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Cysteinyl leukotrienes (CysLTs) are potent lipid inflammatory mediators synthesized from arachidonic acid, through
the 5-lipoxygenase (5-LO) pathway. Owing to their properties, CysLTs play a crucial role in the pathogenesis of inflammation;
therefore, CysLT modifiers as synthesis inhibitors or receptor antagonists, central in asthma management, may become a
potential target for the treatment of other inflammatory diseases such as the cardiovascular disorders. 5-LO pathway activation
and increased expression of its mediators and receptors are found in cardiovascular diseases. Moreover, the cardioprotective
effects observed by using CysLT modifiers are promising and contribute to elucidate the link between CysLTs and
cardiovascular disease. The aim of this review is to summarize the state of present research about the role of the CysLTs in the
pathogenesis and progression of atherosclerosis and myocardial infarction.

1. Introduction

The leukotrienes (LTs) are lipid mediators belonging to a
large family of molecules named eicosanoids—from the
Greek word “eicosa”meaning 20—as they are generated from
the arachidonic acid (AA), a carbon-20 polyunsaturated fatty
acid, through the 5-lipoxygenase (5-LO) pathway [1, 2].

The synthesis of LTs begins with the cleavage of AA from
the glycerol-phospholipids present into the cellular nuclear
membrane. The 5-LO, with the aid of the accessory 5-LO-
activating protein (FLAP), catalyzes the conversion of AA
to 5-hydroperoxyeicosatetraenoic acid (5-HETE) and then
to leukotriene A4 (LTA4) [3, 4], an unstable intermediate,
which can be either metabolized by LTA4 hydrolase to
LTB4, a potent chemoattractant, or conjugated to glutathione
by LTC4 synthase (LTC4S) producing the cysteinyl LTs
(CysLTs: LTC4, LTD4, and LTE4) [5].

The LTs exert their actions through interaction with
specific 7-transmembrane G-protein-coupled cell surface
receptors, BLT1 and BLT2, representing the high and low-
affinity receptor for LTB4, respectively, and CysLT1 receptor
(CysLT1R) and CysLT2 receptor (CysLT2R) activated by the

CysLTs [6, 7] plus a recently discovered LTE4-specific
receptor known as CysLTER that was identified in
CysLT1R/CysLT2R double-deficient mice [8]. The CysLTs
present a different order of affinity for CysLT1R and
CysLT2R. In detail, the rank of affinity toward CysLT1R
is LTD4>LTC4>LTE4 whereas for CysT2R is
LTC4=LTD4>>LTE4 [9, 10]. GPR17 and GPR99,
recently identified, may also be additional receptors for
LTD4/LTC4 [11] and LTE4, respectively [12]; moreover,
LTE4 has been reported to upregulate COX-2 through
the PPARγ receptor in mast cells [13], as well as to bind
the P2Y12 receptors [14]. As better detailed below, the
CysLTs are synthetized by different cells and released in
their extracellular space in response to several stimuli.

The effects of CysLTs in the cardiovascular system
are established and suggest the existence of a solid link
between the 5-LO pathway and cardiovascular diseases
(CVDs) (Figure 1).

This review will focus on current knowledge about the
involvement of the CysLTs in atherosclerosis and myocardial
infarction and on the effects mediated by the CysLT
modifiers on the disease progression.
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2. CysLT Actors in Cardiovascular System

Atherosclerosis and myocardial infarction are vascular
pathologies characterized by inflammation. The eosinophils,
basophils, mast cells, and macrophages, major effector cells
of innate immunity, possess the integral membrane protein
LTC4S [15] and are competent in synthesizing CysLTs in
response to biological and nonbiological stimuli [16, 17].
Intriguing, cells unable to produce LTA4, such as vascular
endothelial cells [18], platelets [19], but also mast cells
[20], blood peripheral monocytes [21], human airway epi-
thelial cells [22], alveolar macrophages [23], kidney-derived

endothelial cells [24], keratinocytes [25], and chondrocytes
[26], can use LTA4 generated from the surrounding cells
(such as neutrophils) to produce LTC4 and the other CysLTs
but also LTB4. This process, called transcellular biosynthesis,
could generate high concentrations of CysLTs at the local
level, affecting organ function [27].

