
C
O

M
PU

T
ER

SC
IEN

C
E

D
EPA

RT
M

EN
T

•
A

D
A

PT
-LA

B
Towards Change Validation
in Dynamic System Updating
Frameworks

Mehdi Jalili Kordkandi

Graduate School in Computer Science
PhD in Computer Science
PhD School Headmaster: Prof. Paolo Boldi
Advisor: Prof. Walter Cazzola

UNIVERSITÀ DEGLI STUDI DI MILANO
Department of Computer Science "Giovanni Degli Antoni"
ADAPT-Lab

Cycle XXIX
INF/01 Informatica

Academic Year 2016–2017



Abstract

Dynamic Software Updating (DSU) provides mechanisms to update a program
without stopping its execution. An indiscriminate update that does not consider
the current state of the computation, potentially undermines the stability of
the running application. Determining automatically a safe moment, the time
that the updating process could be started, is still an open crux that usually
neglected from the existing DSU systems. The program developer is the best
one who knows the program semantics and the logical relations between two
successive versions as well as the constraints which should be respected in order to
proceed with the update. Therefore, a set of meta-data has been introduced that
could be exploited to explain the constraints of the update. These constraints
should be considered at the dynamic update time. Thus, a runtime validator has
been designed and implemented to verify these constraints before starting the
update process. The validator is independent of existing DSU systems and can
be plugged into DSUs as a pre-update component. An architecture for validation
has been proposed that includes the DSU, the running program, the validator,
and their communications.

Along with the ability to describe the restrictions by using meta-data, a
method has been presented to extract some constraints automatically. The grad-
ual transition from the old version to the new version requires that the running
application frequently switches between executing old and new code for a tran-
sient period. Although this swinging execution phenomenon is inevitable, its
beginning can be selected. Considering this issue, an automatic method has
been proposed to determine which part of the code is unsafe to participate in
the swinging execution. The method has been implemented as a static analyzer
which can annotate the unsafe part of the code as constraints. This approach
is demonstrated in the evolution of the various versions of three different long-
running software systems and compared to other approaches.

Although the approach has been evaluated by evolving various programs, the
impact of different changes in the dynamic update is not entirely clear. In
addition, the study of the effect of these changes can identify code smells on the
program, regarding the dynamic update issue. For the first time, the code smells
have been introduced that may cause a run-time or syntax error on the dynamic
update process. A set of candidate error-prone patterns has been developed
based on programming language features and possible changes for each item.
This set of 75 patterns is inspected by three distinct DSUs to identify problematic
cases as code smells. Additionally, error-prone patterns set can be exploited as
a reference set by other DSUs to measure own flexibility.
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1
Introduction

Maintenance is one of the undeniable and expensive phases of software devel-
oping process. The operation and maintenance phases totally include 67% of
a program life-cycle cost [15]. Programs need to be evolved in order to fix
the bugs or to add new functionality because of changing user requirements,
improving performance, etc. Nowadays by the ubiquitous growing of software
systems, as well as increased online services, motivating the quest for faster
updating. Security bugs need to be fixed A.S.A.P to prevent the penetration
of malicious entities.

The typical way to update a program is stopping the running program,
modifying the code and then restarting the updated version (cold restart [56]).
This approach is not always acceptable. Stopping the execution of some kind
of programs could cause pecuniary losses or life-threatening risks. Online
transaction systems, life-support systems and so on are placed in this category.
Dynamic Software Updating (DSU) [67] addresses this issue by changing a
program at run-time without stopping its execution. DSU has appeared with
other phrases such as online version change [17], on-the-fly program modification,
hot-swapping [36] in the literature.

Applying the DSU approach is not only limited to evolve the highly available
applications in the deployment phase; this approach even can be employed in
developing phase of a software system. When a developer performs a small
change on an under-developing application, the program should be stopped
and run again to observe the modification impacts. This process could be time-
consuming, especially in the case of complicated programs. In this application,
DSU can be applied for edit and continue purpose. The developed DSU tools for
this approach in most of the cases is tightly integrated with IDEs. For instance,
JRebel [72] and JavAdaptor [106] have been developed to support DSU in Java
language and provide plug-ins for IDEs such as Eclipse and NetBeans.
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1 Introduction

1.1 Dynamic Software Updating
Over the past two decades, many efforts have been carried out to develop DSU
mechanisms in various aspects of software development. However, programming
languages have been more prominent. These systems provide a solution to
update programs written in a specific programming language dynamically. Some
of the programming languages are dynamically typed and support this issue
intrinsically such as Erlang[12] and Smalltalk[48]. Also, some other languages
such as UpgradeJ[23] have been designed to support the DSU explicitly. The
issue of applying this approach is that the program should be written in these
languages that usually might not be so popular.

Providing DSU solutions for General Purpose Languages (GPLs) is highly
regarded because a lot of long-running applications have been developed in
this kind of languages. One of the most important GPLs is C programming
language. This imperative language is embraced by the programmer because it
gives more flexibility on performance and memory management. Several systems
have been proposed to support non-stop updating in C language programs
without changing the syntax and semantics of the language [11, 116, 69, 87, 99].
Furthermore, the kernel of some operating systems are developed in C and
some DSU techniques have been presented for operating systems to provide
this capability to apply patches without restarting [31, 19, 47, 13].

Java is another important general-purpose programming language that has
drawn the most attention from the programmers in the past 15 years [9].
Many long-running applications have been developed in Java that continuous
servicing is a critical requirement. Considering the issue that this object-
oriented programming language does not support dynamic update intrinsically,
on-the-fly update techniques for Java programs are demanded. Java code
usually is compiled into bytecode, which can be executed by a Java Virtual
Machine (JVM). So, DSU systems for Java language have been developed on two
levels: JVM level and bytecode level. JVM level solutions can be implemented
by customizing Garbage Collector and Just-In-Time(JIT) components. These
solutions tightly depend on a particular JVM and this can be a disadvantage.
Tools like HotSwap [37], JVolve [117], DCE VM [126] and Rubah [101] are
implemented at the JVM level. The bytecode level solutions include techniques
that provide the dynamic update for Java programs without modifying JVM. In
these solutions, the DSU usually rewrites the program code and adds a level of
indirection by exploiting some techniques such as proxies and containers. The
advantage of these methods is preserving the portability of programs, and the
disadvantage is a probable reduction in performance due to code manipulation.

2



1 Introduction

JavAdaptor [106], DUSC [97] and JRebel [72] are placed in this category.
Although the main purpose of these systems is avoiding the program from

stopping during the upgrade, some other issues are prominent in this context
such as flexibility, type safety, update point, state transformation, and so on.
In the flexibility context, various kind of changes may occur in a program
modification. However, not necessarily all of the changes are supported by
some DSUs. For instance, HotSwap only accepts the change in a method body
whereas JRebel supports most of the changes. Another relevant issue that can
be taken into account is type safety. In the statically typed language such as
Java, each item’s type should be determined at the compile time and it should
keep the type during its lifetime. The proposed methods for the dynamic
update should not violate this rule. Update point is also one of the common
issues in most DSU systems. When the new version of the program is ready,
the DSU system should decide on the start time of performing the update. It
can be started immediately, either at a predefined point or with respecting
to specific constraints. In perspective of state transformation, DSUs should
provide a mechanism to transform values from old instances to the new ones.
It can be performed in automated or assisted ways.

In addition to above issues, one of the most important concerns of DSU
systems is how to make sure that the dynamic evolution process is done without
introducing an error. This error may stop the update process and the running
program is crashed by creating a runtime error. This is a disaster for the long-
running programs that the high availability is a critical property for them. In a
volatile mode, the running program may confront with a transient inconsistency
and expose some wrong behaviors. Even this mode might not be acceptable
on the most systems and causes semantic errors. Ensuring that the update
process is performed without any runtime or semantic error is called validation
or correctness. Gupta et al. introduce the notion of update validity [59]. They
prove that generally, it is undecidable to determine if a given arbitrary update
is valid or not. They define the validation issue based on the ability to reach
some states of the running new program (the new version of the program
started from the initial state) by the dynamically updated program. Given 𝑃0,
a running program, this can be updated to 𝑃1 in two ways: 1) 𝑃0 can be either
stopped and a new version 𝑃1 with the needed changes is started instead (cold
restart) 2) the code of 𝑃0 can be dynamically updated to the new version 𝑃0𝑢

without stopping (dynamic update). Gupta et al. introduced the reachability
property to define an equivalence between these two approaches. A dynamic
update 𝑃0𝑢 for 𝑃0 is equivalent to the update 𝑃1 you get via cold restart if and
only if after the update, 𝑃0𝑢 execution eventually reaches some states that 𝑃1

3



1 Introduction

execution would meet. It is formally proved that the reachability is generally
undecidable. Most DSU systems have not considered validation issue and so far
DSU solutions have not been very practical. In this work, some steps towards
a valid dynamic update have been taken.

1.2 Validation Issue
Although the automatic validation of any generic dynamic update is not feasible;
it is still possible to bind the update of a program to only those points of
its execution that drive to a valid dynamic update. Each program has its
own semantics and there is a logical relation between two successive versions
of such a program. The program developer is the best one who knows the
program semantics and the logical relations between two successive versions
as well as the constraints which should be respected in order to proceed with
the update. Turning one version into another is safe only when the changes
are to be exerted with respect to the imposed constraints. Therefore, for each
program, a dedicated collection of constraints should be introduced and the
updating process should verify these constraints before the deployment of the
changes. The DSU should be in charge of verifying these constraints before
the updating and to subdue the update itself to the result of the verification in
order to keep the program stable.

One of the constraints that can be identified is to specify unsafe points to start
the update process. This means that while the program is executing a specific
part of the code, starting the update process will lead to a fatal error and the
dynamic update process fails. Let us explain with an example how choosing a
wrong time to start the update may cause the running application is crashed
and why some parts of the code are unsafe to start the update. Suppose in a
program, foo method calls bar method without parameter. In the new version
of the code, bar method is changed and a parameter is added to its signature.
Also foo method body is adapted to call bar method with an appropriate
argument. The old and new versions of this code can be executed individually
without any error. Let us consider the old version of the application is executing
foo method and exactly before calling bar method the new code is replaced
dynamically. While the new versions of both methods have been replaced, the
program continues to execute the old foo method that is on the call stack. The
codes in the call stack cannot be updated. So, the program will attempt to
call the old version of bar method which does not exist in the memory and
the program terminates abnormally with NoSuchMethodException. To avoid
this situation, the update should be postponed until the execution of the foo
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1 Introduction

method is completed. In this example, the foo method is unsafe to start the
update.

Therefore, some facilities should be provided for developers to express these
constraints. The easiest and most convenient way is to introduce these meta-
data within the application code since their evaluation is a part of the application
execution and its updating. In Java, this means to use Java annotation facility.
So, we introduce a set of annotations that could be exploited to explain
the constraints such as determining unsafe update points. These meta-data
can be easily used to express both static or dynamic constraints. Although
static constraints include some conditions that are specified before starting the
deployment process, dynamic constraints depend on the status of the running
application.

According to the semantic relations between two versions of a program, the
developer can decorate the program code with the provided annotations. These
constraints should be considered at the dynamic update time. We design and
implement a runtime validator to verify these constraints before starting the
update process. Regarding all the specified restrictions, we can reach a safe
update point to start deployment. The validator is independent of existing DSU
systems and can be plugged into DSUs as a pre-update component. We propose
an architecture including the DSU, the running application, the validator, and
their communications. Moreover, we will explain how each annotation should
be processed as well as the main algorithm for finding a safe update point.

Along with the ability to describe the restrictions by using annotations, it
should be noted that the annotating process is time-consuming and potentially
error-prone when manually done. Moreover, since the code by definition is
in a continuous evolution, also the related annotations should be updated
accordingly at every change. These two aspects render preferable to have the
code automatically annotated. Even if it is unavoidable to have the constraints
on the behavior manually specified by the developer, it should be at least
possible to determine the unsafe update points that the validator should avoid.
Therefore, we study the execution model of the program in the dynamic update
process to find a way to automatically annotating.

When a new version of an application is ready, DSU tool starts the updating
process. While the application is running the old code, the DSU system deploys
the new version of the code. In spite of how the deployment happens, there is
always a moment where portions of the old code and new code are alive together.
In particular, when the new code is initially loaded into the memory; in the
call stack for the current execution, there are still portions of the application’s
old code. However, all the new calls from the old code are directed to the
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corresponding methods in the new code. So that, the application switches
between the execution of the old and the new code consistently. We call this
phenomenon swinging execution. This situation continues until all of the call
frames in the stack pointers refer to the new code. During swinging execution
between old and new code, the application execution can manifest some flaws
and its state is potentially inconsistent. As shown earlier in an example, this
transient inconsistency may lead to a fatal error and update failure. However,
some DSUs [106, 51] ignore this phenomenon and accept such a risk which
may not always be acceptable in the critical application. On the other side,
some DSU systems [97, 117] adopt a conservative policy and start the update
deployment when they are sure that no piece of the changed code is still in the
call stack. Apart from that postponing the update is not always feasible or
desirable, it may lead to infinite waiting.

Theoretically, each part of the program code can participate in the swinging
execution. In fact, at each step of this phenomenon, a part of the old code (on
the call stack) along with the new code is affected by the running program.
However, some code participation may introduce a runtime error at the update
time. Considering this issue, an automatic way has been proposed to determine
which part of the code is unsafe to start the update process and participate
in the swinging execution. This novel approach statically anticipates swinging
execution impact on each changed part of the code and determines unsafe codes.
This method is implemented as a static analyzer that takes two versions source
code and gives an annotated code.

In order to demonstrate the presented approach, we considered various ver-
sions of three different long-running programs and their dynamic evolution to
the next version. The presented approach is used to find the unsafe update
points and improve the possibility of the DSU system of dodging these crit-
ical points during the update deployment. We compare our approach with
immediate and conservative approaches. In addition, possible update errors
are classified and the causes of their occurrence are explained. This part of
work is published in the following publication [28]:

– Walter Cazzola and Mehdi Jalili, “Dodging Unsafe Update Points in Java
Dynamic Updating Systems”, in Proceedings of the 27th International
Symposium on Software Reliability Engineering (ISSRE’16), Alexander
Romanovsky and Elena Troubitsyna, Eds., Ottawa, Canada, October
2016, IEEE.

Although we evaluate our approach in different versions of the three server
programs, the impact of various changes in the dynamic update is not entirely
clear. Some types of modifications in the program cannot have a negative effect
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on its dynamic updating. Moreover, the study of the effect of these changes
can identify code smells on the program, regarding the dynamic update issue.
The term of code smell or bad smell usually refers to any symptom in the
program source code that probably portends a deeper problem[121]. Code
smells usually are not a bug and they do not interfere the normal execution of a
program. However, they may cause other problems such as performance penalty
or increase the risk of bugs or failure in the future. Smells can be considered
in the perspective of creating a probable error in the dynamic update process,
where some specific changes in the program may cause a fatal error at the
update time. For the first time, we introduce the code smells that may cause a
run-time or syntax error on the dynamic update process.

To achieve this goal, we first studied the Java language features and the
changes that can be applied to each item. Then, we designed and developed a set
of error-prone patterns. Each pattern nominates an atomic simple change that
can be occurred in a program evolution. We develop more than 75 individual
error-prone patterns based on Java language features and possible changes for
each item. This collection is divided into three categories: i) changes that
cannot be applied to some items. For instance, changing a value is only possible
in a field of the class and it is not possible for the methods of a class. ii) the
changes that can be applied to an item that cannot participate in the swinging
execution. For instance, when a method is added to a class, it is not accessible
from the old code. Thus, it does not involve in this context. iii) the changes
that might be involved in the swinging execution. The error-prone patterns are
the potential candidates to be recognized as a DSU code smell. In addition, we
believe that these patterns can be used by other DSU tools to measure their
flexibility.

We then executed these candidate error-prone patterns on three different DSU
tools. At the beginning, the patterns were filtered according to the acceptance
criteria of the DSUs, since all of the changed are not supported by the DSUs.
Then the probable run-time or syntax errors were considered. Runtime errors
cause the program to crash, but syntax errors violate programming language
rules. For instance, an illegal access might be occurred after reducing the
visibility of an element. It does not cause a runtime error, but it is a semantic
error due to a violation of the privacy of the element. However, the problematic
patterns can be identified as code smells. In the next step, these detected
patterns are investigated by our proposed method to determine the status of
error detection in the patterns. Finally, we enhanced our static analyzer in
order to detect all of the code smells. This part of work is ready to submit as
a journal paper.
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1.3 Contributions
The major contributions of the dissertation are as follows:

1. Proposing a set of meta-data that can be exploited by the developer to
express the constraints. The DSU should be in charge of verifying these
constraints before the updating.

2. Introducing a runtime validator to verify the predefined constraints at
the update time. Respecting to all of the specified restrictions, we can
reach a safe update point to start deployment.

3. Determining the criteria for identifying the unsafe parts of the code by
studying the swinging execution phenomenon. This phenomenon makes a
transient inconsistency at the update time.

4. Proposing an automatic method to determine unsafe update points by
processing source code through an implemented static analyzer.

5. Studying each atomic change that can happen in a program evolution
based on Java language features and possible changes for each item. We
develop more than 75 candidate error-prone patterns. The pattern set is
used to explore code smells on dynamic software updating. Moreover, it
can be exploited as a reference set by other DSU tools.

6. Extracting the code smells of DSU process, based on run-time and syntax
errors which may happen at the update time due to the swinging execution.

7. Enhancing proposed static analyzer to detect all of the code smells.

1.4 Thesis Structure
In this chapter, the dynamic software updating was briefly described along
with the problem of validation the DSU systems. In the following chapters, we
will explain the details of our approach. The chapters are structured as follows:

In Chapter 2, background information in the field of research has been
provided. It includes the explanation of dynamic software updating in general
and its challenges. Some of the mechanisms used by DSUs to provide dynamic
evolution are also explained. The issue of validation is illustrated through an
example.

In Chapter 3, first of all, we introduce a set of meta-data that could be
exploited to explain the update constraints. Then we present a validation
architecture that includes a validator to verify defined constraints. This valida-
tor finds a safe update point at run-time thanks to the provided constraints.
Finally, an automatic method is proposed to determine the unsafe update
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points through a static analysis. The proposed method is applied to different
long-running programs and the results of the experiments are discussed.

In Chapter 4, regarding the dynamic update issue, we determine code
smells on the program. These smells may cause a run-time or syntax error
on the dynamic update process. To achieve this goal firstly, we write a set of
error-prone patterns. Then, we run these patterns on three DSUs and identify
problematic patterns. Finally, we enhance the static analyzer to cover all of
the code smells.

In Chapter 5, various DSU systems in Java are described briefly, and the
policy of each system is explained in the face of validation issue. Moreover, we
discuss the state-of-the-art of validation problem.

Finally, in Chapter 6, we briefly explain the results and proposes some
future works.
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2
Dynamic Software Updating

In this chapter, we introduce the dynamic software updating problem, its
challenges, and validation approach in the dynamic update.

2.1 Definition
Software evolution is defined as all programming activities which are intended
to produce a new software version from an earlier operational version [81]. After
deploying the first release of a system, the program needs to be evolved in order
to fix bugs, respond to the new requirements and improve the performance.
With the prominent role of software in various aspects of life, rapid changes in
the user needs, the occurrence of security holes, system interconnections, etc.,
in many cases, update becomes a daily activity. The cost of software evolution
activities can range from 50% [82] to 90% [39] of the total development cost
that a part of this cost is related to the reinstallation process.

By increasing diffusion of online services, high availability has become one
of the most needed features for software systems. Typical updating process
interrupts the service provision to permit the switch between the current and
new version of the software system (cold restart [56]). This is a common practice
even if often undesired. No matter how short and easy the updating process
is, such a way to proceed has two major drawbacks: i) the application system
is unavailable during the update and ii) its state is lost or must be migrated.
Such drawbacks are unacceptable in many highly available applications where
they could either cause financial losses [112, 95], increasing maintenance costs
[129], endangering people and things or at least causes dissatisfaction of the
users. Telecommunication switches, financial transaction system, airport traffic
control systems, oil and gas production, power generation, smart-grids and so
on are in this category.

Another consideration comes in the process of developing a software. De-
velopers usually use the IDEs to write the programs. For each small change,
they need to recompile the program, relaunch the application and find out how
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the changes have affected the program. This process may be repeated every
several minutes during developing an application. This process wastes the
developer time. In the enterprise large application, this time is more significant.
Programmers spend an average of 5.77 minutes per hour on redeployment
process[73]. This constitutes 9.6% of the coding time.

Dynamic Software Updating (DSU) includes some techniques that permit a
program to be adapted during its execution without stopping it [67]. Fabry
was the first one who notice this issue by introducing an on the fly module
changes system for abstract data types written in the procedural languages [40].
Later Kramer and Magee proposed a model for dynamic change management
which isolates structural concerns from component application concerns [79].
It is conceivable that there is no standard term to express these techniques.
Various terms have been used to name these systems in different references.
Gupta used on-Line Software Version Change phrase in his work for updating
object oriented systems dynamically [59]. Other synonyms which are used
in the literature include: Runtime evolution [35, 61, 36], Dynamic (software)
evolution [96, 38, 126], Runtime adaptation [57, 90] and Dynamic deployment
[109]. However, most frequently used term is Dynamic (Software) Updating
[102, 97, 67, 115, 65, 27].

2.2 Different Aspects
The problem of dynamic software updating can be considered from the different
point-of-view that follows.

