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The present study proposes a clarification on the molecular mechanism by 

which ganglioside GM1 promotes neurodifferentiation, demonstrating in vitro 

that neurotrophic functions are exerted by an interaction between the 

oligosaccharide portion (OligoGM1) and an extracellular domain of TrkA 

receptor. 

Similarly to the entire molecule, the oligosaccharide portion of ganglioside GM1, 

rather than ceramide, is responsible for neurodifferentiation by augmenting 

neurite elongation and by increasing the expression of neurofilament proteins in 

mouse neuroblastoma cell line Neuro2a (N2a). 

Conversely, the single components of OligoGM1 (asialo-OligoGM1, OligoGM2, 

OligoGM3, sialic acid or galactose) are not able to induce a neuro-like 

morphology. The neurodifferentiative effect is exerted instead by fucosyl-

OligoGM1. 

Contrarily to GM1, exogenous OligoGM1 never integrates in the plasma 

membrane composition and does not belong to the intracellular metabolism: the 

unique interaction with N2a is characterized by a weak non-covalent association 

to the plasma membrane that suggests the existence of an OligoGM1-

stimulated target on the cell surface.  

In fact, the neurotrophic properties of GM1 oligosaccharide are exerted by 

activating TrkA receptor and the following cascade leading to 

neurodifferentiation event. 

The second part of this study elucidates the interaction between GM1 and TrkA, 

revealing a direct association of OligoGM1 to an extracellular domain of the 

receptor. 

Photolabeling experiments, performed employing nitrogen azide radiolabeled 

GM1 derivatives, show a direct association of the oligosaccharide chain to TrkA. 

Moreover, a bioinformatics study reveals that OligoGM1 fits perfectly in a pocket 

of the TrkA-NGF complex, stabilizing and favoring their intermolecular 

interactions as revealed by the increase in energy associated to the new 

complex TrkA-NGF-OligoGM1. A precise molecular recognition process 

between OligoGM1 and a specific extracellular domain of the TrkA receptor is 
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supposed. According to the weak association of OligoGM1 to the cell surface, 

no covalent bounds between OligoGM1 and TrkA-NGF complex were found.  

For the first time the molecular mechanism by which GM1 exerts its 

neurodifferentiative potential was identified, finding out a direct interaction 

between the oligosaccharide portion and an extracellular domain of TrkA 

receptor responsible for enhancing the signal transduction related to the 

neurodifferentiation pathway. 
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Gangliosides  

Gangliosides are a large family of complex glycosphingolipids (GSLs) isolated 

for the first time from beef brain in 1942 by Klenk, who among the hydrolysis 

products identified their essential components: sphingosine, fatty acid, hexoses 

and sialic acid (Klenk, 1942; Svennerholm, 1964).  

Ganglioside components are shown in figure I1 reporting chemical structure of 

the simplest ganglioside, GM3. 

  

 

Figure I1: Chemical structure of the simplest ganglioside GM3. GM3 is reported to 
show typical components of gangliosides: sphingosine, fatty acid, sialic acid and 
hexoses. GM3 contains glucose and galactose. 
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Chemical structure 

Gangliosides are amphiphilic components typical of all deuterostomia cell 

plasma membranes that assume structural and functional outstanding roles 

internally to the lipid raft plasma membrane regions (Ghidoni et al. 1989; Senn et al. 

1989; Valaperta et al. 2007; Merril, 2011).  

According to the general glycolipid features, gangliosides are inserted only in 

the outer leaflet of the plasma membrane integrating in the lipid core layer 

through a hydrophobic moiety and simultaneously protruding in the extracellular 

environment with a hydrophilic portion (Bertoli et al. 1981; Robert et al. 2011; Kolter, 

2012; Shengrund, 2015).  

Gangliosides are spread all over the tissues, but in mammals they are prevalent 

in plasma membranes of nervous cells, in particular in the gray matter, 

especially localized at the pre- and post-synaptic areas. Outside of the nervous 

system they are relevant in serum, vehiculated by lipoproteins, in spleen, and in 

erythrocytes (Svennerholm, 1964; Rösner et al. 1973; Hansson et al. 1977; Senn et al. 1989; 

Kolter, 2012).  

As a matter of fact, the gangliosides are composed by ceramide, the 

hydrophobic core, resulting from a long chain fatty acid incorporation on the 2 

position of a sphinganine basis promoted by the ceramide synthase acylation. 

Dihydroceramide can be finally desaturated introducing a double carbon bond 

between positions 4 and 5 of the acyl residue of sphingosine, derived generally 

by palmitate (Sribney, 1966; Merril, 1991; Rother et al. 1992). The ceramide de novo 

synthesis, shown in figure I2, takes place in the endoplasmic reticulum (Miller 

Podrasa & Fishman, 1982; Schwarzmann & Sandhoff, 1990; Kolter, 2012). 

According to the beginning discovery (Klenk, 1942), the hydrophilic head of 

gangliosides, the oligosaccharide chain, is always characterized by the 

presence of one or more residues of sialic acid (figure I3). The ceramide 

glycosylation arises from the progressive addition by specific 

glycosyltransferases of β-anomeric neutral monosaccharides from the 

nucleotide-activated forms, usually by UDP (Van Den Eijnden, 1973; Basu & Basu, 

1982; Kolter, 2012). The transfer of sialic acid by a sialyltransferase stands out for 

the CMP-activated donor complex and for the formation of α-glycosidic bond via 
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hydroxyl group at position 2 to a neutral monosaccharide unit or to another 

sialic acid residue (Schauer, 1982; Tettamanti & Riboni, 1993; Schnaar et al. 2014), as 

shown in figure I4.  

These reactions occur in the luminal side of the Golgi apparatus explaining the 

topological asymmetric insertion of the gangliosides in the external layer of the 

plasma membrane (Ghidoni et al. 1989; Sandhoff & Kolter, 2003; Kolter et al. 2002).  

 

 

Figure I2: De novo ceramide biosynthesis.   

  



Introduction 

- 8 - 
 

 

 

Figure I3: Structure of Sialic Acid.  

 

 

 

a.  

 

 
 
b. 

 

Figure I4: Sialic Acid linkages in gangliosides. Examples of an α-(2-3) glycosidic 
linkage between sialic acid and a neutral monosaccharide typically represented by a 
galactose residue (a) and of an α-(2-8) glycosidic linkage between sialic acid residues 
(b), characteristic of polysialylated brain gangliosides.   
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Beyond the conserved structure, gangliosides present an interesting 

heterogeneity given firstly by ceramide. It varies in relation to the sphingoid 

basis, a sphingosine or a sphinganine, presenting or omitting the desaturation 

respectively, and containing from 16 to 22 carbon atoms. Also the fatty acid 

differs among ceramide types commonly represented by the palmitic acid 

(16:0), stearic acid (18:0), oleic acid (18:1), and arachic acid (20:0) in the 

nervous system and by behenic acid (22:0), docosanoic acid (22:1), lignoceric 

acid (24:0) and nervonic acid (24:1) in extra nervous tissues (Schenground & 

Garrigan, 1969; Karlsson 1970; Kolter, 2012). 

Furthermore, the remarkable diversification in the oligosaccharide chains 

among the gangliosides have provided an instrument for their classification 

(Svennerholm & Fredman, 1980; Svennerholm, 1994) combined to the nomenclature 

formulation by IUPAC IUB Commission (IUPAC-IUBMB JCoBN, 1998).  

According to the oligosaccharide core sequences, the gangliosides can be 

divided in six series: ganglio, gala, latto, neolatto, globo, isoglobo (Svennerholm, 

1994; Kolter, 2012). The first letter is dependent on these categories: G stands for 

ganglio, that presents oligosaccharide β-D-Glucose-β-D-Galactose-N-acetyl-β-

D-Galactosamine-β-D-Galactose.  

The ganglio sub classification (figure I5), based on the sialic acid residues 

number, is expressed by the second letters M, D, T, or Q, designing mono-, di-, 

tri- or tetra-sialyl groups respectively. The following number 1, 2 or 3 agrees 

with the order of migration of the ganglioside in thin layer chromatography (GM1 

< GM2 < GM3), reflecting the presence of the entire oligosaccharide sequence, 

the lack of the external galactose or the disaccharide galactosyl-N-

acetylgalactosamine respectively. The final letters evoke the role of the 

sialytransferases in the ganglioside metabolism: letter “a” indicates the only 

presence of linkages between sialic acid and galactose, letters “b” and “c” the 

existence of linkages between two or three sialic acid residues respectively 

(Svennerholm, 1994; Kolter et al. 2002; Kolter, 2012). 

 

 



Introduction 

- 10 - 
 

 

Figure I5: Classification of Ganglio series gangliosides (IUPAC-IUB JCoBN, 1998).   

Currently, IUPAC-IUB commission on the biochemical nomenclature purposes a 

graphic symbology for glycans representation (IUPAC-IUBMB JCoBN, 1998). 

Monosaccharides typical of Ganglio series gangliosides are identified by 

symbols shown in figure I6. 

 
Figure I6: Symbols used for monosaccharides of Ganglio serie gangliosides 
(IUPAC-IUBMB JCoBN, 1998). 
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Cell topology and functions 

The substantial amphiphilic feature of gangliosides represents the basis beyond 

the structural ones, of their structural and physiological functions (Robert et al. 

2011; Russo et al. 2016).  

The ceramide portion, inserted in the plasma membrane outer layer, exerts an 

influence on the establishment of arrangement with other complex lipid and 

proteins, affecting the modulation of plasma membrane properties. On the other 

side, the carbohydrate moiety, projected in extracellular environment, offers 

many recognition and interaction sites for cell surrounding molecules playing a 

crucial role in the cell response to an external stimuli, in signal transduction and 

in mediation of cell activities (Bertoli et al. 1981; Hakomori, 1983; Arita et al. 1984; Merrill 

& Sandhoff, 2002; Kolter, 2004; Shengrund, 2015). 

Starting from the ceramide contribute in ganglioside functions, a remarkable 

impact on plasma membrane organization is due to the presence of the trans 

double bond between sphingosine C4 and C5, combined with the presence of a 

saturated fatty acyl residue. These features allow the ganglioside hydrocarbon 

chains to pack in the plasma membrane lipid layer more tightly than other 

hydrophobic components, such as the phospholipids containing cis double bond 

related to unsaturated fatty acids, enhancing the association to cholesterol as 

well as to transmembrane protein domains (Shengrund & Garrigan, 1969; Tettamanti & 

Riboni, 1993; Shengrund, 2015). The following interactions originate the particularly 

enriched and specialized plasma membrane regions named lipid rafts (figure I7), 

that, according to their experimental isolation are defined as detergent-resistant 

assemblages (DRM) resulting as a low-density fractions from density-gradient 

ultracentrifugation (Simons & Ikonen, 1997; Simons & Sampaio, 2011; Ohmi et al. 2012; 

Kraft, 2013; Ledeen & Wu, 2015).  
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The Figure I7 purposes an overall representation of a plasma membrane lipid 

raft, presenting gangliosides among the characteristic elements (Malchiodi-Albedi 

et al. 2011). 

 

Figure I7: Schematic representation of a LR in the cell membrane. Enrichment in 
gangliosides, structurally and functionally correlated to cholesterol, proteoglycans, 
others glycolipids, transmembrane proteins (glycosylated and non-) and GPI-anchored 
proteins is shown. 

 

The co-localization of gangliosides and cholesterol is important in maintaining 

the plasma membrane adequate structural equilibrium and physical 

characteristics such as the fluidity, the rigidity or the fusion temperature 

(Lingwood, 2000; Shengrund, 2015). Plasma membrane areas particularly enriched in 

gangliosides increase in rigidity (Bertoli et al. 1981). 

Moreover, because the lipid tail region is critically smaller than polar moieties, in 

aqueous solution gangliosides, as well as for all the sphingolipids, aggregate in 

high molecular weight micelles, presenting a hydrophobic ceramide core and 

isolated from polar environment by the enclosing sugar chains as shown in figure 

I8 (Maggio et al. 1981; Sonnino et al. 1994; Sonnino & Prinetti, 2010).  
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Figure I8: Ganglioside micella. The elevated volumetric ratio between hydrophilic 
head and hydrophobic tail of gangliosides originate high molecular weight micelles in 
aqueous solutions over a critical concentration.  

 

In cell plasma membrane, the reported aggregative behavior produces physic 

modification of plasma membrane in particularly ganglioside-enriched clusters, 

introducing an increase in the layer curvature radius. In relation to the 

implication of gangliosides in plasma membrane invagination, an increase in 

endocytosis phenomena has been reported in correspondence to the leaf 

curvatures (Thompson & Tillack, 1985; Tettamenti et al. 1985; Fra et al. 1995; Ewers et al. 

2010; Sonnino & Prinetti, 2010).  

In addition to ceramide, the oligosaccharide portions confer to gangliosides as 

much structural properties finely correlated to biological functions. The 

monosaccharide units of a ganglioside establish cooperative contacts through 

hydrogen type binding that specifically offer an interactive potential to other 

molecules in extracellular environment (Sharom & Grant, 1978; Kiarash et al. 1994; 

Shengrund, 2015). Thanks to the oligosaccharide head, gangliosides can act as 

specific receptors for many molecular species such as viruses, bacteria, toxins 

(Yamakawa & Nagai, 1978; Borges et al. 2010; Ladisch & Liu, 2014), growth factors, 

peptides and hormones (Vengris et al. 1976; Shengrund, 2015; Russo et al. 2016). 
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Oligosaccharide chains of gangliosides, together with glycoproteins and 

proteoglycans, contribute to sialylated sugar-coat construction of glycan-rich 

glycocalix associated to the plasma membrane (Schnaar et al. 2014; Linnartz-Gerlach 

et al. 2014; Shengrund, 2015; Ledeen & Wu, 2015). This structure supports different 

functions such as cell differentiation, cell to cell interactions and certainly signal 

transduction. In fact, the glycocalyx carbohydrate moiety, surrounding the outer 

leaflet of the plasma membrane surface is responsible for the recognition of 

other cells and for the attachment to extracellular components (Barrat et al. 1978; 

Kolter, 2012; Zeng & Tarbell, 2014; Shengrund, 2015). Furthermore, connecting directly 

or with mediator to internal elements (figure I9), the glycocalyx can initiate the 

communication and the realization of a specific response (Linnartz & Neumann, 

2013; Shengrund, 2015).  