The CysLT1R and CysLT2R present distinct tissue and
cellular pattern expression only partially overlapping [28].
Regarding the cardiovascular system, the expression of the
CysLT1R is hardly detectable [9, 29, 30], while that of the
CysLT2R is strongly expressed throughout the human heart,
including the ventricles, atrium, septum, apex, and Purkinje
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Figure 1: The 5-LO pathway: biosynthesis, signaling, and effect on cardiovascular system. 5-Lipoxygenase (5-LO), leukotriene (LT), cytosolic
phospholipase A2 (cPLA2), arachidonic acid (AA), 5-LO-activating protein (FLAP), multidrug resistance protein-1 (MRP1), endothelial cells
(ECs), and smooth muscle cells (SMCs).
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fiber cells [10, 30–34]. Moreover, CysLT1R is present on
monocyte and macrophages [35] whereas CysLT2R on
myocytes and endothelial cells (ECs) [10, 30, 35]. In smooth
muscle cells (SMCs), conflicting expression has been
reported among species. Indeed, CysLT2R but not CysLT1R
has been detected in human coronary artery SMCs [30],
while rat aortic SMCs express greater amounts of CysLT1R
protein compared with CysLT2R and the intracellular
calcium increase, induced by LTD4, was inhibited by both
the CysLT1R antagonist montelukast and the dual
CysLT1R/CysLT2R antagonist BAYu9773 [36].

The interaction of CysLTs with their receptors and the
degree of their activation modulate several effects that could
be relevant for the development of CVDs (Figure 1). Indeed,
CysLTs exert negative inotropic action on the myocardium
and decrease coronary blood flows with no effect on heart
rate [37–41]; moreover, they may mediate contraction
through the CysLT receptors on the endothelium or SMCs,
as well as relaxation, which is endothelium dependent [42].
Furthermore, CysLTs can also stimulate proliferation of
arterial SMCs and promote P-selectin surface expression,
von Willebrand factor secretion, and platelet-activating
factor synthesis in cultured ECs [43–45].

3. CysLT Modifiers: Change in Focus

The pathophysiological role of LTs in several inflammatory
conditions and, particularly, in asthma is well documented,
and several molecules, named LT modifiers, able to interfere
with the LT biosynthetic cascade or with the LT receptors,
have been approved for the treatment of asthma [46].

However, asthma may not be a classical comorbidity of
cardiovascular disease; LTs have been implicated as
potential mediators of cardiovascular risk in other
inflammatory diseases.

In studies of patients with chronic obstructive pulmonary
disease (COPD), characterized by high level of CysLTs [47],
the prevalence of ischemic heart disease is almost twofold
higher compared with the general population [48]. Based
on this evidence, short-time treatment with the FLAP
inhibitor BAYx1005 (DG031) has been evaluated both in
patients with COPD and in patients with a history of
myocardial infarction [49, 50]. However, although both
treatment protocols resulted in only modest inhibition of
LTB4 concentrations, the overall results suggested a tendency
for decrease of inflammatory markers [49, 50]. Recently,
Hoxha and colleagues try to delineate the potential role of
montelukast, the most described leukotriene receptor antag-
onist, in the treatment of cardiovascular diseases. Results
from animal model studies [51–54] and from recent clinical
trials [55, 56] show that montelukast, beyond its traditional
use, can serve to prevent cardiovascular disease in humans
and inhibit the atherosclerosis development in in vivo animal
models suggesting a potential cardiovascular protective role
[57]. Despite some limitations, all these studies provide an
initial suggestion of a potential beneficial effect of an anti-
LT treatment in cardiovascular disease; thus, there is a need
for conducting clinical trials to assess the future role of these
mediators in the CVD treatment.

4. Atherosclerosis

Atherosclerosis is a chronic inflammatory fibroproliferative
process associated with several pathophysiological reactions
within the vascular wall [58–60], characterized by (1) suben-
dothelial oxidation of low-density lipoproteins (LDL); (2)
infiltration of monocytes and their conversion to macro-
phages and lipid-laden foam cells; (3) accumulation of mast
cells and other inflammatory cells; and (4) proliferation of
smooth muscle cells and secretion of fibrous elements
contributing to the growth of occlusive plaques [60]. This
pathological condition can lead to myocardial infarction,
stroke, and peripheral occlusive vascular diseases [61].

In human atherosclerotic lesions, increased expression
of the 5-LO pathway mediators and products, including
5-LO, FLAP, LTD4 hydrolase, LTC4S, LTB4, CysLTs,
and CysLT receptors, was detectable [62, 63], suggesting
the 5-LO pathway as a potential target for atheroprotective
therapy (Figure 2).

