratum Swk is smooth and hence reduced, since the
classifying map ζ : S → [Eχ\Gκ] is smooth.
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(2) Each stratum Swk is either empty or equidimensional of dimension l(w)
([Zha13, Proposition 3.1.6]).

(3) The closure relationship between Ekedahl-Oort strata is given by

Swk =
⋃
w′�w

Sw
′

k ,

where � is the Bruhat order ([Zha13, Proposition 3.1.6]). This follows
from the topological structure of JW and the fact that taking inverse
under

∣∣ζ∣∣ : |Sk| →
∣∣[Eχ\Gκ]k

∣∣ commutes with taking closure as the map
ζ : S → [Eχ\Gκ] is smooth and hence is open.

(4) The set JW contains, with respect to the partial order �, a unique max-
imal element wmax := w0,Jw0, and a unique minimal element wmin := 1.
By (3), the associated stratum Swmax

k is the unique open Ekedahl-Oort
stratum and is dense in Sk, and Swmin

k is closed and contained in the
closure of each stratum Swk .

(5) For Shimura variety of PEL type each Ekedahl-Oort stratum is nonempty
([VW13, Theorem 10.1]). For general Hodge type Shimura varieties, the
non-emptiness is claimed by Chia-Fu Yu (the preprint is not available yet).

8.4 Comparison of D1(k)/K
�(k) and Eχ(k)\Gκ(k)

We let k be a perfect field extension of κ. Denote by [[g]] the K+(k)-orbit of
g; that is, we have

[[g]] = {K1(k)h−1gϕ(h)K1(k)|h ∈ K(k)}
= {K1(k)h−1gσ(h)K1(k)|h ∈ K(k)},

where the second “=” is due to Lemma 3.3.2.

Recall that the functor C(G,µ(u)), following the notations of Section 3.2, is
the subfunctor of LG sending a κ-algebra R to the set K(R)µ(u)K(R). For
simplicity of notations, we write

C := C(G,µ(u)).

We want to define such a map of sets

ω : C(k) −→ Eχ(k)\G(k)
h1µ(u)h2 7−→ Eχ · (σ−1(h̄2)h̄1),

(8.4.1)

where for an element h ∈ K(k), we write h̄ = h mod u.

The following proposition is an equicharacteristic analogue of [Wor13, Propo-
sition 6.7]. We follow his strategy but use a slightly different method to prove
Proposition 8.4.1. (1).

65



Proposition 8.4.1. For any perfect field extension k of κ, we have the follow-
ing:

(1) The map ω in (8.4.1) is a well-defined map.

(2) For any g1, g2 ∈ C(k), we have ρ(g1) = ρ(g2) if and only if [[g1]] = [[g2]];
in other words, the map ω induces a bijection

ω : C(k)/K+(k) = D1(k)/K�(k)→ Eχ(k)\G(k). (8.4.2)

(3) We have the following commutative diagram

D1(k)/K�(k)

ω

��

S(k)

η(k)
55

ζ(k) ((
Eχ(k)\G(k)

(8.4.3)

Proof. (1) To show ρ is well defined, it is enough to show that the orbit Eχ ·
(σ−1(h̄2)h̄1) is independent of the choice of h1 and h2. Suppose that

h1µ(u)h2 = h′1µ(u)h′2, h1, h2, h
′
1, h
′
2 ∈ K(k).

Write c1 = h−1
1 h′1 and c2 = σ−1(h2h

′−1
2 ), then we have

c2(σ−1(h′2)h′1)c−1
1 = σ−1(h2)h1, c2 = y−1σ−1(c1)y, (8.4.4)

where we set y := σ−1(µ(u)) = χ(up) (the latter equality here follows from
Lemma 3.3.1). The first part of (8.4.4) implies that we need only to show
that (c̄2, c̄1) ∈ Eχ(k). But since Eχ is a subscheme of G ×κ G and the
formation of P±, U± and M commute with base change of χ, it suffices
to show that étale locally the point (c̄2, c̄1) ∈ (G ×κ G)(k) lies in Eχ(k).
Hence by passing to a finite (separable) extension of κ we may suppose
that the cocharacter χ factors through a split maximal torus T of G. Then
a similar discussion as in the beginning of Section 7.5 implies the following
inclusions of schemes (cf. (7.5.3))

yL+U+y
−1 ⊂ K1, y−1L+U−y ⊂ K1. (8.4.5)

By [DG, Exposé XXVI] Theorem 5.1, as a scheme over κ, Gκ is a union
of open subschemes s ·P−P+ = s ·U−U+M , where s runs over s ∈ U+(k).
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In particular c2 ∈ L+G(k) = G(k[[u]]) as a k[[u]]-point of G must lie in
some s · U−U+M . And hence c2 is of the form c2 = u1vu2m, with

u1 ∈ U+(k) ⊂ L+U+(k), u2 ∈ L+U+(k), v ∈ L+U−(k), m ∈ L+M(k).