The biochemical composition of glycocalyx sugar portion shows a strictly 

correlation to the functional meaning, presenting as a consequence, a 

considerably high level of specificity depending on cytological types, but also on 

the cycle phase or development stage of cells (Schnaar et al. 2014; Linnartz & 

Neumann, 2013). This evidences the fundamental role of oligosaccharide chains in 

determination of cell activities (Shengrund, 2015; Ledeen & Wu, 2015).  

 

Figure I9: Glycocalyx. Oligosaccharide chains of gangliosides participate to the 
adequate composition of the cell glycocalyx that represents a crucial element for cell 
communication and response to external stimuli (Atukorale et al. 2015).  
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A well known phenomena that underscored the fundamental role of 

oligosaccharide chains in explicating cell ganglioside-depending functions 

concerns their implication in cell differentiation and development (Schaal et al. 

1985; Levine & Flynn, 1986; Yu et al. 1988; Shengrund, 1990; Kwak et al. 2006; Sonnino et al. 

2010; Shengrund, 2015). 

For what concerns the nervous system, where represent the main 

glycosphingolipids, the ganglioside content and pattern change during the 

neuron differentiation, aging and in neurodegenerative diseases. As shown in 

the figure I10, in undifferentiated neurons, GM3 and GD3 are the main 

gangliosides and they are characterized by a small hydrophilic head. 

Conversely, during the axons and synapses formation, GM3 and GD3 are 

displaced by the more complex gangliosides, such as GM1, GD1a, GT1b, and 

GQ1b (Shengrund, 1990; Shengrund, 2015). The modification of ganglioside 

composition reflects the differences in expression or in activities of specific 

glycosyltransferases (Yu et al. 1988; Shengrund, 1990; Sonnino et al. 2010; Aureli et al. 

2011). 

 

 

Figure I10: Ganglioside changing in neurodifferentiation. Modification in neuron 
ganglioside pattern during neurodifferentiation reflects the differences in 
glycosyltransferases and suggests an important role of oligosaccharide chains in the 
process. 
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The functional potential of oligosaccharide chains, peculiarly correlated to their 

specific composition, together with the described biophysical influence of the 

ceramide portion on plasma membrane regulation through the lateral portioning, 

make the gangliosides exceptional players in recruiting membrane receptors 

and in promote initiation of signaling cascades (Tettamanti et al. 1985; Nagai, 1985; 

Ghidoni et al. 1989; Robert et al. 2011). 

One of the results of the ceramide-enhanced ganglioside aggregation in plasma 

membrane specialized clusters is represented by the instauration of specific 

interaction between oligosaccharide chains and membrane receptors or 

glycoproteins, promoting the regulation of many pathways (Fueshko & Schengrund, 

1992; Nagai, 1995; Aureli et al. 2011; Russo et al. 2016). 

At this purpose, the changes in ganglioside oligosaccharide composition in 

specific sensing domains can act as an activator event of a co-localized tyrosine 

kinase receptor, as schematized in figure I11. One emblematic example concerns 

the activation of Epidermal Growth Factor (EGFR) receptor by modification of 

neighboring gangliosides (Russo et al. 2016). 

 

Figure I11: Ganglioside changing in signaling regulation. Modification in 
oligosaccharide chains of gangliosides, co-localized in sensing domains with tyrosine 
kinase receptors, can stimulates signaling activation promoting dimerization of receptor 
monomers and their autophosphorylation.  
PM, plasma membrane; GLSs, glycosphingolipids; GSD, glycosphingolipid sensing 

domain; RTKs, receptor tyrosine kinases (Russo et al. 2016). 
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This property can evolve also in regulation of membrane pores and channels, 

modulating molecule transit across the plasma membrane (Tettamanti et al. 1985; 

Ghidoni et al. 1989).  

Moreover, another outcome imputable to the ganglioside specific features and 

organization, as well as for the others sphingolipids, is revealed by the 

sphingosine metabolites that can act themselves as a second messengers. In 

fact, an extracellular stimuli, such as the interleukin 1 or the interferon, receipted 

among a ganglioside clustering zone, can be translated in ceramide 

detachment, degradation or following modifications and metabolites can 

regulate intracellular enzymes (Svennerholm et al. 1994). 

At this point, the requirement of ganglioside in signal transduction appears 

extremely important and actually implicated in cell functionality. As a 

consequence, pathologies and discordance from cell physiological state can 

arise from alteration in ganglioside metabolism. A concerning description is 

summarized and schematize in table I1 (Shengrund, 2015). 
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GANGLIOSIDE or 
EFFECT of 

ENZYMATIC MODIFICATION 
TARGET 

PATHWAY/ 
FUNCTION AFFECTED 

GM3 synthase deficiency Failure to synthesize GM3 Severe CNS deficits in humans 

GD3 and GM3 Interact with gp120 on HIV-1 Infection by HIV-1 

GD3_/_ + GM2/GD2_/_ Complement activation Inflammation /neural integrity 

GM2 synthase deficiency Failure to synthesize GM2 Spastic paraplegia in humans 

GM1 

ERK1/2 phosphorylation 
inhibited 

Neuroprotective 

NE Na+/Ca2+ exchanger Regulates Ca2+ in nucleus 

α5α1 Integrin initiating 
neurite outgrowth 

Opens TRPC5 channels 

GDNF receptor complex Enhances Ret activity 

Lipid raft localization of 
caspr and                            

glial neurofascin-155 

Maintenance of myelinated 
axons 

Binding site for the prion 

protein 
Prion protein-induced pathology 

GM1 + laminin-1  GM1 clusters 
β-1 Integrin colocalizes to 

rafts containing Trk 
Activates Lyn, Akt, and MAPK 
enhancing neurite outgrowth 

GD3 

Mitochondrial lipid rafts Release of apoptogenic factors 

Paxillin tyr118 
phosphorylation 

Lyn is activated 

EGF receptor 
Maintains self-renewal ability of 

neural stem cells 

GT1b, GD1b Bradykinin B2 receptors 
Ca2+ release from intracellular 

stores 

GD1a/GT1b-2b 
MAb Activates RhoA and 

ROCK 
Neurite growth arrest 

GT1aα 
Functions in acetylcholine 

release 
Learning and memory 

GT1b  

Akt dephosphorylation 
(inactivation) 

Inhibits Akt, death of 
dopaminergic neurons 

Receptor for Clostridium 
tetani and botulinum toxins 

Tetanus and botulism 

Regulation of glutamate 
release 

Neuronal glutamate signaling 

GQ1b Regulates BDNF expression Neurotrophic factor-like actions 

Polysialylated gangliosides 
Plasma membrane       

Ca2+-ATPase 
Enhances PMCA activity 

Plasma membrane associated Neu3 
Catalyzes cleavage of sialic 

acid from gangliosides     
(not GM1)  

Regulator of transmembrane 
signaling 

Induces Akt phosphorylation 

Needed for PNS axon 
regeneration 

Table I1: Roles of gangliosides in signal transduction and cell functions (modified 

form Shengrund, 2015). 
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GM1 ganglioside 

Ganglioside GM1 has continuously stirred up an exceptional outstanding 

attraction because its relevant implication and its key role in many signaling 

systems and cell regulatory pathways (Fang et al. 2000; Ledeen & Wu, 2015; Aureli et 

al. 2016). Abounding in the nervous system, GM1 appears involved in the 

essential mechanisms of neurodifferentiation and neurodevelopment on which 

its fame is continually depending such as the growing investigations about the 

dire pathological consequences of its alteration and lacking (Shengrund & Ringler, 

1989; Shengrund & Mummert, 1998; Ledeen & Wu, 2015; Zhai et al. 2015).   

GM1 structure was depicted and elucidated for the first time by Kuhn and 

Wiegandt in 1963 in correspondence to its TLC separation                                

(Kuhn & Wiegandt, 1963). According to classification and nomenclature (Svennerholm, 

1980). GM1 is a monosialo- tetrahexoxylated glycosphinglolipid and belongs to 

Ganglio series. Referring to IUPAC, GM1 formula is β-Gal-(1-3)-β-GalNAc-(1-

4)-[α-Neu5-(2-3)-]β-Gal-(1-4)-Glc-(1-1)-Cer.  

Conversely from the others major GM1-interacting gangliosides in the brain, 

GD1a, GD1b and GT1b, among which the typical sialic acid linkages are very 

susceptible to hydrolytic removal by endogenous sialidase, GM1 sialic acid is 

resistant to most forms of the mammalian enzyme (Sonnino et al. 2011, Mijagi & 

Yamaguchi, 2012). 

GM1 derived from sequential addiction of N-acetylgalactosamine and galactose 

units from UDP-activated forms to GM3 by specific glycosyltransferase (figure I5). 

The enzymatic complex for production of GM1 from GM3, occurring in the Golgi 

membranes, is called GM1 synthase (Robert et al. 2011; Kolter, 2012).  

The GM1 chemical structure and the IUPAC symbolic representation are shown 

in figure I12. 
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a. 

 
 
 
 
b. 

 

Figure I12: GM1. 

a. Chemical structure of β-Gal-(1-3)-β-GalNAc-(1-4)-[α-Neu5-(2-3)-]β-Gal-(1-4)-Glc-
(1-1)-Cer. 

b. IUPAC symbolic representation. 

 

 



Introduction 

- 21 - 
 

Chemical properties and cell topology 

GM1 shows a characteristic amphiphilic equilibrium, essential for the 

organization of membrane bilayer, given by the extended hydrophilic sugar 

domain combined with the hydrophobic moiety. The amphiphilic balance is 

easily perturbed by minimal modifications of ceramide or oligosaccharide chain 

(Sonnino et al. 2006; Sonnino et al. 2007; Aureli et al. 2016). 

The presence of sialic acid confers to ganglioside GM1 a negative charge in 

biological environment, resulting however only the 16% of the expected value in 

aggregative status (Cantù et al. 1986). The particular aggregative behavior of GM1 

is due once again both to the flexible and packable hydrophilic pentasaccharide 

chain, soluble in water and to the attached remarkably smaller hydrophobic 

ceramide moiety. In aqueous solutions these physicochemical properties 

determine the formation of micelles, according to the usual ganglioside 

penchant (Urlich-Bott & Wiegandt, 1984; Cantù et al. 1986;  Sonnino et al. 1994; Sonnino & 

Prinetti, 2010).  

Among the GM1 micelles, the negative charge power of sialic acid residues is 

lowered by the polyelectrolyte effect and masked by the positive charges, 

explaining the cited phenomena (Sonnino et al. 1994; Aureli et al. 2016). 

GM1 micelles present small ellipsoidal form caused by the original geometry of 

the monomer presenting a large hydrophilic head. For GM1, the critical micelles 

concentration (c.m.c.), determined by experimental approaches, ranging from 

10-8 to 10-9 M and the free monomers never exceed the c.m.c. value, 

maintaining in equilibrium with aggregates at any GM1 concentration (Urlich-Bott 

& Wiegandt, 1984; Cantù et al. 1986;  Sonnino et al. 1994).  

The aggregative properties of GM1 relevantly impact the interaction with cells 

and the modulation of cell membrane organization (Facci et al. 1984; Sonnino et al. 

2006; Prinetti et al. 2007; Cantù et al. 2011; Khatun et al. 2014).  

GM1 interaction with cell components and the effect on cell membranes has 

been studied in vitro, feeding cell cultures with the exogenous ganglioside.  

Experimental evidences derived from GM1 administration to cultured neurons 

report that at the c.m.c. concentration, the GM1 monomers insert into the 

external layer of plasma membrane through lipid-lipid interactions, while the 
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micelles bind to the cell surface proteins and can be endocytosed reaching then 

lysosomes (Saqr et al. 1993). A prolonged treatment was proved to advance the 

insertion of GM1 monomers into the plasma membrane. On the other hand, the 

gradually augmenting in GM1 concentration, over the c.m.c. increase the 

aggregative process (Tomasi et al. 1980; Venerando et al. 1982; Facci et al. 1984). 

A study performed on fibroblasts agrees with time and concentration 

dependence of exogenous GM1 behavior, underlining its modality of 

association to cells. In fact, increasing the GM1 concentration over the c.m.c. up 

to 10-4 M, the weakly association of GM1 to plasma membrane, typical of the 

micelle forms, appears progressively more favorable. Alternatively, at the c.m.c. 

the monomeric GM1, stably associated to cells and introduced in the cell 

metabolism, prevails after 120 minutes treatment (Chigorno et al. 1985).         

These outcomes are reported and detailed in figure I13. 

Moreover, if c.m.c. value is increased, meaning that an unusual higher GM1 

molarities are required to initiate aggregation process, the half-life of micelles is 

reduced and the process is perturbed by the facilitated release of monomers 

(Cantù et al. 1991). 

GM1 monomers are stabilized into the outer layer of plasma membrane 

establishing hydrogen bonds with surrounding glycerophospholipids and can 

interact with proteins and membrane receptors. According to the typical 

ganglioside properties, GM1 monomers integrated into plasma membrane tends 

to segregate in specialized domains characterized by peculiar interaction with 

others components and between themselves, that physically reflects its 

amphiphilic balance (Prioni et al. 2004; Sonnino et al. 2006; Sonnino et al. 2007; Aureli et 

al. 2016). In particular, at the aqueous/lipid interface the dynamic is reduced by a 

network of hydrogen bonds created by the amide group of the ceramide that 

acts both as a donor and as an acceptor of protons (Brocca et al. 1993). The 

oligosaccharide heads interact reciprocally by hydrogen bonds too, allowed by 

water molecules insinuated as linking bridges between two chains (Acquotti et al. 

