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Abstract

Complex networks arising in nature are usually modeled as (directed or undirected)
graphs describing some connection between the objects that are identified with their
nodes. In many real-world scenarios, though, those objects are endowed with properties
and attributes (hereby called features). In this paper, we shall confine our interest to
binary features, so that every node has a precise set of features; we assume that the
presence/absence of a link between two given nodes depends on the features that the
two nodes exhibit.

Although the situation described above is truly ubiquitous, there is a limited body
of research dealing with large graphs of this kind. Many previous works considered
homophily as the only possible transmission mechanism translating node features into
links: two nodes will be linked with a probability that depends on the number of features
they share. Other authors, instead, developed more sophisticated models (often using
Bayesian Networks [30] or Markov Chain Monte Carlo [20]), that are indeed able to
handle complex feature interactions, but are unfit to scale to very large networks.

We study a model derived from the works of Miller et al. [47], where interactions
between pairs of features can foster or discourage link formation. In this work, we
will investigate how to estimate the latent feature-feature interactions in this model.
We shall propose two solutions: the first one assumes feature independence and it is
essentially based on a Naive Bayes approach; the second one consists in using a learning
algorithm, which relaxes the independence assumption and is based on perceptron-like
techniques. In fact, we show it is possible to cast the model equation in order to see it as
the prediction rule of a perceptron. We analyze how classical results for the perceptrons
can be interpreted in this context; then, we define a fast and simple perceptron-like
algorithm for this task. This approach (that we call Llama, Learning LAtent feature-
feature MAtrix) can process hundreds of millions of links in minutes. Our experiments
show that our approach can be applied even to very large networks.

We then compare these two techniques in two different ways. First we produce syn-
thetic datasets, obtained by generating random graphs following the model we adopted.
These experiments show how well the Llama algorithm can reconstruct latent variables
in this model. These experiments also provide evidence that the Naive independence
assumptions made by the first approach are detrimental in practice. Then we consider a
real, large-scale citation network where each node (i.e., paper) can be described by differ-
ent types of characteristics. This second set of experiments confirm that our algorithm
can find meaningful latent feature-feature interactions. Furthermore, our framework
can be used to assess how well each set of features can explain the links in the graph.

1 Introduction

The problem of finding a model that describes how complex networks shape their structure is
well studied but still elusive in its full generality. In many scenarios, though, it is reasonable
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to assume that the network arises in some way from a complex interweaving of some features
of the nodes. For example, in a co-authorship network, a link stems more easily between
authors with similar interests; similarly, in a genetic regulatory network, links are affected
by the different biological functions of the regulators.

Many models have been proposed for describing complex network where arcs are influ-
enced by some features of the nodes. For example, Lattanzi and Sivakumar [38] described
a model where arcs form at random, or as a consequence of shared common features; Cal-
darelli et al. in [7] proposed a model where arcs are determined by an arbitrary function of
the “fitness” of the nodes (i.e., a real-valued property possessed by each node). More models
proposed along this line of research will be described in Section 2.

Although in some cases the relation between features and links is homophily (a link stems
more easily between nodes that share a large portion of the same features), we would like to
design a model that is able to capture also more complex behaviors. For example, feature
h could foster links to feature k also when h 6= k: e.g., in the case of semantic relations, a
concept tagged as belonging to the category “Movies” will often link to a concept tagged as
belonging to “Directors”. If we consider directed networks, we would like this relationship
between features to be directed: feature h could foster links towards feature k but not the
other way around. For example, in a citation network, we could easily expect a paper within
the sociology realm to cite a statistics paper, but a link in the opposite direction will be
much harder to find. Finally, some pairs of features could not foster but rather inhibit link
formation: as “Romeo and Juliet” narrates, belonging to rival families could discourage the
creation of a link in a long-term romantic relationship graph.

The theoretical model we are going to describe (based on the work by Miller, Griffiths
and Jordan [47]) is able to represent all the aforementioned kinds of behavior within a unified
framework, while at the same time being simple enough to be computationally useful and
scalable, as we will show in the second part of this work. In this work, we will see how
the estimation of the latent parameters of the model is fundamentally related to perceptron-
like prediction rules, and we will turn this insight into a scalable algorithm able to extract
information also from very large graphs.