2.2.1 Intrinsic Support by Programming Language
The ideal mode for providing DSU facility is the programming languages level.
In this case, the programmers develop the applications without any concern
about dynamic update problems and take advantage of the direct development
of highly available systems without any extra effort in development. This is
a major advantage and allows for flexible modification in a running program.
These dynamically-typed languages usually provide facility to specify the point
to switch to the new version. Moreover, the developer can develop a lazy update
semantic which causes the minimum pause in the execution of the running
program.

Smalltalk [48, 49] and CLOS [62, 43] are two examples of this kind of
languages. They permit a class to be redefined in a dynamic-typed system.
Meta-classes in these languages describe the behavior of other classes. Smalltalk
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provides a meta-object protocol (MOP) that can describe any aspect of language.
MOP supports DSUs by Object and Behaviour classes. The dictionary of
class’s methods is kept in class Behaviour while the program is executing.
The dictionary can be searched and modified at runtime. Moreover, Smalltalk
allows the programmer to inspect the program call stack and modify it. CLOS
redefines a class by defining a new class with the same name. After redefining
a class, the slots of the class may change, then CLOS disseminates the changes
to the instances and subclasses of the modified class.

Erlang [12] is another programming language that support DSU natively.
Erlang code is constructed with modules and each module is described as a set
of functions. Erlang supports dynamic update by replacing code at runtime
at the module level. The code replacement mechanism is made on the top of
dynamic module loading. The new modules are loaded dynamically while the
program is running. Each module in Erlang can have two versions: the current
and old version. The newly loaded module is current. When a new version of
the module is loaded, the code of the previous one becomes old and the new
code turns into the current.

UpgradeJ [23] is an extension to the Java programming language which
allows classes to be updated dynamically. This language level solution for DSU
annotates every class with its version. Instances can be declared as exact or
upgradable in a written program. An exact instance always exploits the same
version of its class whereas upgradable instance uses the latest version of its
class.

Although direct language support of DSU is a major advantage, these pro-
gramming languages are not so common. It can be a major disadvantage of
this issue. Moreover, languages like Python [21] and Ruby [120] that support
DSU natively are so slow in comparison with general-purpose language like
Java. Python and Ruby almost 41 times slower than Java [42].

2.2.2 Formal Approaches
Several works have been proposed to define a formal model of DSU process
and inspect its features. Gupta et al. [60] was the first one who proposed
a framework to model online program changes and proved some properties.
Gupta defines the dynamic update as a following:

Definition. An online change from program Π to Π′ at time t using the
state mapping S, in process P (executing Π) is equivalent to the following
sequence of steps:

1. P is stopped at time t in state s.
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2. The code of P is replaced by the program Π′, its state is mapped by S
and then P is continued from state S(s) and with code Π′.

Gupta explains the correctness of DSU process by defining the reachability.
According to this definition, the updated program finally should reach the
same state that new program could reach. The author proves that this issue
is undecidable in general case. In another work, the correctness of update is
defined as preserving old behaviors by the updated program [79]. However,
this description is insubstantial because some behaviors of the program are
changed/removed due to the fixing bugs and adding new functions [24].

Bearman et al. [22] introduce a small update calculus with an accurate
mathematical semantic. This is an extension of the first-order simply-typed
lambda calculus with mutually-recursive modules and a primitive for updating
them. It allows modules to be updated in the system, including changes to
the types and their definitions, as long as the resulting program remains type-
correct. The programmer can control the update time by inserting an update
primitive as well as control the update effects using the proper variable syntax.

Another calculus is Proteus [116]. It is employed to model type-safe dy-
namic updates in procedural languages. Proteus supports dynamic update
on functions, named types and data. It exploits the concept of con-t-freeness
to investigate the type safety of an update in the named types changes. A
certain update point is con-t-free if after the update, for every type t, if the
program will never use concretely the old value of type t. It means that
non-updated code will not use t concretely beyond the update point and thus
t’s representation can be changed safely. This analysis is implemented for C
programming language. Later an extension of Proteus is proposed to support
multi-thread programs. Proteus-tx [92] introduces a new correctness property
named transactional version consistency (TVC). In this approach, the developer
can specify some blocks of code as transactions that should always execute
in one version of the program. Therefore, an update can take place within a
transaction if the transaction’s execution is continued either in the old or new
version of the program.

Boyapati et al. [25] propose an automatic way to upgrade objects on persistent
object stores [16]. For performing an upgrade in these systems, the programmer
usually defines a transform function for each class whose objects need to be
upgraded. This work illustrates some upgrade modularity conditions that
impose the behavior of an upgrade system. These conditions should be satisfied
in any upgrade system. It guarantees that in the case of running transform
function, it only meets object interfaces and invariants that their upgrades
were defined. They describe a prototype implementation that supports fully
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expressive, modular, and lazy upgrades.

2.2.3 Procedural Languages
DYMOS [80] is a programming system that allows StarMod programs to be
modified dynamically. StarMod language is an extension of Modula [123]. To
update procedures dynamically, procedures should be modified and recompiled
by the programmer and then the system changes the current core image to
the new code and data. It contains a command interpreter that can apply
update process based on determined conditions, e.g., when certain procedures
are inactive.

Frieder and Segal implemented procedure-oriented dynamic updating system
(PODUS) [113]. Updating a program in PODUS includes two steps: first,
loading the new version of the program; second, replacing old procedures
with their corresponding new procedures during execution. The program
update process is completed if all procedures are replaced by their new versions.
PODUS prevents to start an update process if one of the updated procedures
is executing.

The problem of DSU is particularly important for GPL because long-standing
applications are implemented in this kind of languages. One of the most
important languages is C. Various systems have been developed to support
dynamic updating in C programs. OPUS [11] is a tool for applying software
patches to a C program at runtime. In fact, this system is customized for
dynamically applying the security patches to interactive applications which
are the potential targets of security threats. By putting a limitation on the
type of patches accepted by this system, they diminish extra programmer tasks
which normally should be done in the developing and testing of a conventional
stop-and-restart patch.

Neamtiu et al. developed a dynamic updating for C programs called Ginseng
[93, 91]. It is very flexible and supports lazy state migration. Ginseng uses
function indirection and type-wrapping techniques to make a program update-
able. The program is compiled by a special compiler and the programmer
should insert the update points inside the source code before compile. These
modifications impose performance penalties up to 32% at the runtime compared
to the non-updatable version of the program. Ginseng has some limitations in
increasing the size of existing structure. When the size of an updated structure
reaches the maximum size, the program should be restarted to accept future
increases. Moreover, it imposes some programming style limitations to satisfy
its static analysis.
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Another system is POLUS [32], a POwerful Live Updating System for C-like
programs. It supports dynamic update for existing binaries and already running
applications. POLUS uses a free consistency model to allow the active changed
code to be updated. Active functions continue their execution at the old version.
It may lead to type safety violation and hinder to update long-running loops.
State transformation functions should be written by the programmer to ensure
system consistency.

Mariks et al. introduced UpStare to replace active execution with the new
version entirely by reconstructing the stack [87, 86]. It needs the developer
to determine the corresponding points between the old and new versions of
the program as well as write transform functions to convert the stack of all
active functions into the new version. It offers a flexible update because the
new method can be started from the different point of old method. UpStare
burdens up to 38.5% overhead due to the extra indirections and update point
checking. Moreover, it is impossible to switch to the old version and developer
is responsible for checking the semantic correctness of function mapping.

Kitsune [66] is another system to support DSU for C programs. It is very
flexible and permits any modification in a program. The programmer should
determine some points inside the code where the update can take place. Kitsune
checks the probable update at these points. When an update is available, all the
running threads of the program will be stopped at the update point. Kitsune
traverses the heap and runs user-specified transform code to migrate program
state. Finally, all the threads restart to run with the new code. Specifying
update points and writing transform functions by the developer without any
validation mechanism makes the update process prone to error. In addition,
immediate program state transformation at the update time increases the pause
time of the running program which may be significant and unacceptable in the
large programs.

Replus [30] is a DSU framework that has been developed recently, balances
practically and functionality. Like Kitsune, this system manipulates the stack
of program’s thread. It uses two mechanisms: first, immediate stack updating
that updates stack of a thread instantly. Second, timely stack updating that
only update the stack frames of essential functions without affecting others.
Moreover, Replus introduces an instruction level updating mechanism to apply
security patches impressively.
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2.2.4 Operating Systems
Operating Systems (OS)s play the core role in software systems. Operating
system vendors release patches frequently to reduce the vulnerability of end-user
systems. However, the common process for applying the patches is downloading
the online patch, installing it, and restarting the system to take effect of
installing new patches. Increasing the frequency of releasing new patches makes
applying process a burdensome for patch recipients. Particularly, restarting the
operating system at the bottom of the system stack causes losing the system
state. Many efforts have been made to apply new patch on-the-fly without
restarting the OS.

Baumann et al. [20, 18] implemented a dynamic update mechanism in the
K42 research operating system developed at IBM. K42 is almost entirely object-
oriented operating system supporting hot-swapping and written in C++. The
proposed system permits the update of both the kernel code and the data
structures. It performs the dynamic update at the class level. Each class that
might be updated should include the state import and export methods. Upon
update process, the new version of class imports the exported old state. The
import and export methods are written manually.

LUCOS [31] is a version of POLUS that uses Xen-based virtualization
techniques to provide a dynamic update on Linux. Extracting the two version
changes and constructing the update are done manually. All the references
to the old functions are modified and redirected to the new versions by stack-
walking and binary rewriting techniques. After the update, on accessing an
old type value, a transform function is run to convert the old type value to the
new type value. However, this tool suffers from manual patch construction as
well as type safety violation due to the disregarding the updated functions on
the stack.

DynAMOS [88] enables essential dynamic and adaptive software updates in
a commodity operating system kernel without kernel recompilation or reboot.
It exploits dynamic code instrumentation technique named adaptive function
cloning. It prohibits active functions updates but permits the simultaneous
execution of many versions of functions. However, reaching a safe update point
may lead to an infinite waiting. It allows active data structures on the stack to
be updated through shadow data structure but it needs data access indirection
and preservation of semantics of the data. The approach is illustrated by
dynamically updating core subsystems of the Linux kernel.

Ksplice [13] provides a dynamic update system for updating Linux kernel. It
only supports function modification without changing signature by loading new
functions as modules and redirecting the callers to the new version of functions.
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It forbids active function update by scrolling threads stack. In addition, it
compares kernel binary image files and generates DSU patches automatically.

2.3 Dynamic Update in Java
Java has been a very popular programming languages for the past 15 years
[9]. Many applications developed in Java have continuing service as a vital
requirement. Nevertheless, this object-oriented language does not support the
dynamic update intrinsically.

Java applications usually are compiled to bytecode that can be run by a
Java Virtual Machine (JVM) [83] regardless of computer architecture. So,
Java applications benefit from "write once, run anywhere" (WORA) [10]. JVM
provides a runtime environment for a Java program and supports memory
management automatically through a Garbage Collector (GC). GC frees up
the occupied memory that is no longer referenced by any reachable Java object.
In addition, JVM exploits a just-in-time (JIT) compiler that compiles bytecode
to a machine code which can be executed directly on the hardware. The DSU
systems in Java have been introduced in two levels: i) At the code level by
rewriting the program bytecode ii) At the JVM level by modifying the virtual
machine to support DSU. We explain these two approaches with more details.

2.3.1 JVM Modification
The first feature to add for on-the-fly deployment of Java application is a
modification of the Java Virtual Machine. Implementing a DSU system on
JVM has the advantage that each program benefits directly from DSU privileges
without the demand for any code manipulation. Usually, code modification
decreases the performance of the program at runtime. Moreover, the reflection
APIs can be used. On the contrary, the major disadvantage of implementing
DSU system by JVM modification is portability violation. DSU systems
commonly implement their solution in a particular JVM. It is quite hard
and impractical to apply the developed patch to different JVMs automatically.
Furthermore, these systems need to be maintained in the case of JVM upgrading.
Especially if the JVM upgrade involves changes on the GC or JIT compiler
sections. The system such as JDrums [110], DVM [89], HotSwap [37], JVolve
[117], and the DCE VM [126] are implemented at the JVM level.

The systems that modify the JVM to support DSU on Java application
benefit of two facilities: i) customizing the GC component to transform running
program state. ii) customizing the JIT compiler to replace the outdated code.
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Garbage collector of JVMs usually follows the transitive closure of reachable
instances to specify which one can be reclaimed. Moreover, it copies objects
between different generations according to their durability [70]. GC cycle
provides the best opportunity to DSU system to find all the outdated instances
and transform their states. This approach increases the size of outdated objects
without the need for type wrapping or shadow structures techniques which are
exploited at the bytecode rewriting level. DVM, JVolve, and the DCE VM
customize GC to transform the state between old and new objects. However,
instead of customizing the GC, JDrums enforces the JVM to keep an entry
for each instance in an object table. It adds an extra level of indirection for
accessing the objects. JDrums can traverse the object table to find intended
object entry.

Another facility that can be employed by DSU system is JIT compiler. Ordi-
narily, during a program execution, a method of a program can be recompiled
by the JIT compiler to optimize it. This process might be repeated several times
over the program lifetime. Obviously, this dynamically recompiling process
can detect calls to the outdated methods and replace them with the updated
version. This is what dynamic update systems need. JIT compiler can be
extended to support dynamic update by replacing the old methods with their
new versions. In addition, some JIT compilers support On-Stack Replacement
(OSR) by modifying return addresses and program counters. DSU system can
ask JIT compiler to traverse the stack frames and adjust the return addresses
of outdated methods with their new versions. HotSwap, the DCE VM, and
JVolve customized the JIT compiler to support DSU. Whereas, DVM runs in
the interpreted mode disabling JIT compiler.

2.3.2 Bytecode Rewriting
The second feature to provide DSU capability for Java programs is to rewrite
the bytecode. This rewriting should keep the semantics of the original program.
These systems exploit different mechanisms to redecorate the program code
to overcome some language role violation problems that might happen on
deploying the new version. They borrow the decorator and proxy patterns as a
design pattern[46] in the object-oriented programming to create DSU facility
on Java programs [107, 103]. For instance, DUSC [97], JavAdaptor [105], and
JRebel [72] support DSU through bytecode rewriting.

Iguana/J [109] ports the concept of meta-class in Smalltalk and CLOS to the
Java code and permits the programmer to define similar meta-classes in Java
programs. The proposed architecture is flexible and supports unanticipated
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dynamic modification. However, the authors admit significant slowdown in
creating an object, calling methods, and returning methods.

A part of DSU systems exploit the proxy objects to implement class redefini-
tion [97, 107, 52]. In general, the language level approaches have the advantage
that the runtime environment does not need to be modified. Therefore, the
dynamic deployment can be performed on any JVM that might run on different
platforms and operating systems. The user can exploit JVMTI command to
redefine the updated class. The main disadvantages are i) The significant
performance penalty is introduced by the usual indirection that happens due
to techniques are used. ii) Less flexibility on the type of changes, e.g. the class
hierarchy change is prohibited on some systems[97]. iii) It is quite hard to trig-
ger code evolution in the development environments or needs special plug-ins.
iv) A probable reflection inside the code is not affected by the rewriting process
and prone to make an error at runtime.

Besides proxy objects, another technique called the object wrapping is used.
Each class should implement an interface that includes its public members. The
class can be redefined but the corresponding interface should remain unmodified.
The fields and variables that keep the instance object of the class must be
defined as a corresponding interface type. Here also, additional indirection
imposes a performance penalty on the system at runtime compared to the
original application. Like the previous technique, Java reflection is not affected
by this approach and it imposes some programming style restrictions to the
programmer.

Figure 2.1: JRebel class transformation.

In the following, we will illustrate how different DSU systems modify the
original code of a program to make it dynamically updatable. Figure 2.1 shows
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a sample of JRebel class transformation. As it is shown in the sample, JRebel
builds another class called Employee0 and moves all of the Employee methods
to it. JRebel makes methods static and adds a parameter of type Employee as
the first parameter to them. The receiver object is passed to each method as a
first argument. Each method on Employee uses JRebel APIs and lookups the
current implementation of the corresponding method and calls it. For the fields,
ZeroTurnaround1 does not disclose the details of JRebel internals beyond the
filed patents [71].

Figure 2.2: DUSC class transformation.

Figure 2.2 presents DUSC class transformation for Employee. DUSC converts
each class C into the four individual classes:

1. Implementation class. 𝐶𝑖 contains the implementation of version i of
class C. It includes both fields and methods of original C with slight
modification. Furthermore, it holds a reference to the corresponding
wrapper class and a method to return status in the state class.

1https://zeroturnaround.com/
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2. Interface class. 𝐶𝑎 is an abstract class that all the different versions of
class C should implement it. This class is exploited as a static field inside
the wrapper class to call methods on the implementation class. When
the implementation class is changed, the new implementation class is still
a subclass of 𝐶𝑎 and the wrapper class can refer to it through the same
code.

3. Wrapper class. 𝐶𝑤 provides the same interface that class C provides to
any client class of C. For each method m of C, there is a corresponding
method 𝑚𝑤 in 𝐶𝑤 with the same signature. 𝑚𝑤 can invoke the current
version on m in the implementation class.

4. State class. 𝐶𝑠 contains the same fields of 𝐶𝑖 and its objects are employed
to migrate state of the old instances of implementation class to the new
versions.

After introducing Java version 1.4, most of the JVMs are equipped with
HotSwap which allows running applications to change method’s body dynam-
ically. However, some DSU systems benefit this poor capability. By taking
this ability, JavAdaptor provides dynamic future changes for programs through
containers and proxies. Figure 2.3 demonstrates an example of JavAdaptor class
transformation. As it is shown, a container field is added to the initial code
2.3a at line 6. The averageTemp method at line 2 is replaced with currentTemp.
JavAdaptor changes class TempSensor name into TempSensor_2 to avoid name
clashes. Moreover, it generates two classes as a container and proxy classes.
HotSwap replaces the method’s body with the code which contains proxy and
container codes.

2.4 Challenges
Regardless of the mechanism used in the DSU system, some issues should
be considered. Some of them are essential parameters, while some others are
a relative subject that is comparable in different systems. Obviously, some
systems pay more attention to some parameters and ignore others. Moreover,
there are some contradictory issues that fulfilling one of them will lead to
another violation. Nevertheless, the systems try to strike a balance between
them. In the following, some of the key issues in these systems are briefly
explained.

21



2 Dynamic Software Updating

class TempSensor {
float averageTemp () { ... }

}
class TempDisplay {

TempSensor ts;
IContainer cont;

void displayTemp () {
ts. averageTemp ();
...

}

TempSensor getSensor () {
return ts;

}
}

(a) initial code.
class TempSensor_v2 ; {

float currentTemp () { ... }
}

class TempDisplay {
TempSensor ts;
IContainer cont;
void displayTemp () {

(( Container ) cont ). ts. currentTemp ();
...

}
TempSensor getSensor () {

return new Proxy (( Container ) cont ). ts ;
}

}
// Generated for this update
class Container implements IContainer {

TempSensor_v2 ts;
}
class Proxy extends TempSensor {

TempSensor_v2 update ;
}

(b) transformed code.

Figure 2.3: JavAdaptor class transformation.
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2.4.1 Flexibility
Java programs consist of classes. Each class internally includes a set of fields
to hold its state and a set of methods to present its behavior. Externally, each
class may relate to other class by inheritance and implement relationships. Each
class has a single parent and may implement several interfaces. Flexibility in
supporting various kind of changes is a major benefit to DSU systems. However,
all DSU systems do not support every internal and external change.

For the internal changes, HotSwap only permits modifications on the body
of methods. This is the least amount of flexibility among the DSU systems.
However, most of the JVMs support this capability. DUSC is more flexible
than HotSwap and allows the new version to add fields and methods as well as
modify the existing fields and methods. Other DSU system such as JDrums,
DVM, JVolve, the DCE-VM, JRebel, and JavAdaptor is quite flexible and
support all of the internal changes. Nevertheless, some systems rewrite the
original code of both old and new versions to eliminate the change. For example,
JavAdaptor removes all final modifier of class members to make this change
ineffective.

For the external changes, each class only inherits from one class. This makes
the inheritance relationship as a tree. Adding a new class to the program is like
adding a leaf to this tree. This change is supported by all of the DSUs. But a
change in the inheritance reshapes the inheritance tree. JDrums, DUSC, and
JVolve do not allow this change while JRebel, DVM, DCE-VM, and JavAdaptor
support it. Although, this change may lead a type-safety violation. JavAdaptor
prevents this violation by using proxy mechanism and modifies the method’s
body to refer the updated classes and applies this by exploiting the HotSwap.

2.4.2 Type Safety
In the statically typed language such as Java, every item’s type should be
determined at compile time and it should keep the same type during its lifetime.
A program is type-safe if for each item in the program, all of its clients see
it having the same type [114]. For example, an Integer item should not be
interpreted as a Boolean and should not be used by Boolean operators. Type
safety violation may occur in a DSU process due to changing an item type
without updating the remaining part of the program using the item. This may
lead to a runtime crash.

In general, DSU systems can preserve a program type-safe in the dynamic
update process by employing four different techniques: ostrich, stub modules,
update reordering, and type-checked updates. For example in stub modules
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technique, the programmer provides a stub function for each modified module.
This stub function adds an indirection level for the requests and redirects them
to the appropriate version. All the DSU systems in Java try to propose a
type-safe solution for dynamic update. However, in most of the DSU system,
the code on the stack is not updated immediately and it may potentially lead
a type-safety violation due to heterogeneous access to the updated item from
the outdated items on the call stack.