1990; Brocca et al. 1998; Brocca et al. 2000). 
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Figure I13: Exogenous Ganglioside GM1 association to cultured fibroblasts. GM1 
interaction with cells is based on its aggregative properties depending on time and 
concentration. Over the c.m.c. (10-9 M), the promoted state is progressively 
represented by the micelles that weakly bind the external cell surface and are easily 
removed by exchange with serum component (SERUM LABILE). This tendency 
however decrease in time and at fixed c.m.c. after 120 minutes, most GM1 
administrated stays in monomer forms. Monomeric GM1, integrated into the plasma 
membrane, participating to the cell metabolism, can be isolated after cell treatment with 
trypsin (TRYPSIN STABLE). A third dynamic, intermediate and vulnerable state 
corresponds to simple monomers or micelles of GM1 interacting with some proteins 
protruding from the external layer of the cell membrane (TRYPSIN LABILE). 
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As previously mentioned in relation to overall ganglioside properties, also GM1 

chemical features, effectively decisive for its structural relations and 

arrangement, play a determinant role in peculiar tendency to the lateral 

segregation in the plasma membrane lipid rafts (Simons & Sampaio, 2011; Aureli et al. 

2016). 

Firstly, the above mentioned coexistence of opposite forces in the hydrogen 

bonds proton exchanging and in the ceramide influence on the hydrophobic 

packing, drive the physical phase separation of ganglioside from the fluidity of 

the glycerophospholipid bilayer (Sonnino & Prinetti, 2010; Sonnino & Prinetti, 2013).  

Moreover, an extremely important factor to determine the GM1 segregation is 

represented by the bulkiness of the large surface area occupied by its 

oligosaccharide chain. This characteristic has an impact not only on the packing 

of the ganglioside, considering the volume ratio to the ceramide moiety (Acquotti 

et al. 1990; Sonnino & Prinetti, 2010), but also on the acquisition of a spontaneous 

positive curvature of the plasma membrane that affects the local lateral 

organization favoring the phase separation of GM1 enriched microdomains 

(Sonnino et al. 1994; Fra et al. 1995; Ewers et al. 2010; Patel et al. 2016). 

GM1 in lipid rafts have been detected and localized thanks to its capacity to 

bind subunit B of cholera toxin (Holmgren et al. 1973). The receptor activity was 

proved to be imputable to GM1 oligosaccharide chain: the B pentameric subunit 

binds to the five monomers independently from both the A subunit and the 

ceramide with a low binding constant ranging from 10-9 to 10-12 M (Masserini et al. 

1992; Kuziemko et al. 1996). 

Alternatively, GM1 can be recognized also by using antibodies for which 

employing techniques and the improvement in their specificity have been 

implementing for many years (Wu & Ledeen, 1991; Watarai et al. 1994; Taylor et al. 1996; 

Kaji & Kimura, 1999; Iglesias-Bartolomé et al. 2009; Ledeen & Wu, 2015). 

GM1 is one of the physiologically essential ganglioside in neuronal plasma 

membrane lipid rafts, concentrating at the presynaptic and postsynaptic 

membranes of nerve endings and segregating especially with sphingomyelin, 

phosphatidylinositols, glycosylphosphatidylinositols, cholesterol and others 

gangliosides (Simons & Sampaio, 2011; Sonnino et al. 2007).  
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From the analysis of lipid rafts in cerebellar granule cells, gangliosides have 

found to represent only the 6-7% of the total lipid content, constituted over 50% 

by glycerophospholipids (Sonnino et al. 2007). The most representative 

gangliosides in these differentiate neurons are GD1a and GT1b and, regardless 

the minor quantity, their co-localization with GM1 justifies from a functional point 

of view their physiological essentiality (Sonnino et al. 2011; Shengrund, 2015).  

In fact, mice genetically deficient in gangliosides show a distortion in lipid 

microdomains, indicating their necessity in formation, stabilization and 

dynamicity of lipid rafts. The overexpression of gangliosides is correlated to an 

abnormal functioning of the process too (Sonnino et al. 2007; Pavlov et al. 2009; 

Furukawa et al. 2011; Ohmi et al. 2012).  

Neurological disorders that further accompanies this situation is explained by 

the alteration in physiological GM1 concomitance with proteins among the lipid 

rafts (Fang et al. 2000; Sonnino et al. 2007; Ledeen & Wu, 2015; Russo et al. 2016).               

As a matter of fact, different proteins crucial for neural functions have been 

identified to present glycolipid-binding domains, being interacting partners of 

GM1, or to belong to a related pathway. Just to make some examples: β-

amyloid peptide (Fantini et al. 2013), α-synuclein (Fantini et al. 2011), Na+/Ca2+ 

exchanger, integrins (Ledeen & Wu, 2015; Xie et al. 2002), transient receptor potential 

channel 5 (Wu et al. 2007),  opioid receptors (Shen & Crain, 1990; Wu et al. 1997) and 

Trk receptor (Mutoh et al. 2002; Nishio et al. 2004). 

Moreover, an association of GM1 and GD1a to the plasma-membrane-bound 

salidase has been reported too, suggesting a reserve-role of GD1a for GM1 and 

as a consequence, the existence of a tight regulated cell content and 

requirement of GM1, supporting its functional relevance (Sonnino et al. 2010; 

Sonnino et al. 2011; Miyagi & Yamaguchi, 2012; Ledeen & Wu, 2015).  
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GM1 neurofunctions 

Thence, the impact of GM1 on plasma membrane microdomain assessment 

and specialization, leading to its involvement in the regulation of the cell signal 

transduction and in the modulation of several pathways, appears unavoidable 

element to consider and to clearly realize the GM1 biological potential (Fueshko & 

Shengrund, 1992; Nagai, 1995; Pavlov et al. 2009; Aureli et al. 2016; Ledeen & Wu, 2015).  

Because of the GM1 relevant presence in the nervous system, most of the GM1 

biological properties have been studied in neuronal models, following biological 

or pharmacological approaches by manipulating the endogenous GM1 or by 

treating cell cultures and animals with the exogenous one respectively (Ledeen & 

Wu, 2015). Nevertheless, because of the evaluation of the GM1 potential in extra 

nervous areas such as immune system, liver, kidney or lungs (Ozkök et al. 1999; 

Saito & Sugiyama, 2000; Ledeen & Wu, 2015), it has been recently defined a ʺfactotum 

of natureʺ (Ledeen & Wu, 2015).  

A lot of studies have been performed in vitro in order to identify GM1 targets in 

initiation of neurodifferentiation and neurotrophic effects. Even if the most 

experiences were conducted following a pharmacological approach, by 

administering exogenous GM1 to cells in culture or to animal models, some 

results offer a physiological meaningful (Ledeen & Wu, 2015). It happened because 

they appeared reproducible also manipulating endogenous GM1 enhancing 

sialidase (Wu et al. 1998; Monti et al. 2000) or GM1 synthase activities (Mutoh et al. 

2002; Dong et al. 2002), ascertaining the insertion of GM1 into specialized domains 

of the cell membrane (Ledeen & Wu, 2015) or proving the natural increase in the 

GM1 content occurring during spontaneous neurodeveloping processes (Fang et 

al. 2000; Hasegawa et al. 2000). 

According to above described physicochemical parameters and characteristics, 

the effects exerted by GM1 occurs when its content increases in plasma 

membrane lipid rafts (Hakomori et al. 1998; Dietrich et al. 2001; Mitsuda et al. 2002; Mutoh 

et al. 2002; Dong et al. 2002; Pavlov et al. 2009; Sonnino et al. 2010; Coskun & Simons 2011; 

Sonnno et al. 2011; Ledeen & Wu, 2015), as represented in figure I14.  

 



Introduction 

- 27 - 
 

Effectively, the membrane local GM1 enrichment can support biological 

functions in two main ways:  

i. indirectly, by the GM1 content-dependent membrane reorganization, followed 

by membrane properties modifications that ensure physical parameters required 

for protein activities;  

ii. by the GM1-proteins direct interactions allowing the modification in the protein 

conformation and the signal onset.  

The simultaneously occurrence of both phenomena is also contemplated  

(Coskun & Simons 2011). 

 

Figure I14: GM1 content augmenting in lipid rafts is the basis for its functions. 
GM1 concentration in lipid rafts causes modifications in protein activity i. indirectly, 
through a rearrangement of membrane parameters; ii. directly by interactions between 
GM1 and proteins.  
 

Different authors describe the involvement of GM1 in the neuronal development 

and in the maturation of mammalian brain (Ledeen et al. 1998; Ledeen & Wu, 2009; 

Schnaar et al. 2014; Aureli et al. 2016; Schengrund, 2015). As mentioned above, GM1 

appears with other complex gangliosides during neuronal differentiation- and 

specialization-correlated processes, reflecting its participation in neurite 

sprouting, elongation and in synaptogenesis (Arita et al. 1984; Facci et al. 1984; 

Ledeen, 1984; Ledeen & Wu, 2015). 

Among the biological roles of GM1, its contribution to the regulation of the 

intracellular neuronal calcium homeostasis has emerged from many studies.                    

GM1 has been proved to induced Ca2+ influx in different neuroblastoma cell 

lines (Wu & Ledeen, 1991; Wu et al. 1998; Fang et al. 2000; Hasegawa et al. 2000; Monti et al. 
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2000) and in primary cultures of hippocampal neurons (Abad-Rodriguez et al. 2001), 

interacting directly with T type channels (Wu & Ledeen, 1991; Fang et al. 2000). The 

effect is evidenced both by enhancing of sialidase activity (Wu & Ledeen, 1991) 

and by administering the exogenous ganglioside (Wu et al. 1998).  

Alternatively, Ca2+ influx has been recorded as a consequence of GM1 

crosslinking with B subunit of cholera toxin that allows the co-crosslinking of 

GM1-associated proteins such as the integrins (Fang et al. 2000; Milani et al. 1992). 

The following autophosphorylation of associated kinases induce the signaling 

that trigger the activation of TRPC5 channels (Montell, 2004; Wu et al. 2007). 

In both reported examples, the downstream result of the GM1-promoted Ca2+ 

influx is represented by the genesis and the outgrowth of neurite processes (Wu 

& Ledeen, 1991; Fang et al. 2000; Hasegawa et al. 2000; Abad-Rodriguez et al. 2001; Wu et al. 

2007).            

Another related effect concerns the regeneration of damaged peripheral nerve 

appearing concomitant to the Ca2+ influx and to the enhancement in sialidase 

activity (Kappagantula et al. 2014). 

GM1 has been further proved to modulate the Ca2+ efflux by Na+/Ca2+ 

exchanger interaction, also in nucleus membrane (Xie et al. 2002), and by Ca2+-

ATPase association in sarco/endoplasmic reticulum (Leon et al. 1981; Nowycky et al. 

2014). 

An overall scheme of GM1 contribution in Ca2+  cell flux regulation is reported in 

figure I15 (Ledeen & Wu, 2015). 
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Figure I15: Influence of GM1 on the regulation of calcium flux. GM1 can interact 
directly or indirectly with different proteins responsible to mediate influx o efflux of Ca2+ 
across cell membranes. NCX, Na+/Ca2+ exchanger; TRPC5, transient receptor potential 
channel 5; PMCA, plasma membrane Ca2+-ATPase pump; SERCA, sarco/endoplasmic 
Ca2+-ATPase pump; PTP, IP3-R, inositol-3-phosphate receptor; PTP, permeability 
transition pore (Ledeen & Wu, 2015). 

In addition to the regulation of calcium flux, to explain GM1-promoted 

neuritogenic effects (Abad-Rodriguez et al. 2001; Wu et al. 2007), another elucidated 

pathway claimed for its involvement in GM1-mediated neurodifferentiation is the 

TrkA receptor/MAP Kinases one (Ferrari et al. 1995; Mutoh et al. 1995; Farooqui et 

al.1997; Bachis et al. 2002; Duchemin et al. 2002; Rabin et al. 2002). 

GM1 has been reported to promote neurite outgrowth in rat pheochromocytoma 

PC12 cells and in dorsal root ganglion binding directly laminin-1 and promoting 

the constitution of a focal microdomain in the membrane. In this way, laminin-1 

induces large clustering of GM1 in lipid rafts that causes translocation and 

enrichment in β1 integrin. This aggregation allows the co-localization and 

autophosphorylation of TrkA enhancing signal transduction by activation of Lyn, 

Akt and MAPK promoting neurite outgrowth (Ichikawa et al. 2009). 

An overall representation of TrkA-mediated pathways and of the downstream 

signaling are represented in figure I16. GM1 is supposed to colocalized with TrkA 

receptor and to influence its activation (Ferrari et al. 1995; Mutoh et al. 1995; Farooqui 

et al.1997; Bachis et al. 2002; Duchemin et al. 2002; Rabin et al. 2002). 
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Figure I16: Overview of TrkA-mediated pathways promoted by interaction with 
GM1. NGF, Nerve Growth Factor; PLCγ1, Phospholipase C gamma 1; PKC, 
Phosphokinase C; SHC, Src homology 2 domain Containing protein; Grb2, Growth 
factor Receptor Binding protein 2; SOS, Son of Sevenless; RAS, RAF, Reticular 
Ascendant System proteins; MAPK, Mitogen Activated Protein Kinase; Frs2, Fibroblast 
Growth Factor Receptor Substrate 2; SH2B, Signal Transuction Adapter protein 2b; 
Gab1/2, GRB associated binding proteins; PI3K, Phospho-inositide 3 Kinase, AKT, 
alpha serine/threonine-protein Kinase; mTOR, mammalian Target of Rapamycin. 

Another study reveals a direct and tight association of GM1 with TrkA, that 

strongly enhances the neurite outgrowth and the neurofilament expression in rat 

PC12 cells. Elicitation of cells by a low dose of NGF alone was insufficient to 

induce neuronal differentiation. The potentiating of NGF activity has been 

observed in the presence of GM1 in the culture medium increasing 

autophosphorylation of TrkA as compared with NGF alone. A GM1 direct 

enhancement of NGF-activated autophosphorylation of in vitro 

immunoprecipitated TrkA was also found. Monosialoganglioside GM1, but not 

polysialogangliosides, was tightly associated with immunoprecipitated TrkA. 