The 5-LO-positive cells dramatically increased in
advanced atherosclerotic lesions with progression from early
to late stage of atherogenesis [63], and its expression has been
mostly localized to macrophages which represent one major
source of 5-LO [64], suggesting a possible role of 5-LO and
its products in promoting lesion development [65].

In particular, a number of histochemical studies [63–66]
pointed out that 5-LO was mostly present in activated CD68+

macrophages [63, 64] and that their distribution in lesions/
plaque/aneurysmal arteries was not uniform. Indeed, the
5LO-positive cells were often observed at sites most prone
to rupture [67], such as in the shoulder region below the
fibrous cap, in the adventitia of diseased human arteries
[63], in areas of neoangiogenesis, in granulomas around
aneurysmal arteries [66], and also in neutrophilic granulo-
cytes, dendritic, foam and mast cells [63].

From the time when the concept of inflammation and
atherosclerosis was raised, a number of inflammatory media-
tors have been explored as potential therapeutic targets in
this disease [68] and, among these, leukotrienes also have
been investigated [35].

Although there is a long tradition of treating asthma with
anti-CysLTs [69] and asthma may not be a classical comor-
bidity of atherosclerosis, some interesting indications were
obtained from a randomized controlled trial of placebo
versus the CysLT1R antagonist montelukast, which reported
significantly lower levels of C-reactive protein in treated
patients with severe asthma [55]. Although no follow-up of
those patients was performed in terms of cardiovascular
disease, the systemic anti-inflammatory effect of montelukast
could provide an initial suggestion of a potential anti-CysLT
beneficial effect in atherosclerosis [70]. In fact, periodontal
disease that could be ascribed as one of the sources of chronic
inflammation is associated with an increased risk of stroke
[71], myocardial infarction [72], and the development of
early atherosclerotic lesions in the carotid artery [73]. In a
study, it was found that subjects with atherosclerotic plaques
and increased carotid artery wall thickness had significantly
elevated concentrations of CysLTs in their gingival crevicular
fluid as compared with subjects without a visible plaque [74].
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In addition to the studies implicating CysLTs in comor-
bidities of atherosclerosis, genetic and pharmacological
experimental studies suggest the existence of a potential link
between the CysLT signaling cascade and the pathogenesis/
progression of atherosclerosis as well as its serious conse-
quences such as myocardial infarction, brain ischemia, aortic
aneurysms, and intimal hyperplasia [35, 75].

It was reported [76] that the identification of a locus on
murine chromosome 6 that confers almost total resistance
to atherogenesis and 5-LO was among the chromosome 6
locus candidates tested. The results showed that, in a
congenic strain containing the resistant chromosome 6
(CON6), the mRNA levels of 5-LO and similarly 5-LO
protein were reduced about 5-fold compared with the
background strain.

A significant reduction in aortic lesions (more than
26-fold) observed in 5-LO+/−/LDLR−/− mice compared to
5-LO+/+/LDLR−/− mice further provides evidence of the
involvement of 5-LO in the development of atherosclerotic
lesions [65]. Moreover, it was reported that CON6 mice
expressed a considerably reduced amount of 5-LO also in
bone marrow and peritoneal monocytes/macrophages and
that transplantation of CON6 or 5-LO+/− bone marrow to
LDLR−/− mice had a similar effect on atherosclerosis (2- to
3-fold decrease) suggesting that the level of 5-LO in macro-
phages is responsible, at least in part, for the progression of
atherosclerosis [65].

In addition, it was found that 5-LO genomic sequences
of CON6 mice presented 2 nucleotide exchanges in the
coding conserved region, which resulted into 2 amino
acid exchanges of Ile-645 to Val (I645V) and of Val-
646 to Ile (V646I) compared to wild-type mice, and
that these murine mutations conferred an impaired 5-
LO and LTA4S activity when introduced into the
human enzyme [77].

A recent study [78] investigated the relationship between
atorvastatin, a hydroxymethylglutaryl-CoA reductase inhib-
itor, and the 5-LO pathway mediators in an atherosclerotic
rabbit model. New Zealand white rabbits subjected to
carotid balloon dilation injury and treated with atorvastatin
showed markedly lowered serum lipids and LTD4 levels
compared with the control group. Similarly, mRNA expres-
sion of FLAP and CysLT1R was significantly inhibited by
atorvastatin. Moreover, atorvastatin treatment stabilized
carotid plaque and decreased vascular inflammation as
demonstrated by a thickened elastic layer, less neointima
hyperplasia, and macrophage proliferation. This study sug-
gested that atorvastatin might stabilize carotid plaque by
regulating the 5-LO pathway in atherosclerotic rabbits and
delay the progression of atherosclerosis by exerting anti-
inflammatory effects. In contrast, high-dose simvastatin
treatment induced overexpression of FLAP in patients’
muscle [79] and two explanations are possible for the
conflicting results: they could be attributable to the dosage
forms of statins or species differences.