In our model a special role is played by the feature-feature matrix W. This matrix can
express the various kinds of interplay between features and links, as described above; it is a
latent, unobservable element of the model, that can compactly explain the observable links.
The question is basically the following: assuming to know the links of a network and the
features every node bears, how can we estimate how features interact with each other – i.e.,
estimating the matrix W?

This question has a lot of practical implications. Consider for example a semantic
graph [12], where nodes are concepts, arcs are semantic relations, and each concept can
belong to different categories. Here, the matrix element Wh,k describes how two categories
h and k relate to each other: it summarizes if they interact positively, negatively and how
much; it can therefore be used for measuring the semantic connection between the two cate-
gories. In a linguistic graph (maybe obtained from a large corpus of text), where a link exists
between words used as subjects and those used as objects for a certain verb, W describes
the semantic areas a given verb can connect. In a citation network where features are areas
of scientific research, the set Sk = {h|Wh,k > 0} contains the fields for which the field k is
useful, and so forth.

Many other examples are possible; it is however important to note how many of these
applications require to deal with graphs having a huge number of nodes and links. We will
present concrete examples dealing with tens of millions of nodes. Operating at this scale
demands new techniques; as we will see in Section 2, many of the existing techniques are not
able to scale to this size.

A first idea, that we will describe in Section 4.1, is to just estimate the probability of
a link from the category pairs we see in the data. We will derive formally this approach,
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showing that it can be ascribed to the family of Naive Bayes learning. In particular, we
will see that this estimation requires independence assumptions that are particularly unre-
alistic in most practical cases. For example, consider the semantic link between the entity
“Ronald Reagan” and the 1954 Western film “Cattle Queen of Montana”; such an approach
will increment, because of the presence of this link, the element of W corresponding to
(films, U.S. presidents), regardless of the fact that this link could already be well explained
by (films, actors).

Based on the latter observation, we will need to streamline the model: we will make it
deterministic, by fixing its activation function φ. As we will describe in Section 4.2, this fact
will allow us to see our model equation as the prediction rule of a perceptron and in the end
to develop a more sophisticated approach based on online machine learning. What we will
do is to see A (the links in the graph) as partially unknown, much like in the link prediction
problem; we will show that, while learning A, the internal state of the perceptron will tend
to W. This approach, that we will call Llama – Learning LAtent MAtrix – will overcome
the naive assumptions of the previous model.

In Section 5 we will test this approach on our model, by simulating graphs obeying the
model and then observing how this way of reconstructing W behaves. More precisely, we will
show how Llama is able to reconstruct the W matrix, and how instead the independence
assumptions make the Naive algorithm very far from the goal.

Finally, in Section 6 we will consider a real, large-scale citation network, where nodes are
papers and links represent citations. Here, each node can be described by different types of
characteristics; we will consider institutions of the authors, and fields of research the paper
belongs to. We will define a notion of explainability, a way to measure how a certain set of
features can explain links in a graph according to our framework. Then, we will prove how
real-data experiments confirm that our algorithm can find meaningful, latent feature-feature
interactions from a real network.

2 Related works

The interplay between features and links in a network was investigated separately in differ-
ent fields. Indeed, interpreting links as a result of features of each node has in fact a solid
empirical background. For example, the dualism between “persons and groups” as an under-
lying mechanism for social connections was first investigated by Breiger [6] in 1974. Within
sociology, the simple phenomenon of homophily – “similarity breeds connection” – received a
great deal of attention: McPherson et al. [42] presented evidence and investigated on the role
of homophily in social ties; considered features included race and ethnicity, social status, and
geographical location. Bisgin et al. [3] studied instead the role of interests in online social
media (specifically, Last.fm, LiveJournal, and BlogCatalog), finding however that the role of
interests as features is weak on those online networks—at least when considering homophily
only.

In some fields, behaviors more complex than homophily were considered as well. Ten-
dencies of such kind, where nodes with certain features tend to connect to other types of
nodes, are called mixing patterns in sociology and are often described by a matrix, where the
element (i, j) describes the relationship between a feature i and a feature j. In epidemiology,
mixing patterns have proven to be greatly beneficial in analyzing the spread of contagions.
For example, they appeared to be a crucial factor in tracking the spread of sexual diseases [2]
as well as in modeling the transmission of respiratory infections [49]. For this reason, such
matrices are also called “Who Acquires Infection From Whom” (WAIFW) matrices, and have
been empirically assessed in the field [27,31]. In biology and bioinformatics, a seminal study
by Menche et al. [45] highlighted the connections between the interactome (the network of
the physical and metabolical interactions within a cell) and the diseases each component was
associated with, observing a clustering of disease-associated proteins.
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The empirical evidence presented in various fields, combined with the existence of large
datasets available in the web, and the increase of computational resources, fostered some
investigation of models of graph endowed with features.