Furthermore, a tight association of GM1 and TrkA was not observed with other 

growth factor receptors, such as low-affinity NGF receptor, p75NGR and 

epidermal growth factor receptor, EGFR, (Mutoh et al. 1995). A similar study 

agrees with this evidence, reporting an increase in the TrkA mediated  

neuritogenesis and NGF-stimulated apoptosis prevention in GM1-treated PC12 

cells in a dose and time dependent manner (Farooqui et al.1997). 
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Another example is reported to prove GM1 induction of Trk and Erk 

phosphorylation in brain slice of striatum, hippocampus and frontal cortex, 

underlining a higher level of specificity for TrkA with respect to TrkB and C and 

an elicited activation of Erk2 superior than of Erk1. The time and dose 

dependency was set also in this study (Duchemin et al. 2002). 

A study revealed that GM1 deficient NG108 cells don’t locate TrkA receptor in 

plasma membrane and doesn’t show any autophosphorylation. The stable 

transfection of GM1 synthase into these cells restores the expression of TrkA in 

plasma membrane and its activation, suggesting that GM1 is required for 

normal maintaining and functionality of TrkA (Mutoh et al. 2002). 

Focusing on neurotrophic and neuroprotective properties of GM1, Trk pathway 

seems to be once again implicated. 

GM1 was found to rescue cells from apoptotic death using serum-deprived 

cultures of wild type and TrKA overexpressing PC12 cells. GM1-promoted 

survival was demonstrated to be mediated by both TrkA and TrkB, and 

potentially by tyrosine kinase receptors for additional neurotrophic growth 

factors. To support these findings, K-252a, an inhibitor of Trk kinases, was 

employed in PC12 cells overexpressing a dominant inhibitory form of Trk, 

revealing that a portion of the survival-promoting activity of GM1 is due to 

receptor dimerization and autophosphorylation (Ferrari et al. 1995). 

Moreover, GM1 was proved to increase the survival of PC12 cells to hydrogen 

peroxide and others reactive oxygen species. The TrkA receptor implication and 

the downstream activation of Erk and Akt were considered target of GM1 

because the ganglioside-promoted cell viability was abolished by TrkA inhibitor 

(Zakharova et al. 2014). 

Concerning the neurotrophic role shown by GM1 after exogenous 

administration, the gathered pharmacological potential has open a window onto 

development of semisynthetic derivatives of GM1, the LIGA series (Kharlamov et 

al. 1993). Their remarkable difference from the parent compound reside in the 

incremented membrane permeability and, therefore, enhanced capability to 

penetrate the blood–brain barrier (BBB) and neuronal plasma membrane. 

These property is imputable to the replacement the long-chain fatty acid of 
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ceramide by shorter groups, such as acetyl (LIGA4) or dichloroacetyl (LIGA20), 

as shown in figure I17. 

 

a. 

 

 

b. 

 

 

Figure I17: Semisynthetic GM1 derivatives chemical structures. 

a. LIGA 4 

b. LIGA 20 
 

LIGA20 provided examples of others neuroprotection activities, including 

attenuation of ethanol-induced apoptosis in rat cerebellar granule neurons (Saito 

et al. 1999). LIGA20 exhibit in vivo a protective behavior against enhanced 

kainate-induced seizures (Wu et al. 2005). It also succeeded in ameliorating 

Parkinsonian symptoms in a rodent model of Parkinson disease (Schneider & Di 

Stefano, 1995)  

LIGA20, as well as GM1 ganglioside, demonstrates different effects on 

neurotrophic processes, even though the only structural modification realized on 

fatty acid and the sphingosine moieties while the oligosaccharide chain stayed 

unchanged. 
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Among all features of GM1 biological potential, neurodifferentiation, 

neuroprotection and neurodevelopment are certainly the impacted processes 

predominantly studied and debated. 

Many cell pathways have been considered and investigated in order to 

accurately clarify and completely dissect the biological role of endogenous GM1 

in the nervous system.  

Even if different GM1 targets have been successfully identified by several 

studies, the precise dynamic interaction between GM1 and candidate proteins 

such as the related molecular mechanisms at the bases of the observed effects 

still remain elusive.  

Moreover, the findings obtained following the pharmacological approaches don’t 

explain utterly the physiological reasoning, opening and implementing however 

the GM1 therapeutic employment as alternative research field.  

The involvement of GM1 in neuronal differentiation has been demonstrated 

using different experimental approaches in vitro: 

i. in murine neuroblastoma cell line, N2a, a micromolar GM1 administration 

have proved its capability to influence neurodifferentiation process by inducting 

neuritogenesis (Facci et al. 1984) 

ii. in hippocampal neurons, the overexpression of sialidase Neu3 allowed the 

formation of GM1-enriched platforms inducing membrane structure 

modifications. The resulting membrane configuration induces the Trk 

dimerization and activation. This turn on a specific signaling cascade resulting 

in the actin depolymerization generating axon protrusion and elongation (Abad-

Rodriguez et al. 2001; Da Silva et al. 2005). 

iii. in murine neuroblastoma cell line, N2a, Neu3 silencing and the following 

decrease in enzymatic activity has been demonstrated to induce neurite 

sprouting too (Valaperta et al. 2007).  

The evidence of the neurodifferentiation promotion obtained manipulating the 

endogenous GM1 by two opposed mechanisms, augmenting or silencing the 

plasma membrane-associated sialidase Neu3, suggests an important influence 



Aim 

- 35 - 
 

of the oligosaccharide chain in the fine-tuning of the processes beginning at the 

level of plasma membranes, figure A1. 

The value of glyco-mediated signaling has been further strongly described for 

gangliosides. 

 

a.                                                                          b.     

 

Figure A1: Neurodifferentiative effect promoted by the modification of the Neu3 
sialidase activity. 

a. Increasing Neu3 activity. In hippocampal neurons GM1 augmenting, due to the 
Neu3 activity enhancement, leads to the plasma membrane reorganization in GM1-
enrched lipid rafts where dimerization and autophosphorylation of Trk receptor can 
occur. Trk pathway activation provokes the downstream actin depolimerization 
promoting axon protrusion.   

b. Silencing Neu3. In mouse neuroblastoma cells, silencing Neu3 activity, resulting in 
about 50% GM1 reduction, causes neurite sprouting and elongation. 
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In addition, the studies carried on using LIGA 20 GM1 derivative revealed a 

responses both in differentiative and therapeutic employments. The only 

structural difference concerns the fatty acid portion, unchanging the 

oligosaccharide chain constitution and their feasible association with glycol-

sensitive protein domains but affecting only the GM1 availability to biological 

membrane systems. 

The conditions and premises above mentioned encourage to suppose that the 

crucial point for GM1 to exert its tasks depend on the ‘’quality” of the 

oligosaccharide chain into the lipid rafts, which promotes selective interaction 

with plasma membrane specific proteins.  

The aim of the proposed research is the clarification of the molecular 

mechanism and the recognizing of the protein targets by which GM1 

accompany and enhance neurodifferentiation process in cells, hypothesizing 

the implication of its oligosaccharide chain.  

On the bases of previous studies the attention is focused on TrkA signaling, 

employing the murine neuroblastoma cell line, Neuro2a (N2a) as an in vitro 

model. N2a have been in fact demonstrate to differentiate in neurons-like 

phenotype under treatment with GM1 and by increasing its endogenous content 

(Facci et al. 1984).  

In the present study, the exogenous administration of OligoGM1 is really 

employed with the purpose to demonstrate the essential implication of the 

hydrophilic head in the natural GM1-promoted neuritogenesis, aspiring to confer 

to achieving results a physiological significance. 
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Materials 

The murine neuroblastoma cell line, Neuro2a (N2a, RRID: CVCL_0470),  

Phosphate-buffered saline (PBS), Trizma Base (Tris), 

Ethylenediaminetetraacetic acid (EDTA), Sodium orthovanadate (Na3VO4),        

Bovine Serum Albumin (BSA), 1,4-Dithiothreitol (DTT), 3-(4,5,-dimethylthiazole-

2yl)-2,5-diphenyltetrazolium bromide (MTT), Triethylamine (TEA), Sodium 

dodecil sulfate (SDS), Tween, Glycerol, Paraformaldehyde, Triton X-100, 

Methanol, 2-propanol, Formic acid, Blue bromophenol, Trypan blue, Donkey 

serum, powder milk, anti-rabbit FITC conjugate, and mouse α-tubulin antibodies 

galactose, sialic acid were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

Corning®  cell culture flasks, dishes, and Corning® Costar® cell culture plates, 

and Corning® Transfectagro™ reduced serum medium were purchased from 

Corning (Corning, NY, USA).  

Dulbecco’s modified Eagle’s high glucose medium (DMEM HG), fetal bovine 

serum (FBS), L-glutamine (L-Glut), Penicillin (10000 U/mL), Streptomycin (10 

mg/mL), and acrylamide, were purchased from EuroClone (Paignton, UK).  

Gibco™ Opti-MEM™ I reduced serum medium, Lipofectamine® 2000 reagent, 

ammonium persulfate (APS), goat anti-mouse IgG (H+L) antibody (RRID: 

AB_228307) were from Thermo Fischer Scientific (Waltham, MA, USA).  

TrkA inhibitor (CAS 388626-12-8) and high performance thin-layer 

chromatography (HPTLC) were from Merk Millipore Merk Millipore (Billerica, 

MA, USA).  

The short interfering RNAs (siRNAs) were from Quiagen (Velno, Netherlands). 

Rabbit anti-TrkA (RRID: AB_10695253), rabbit antiphospho-TrkA (tyrosine 490, 

Tyr490) (RRID: AB_10235585), rabbit anti-p44/42 MAPK (Erk1/2) (RRID: 

AB_390779), rabbit antiphospho-p44/42 MAPK (pErk1/2) (Thr202/Tyr204) 

(RRID:AB_2315112) and anti-rabbit IgG (RRID: AB_2099233) antibodies were 

from Cell Signaling Technology (Danvers, MA, USA). Rabbit anti-pan 

Neurofilament (NF) antibody (RRID: AB_10539699) was from Biomol 

International (Plymouth Meeting, PA, USA).  

Protein assay kit and TEMED were from BioRad (Hercules, CA, USA). 
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Chemiluminescent kit for western blot was purchased from Cyanagen (Bologna, 

Italy). Ultima gold was purchased from Perkin Elmer (Waltham, MA, USA). 

Dako Fluorescent mounting medium was purchased from Agilent (Santa Clara, 

CA, USA). Polyvinylidene difluoride (PVDF) membrane was from GE 

Healthcare Life Sciences (Chigago, IL, USA). 

Commercial chemicals were of the highest purity available, common solvents 

were distilled before use and water was doubly distilled in a glass apparatus. 
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Methods 

Chemical synthesis and preparation of gangliosides and 

oligosaccharides 

Gangliosides 

Fucosyl-GM1, GM1, GM2, and GM3 gangliosides were obtained from total 

ganglioside mixture extracted from pig brains (Tettamanti et al. 1973), by sialidase 

hydrolysis and chromatographic purification (Acquotti et al. 1994). To obtain 

desialylated GM1 (asialoGM1), GM1 underwent acid hydrolysis and 

chromatographic purification (Ghidoni et al. 1976).  

Gangliosides were solved in methanol and stored at -20 °C. 

Radiolabeled GM1  

GM1 containing tritium at position 6 of external galactose ([Gal-6-3H]GM1,   

figure M1a) was obtained by an enzymatic oxidation reaction using galactose 

oxidase followed by reduction with sodium boro[3H]hydride (Sonnino et al. 1992).  

On the other hand, GM1 containing tritium at 3-position  of sphingosine      

([Sph-3-3H]GM1, figure M1b) resulted from a chemical approach by oxidation of 

ganglioside at the 3-position sphingosine with 2,3-dichloro-5,6-

dicyanobenzoquinone (DDQ), a reagent that is specific for allylic hydroxyl 

groups. Once again, the oxidation was followed by reduction with 

boro[3H]hydride (Ghidoni et al. 1981). 

Radiolabeled GM1 were solved in methanol and stored at 4 °C. 
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a. 

 

 

 

 

b. 

 

Figure M1: Radiolabeled GM1 derivative structures:  

a. [Gal-6-3H]GM1. An enzymatic oxidation was employed to obtain tritium labeling at 
the 6-position of the external galactose. 

b. [Sph-3-3H]GM1. tritium labeling at position 3 of the sphingosine is obtained by a 
chemical oxidation with DDQ. 
 
 

 

 

 

 

  



Materials & Methods 

- 42 - 
 

Ganglioside oligosaccharides 

The oligosaccharides Fuc-OligoGM1, OligoGM1, [Gal-6-3H]OligoGM1, 

asialoOligoGM1, OligoGM2, and OligoGM3 were prepared by ozonolysis 

followed by alkaline degradation with tryethilamine (Wiegandt & Bucking, 1970) of 

Fuc-GM1, GM1, (3H)GM1, asialoGM1, GM2, and GM3 respectively.  

Oligosaccharides were solved in methanol and stored at -20 °C. Radiolabeled 

derivatives are stored at 4 °C. 

OligoGM1 chemical synthesis and MS analysis are shown in figure M2 and M3.  

. 
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a. 

 

 
 
b. 

 

Figure M2: Chemical synthesis of OligoGM1 (a) and [Gal-6-3H]OligoGM1 (b). 
Ozone-alkali fragmentation  procedure was used to obtain desphingosino-gangliosides. 
Ozonolysis organic reaction cleaved unsaturated bond between sphingosine 4 and 5 
carbons. Subsequently, the alkaline degradation with tryethilamine released the 
oligosaccharide chain form the residue. 
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Figure M3: OligoGM1 MS analysis.  
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Photoactivable derivatives 

Photoactivable OligoGM1, [Gal-6-3H]OligoGM1(Glc-N3), bearing the 

photosensitive group on the glucose, as well as GM1 photoactivable on the fatty 

acid moiety, [Gal-6-3H]GM1(Cer-N3) were prepared from galactose-tritiated 

GM1, shown in figure M1a.  