In human, the Carotid Atherosclerosis Progression Study
[80] examined whether polymorphisms in 8 genes related to
the 5-LO pathway were associated with early atherosclerosis
and remodeling as measured by IMT. The results showed
that these genetic variants had little effect on early atheroscle-
rosis and remodeling risk. However, the subjects enrolled in
this study represent a community population with predomi-
nantly early atherosclerosis, and there were insufficient
advanced plaque and stenosis to exclude associations with
advanced atherosclerosis.

Previously, a randomly sampled cohort of healthy
subjects identified two variants of 5-LO genotypes (lacking
the common allele) that were accompanied by a significant
increase in IMT and atherosclerotic plaques [81]. In this
population, dietary arachidonic acid significantly enhanced
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the apparent atherogenic genotype effects and it was
blunted by increased dietary intake of marine n− 3 fatty
acids (which reduced the production of LTs) suggesting
diet-gene interactions.

On the contrary, in apolipoprotein E-deficient (ApoE−/−)
mice with either genetic (5-LO−/−) or pharmacological
(L-739,010) inhibition of the 5-LO and subjected to athero-
sclerotic regimen with either an 8-week Paigen or 6-month
Western diet, any difference in atherosclerotic lesion size
was observed between the groups [82]. Moreover, the
composition of advanced lesions did not indicate an effect
on plaque stability as a result of 5-LO gene inactivation
[82]. Another study on ApoE−/−/5-LO−/− mice on a normal
or Western diet showed no difference in atherosclerotic
lesions compared to the control mice [66].

Despite 5-LO having to show a role in predisposition to
atherosclerosis, taken together, all these controversial results
do not clarify its role in the progression of pathology.

More convincing evidences of the involvement of the
5-LO pathway in atherosclerosis have been obtained evaluat-
ing FLAP [83]. In ApoE−/−/LDLR−/− mice, the administra-
tion of two different FLAP inhibitors, MK-886 [84] and
BAYx1005 [85], showed a reduction in atherogenesis. The
beneficial effect of MK-866 was also confirmed in transgenic
ApoE−/− x CD4dnTβRII mice, with a dominant-negative
TGFβ type II receptor (dnTGFβRII) on CD4+ T cells, which
displayed aggravated atherosclerosis. The treatment with
MK-866 significantly reduced the aortic root lesion size
and also inflammation, as CD3+ cells and IFN-γ mRNA
levels [86].

This antiatherosclerotic effect was also reported for the
CysLT1R antagonist. A reduction of atherosclerotic lesions
in the aortic root was observed in ApoE−/−/LDLR−/− mice
treated with CysLT1R antagonist montelukast, even if in a
lesser extent than FLAP inhibitors. This could be probably
explained by “upstream” action of FLAP inhibitors on LT
cascade, blocking both LTB4 and CysLT productions,
while montelukast inhibits the cascade “downstream” by
blocking only the effect of CysLTs and leaving LTB4
untouched [87]. However, as elucidated below, several
studies established the effects of CysLT1R antagonists on
atherosclerosis [54, 88–91].

The role of LTC4S has been investigated in the Muscatine
study [92] which demonstrated the associations between
coronary artery calcium (CAC) and intima/media thickness
(IMT) (indices strongly associated with the amount of coro-
nary atherosclerotic plaque) [93, 94] and the (−444) A>C
promoter polymorphismof LTC4S inwoman, but not inmen.

A significant increase in LTC4S and CysLT1R gene
expression was observed in a model of ApoE−/− atheroscle-
rotic heart disease subjected to hypoxic stress [54] compare
to wild-type control mice. Moreover, LTC4S gene expression
and activity and CysLT1R gene and protein expression were
enhanced in ApoE−/− mice after bouts of hypoxic stress.
Administration of the CysLT1R antagonist montelukast
reduced myocardial hypoxic areas suggesting a possible role
of the CysLT pathway in oxygen supply. Accordingly, mRNA
expression levels of LTC4S and CysLT1 were increased in
human chronic ischemic compared to the nonischemic

myocardium, suggesting similar mechanisms to those
observed in mice [54].