Given such a decomposition, by the second part of (8.4.4) we have

yu1vu2y
−1m = yu1vu2my

−1 = σ−1(c1) ∈ L+G(k) (8.4.6)

By the first part of (8.4.5), yu1y
−1, yu2y

−1 lies in K1(k), and hence we
have yvy−1 ∈ L+G(k), which implies that the element yvy−1 ∈ LU−(k)
actually lies in L+U−(k) since U− is a closed subscheme of G. Then
we have v ∈ K1(k) by the second part of (8.4.5). Now it is clear that
c̄2 = ū1ū2m̄ lies in P+(k) with Levi component m̄ ∈M(k) and

c̄1 = σ(yvy−1)σ(m)

lies in σ
(
U−(k)M(k)

)
= P

(p)
− (k), with Levi component σ(m).

(2) The “only if” part is clear from (1). For the “if” part, suppose ρ(g1) =
ρ(g2) and we write x = µ(u). Thanks to (1) and Lemma 3.3.2 we may
assume g1 = h1x and g2 = h2x. Choose p+ = u+m, p− = u−σ(m) with

m ∈ M(k), u+ ∈ U+(k), u− ∈ U
(p)
− (k) such that h̄2 = p+h̄1p

−1
− , i.e.,

K1(k)h2 = K1(k)p+h1p
−1
− . We have seen from (8.4.5) that

x−1u−1
− x = σ(x1σ

−1(u−1
− )x−1

1 ) ∈ K1(k), xσ(u+)x−1 = σ(x1u+x
−1
1 ) ∈ K1(k),

where x1 := χ(up). Hence, together with the fact that σ(m)−1 commutes
with x and K1 ⊂ K is normal, we find

[[h2x]] = [[u+mh1σ(m)−1u−1
− x]] = [[u+mh1σ(m)−1x]]

= [[mh1σ(m)−1xσ(u+)]] = [[mh1σ(m)−1x]]
= [[mh1xσ(m)−1]] = [[h1x]].

(3) The commutativity of the diagram (8.4.3) follows from the construction
of η : S → D1/K

� and ζ : S → |Eχ\Gκ|.

Remark 8.4.2. Recall that the cocharacter “µ” in Wortmann is our χ(p). Let
k be an algebraically closed field extension of κ and let (B, T ) be a Borel pair
of Gk such that χk factors through Tk and is dominant. Since Tk is necessarily
split, the action

σ : X∗(Gk) := Homk(Gm,k, Gk)→ X∗(Gk)
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sending λ ∈ X∗(Gk) to λ(p) (see (2.1.1)) is trivial, and hence we have

σ−1(µk) = µk = (FrobGκ/κ)k ◦ χk = FrobGk/k ◦ χk = pχk, (8.4.7)

where the last equation is easy to see since Tk is split over k. It follows that

σ−1(µk) and σ−1(χ
(p)
k ) = χk have the same type J (the type of a cocharacter

is insensitive to multiplications). Recall that D1(k)/K�(k) is by definition
the C(G,µk) defined in the Introduction. Now by [Vie14, Theorem 1.1], both

C(G,µk) and C(G,χ
(p)
k ) can be identified with the subset JW of W . And

hence we can also identify C(G,χ
(p)
k ) with C(G,µk). This shows that our

variation of µ is essentially harmless.
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Math., pages 459–496. Birkhäuser Boston, Boston, MA, 2006.
URL: http://dx.doi.org/10.1007/978-0-8176-4532-8_7, doi:

10.1007/978-0-8176-4532-8_7.

[Kis10] M. Kisin. Integral models for Shimura varieties of abelian
type. J. Amer. Math. Soc., 23(4):967–1012, 2010. URL: http:

//dx.doi.org/10.1090/S0894-0347-10-00667-3, doi:10.1090/

S0894-0347-10-00667-3.