2.4.3 Update Point
When the new version of the program is ready, the decision to apply the update
to the running application is one of the issues in dynamic update systems. In
general, three different times can be distinguished: i) The time to start update
process; It usually includes loading the new classes and modifying the already
loaded classes by using facilities such as HotSwap. Starting this process does
not mean that the running application will immediately be affected by the new
code. ii) The start time of the new code effect; It happens when the new code
is used by the running application for the first time. Usually, the DSU systems
do not update the call stack and the execution of the program continues with
the old code on the stack. When a new invocation occurs, it is picked up from
the new code. It may cause a temporary inconsistency due to running old and
new code consequently. iii) Time to finish the update process. When all the
old code is out of reach, the program completely switches to the new version
and the update process is over. Normally, the first time is determined by the
DSU system or the user, and the second and third times occur in sequence
automatically. This time is known as an update point or update moment.

Update point can be determined in three different manners: i) DSU system
asks the developer to specify the update point by inserting a method call inside
the code. Each time that this method is invoked, the running application checks
for the existence of the new patch. If a new patch is ready, the update process
starts automatically. JVolve and DCE VM use this approach. ii) The update
process immediately starts when a new update is ready. DSU system usually
receives a command to start the update process. JRebel and JavAdaptor apply
the new code instantly. iii) DSU system waits to satisfy certain constraints.
It usually helps DSU system to avoid some inconsistencies which may occur
during the update process. Some business considerations may also be involved.
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2.4.4 State Transformation
State transformation is one of the main concerns in DSU systems. They need to
transform outdated objects to their newly instances. An object state includes
the values which are assigned to its fields. DSU should provide a mechanism
to transform these values from old instances to the new ones. It is clear that
the DSU system must be somewhat flexible to support changes in the fields, in
order to make the state transition meaningful. For instance, the HotSwap only
allows method’s body modification. Therefore, it does not provide any state
transformation mechanism.

There are two types of state transformation: automatic and assisted. In the
automatic approach, the tool matches unmodified fields according to their names
and types; and copies the values from old fields to the new fields automatically.
New and modified fields can be initialized by the default values according to the
default field initialization rules in Java programming languages [50]. Some of
the DSU systems such as JRebel, DVM, and DCE VM only support automatic
state transformation.

Automatic state transformation usually is enough for simply copying values
of same fields between two versions. But initializing the added and changed
fields with the default values is unrealistic and may lead to loss of program state
and unusual behaviors. The developer can write own proprietary state trans-
formation code to ensure correctness of transformation. Some systems such as
JDrums, DUSC, JVolve, and JavAdaptor support assisted state transformation
alongside automatic one. DSU system usually generates state transformation
code automatically. However, the developer can alter this code and add specific
semantic.

Regardless of whether the automatic or assisted approach is exploited to
transfer the program state, each DSU system may follow a different policy for
choosing the time to execute the state transformer. There are two different
policies: immediate update and lazy update. Immediate approach transforms
the state of the program together. JVM level DSU systems such as DCE VM
and JVolve can take advantage of garbage collection algorithm to find outdated
instances and transform their state while GC algorithm execution. Code level
DSU system like DUSC and JavAdaptor detect outdated instances by different
techniques. DUSC rewrites contractor and forces every instance to register
itself in a vector object. In this way, state transform function can be run on all
live instance when the program is paused.

Immediate approach increases the pause time during the dynamic update
because all of the instances should be transformed together. The lazy approach
provides a gradual state transformation and thus decreases pause time. Each
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instance can be updated when it is accessed. For instance, JRebel adds a
redirection call to each method’s body. After performing an update, JRebel em-
ploys this redirection to detect the outdated instances and transform their state
before using them. DVM and JDrums follow this policy to state transformation.

2.5 Validation
Aside from the challenges posed by DSU systems, one of the key challenges is how
to make sure that the dynamic evolution process is done without introducing
an error. Errors may stop the update process and produce a runtime crash.
This is not acceptable for long-running programs which high availability is
a critical property. Stopping the running program normally, replacing the
code and re-execute program with the new code (cold update) is better than
facing an error in the dynamic update process. In a volatile mode, the running
program may confront with a temporary inconsistency and expose some wrong
behaviors. Even this mode might not be acceptable on the most systems and
causes semantic errors. Ensuring that the update process is performed without
any runtime or semantic error is called validation or correctness.

Gupta et al. introduce the notion of update validity [59]. They prove that
generally, it is undecidable to determine if a given arbitrary update is valid.
First, they define reachability concept: a state 𝑠 is said to be a reachable state
of a program Π if and only if a process executing Π from its initial state 𝑠Π0
can reach 𝑠 at some time for some inputs. Second, they define validity property:
consider a program 𝑃 is running code Π at the state 𝑠. A dynamic update
process that applies a new code Π′ to the running program 𝑃 and transforms
state 𝑠 to 𝑠′ using a state mapping function is valid if and only if after the
update, 𝑃 is guaranteed to reach a reachable state of 𝑃 ′ in a finite amount of
time. Practically the dynamic updated program should behave like a program
which is running from the initial state using the new code. However, before
the reaching to this point, the program may go to unexpected states.

The validity property is shown in Figure 2.4 informally. On top, two successive
updates are shown from version n-1 to n and from n to n+1. On the bottom,
the version n is never executed. Consider the validation of update from n to
n+1 in the top part, it is valid if and only if there is a point in the program
that two part of the Figure 2.4 cannot be discerned. It means a valid dynamic
update from version n to n+1 should guarantee that program reaches a state
that is reachable when version n+1 runs from the beginning.

Therefore, there is no general solution for validation problem in DSU systems.
However, it is still possible to find some points in the program execution that
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Figure 2.4: Unofficial demonstration of DSU validation.

File file;

void process () {
...
read ();
...

}

void read () {
file = new File(" sample .txt");
FileInputStream stream =

new FileInputStream (file);
...

}

(a) before the update.
File file;

void process () {
...
file = new File(" sample .txt");
read ();
...

}

void read () {
FileInputStream stream =

new FileInputStream (file);
...

}

(b) after the update.

Figure 2.5: Example for update failure due to the choosing an unsafe update point.

applying the update in those points are safe and the program continues its
execution without any unexpected behavior or crashing. Let us explain the
validation problem by an example. We will show how choosing an inappropriate
update point can cause an error in the dynamic update process.

Figure 2.5 shows a Java piece of code for processing a file. The process
method calls the readFile method. The file object is created and used by the
readFile method in the old version. Instead in the new version, Figure 2.5b,
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the file object creation is moved to the process method. Let us consider that
the old version of the application before calling the readFile method (row 3
in Figure 2.5a) when the new code is replaced. In this case, the call to the
readFile (row 4 in Figure 2.5a) method will call the new code where the file
object is used without a previous initialization; therefore its attempt to access
the object will raise an exception and the application will crash. To avoid this
situation, the update should be postponed until the execution of the process
method is completed. This example shows that even though both versions
of a program run without error, choosing a wrong point to start the update
process may cause the program to crash. In this thesis, we will show how we
can predict the occurrence of these situations and dodge them at update time.
In chapter 5 we will illustrate different approaches to the validation of DSU
systems.
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The dynamic updating of running software systems cannot be realized without
a specific support by the operating system, the programming language, or by
an external middleware overlaying the language RTE/VM. These systems are
described in chapter 2. The most critical property that any DSU system should
respect is that the updating process must be performed without faults or errors
and the software system must remain in a stable and sound state after the
update. This issue, known as Validation, has not received the appropriate
consideration by the DSU systems. We have a great deal to reach for a reliable
and practical system. The validation issue is described in Section 2.5 and the
various policies of different DSU systems in dealing with this issue will be
illustrated in chapter 5.

Gupta et al. [10] formally proved that to determine if the deploying of an
update on the running system will respect such a property is undecidable. Even
if the automatic validation of any generic dynamic update is not feasible; it
is still possible to bind the update of a program to only those points of its
execution that drive to a valid dynamic update. In this chapter, we introduce
a novel approach to provide a valid dynamic update for running applications.

First, we study how the dynamic update process can affect the execution
path of a running program and how a fatal error may occur due to the choice
of a wrong update point choice. Then we introduce a set of meta-data that can
be exploited by the developer to express update constraints. In addition, we
propose a validation framework that includes two parts: i) a static analyzer to
determine unsafe update point. It processes old and new codes of a program,
extracts unsafe parts of the code, and annotates them automatically ii) a runtime
validator to find a safe update point by considering the defined constraints,
include unsafe points which are produced by static analyzer automatically.
Finally, to demonstrate the feasibility of the proposed approach we used it
during the update of various distinct versions of three long-running system.
The results of the experiments are reported and discussed.
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3.1 Swinging Execution
Dynamic updating of a running system usually includes two steps: first, the
update to the code is deployed then the state is migrated from the old version to
the new one. Neither the code updating nor the state migration is instantaneous,
even if more and more often the state migration is unnecessary, such as in
JavAdaptor [106]. Since the changed code is deployed during the system
execution, the changes cannot affect the portion of code while in execution
but have to wait for its reloading. That is, the function/method in execution
during the updating will finish its computation with its old implementation;
the new implementation will be used only on the next call. Only when the
full application is using the new code the updating process can be considered
complete.

sp ep

lp

old code
execution path

new code
swinging execution

Figure 3.1: Swinging execution.

As shown in Figure 3.1, the code update starts at the time moment labeled
with lp, but its effects are disclosed only at the moment labeled with sp. While
an application is running the old code, the DSU system deploys the new version
of the code. DSU systems deploy the new code through several techniques
that range from the use of indirection through type wrapping and proxy to
the direct injection of the new code. In spite of how the deployment happens,
there is always a moment where portions of the old code and new code are
alive together. In particular, when the new code is initially loaded into the
memory, in the call stack for the current execution there are still portions of
the application’s old code. However, all the new calls from the old code are
directed to the corresponding methods in the new code if any. Due to this
reason, the application execution swings between the old and the new version.
This situation continues until all of the call frames in the stack pointers refer
to the new code and the update process finishes at the moment labeled with
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ep. After this point, the application only uses the new code and the old code
becomes inaccessible. In the period from sp to ep, the application execution
can manifest some flaws and its state is potentially inconsistent. This situation
does not occur when either the old code or the new code are run separately.

This transient inconsistency [54] has been disregarded in some DSU sys-
tems [106, 51] because it is considered negligible and in most cases, it is
automatically called off when the application fully switches to the new code.
Such a risk is not always acceptable because the critical application could
move to an illegal state and crash or could emit wrong data that cannot be
rolled back. On the other side, some DSU systems, as JVolve [117], adopt a
conservative policy and start the update deployment when they are sure that no
piece of the changed code is still in the call stack. Apart from that postponing
the update is not always feasible or desirable, it may lead to endless waiting.

Another solution to this problem is to manually pop all active methods
from the stack and push the updated version of them. This would prevent the
execution of the old code after performing the update. Unfortunately, the JVM
only support manually popping the methods and not pushing their counterparts
updated version back to the stack. JVM does not support this feature because
it can disturb the program’s normal control flow and the running application is
highly susceptible to producing unexpected behavior.

Therefore, the DSU system has to live together with the swinging execution
or to stop the application execution to permit a safe update (that by definition
is not always possible). The only thing that DSU systems can manipulate
is the start of the swinging (sp point in Figure 3.1). Starting the update at
a safe point, the execution swinging cannot move the system in a transient
inconsistency state. A safe update point [117] can be defined as a moment
during the program execution that if DSU system starts the updating process
in that moment, the program does not crash nor misbehave.

3.2 Annotation Driven Validation Process
The example of the Section 2.5 demonstrates that updating a running appli-
cation is a delicate matter. The way the update occurs in many DSUs forces
some delays in the completion of the effective deployment of the new code and
the application temporary runs with a mix of old and new code. A situation
that can bring wrong results and failures.

A valid update occurs when the execution with a mix of old and new code
cannot drive to a transient inconsistency. To automatically determine a point
in the application execution that drives to a valid update for any computation
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without external hints is basically impossible [60]. As discussed in [114, 94], it
is instead possible to express constraints about the execution, to mark some
points in the execution as unsafe—that is, if the update starts in that point
it will drive to a transient inconsistency or to a crash—and to coordinate the
update deployment according to this extra information.

Each program has its own semantics and there is a logical relation between
two successive versions of such a program. The program developer is the best
person who knows the program semantics and the logical relations between two
successive versions of the same as well as which constraints should be respected
in order to proceed with the update. Turning one version into another is safe
only when the changes to apply respect the imposed constraints. Therefore,
for every program, a dedicated collection of constraints should be provided and
the updating process should verify these constraints before the deployment of
the changes. The DSU should be in charge of verifying these constraints before
the updating and to subdue the update itself to the result of the verification in
order to leave the program stable.

3.2.1 Proposed Annotations
The basic idea is to provide some facilities for developers to express these
constraints. The easiest and most convenient way is to introduce these meta-
data within the application code since their evaluation is a part of the application
execution and of its updating. In Java, this means to use Java annotation
facility. Java annotations can be processed at compile time to generate some
other information as well as they can be accessed at run-time through the Java
reflection library. This second possibility is particularly useful in the case of
DSU systems where the whole validation should occur at run-time. We use
Java annotation because it is a facility of standard Java as well as developers
are familiar with it. Limits and advantages of the Java annotation facility are
analyzed in [29].

Annotations can be easily used to express both static or dynamic constraints.
Although static constraints include some conditions that are specified before
starting the deployment process, dynamic constraints depend on the status of
the running application. For example, let us consider the scenario where the
code in Listing 2.5a is left unchanged but the used resource (a file) is changed
after the application starts to read it. In this case, the dynamic update should
be postponed until the lock on the file is released. Constraints can either
express static properties or depend on the application’s state and therefore be
checkable only at run-time. As an instance of this second case, let us suppose
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that there is a field in a program used to count the number of connections
to the application and that according to some safety policies, the application
updating can take place only when the number of connections is zero.

The proposed approach relies on the following set of annotations. All of
them are run-time annotations (that is, RetentionPolicy.RUNTIME should be
set) and the validator will use them during the application execution. Details
of these annotations are as follows.

@DSUAtomic. This annotation can be used to decorate both method and
class declarations. In the former case, the method is marked as atomic and all
the methods called from its code should belong to the same code version. That
is, the updater should take care of active code and has to wait that marked
method is removed from the call stack before proceeding with the update. In
the latter case, all methods of the marked class are defined as atomic; this is
equivalent to annotate every method with the @DSUAtomic annotation. This
annotation is used for annotating those methods that manifest a potential
unsafe update point in their execution.

@DSUPoint. This annotation explicitly defines an update point. The updater
can proceed with the update without any risk for the application stability when
the annotated point is reached. The developer is responsible for the correct
selection of this point. This annotation can be exploited when the user wants
to perform the update at a predefined point. However, the proposed static
analyzer in Sec.3.4 may detect this point as an unsafe update point.

@DSUConstraint. This annotation permits to specify a constraint which
should be evaluated at run-time. This annotation decorates a class with a
constraint that should be respected in order to proceed with the update. The
constraint is a boolean expression on the class fields.

All of the annotations have a parameter to support multi-threading By
default, all threads of the program are affected by these annotations but the
developer can change this behavior and specify which threads should be affected.

3.3 Validator Component
According to the semantic relations between two versions of a program, the
developer can decorate the program code with the proposed annotation. These
constraints should be respected in the dynamic update time. We design and
implement a runtime validator to verify these constraints before starting the
update process. With respect to all of the specified restrictions, we can reach a
safe update point to start deployment.

Existing DSU systems have a direct approach to software updating. The DSU

33



3 Validation Framework

validator

updater

running
program

¶ update request

validation
request·

¸ safe update points

calculation

returning
safe update

points
¹

º update deployment

Figure 3.2: Dynamic updating with validation.

system, identified by the term updater in Figure 3.2, gets the requested updates
(step 1 in Figure 3.2) and directly deploys them on the running software (step 5
in Figure 3.2) with little or no consideration for the best moment when to do the
update. The validator component intercepts the requests for an update (step 2
in Figure 3.2), calculates the safe update point thanks to the annotations in the
code (step 3 in Figure 3.2), if the safe update point is determined in a certain
amount of time it asks the updater for deploying the changes otherwise the
updater is notified that no valid point can be found and the changes discarded
(step 4 in Figure 3.2). The validator is an external and independent component
and can be employed by any DSU.

Algorithm 1 reports the pseudo code describing the behavior of the validator
component. Before starting the validation process, the validator reflectively
extracts from the application all the meta-data about atomic methods and
classes. A particular treatment is reserved for the @DSUConstraint annota-
tions. A boolean expression is passed to this annotation as a string. Out of
this string a new method that simply returns the evaluation of the boolean
expression is automatically built and injected in the class annotated with the
@DSUConstraint annotation by using Javassist [33]. To avoid name clashes
the new methods are all named after the annotation name and progressively
numbered. The Java reflection library allows the validator to retrieve the
methods when needed.

The validator communicates with the other components via the Java Debugger
Interface (JDI). JDI provides some APIs to connect to a running JVM launched
in debugging mode and to control the execution of the program threads. When
an update to the running program is ready, the validator reads the JVM threads
list and finds target program threads and suspend one of them. The validator
looks for @DSUPoint annotations in the program classes. If it finds such an
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Algorithm 1: Main algorithm to find a safe update point
connect to the target JVM
foreach program threads do

suspend it
if there is a @DSUPoint annotation then

wait to reach the annotated point
else

repeat
wait the atomic methods and statements have finished their execution
check for all the provided constraints any time a candidate update point
is found

until an update point is found or the timeout is reached

if not timeout then
command the DSU to do the update

else
notify the DSU to discard the changes

annotation, a breakpoint is set on the annotated expression/statement and
the program execution is resumed until it reaches the breakpoint. Such a
point has been explicitly marked as a safe update point by the programmer
and, now, when the execution reaches the breakpoint the program is stopped
again and the updater is asked for deploying the changes. If there is not any
@DSUPoint annotation the validator tries to find a safe update point by using
the other available meta-data. In particular, the validator analyzes the call
stack looking for the first frame related to a method either defined as atomic
or belonging to a class defined as atomic. If it finds a frame about one of these
cases, the analysis is stopped, an event request for this frame is set and the
program thread is resumed. The program continues its execution until the
marked frame is removed from the call stack. After this method is removed
from the call stack the thread is suspended again and we are sure that no
other atomic method is in the call stack because the frames still in the stacks
have already been checked. At this point, all the active objects are examined
to check if their classes have @DSUConstraint annotations. In this case, the
correspondent methods are invoked to check if the system passes the constraints.
If not all constraints are satisfied, the validator put a watch-point on the fields
involved by the constraint. The thread is resumed again and suspended when
the watch-point is triggered by a change to the monitored fields. At this point,
the check starts again from the beginning. Only when the requirements on
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atomicity and the imposed constraints are satisfied the updater is informed and
the changes are deployed on the running application. This process is repeated
for every program threads. The search for a safe update point could take too
long to be satisfied and therefore a timeout is set; in this case, the validator
informs the updater that the update cannot be deployed and the changes are
discarded.

3.4 Automatic Annotating
The annotating process is not difficult but it is time-consuming and potentially
error-prone when manually done. Moreover, since the code by definition is
in a continuous evolution also the related annotations should be updated
accordingly at every change. These two aspects render preferable to have the
code automatically annotated and the annotations automatically maintained.
Even if it is unavoidable to have the constraints on the behavior manually
specified by the developer, it should be at least possible to determine the unsafe
update points that the validator should avoid. This part of the work will focus
on this last aspect.

The key idea to automatically determine an unsafe update point and then
annotate it in the code consists of forecasting how the application would behave
if the changes were deployed at a certain moment. Relevant to each simulation
scenario are i) the point in the code where the update deployment starts, ii)
which portion of the old code is active when the update deployment starts (that
is, the code that temporarily cannot be updated) and iii) how this code would
interact with the new code. If one of the simulations introduces a transient
inconsistency or worst it breaks the application execution, the code related to
the used scenario is marked accordingly.

Let us consider that an application is executing the method m when the DSU
system deploys the changes to the application. Since the method m is still in
execution this will continue to use the old code version but every call it would
perform will use the updated code instead. When the new code is deployed the
change gradually takes place starting from the methods not in use and keeping
those on the call stack unaltered up to when they are popped out from the call
stack. So, for example, if the method m still in the call stack calls a method
which is not in the call stack and that has been removed in the new version,
the application will crash. A similar situation could be prevented by analyzing
the running code (in our case the new version of the application code plus the
old code stuck on the call stack) looking for problems. In this particular case,
the problem could also be found by the Java compiler that cannot compile the
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code with a reference to an unimplemented method.
Several tools have been developed that look at an application code for

syntactical errors, potential logical errors, and warnings. To cite a few, we have
FindBugs [68], PMD1 and JLint [14]2. All these tools are static analyzer tools
that need the full source code available in order to perform their analysis. In
our case, the code is the result of a partial update where some portions of the
new code live together with the old and still running code. So the code to be
analyzed is not available and in particular, the portion of old code still running
varies according to when the update starts.

3.4.1 Calculation of the Unsafe Points
When a change is ready to be deployed, several scenarios can be calculated
depending on the current active portion of code—that is, the code in the
call stack—and by simulating and analyzing the application execution it is
possible to determine when it is unsafe to deploy the changes. Each scenario
should be composed of the new application code plus the old code still active.
Unfortunately, from the moment when the new code is ready to be deployed to
the moment when the update really starts the application is still in execution
and the content of the call stack changes. This renders complicate and time-
consuming to consider the real content of the call stack in order to calculate the
various scenarios and the unsafe update points. To cope with this problem we
widen what can represent a potential risk from the code still in the call stack
and cannot be updated to the old code that uses code that has been modified
or removed in the new version that if still active could bring to a transient
inconsistency. This has the benefit of being dependent only on the old and new
version of the code and not on the current execution and on how it evolves;
basically making static a dynamic decision process.