The multidrug resistance protein-1 (MRP1) was
suggested as a mediator of the effect of LTC4 on atheroscle-
rosis. This protein acts as a transporter to the extracellular
compartment [95] for LTC4 as well as glutathione, oxidized
glutathione, and estrogen [96] and is abundantly expressed
in vascular SMCs and in human [97] and in the murine myo-
cardium as well [98]. Its relevance in human health and
disease has been deeply investigated [99], and it continues
to be of considerable preclinical and clinical interest.

An in vitro study showed a proatherogenic mechanism
mediated by MRP1 and LTC4: pharmacological inhibition
of MRP1 and CysLT1R by MK571 and montelukast, respec-
tively, reduced angiotensin II-induced ROS release in
vascular SMCs [88]. Moreover, the in vivo study on
atherosclerosis-prone ApoE−/− mice, fed a high-cholesterol
diet and treated with MK571 or montelukast for 6 weeks,
showed a significant improvement in endothelial function
and reduction of atherosclerotic plaque generation. These
data represent an indirect proof of the MRP1 and LTC4 roles
in the atherosclerotic processes, indicating them as poten-
tially promising targets for atheroprotective therapy [88].

Within atherosclerotic lesions, CysLTs, which are
produced by coronary arteries [100], can locally mediate
vascular reactivity exerting their effects by an autocrine and
paracrine signaling [101]. Indeed, in addition to their well-
known bronchoconstrictor effect, CysLTs, acting on SMCs,
are also potent vasoconstrictors as observed in the human
lungs [7, 102].

The hemodynamic effects induced by the CysLTs were
evaluated in a small study on 6 patients without significant
stenosis on a coronary angiogram but in which cardiovascu-
lar risk factors and coronary atherosclerosis cannot be
completely excluded. The coronary vascular resistance, sys-
temic mean arterial blood pressure, and heart rate were
evaluated during and after the intracoronary LTD4 adminis-
tration (3 nmol bolus): no changes in resistance were
observed during administration, while an increase was
observed at 10 and 15min after administration. Moreover,
systemic mean arterial blood pressure initially decreased
while heart rate was increased, returning to baseline after
10 and 1min postinjection, respectively, suggesting that
small doses of CysLTs induce both an early and transient
fall in mean arterial pressure and a late increase in small
coronary arteriolar resistance [103].

The urine levels of CysLTs increased in patients during
and after acute myocardial infarction, unstable angina
attacks [104], and coronary artery diseases both before and
after coronary artery bypass surgery [105]. CysLT receptor
subtypes are expressed in diseased human arteries, and
hyperreactivity of atherosclerotic coronary arteries in
response to LTC4 was found to be associated with the expres-
sion of CysLT receptors [89].

In vitro studies on nonatherosclerotic human coronary
arteries showed the lack of CysLT-induced coronary vaso-
constriction [89, 105], although CysLT2R mRNA expression
can be detected in coronary artery SMCs [30]. In contrast,
LTD4 and LTC4 induced contraction in atherosclerotic
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coronary arteries which is inhibited by the CysLT1R antago-
nist ICI198615 [89, 106] suggesting increased sensitivity to
CysLTs during atherogenesis, probably due to an increased
in the number of the binding site for LTD4 and LTC4 in
atherosclerotic vessels [89, 105].

Furthermore, threefold higher levels of CysLT1R tran-
scripts compared with CysLT2R transcripts were observed
in atherosclerotic lesions from human carotid arteries [90]
and an increased CysLT1R expression in the aorta was
observed in atherosclerotic ApoE−/− mice, compared with
nonatherosclerotic mice [66].

A more recent study [107] showed colocalization of
the CysLT1R protein with markers for SMCs in human
atherosclerotic lesions revealing also CysLT1R predomi-
nant perinuclear localization compared with cytoplasmatic
alpha-smooth muscle actin localization. This study also
showed an upregulation of CysLT1R induced by inflamma-
tory conditions (LPS, L-6 and by prolonged exposure to
IFN-γ). Taken together, all these observations suggest that
a proinflammatory environment, such as atherosclerosis,
may induce CysLT1R expression within the SMCs in the
vascular wall and a major role of the CysLT1R in athero-
sclerosis compared to CysLT2R was observed.