Class models. A popular framework has been that of latent class models : in these
models, every node belongs to exactly one class, and this class influences the links it may
be involved into. The best-known example is the stochastic block model [50, 58]: in this
model, it is assumed that each pair of classes has a certain probability of determining a link,
and Snijders and Nowicki [58] study how to infer those probabilities; they also investigate
how to determine the class assignments, leading to a sort of community detection algorithm.
Hofman and Wiggins [30] devised a variant of this scheme, by specifying only within-class
probabilities and between-class probabilities. Another useful adaptation involves sharing only
the between-class probability and specifying instead the within-class probabilities separately
for each class, allowing to characterize each with a certain degree of homophily. Both these
approaches exemplify the need to reduce the number of parameters of the original block
model, in order to facilitate the estimation of its parameters. Kemp et al. [33], and Xu et

al. [62], studied and applied a non-parametric generalization of the model which allows for an
infinite number of classes (therefore called infinite relational model). It permits application on
data where the information about class is not provided directly. They use a Gibbs sampling
technique to infer model parameters.

A well-known shortcoming of the class-based models is the proliferation of classes [47],
since dividing a class according to a new feature leads to two different classes: if we have
a class for “students” and then we wish to account for the gender too, we will have to split
that class in “female students” and “male students”. This approach is impractical and in
many cases it leads to overlook significant dynamics. In order to overcome this limitation,
some authors [1] extended classical class-based models to allow mixed membership. Here, the
model of classes remains, but with a fuzzy approach: each node can be “split” among multiple
classes, and in practice class assignments become represented by a probability distribution.

Feature models. Contrary to class-based models, feature-based models propose a more
natural approach for nodes with multiple attributes: in those models, each node is endowed
with a whole vector of features. Therefore, feature-based models can be seen as a generaliza-
tion of class-based models: in fact, when all the vectors have exactly one non-zero component,
the model has the same expressive power of class-based ones. Features can be real-valued –
as in [29] – or binary, where the set of nodes exhibiting a feature is crisp, and not fuzzy, like
in [44].

Many works in this direction proposed models that only allow for homophily, forbidding
any other interaction among features. A seminal example is that of affiliation networks [38]
by Lattanzi and Sivakumar; in that work, a social graph is produced by a latent bipartite
network of actors and societies ; links among actors are fostered by a connection to the same
society. Gong et al [21] analyzed a real feature-rich social network – Google+ – through a
generative, feature-based network model based on homophily.

Our attention will focus instead on models able to grasp more complex behavior than ho-
mophily, following the aforementioned empirical evidence from social networks, epidemiology
and bioinformatics.

MAG model family. Within this stream of research, an important line of work has
been explored by Kim, Leskovec and others [36], under the name of multiplicative attribute

graphs. There, every feature is described by a two-by-two matrix, with real-valued elements.
Those elements describe the probabilities of the creation of a link in all the possible cases
of that feature appearing or not appearing on a given pair of nodes. As a consequence, it
can be thought as a feature-rich special case of their previous Kronecker model [40]. This
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model has been further extended to include many other factors; notably, they have modified
it to be dynamic [37]: features can be born and die, and only alive features bear effects.
However, the complexity of this model prevents it from being used on large-scale networks.
The same authors have proposed [35] an expectation-maximization algorithm to estimate
the parameters of their base model; nonetheless, reported experiments are on graphs with
thousands of nodes at most. In the dynamic version, they report examples on hundreds of
nodes (e.g., they find that by fitting the interactions of characters in a Lord of the Ring
movie, their features effectively model the different subplots). In this work, instead, we wish
to handle networks of much larger size: in the experimental part, we will show examples with
many millions of nodes, for which we are able to estimate model parameters very efficiently.

MGJ model family. In 2009, Miller, Griffiths and Jordan [47] proposed a feature-based
model to describe the link probability between two nodes by considering interactions between
all the pairs of features of the two nodes. They show how by inferring features and their
interactions on small graphs (hundreds of nodes), they are able to predict links with a very
high accuracy (measured through the area under the ROC curve). The estimation technique
they propose is not exact (since this would be intractable [23]), but it is based on a Markov
Chain Monte Carlo (MCMC) method [20].