A new version of the application code (new), is derived from the old version
(old) by adding some new code (∆new), by removing some old code now useless
(∆old) and by replacing some portion of the old code (∆old ′) with a new variant
(∆new′); (∆new′) and (∆old ′) shares the same names (methods, classes, . . . )
but not the same behavior. As in

𝑛𝑒𝑤 = 𝑜𝑙𝑑 + ∆𝑛𝑒𝑤 − ∆𝑜𝑙𝑑 + ∆𝑛𝑒𝑤′
− ∆𝑜𝑙𝑑′. (3.1)

During the deployment, two more factors enter in the equation: the old code
that should be replaced (∆old+) or removed (∆old ′+) but that cannot be

1http://pmd.sourceforge.net
2http://artho.com/jlint
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replaced/removed because still active; these are subset respectively of ∆old and
∆old ′. A particular note should be made for the code that should replace the
code still active (∆new′+), this is indeed deployed waiting for a full replacement
but any new call to one of its operations will use the new version instead of the
one still active.3 So during the deployment, the new code is represented by:

𝑛𝑒𝑤 = 𝑜𝑙𝑑 + ∆𝑛𝑒𝑤 − ∆𝑜𝑙𝑑 + ∆𝑛𝑒𝑤′
− ∆𝑜𝑙𝑑′ + ∆old+ + ∆old′+. (3.2)

Assuming that the new code is correct—that is, it compiles without errors—the
code in ∆new do not call code unavailable after the deployment. Therefore the
code in ∆new does not represent a potential issue and can be neglected. Similar
considerations can be done for the replacement code (∆new′) and obviously for
the removed code (∆old ′ and ∆old). A potential problem is instead represented
by the old code (∆old+ and ∆old ′+) still in the system but intended to be
replaced/removed instead. This could use some removed code—e.g., a method
or a constructor—or another version of the code that has a different behavior
than the expected one and that can bring forth to an inconsistency. In formulas:

∆𝑜𝑙𝑑+ ∨ ∆𝑜𝑙𝑑′+ 𝑟𝑒𝑓𝑒𝑟𝑠 ∆𝑜𝑙𝑑 ∨ ∆𝑜𝑙𝑑′. (3.3)

The refers4 relationship is the one, the execution simulations has to verify in
order to find an execution point that could be considered an unsafe starting
point where to deploy the update.

As for the initial considerations, we cannot access easily to the code still
active and the calculation of the unsafe points is done statically. To respect this,
what we know is the source code of the application before and after the change
and consequently the extent of the change itself.Therefore, the described refers
relationship must be relaxed to:

∆𝑜𝑙𝑑 ∨ ∆𝑜𝑙𝑑′ 𝑟𝑒𝑓𝑒𝑟𝑠 ∆𝑜𝑙𝑑 ∨ ∆𝑜𝑙𝑑′. (3.4)

Basically, the relationship looks for pieces of code that should not be there
if they refer to other pieces of code that should not be there. Please note
that not all the old code must be checked because the portion that remains
unchanged cannot introduce inconsistencies (reductio ad absurdum, if a piece
of code marked as unchanged should refer to a method that does not exist

3Note that here we are speaking about the deployed code and not the source code used to
do the validation check.

4Where with the verb “to refer” we mean any use of an element of the set, such as invocation
of a method in the set or of a method out of the set but that has an argument of a class
in the set.
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anymore in the new code, this would not compile and would break the initial
correctness assumption and it should have been marked as modified instead).
A similar consideration can be done for the new code. Moreover, it is possible
to limit the check to only the first call of the modified/removed code instead of
the whole chain of calls because the next call will use the new code and the
risk for a transient error is avoided.

The verification of the relaxed refers relationship is pretty straightforward.
For every element (classes, methods, constructors, . . . ) e ∈ ∆old ∪ ∆old ′ the
code to be checked will be:

𝑛𝑒𝑤𝑒 = 𝑜𝑙𝑑 + ∆𝑛𝑒𝑤 − ∆𝑜𝑙𝑑 + ∆𝑛𝑒𝑤′
− ∆𝑜𝑙𝑑′ + 𝑒. (3.5)

Note that, e is also present in ∆new′ if it belongs to ∆old ′ and it should be
removed from ∆new′ to avoid a compilation error due to a name clash. The
various versions of newe are then checked for problems (details in Section 3.4.2)
and when a problem is found the execution of the corresponding e is marked
as an unsafe update point.

3.4.2 Technical Details
First of all, the old source code is compared against the new source code
to extract the changes. Under the initial assumption that the new code is
correct, the novel elements cannot introduce references to removed code and the
references to modified code will activate the new version of it. Therefore, the
only changes we are considering are the removed code (∆old) and the modified
code (∆old ′) from the old code. In particular, the considered changes are:

– removed classes and interfaces;
– changed class and interface declarations;
– removed fields;
– changed field declarations;
– removed methods and constructors;
– any change to the method and constructor signatures apart the operation

name (that it is considered as a removal plus an addition for a new
operation);

– any change to the method and constructor bodies such as the addition
and the removal of statements;

Comparing two source codes is challenging. To have an acceptable result, two ab-
stract syntax trees (ASTs) must be compared. Several tools have been developed
to extract the differences between two ASTs such as Change Distiller [44],
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Gum Tree [41] and Dependency Finder [119]. We used Dependency Finder
because it provides the results in an XML format that we can easily work on
in the next steps. Moreover, Dependency Finder permits also to correlate
the modification in the old source with the change in the new version and
to find any dependency from the changed code to other changed code (the
refers relationship previously introduced). The first kind of correlation is
used to calculate the correct variant of the newe that would consider eventual
name clashes. The second kind of correlation permits to limit the number of
considered newe variants to those that effectively could introduce a transient
inconsistency.

Once that the set ∆old ∪ ∆old ′ has been extracted and the refers relationship
calculated, the variants of the new code (newe) can be calculated. Several
tools have been developed to analyze and transform a source code, such as
RASCAL [78] and Spoon [98]. In particular, Spoon has been developed to work
on Java source code and therefore better fits our needs. Spoon permits to build
an in-memory meta-model out of the application source code and provides
an API for directly analyzing and modifying a Java application code. From
the old and the new source code, Spoon generates two distinct meta-models.
Then every element e ∈ ∆old ∪ ∆old ′ belonging also to the domain of the refers
relationship is added to the meta-model for the new version with all the cares
about the name clashes. The just built meta-model represents one variant of
the new code (newe) that can be compiled in order to determine if it generates
an error or some warnings (that still represent potential problems).

To let Spoon generates a meta-model and then to variate such a meta-model
is faster than generating a temporary source code on the hard disk, compile it
and manually check for compilation errors, as reported in [98]. All the generated
variants are stored in a database with the corresponding errors and warnings
for further analysis. Spoon reports the found problems grouped by degrees of
importance. Some of them are critical such as correctness and security errors
but other problems like bad practices and performance warnings can be ignored
since they do not represent an immediate problem. Based on these data, the
related elements can be annotated. Spoon also supports the annotating of the
interesting elements and the generation of the new annotated source code. The
pseudo-code in Algorithm 2 recaps the whole process.

By using this approach all the critical parts of the application can be extracted.
Moreover, some warnings can be shown to the developer about the risk of
dynamically updating application in some points. However, this is not always
sufficient because some changes affect the involved resources instead of the
code and the dynamic updating may still fail when these resources are used by
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Algorithm 2: Determining and annotating the unsafe update points.
{∆old ∪ ∆old ′} = Dep. Finder extracts changed/removed elements
foreach 𝐼𝑖 in {∆old ∪ ∆old′} do

{𝑒𝑖} = {𝑒𝑖} + refers 𝐼𝑖

foreach 𝑒𝑖 in {𝑒𝑖} do
new𝑖 = old + ∆new - ∆old + ∆new′ - ∆old ′ + 𝑒𝑖

∆𝑃𝑆𝑖 = analyze new𝑖 with SPOON
if ∆𝑃𝑆𝑖 contains a problem then

mark 𝑒𝑖 as unsafe

the application. Consider, for example, the Listing 2.5, in this case the change
could interest the used file instead of the code. In this case, even the presented
analysis cannot detect the potential problem but the risk can be limited by
the developer which could annotate the use of the file with some constraints,
e.g., the check for the file existence, that the validator component can consider
during the deployment process (details in Section 3.3).

3.5 Evaluation
3.5.1 Considered Programs
In order to demonstrate the presented approach, we consider various versions
of three different long-running programs and their dynamic evolution to the
next version. The presented approach is used to find the unsafe update points
and improve the possibility of the DSU system of dodging these critical points
during the update deployment. The experiment has been replicated on 17
versions of three different applications to extend the variations in the update
situations and to analyze how our approach behaves when the application size
grows.

The first selected program is Hyper SQL Database (HSQLDB)5 that its 1.*
versions (the version number starts with 1) include about 370 classes. Six
versions of this program have been selected that the change between two
successive versions is not too much (1.8.0.9 to 1.8.1.3). In addition, we have
selected two successive versions of this program from 2.* versions (2.3.2,2.3.3).
These programs include almost 660 classes. As it is clear, the selected 2.*
versions contain a large number of classes, as well as the difference between

5http://hsqldb.org/
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two versions, is high enough. Other state-of-the-art DSUs exploit this program
on own experiments[105, 100].

The second selected program is CrossFTP 6, a FTP server. We consider three
versions of this program and their evolutions (1.07 to 1.11). These programs
have about 230 classes. This program is also used in various DSUs to examine
own systems [101, 117, 85].

The third program is Java Email Server (JES)7, a simple SMTP and POP
e-mail server, that we get it from the JES open-source repository. Versions 1.*
of this program just have 20 classes. We consider 3 versions of this program
(1.3,1.4,1.5). However, 2.* versions include almost 390 classes. We select 9
program from 2.* versions (2.5 to 2.9.0). Some DSUs have used this program
in their experiments [128, 101].

We chose these applications for the following reasons. First, these programs
need to service continuously and the dynamic update can be an ideal solution
for upgrading these programs without interrupting their functionality. Second,
all selected programs have been exploited in at least two previous DSU systems
to complete their evaluations. Third, we easily obtained different successive
versions of these programs on their repositories. Finally, these programs are
compatible with Java 7 that most of the DSUs support their dynamic evolution.
We tried to consider small and big changes in the versions in the selection.

3.5.2 Experiment Results
Dependency Finder has been used to extract the changes from one of the
considered versions to the next version. Table 3.1 reports the found changes
for the shift from the old version to the new version within various columns
respectively. Programs are listed in the first column of the table. As you can see,
the version numbers are written in the front of the name of each program and
separated by ->. The rest of the columns demonstrate the statistics of different
changes on the various items. As previously discussed, our analysis focused only
on the modification and removal of elements; new items cannot access to the
old code nor be accessed from the old code. So the elements introduced in the
new version are irrelevant from the standpoint of the calculation of the unsafe
update points and not included in our work. As can be seen, the magnitude
of the numbers in each row is usually proportional to the magnitude of the
difference in the version numbers of the program in that row. For this reason,
the numbers in rows 6 (HSQLDB 2.3.2 ->2.3.3) and 15 (JES 2.7.1 ->2.8.0)

6http://www.crossftp.com/crossftpserver.htm
7http://javaemailserver.sourceforge.net/
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are larger than the numbers in the rows for the versions of the same programs.
Obviously, the numbers for different programs are not comparable. We have
included these two cases in our study to examine the impact of large changes
on the update.
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Program old version ->new version Changes

HSQLDB 1.8.0.9 ->1.8.0.10 1 11 1 6 20 10 9 17 23 53 0 0 2 4

HSQLDB 1.8.0.10 ->1.8.0.11 4 0 10 0 0 2 0 181 0 26 0 0 0 2

HSQLDB 1.8.0.11 ->1.8.1.1 0 6 11 2 14 42 185 27 15 149 2 2 0 13

HSQLDB 1.8.1.1 ->1.8.1.2 0 0 0 0 0 2 0 0 3 5 0 0 0 0

HSQLDB 1.8.1.2 ->1.8.1.3 0 2 2 0 2 1 0 14 0 34 0 0 0 5

HSQLDB 2.3.2 ->2.3.3 0 5 5 44 80 203 118 225 181 779 18 15 3 47

CrossFTP server 1.07 ->1.08 0 0 0 1 1 28 1 2 0 25 0 0 0 29

CrossFTP server 1.08 ->1.09 6 3 0 1 5 28 2 15 0 53 0 1 1 31

CrossFTP server 1.09 ->1.11 0 5 0 6 11 1 1 7 2 22 0 0 0 3

JES 1.3 ->1.4 0 0 0 0 10 1 2 11 1 12 0 0 0 1

JES 1.4 ->1.5 0 1 0 0 3 2 1 1 1 64 0 0 0 3

JES 2.5 ->2.6 2 9 8 23 13 17 15 34 5 120 7 7 2 30

JES 2.6 ->2.7.0 9 0 0 1 0 0 0 1 0 6 0 0 0 0

JES 2.7.0 ->2.7.1 2 5 4 0 4 2 2 4 4 43 0 0 0 2

JES 2.7.1 ->2.8.0 49 102 18 42 65 157 110 152 55 313 64 66 7 51

JES 2.8.0 ->2.8.1 0 0 1 7 2 2 11 11 0 13 2 2 0 7

JES 2.8.1 ->2.8.2 0 0 0 11 1 0 1 0 0 47 0 0 0 9

JES 2.8.2 ->2.9.0 0 8 1 5 6 1 2 13 4 44 7 7 0 5

Table 3.1: Considered programs changes.

Then for every removed/changed element, the elements (mainly methods
and constructors) that refer to it are extracted as well. The numbers of these
executables (methods or constructors) are listed in the second column of Table
3.2. The numbers in this column for each program represent the number of
executables that have been modified or referenced to a changed/removed item.
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It is important to note that the DSUs that follow a conservative policy in the
dynamic update process consider the same number of executables as active
methods/constructors.

Program Considered executables Unsafe executables Improvement compared to
the conservative approach

(%)

HSQLDB 1.8.0.9 ->1.8.0.10 119 33 72.3

HSQLDB 1.8.0.10 ->1.8.0.11 52 0 100.0

HSQLDB 1.8.0.11 ->1.8.1.1 401 45 88.8

HSQLDB 1.8.1.1 ->1.8.1.2 11 0 100.0

HSQLDB 1.8.1.2 ->1.8.1.3 43 0 100.0

HSQLDB 2.3.2 ->2.3.3 1340 256 80.9

CrossFTP server 1.07 ->1.08 55 1 98.2

CrossFTP server 1.08 ->1.09 94 3 96.8

CrossFTP server 1.09 ->1.11 30 9 70.0

JES 1.3 ->1.4 17 5 70.6

JES 1.4 ->1.5 70 4 94.3

JES 2.5 ->2.6 204 50 75.5

JES 2.6 ->2.7.0 15 0 100.0

JES 2.7.0 ->2.7.1 65 24 63.1

JES 2.7.1 ->2.8.0 747 307 58.9

JES 2.8.0 ->2.8.1 35 20 42.9

JES 2.8.1 ->2.8.2 57 39 31.6

JES 2.8.2 ->2.9.0 68 33 51.5

Avrage 82.1

Table 3.2: Results of experiments.

Then all the elements (methods and constructors) that refer to a changed
element are checked. According to the approach presented in Section 3.2 this
implies the construction of several variants of the new code each of them
enriched with one of these elements. In the case of methods, the old version
is picked up from the source code and added to the new code within the
corresponding class. To avoid duplicate name error at compile time, there
are two possibilities either the name of the introduced method is changed or
the corresponding method is removed from the new source code. But if we
would remove the new version of the method, any recursive calls should not
activate the new version of the code violating the principle that every new call
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should refer to the new code version. So the new version of the method must
be kept and we changed the name of the added method. The new name is
irrelevant since it cannot be called by the new code and it can be changed to
any arbitrary name not already in the target class. A different situation arises
for the constructors since their name cannot differ from the name of the host
class but on the other side, a constructor is never recursively called. So, the old
version of a constructor simply replaces the new version in the corresponding
class.

Spoon permits to modify the application meta-model according to needed
changes and then it can generate the corresponding temporary code ready for
the analysis. Spoon employs Eclipse compiler that can detect 626 different kinds
of potential problems divided into 16 categories. The names and explanations
of these categories are listed in Table 3.3 [2].

As shown in the description of the problem categories in Table 3.3, five of
these categories represents the code situations that drive forth to a run-time
fatal errors when executed; they are labeled as: IMPORT, INTERNAL, MEMBER,
SYNTAX, and TYPE. We used Spoon to analyze the temporary versions of the new
code generated as described to look for potential problems bound to the added
element (as a reminder, the rationale is that the added element represents
an old element active during the deployment that remains unaffected by the
change).

The results of the analysis are classified based on problem type and reported
in Table 3.4. For better representation and avoidance of a dense table, categories
that have no problems are removed. The numbers in the table represent the
number of distinct executables that cause the problem, not the total number
of problems. This means that the examination of some cases may lead to the
production of more than one problem from a specific category. Also, in some
case studies, several problems may arise from different categories. Therefore,
the numbers are overlapping in a row, and their sum does not present the
number of distinct problematic items. The number of items that have fatal
problems and are annotated as an unsafe code by the static analyzer is shown
in column 3 of Table 3.2.

3.5.3 Discussion
The analysis in our demonstration study is limited to the fatal errors. Optional
problems cannot create a serious runtime error in the program. As an instance,
column 5 of Table 3.4 shows the category of problems that related to the
coding style. This kind of problems is well-known as a code smell or bad smell
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Category Name Description

BUILD PATH Problems related to buildpath

CODE STYLE Optional problems related to coding style practices

DEPRECATION Optional problems related to deprecation

IMPORT Fatal problems in import statements

INTERNAL Fatal problems which could not be addressed by external
changes, but require an edit to be addressed

JAVADOC Optional problems in Javadoc

MEMBER Fatal problems related to type members, could be addressed
by some field or method change

NAME SHADOWING
CONFLICT

Optional problems related to naming conflicts

NLS Optional problems related to internationalization of String
literals

POTENTIAL PROGRAM-
MING PROBLEM

Optional problems related to potential programming flaws

RESTRICTION Optional problems related to access restrictions

SYNTAX Fatal problems related to syntax

TYPE Fatal problems related to types, could be addressed by some
type change

UNCHECKED RAW Optional problems related to type safety in generics

UNNECESSARY CODE Optional problems related to unnecessary code

UNSPECIFIED List of standard categories used by Java problems, more
categories will be added in the future.

Table 3.3: Eclipse compiler problems categories.
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[121]. Code smells usually are not a bug and they do not interfere the normal
execution of a program. Thus, the optional errors are ineffective and ignored
in this study.

In our results there are no IMPORT error because changes to the code never
involve the import section. Similarly, we do not have any SYNTAX error because
both versions of the source code can be compiled without errors and our addition
cannot change this. As already mentioned, these two categories are not listed
in Table 3.4 because of their zero numbers for all rows.

The TYPE kind of errors occur when there is a type mismatch. For example,
in our study, it occurred when the constructor of the org.hsqldb.server.
OdbcPacketOutputStream class has been changed on HSQLDB 2.3.2 ->2.3.3
so that instead of an object of type HsqlByteArrayOutputStream it requires
an object of type byteArrayOutputStream. When the new version of the
constructor is replaced with the old one it hits a compilation error with the
message: «Type mismatch: cannot convert from HsqlByteArrayOutputStream
to ByteArrayOutputStream» due to the attempt of invoking the constructor
of the parent class with the wrong kind of objects. Compare the old code in
Listing 3.3a with the new in Listing 3.3b.

Another example of this kind of problems occurs in JES 2.7.1 ->2.8.0. The
constructor of class com.ericdaugherty.mail.server.configuration.Tree-
Attribute is declared with a throw Exception. The callers of this constructor
in the class com.ericdaugherty.mail.server.configuration.cbc.Apply-
Configuration deal with the exception using try/catch block or add an iden-
tical throw (for the same exception or a supertype) statement to the caller
declaration. In the new version throw Exception is eliminated from the con-
structor declaration. Obviously, the callers are modified to adapt to this change
and do not deal with the exception. Thus, the temporary code that is composed
of the new code and the old constructor has a compiler error: «Unhandled
exception type Exception».

As shown in Table 3.4, the MEMBER column has the largest number of
problems than the other columns. The MEMBER kind of errors usually occurs
when an element tries to access to a removed or modified element. For example,
in CrossFTP server 1.08 ->1.09, it occurs when in the new version of the org.-
apache.ftpserver.gui.ServerFrame class, the FEEDBACK_PAGE field has been
removed and the method doFeedbackCommand() tried to access it and the error
«FEEDBACK_PAGE cannot be resolved or is not a field» is occurred.

This kind of problems also occurs when the the visibility of an element is
reduced in the new version. For instance, the visibility of method create-
DomainDirectory(java.lang.String) in class com.ericdaugherty.mail.-
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class OdbcPacketOutputStream extends DataOutputStream {
private HsqlByteArrayOutputStream byteArrayOutputStream ;

...
protected OdbcPacketOutputStream (

HsqlByteArrayOutputStream byteArrayOutputStream )
throws IOException {

super ( byteArrayOutputStream );
this. byteArrayOutputStream = byteArrayOutputStream ;
reset ();

}
...

}

(a) old code.
class OdbcPacketOutputStream extends DataOutputStream {

private ByteArrayOutputStream byteArrayOutputStream ;
...

protected OdbcPacketOutputStream (
ByteArrayOutputStream byteArrayOutputStream )
throws IOException {

super ( byteArrayOutputStream );
this. byteArrayOutputStream = byteArrayOutputStream ;
reset ();

}
...