On the other side, GM1 tritiated on sphingosine (figure M1b), was the precursor 

for the GM1 with the photoactivable group on the last galactose residue, [Sph-3-

3H]GM1(Gal-N3). 

To prepare photoactivable OligoGM1 on glucose (figure M5), an amount of 52 

μmol of radiolabeled OligoGM1 (obtained by ozonolysis and alkaline 

degradation of tritiated GM1) were dissolved in 33% ammonia and treated with 

1 mg of ammonium hydrogen carbonate. The reaction was maintained under 

stirring for 48 hours at 40 °C. The solution was then immediately freeze-dried 

(Lubineau et al. 1995). The same approach was followed for the preparation of 

photosensitive GM1 on the external galactose (figure M4). In this case, however, 

tritiated GM1 was firstly submitted to enzymatic oxidation at position 6 of the 

last galactose by galactose oxidation. 

To insert the photoactivable group on fatty acid residue, galactose-tritiated GM1 

was submitted to alkaline hydrolysis to remove the stearic acid residue, followed 

by acid coupling with 12-aminododecanoic acid (figure M6). The reaction 

occurred adding 350 μmol of 12-aminododecanoic acid, dissolved in 2.5 mL of 

dry tetrahydrofuran to 1.5 mL of dimethylformamide containing 80 μmol of 

deAcyl-GM1, Triton X-100 (1 mL), and dry triethylamine (15 mL) under 

continuous magnetic stirring for 24 hours at 23 °C. The mixture was evaporated 

under vacuum to 1 mL, and 25 mL of ethyl acetate was added (Sonnino et al. 

1989). 

Finally, all amino-derivatives were properly treated to insert the chosen 

photoactivable group. In particular, the azide labeling procedure (figure M4-6) 

started with the dissolution of the crude amino-derivatives obtained by previous 

reactions in 0.5 mL of dry dimethylformamide. Subsequently, 1 mg of 2-nitro-4-

fluorophenylazide and 1 μL of tributylamine were added under dark conditions 
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in 25 μL of dry DMSO. Maintaining dark conditions for all the process, the 

reaction mixture was stirred over night at 80°C. After solvent evaporation, 

desired compounds were purified by flash chromatography using 

chloroform/methanol/2-propanol/water 60:35:5:5 v/v/v/v as eluent for OligoGM1 

(Mauri et al. 2003) and chloroform/methanol/water 60:35:8 v/v/v for GM1 series 

(Sonnino et al. 1989).  

All derivatives were dissolved in methanol and stored at 4 °C. 
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Figure M4: Synthesis of [Gal-6-3H]OligoGM1(Glc-N3). 
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Figure M5: Synthesis of [Sph-3-3H]GM1(Gal-N3). 
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Figure M6: Synthesis of [Gal-6-3H]GM1(Cer-N3). 
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NMR, MS, HPTLC, and autoradiographic analyses 

Altogether, NMR, MS, HPTLC, and autoradiographic analyses showed a 

homogeneity over 99% for all the prepared gangliosides and oligosaccharides.  

NMR spectra were recorded with a Bruker AVANCE-500 spectrometer at a 

sample temperature of 298 K. NMR spectra were recorded in CDCl3 or CD3OD 

and calibrate using the TMS signals internal reference. 

Mass spectrometric analysis were performed in positive or negative ESI-MS. 

MS spectra were recorded on a Thermo Quest Finningan LCQTM DECA ion 

trap mass spectrometer, equipped with a Finnigan ESI interface. 

All reactions were monitored by HPTLC on silica gel 60 plates. 
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Cell cultures 

Neuro2a (N2a) cells were cultured and propagated on 75 cm2 flasks in high 

glucose Dulbecco’s modified Eagle’s medium (DMEM HG) supplemented with 

10% fetal bovine serum (FBS), 1% L-glutamine and 1% penicillin/streptomycin 

(P/S, v/v), at 37 °C in a humidify atmosphere of 95% air / 5% CO2. Cells were 

sub-cultured to a fresh culture twice a week at reaching of 90% confluence (i.e. 

every 3-4 days). In sub-cultures passages cells were washed twice with PBS 

and detached by 0.02% EDTA - 0.6% glucose in PBS (w/v).  

N2a cells were employed in experiments between the 5th and the 30th 

passages. 

For all cell culture procedures sterilized condition were maintained by using 

sterile solutions and by working under the laminar flow cabinet.  

Cell treatments 

For all experiments N2a cells were plated at 5 x 103 / cm2, on 6-well plates if not 

specified, and incubated for 24 hours in complete DMEM HG medium to allow 

cells attachment. Cells were counted by Bürker chamber system (Denham et al. 

1971).  

Control cells were always plated and incubated under identical conditions but 

omitting any addition.  

Ganglioside, Oligosaccharide and sugar treatments. 

Growth medium was removed and cells were conditioned for at least 30 

minutes at 37 °C in a humidify atmosphere of 95% air / 5% CO2 in pre-warmed 

Transfectagro medium supplemented with 2% FBS, 1% L-glutamine, 1% P/S 

(v/v). Cell treatments were performed in 2% FBS medium to minimize 

interactions between serum and added components (Facci et al. 1984). 

Subsequently, cells were incubated at 37 °C up to 48 hours in the presence of 

50 μM gangliosides, oligosaccharides, galactose, or sialic acid. 

Gangliosides, oligosaccharides and sugars were solved in methanol. To 

perform cell treatment, they were dried by nitrogen gas, and dissolved in 
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Transfectagro complete medium by vortex agitation and by sonication in water 

bath 3 times each for 30 seconds. 

TrkA chemical inhibition 

In order to block TrkA activity in N2a cells, 120 nM TrkA inhibitor (Wood et al. 

2004) was added to the conditioning Transfectagro medium 1 hours before the 

addition of GM1 or OligoGM1.  

siRNA mediated TrkA knockdown  

TrkA expression silencing was achieved by RNA interference experiments 

applying siRNA.  

Three different siRNAs were employed to silence TrkA:  

i. Mm_Ntrk1_1 (sense 50-CCAUCAUAAUAGCAAUUAUTT-30,               

antisense 50-AUAAUUGCUAUUAUGGAT-30);  

ii. Mm_Ntrk1_5 (sense 50-GGUGGCUGCUGGUAUGGUATT-30,         

antisense 50-UACCAUACCAGCAGCCACCTG-30 );  

iii. Mm_Ntrk1_6 (sense 50-CCUUCUUGUGCUCAACAAATT-30,           

antisense 50-UUUGUUGAGCACAAGAAGGAG-30 ).  

Non-silencing siRNA with no homology to any known mammalian gene was 

used (sense 50-UUCUUCGAACGUGUCACGUdTdT-30, antisense 50-

ACGUGACACGUUCGGAGAAdTdT-30) and the cells transfected by scramble 

were considered the control condition for the experiment.  

Transfection was performed 24 hours after cell plating in antibiotic and serum 

free OptiMEM culture media containing 0.25% Lipofectamine 2000 (v/v) and 50 

nM siRNA, previously solved in sterilized, deionized and nuclease free water      

(16.7 nM of each siRNA). After 6 hours, the transfection medium was changed 

to complete DMEM HG culture medium. The day after the silencing, cells were 

treated with 50 μM GM1 or OligoGM1 as described above. 
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Photolabeling experiments 

Cells were incubated with 50 μM [Sph-3-3H]GM1(Gal-N3) (figure M4), [Gal-6-

3H]OligoGM1(Glc-N3) (figure M5), and [Gal-6-3H]GM1(Cer-N3) (figure M6), for 3 

hours at 37 °C in a humidify atmosphere of 95% air / 5% CO2 in obscure room. 

After incubation, medium was removed and cells were illuminated for 40 

minutes under UV light (λ= 360 nm) maintaining the plates on ice to induce 

photo-activation.  

All the procedures before exposure to UV light were performed in dark room, 

under red safelight. 

The cells were lysed by sample buffer containing 0.15 M DTT, 94 mM Tris-HCl, 

15% glycerol (v/v), 3% SDS (w/v), 0.015% blue bromophenol (v/v), sonicated by 

probe (50 W, 30 kHz) and boiled for 5 minutes at 99 °C. Denatured proteins 

underwent to 4–20% SDS-polyacrylamide gel electrophoresis (SDS–PAGE) 

and blotted on PVDF membrane by trans-blot turbo system. Digital 

autoradiography of the PVDF membrane was performed with Beta-Imager 

2000. PVDF membranes were then blocked, incubated with anti-TrkA antibody 

and processed as follow described in the paragraph “Protein analysis” (Sonnino 

et al. 1989; Sonnino et al. 1992; Chigorno et al. 1990; Loberto et al. 2003; Chiricozzi et al. 

2015). 
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Assessment of cytotoxicity 

Trypan blue assay 

Cell viability was determined by Trypan blue exclusion assay after 24 and 48 

hour treatments with 50 μM GM1 or OligoGM1. Cells were detached by 25 cm2 

flasks. The numbers of living and death cells were discriminated according to 

Trypan blue staining that selectively distinguished necrosis and apoptotic cells 

from living ones (Mehlen et al. 1988; Aureli et al. 2011). 

MTT assays 

Cell proliferation was monitored after 12, 24 and 48 hour treatment with 50 μM 

GM1 or OligoGM1 according to MTT method firstly described by Mosmann in 

1983. 

Briefly, cells were seeded on 24-well plates for MTT test. 

At the end of incubation period, treatment medium was replaced with 2.4 mM 

MTT (dissolved 4 mg/mL in PBS) diluted in Transfectagro complete medium. 

Plates were re-incubated for 4 hours at 37 °C. Subsequently, MTT containing 

medium was carefully removed and the cells were lysed with 2-propanol : formic 

acid, 95 : 5 (v/v) in order to solve resulting formazan crystals. Plates were gently 

agitated for 5 minutes to homogenate cell purple solution prior to read the 

absorbance at 570 nm with microplate spectrophotometer.  
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Morphological analysis and neurite outgrowth evaluation 

Cultured cells, treated with 50 μM GM1, oligosaccharides or sugars up to 48 

hours, were observed by phase contrast microscopy.  

The neurite-like processes length was measured after treatment with GM1 or 

OligoGM1 on bidimensional images and expressed as the ratio between neurite 

length and cell body diameter (Schengrund & Prouty, 1988; Sato et al. 2002).  

Five random fields were examined from each well, giving a total cell count of at 

least 200 cells per well. 
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Immunofluorescence analysis 

After 24 hour treatment with 50 μM GM1 or OligoGM1, cells, attached to the 

glass inserts, were washed with cold PBS and fixed in 4% paraformaldehyde for 

20 minutes at 23 °C. Cells were washed, got permeable by 0.1% Triton X-100 

for 30 minutes and then treated for 1 hour at 23 °C with the blocking solution 

(5% donkey serum and 0.2% Triton X-100 in PBS, v/v). Cells were incubated 

with rabbit polyclonal antibody anti-Neurofilament (NF) for 2 hours at 23 °C. 

After three washing with PBS, cells were incubated 1 hour with secondary anti-

rabbit antibody FITC-conjugated.  

Fluorescence signal was detected by fluorescence microscope and the images 

were processed by ImageJ software. 
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Study of interaction between OligoGM1 and N2a cells  

The fate of OligoGM1 administered to cells was determined using tritium-

labeled derivative shown in figure M2b.  

After the cell loading with [Gal-6-3H]OligoGM1 for 0.5, 1, 6, and 24 hours the 

medium was removed and the following treatments were performed 

sequentially: 

i. cells were washed 5 times/10 minutes each with 10% FBS-DMEM HG 

medium to remove the amount of [Gal-6-3H]OligoGM1 weakly associated to the 

cell was collected removable from the cell plasma membrane by the affinity to 

the serum components. The resulting solution was called ʺserum labile fraction 

(SL)ʺ;  

ii. cells were treated with 0.1% trypsin-EDTA solution in PBS (v/v) for 1 minute 

to obtain the [Gal-6-3H]OligoGM1 covalently linked to extracellular domain of 

plasma membrane proteins. Trypsin removable-derived solution fraction was 

called ʺtrypsin labile fractionʺ (TL);  

iii. cells were lysed by trypsin-EDTA solution (0.05%-0.02%, w/v in PBS) in 

order to evaluate the quantity of [Gal-6-3H]OligoGM1 internalized by the cells. 

This fraction underwent to probe sonication (50 W, 30 kHz) and the relative 

homogenate is called ʺtrypsin labile fractionʺ (TS).  

Radioactivity associated with collected solutions was determined by liquid 

scintillation counting. 

The procedure was previously established to determine at the cell culture level 

the fate of exogenously administered gangliosides (Chigorno et al. 1985). 
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Protein analysis 

At the end of treatments, cells were washed with cold PBS containing 0.5% of 2 

mM Na3VO4 (v/v), lysed by hot lysis Buffer (0.15 M DTT, 94 mM Tris-HCl, 15% 

glycerol, v/v, 3% SDS w/v, 0.015% blue bromophenol, v/v) and detached using 

scrapers. DC protein assay was performed in order to quantify sample proteins. 

After the probe sonication (50 W, 30 kHz) and the boiling of the lysed samples 

for 5 minutes at 99 °C, equal amounts of denatured proteins derived from 

treated and untreated cells were separated on 7.5% polyacrylamide gels, and 

transferred to PVDF membranes.  

Electrophoresis was performed at 23 °C, applying 100 V constant voltage in the 

stacking gel, augmenting at 170 V in the running. Blot transferring was 

performed at 4 °C, maintaining for 3 hours constant current at 200 mA. PVDF 

membranes were blocked with 5% milk (w/v) in TBS-0.1% tween (v/v) at 23 °C 

for 2 hours under gently shaking.  