Similar findings have been reported in EC, which under
resting conditions exhibit a dominant CysLT2R, but in which
a prolonged exposure to LPS or to proinflammatory cyto-
kines upregulates CysLT1R expression [108]. Recently, an
in vitro study [91] showed that LTC4 and LTD4 induce
robust calcium influx in human umbilical vein endothelial
cells (HUVECs), which was significantly inhibited by both
Rho kinase inhibitor (Y27632) and CysLT2R antagonist
(BayCysLT2), but not by CysLT1R antagonist (MK571),
suggesting that contraction of EC, induced by LTD4, was
mediated only by CysLT2R [91]. LTC4 and LTD4 also stim-
ulated EC proliferation, which was completely blocked by a
MEK inhibitor (PD98059) and inhibited by MK571, indicat-
ing the CysLT1R role in EC proliferation. In the same study,
CysLTs significantly increased the TNFα-induced expression
of the adhesion molecule VCAM-1 and attachment of leuko-
cytes to ECs. Notably, the recruitment of leukocytes was sig-
nificantly attenuated by BayCysLT2 but not by MK571 [91].

Furthermore, LTC4 and LTD4 increased the expres-
sion of the adhesion molecule P-selectin in human ECs
[45, 109]. This increase was not inhibited by CysLT1R antag-
onists, suggesting a CysLT2R-induced effect. In HUVECs,
CysLT2R activation may also induce other proinflammatory
effects through increased transcriptional activity [110].
Indeed, the LTD4-induced upregulation of IL-8, CXCL-2,
and COX-2 was not inhibited by CysLT1R antagonist but
seems to be sensitive to synergistic effects between CysLT2
and protease-activated (PAR-1) receptors. Taken together,
these results suggest that CysLTs increase, in a CysLTR-
depending manner, EC proliferation and expression of
inflammatory genes involved in the recruitment and adhe-
sion of leukocytes, which play a critical role in the etiology
of atherosclerosis.

In addition to ECs and SMCs, also, T lymphocytes are
involved in atherosclerosis, and despite the fact that these
cells might not express CysLT receptors, CysLTs could

potentially modulate adaptive immunological reactions by
inducing the activation of antigen-presenting cells.

In a murine model of asthma, myeloid dendritic cells
were shown to express CysLT1R, and LTD4 stimulation
increased the production of the immunomodulatory cyto-
kine IL-10, which was inhibited by treatment with CysLT1R
antagonists [111].

It has been shown that interleukin IL-10 overexpression
can inhibit fatty-streak formation in C57BL/6J mice fed an
atherogenic diet containing chocolate [112, 113]. Further-
more, in LDLR−/− mice, the overexpression of IL-10 by T
cells induced a significant decrease in lesion size and necrotic
core, inhibiting advanced atherosclerotic lesions [114].
Moreover, the accumulation of cholesterol and phospholipid
oxidation products in the aorta was decreased by 50% to 80%,
unrelated to plasma lipid or IL-10 levels [114]. In line, IL-10
deficiency in ApoE−/− (IL-10−/−/ApoE−/−) mice increased
atherosclerotic lesion size compared with ApoE−/− control
mice [115]. These studies indicated as the production of IL-
10 induced by LTD4 could have a protective role in the
atherosclerotic process and suggested that CysLT signaling
may represent one possible regulator of immunomodulatory
functions in atherosclerosis.

5. Myocardial Infarction

The possible involvement of LTs in the development of myo-
cardial infarct damage has been of considerable interest
within recent years. The genetic variants within the 5-LO
pathway are associated with an increased risk of stroke and
myocardial infarction (MI) [75]; moreover, the production
of CysLTs increases in ischemia-reperfusion injury in both
patients and animal models.

Because of their rapid metabolism and excretion, LTs are
difficult to be measured accurately in blood [116, 117],
although elevated plasma concentrations of these mediators
have been reported after acute MI [104]. They influence,
directly or indirectly, coronary vascular resistance, infarct
size, pulmonary vascular resistance, bronchial tone, and renal
vascular resistance; moreover, they are key regulators of
inflammation and thus potential targets to influence healing
after MI [5].

Development of MI injury is characterized by three
phases: ischemic, reperfusion, and inflammatory. This last
phase is characterized by increased expression of cell adhe-
sion molecules, as well as leukocyte infiltration in a manner
similar to those observed during inflammatory reaction
[118]. In this process, the inflammatory cells, invading myo-
cardial tissue after infarction, or their metabolic products,
play a crucial role in the development of the damage and
may participate in reperfusion injury [119]. The importance
of leukocyte in cardiovascular disease has recently been
reviewed [120], and several reports indicate a correlation
between myocardial infarct size and the magnitude of
leukocyte infiltration [121, 122]. Among a number of inflam-
matory mediators regulating leukocytes, LTs should be
included. Indeed, LTs are necessary for the function and
migration of leukocytes [91, 109]; moreover, LTs could play
a role in the development of MI since they influence
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fibroblasts [30], increase contractility and proliferation of
smooth muscle cells [89, 106, 123], and are also important
for vascular permeability [124].