}

(b) new code.

Figure 3.3: Example for the TYPE problem.

server.configuration.ConfigurationManagerDirectories in project jes-
2.8.2 ->2.9.0 is changed from public to private. Therefore, it is not acces-
sible from method createDomainDirectory in class com.ericdaugherty.-
mail.server.configuration.ConfigurationManager and find-bug tool re-
ports this problem: «The method createDomainDirectory(String) from the
type ConfigurationManagerDirectories is not visible». Similar thing may
occur in reducing the visibility of fields. For instance, in HSQLDB 2.3.2 ->2.3.3,
when the initParams method in the org.hsqldb.persist.Log class tries to
access a field which is not visible in the new code, this error is created: «The field
Logger.propLogSize is not visible». Because the visibility of propLogSize is
changed from public to package.

When a final modifier is added to a field declaration, two MEMBER problems
may be reported: First, the final field is not initialized in the temporary code.
Second, the final field is illegally assigned in the code. In the HSQLDB 2.3.2
->2.3.3, when rowId field from org.hsqldb.RowAction gets a final modifier
in the new version, find-bug tool reports two errors: «The blank final field
rowId may not have been initialized» and «The final field RowAction.rowId
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cannot be assigned». However, adding a final field may not make a problem
in the temporary code. For instance, mainBlockSize field from org.hsqldb.-
persist.TableSpaceManagerBlocks gets a final modifier, but it does not
make a problem. Because it is initialized one time in the constructor and never
assigned in the other parts of the code.

Removing the static modifier from an element may also report MEMBER prob-
lem. In JES 2.5 ->2.6, when field watcher of class com.ericdaugherty.mail.-
server.configuration.ConfigurationManager changed from static to a non-
static field in the new version, the bug finder reveals this error: «Cannot make
a static reference to the non-static field com.ericdaugherty.mail.server.-
configuration.ConfigurationManager.watcher ». Because static method
shutdown() tries to access to this non-static field from the old code. The similar
thing may happen for the static methods. In JES 2.7.1 ->2.8.0, static method
getPassReceivedLocalMessage() in the class com.ericdaugherty.mail.-
server.configuration.ModuleControl is changed to be a non-static method
in the new version. The bug finder detects a problem in the temporary code be-
cause method deliverLocalMessage in the class com.ericdaugherty.mail.-
server.services.smtp.client.SMTPSenderStandard in the old version may
invoke this method through the class, not from instances. This problem is
reported by this message: «Cannot make a static reference to the non-static
method getPassReceivedLocalMessage() from the type ModuleControl».
However, if the changed method is never invoked statically by the old code,
removing static modifier in the new version cannot make a problem in the
temporary code. For instance, in JES 2.5 ->2.6, static modifier is removed from
method setPassword in class com.ericdaugherty.mail.server.configura-
tion.LoginCallbackHandler. This method is invoked through the instances
in the old code. Thus, removing the static modifier cannot produce a compile
problem.

The INTERNAL kind of errors is related to fatal problems which could not be
addressed by external changes and requires an edit to be addressed. This kind
of errors rarely occurred in our experiments. An instance of this kind problems
is occurred in the method getTableSpace in the org.hsqldb.persist.Data-
SpaceManagerBlocks class in HSQLDB 2.3.2 ->2.3.3. This error message
is generated: «The operator >= is undefined for the argument type(s) int,
AtomicInteger». Because originally the field spaceIdSequence was of type
int and it could originally be compared with the integer argument spaceId
but in the new version its type is changed to AtomicInteger that cannot be
compared with an integer through the >= anymore. Compare the old code in
Listing 3.4a with the new in Listing 3.4b.
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public TableSpaceManager getTableSpace (int spaceId ) {
....

if ( spaceId >= spaceIdSequence ) {
spaceIdSequence = spaceId + 1;

}
...

}

(a) old code.
public TableSpaceManager getTableSpace (int spaceId ) {

...
if ( spaceId >= spaceIdSequence .get ()) {

spaceIdSequence .set (( spaceId + 2) & -2);
}

...
}

(b) new code.

Figure 3.4: Example for the INTERNAL problem.

Along with these problems, there are some obvious rules that we expect to be
met. The first fact is about deleted items. We expected that all the elements
that refer to removed methods and constructors raise an error when introduced
in the new version. This is not a surprise because these elements do not exist
in the new version and if an element tries to access these items it will provoke
a compilation error. However, we found some cases that violate this rule. By
inspecting the new version of the code, we discovered that some of the methods
marked as removed were instead moved up in the inheritance hierarchy. In
these cases, any call to these methods from the old code is still valid since
the method is inherited by the class that before declared it and the generated
temporary code can be compiled without error. For instance, in HSQLDB 2.3.2
->2.3.3, the method addForeignKey in class org.hsqldb.ParserDDL has been
moved to the parent-parent class org.hsqldb.ParserTable. So all the calls
to this method are valid for both old and new code. Similarly, we also found 11
fields in the class org.hsqldb.navigator.RowSetNavigatorDataTable that
moved up into the super class org.hsqldb.navigator.RowSetNavigator. In
the program, there are 15 methods which refer to these moved fields.

Another fact is about the changed methods and constructors. When Depen-
dency Finder compares two versions of a class, if the arguments of a method
are changed, the method is marked as a removed method and a new method is
detected on the new code. This depends on the overriding capability and in some
cases such a change does not affect old calls. For instance method getStore in
class org.hsqldb.persist.PersistentStoreCollectionDatabase has a pa-
rameter of type java.lang.Object which has been changed to org.hsqldb.Ta-
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bleBase in the new version. All of the 11 callers of this method in the old
source code calls it by an argument of type org.hsqldb.TableBase. So the
new version of the method is valid also for the old calls. A similar situation
occurred for the method moveDataToSpace in class org.hsqldb.persist.-
RowStoreAVLDisk. The second parameter of this method has changed from
org.hsqldb.lib.LongLookup to org.hsqldb.lib.DoubleIntIndex. This ch-
ange cannot affect old calls because LongLookup implements the DoubleInt-
Index interface.

A similar situation occurs also for the modified elements. Sometimes the
change does not affect the general behavior/structure of the application. Several
cases can be imagined. For example when the visibility of a field passes from
public to package and it is never used out of the package scope or when a
method body is changed but its signature remains unchanged. However, it
cannot be generalized since it depends on the type of changes.

The summary of the results is shown in Table 3.2. The first column lists the
case studies. The second column shows the number of examined executables
(methods and constructors). These numbers show the number of executables
may be active at the update time. Remember that if a DSU system follows a
conservative policy (do not update until there is a modified item or a reference
to a modified elements on the stack), it should wait until none of these active
methods is on the stack to start the dynamic update process. The third column
presents the number of executables that are detected as a problematic item in
the static analysis process and are marked as unsafe. The difference between
the numbers in the second and third columns indicates the number of active
executables that are safe to start the update. This means that if these items
are in the call stack, the update process can be performed. Thus, the dynamic
deployment can be free of unnecessary delay. A lower number of unsafe update
points implies also a more agile update process with less constraint to satisfy.
The improvement percentage is shown in the fourth column. The improvement
rate is from 31% to 100%. The average improvement rate for the 17 case studies
is 82.1%. However, for three cases this number is 100. It means the dynamic
update process can be started immediately.

3.5.4 Time Information
Although detection of unsafe update points and annotating them are performed
statically before the start of the update process, it is useful to have an imagina-
tion of the time it takes to run this process.The summary of these measurements
is presented in Table 3.5. Measurements were carried out on a machine with
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Intel Core i3 CPU (M 330 @2.13GHz 2.13GHz) and 4GB of RAM running
Windows 7 64-bit Operating System. We used the Oracle JVM version 1.7.0_55
with HotSpot 64-Bit Server VM (build 23.55-b03) to execute applications. The
experiments are repeated 3 times and the average measured times are written
in the table. Method System.currentTimeMillis() is used to get the times.

The first column of Table 3.5 lists the programs and their successive versions.
To have information about the program size, the second column demonstrates
the size of the programs in Line Of Code (LOC). The sizes of both versions are
calculated because both of them are included in the process. The sizes vary
from 10k LOC to 598k LOC.

The program analysis to extract unsafe points consists of two steps. The first
step is to build the Spoon model of the old and new versions of the program.
As mentioned earlier, we have used the Spoon library to process the source
code. Spoon needs to create a meta-model of program source code in memory.
This process is time-consuming and is done one time for both versions. The
measured times for this step are in the third column. As you can see, this
number is about 2 seconds for the small programs such as JES 1.4 ->1.5 and
for the big programs such as HSQLDB 2.3.2 ->2.3.3 is about 241 seconds. If
these numbers are compared to the program sizes, it can be concluded that
there is a direct relation between the time of construction of the model and
the size of the programs. The ratio of the time for building the model to the
size of the programs is given in column 7. This ratio varies from 157 to 404 for
different case studies.

The second step is to inject an executable into the new code, create a
temporary code, examine this code, and annotate the executable if there is
a problem on examination. The measurement time for this step is presented
in column 4. This process is repeated for all of the extracted items. Again,
by comparing these numbers with the numbers in column 2, there is a direct
relation between the time needed for the temporary code processing and the
program size. In fact, there is no significant difference between the sizes of the
temporary code and the new code. Therefore, this proportion is logical. These
ratios are shown in column 8 of the table. The range of numbers varies from
10 to 23.

The total time required for processing is obtained from the following formula:

Total process time = Model creation time +
(Finding bugs time for each item * Number of items)

The numbers for this calculation are shown in column 6. As predictable, the
total time is more related to the second stage. Although the processing time of
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each item is not so high, the repetition for each item increases the total time.
Therefore, in the cases that the number of modified items and program size are
large, the total time for processing would be high. Although this value is only
6 seconds for small programs with modest changes, such as JES 1.3 ->1.4, it
takes almost 3 hours for a large program with many changes, such as HSQLDB
2.3.2 ->2.3.3. Please note that this static analysis can prevent the occurrence
of fatal errors at the dynamic update time. Also, compared to DSUs that follow
conservative policy, the wait time for stating dynamic update process is almost
reduced up to 82%. Moreover, the experiments are executed on not so strong
machine with a limited memory size that may cause virtual memory usage on
loading and on processing large programs. It may increase process time.

3.6 Summary
Within this chapter, we presented our approach for validating a dynamic update
process. We proposed a framework with two parts: i) A static analyzer to
process two versions source code and determine unsafe parts of the code. If the
dynamic update process starts when the program is executing an unsafe code,
the program will be crashed and the update process will be failed. Dynamic
updater should wait until all of the unsafe codes are removed from the call
stack. ii) A run-time component is implemented to support this idea at the
update time. This component dodges the unsafe update points by scrolling the
call stack of running program and informing the dynamic updater after finding
the call stack empty of unsafe points. We demonstrated the applicability of
this method by applying this to various versions of three different applications.
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Program Problem categories

HSQLDB 1.8.0.9 ->1.8.0.10 1 32 0 4 24 0 5 25

HSQLDB 1.8.0.10 ->1.8.0.11 0 0 0 0 0 0 0 0

HSQLDB 1.8.0.11 ->1.8.1.1 1 44 0 0 2 0 6 1

HSQLDB 1.8.1.1 ->1.8.1.2 0 0 0 0 0 0 0 0

HSQLDB 1.8.1.2 ->1.8.1.3 0 0 0 0 0 0 0 0

HSQLDB 2.3.2 ->2.3.3 5 252 1 8 19 0 118 36

CrossFTP server 1.07 ->1.08 1 0 0 1 1 0 2 1

CrossFTP server 1.08 ->1.09 1 2 0 2 2 0 3 2

CrossFTP server 1.09 ->1.11 0 9 0 0 0 0 1 0

JES 1.3 ->1.4 2 3 0 1 0 0 0 2

JES 1.4 ->1.5 4 0 0 0 0 0 1 4

JES 2.5 ->2.6 4 48 2 0 4 0 4 5

JES 2.6 ->2.7.0 0 0 0 0 0 0 0 0

JES 2.7.0 ->2.7.1 3 21 0 0 0 0 13 16

JES 2.7.1 ->2.8.0 117 231 2 0 3 0 61 98

JES 2.8.0 ->2.8.1 0 20 0 0 0 0 1 0

JES 2.8.1 ->2.8.2 0 39 0 15 0 0 10 16

JES 2.8.2 ->2.9.0 2 33 0 5 2 15 2 17

Table 3.4: Classification of detected problems in inspected codes based on error type.
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Program LOC(k) Model
creation
time (ms)

Find bugs
and anno-
tating
time for
each item
(ms)

Number
of cases

Total
process
time (s)

Model
creation
time/LOC
(ms/k)

Find bugs
and
annotating
time for
each
item/LOC
(ms/k)

HSQLDB 1.8.0.9
->1.8.0.10

310 93365 3341 119 491 301.18 10.78

HSQLDB 1.8.0.10
->1.8.0.11

314 89743 3429 52 268 285.81 10.92

HSQLDB 1.8.0.11
->1.8.1.1

314 90105 3321 401 1422 286.96 10.58

HSQLDB 1.8.1.1
->1.8.1.2

314 89107 3364 11 126 283.78 10.71

HSQLDB 1.8.1.2
->1.8.1.3

316 92774 3166 43 229 293.59 10.02

HSQLDB 2.3.2
->2.3.3

598 241751 8407 1340 11507 404.27 14.06

CrossFTP server
1.07 ->1.08

62 12177 1274 55 82 196.40 20.55

CrossFTP server
1.08 ->1.09

62 9783 1262 94 128 157.79 20.35

CrossFTP server
1.09 ->1.11

62 10079 1252 30 48 162.56 20.19

JES 1.3 ->1.4 10 2859 207 17 6 285.90 20.70

JES 1.4 ->1.5 10 1821 203 70 16 182.10 20.30

JES 2.5 ->2.6 109 21042 2392 204 509 193.05 21.94

JES 2.6 ->2.7.0 108 19105 1858 15 47 176.90 17.20

JES 2.7.0 ->2.7.1 107 19447 2242 65 165 181.75 20.95

JES 2.7.1 ->2.8.0 105 18562 2466 747 1861 176.78 23.49

JES 2.8.0 ->2.8.1 102 18320 2415 35 103 179.61 23.68

JES 2.8.1 ->2.8.2 102 19104 2230 57 146 187.29 21.86

JES 2.8.2 ->2.9.0 102 17568 2160 68 164 172.24 21.18

Table 3.5: Time information about the automatic annotating process.
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4
Dynamic Updating and Code

Smells

The term of code smell or bad smell usually refers to any symptom in the
program source code that probably portends a deeper problem[121]. It also
involves some certain structures that violate fundamental design principles
and have negative impacts on the design quality of the program[118]. Code
smells usually are not a bug and they do not interfere the normal execution of a
program. However, they may cause other problems such as performance penalty
or increase the risk of bugs or failure in the future. For instance, Spaghetti
Code as a code smell does not affect the program execution but increases the
maintenance cost and risk of failure in the future.

Several books have been written on smells. Flower[118] introduced 22 code
smells such as long methods, duplicated code, large class, and long parameters.
Code smells are described informally and also some refactoring techniques
are proposed. Smells can be considered from different aspects. Webster
[122] presents smells in the object-oriented programming, involving conceptual,
political, coding, and quality assurance pitfalls. Therefore, the problems that
may occur due to dynamically update of a program can be considered as a
criterion for determining code smells.

In the previous chapter, we showed that swinging execution as an inevitable
phenomenon in the dynamic updating process. It is common in the most of the
DSU systems and may cause transient inconsistency during or after the update.
Although the program may pass from this phase safely, in a pessimistic scenario,
this transient inconsistency may lead to a fatal error and update failure. This
is a disaster for long-running programs. As it is mentioned in Sec.3.4, The
behavior of programs in dealing with this phenomenon is predictable. The
unsafe points of the code can be annotated statically through an automatic
process and can be dodged at the update time to choose a safe update point.
However, the impact of various changes in this phenomenon is not entirely clear.
Some types of changes on the program can not have a negative effect on its
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dynamic updating. Studying the impact of each atomic change in the program
dynamic update can extract the smells on the program code, regarding the
dynamic update issue. These smells can be considered in the development
process.

In this chapter, we will first develop a set of candidate error-prone patterns
with respect to the language features and their possible atomic change. Patterns
are associated with atomic changes that may occur in program evolution.These
patterns are used to explore code smells on the dynamic software updating.
In addition, this set can be exploited as a reference set by other DSU tools
to measure flexibility. To explore smells, we examine the dynamic evolution
of candidate error-prone patterns on at least three state-of-the-art DSUs and
categorize the results. We consider fatal errors that may crash program as well
as syntax errors that violate language rules. Moreover, the candidate patterns
are examined by our proposed static analyzer to explore heterogeneities results.
Finally, we trace these situations and enhance the static analyzer to cover this
defect and disclose all of the code smells.

4.1 Building Error-prone Patterns
Obviously, the updating process mainly consists of changing the code of the
application to update. Basically, in order to understand what could go wrong
during the updating process, it is necessary to know how the code could change
and when such a change would drive forth to a fatal situation. Such a level of
awareness could be difficult to achieve especially if you are considering it at
the level of the application code since the code could be really complicated and
the provenance of the error could be tangled.

A more limited (but still meaningful) awareness can be achieved by con-
sidering the single language features independently of how these are used in
the application code. Given a single language feature, it is possible to build a
simple sample program, called error-prone pattern, that manifests a problem
during the updating process when the update affects the considered language
feature. Therefore an error-prone pattern is characterized by both the language
feature and how such a feature is changed. Considered language features are
the class, interface, enum and annotation as well as their possible members such
as field, method and so on. Possible modifications include adding and removing
language features, altering the language feature characteristics (e.g., visibility,
type, . . . ) and how the language features interact (e.g., nesting, hierarchy,
. . . ). The execution of these error-prone patterns on different DSU frameworks
will provide us a deep and clear understanding of how these DSU frameworks
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behave in the context described by the error-prone patterns.
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language feature modifications
1 class Ì Í Í Í Í Í Í

2 interface Ì Í Í Ì Í

3 inner class Ì Ì Ì Í Ì Ì Ì Ì Í Í

4 method in class Ì Í Í Í Í Í Í Í Í

5 class constructor Í Í Í Í

6 method in interface Ì Í Í Ì Í

7 field in class Ì Í Í Í Í Í Í Í Í Í

8 field in interface Ì Í Í Í Í Í Í

9 enum Ì Í Í

10 enum constant Í Í Í Í

11 enum method Ì Í Í Í Ì Ì Ì Ì
12 annotation Ì Í Í Í Í Í

Table 4.1: Possible changes in the program.

Table 4.1 represents the full set of language feature/modification combinations
for Java 7.1 Each row reports a language feature and each column the possible
changes. Of course, not all the combinations make sense. An empty cell
indicates that the combination is inapplicable in the Java language, e.g., to
change the value of a class. A Í symbol at a combination indicates that
the changing in the language feature can occur whereas a Ì symbol still
indicates that the combination can occur but this is not further considered
either because they are covered by other combinations—e.g., removing an inner
class is technically equivalent to remove a class—or, even if, this combination
would occur the changed code could not be used from the old code—e.g., any
newly introduced method cannot be invoked by the old unchanged code; note
that a new constructor without parameters is implicitly called when the class
is instantiated even if this is not changed yet. Of course, any code (includes

1We chose Java 7 because no DSU supports Java 8 at the time of writing.
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the new code) can be used by old code through Java reflection. But it never
happens practically in the real applications. Furthermore, our static analyzer
detects unsafe part of the code by employing bug-finder tools which cannot
find problems in the Java reflection codes. So, Java reflection considering is
useless in our technique. However, our runtime validator can detect the unsafe
executables that are invoked through Java reflection because it scrolls the call
stack that involves all of the invoked executables even through reflection. As
can be seen, for sake of readability, the columns with the same values have
been merged in the table.

In defining the samples the following criteria were considered: i) The cases are
developed as simple as possible to cover only one cell of the table ii) Two versions
of samples can run individually without any error iii) Cases are independent
of the DSU tools that perform the update on them iv) The update process is
done out of the main method because most of the DSU tools have a problem
with updating it v) The cases are developed in a way which is closer to make
a potential fault. For instance, in the case of visibility change of an item,
reducing the visibility is more prone to make an error. So, we have examined
the impact of reducing visibility not increasing. However, in most cases, all
possibilities have been examined.

The general structure of the samples is based on the concept of swinging
execution. The old code should have an executable (method, constructor)
which contains a changed item. Exactly before the reaching the changed item,
the DSU tool performs the update and program switches to the new version.
The current executable continues the execution of the old code but each access
should be picked up from the new code. This situation can create a misbehavior
or runtime error.

Let us look at a sample that a static modifier of a method is removed in
the new version of the code. As you can see in List 4.1, static modifier is
eliminated from method foo() signature. Method foo() is invoked statically
inside method bar() in the old version, but it is called through an object in
the new version. Exactly before the second call, the program is updated to
the new version. From this moment, the statically invoking of method foo()
is not valid anymore. However, the program continues its execution inside
the old version of method bar() and it creates a runtime error at line 8. So,
performing this sample on the DSUs creates a runtime error.

In most experiments, we have followed the above scenario. Nevertheless, that
is not the only pattern which is followed. For instance, in adding/removing
synchronized modifier to a method, by making particular changes in the new
version and selecting a specific point for performing the update, the program
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class Sample {
static void foo (){

...
}
void bar (){

Sample .foo ();
doUpdate ();
Sample .foo ();

}
public static void main( String [] args) {

new Sample (). bar ();
}

}

(a) old code.
class Sample {

void foo (){
...