The presence of Neurofilament (NF), TrkA, p-TrkA, extracellular signal-

regulated protein kinases 1 and 2 (ERK1/2) and p-ERK1/2 was determined by 

specific rabbit primary antibodies, diluted 1:1000 in 5% BSA (w/v) in TBS-0.1% 

tween. α-tubulin, used as loading, was detected by the specific mouse primary 

antibody diluted 1:40000 in 5% milk (w/v) in TBS-0.1% tween (v/v). The 

incubation was performed over night at 4 °C under gently shaking. 

PVDF membrane were washed three times with TBS-0.1% tween. The reaction 

with secondary horseradish peroxidase (HPR)-conjugated antibodies was 

following performed at 23 °C in agitation, after 1:2000 dilution of anti-rabbit 

antibody in 5% BSA  (w/v) in TBS-0.1% tween and 1:30000 dilution of anti-

mouse antibody in 5% milk (w/v) in 0.1% TBS-tween.  

After three washes with TBS-0.1% tween, PVDF signal, originated from luminol 

chemiluminescence reaction, was acquired and analyzed by Uvitec. 

Quantitative estimation were performed using ImageJ software. 
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Molecular modeling 

Crystallographic structure of the extracellular segment of human TrkA in 

complex with nerve growth factor (NGF) (RCSB PDB ID: 2IFG) was used for 

molecular docking calculations. Protein complex was submitted to the Molecular 

Operating Environment 2016.0802 (MOE) Structure Preparation application, in 

order to fix all issues and to prepare structures for subsequent computational 

analyses. 

The OligoGM1 structure was built with the MOE Carbohydrate Builder and a 

geometry optimization was carried out with MOPAC7 and the PM6 basis set.  

Molecular docking was carried out through the MOE Dock program, setting as 

receptor the complex between TrkA and NGF, as ligand the optimized 

OligoGM1 structure. The binding site was identified at the interface between the 

two proteins. Before placement procedure, 20 000 rotamers of the ligand was 

generated, exploring all the molecule rotatable bonds. Alpha PMI placement 

algorithm, specifically developed for tight binding pocket, was selected. The 

London dG empirical scoring function was used for sorting the poses. The 30 

top-scoring poses was refined through molecular mechanics, considering the 

receptor as a rigid body, and the refined complexes were scored through the 

GBVI/WSA dG empirical scoring function, keeping the five top-scoring poses. 

The top-scoring pose from the docking procedure was refined by using the 

MOE QuickPrep procedure aimed at relaxing and refining the complex before 

calculating the approx. binding free energy via the GBVI/WSA dG empirical 

scoring function (Naim et al. 2007). 
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GM1 and OligoGM1 effect on N2a cell viability and proliferation 

GM1 and OligoGM1 concentration for cell treatments was fixed at 50 μM (Rabin 

et al. 2002; Chiricozzi et al. 2017). 

Trypan blue assay was preliminary performed after 24 and 48 hour treatment in 

order to evaluate a possible toxic effect of 50 μM GM1 or OligoGM1 on N2a 

cells (Mehlen et al. 1988; Strober, 2001; Aureli et al. 2011). 

As shown in figure R1a, no significant difference in cell viability was observed 

with respect to untreated cells (Chiricozzi et al. 2017). 

 

 

 
Figure R1a: Effect of GM1 and OligoGM1 on cell viability. N2a cells were treated 
for 24 and 48 hours with 50 μM GM1 or OligoGM1. The numbers of living and dead 
cells were determined according to the Trypan blue exclusion assay and expressed in 
percentage of the total cell number. Bars show the mean values ± SEM of 5 different 
cell culture preparations (n = 5). 
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MTT reduction assay was additionally done after 12, 24 and 48 hours from 

administration of 50 μM GM1 or OligoGM1 to check on cell proliferation 

(Mosmann, 1983; Berridge et al. 1996). 

The assay revealed a remarkable slowdown of cell proliferation for both GM1 

and OligoGM1 treatments (Chiricozzi et al. 2017), suggesting a possible 

differentiative effect of oligosaccharide portion of GM1 on N2a cells (figure R1b). 

 

 

 
Figure R1b: Effect of GM1 and OligoGM1 on cell proliferation. N2a cell proliferation 
rate was monitored performing MTT reduction assay at different time point during 48 
hour treatment with 50 μM GM1 or OligoGM1. Formazan absorbance values at         
λ=570 nm are directly proportional to the number of proliferative cells. The points 

represent the mean ± SEM of background-reduced absorbance values of 5 different 
culture preparations (n = 5, * = statistical significant difference, p <0.05, TWO-WAY 
ANOVA vs CTRL). 
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Effect of GM1 derivatives on N2a cell morphology 

In order to investigate a possible differentiative role of GM1 derivatives, treated 

N2a cells were subjected to morphological analysis by phase contrast 

microscopy 24 and 48 hours after treatments. 

GM1 was employed as a positive control for the proved capacity to induce 

neurite formation in N2a cells (Roisen et al. 1981; Leon et al. 1982; Facci et al. 1984; 

Rabin et al. 2002).  

OligoGM1 administration to N2a cells induced a neuron-like morphology in 24 

hours, accentuated after 48 hours (figure R2). The effect was evidenced by the 

enhanced sprouting and progressive elongation of cell extension, conversely 

inappreciable in round-shaped control cells (Chiricozzi et al. 2017).  

In order to clearly rationalize on the minimal GM1 oligosaccharide-included 

portion essentially required to initiate neurodifferentiation process, N2a cells 

were treated with 50 μM galactose, sialic acid, OligoGM3, OligoGM2 or asialo-

OligoGM1. OligoGM1 components were not able to induce any relevant 

morphological changes in N2a cells after 48 hour incubation (figure R3).          

The morphological effect was only obtained by using the entire OligoGM1 

molecule suggesting that all included sugars are necessary to limit cell 

proliferation and to induce neurite sprouting (Chiricozzi et al. 2017). 

In addition, N2a cells were treated also with the fucosylated OligoGM1, since 

Fuc-GM1 was able to induce neurodifferentiation (Masserini et al. 1992). As shown 

in figure R4, Fuc-OligoGM1 was still able to induce neurite sprouting and 

reduction in cell proliferation, similarly to OligoGM1 (Chiricozzi et al. 2017). 

The obtained results suggest that the GM1 enhanced neurite sprouting in N2a 

cells requires specifically β-Gal-(1-3)- β-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]- β-Gal-

(1-4)-β-Glc structure and that the α-fucose addition at the 2 position of the 

external galactose is irrelevant for impacting differentiative process. 
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Figure R2: Morphological outcomes of N2a cells following 24 and 48 hours 
incubation with 50 μM GM1 or OligoGM1. Cells were examined with phase contrast 

microscopy with 200X magnification. Images are representative of 10 independent 
experiments (n = 10). 
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48 h 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure R3: Morphological outcomes of N2a cells grown with 50 μM galactose, 

sialic acid, OligoGM3, OligoGM2 and asialo-OligoGM1 for 48 hours. Cells were 
observed by phase contrast microscopy with 200X magnification. Images are 
representative of 3 independent experiments (n = 3). 
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48 h 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure R4: Morphological outcomes of N2a cells grown with 50 μM GM1, 

OligoGM1 and fuco-OligoGM1 for 48 hours. Cells were observed by phase contrast 
microscopy with 200X magnification. Images are representative of 3 independent 
experiments (n = 3). 
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Neurite characterization 

Neurite outgrowth was analyzed to characterize from a physical and 

biochemical points of view the morphological evidence of neuron-like cell 

differentiation induced by OligoGM1. 

Physical characterization  

Neurite extensions were measured and expressed by the ratio between the 

length of processes and the diameter of cell body (Schengrund & Prouty 1988; Sato 

et al. 2002).  

The values related to treated cells resulted significantly higher than control cells 

after 24 hours, increasing two fold more up to 48 hours (Chiricozzi et al. 2017). 

Values obtained with OligoGM1 were comparable to GM1 (figure R5).  

 

 
Figure R5: Evaluation of neurite sprouting and elongation in N2a cells. Neurite 
extensions were evaluated as the ratio between process length and cell body diameter 
after 24 and 48 hours treatment with 50 μM GM1 or OligoGM1. The bars show the 
mean values ± SEM from 5 different experiments (n = 5, * = statistical significant 
difference, p < 0.01, Student’s t-test vs CTRL). 
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Biochemical characterization 

The level of intracellular neurofilament protein expression was evaluated as  a 

biochemical marker of neurodifferentiation. Neurofilament is the major 

component of cytoskeleton supporting the axonal construction (Mao et al. 2000; 

Wang et al.  2004; Fukuda et al. 2014).  

Immunoblotting analysis highlighted a significant increase in the expression of 

heavy, medium and light NF subunits (NF-h, NF-m, and NF-l) after 24 hours 

treatment with both GM1 and OligoGM1 (Chiricozzi et al. 2017), (figure R6a). 

The result was qualitatively supported by the immunofluorescence assays 

(Chiricozzi et al. 2017) (figure R6b).  

Since the presence of cell extensions, characterized by NF proteins expression, 

is considered marker of neurodifferentiation, the oligosaccharide portion of GM1 

is allowable to promote neuritogenesis in N2a cells, analogously to GM1.  
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a. 

 

 
 
b. 

 

 

Figure R6: Neurofilament protein expression in N2a: 

a. Western Blotting analysis. Immunoblotting for NF-h, NF-m, NF-l was performed 
after 24 hour treatment with 50 μM GM1 or OligoGM1. The proteins are revealed by the 
specific antibody and visualized by chemiluminescence. Left: immunoblotting images. 
Blots are representative of 3 independent experiments. Right: semi-quantitative 
analysis of NF proteins amount. α-tubulin was used for normalization. The bars 
represent the mean ± SEM values of 3 different experiments expressed as the fold 
increase over CTRL (n = 3, * = statistical significant difference,  p < 0.01, Student’s t-
test vs CTRL). 

b. Immunofluorescence staining. Neurofilament was detected using the specific 
antibody after 24 hours treatment with 50 μM GM1 or OligoGM1. Cells were visualized 
by fluorescent microscopy at 400X magnification. Images are representative of 3 
independent experiments (n = 3). 
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OligoGM1 interaction with N2a cells 

Discovering the interaction between OligoGM1 and N2a cells represented the 

starting point to investigate about OligoGM1 targets in promoting 

neurodiffererentiation. The fate of OligoGM1 was established using a procedure 

described to search for gangliosides administered to cells in culture (Chigorno et 

al. 1985). The experimental approach allows to search for three different 

modalities of OligoGM1 association to cells: i. weakly to the cell surface, ii. 

covalently to the cell surface, iii. internalized by cells.  

Isotopic tritium labeled OligoGM1, [Gal-6-3H]OligoGM1, (figure M2b), was 

administered to N2a cells. Radioactivity allowed the recognition and the 

quantification of the molecule. After 0.5, 1, 6 and 24 hour treatments, cells were 

subjected to 10% serum-containing medium cell wash in order to remove and 

check the quantity of oligosaccharide weakly associated to the cells surface 

(serum labile fraction, SL). Subsequently, cells were treated with low-

concentrated trypsin solution, searching for the oligosaccharide covalently 

bonded on PM protein extracellular domains (trypsin labile fraction, TL). Finally, 

cells were lysed in order to trace internalized OligoGM1 (trypsin stabile fraction, 

TS). About 99% of collected OligoGM1 was found in the serum fraction at each 

time point as shown in figure R7 (Chiricozzi et al. 2017).  

The finding suggested that the oligosaccharide portion of GM1 does not enter 

into the cells neither in the PM, but it exerts its function interacting in a no-

covalent manner with the cell surface. 
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Figure R7: Association of OligoGM1 to N2a cells. N2a cells were incubated with   
50 μM [Gal-6-3H]OligoGM1 for 0.5, 1, 6 and 24 hours. After pulse, cells were washed 
with medium containing 10% FBS to collect the serum labile fraction (SL). Then cells 
were treated with 0.1% trypsin-EDTA solution to obtain the trypsin labile fraction (TL). 
Finally, cells were lysed to obtain the trypsin stabile fraction (TS). The radioactivity 
associated with each fraction was determined by liquid scintillation counting. Data are 
expressed as percentage of total detected radioactivity. The bars express the mean ± 
SEM values of three different experiments (n = 3). 
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OligoGM1 effect on TrkA receptor pathway  

On the basis of TrkA-mediated neurodifferentiation promoted by GM1 

amplifying NGF activity (Farooqui et al.1997; Singleton et al. 2000; Duchemin et al. 2002; 

Da Silva et al. 2005; Mocchetti 2005; Zakharova et al. 2014), TrkA pathway was chosen 

as the subject of the study in order to investigate the molecular mechanism 

responsible for OligoGM1-inducted neuritogenesis.  

Particular attention was focused on the phosphorylation of the tyrosine 490 

(Tyr490) that is relevant for differentiation pathway activation (Cordon-Cardo et al. 

1991; Lavenius et al. 1995; Eggert et al. 2000; Damani et al. 2003; Biarc et al. 2012; Biarc et al. 

2013). Furthermore, the activation of MAP Kinases Erk 1 and 2 (Erk1/2) was 

checked as downstream actor in the signaling cascade (Chao. 1992; Cowley et al. 

1994; Lavenius et al. 1995; Fukuda et al. 1995; Sweatt, 2001; Vaudry et al. 2002). 

TrkA receptor activation 

A significant activation of TrkA receptor detected as the increase in Tyr490 

phosphorylation level was highlighted both in GM1-treated cells and in 

OligoGM1-treated cells by immunoblotting analysis after 24 hours from the 

beginning of the treatment (Chiricozzi et al. 2017), (figure R8). 