In animal models, experimental myocardial infarction
causes elevated LT production in the damaged tissue and
evidence suggests that 5-LO products exert a detrimental role
in tissue recovery. Several investigators have pharmacologi-
cally tested the effect of lipoxygenase inhibitors on ischemic
injury [125]; however, since results are controversial, a num-
ber of transgenic mice were studied to overcome the limita-
tion of unspecific responses by pharmacological agents.

Adamek and colleagues [126] determined the response to
ischemia/reperfusion injury in mice with targeted disruption
of 5-LO. The 5-LO-deficient mice exhibit an increased neu-
trophil infiltration and proinflammatory gene expression
within the infarction area compared with wild-type mice.
Nevertheless, authors report that, despite an important role
of 5-LO in inflammatory responses, 5-LO seems to not play
a major role in ischemia-reperfusion injury in the heart.
These data compared with investigation made in other
organs [127–129] hypothesize that 5-LO effects might be
organ specific. However, although these results raise a doubt
on to the role of LTs in myocardial ischemia, a number of evi-
dence from other studies support their strong involvement.

Recently, in a large Danish cohort study [130, 131], the
association between 20 preselected single-nucleotide poly-
morphisms (SNPs) and MI events has been evaluated, dem-
onstrating that some common SNPs in the 5-lipoxygenase
pathway were modestly associated with incident MI, suggest-
ing a potential role for this pathway in the development of
cardiovascular disease.

As reported for atherosclerosis, MRP1 seems to mediate,
at least in part, the cardiac effects of LTC4. A recent study
has suggested an important role of MRP1 on intracellular
redox homeostasis and myocardial performance [51]. In this
study, the cardiac effects of CysLT1R blocker montelukast
and MRP1-inhibitor MK571 as well as MRP1 depletion were
tested in vitro and in vivo. Results demonstrated that pharma-
cological blockade of CysLT1R prevents LTC4-induced ROS
production and release in cultured cardiomyocytes and,
additionally, that montelukast reduces oxidative stress and
apoptosis in cardiomyocytes having a beneficial effect on
myocardium remodeling and improves myocardial function
after left ventricular injury in a mouse model of crio-induced
MI. Moreover, the inhibition of LTC4 transport, either in
MRP1−/− mice or in MK571-mediated mice, resulted,
in vivo, in reduced oxidative stress and apoptosis and demon-
strated beneficial effects on cardiac remodeling after injury.

On the contrary, the role of LTD4 in MI is not clearly
elucidated. LTD4 is one of the leukocytemetabolites with high
coronary constrictor potency, mainly released from macro-
phages [132, 133] but also produced by a variety of tissues,
including coronary and pulmonary arteries [134]. In a model
of coronary stenosis and myocardial ischemia, LTD4 induced
coronary constriction [135]; moreover, it was reported that its
levels increased in infarcted rabbit hearts [136] and in urine of
humans with acute cardiac ischemia [104]. LTD4 acted also as
potent coronary vasoconstrictor in the isolated rat heart
model, and this effectwasmore potent in chronically infarcted

heart [137]. Intravenous administration of LTD4 produced
prominent cardiovascular alteration in rat and dog, character-
ized by a decrease in blood pressure and a reduction in aortic
arterial blood flow and stroke volume. Nevertheless, the
administration in rat and dog of LY203647, described as a
potent and selective antagonist of responses to both LTD4
and LTE4, did not alter themagnitude ofmyocardial ischemia
[138]. The limitation of the influence of the endogenously
produced LTD4 in the progression of cardiac damagewas also
confirmed in another study where an alternative specific
antagonist L-660,711 had no effect on coronary blood flow
and cardiac performance in rats following MI [137].

Aforementioned, the CysLTs exert their effects by bind-
ing to G-protein-coupled receptors CysLT1R and CysLT2R
and novels GPR99 [12] and GPR17 [11].