}
void bar (){

new Sample (). foo ();
// doUpdate ();
new Sample (). foo ();

}
public static void main( String [] args) {

new Sample (). bar ();
}

}

(b) new code.

Figure 4.1: General form of error-prone patterns in the dynamic update.

is stuck in a deadlock situation at the dynamic update process. This pattern
is shown in List 4.2. As it is shown, the old code 4.2a contains three classes.
ClassA has two methods with a synchronized modifier. ClassB also has two
methods that only one of them has synchronized modifier. The methodA and
methodB have the parameter which obtains an object from ClassB and ClassA.
If the methodB also has synchronized modifier, the program is going to be stuck
in a deadlock situation. In the new code, synchronized modifier is removed
from methodA and added to methodB. If the old or new version of the program
runs individually, none of them is faced with a deadlock situation. Imagine
the old program is running inside methodA and exactly before calling methodB,
the program is updated and methodB is picked up from the new version which
has synchronized modifier. In this case, two objects waiting for each other and
they never go out from this situation.

The basic idea is trying to put program execution in a direction that never
happens in the old neither in the new version but mixing two codes may raise
a runtime error. There is no claim on completeness of candidate patterns
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class ClassA {
synchronized void methodA ( ClassB b)
{ b.last ();}
synchronized void last ()
{ ... }

}
class ClassB {

void methodB ( ClassA a)
{ a.last ();}
synchronized void last ()
{ ... }

}
class Deadlock implements Runnable
{

ClassA a = new ClassA ();
ClassB b = new ClassB ();

Deadlock ()
{ Thread t = new Thread (this );

t. start ();
a. methodA (b);}

public void run ()
{ doUpdate ();

b. methodB (a);}
public static void main( String args [] )
{ new Deadlock ();}

}

(a) old code.
class ClassA {

void methodA ( ClassB b)
{ b.last ();}
synchronized void last ()
{ ... }

}
class ClassB {

synchronized void methodB ( ClassA a)
{ a.last ();}
synchronized void last ()
{ ... }

}
class Deadlock implements Runnable
{

ClassA a = new ClassA ();
ClassB b = new ClassB ();

Deadlock ()
{ Thread t = new Thread (this );

t. start ();
a. methodA (b);}

public void run ()
{
b. methodB (a);}
public static void main( String args [] )
{new Deadlock ();}

}

(b) new code.

Figure 4.2: Pattern of deadlock occurrence in the dynamic update.
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collection. However, various errors can be detected due to the performing an
update in an unsafe point. The final point of this section is that the evaluation
process is done manually rather than using automatic techniques like Junit test
[45]. Because DSU tools usually do some modifications on original bytecode
of the program to have dynamic update capability. These modifications may
affect the automatic test part of the project and the results will be different.
By considering above issues, we write 75 individual patterns.

4.2 Parameters Considered
After defining the candidate error patterns, all of them are applied to three
different DSUs. The following parameters are considered in investigating the
samples.

Support by DSU. The first thing that should be determined is whether a
specific change is supported by the DSU or not? To answer this question, apart
from what is mentioned in the literature, we follow a black box policy. In
most cases, Java reflection helps us to make sure that the changes are applied
correctly. For instance, when a field gets static modifier, these changes can be
detected by the Java reflection. Other changes can be directly investigated by
the user from the DSU log and program output. For instance, when a field’s
value is changed, it can be easily identified by printing the field value.

Runtime error in the dynamic update process. While a program is updating
by a DSU tool, the worst scenario is that the running program is crashed by
facing a runtime error. So, considering this, three modes may occur: i) Update
is done correctly without any runtime error. ii) The program ends with throwing
an exception and a runtime error occurs. iii) There is another mode that facing
with a runtime error is uncertain and depends on other conditions. For instance,
when a class is deleted from an application, even after the update, the old class
is accessible from the old code. But if the class is not used before the update,
it does not exist in the JVM, and any access to it from the old code will cause
a runtime error. To eliminate these ambiguities, we separate different modes of
these cases, study them one by one, and show them separately in the results.
Finally, we consider the type of the exceptions in the case of runtime errors. All
errors belong to the java.lang package. Thus, to avoid repeating, we delete
the package name in the text and only write the class name.
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Syntactic errors in the dynamic update process. Along with runtime errors,
syntax errors may occur. These errors do not stop program execution but
they are a violation of the rules of the programming language or a logical
error. Three modes can be distinguished: i) when a program terminates with a
runtime error, syntax error detection is meaningless. Therefore, in this case,
we assume that no syntax error has occurred. ii) A syntax error happens. For
instance, when visibility of a method is changed from public to private in the
new version, obviously this method must not be accessible from the outside
of the class. But after the update, it is observed that although the new code
of the method is used, the program does not respect the visibility rules. This
violates privacy in the programming language. These cases can be detected by
investigating the program behaviors and outputs. iii) No unexpected behavior
can be identified.

Errors detected by the framework. The last parameter considered in this
study is which of the runtime and syntax errors found in the experiments can
be detected by previously proposed validation framework. We also have five
different modes here: i) A runtime or syntax error occurs and our approach can
predict this error before starting the update process. ii) An error occurs during
the update but the validator cannot determine this situation (false negative).
iii) The validator identifies an unsafe part of the old code while the DSU can
handle this situation properly (false positives). iv) An error does not occur
and the static analyzer confirms that this case is safe. v) There is another
mode that the static analyzer detects an error in a specific mode of the case
study. For instance, in 5-3 when the signature of a class constructor which have
parameters is changed, the validator marks this change as an unsafe if there is
no implicit type conversion between the parameters type of the old and new
constructor. These cases are studied individually to present more clear results.

4.3 Select DSUs
One of the important concerns in this study is the choice of the DSU tools
to run the candidate patterns. According to the following rules, DSUs have
been selected: i) The target tools should support dynamic updates in Java 7.
Some DSUs support earlier versions of Java that cannot be applicable to our
study [37]. ii) They have reasonable flexibility to support different changes.
This allows us to run the maximum number of samples. In Kim’s proposed
DSU [76] and also UpgradeJ [23] only adding fields and methods to the original
classes are permitted. Deleting or modifying operations are not allowed. iii)
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In order to provide equal conditions for running samples, the dynamic update
process should be transparent to developers. In this case, all samples can
be executed in DSUs without any modification to support update process.
iv) They should have the ability to determine the start time of the update
process. However, we have to make some modification on two selected DSUs
to add this feature. v) Finally, and most importantly, the DSU tool should
be available. Some DSUs are no longer alive. Based on the mentioned points,
three DSUs have been selected: JRebel, JavAdaptor, and DCE VM. Here is
a brief explanation of these tools. More complete descriptions are given in
Chapter 5.

JRebel is the only commercial product2 that provides a quite flexible class
reloading on the application level without JVM modification. It has been built
with the capabilities developed for Javeleon [52]. Although the lack of support
for changing the hierarchy of the type has been mentioned in the literature [54],
our experiments indicate that this feature has been added. However, there is
a lack of a mechanism for state transforming between two versions. JRebel
has been developed for ‘Edit and Continue’ purpose. It can be executed as a
plug-in or standalone. JRebel provides a plug-in for the three main Java IDEs:
Eclipse, IntelliJ, and NetBeans. It includes an agent that can be run alongside
the program. This agent monitors the running application’s class folder and
applies any changes dynamically. To perform the update at a particular point,
we just replace the modified classes by calling a method in the old code. The
agent can detect these changes and perform the dynamic update immediately.
All the patterns are executed through JRebel 7.0.3 on Java 1.7.0_79.

Dynamic Code Evolution VM (DCE VM) follows a different approach
for class reloading than the previous tool and operates on JVM level instead of
on top of it. It extends the operation of current HotSwap to provide dynamic
update ability for the running program. The code evolution step in DCE VM
is triggered by the Java Debug Wire Protocol (JDWP) [5]. The patched JVM
allows the developer to add/remove methods/fields to the classes as well as
modify inheritance hierarchy. Although the tool has been implemented for
a certain JVM, the patch can be applied to other JVMs. The source code
and binary are available at http://ssw.jku.at/dcevm. Switching from one
version to another can easily be performed by calling a method.

Like JRebel, JavAdaptor has been built on top of the HotSwap. It supports
internal class changes as long as the updated program remains type-safe. It also
allows external class changes by rewriting bytecode thanks to some techniques
such as containers and proxies. Moreover, JavAdaptor exploits one-to-one

2https://zeroturnaround.com/software/jrebel/
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mappings for each field of the old class that has its counterpart in the new
class. It also automatically initializes newly added fields with default values.
Unlike two previous tools, the swinging execution phenomenon does not appear
in the performing of all patterns. Because JavAdaptor keeps old loaded classes
in JVM and they are still accessible after the update. This issue is referred
as a binary-incompatible update [50]. To avoid this situation, the authors
proposed a mechanism to invalidate the removed methods, constructors, and
field accessors by rewriting their body immediately after the update. However,
in some changes, the old code is still used after the update and the sample
does not participate in the swinging execution. We will mark these cases in
the results. JavAdaptor basically is developed as an Eclipse plug-in. While the
application is running, the developer makes arbitrary changes and applies a
new version of the classes by pressing a button inside the IDE.

4.4 Experimental Results
After specifying the parameters and choosing the DSUs to perform error-prone
patterns, we execute all of the samples one-by-one and put the results in the
Table 4.2. For ease of reference to the table rows inside the text, each row
is marked with a number. These numbers are in line with Table 4.1. Each
number includes two parts separated by a dash sign. The first part represents
the row number in Table 4.1 and the second part represents the column number
in Table 4.1. The rows and columns numbers are also marked in Table 4.1.
The second column represents the change item and the third column indicates
the type of change that has been applied to the item. Due to the merging some
columns in Table 4.1 as well as the various results obtained from a change in
an item, some rows have the same numbers. But anyway, the type of item
and the change description are clear. The remaining columns are related to
the parameters information on each DSU. The sign Ëmeans existence and sign
émeans the absence. Sign −means no information. In the following, the results are
described separately for each parameter.
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1-12 class change inheritance Ë é Ë é Ë é Ë − − Ë
2-2 interface remove é é Ë é Ë é é é Ë Ë
2-5 interface change visibility Ë é Ë é Ë é é é Ë Ë
2-12 interface change inheritance Ë é Ë é Ë é Ë − − Ë
3-6 inner class add static Ë Ë é Ë Ë é Ë Ë é Ë
3-6 inner class remove static Ë Ë é Ë Ë é Ë Ë é Ë
3-13 inner class move to the sub/sup-

per class
é é Ë Ë Ë é é é Ë Ë

3-14 inner class change nesting é é Ë Ë Ë é é é Ë Ë
4-2 method in

class
remove Ë Ë é Ë Ë é Ë Ë é Ë

4-3 method in
class

change type with im-
plicit conversion

Ë Ë é Ë Ë é Ë Ë é é

4-3 method in
class

change type without
implicit conversion

Ë Ë é Ë Ë é Ë Ë é Ë

4-5 method in
class

change visibility Ë é Ë Ë Ë é Ë − − Ë

4-6 method in
class

add static Ë é é Ë é é Ë − − é

4-6 method in
class

remove static Ë Ë é Ë Ë é Ë − − Ë

4-7 method in
class

add final Ë é é Ë é é é é é é

4-7 method in
class

remove final Ë é é Ë Ë é é é é Ë

4-8 method in
class

add abstract Ë é é Ë é é Ë − − Ë

4-8 method in
class

remove abstract Ë é é Ë é é Ë − − Ë
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4-9 method in
class

add synchronized Ë é é Ë é é Ë − − é

4-9 method in
class

remove synchronized Ë é é Ë é é Ë − − é

4-9 method in
class

deadlock through syn-
chronized

Ë é Ë Ë é Ë Ë − − é

4-13 method in
class

move to the sub/sup-
per class

Ë é é Ë é é Ë − − é

5-1 Constructor add a constructor
without parameter

Ë é é Ë é é Ë é é é

5-1 Constructor add a constructor
with parameter

Ë Ë é Ë Ë é Ë Ë é Ë

5-2 Constructor remove the only exist-
ing constructor with-
out parameter

Ë é é Ë é é Ë é é é

5-2 Constructor remove constructor
with parameter

Ë Ë é Ë Ë é Ë Ë é Ë

5-3 Constructor change type with im-
plicit conversion

Ë Ë é Ë Ë é Ë Ë é é

5-3 Constructor change type without
implicit conversion

Ë Ë é Ë Ë é Ë Ë é Ë

5-5 Constructor change visibility Ë é Ë Ë Ë é Ë − − Ë
6-2 method in

interface
remove Ë é Ë é Ë é Ë é Ë Ë

6-3 method in
interface

change type with im-
plicit conversion

Ë Ë é Ë Ë é Ë Ë é é

6-3 method in
interface

change type without
implicit conversion

Ë Ë é Ë Ë é Ë Ë é Ë

6-13 method in
interface

move to the supper
class

Ë é é Ë é é Ë − − é

6-13 method in
interface

move to the sub class Ë é é Ë é é Ë − − Ë

7-2 field in
class

remove Ë é Ë Ë Ë é Ë Ë é Ë

7-3 field in
class

change type with im-
plicit conversion

Ë é Ë Ë Ë é Ë Ë é é

7-3 field in
class

change type without
implicit conversion

Ë é Ë Ë Ë é Ë Ë é Ë
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7-4 field in
class

change value of a field Ë é é Ë é é Ë é é é

7-4 field in
class

change value of a
static final field

Ë é é Ë é é Ë é é é

7-5 field in
class

change visibility Ë é Ë Ë Ë é Ë − − Ë

7-6 field in
class

add static Ë é é é Ë é Ë − − é

7-6 field in
class

remove static Ë é Ë é Ë é Ë − − Ë

7-7 field in
class

add final Ë é Ë Ë Ë é é é Ë Ë

7-7 field in
class

remove final Ë é é Ë é é é é é é

7-10 field in
class

add transient Ë é é Ë é é Ë é é é

7-10 field in
class

remove transient Ë é é Ë é é Ë é é é

7-10 field in
class

add volatile Ë é é Ë é é Ë é é é

7-10 field in
class

remove volatile Ë é é Ë é é Ë é é é

7-13 field in
class

move to a supper class Ë é é Ë é é Ë − − é

8-2 field in
interface

remove a field Ë é Ë Ë é Ë Ë − − Ë

8-3 field in
interface

change type with im-
plicit conversion

Ë é Ë Ë é Ë Ë − − é

8-3 field in
interface

change type without
implicit conversion

Ë é Ë Ë é Ë Ë − − Ë

8-4 field in
interface

change value of field é é Ë é é Ë Ë − − Ë

8-13 field in
interface

move to a supper class Ë é é Ë é é Ë − − é

9-2 enum remove an enum be-
fore first use

é Ë é é é Ë é Ë é Ë

9-2 enum remove an enum after
first use

é é Ë é é Ë é é Ë Ë
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9-5 enum change visibility Ë é Ë é Ë é é é Ë Ë
10-2 enum remove a value Ë é Ë é Ë é Ë Ë é Ë
10-3 enum change a type with im-

plicit conversion
Ë Ë é é Ë é Ë − − é

10-3 enum change a type without
implicit conversion

Ë Ë é é Ë é Ë − − Ë

10-4 enum change a value Ë é é é Ë é é é Ë é
12-2 annotation remove annotation é Ë é é Ë é é é Ë Ë
12-2 annotation remove an item anno-

tation
Ë Ë é Ë Ë é Ë − − Ë

12-3 annotation change an annotation
item type with im-
plicit conversion

Ë Ë é Ë Ë é Ë − − é

12-3 annotation change an annotation
item type without im-
plicit conversion

Ë Ë é Ë Ë é Ë − − Ë

12-4 annotation change an annotation
item value

Ë é é Ë é é Ë − − é

12-12 annotation change inheritance of
an annotation

Ë Ë é Ë Ë é Ë − − Ë

Table 4.2: Experimental results related to the execution of error-prone patterns.

4.4.1 Support by DSU
The results of this step are shown in the first column of each DSUs section in Table
4.2. In most cases, the changes are supported by the DSUs. Supported changes are
determined by Ëand unsupported changes are specified by énumber. It is obvious
that JRebel is more flexible for supporting the changes. There are some cases that
need to be explained in the table that includes the following:

As previously mentioned, JRebel detects the modified class files by monitoring
the running application’s class folder. Although it works well for modified classes,
JRebel’s agent does not recognize removed files. So, as you can see in the Table 4.2,
removing a class (1-2), an interface (2-2), an enum (9-2), and an annotation (12-2)
cannot be detected by JRebel. The similar thing happens for (3-13) and (3-14).
When an inner class moves to the sub/super class or its nesting is changed, the old
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inner class file is deleted and a new class file is added to the application. These cases
can not be detected by JRebel.

In DCE VM, when a class is removed from an application (1-2), any access to the
old class is still valid. In fact, when the current version of a class is not found, the
previous version is used. A similar thing happens for removing an interface (2-2),
an enum (9-2), and an annotation (12-2). However, for the removed interface, the
program is finished by throwing the UnsupportedOperationException exception.
Since it does not support the changing of class’s implemented interfaces, when an
interface is removed from an application, the classes which are implemented that
interface are changed. Unlike JRebel, DCE VM accepts inner class hierarchy (3-13)
and nesting (3-14) changes.

All selected DSUs support the change of the value of a final static field in a class.
It is expected that similar situation should exist for the field on an interface. Because
interface fields implicitly have final static modifiers. However, the change of the value
of a field in an interface is not supported by the DSUs.

DCE VM does not allow any changes in class modifiers except abstract. Moreover,
inheritance and implemented interfaces cannot be changed. The same situation
applies to the interfaces. Also, any changes in Enum is not allowed in DCE VM.
Finally, when a static modifier is added/removed from a field (7-6), the updated
program produces IncompatibleClassChangeError.

JavAdaptor makes various copies of class files to use them in the updating process.
When a class is deleted from the program files, it remains in other folders and old
files are reused. Even if the file is removed from all folders, a runtime error occurs
in the JavAdaptor. So, we identified the removal of a class (1-2), an interface (2-2),
enum (9-2), and annotation (12-2) as unsupported changes. As mentioned in JRebel,
the same thing happens in (13-13) and (3-14). When an inner class moves in a
sub/super class or its nesting changes, the old inner class file is deleted and a new
class file is added to the application.

JavAdaptor removes the final modifier from classes, methods, and fields before
loading classes. Therefore, adding/removing the final modifier has no effect and we
marked adding/removing final modifier as an unsupported modification (1-7,4-7,7-7).
A similar case happens for the visibility. JavAdaptor changes the visibility of classes
and interfaces to the public and makes the change of this modifier ineffective. Finally,
changing the enum values (10-4) is not supported by the JavAdaptor.

4.4.2 Runtime Error in Dynamic Update Process
The results of this step are indicated in the second column of each DSU in the
Table 4.2. éshows absence of error, Ëdemonstrates the existence of error and
−indicates that the sample does not participate in the swinging execution.

A part of the runtime errors in DCE VM is related to the fact that these changes
are not supported by DSU tool. Therefore, all cases in the table that have been

70



4 Dynamic Updating and Code Smells

marked as unsupported, make a runtime error. However, for deleted classes (1-2)
and enums (9-2) it does not create a runtime error because, as mentioned earlier,
when a class is removed from an application and DCE VM does not find the new
version, the previous version of the class is used and it does not create a runtime
error. The types of exceptions are different: UnsupportedOperationException,
IncompatibleClassChangeError, VerifyError, and NullPointerException. For
JRebel and JavAdaptor, in the case of removed class (1-2) and removed enum (9-2), if
they are not used before the update, the program encounters NoClassDefFoundError.
Other templates that are not supported by these two tools do not create a runtime
error.

The errors that are not related to the unsupported changes are described below.
First, the cases that are same in all DSUs are expressed:

When a class is changed to an abstract class (1-8), it should not be instantiated.
This change is supported by all DSUs, but after the update, a time error is trig-
gered. The template of this change is written in the way that the altered class is
instantiated in the old code after the update. In JRebel and DCE VM, it makes
InstantiationException and in JavAdaptor, it produces NullPointerException.

When a static modifier is added to an inner class (3-6), and the old code attempts
to create an object from that class after updating, the program stops by throwing
the NoSuchMethodError exception. This situation happens in all of the DSUs.
Considering the exception type, it can be concluded that the old code attempts to
create an object from static class by calling the constructor that no longer exists.

In (4-2), the error is clear. When a method is removed from a class, any attempt
to call it from the old code after the update makes a NoSuchMethodError exception.
The same situation exists for changing the type of parameters or return types of
methods (4-3). Due to the overloading capability in Java, any change in the type of
parameters or the type of return of a method is interpreted as the addition of a new
method. Thus, any attempt to invoke the method with the previous signature will
be broken. The class constructors have a similar situation in the case of parameter
type changes.

In (4-6), when a static modifier is removed from a method, access to it through
the class must not be valid. So, when the old code calls the method through the
class, the method does not exist in the class definition and the program is broken by
throwing a NullPointerException exception. Error tracking reveals that JRebel
calls the method by Java reflection technique. Therefore, searching the method
inside the class returns a Null pointer and calling a Null pointer produces mentioned
error. However, DCE VM uses direct calling and the program is finished with this
error: «java.lang.IncompatibleClassChangeError: Expecting non-static method... ».
If this pattern is updated through JavAdaptor, it does not participate in swinging
execution.