Their model can be interpreted as a generative model; they chose, however, not to in-
vestigate its structural properties in terms of the resulting network structure. Subsequent
work [51] focused on this goal, being able to generate feature-rich graphs with realistic fea-
tures, but they did not try to estimate the latent variables of the model necessary to predict
links. In this work, we will build on the evidence gained in our previous work [5], that shows
how the Miller-Griffiths-Jordan model (further extended to exhibit competition dynamics in
feature generation) can be a powerful tool to generate networks with realistic, global prop-
erties (e.g. distance distribution, degree distribution, fraction of reachable pairs, etc.). As
explained in previous work [5], this model can at the same time be used to synthesize realis-
tic graphs by itself, or as a way to generate, given a real graph, a different one with similar
characteristics.

Despite the capabilities of the MGJ model [47], however, the choice of using a MCMC
technique in the original work [20] revealed itself inadequate to work on datasets larger than
some hundreds of nodes. As noted by Griffiths et al. in 2010 [23], there is a need for
computationally efficient models as well as reliable inference schemes for modeling multiple
memberships. Menon and Elkan [46] noted how the inadequacy in handling large graphs
underpinned this work, and many similar ones, and ascribed this flaw to the MCMC method.

There has been, since, a certain amount of studies on how to apply the MGJ model on
larger graphs. The two aforementioned works, for example, tried to solve this problem in
different ways. Griffiths and Ghahramani [23] described a simpler model: they removed from
the original model [47] the possibility of having negative interaction between features; also,
they fixed the activation function of the model (a component which we will carefully explain
in the next section); in this way, they obtained a framework that is more computationally
efficient, and can be applied to graphs of up to ten thousand nodes.

Menon and Elkan [46], instead, slightly enriched the model, by introducing a bias term
for each node; then, they proposed a new estimation technique, based on stochastic gradient
descent. A main focus there was to avoid undersampling non-links to overcome class im-
balance, since despite it being “the standard strategy to overcome imbalance in supervised
learning” it has the “disadvantage of necessarily throw[ing] out information in the training
set”. To overcome this problem (that we solve instead in the standard way of undersampling,
see section 4), they design a sophisticated approach centered on the direct optimization of
the area under the ROC curve.1 With this technique, they can handle graphs with thou-

1Recent works [63] have indicated empirically as well as theoretically how employing this measure in link
prediction leads to severely misleading results.
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sands of nodes. A different approach, that obtained similar results on graphs of the same
size, is [17], where the authors propose an SVM-based estimation of parameters, and report
it being able to run on graphs as large as two thousands nodes in 42 minutes. Our approach
runs in around 15 minutes on graphs three orders of magnitude bigger.

The task we are defining ultimately falls into the realm of latent variable models [18],
since we are trying to explain a set of manifest variables – links and features – through a
set of latent variables – the feature-feature interaction weights, i.e., the elements Wh,k of the
matrix W. If, like in our case, manifest variables are categorical, we usually talk about latent

structure models, that have been studied as such by statisticians and social scientist since the
1950’s. Lazarsfeld started studying the statistics behind these models in an effort to explain
people answers to psychological questions (specifically, in [59], answers from World War II
soldiers) through quantifiable, latent traits [39]. These techniques were improved by later
studies [22, 26]; however, these techniques—conceived for traditional social studies—were
designed for small groups; the use cases described there do not usually involve more than a
hundred of nodes. We require our techniques to work with millions of nodes, and hundreds
of millions of links.

Previous literature has also treated linked document corpora, where features are the
words contained in each document (e.g., [41] and [11]). In these works, authors build a
link prediction model obtained from LDA, that considers both links and features of each
node. However, the largest graphs considered in these works have about 103 nodes (with
∼ 104 possible features), and they do not provide the time required to train the model.
[25] developed an LDA approach explicitly tailored for “large graphs” — but without any
external feature information for nodes: they rather reconstruct this external information
from scratch; the largest graph they considered has about 104 nodes and 105 links, for which
they report a running time of 45− 60 minutes.