Checking the activation of MAP kinases, an important augmenting in ERK1/2 

phosphorylation was also found in treated cells at the same time point (Chiricozzi 

et al. 2017), (figure R9). 
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Figure R8: GM1 and OligoGM1 effect on TrkA activation. N2a cells were treated 
with 50 μM GM1 or OligoGM1 for 24 hours. Immunoblotting for pTrkA (Tyr490), TrkA 
and α-tub expression is revealed by specific antibodies and visualized by 
chemiluminescence. Top: immunoblotting images. Blots are representative of 8 
independent experiments. Bottom: semi-quantitative analysis of pTrKA (Tyr490) related 
to the total TrkA level. α-tub was used to normalizing. The bars represent the mean ± 
SEM values of 8 different experiments, expressed as the fold increase over CTRL (n = 
8, * = statistical significant difference, p < 0.05, Student’s t-test vs CTRL). 
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Figure R9: GM1 and OligoGM1 effect on MAPK activation. N2a cells were treated 
with 50 μM GM1 or OligoGM1 for 24 hours. Immunoblotting for pErk1/2, Erk1/2 and α-
tub expression is revealed by specific antibodies and visualized by 
chemiluminescence. Top: immunoblotting images. Blots are representative of 8 
independent experiments. Bottom: semi-quantitative analysis of pErK1/2 related to the 
total Erk1/2 level. α-tub was used to normalizing. The bars represent the mean ± SEM 
values of 8 different experiments, expressed as the fold increase over CTRL (n = 8, * = 
statistical significant difference, p < 0.05, Student’s t-test vs CTRL). 
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Time course changing in TrkA-Erk signaling pathway 

In order to examine time course of TrkA-Erk pathway induction caused by GM1 

and OligoGM1, the phosphorylation levels of TrkA (Tyr490) and Erk1/2 were 

evaluated over the duration of the treatments by western blot analysis.   

As shown in figure R10, GM1 and OligoGM1 caused a rapid elevation of TrkA 

phosphorylation on Tyr490 that was significantly maintained over the 12 hours 

time course. 

The enhancement in MAPK phosphorylation appeared successively, getting 

significant after 6 hours from GM1 and OligoGM1 administration (figure R11). 

The results revealed that, following GM1 and OligoGM1 treatment, Tyr490-TrkA 

phosphorylation was increased within 30 minutes and Erk1/2 after 3 hours and 

both remained elevated throughout 24 hours, in parallel to morphological 

differentiation outcomes.  
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Figure R10: Time course of Tyr 490-TrkA phosphorylation. N2a cells were treated 
with 50 μM GM1 or OligoGM1 up to 12 hours. The figure shows analysis for pTrkA 
(Tyr490) and TrkA expression performed after 0.5, 1, 3, 6 and 12 hours treatment. 
Immunoblotting was revealed by specific antibodies and visualized by 
chemiluminescence. Top: immunoblotting images. Blots are representative of 3 
independent experiments. Bottom: semi-quantitative analysis of pTrKA (Tyr490) related 
to the total TrkA level. The bars represent the mean ± SEM values of 3 different 
experiments, expressed as the fold increase over CTRL (n = 3, * = statistical significant 
difference, p < 0.05, Student’s t-test vs CTRL). 
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Figure R11: GM1 Time course of Erk1/2 phosphorylation. N2a cells were treated 
with 50 μM GM1 or OligoGM1 up to 12 hours. The figure shows analysis for pErk1/2 

and Erk1/2 expression performed after 3, 6 and 12 hours treatment. Immunoblotting 
was revealed by specific antibodies and visualized by chemiluminescence. Top: 
immunoblotting images. Blots are representative of 3 independent experiments. 
Bottom: semi-quantitative analysis of pErK1/2 related to the total Erk1/2 level. The bars 
represent the mean ± SEM values of 3 different experiments, expressed as the fold 
increase over CTRL (n = 3, * = statistical significant difference, p < 0.05, Student’s t-
test vs CTRL). 
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TrkA receptor inhibition 

To prove that GM1 or OligoGM1 effect in N2a neurodifferentiation induction is 

properly mediated by TrkA-Erk pathway, TrkA activation was blocked using a 

specific inhibitor, able to fit the ATP pocket, preventing its consumption (Segal et 

al. 1996;  D’Ambrosi et al. 2001; Wood et al. 2004; Lemmon & Schlessinger, 2010). 

A specific inhibitor for TrkA receptor was employed in combination to GM1 and 

OligoGM1 treatments in order to prove that neuritogenic effect is properly 

mediated by TrkA-ERK pathway. The addition of TrkA inhibitor together with 

GM1 or OligoGM1 impeded phosphorylation processes in the signaling cascade 

of both Tyr490 and Erk p44/42 (Chiricozzi et al. 2017), (figure R12 a and b). 

Blocking TrkA activity, the neurite elongation is arrested even in presence of 

GM1 and OligoGM1 for 24 hours (Chiricozzi et al. 2017), (figure R13). 
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a.                                                                  b. 

 

 

 
 

 

 

Figure R12: Effect of TrkA chemical inhibition. N2a cells were treated with 50 μM 
GM1 or OligoGM1 for 24 hours in presence or in absence of a specific inhibitor for TrkA 
(120 nm). The figure shows analysis of TrKA (a) and Erk1/2 (b) activation. 
Immunoblotting for pTrkA (Tyr490), TrkA, pErk1/2, and Erk1/2 expression is revealed by 
specific antibodies and visualized by chemiluminescence. Top: immunoblotting images. 
Blots are representative of 5 independent experiments. Bottom: semi-quantitative 
analysis of pTrKA (a) and pErK1/2 (b) related to the total TrkA and Erk1/2 levels 
respectively. α-tub was used to normalizing. The bars represent the mean ± SEM 
values of 5 different experiments, expressed as the fold increase or decrease over 
CTRL (n = 5, * = statistical significant difference, p < 0.05, Student’s t-test vs CTRL). 
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Figure R13: Morphological outcomes of N2a cells after TrkA inhibition. After 24 
hours incubation with TrkA inhibitor in combination with 50 μM GM1 or OligoGM1 cells 
were analyzed with phase contrast microscopy with 200X magnification. Images are 
representative of 5 independent experiments (n = 5). 
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TrkA receptor expression silencing 

In addition to the chemical inhibition, TrkA receptor expression was also 

knocked down by siRNA transfection. The approach offered the possibility to 

demonstrate the unavoidable implication of TrkA receptor in GM1 and 

OligoGM1-promoted neuritogenesis. Control cells were transfected by scramble 

siRNA. Silenced cells, resulting in a 70% reduction of TrkA expression, as 

evidenced in figure R14 were incubated with GM1 or OligoGM1 for 24 hours 

(Chiricozzi et al. 2017).  

As shown by immunoblotting analysis, TrkA silencing prevented Erk1/2 

phosphorylation due to GM1 and OligoGM1 in N2a cells (figure R14), that at the 

same time didn’t undergo to differentiation (Chiricozzi et al. 2017), (figure R15). 
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a.                                                                  b. 

 

 

 

 

 

Figure R14: Effect of silencing TrkA expression. N2a cells were transfected with 
siRNA against TrkA (50nM). Control cells were transfected with scramble siRNA. 24 
hours after transfection cells were exposed to 50 μM GM1 or OligoGM1 for 24 hours. 
The figure shows the evaluation of TrKA (a) and Erk1/2 (b) phosphorylation. 
Immunoblotting for pTrkA (Tyr490), TrkA, pErk1/2, and Erk1/2 expression is revealed by 
specific antibodies and visualized by chemiluminescence. Top: immunoblotting images. 
Blots are representative of 3 independent experiments. Bottom: semi-quantitative 
analysis of pTrKA (a) and pErK1/2 (b) related to the total TrkA and Erk1/2 levels 
respectively. α-tub was used to normalizing. The bars represent the mean ± SEM 
values of 3 different experiments, expressed as the fold increase or decrease over 
untreated CTRL (n = 3,  * = statistical significant difference, p < 0.05, Student’s t-test vs 
untreated CTRL). 
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Figure R15: Morphological outcomes of N2a cells after TrkA expression 
silencing. After transfection with TrkA or scramble siRNA, N2a cells were treated for  
24 h with 50 μM GM1 or OligoGM1 and analyzed with phase contrast microscopy with 
200X magnification. Images are representative of 3 independent experiments (n = 3). 
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Interaction between OligoGM1 and TrkA receptor 

Covalent cross-linking interaction by photolabeling  

In order to study the interaction between the oligosaccharide chain of GM1 and 

TrkA receptor, radioactive and photoactivable GM1 derivatives,                             

[Gal-6-3H]GM1(Cer-N3), [Sph-3-3H]GM1(Gal-N3) and [Gal-6-3H]OligoGM1(Glc-

N3) were prepared according to the procedure shown in M section. 

The use of photoactivable radiolabeled derivatives allows to identify the 

interaction between the exogenous molecules and cell proteins. According to 

this approach, the azide, contained in the photoactivable group, is activated 

after UV illumination and becomes a nitrene. The nitrene is a very unstable 

intermediate that immediately generates a covalent bond with the adjacent 

molecules. So, in this way, proteins that interact with the azide-modified 

molecules were linked to the photoactivable group and at the same time 

recognizable by the radiolabeling (Sonnino et al. 1989).  

N2a cells were incubated for 3 hours at 37 °C with the photosensitive 

derivatives under dark conditions. After pulse, cells were illuminated by UV-light 

for 40 minutes to induce covalent cross-linking between cell proteins and the 

radioactive derivatives. Target proteins were separated by SDS-PAGE, blotted 

on a PVDF membrane and visualized by digital autoradiography. Among the 

entire N2a protein pattern (figure R16, line 2), only few radioactive bands were 

detected on PVDF of every sample (figure R16, line 1). The radioactive tracks 

corresponded to specific proteins that, after the illumination, are covalently bond 

interacting with the derivatives, suggesting a specific association between GM1-

derivatives and N2a proteins. After the radioimaging the same PVDF 

membranes were immunostained for TrkA: a specific radiolabeled band at    

140 kDa overlapping TrkA signaling was found in [Sph-3-3H]GM1(Gal-N3) and 

[Gal-6-3H]OligoGM1(Glc-N3) treated samples (figure R18 and R19).                          

No correspondence of TrkA signal with radioactive track was found out from the 

PVDF related to [Gal-6-3H]GM1(Cer-N3) treated sample (figure R17). 

The results suggested that TrkA is directly connected to the oligosaccharide 

portion of GM1 ganglioside. 
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Figure R16: N2a protein patterns. Line 1: radioactive track on PVDF membrane of 
OligoGM1-interacting N2a proteins obtained using [Gal-6-3H]OligoGM1(Glc-N3) and 
acquired by digital autoradiography. Line 2: entire N2a protein pattern marked by Red 
Ponceau PVDF staining. 
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Figure R17: Interaction between TrkA and GM1 in N2a cells.                              
[Gal-6-3H]GM1(Cer-N3) was added to N2a cells and cells were then illuminated. Cell 
lysate was submitted to 4–20% SDS–polyacrylamide gel electrophoresis, blotted on a 
PVDF membrane and visualized by digital autoradiography for 96 hours. TrkA receptor 
signal was visualized on the same PVDF by western blotting using specific antibody. 
The images are representative of three different experiments. 

 
 

 

Figure R18: Interaction between TrkA and GM1 in N2a cells.                              
[Sph-3-3H]GM1(Gal-N3) was added to N2a cells and cells were then illuminated. Cell 
lysate was submitted to 4–20% SDS–polyacrylamide gel electrophoresis, blotted on a 
PVDF membrane and visualized by digital autoradiography for 96 hours. TrkA receptor 
signal was visualized on the same PVDF by western blotting using specific antibody. 
The are images representative of three different experiments. 
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Figure R19: Interaction between TrkA and OligoGM1 in N2a cells.                              
[Gal-6-3H]OligoGM1(Glc-N3) was added to N2a cells and cells were then illuminated. 
Cell lysate was submitted to 4–20% SDS–polyacrylamide gel electrophoresis, blotted 
on a PVDF membrane and visualized by digital autoradiography for 96 hours. TrkA 
receptor signal was visualized on the same PVDF by western blotting using specific 
antibody. The images are representative of three different experiments (Chiricozzi et al. 

2017). 
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Dynamic calculations for the TrkA-OligoGM1 complex 

The availability of the crystallographic structure of human TrkA extracellular 

segment in complex with NGF allowed bioinformatics analysis to support 

biochemical data.  

The molecular docking of OligoGM1, purposely performed by exploring the 

interaction interface between TrkA and NGF, revealed that OligoGM1 is able to 

fit a space present between NGF and TrkA, tightly binding both simultaneously 

(figure R20).  

 

a.                                           b. 

 

Figure R20: prediction of OligoGM1-TrkA interaction.  

a. Cartoon of TrkA-NGF complex. TrkA receptor structure is resolved as a dimer in 
the presence of NGF, its natural ligand. A space occupied by water is circled in red. 

b. Crystallized structure of TrkA-NGF complex. TrkA-NGF interaction is 
characterized by the presence of a space occupied by water (red circles). In silico 
analysis revealed that OligoGM1 fits perfectly within this space. 
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The presence of the oligosaccharide portion of GM1 into the TrkA-NGF complex 

changes the binding free energy from -7 kcal/mol (TrkA-NGF) to -11.3 kcal/mol 

(TrkA-OligoGM1-NGF) (Chiricozzi et al. 2017), (figure R21).  

Obtained data suggested that the presence of OligoGM1 into the complex could 

stabilize the interaction among TrkA and NGF. 

 

Figure R21: Molecular dynamic calculations for the complex TrkA–nerve growth 
factor (NGF)–OligoGM1. Top-scoring docking pose of OligoGM1 in the TrkA-NGF 
crystallographic complex. TrkA in orange ribbons; two NGF molecules: one in cyan 
ribbons and one in magenta ribbons. OligoGM1 is represented in sticks, with blue color 
for carbon atoms and red color for oxygen atoms. Van der Waals interaction surface 
between OligoGM1 and proteins is represented as a white mesh map. 
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The figure R22 shows the points of contact between NGF/TrkA and OligoGM1 as 

weakly bonds.  

This findings further supported the results previously obtained regarding the 

not-covalent association of OligoGM1 to the cell surface. 

 

 

Figure R22: Points of contact between TrkA-NGF and OligoGM1. The weak bonds 
between OligoGM1 and TrkA-NGF complex. 
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Gangliosides are a large family of glycosphingolipids prevailing in nervous 

system cells representing averagely about one-sixth of the total lipid content of 

plasma membranes. They are components only of the outer membrane leaflet 

inserting through the hydrophobic ceramide within the lipid layer and protruding 

with the sialic acid-containing hydrophilic glycosidic chain in cell surrounding 

environment.  