[Kis13] M. Kisin. Mod p points on Shimura varieties of abelian type. to
appear in J.A.M.S., 2013. URL: http://www.math.harvard.edu/

~kisin/dvifiles/lr.pdf.

70

http://www.numdam.org/item?id=PMIHES_1995__82__5_0
http://www.numdam.org/item?id=PMIHES_1995__82__5_0
http://arxiv.org/abs/1507.05032
http://dx.doi.org/10.1007/978-3-8348-9722-0
http://dx.doi.org/10.1007/978-3-8348-9722-0
http://dx.doi.org/10.1007/978-3-8348-9722-0
http://dx.doi.org/10.1093/imrn/rnu193
http://dx.doi.org/10.1093/imrn/rnu193
http://dx.doi.org/10.1093/imrn/rnu193
http://dx.doi.org/10.1093/imrn/rnv028
http://dx.doi.org/10.1093/imrn/rnv028
http://dx.doi.org/10.1007/978-0-8176-4532-8_7
http://dx.doi.org/10.1007/978-0-8176-4532-8_7
http://dx.doi.org/10.1007/978-0-8176-4532-8_7
http://dx.doi.org/10.1090/S0894-0347-10-00667-3
http://dx.doi.org/10.1090/S0894-0347-10-00667-3
http://dx.doi.org/10.1090/S0894-0347-10-00667-3
http://dx.doi.org/10.1090/S0894-0347-10-00667-3
http://www.math.harvard.edu/~kisin/dvifiles/lr.pdf
http://www.math.harvard.edu/~kisin/dvifiles/lr.pdf


[Kot84] R. Kottwitz. Shimura varieties and twisted orbital integrals. Math-
ematische Annalen, 269:287–300, 1984. URL: http://eudml.org/
doc/163936.

[KW14] J.-S. Koskivirta and T. Wedhorn. Generalized Hasse invariants for
Shimura varieties of Hodge type. ArXiv e-prints, June 2014. arXiv:
1406.2178.

[Lau10] E. Lau. Frames and finite group schemes over complete regular local
rings. Doc. Math., 15:545–569, 2010.

[Lau14] E. Lau. Relations between Dieudonné displays and crystalline
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Summary

Let (G,X) ↪→ (GSp,S±) be a Shimura datum of Hodge type. Let p > 2
be a prime number and assume GQp has a reductive model G over Zp. Let
K ⊂ G(Af ) be an open compact subgroup, hyperspecial at p, and ShK(G,X)
the associated Shimura variety over the reflex field E of (G,X). Fix a place
v of E above p. Denote by OE,v the ring of integers of the completion of E
at v, and by κ the residue field of OE,v. Denote by SK(G,X) the canonical
integral model of ShK(G,X) over OE,v constructed by Kisin, which is a quasi-
projective and smooth scheme over OE,v. Denote by S the special fibre of
SK(G,X), over κ.

In her paper Truncations of level 1 of elements in the loop group of a reductive
group (Annals of Math. 2014), E. Viehmann introduced and studied some
new invariants, called “truncations of level 1”, for elements in the loop group
of G, where G is the special fibre of G. It follows from her results that such
invariants can be used to parametrize Ekedahl-Oort strata of S, and to give a
criteria for the inclusion relations of these strata. But such a parametrization
is quite indirect. In this thesis, using the classification result of p-divisible
groups in terms of filtered Breuil-Kisin modules (Breuil-Kisin windows, in our
term), we give a more conceptual explanation of Viehmann’s results.

Via constructing Breuil-Kisin windows, we obtain a morphism of schemes I+ →
D1, where I+ is an fppf torsor over S and D1 is a quotient of a double coset
scheme inside the loop group of G. From this morphism we finally obtain
a morphism of fpqc sheaves η : S → D1/K

�, where D1/K
� is a quotient

sheaf of D1, whose geometric points correspond to Viehmann’s new invariants
(truncations of level 1). We show that the fibres of η on geometric points are
exactly the Ekedahl-Oort strata of S as defined by C. Zhang and D. Wortmann
in their theses.
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Samenvatting

Zij (G,X) ↪→ (GSp,S±) een Shimura datum van Hodge type. Zij p > 2 een
priemgetal en neem aan dat GQp een reductief model G over Zp heeft. Zij
K ⊂ G(Af ) een open compacte ondergroep, hyperspeciaal bij p, en ShK(G,X)
de bijbehorende Shimura variëteit over het reflexlichaam E van (G,X). Neem
een plaats ν van E boven p. Schrijf OE,ν voor de ring van gehelen van de
completering van E bij ν, en κ voor het restklassenlichaam. Schrijf SK(G,X)
voor het canonieke gehele model van ShK(G,X) over OE,ν , geconstrueerd door
Kisin, dat een quasi-projectief en glad schema over OE,ν is. Laat S de speciale
vezel van SK(G,X) over κ zijn.