In this work, we too will employ a model of the Miller-Griffiths-Jordan family, that we will
thoroughly describe in Section 3. As mentioned above, a way to generate realistic graphs
with this model was studied in [5]. Here, we will propose some further considerations on
that model that will lead (in section 4) to various techniques aimed at estimating the main
parameter of the model, i.e., the feature-feature matrix. We will test those methods on
synthetic data generated by our model in section 5. In section 6 we will try our methods
empirically on real networks whose size is unmatched by previous literature.

3 Our framework

Let us briefly present the main actors in our theoretical framework. In this work, we will
treat the following objects as (at least partially) observable:

• The (possibly directed) graph G = (N,A), where N is the set of n nodes, whereas
A ⊆ N × N is the set of links; for the sake of simplicity, in this work we assume that
self-loops (i.e., links of the form (i, i)) are allowed.

• A set F of m features.

• A node-feature association Z ⊆ N × F .

We will denote these objects through their matrix-equivalent representation. More pre-
cisely, G = (N,A) will be represented as a matrix A ∈ {0, 1}n×n (fixing some arbitrary
ordering on the nodes); Z will be represented as a matrix Z ∈ {0, 1}n×m (again fixing some
arbitrary ordering on the features). In the following, Ai,j will refer to the element in the i-th
row and j-th column of the matrix A.

The – typically unobservable – objects that will define our network model will be the
following:

6



-3 -2 -1 0 1 2 3

0.2

0.4

0.6

0.8

1.0

K=1

-3 -2 -1 0 1 2 3

0.2

0.4

0.6

0.8

1.0

K=5

-3 -2 -1 0 1 2 3

0.2

0.4

0.6

0.8

1.0

K=25

Figure 1: A sigmoid activation function φ, with different choices for K. K regulates its
smoothness, and for K →∞ it approaches a step function.

• A matrix W ∈ R
m×m, that represent how features interact with each other. The idea

is that a high value for Wh,k means that the presence of feature h in a node i and
of feature k in node j will foster the creation of a link from i to j. Conversely, a
negative value will indicate that such a link will be inhibited by h and k. Naturally,
the magnitude of

∣

∣Wh,k

∣

∣ will determine the force of these effects.

We will refer to W as the latent feature-feature matrix.

• A monotonically increasing function φ : R→ [0, 1] that will assign a probability to a link
(i, j), given the real number resulting from applying W to the features of i and j; we
will call such a function our activation function, in analogy with neural networks [28].

The relationship between those actors is described formally by the following equation,
that fully defines our model:

P

(

(i, j) ∈ A
)

= φ

(

∑

h

∑

k

Zi,hWh,kZj,k

)

(1)

In other words, the probability of a link is higher when the sum of Wh,k is higher, where
h, k are all the (ordered) pairs of features appearing in the considered pair of nodes. We will
now carefully detail this equation in the following sections.

3.1 Model parameters

Analysis of the latent feature-feature matrix. Let us point out how different choices
for W can lead to many different kinds of interplay between links and features. The simplest
case is W = I (the identity matrix). Since its only non-zero elements are those of the
form (k, k), the only non-zero elements in the summation are those with Zi,k = Zj,k = 1.
Therefore, the behavior of the model in this case is that of pure homophily: the more features
in common, the higher the probability of a link (remember that φ is monotonic).

More generally, as we said, a positive entry Wh,k > 0 will indicate a positive influence
on the formation of a link from nodes with feature h to nodes with feature k. In the special
case of an undirected graph, we will have a symmetric matrix – that is, Wh,k = Wk,h for all
h and k.

W can be used to express also other behaviors. If
∑

k Wh,k is large, this fact will indicate
that nodes with feature h will be highly connected – specifically, they will have a large number
of out-links. A large sum for a column of W, that is a large value for

∑

k Wk,h, will imply,
in turn, that nodes with feature h to have many in-links.

Choice of the activation function. The activation function φ will determine how the
real numbers resulting from

∑

h

∑

k Zi,hWh,kZj,k will be translated into a probability for the
event

{

(i, j) ∈ A
}

. Since we require φ to be monotonically increasing, its role is just to shape

the resulting distribution.
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Throughout this work, and following previous literature [47], we will focus on activation
functions that can be expressed as a sigmoid:

φ(x) =
(

eK(ϑ−x) + 1
)−1

(2)

The parameter ϑ ∈ R is the center of the sigmoid, whereas K ∈ (0,∞) regulates its
smoothness. Figure 1 depicts how K influences the resulting probabilities (when ϑ = 0). We
will look at both these quantities as a priori parameters of the model. We will also extend
the domain of K to the special value K = ∞, for which φ is the step function2 χ(ϑ,∞).
Letting K =∞ will make our model fully deterministic—all the probabilities become either
1 or 0. We will see how this simplification can turn our model into an important framework
for mining information from a complex network.