Gangliosides amphiphilicity and distinctiveness in elevated ratio between bulky 

sugar head and packed lipid moiety give them important constitutional features 

that allow their remarkable participation in lipid rafts separation and 

organization. The quantitative and qualitative specificity of lateral segregation of 

plasma membrane elements in lipid rafts is peculiarly related to the complexity 

of participating gangliosides affected in turn by the geometric properties of 

oligosaccharide chain. 

Ganglioside structural influence on the assessment of plasma membrane 

microdomains, and in particular on protein recruitment, makes them also 

unavoidable players and mediators in cell signaling and regulatory pathways. 

The ceramide portion maintains and stabilizes ganglioside insertion in the core 

of lipid rafts, establishing hydrophobic interactions and providing a lateral 

functional dynamicity. The oligosaccharide facing toward the extracellular 

environment allowing specific side-to-side and head-to head recognition sites, 

favoring ganglioside-protein interactions, which lead to cell function modulation.  

GM1 ganglioside has been abundantly studied and continually estimated  

because of its biological potential and attitude in modulation of neuronal 

activities. It is proved and described to be implicated in processes of cell 

differentiation, adhesion, migration, axon guidance and to take part in 

neurotrophic factor signaling, synaptic transmission, myelin genesis, and 

neuron–glia interactions (Schengrund 2015; Ledeen & Wu 2015; Aureli et al. 2016). 

GM1-mediated neurodifferentiation has been investigated by in vitro and in vivo 

experiments (Facci et al. 1984; Lipartiti et al. 1991; Abad-Rodriguez et al. 2001; Da Silva et 

al. 2005; Mocchetti, 2005), but its proper molecular mechanism of action is still 

unclear.  
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The implication of oligosaccharide chain in physiological GM1-promted 

neurodifferentiation have been hypothesized observing the neuritogenesis 

onset originated by two opposed experimental situations, enhancing or silencing 

Neu3 activity (Abad-Rodriguez et al. 2001; Da Silva et al. 2005; Valaperta et al. 2007). 

Moreover, the amplification of GM1 effects obtained with LIGA20, optimizing its 

availability to biological system by modifying only the fatty acid, but without 

altering the hydrophilic group (Schneider & Di Stefano, 1995; Saito et al. 1999; Wu et al. 

2005), let believe in the oligosaccharide chain essential potential. Together these 

evidences support the idea of a qualitative GM1 impact on TrkA signaling, 

supposing a glycol-sensitive response carried by the receptor depending on the 

characteristic feature of the oligosaccharide chain.  

The present thesis offers a perspective on the specific role of GM1 

oligosaccharide in the process of GM1-mediated neurite elongation in murine 

neuroblastoma N2a cells. According to a biological meaning, ceramide would 

act as an aglycone, dynamically moving within the membrane layer and 

allowing different carbohydrate–protein interactions that are dependent on 

ganglioside content and membrane organization.  

To realize the study, the preliminary step consisted in the preparation of GM1, 

Fuc-GM1, asialoGM1, GM2, and OligoGM3 oligosaccharides, GM1 tritiated 

derivatives, and GM1 tritiated-and-photoactivable derivatives following the 

chemical procedures reported in Methods section. Chromatography and MS 

analyses showed that the reaction products were pure (data not show).  

Tritiated OligoGM1, [Gal-6-3H]OligoGM1, was added to culture medium in order 

to recognize the modality of association of GM1 oligosaccharide chain to the 

cells, according to the experimental techniques previously employed to 

investigate on GM1 behavior (Chigorno et al. 1985).  

At 50 μM concentration, OligoGM1 interacting to the cell could be completely 

detached by a greater affinity to serum proteins (figure R7). No detectable 

amount of OligoGM1 was taken up by the cells and no time influence could be 

underlined, conversely to the time-dependent GM1 attitude (Chigorno et al. 1985). 

The result suggests that the OligoGM1 fraction associated with the cell surface 
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remains in equilibrium with the free soluble form and certainly does not 

establish covalent linkage with cell protein domains.  

The labile association of OligoGM1 to N2a cells, however, is able to reduced 

cell proliferation rate, without provoking any toxic reactions or alteration in cell 

viability (figure R1). The parallelism with GM1 impact on cell proliferation and 

knowing its properties on cell differentiation, a comparable effect appeared 

attributable to the oligosaccharide fraction.    

Morphological analysis confirms differentiative properties exerted by GM1 

oligosaccharide chains on N2a cells. In fact, OligoGM1 produced neurite 

sprouting as well as GM1 (figure R2). The neurite elongation is accompanied by 

the increase in neurofilament protein expression (figure R5 and R6).           

Accounting that neuritogenesis, neurite outgrowth and neurofilament protein 

expression are considered markers of neuronal differentiation (Fukuda et al. 2014), 

the effect exerted by OligoGM1 on N2a cells can be overlapped to the 

previously reported for ganglioside GM1 (Facci et al. 1984).                      

Moreover, the structure-specificity of OligoGM1 effect was demonstrated.       

As a matter of fact, residues of the total structure, such as sialic acid, galactose, 

OligoGM3, OligoGM2 or asialo-OligoGM1 did not show neuritegenic property 

(figure R3), at least at the used concentration. On the other hand, fucosylated 

OligoGM1 induces neurite sprouting (figure R4), suggesting that the terminal α-

Fuc-(1-2)-β-Gal linkage does not alter the glycosil conformation of 

oligosaccharide chain required by the cells to activate neurite outgrowth 

signaling. This evidence agrees with a previous data describing similar binding 

constant showed by GM1 and Fuc-GM1 for cholera toxin (Masserini et al. 1992).    

The positive correlation between the presence of GM1-enriched membrane 

domains and nerve growth factor receptor TrkA activity and, inversely, the 

loosing in TrkA pathway-related functions due to the absence of ganglioside 

GM1 (Ferrari et al. 1995; Mutoh et al. 1995; Farooqui et al. 1997; Mutoh et al. 1998; Abad-

Rodriguez et al. 2001; Bachis et al. 2002; Da Silva et al. 2005) have been above reported.  

TrkA autophosphorylation at the level of tyrosine 490 residue induces the 

activation of downstream cascade effective in cell differentiation promotion 

(Huang & Reichardt, 2003; Brodeur et al. 2009). Previous finding revealed the GM1 
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influence in the activation of the TrkA-Erk1/2 pathway (Farooqui et al. 1997; Singleton 

et al. 2000; Duchemin et al. 2002; Zakharova et al. 2014).  

Thus, the present study investigate the involvement of TrkA-Erk1/2 pathway in 

OligoGM1-mediated neurodifferentiation.  

The TrkA-Erk1/2 pathway activation was determined evaluating phosphorylation 

levels following the addition of OligoGM1 to N2a cells. For the first time, 

OligoGM1 was proved to enhance the phosphorylation of Tyr490 of TrkA and of 

Erk1/2 leading to neurodifferentiation (figure R8 and R9). The supposed 

mechanism of action is shown in figure D1. 

The examination of time course pathway phosphorylation revealed a 

correspondence in the signaling stimulation between OligoGM1 and GM1, 

evidencing the oligosaccharide portion as a necessary and sufficient condition 

to promote neurodifferentiation by TrkA activation (figure R10 and R11). 

TrkA receptor activity is inhibited (figure R12) or its expression was silenced (figure 

R14) in order to verify the OligoGM1–TrkA interaction requirement for initiate 

differentiation process. In both experiments, the N2a feeding with OligoGM1 did 

not promote neurite sprouting nor reduced the cell proliferation (figure R13 and 

R15). 

These result support that the debated GM1 neurodifferentiative impact is really 

mediated by an interaction with TrkA receptor, that, in particular, appears at the 

expense of the oligosaccharide portion.   
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Figure D1: Purposed mechanism for GM1-mediated neurodifferentiation in 
Neuro2a cells. TrkA autophosphorylation is regulated by GM1-enriched receptor 
environment. GM1 modulates TrkA activity by stabilizing the TrkA-nerve growth factor 
(NGF) complex with its oligosaccharide portion. The TrkA-GM1 interaction is 
represented as a side-by-side interaction. GM1 triggers the phosphorylation of Tyr490 
promoting the differentiation signaling.  
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In order to obtain a clarification about a possible direct interaction between the 

oligosaccharide portion of GM1 and TrkA receptor, different radiolabeled and 

photoactivable GM1 derivatives were employed to treat N2a cells. In particular, 

in addition to the azide-conjugated OligoGM1, [Gal-6-3H]OligoGM1(Glc-N3), two 

different GM1 derivatives, [Gal-6-3H]GM1(Cer-N3), photoactivable on 

sphingosine and [Sph-3-3H]GM1(Gal-N3), photoactivable on the last galactose 

residue, were employed to discriminate the N2a proteins interacting with the 

ceramide and with oligosaccharide chain respectively. In fact the photosensitive 

azide can be activated by UV radiation in nitrene, an unstable compound that 

covalently linked neighboring molecules. The used approach allows to identified 

proteins linked to these photoactivate compounds thanks to the simultaneously 

radiolabeling.  

Photolabeling experiments with photoactivable glycosphingolipids were 

introduced several years ago (Loberto et al. 2003; Mauri et al. 2003) and permit  to 

identify the interaction of glycosphingolipids with different proteins such as the 

insulin receptor (Kabayama et al. 2007), the receptor CD9 (Ono et al. 2001), the 

cytoskeleton tubulin (Palestini et al. 2000), the membrane protein caveolin 1 (Fra et 

al. 1995), the kinase Lyn (Chiricozzi et al. 2015), and the neuronal protein TAG1 

(Loberto et al. 2003).  

After incubation with the tritium-labeled photoactivable GM1 derivatives, cells 

were washed once with PBS to remove the non-cell-associated compound and 

following exposed to UV-light. According to the mechanism described above 

and recalling that the exogenous OligoGM1 does not become component of the 

cell membranes, any interaction of the [Gal-6-3H]OligoGM1(Glc-N3) with 

proteins yields to tritium-labeled OligoGM1-protein stable complexes that should 

involve the extracellular domain of transmembrane proteins or of GPI-anchored 

proteins. Regarding the interaction with GM1 derivatives and proteins, the 

difference in tritium-labeled GM1-protein stable complexes reflect the 

discriminate interaction of the ceramide and oligosaccharide with proteins. By 

SDS–PAGE separation, followed by radioimaging of the blotted material, few 

bands were recognized. For [Gal-6-3H]OligoGM1(Glc-N3) and [Sph-3-

3H]GM1(Gal-N3)  samples one of these bands showed a molecular mass of 140 

KDa. A specific signal for TrkA was found overlapping the140 KDa radiolabeled 
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band, in relation to the proteins derived from [Gal-6-3H]OligoGM1(Glc-N3) and 

[Sph-3-3H]GM1(Gal-N3) treated samples, suggesting a direct interaction 

between the oligosaccharide portion of GM1 and TrkA receptor (figure R18 and 

R19). On the other hand, no correspondence between a radiolabeled band and 

TrkA signal is revealed by the proteins of [Gal-6-3H]GM1(Cer-N3) treated 

sample (figure R17), supporting the idea that the portion of GM1 responsible of 

structural and functional association to TrkA is the oligosaccharide chain.  

Over these experimental data, a molecular modeling tools was used to predict 

whether OligoGM1 can increase the TrkA-NGF complex stability, favoring their 

intermolecular interactions. Even if NGF is not expressed by N2a cells, it takes 

place in our experimental conditions since the culture medium contains serum 

(Leon et al. 1994).  

The first step is the resolution of TrkA receptor crystallized structure, a dimer in 

the presence of NGF. The crystal structure of the TrkA-NGF complex is 

characterized by a pocket, which can be occupied by water molecules, as 

showed in crystallographic structure of the same complex (PDB ID: 1WWW), in 

figure R20a. In silico analysis revealed that OligoGM1 perfectly fits within this 

space (figure R21). Moreover, the energy associated to the TrkA–NGF complex, 

approx. 6.6 kcal/mol, becomes approx. 11.5 kcal/mol when OligoGM1 belongs 

to the complex.  

The supposition expecting a OligoGM1 stabilization of the TrkA–NGF 

interaction, and a specific molecular recognition process between OligoGM1 

and a specific extracellular domain of the TrkA receptor. According to weakly 

association of OligoGM1 to the cell surface, no covalent bounds between 

OligoGM1 and TrkA-NGF complex were found (figure R21).  

Literature information clearly report that any experimental model capable to 

modify the local plasma membrane GM1 content, promotes N2a differentiation. 

GM1 is a natural amphiphilic compound with a structure that combines the 

ceramide lipid moiety with the soluble oligosaccharide chain. Altogether, the 

results obtained in this study, underlined GM1 oligosaccharide structural 

responsibility in enhancing neurodifferentiative properties exerted by GM1 (figure 

D1).            
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The GM1 oligosaccharide directly interacts with TrkA receptor resulting in TrkA-

mediated neuritogenesis (Chiricozzi et al. 2017). Neuronal differentiation is 

characterized by an enhancement of several glycosyltransferases activity 

resulting in augmenting of PM ganglioside content (Aureli et al. 2011). According to 

reported findings, ceramide act physiologically as an aglycone essential for 

protrusion of glycan residues into the extracellular environment where 

interaction with functional proteins occurs. In this way, GM1 exhibits its 

oligosaccharide chain to the TrkA receptor. Molecular dynamic calculations 

confirm that the GM1 oligosaccharide perfectly fits with a TrkA domain 

stabilizing the TrkA-NGF interaction, allowing a rapid auto phosphorylation of 

the receptor cytosolic portion.  

Finally, rather than to a broad plasma membrane increase of GM1, OligoGM1-

TrkA interaction is attributable to a plasma membrane reorganization, that 

originate a local GM1-enriched microdomains, among which TrkA is segregated 

and environment is suitable for the recognition.  
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