To clarify which receptor was mediating the most of the
cardiovascular CysLT effects, the consequences of the
HAMI3379 and zafirlukast, CysLT2R and CysLT1R antago-
nists, respectively, were tested on LTC4-treated, Langen-
dorff-perfused, guinea pig hearts [139]. Results showed that
HAMI3379 was an effective antagonist of the cardiac effects
of LTC4, while zafirlukast was found to be inactive in this
experimental setting, suggesting that the cardiac CysLT
effects are mainly mediated by CysLT2R and these results
were in good agreement to the high expression of the
CysLT2R in the heart and blood vessels. In another study
[140], the treatment with BayCysLT2, a potent CysLT2R
antagonist, attenuated increased infarction damage when
administered either before ischemia or after reperfusion. This
treatment prevented the increases in cell adhesion molecule
gene expression and leukocyte infiltration into the myocar-
dium, both hallmarks of the acute inflammatory response
following MI. These findings indicate that CysLT2R activa-
tion results in heightened facilitation of diapedesis, which
enhances the magnitude of the inflammatory response lead-
ing to additional damage to the site of injury [140]. This
mechanism was then confirmed by an in vivo study [124].

Using the CysLT2R transgenic mice, overexpressing
human CysLT2R in vascular endothelium, as well as knock-
out mice, a role for the CysLT2R in vascular permeability
and myocardial ischemia/reperfusion injury has been shown
[33, 34, 141]. In particular, the endothelial overexpression of
CysLT2R [141] increased cardiomyocyte apoptosis in the
peri-infarct region and induced an exacerbation of damage
after MI resulting, from signaling through this receptor, in
an increase in CD45+ cell infiltration, intermyofibrillal eryth-
rocyte accumulation, and fluid extravasation worsening
inflammatory gene expression and increasing infarct size.

On the contrary, the overexpression of CysLT2R also
unaltered left ventricular function in uninjured myocar-
dium [141].

The mechanism of action was partially explained in
another study on the same model by demonstrating that
CysLT2R mediates inflammatory reactions in a vascular
bed-specific manner by altering transendothelial vesicle
transport-based vascular permeability [34]. A very recent
paper indicated the existence of endothelial and nonendothe-
lial CysLT2R niches having separate roles in mediating
inflammatory responses in which activation is required for
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injury exacerbation [124]. Particularly, endothelial receptor
activation results in increased vascular permeability and
leukocyte slow rolling, facilitating leukocyte transmigration,
whereas nonendothelial receptors, likely located on resi-
dent/circulating leukocytes, facilitate leukocyte recruitment
to the site of injury and activation of endothelial receptor.

GPR17 is a P2Y-like receptor responding to both uracil
nucleotides and LTD4/LTC4 whose presence characterizes
various organs susceptible to ischemic damage such as brain,
kidney, and heart [11]. Moreover, it can interact with other
closely related receptors, since its ability to act as a negative
regulator of the CysLT1R [142, 143] was recently reported,
as previously hypothesized by Maekawa and collaborators
both in vitro and in vivo [8, 144, 145]. In normal mice, it
was found expressed in cardiac-resident stromal cells [146]
suggesting the same role observed in the central nervous
system, where GPR17+ cells seem to have a role of a damage
“sensor” able to activate healing program [147], whereas,
following MI, GPR17 was found in resident and recruited
CD45+ cells [146]. Interestingly, it was found that the treat-
ment of the cardiac stromal cells with LTD4 exerted a potent
chemotactic effect via GPR17 activation and that this effect
can be reverted by cotreatment with montelukast, a GPR17
pharmacological antagonist [146]. These findings point to a
specific GPR17 role in chemotactic guidance of stromal cells
towards the ischemic sites and open to the hypothesis that
the selective modulation of GPR17 signaling translates into
beneficial treatments potentially reducing the extent of
myocardial fibrosis and limiting the functional consequences
of heart ischemia.

6. Summary

Cysteinyl leukotrienes are lipid mediators inducing pro-
inflammatory signaling through the activation of specific
receptors.

Excitingpreclinical andclinical data indicate that the5-LO
pathway becomes activated in cardiovascular diseases and
suggests an important role of CysLTs in atherosclerosis and
in its ischemic complications such as myocardial infarction
and stroke. Moreover, CysLT modifiers, generally safe and
well tolerated, approved for the treatment of asthma, show
significant cardioprotection in the experimental setting. To
date, the information available give emphasis to CysLTs as
potential targets in cardiovascular diseases and may provide
the necessary background and justification to launch novel
therapeutic programs. Nevertheless, further experimental
and clinical studies are needed to determine the potential
of therapeutic strategies targeting the 5-LO pathway in
cardiovascular disease and the link existing between the
human genetics and the 5-LO pathway in the inflammatory
pathology of cardiovascular diseases.
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