In haar artikel Truncations of level 1 of elements in the loop group of a
reductive group (Annals of Math. 2014) introduceerde en bestudeerde E.
Viehmann een aantal nieuwe invarianten, “truncations of level 1” genaamd,
voor elementen in de lusgroep van G, waarbij G de speciale vezel van G is.
Uit haar resultaten volgt dat zulke invarianten gebruikt kunnen worden om
Ekedahl-Oort strata van de Shimura variëteit S te parametriseren en om een
criterium te geven voor de inclusierelaties van deze strata. Zo’n parametrisatie
is echter indirect. In dit proefschrift geven we een meer conceptuele uitleg
van Viehmann’s resultaten, waarbij we gebruik maken van de classificatie van
p-deelbare groepen in termen van gefiltreerde Breuil-Kisin modellen (Breuil-
Kisin ramen, in onze bewoording).

Door middel van het construeren van relatieve Breuil-Kisin ramen verkrijgen
we een morfisme van schema’s I+ → D1, waar I+ een fppf-torsor over S is,
en D1 een quotiënt van een dubbele-nevenklassenschema binnen de lusgroep
van G. Vanuit dit morfisme krijgen we een morfisme van fpqc-schoven η :
S → D1/K

�, waar D1/K
� een quotiëntschoof van D1 is, wiens meetkundige

punten corresponderen met Viehmann’s nieuwe invarianten (truncations of
level 1). We laten zien dat de vezels van η boven meetkundige punten precies
de Ekedahl-Oort strata van S zijn, zoals gedefinieerd door C. Zhang en D.
Wortmann in hun proefschriften.

75



76



Sommario

Sia (G,X) ↪→ (GSp,S±) un dato di Shimura di tipo Hodge. Sia p > 2 un
numero primo e si assuma che GQp abbia un modello riduttivo G su Zp. Sia
K ⊂ G(Af ) un sottogruppo aperto compatto iperspeciale in p e sia ShK(G,X)
la varietà di Shimura associata, definita sul campo riflesso E di (G,X). Si
fissi un posto v di E sopra p. Si denoti con OE,v l’anello degli interi del
completamento di E rispetto a v e con κ il campo residuo. Si denoti con
SK(G,X) il modello canonico integrale di ShK(G,X) su OE,v costruito da
Kisin, il quale è uno schema quasi-proiettivo liscio su OE,v. Sia S la fibra
speciale di SK(G,X), su κ.

Nel suo articolo Truncations of level 1 of elements in the loop group of a re-
ductive group (Annals of Math. 2014), E. Viehmann introduce e studia alcuni
nuovi invarianti, chiamati “troncamenti di livello 1”, per elementi del gruppo
dei lacci di G, dove G è la fibra speciale di G. Segue dai suoi risultati che
tali invarianti possono essere utilizzati per parametrizzare le stratificazioni
Ekedahl-Oort di S e per determinare criteri per le relazioni di inclusione di
queste stratificazioni. Una tale parametrizzazione è tuttavia pressocché indi-
retta. In questa tesi, utilizzando i risultati di classificazione riguardanti gruppi
p-divisibili in termini di moduli filtrati di Breuil-Kisin (finestre di Breuil-Kisin,
secondo la nostra terminologia), diamo una spiegazione più concettuale dei
risultati di Viehmann.

Attraverso la costruzione di finestre di Breuil-Kisin, otteniamo un morfismo
di schemi I+ → D1, dove I+ è un torsore fppf su S e D1 è un quoziente di
uno schema laterale doppio contenuto nel gruppo dei lacci di G. Da questo
morfismo otteniamo infine un morfismo di fasci fpqc η : S → D1/K

�, dove
D1/K

� è un fascio quoziente di D1, i cui punti geometrici corrispondono alle
nuove invarianti (troncamenti di livello 1) di Viehmann. Dimostriamo che le
fibre di η sui punti geometrici sono esattamente le stratificazioni Ekedahl-Oort
di S, come definite nelle tesi di C. Zhang e D. Wortmann.
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