Two types of constructors can be added to a class (5-1): with and without
parameters. Adding a constructor without parameters does not make a runtime error
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at the update time. By creating an object in the old code, it is called implicitly.
Instead, adding a constructor with parameters to the class definition causes a
NullPointerException error. Similar to what was described for the method invoking,
JRebel exploits Java reflection to call constructors. Adding a constructor with
parameter invalidates the default constructor of the class. Thus, the updated program
cannot find default constructor and tries to invoke a returned null pointer. Both
DCE VM and JavAdaptor have a similar behavior and create NoSuchMethodError
on adding a constructor with a parameter.

At the removing the constructor (5-2), if the class has only one constructor without
parameter, removing this constructor cannot introduce a runtime error. Because
the default constructor can call implicitly. But if the class has a constructor with
parameters, removing it will cause a runtime error similar to what happens in a
method removal. The exception is NoSuchMethodError.

When the return type or the type of a parameter of a method changes in an interface
(6-3), the corresponding methods in the classes that implement this interface are
changed. Therefore, this is similar to (4-3) and it causes the same runtime error.

When the type of constants of an enum is changed (10-3), the constructor and
accessing methods are changed. These changes are similar to the (5-3) and (4-3).
Thus, they make same error on JRebel. However, DCE VM does not allow any kind
of changes in the enum and in the all of the cases at 9 and 10 rows in Table 4.1, it
makes the same error: « java.lang.VerifyError: verifier detected internal inconsistency
or security problem ». In JavAdaptor, the sample uses the old code after the update
and swinging execution does not affect this pattern.

When an item is removed from an annotation (12-2), any access to this removed
item through the old code after the update causes a runtime error. The exception
type is NoSuchMethodError in JRebel. in DCE VM, the program is broken with
annotation.AnnotationTypeMismatchException exception. The same error hap-
pens when the item type is changed in the annotation (12-3). In JavAdaptor, for all
of the cases related to the annotation, patterns use the old code after the update
and there is no runtime error.

By using @Inherited in the definition of annotation, subclasses inherit this
annotation from the superclass. If this part of the annotation definition is removed
(12-12), any attempt to read this annotation in subclasses will fail and the program
will end with the NullPointerException exception. This happens when JRebel is
used. If the program is updated by DCE VM, the error will be the annotation.-
AnnotationTypeMismatchException.

In the following, we will give the description of runtime errors that are only relevant
to the DCE VM. Employing DCE VM to perform a dynamic update, changing the
visibility of class items, produces an IllegalAccessError exception. These items
include the method (4-5), constructor(5-5), and field(7-5) of a class. We reduce the
visibility of these items in the new version. This causes the runtime error because
the old code tries to have an illegal access to the changed item.
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public class SuperClass {
final void foo (){...}

}
public class SubClass extends SuperClass {

void bar (){
new SubClass (). foo ();
doUpdate ();
new SubClass (). foo ();

}
}

(a) old code.
public class SuperClass {

void foo (){...}
}
public class SubClass extends SuperClass {

@Override
void foo (){...}
void bar (){

new SubClass (). foo ();
// doUpdate ();
new SubClass (). foo ();

}
}

(b) new code.

Figure 4.3: Pattern for removing the final modifier from a method.

In (4-7), when the final modifier is removed from a method signature, the program is
broken with a NullPointerException exception. This pattern is shown in Figure 4.3.
As shown, foo is a final method in the old version and is not overridden in the
subclass. However, in the new version, foo can be overridden. While the program
is running in the method bar, an update is performed and after that, calling foo
through the subclass object causes a runtime error.

In (7-2), when a field is removed from a class, accessing to this field from the
old code after the update may cause NoSuchFieldError exception. A similar error
occurs when the type of a field is changed (7-3). Because when the type of a field
changes in the new version, it is assumed that the old field has been deleted from
the class and a new field with the modified type has been added to the class. So, it
is logical that the same error appears.

Finally, in (7-7), when a final modifier is added to a field, any attempt to change
its value from the old code after the update will put the program in an illegal mode
by producing the IllegalAccessError exception. JRebel and JavAdaptor have no
additional runtime errors to explain in this section.
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4.4.3 Syntactic Errors in Dynamic Update Process
Execution of some patterns does not have a runtime error, but the program violates
some programming language rules during or after the update. This may lead to
unusual behaviors by the program. In this subsection, we review these states, which
are named syntax errors. We describe only those cases that are supported by DSUs
and do not have a runtime error. As previously mentioned, with the existence of a
runtime error in a pattern, investigating the syntax error is meaningless. The results
of this step are shown in the Table 4.2 in the third column of each DSU. Firstly, we
explain the results which are shared between DSUs.

When a class or enum is removed from a program (1-2,9-2), it is still available
after its update. As mentioned in the previous section, deleting a class or an enum
can create a runtime error in JRebel and JavAdaptor if the class or the enum is not
used before removing. However, if they have already been loaded, deleting the class
file cannot affect the execution of the program and they are still available. This is not
logical. The same thing happens when an interface is removed (2-2) in JRebel and
JavAdaptor. But in DCE VM, this change causes runtime errors due to unsupported
changes in the classes that implement the deleted interface.

As previously mentioned, changing the value of a static final field (7-4) is supported
by DSUs and there is no runtime or syntax error. A similar situation is expected on
changing the value of a field of the interface (8-4) because the field of the interface
implicitly is a static final type. However, DSUs do not update the value of fields in
the interfaces, and the old values of the fields are used after the update. This can
create unexpected behavior in the program.

The rest of this section is intended to describe the syntax errors that occur when
using JRebel. However, many of the following cases are not supported by the DCE
VM or create a runtime error. Also, JavAdaptor does not participate in the swinging
execution in some of these patterns.

When an interface is removed from the signature of a class (1-11), any assignment
of the object of this class to a type of removed interface should not be valid after the
update. This is a syntax error that occurs in JRebel. A similar situation happens
when the inheritance of a class (1-12) or an interface (2-12) is changed. While there
is an implicit type casting between an object of a subclass and the superclass type in
the old version, this assignment should not be valid after the update. But JRebel
permits to keep it. JavAdaptor does not participate in the swinging execution in
these patterns.

When a method is removed from an interface (6-2), all classes that implement this
interface may not implement the removed method in the new version. Two states
happen: First, the method is removed from the class. This is equal to the case (2-4)
and produces a runtime error. Second, this method is preserved in the class. In
this case, if there is a type of interface in the old code, calling the removed method
through the type of interface should not be valid. However, JRebel and JavAdaptor
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violate this rule and mentioned invoking is still valid after the update.
In the change of visibility, JRebel does not respect the visibility reduction and

continues the previous privacy policy after the update. For instance, suppose that
the visibility of the method reduces from public to private. Calling this method out
of the class should not be valid after the update. While JRebel executes the code of
new version of the method, it adheres to the visibility of the previous version. This
is a clear breach of privacy. We got the same results for reducing visibility in a class
(1-5), an interface (2-5), a method in a class (4-5), a constructor (5-5), a field in a
class (7-5), and an enum (9-5).

Another notable point here is the change in the synchronized modifier of a method
(4-9). As shown in the List 4.2, a particular sequence of changes in the synchronized
modifier of the methods encounters the running program with a deadlock situation.
Although the old and new versions of the program can be run individually without
any deadlock, a special change in the synchronized modifier of methods, as well as
updates at a specific point, can be stuck the program in a deadlock.

When a field is removed from a class (7-2) or an interface (8-2), the field is still
accessible from the old code after the update. The removed field is also accessible for
new objects. A similar situation occurs to change the type of a field in a class (7-3)
or in an interface (8-3). As explained earlier, when the type of a field is changed, it
is interpreted that the field is removed and a new field from another type is added.
However, the old field is accessible.

The non-static field is not accessible through a class. When a static modifier
is removed from a field definition (7-6), access to the field after the update is an
illegal operation. However, JRebel ignores this fact and continues to access the field
through the class after updating.

Another important syntax error occurs in JRebel when a final modifier is added to
the definition of a field (7-7). Normally, the value of a final field must not be changed
during the program execution. However, in the JRebel, when a final modifier is added
to the field definition, the value of this field can be changed after the update. As
previously mentioned, JavAdaptor eliminates the final modifiers from fields definitions
before loading classes. Finally, the removed enum value(10-2) is accessible from the
old code after the update.

4.5 Apply to the Proposed Framework
After running the patterns on the three different DSUs and investigating the results,
we found a large number of cases that the program finishes with producing an
exception because of choosing an unsafe point to start the update process. In addition,
we discover many cases that are not logical or violate programming language rules.
To determine the role of the proposed validation framework in identifying runtime
and syntax errors, all patterns are analyzed with the static analyzer of the framework.
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Among the 75 samples, 44 ones have been annotated as unsafe. The last column
of Table 4.2 shows these results. Then the patterns are performed with regard the
annotated parts of the code. In the patterns that contain unsafe executable, the
update process is postponed until finishing the execution of the unsafe method. This
process covers most runtime and logical errors. However, as shown in the Table 4.2,
there are some patterns that are not covered by the static analyzer (false negative)
as well as some other patterns that include annotated methods but the updating
process is not failed without regard to unsafe points (false positive).
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JRebel 75 44 9 66 19 14 47 20 17 27 4
DCE VM 75 44 22 53 27 22 26 4 2 22 3
JavAdaptor 75 44 18 57 16 12 41 1 1 40 0
Outcome 75 44 6 47 30 24 24 20 17 20 0

Table 4.3: Summarize the results of code smell experiments.

For a better understanding, we present the statistical summary results in Table 4.3.
Each row is related to a DSU tool and the last row indicates the outcome of the results.
The first column represents the number of patterns that have been examined. This
number is 75 in all rows. The second column shows the total number of annotated
samples. This value is the same for all rows (44). The next two columns represent the
number of changes supported/unsupported by the DSUs. As shown, JRebel has the
maximum number of supported changes and the DCE VM has a minimum. The sum
of these two columns is equal to the number of patterns (75). The last row in this
column shows the number of changes that are supported/unsupported by all DSUs.
The fifth column indicates the number of patterns that terminates with a runtime
error when updating without using the validator. Obviously, they are counted from
the supported samples. The last row in this column refers to the number of cases
that end with a runtime error in at least one of the DSUs. As discussed in the
previous section, we do not examine samples that are not supported by the DSU.
The next column presents the number of error-prone patterns that can be detected
by our static analyzer. As you can see, there is a difference between columns 5 and
6. This means that the static analyzer cannot detect all runtime errors. We traced
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these differences from Table 4.2 and extracted the error patterns that can not be
identified by the static analyst. These patterns include cases: 4-3, 5-3, 6-3, 10-3, and
12-3. These errors are critical and we will show in the next section how the static
analyzer should be enhanced to cover these issues. The next column indicates the
number of cases that have no runtime error at the time of dynamic update. It is
clear that unsupported cases by DSUs are not counted in this column.

The results in column 8 refer to the number of syntax errors that occur at the
update time. Patterns that are not supported by the DSUs, as well as those that
have a runtime error, are not considered here. The number of syntax errors in JRebel
is 20, whereas this number is only 1 for JavAdaptor. This big gap is due to the fact
that many considered patterns do not participate in the swinging execution. These
cases are not counted here. The last row in this column shows the maximum number
of syntax errors that occur in all DSUs. The next column represents the number
of patterns from the previous column that can be identified by the static analyzer.
As described above for runtime errors, there is also the difference between columns
8 and 9. The static analyzer cannot detect all syntax errors. In spite of the fact
that the importance of syntax errors is less than runtime errors, the enhanced static
analyzer should also cover such cases.

Column 10 demonstrates the number of cases supported by the DSU and does
not include any runtime or syntax error. It is expected that these items should
not be annotated by the static analyzer, but as shown in the last column, some of
them are marked as unsafe for starting the dynamic update process. These include
three cases for both of JRebel and DCE VM: add/remove abstract modifier of a
method (4-8) and move to subclass for a method in an interface (6-13). However, this
number is zero for the JavAdaptor. These three false positives make the validator
a bit conservative. Because at the time of update, the DSU should tolerate an
unnecessary waiting time to pass these cases. However, compared with conservative
policy, proposed validation framework is still very efficient. It should be noted that
according to the results in Chapter 3, it is roughly 82% better than conservative
politics.

It can be summarized that the study identified 30 code smells causing fatal errors.
Also, 20 smells have been identified that make syntax errors. However, these are
slightly different in various DSUs, as well as smells of runtime errors and smells of
syntax errors overlapping. Finally, there is no claim that this collection is complete.
But given the fact that all the features of the programming language and all possible
changes are considered, the completeness of this set is almost clear.

4.6 Enhance Static Analyzer
As mentioned in the previous section, during the examination of the patterns, it was
found that some cases that include runtime or syntax errors cannot be detected by

77



4 Dynamic Updating and Code Smells

the static analyzer. So, by extracting and investigating these cases, we are trying
to enhance the proposed static analyzer to cover this defect. The most important
failure is related to the runtime errors. Some cases end with a runtime error, but the
static analyzer cannot predict this situation. These cases are similar in various DSUs
and are related to the type change. In fact, when there is an implicit conversion
between old and new types, the static analyzer cannot recognize the error. In all the
cases, the type of created error is similar: NoSuchMethodError. To find the reason,
we carefully studied the automatic annotating process for the pattern of changing the
type of method (4-3). The old and new versions of the program are shown in List 4.4.
The type of foo parameter is changed from int to long in the new version. If the
program is updated while it is running inside the method bar, it creates a runtime
error. Because the program searches for the foo method with the int parameter,
which is not exist after the update. As described in Section 3.3, for determining the
unsafe points, the static analyzer generates a temporary code and checks this code
with the bug-finder tool. The temporary generated code for this sample is shown in
List 4.4c. Bug-finder tool cannot find any compiler error in this code. Because there
is an implicit type conversion between int and long. The easiest way to solve this
problem is to simulate the situation that may occur at the update time by removing
the method foo. Therefore, the temporary code will have a compiler error and the
method bar is annotated as an unsafe method. Thus, in order to properly detect
this situation in the enhanced static analyzer, along with adding the old method,
the corresponding changed item should be removed from the temporary code.

This change in the static analyzer covers all runtime errors that were not previously
covered. In addition, with this change, two uncovered patterns that may cause syntax
errors (7-3, 8-3), have been covered. The only syntax error that is not covered by the
static analyzer is the deadlock situation that occurs due to the specific sequence of
synchronized modifier on two methods (4-9). As mentioned earlier, the first step of
automatic annotating is to extract two versions changes. The information obtained
from this step is used to identify probable deadlock pattern at the update time.

4.7 Summary
In this chapter, we determine which change patterns can fail the update process. We
developed 75 error-prone patterns that each pattern nominates an atomic change
for program elements. These changes include class internal modifications such as
a field’s type change as well as external changes such as a change in inheritance.
These error-prone patterns are investigated by three DSU systems to extract unsafe
patterns. Then we exploit our static analyzer to determine which unsafe patterns can
be detected by our static analyzer. We found some gaps in determining all unsafe
patterns. So, the static analyzer is enhanced to cover this defect. Finally, we listed
patterns with errors as code smells.
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public class A {
void foo(int x){ ... }
void bar (){

...
doUpdate ();
int x;
foo(x);
...

}
...

}

(a) old code.
public class A {

void foo(long x){ ... }
void bar (){

...
// doUpdate ();
long x;
foo(x);
...

}
...

}

(b) new code.
public class A {

void foo(long x){ ... }
void bar (){

...
doUpdate ();
int x;
foo(x);
...

}
...

}

(c) temporary generated code.

Figure 4.4: Pattern for modifying the parameter type of a method.
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As mentioned earlier, one of the important parameters in determining the correctness
of an update is choosing the start point of the update process. Starting an update
process usually means starting the swinging execution, which can lead to temporary
instabilities and possibly the failure of the update process. At the beginning of this
chapter, we will introduce different policies that various DSU systems follow for
choosing the safe update points. We describe the advantages and disadvantages of
each policy.

Moreover, as it was illustrated in section 2.5, there is no general solution for
ensuring a valid update in DSU system. So, it should be considered in each system
individually. At the lack of common solution, each DSU system follows a definite
policy in this regard. Even the absence of an explicit policy means ignoring this issue
and this is in some way a policy. In this chapter, we list some DSU systems that have
been developed for Java. We briefly describe each system and explain its encounter
with the validation issue. Furthermore, some of the works in the literature have not
proposed a new DSU system, but they tried to address this problem individually. In
the last part, we will also briefly explain these efforts.

5.1 Determining a Safe Update Point
Regardless of the techniques that DSU tools use in the update process, they follow a
specific policy for determining the starting moment of the update. The first category
includes systems that no constraint is respected to start the update process. These
systems have been developed as an IDE’s plug-in to edit and continue purpose.
JavAdaptor [106], JRebel [72], and Javeleon [52] are placed in this category. These
tools are used in the coding phase of an application development cycle and the
programmer is free to stop and rerun a program continuously. The waiting time is
more critical in this application of DSU. Although it is perceived that the program
stops at worst situation and developer can start it again but as it is mentioned in
this thesis, the logical errors may happen and this can confuse programmer.

The second category contains systems that they verify some constraints before
starting the update. In Jvolve [117], the update can be applied if the deleted or
modified methods are not active. The user can add some methods to this blacklist.
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This issue is so conservative and may lead to endless waiting. If an always resident
method on the call stack is changed in the new version, the DSU system waits for
this method to leave the stack. It never happens and the update process never starts.
In UpgradeJ [23] and the Kim’s DSU system [76], only adding the new fields and
methods are allowed. With these restrictions, the problem of the swinging execution
is removed. However, this limitation is a major defect and not acceptable in a real
application. The similar situation happens in Java HotSwap [37] that only the body
of the methods can be changed.

The third policy is to set predefined update points inside the old code. For instance,
Rubah [101] as a DSU system follows this policy. The developer should modify the
old code and calls a method inside it. This method checks the existence of a new
version of the program and applies the update at this point. There is no way to
detect this point automatically. However, the writer believes that every long-running
program has a main loop and it is highly recommended to put this method calling
inside the main loop. In multithread systems, it is difficult that all of the threads
reach this point at the same time and the program may be caught in a deadlock
situation. Although, the writer proposes an algorithm to prevent this situation. Our
approach also can be used in this policy. So, before starting the update process,
the unsafe parts of the old code are determined by our static analyzer and if the
predefined update point is inside an unsafe area, then the developer should decide
to make a sub-update which only changes the predefined update point in the old
code and puts it in a safe part of the code. This policy is also used in some of the
tools that have been developed to support dynamic update in other languages like C
[69, 93].

5.2 Validation in Java DSUs
In Section 2.3, dynamic update systems for Java programs were generally reviewed.
According to the mechanism exploited to implement dynamic update, these systems
are divided into two main categories: Modifying the JVM and rewriting the program
code. In the first technique, JVM is customized to support dynamic update. It
is more flexible, efficient, and easy to use. However, it should be implemented for
every JVM individually and requires maintenance in the case of JVM’s upgrade. In
the second technique, instead of modifying the JVM, the target application code is
rewritten to give it dynamically update capability. Usually, these systems exploit
container and proxy techniques. This method is more portable but less flexible.

Regardless of the mechanism used by the DSU system, validation is one of the
major challenges in all the systems. The remainder of this section describes the
various dynamic update systems in Java and their approach to the validation issue.
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JDrums
The Java Distributed Run-Time Update Management System (JDrums)[110] is an
implementation of a dynamic Java VM based on JDK 1.2. JDrums as a JVM patch
exploits an object table to add an extra level of indirection to the internal represen-
tation of objects in the JVM. This indirection helps JDrums to replace the outdated
classes with the new version. JDrums also uses a conversion class to specify how to
transform each class. The user can customize the conversion class. It supports all of
the internal class changes but prohibits superclass modifications. The main limitation
of this approach is that the Just-In-Time (JIT) compiler should be disabled. It lets
the program to run in the interpreted mode and reduces performance significantly.
Moreover, JDrums can not transform the state of each object’s superclass.

JDrums follows the conservative policy to start updating process. It needs none of
the methods from each modified classes are active at the update time. The update is
not performed if any changed method is active. The application continues to run
the old version until it satisfies the requirements. For the future works, authors plan
to add updating active objects and replacing method that can be found on the call
stack.

DVM
Malabarba et al. modify Oracle’s HotSpot VM version 1.2 to present a dynamic
evolution system called Dynamic classes-enabled Virtual Machine (DVM)[89]. They
change JVM to add type safety checks upon patch loading and exploit a mark-and-
sweep algorithm to convert old objects to the new version. DVM uses the interpreter
and cannot handle code evolution in the context of just-in-time compilation. It makes
a significant performance penalty in contrast to normal execution. However, their
main performance loss comes from employing a global lock at the bytecodes which
include at least a method call or an object reference.

All kind of changes are permitted on DVM but it needs that the updated program
is type safe. DVM tries to make a valid update by imposing some restrictions on the
update. Active running methods cannot be updated as well as class interfaces. Like
other JVM based solution, DVM suffers from dependency on a particular machine.

HotSwap
HotSwapping is a capability that was added to the most JVMs since JDK 1.4 [8]. It
was developed based on Dimitriev work[37]. Even HotSwapping is not a standard Java
feature, it is implemented by all of the well-known JVMs such as HotSpot JVM[4],
JRockit JVM [7], and IBM’s JVM [1]. Each JVM may have own implementation
of this feature. HotSwap allows the developer to replace method body dynamically
but it does not support adding or removing of methods or fields as well as changing
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the supertypes of a class. These limitations define this system as the least flexible
among all DSU systems.

HotSwap, the simplest DSU system has the slightest restriction at the time of
starting the update process. The new version of the program can be applied at
an arbitrary point of program execution. After the replacing the new code of a
method, if the old method is active on the stack, it executes the old code until the
call returns. Future calls will use the new version. As it is mentioned before this
swinging execution may lead the program to be crashed. Therefore, HotSwapping
does not have any mechanism for validating the DSU process.

DUSC
Orso et al.[97] present a code based technique for updating Java programs dynamically.
It allows substituting, adding, and removing classes without stopping the running
program. This technique does not need any support from runtime environment and
therefore can be applied to any running program on standard JVM. This technique
has been implemented as a tool called DUSC (Dynamic Updating through Swapping
of Classes). It rewrites the program code and creates four separate classes for each
class: i) implementation class for preserving the methods and fields of the original
class ii) interface class for switching between various versions of class iii) wrapper
class for managing the inter-class communication iv) state class for transforming the
state. DSUC performs an update by swapping classes dynamically at runtime.

DUSC is a bit more flexible than HotSwap. The new version can add fields and
methods as well as redefine all fields and methods which are already defined in the
initial version. It does not support class schema changes. Due to the use of the
proxy technique, this imposes a performance penalty on the program. Similar to the
JDrums and DVM, for starting an update process, DSUC needs modified methods
to become quiescent. Despite this conservative policy, the system may be faced an
error.

JVolve
JVolve[117] introduces dynamic updating at the level of the JVM. It is implemented
on Jikes Research Virtual Machine (RVM)[6] which is an open testbed for prototyping
virtual machine technologies. JVolve customizes garbage collector to reload the new
version of already loaded classes. It also generates particular state transformer classes
automatically. JVolve does not burden any overhead during a program’s steady-state
execution. The new version of the program can include any internal changes such as
adding/removing methods and fields. However, it refuses modification in the class
inheritance hierarchy.

JVolve tries to accomplish update at the GC safe-points. When the garbage
collector freezes the application threads for cleaning up unreferenced objects, all
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threads must be at a safe-point in their execution. JVolve exploits this opportunity
to perform the update. However, it checks that the modified methods are not active.
If an item is found, the update process is postponed until the next safe-point. The
developer can prepare a blacklist of methods; JVolve also should check that these
methods are not active at the update time. Nevertheless, there is no specific criterion
for providing this list. After trying out for a certain time, the update process will be
failed.

DCE VM
Würthinger et al. introduced Dynamic Code Evolution VM (DCE VM)1[126, 124]
which is a patch for Java HotSpot VM to support dynamic code evolution on Java.
Although Java HotSpot VM allows the body of methods to be changed, DCE VM
permits any changes on the class members definitions such as adding/removing
field/method. In addition, it supports class hierarchy changes, i.e, changing the
superclass and implemented interfaces. It employs a garbage collector to redefine the
new classes. Class redefinition is performed as an atomic operation in JVM safe-point.
Moreover, DCE VM scans the heap in order to find pointers to the old classes and
updates them to point to the new version. A customized mark-and-compact garbage
collector increases the instance sizes in the case of added fields.

Like other JVM based solution, DCE VM is implemented for a special VM and
it can be a major disadvantage. Also, it does not support custom program state
transformation. For the time of update, DCE VM starts update process immediately
and all of the instances are converted to the new version instantly. However, at the
time of redefinition, the already invoked methods are resident on the call stack and
can not be affected by the update. They continue executing the old code and as it is
mentioned before it may cause a program crash.

Later they make an extension for DCE VM and map Aspect Oriented Programming
(AOP) [74] to their programming model and present SafeWare[125]. It is a dynamic
AOP system that provides atomic update capability for VM. SafeWeave can be
applied as an aspect in the context of dynamic class loading. Aspect weaving does
not impose the peak performance of VM.

JavAdaptor
JavAdaptor[105, 106] introduces a dynamic update system for Java programs by
rewriting the program code. It is assumed that the underlying JVM has the HotSwap-
ping feature. JavAdaptor is fully flexible and supports any kind of changes in the
class definition and schema. It loads the new version of classes by renaming them

1http://ssw.jku.at/dcevm/
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and searches the codes which refer to the old classes and modify them to access the
new version. The body of outdated methods is easily updated by HotSwapping.

The main problem here is related to the type incompatibility between old and
new versions. It is known as a version barrier [111]. JavAdaptor exploits containers
and proxies techniques to make a level of indirection and solves this problem. In the
same manner, the field is accessible through getter and setter functions. JavAdaptor
utilizes the Java Platform Debugger Architecture (JPDA)[3] to encounter outdated
instances. JPDA provides some APIs to find all objects of a modified class in the
heap as well as objects which refer to those objects.

JavAdaptor basically is developed as an Eclipse plug-in. This application is well-
known as an ‘Edit and Continue’. While the program is running, the developer
making arbitrary changes and applying the new version of classes by pushing a
button inside IDE. In this application, the main issue that should be considered is
the waiting time. When the developer makes certain changes and pushes the button,
he/she expects to see the result of those changes on the running application in the
shortest possible time.

While immediate update reduces the user’s waiting time, suffers from the binary-
incompatible update [50] problem. To solve this problem, instantly after the update,
JavAdaptor invalidates outdated methods by rewriting their body and put a throw
exception code inside the methods[104]. Despite the fact that this mechanism reveals
the illegal access to the outdated code after the update but it may cause to stop the
running application.

JRebel
JRebel2[72] is the only commercial tool that provides dynamic class reloading for
Java programs without altering the JVM. Like JavAdaptor, it is developed for ‘Edit
and Continue’ purpose. It is implemented as a plug-in for some major Java IDEs
such as Eclipse, IntelliJ, and NetBeans. However, it can be run stand alone as an
agent. This agent can monitor the classpath of the running application and detect
probable class changes and apply them to the running program. Although the early
versions of JRebel do not support the class hierarchy changes[73], the current version
is fully flexible and support all of the changes.

JRebel constructs an implementation class from the original classes. All the
methods in the original class are moved to the implementation class. Each method is
reformed to pass receiver object as the first argument. Moreover, all of the methods
become static. Other classes still refer to the original class. When an invocation
occurs, the original method finds current implementation of the class through JRebel
APIs and calls corresponded method.

JRebel introduces performance penalty due to indirection techniques which are

2https://zeroturnaround.com/software/jrebel/
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used. Moreover, it does not support customize state transformer. JRebel disregards
to update correctness. It instantly applies the new version as soon as it is ready.
Like JavAdaptor, it does not update the stack outdated code and it may make a
runtime error.

Kim
Kim et al.[76, 75] propose a code based solution to redeploy a Java program with a
new code dynamically. It can be run on each JVM with HotSwapping feature. They
exploit proxy pattern[46] to support the unrestricted changes to Java classes. Special
proxy classes play the role of intermediary between referring and referred classes. To
support arbitrary changes, they move new items to the helper classes. All of the items
are accessible through generic invoke methods. They employ HotSwap to update
the caller of the new methods to refer to the new version. Despite the utilization of
proxy technique, the performance reduction is negligible. This is a major advantage
over systems that use indirect access techniques. They avail invokespecial and
invokeinterface bytecode instructions which are optimized by JIT compiler. Using
bytecode optimized commands distinguishing between direct access time and proxy
access time very insignificantly. However, the use of proxy technique limits the class
hierarchy changes.

This approach confesses that determining a specific program execution point which
is safe to perform a dynamic update needs an entire understanding of application
semantic[77]. Therefore, specifying such a safe update point automatically is an
exceedingly complex task. In this case, the programmer can identify it manually.
Kim et al. allow the programmer to specify update information through a simple
configuration file which includes Java class, method, the statement number and,
a probable thread synchronization code. Alternatively, the programmer directly
identifies the safe update point inside the code and insert synchronization code
manually.

Javeleon
Gregersen et al.[53, 51] developed Javeleon with the aim of easy-to-use tool to support
DSU on Java application. Javeleon tightly integrates with NetBeans platform to take
advantage of benefits of integration with specific frameworks, component systems,
and application servers. It provides state-preserving arbitrary runtime evolution
involving changes on class definitions and hierarchy. Their solution is based on proxy
technique without modifying the JVM or language extension.

The code execution component of Javeleon is a middleware which is used to
delegate the request to the most recent version of classes. It accomplishes the
In-Place Proxification technique in composition with appropriate correspondence
handling. Javeleon needs to replace all of the program components even when a
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small change occurs. Gregersen et al. claim just 15% performance penalty [54]
but another work measures 80% performance overhead on running HyperSQL case
study[104]. Basically, Javeleon is developed for giving immediate feedback to the
developer during the developing process. Therefore, it applies the ready changes
instantly.

Later, zeroturnaround bought Javeleon and named it as Gosh![56]. In addition,
JRebel from the same company enhanced with the capabilities brought in by the
technology developed for Javeleon[108].

Rubah
Rubah[101, 34] is another portable DSU system for Java that works on stock VMs.
Rubah’s updating model is inspired by the Kitsune[66], a dynamic updating system
for C program. Rubah is quite flexible and permits arbitrary changes on classes
except for Java runtime classes and libraries that cannot be updated dynamically.
Updatable classes can refer non-updatable classes directly but not the inverse. How-
ever, practically library classes do not directly refer to the application classes. Rubah
provides two algorithms for performing state transformation: one parallel algorithm
that transfers entire state at once, and other one is a lazy algorithm that transfers
state on demand. Nevertheless, the parallel transformation is slow for exploiting large
heaps and performance is decreased in comparison to the steady-state performance.
Rubah also employs a GC-style manner to find and transform updated instances.

Rubah does not provide a complete transparency for the programmers and they
need to learn how to inject Rubah’s code for the future update. The developer
should define update points inside the program code that identify safe moments
to perform updates. Rubah provides some APIs for this purpose. There are no
certain criteria for determining a safe update point. However, it is assumed that
long-running programs usually have a main loop and it is recommended that update
points be inserted within this loop. In addition, the developer must add some codes
to perform control flow migration. Finally, default update class may be required to
customized by the programmer.

UpgradeJ
Bierman et al. [23] introduced UpgradeJ, which is an extension to the Java program-
ming language with support for upgrading classes dynamically. UpgradeJ extends
Java language syntactically and obliges classes to be marked with the version number.
It permits multiple, co-existing versions of classes and provides dynamically upgrade
from one version of a class to another. Figure 5.1 shows an example of UpgradeJ
code. UpgradeJ introduces a number of novel features to Java-like programming
languages: explicit versions of classes, fixed version and upgradeable version objects,
an upgrade statement, new class, revision, and exact version types.
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class Button [1] extends Widget [1] {
Font [1] font = new Font [1=]();
Colour [2] colour = new Colour [3+]();

}

Figure 5.1: Example of UpgradeJ code.

UpgradeJ allows co-existence of instances from different versions of a class with
preserving type-safety. In this way, UpgradeJ can perform DSU without requiring
whole program state transformation. Version checking can be optimized by the
compiler. This extension does not impose any steady-state overhead to the running
program. UpgradeJ is placed in a bunch of systems that needs the developer to
determine program points where the update can happen. These approaches do
not provide a solution to ensure that the identified points lead to a valid update.
However, UpgradeJ introduces a strong type-system that avoids an immense category
of incorrect updates. Finally, and most importantly, UpgradeJ is not implemented
yet and the authors plan to produce a prototype base on Java.

5.2.1 Summary
Table 5.1 summarizes the DSU systems strategies for determining the safe update
point. As can be understood, the DSU system policy for identifying the safe update
point is independent of the mechanism. Even the overall categorization of these
systems into two types (code rewriting and JVM modification) does not affect this
policy. For instance, JVolve and DCE VM are developed as a patch of JVM but have
a different approach in validation. JVolve is the only system that supports user’s
blacklist of unsafe methods.

We will continue this chapter by looking at the efforts that have been made on the
validation issue, regardless of the DSU systems. However, some works are designed
and evaluated based on a certain DSU system. Of course, they have tried to generalize
their method to other systems.

5.3 DSU Validation Efforts
Tedsuto [100] has been developed to test a program before doing a dynamic update.
The basic idea of this framework is running existing system tests many times and
explore the program behaviors systematically when the update is applied at the
different points during the test’s execution. Although Tedsuto is implemented
for a specific DSU system (Rubah), they argue that it is a general solution and
applicable to other state-of-the-art DSU systems. Tedsuto tightly depends on human
interaction in many aspects which is a time-consuming and error-prone process.
In addition, Tedsuto supposes that the DSU system produces a small number of
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DSU system Immediately No active method User blacklist Predefined point
JDrums •
DVM •
HotSwap •
DUSC •
JVolve • •
DCEVM •
JavAdaptor •
JRebel •
Kim •
Javeleon •
Rubah •
UpgradeJ •

Table 5.1: Safe update point determination policy on Java DSU systems.

update opportunities per interaction. This may not be true for all DSU systems. For
instance, running this method on H2-test suite generates an enormous number of
update opportunities. Therefore, they did not perform exhaustive testing with it.
Finally, this method emphasizes on passing the test cases at the update time while
as we demonstrated some fatal errors can still occur regardless of the test cases.

Zhao et al. [128] performed an exploratory study to find a safe update point. They
statically extract unchanged methods from the classes and initially mark all their
lines of code as a candidate update points. Then they reduce the number of these
points by sifting them according to three parameters: timeliness, success-rate and
operability. They exercise test cases for the old and the new versions of the application
and compare execution snapshots. Their mechanism is very time-consuming and
even their evaluation samples (including only 26 classes) takes more than a week to
finish, as reported in the evaluation section of [128]. In spite of that, at the end of
the process, the safe update point set is still large. Furthermore, they suppose the
existence of the test cases and also the new version of the application is consistent with
its original specification. All constraints quite unrealistic in a real-world application.

Gregersen et al.[55] identified some runtime phenomena that are intrinsic to
dynamic updated Java applications. They consider two issues: i) The impact of an
application’s design on the ability to be updated dynamically. ii) How the dynamic
updating influences our perception of the correct behavior of an updated application.
To achieve these goals, they initially introduce five phenomena. They explore these
phenomena by investigating the dynamic evolution of a graphical game through
Javeleon - their DSU tool. These phenomena include phantom objects, transient
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inconsistency, oblivious update, broken assumption, and lost state. They show that
the runtime behavior of an updated application depends on the application design.
The specific design may result in a different runtime behavior that only is revealed
on dynamically update not on the traditional halt, redeploy and restart scheme.
They explain how the underlying design in many cases can improve the prevention
of these phenomena. Application developers can remedy these phenomena effect by
following best-practice guidelines. In spite of the fact that the recommended design
guidelines may scare developers from exploiting a language-transparent dynamic
updating system; they do not give the application 100% guarantee that unwanted
phenomena do not occur after a dynamic update. In addition, they do not propose
any automatic way to detect these phenomena.

Some works attempt to improve the correctness of the dynamic update process
through automatically generating state transformation for predefined update points.
Magill et al.[85] give manually selected update points and the test cases which can
be passed by both old and new versions and automatically produce transformer
functions for updated fields. Targeted Object Synthesis (TOS) processes old and new
programs memory snapshots and extracts old and new objects of updated classes.
Then, it analyzes objects to produce the state transformation function. However,
TOS requires that the programmer sets the corresponding points in two versions.
Later, Zhao et al.[127] enhanced TOS by filtering the candidate points and increasing
the speed of the process. The success of these methods tightly depends on the
selecting appropriate points. As it is presented in this work, choosing improper point
may cause serious consequences.

Another work tries to enhance the reliability of dynamic update by employing
recovery techniques. ADSU[58] is a DSU system that leverage Automatic Runtime
Recovery (ARR) techniques[26] to recover runtime errors caused by improper dynamic
updating. ADSU exploits lightweight ARR approach[84] that can handle errors caused
by invalid memory access. They just discard invalid write and synthesizes a type-
specific default value for invalid read. Even though this technique might be useful in
the case that the default behavior is the desired behavior for updates, the semantics
of the old objects may be lost after the recovery and thus ADSU is failed. They have
postponed detecting the semantic relation between two versions of an object as a
future work.

Although our focus is on Java-based DSU systems, some efforts have been performed
in the other languages in this regard. For instance, Hayden et al.[63] propose a
systematic testing to find the safe update points for C programs. They put the
candidate update points before each method calling and test each update point with
the program test cases. In this way, enormous numbers of test cases are produced
for the program and it takes a long time to exercise all of them, even if they use a
minimization algorithm to reduce the number of test cases. Other work presents a
methodology for automatically verifying the correctness of dynamic update[64]. The
programmers can express the desired properties of an updated program using client-
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oriented specifications (CO-specs). These properties can be verified automatically
by using off-the-shelf tools. The quality of process depends on the user properly
specified properties.
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Conclusion

Although it has been formally proven that in general the validation of dynamic
updating systems is undecidable, this issue can be considered in each program
separately. In this dissertation, we showed that even if the automatic validation of
any generic dynamic update is not feasible; it is still possible to bind the update
of a program to only those points of its execution that drive to a valid dynamic
update. DSU system should respect to some constraints before starting the update
process. We provided some facilities for the developer to express update constraints
as well as a runtime validator to verify these constraints to reach a safe update point.
Moreover, we presented an automatic static analyzer to determine unsafe update
points as constraints. In addition, we identified the code smells in the dynamic
update; patterns that can create runtime or syntax errors in the dynamic update
process. This goal is realized by developing a set of error-prone patterns in Java and
examining them in state-of-the-art DSUs.

6.1 Contributions
The primary contributions of this dissertation are:

Meta-data. Each program has its own semantics and there is a logical relation
between two successive versions of such a program. The program developer is the
best person who knows the program semantics and the logical relations between
two successive versions as well as which constraints should be respected in order
to proceed with the update. These constraints can be expressed in the code as a
meta-data. We proposed a set of meta-data that can be exploited by the developer
to explain the constraints. The static and dynamic constraints can be introduced
by employing these meta-data. The DSU should be in charge of verifying these
constraints before the updating and to subdue the update itself to the result of the
verification in order to leave the program stable.

Validation process. The expressed constraints should be verified at the update
time. To provide this service for DSUs, we presented an architecture of validation
process to find a safe update point before starting the update process. It includes
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a validator that can communicate with both the running program and DSU tool
to find a safe update point by considering the specified constraints. This portable
component can be employed by different DSUs as a pre-update part.

Swinging execution phenomenon. Although the proposed meta-data are useful
in describing constraints, the annotating process is time-consuming and potentially
error-prone when manually done. Moreover, since the code by definition is a continu-
ous evolution, also the related annotations should be updated accordingly at each
change. Therefore, we tried to find an automatic way to determine some constraints
and decorate code automatically. So, we studied the execution model of a program
during and after the dynamic update precisely and introduced the swinging execution
phenomenon which can make a transient inconsistency on the program execution at
the update time.

Static analyzer. Usually, each part of the program can participate in the swinging
execution. However, some code participation may create a runtime error at the
update time. We proposed an automatic way to determine which part of the code is
unsafe to start the update process and participate in the swinging execution. This
novel approach statically anticipates the swinging execution impact on each changed
part of the code and determines unsafe codes. This method is implemented as a
static analyzer that takes two versions source code and gives an annotated code. This
unique tool is quite fast even for the big programs. Running this method on various
versions of three long-running applications demonstrated almost 82% improvement
in comparison with the conservative approach.

Error-prone patterns. We also tried to examine the impact of any small change
on the validation of a DSU process. To achieve this goal, we designed and developed
a set of candidate error-prone patterns. Each pattern nominates an atomic simple
change that can occur in a program evolution. We develop more than 75 individual
candidate error-prone patterns based on Java language features and possible changes
for each item. These patterns are used to explore code smells on the dynamic software
updating. In addition, we believe that this set can be exploited as a reference set
by each DSU tool to measure flexibility. Also, developers can check the behavior of
their DSU tool in dealing with different possible changes.

DSU code smells. Code smell or bad smell refers to any symptom in the program
code that possibly indicates a deeper problem. For the first time, we introduced the
code smells that may cause a run-time or syntax error on the dynamic update process.
To explore these smells, we traced the dynamic evolution of candidate error-prone
patterns on at least three state-of-the-art DSUs and categorized the results. We
establish code smells according to the detected 30 runtime errors and 20 syntax
errors with some overlaps in different DSUs.
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Enhance the static analyzer. Finally, we examined the error-prone patterns by
our static analyzer and understood that a few number of the patterns cannot be
detected by the analyzer. So, we tracked these situations and enhanced the static
analyzer to cover this defect and can disclose all of the code smells.

6.2 Future Work
In this work, we focused on the static analysis techniques to determine some con-
straints automatically. The analyzer can detect the unsafe part of the code based on
predicting runtime and syntax errors. Although predicting these errors and dodging
them at update time is a big step toward a valid update, this is not sufficient for
ensuring a safe and correct update. Along with fatal errors, the program may have
some wrong behaviors during or after the update. One of the upcoming tasks can be
the prediction of this kind of misbehavior and prevent them.

Different DSUs have been developed for Java language which is one of the most
popular object-oriented programming languages. However, as it has been mentioned
in the related works, most of them suffer from lack of a validation mechanism. Almost
there is a similar situation for the DSU systems in other programming languages.
Even though the idea of this thesis has been implemented for Java DSUs, it can
easily be extended to the DSUs in other languages as a future work.

Our approach is experimentally proved by evaluating in some real server applica-
tions. We have applied our method to various versions of different programs. Even
we have implemented 75 patterns which nominate all atomic changes in a program
evolution and examined them by our method. However, a formal approach can be
helpful to prove the correctness of this method.

Some DSU systems have been implemented as a plug-in for well-known IDEs like
Eclipse and NetBeans. The programmer can apply changes to the running application
by pushing a button. Whereas our method can be performed automatically, it needs
the user to run every step manually. Moreover, it is independent of any IDE and be
executed from command line. To improve the usability of the framework, it can be
implemented as a plug-in for IDEs and integrated with DSUs.
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