3.2 An algebraic point of view

For some applications, it will be useful to consider the model expressed by (1) as a matrix
operation. As introduced in the previous section, Z is the n × m node-feature indicator
matrix.

With this notation, we can express (1) as

P = φ
(

ZWZ
T
)

(3)

where φ here denotes the natural element-wise generalization of our activation function —
i.e., it simply applies it to all the elements of the matrix. The resulting matrix P is a matrix
that describes the probabilities of A: that is, its element Pi,j defines the probability that
Li,j = 1 or equivalently that (i, j) ∈ A. You can think of P as an uncertain graph [34,52], of
which A is a realization (sometimes called a world [15]). Uncertain graphs are a convenient
representation of graph distributions, in the same spirit as the classical Erdős-Rényi model:
in an uncertain graph the node set is fixed and each arc has a certain probability of being
present (arcs are independent from one another). Many useful statistical properties of the
graph distribution associated to an uncertain graph (e.g., the expected number of connected
components) can be connected to properties of the uncertain graph itself, seen as a simple
weighted graph; it is this connection that made uncertain graphs particularly popular in
some contexts.

While this view is simple and concise, it may be of little use from a computational
perspective. In concrete applications n will be very large; also, algorithms that could be of
use in dealing directly with this representation do not run in linear time—the most notable
example being matrix factorization (e.g., computing the SVD [60]).

It is useful, however, to view (3) separately for each row of the matrix. In practice, this
means computing the set of out-links of a single node. This operation allows us to treat a
single node at a time, permitting the design of online algorithms, requiring a single pass on
all the nodes.

Moreover, this interpretation renders W a (possibly asymmetric) similarity function: if
we represent nodes i and j through their corresponding rows in Z (indicating them as zi and
zj) then our feature-feature matrix can be seen as a function that given these two vectors
computes a real number representing a weight for the pair (i, j). In the special case of W = I
this is the standard inner product 〈zi, zj〉; in this case the similarity of those two vectors is
just the number of features they share, thus implementing homophily. Instead, for a general
W this similarity is 〈zi, zj〉W (although W is not necessarily symmetric or positive definite).

2We will use the notation

χI(x) =

{

1 if x ∈ I

0 if x /∈ I.
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In this sense W can be seen as a function W : 2F × 2F → R, that acts as a kernel for sets
of features.

3.3 Intrinsic dimensionality and explainability

Every fixed graph G has a probability that depends on the feature-feature matrix and, of
course, on Z, that is, on the choice of the features that we associate with every node, and
ultimately on the set of features we choose.

Some sets of features will make the graph more probable than others; we might then say
that the explainability is a property of the chosen set of features for a certain graph G. We
will measure it in practice in some scenarios in the third, experimental, part of this work.

For the moment, let us point out that the number of features can be seen as an intrinsic

dimensionality of the graph G: if the graph could be explained by our model without any
error at all, then the same information of G is in fact contained in Z and W. In that case,
we might say that the out-links of node i (described in the graph by ℓi, the i-th row of the
adjacency matrix A) could be equally represented by zi, thus with a much smaller dimension:
specifically, with a vector of m elements.

In fact, n is a natural upper bound for m. Let us use the nodes themselves as features
(i.e., F = V ), associating with every node i the only feature i (i.e, setting Z = I). If W = A
then the graph will be always perfectly explained: it would be enough to choose φ as the
step function χ(0,∞) to make the results of our model identical to the graph, since

P

(

(i, j) ∈ A
)

= Pi,j =
[

φ
(

ZWZ
T
)]

i,j
= φ(Wi,j) =

{

1 if (i, j) ∈ A

0 otherwise.

Naturally, this choice of features does not tell us much; in practice, we obviously want
m≪ n. For this, we allow for the introduction of some degree of approximation; some links
will be wrongly predicted by our model, because it will expect their categories to link to each
other. We shall call this effect generalization error. We will see in experiments how it can
be measured and how it is intimately connected with the explainability of a set of features
in a graph.

3.4 Introducing normalization

Let us now present some interesting variants of the proposed model. In many real-world
scenarios, we can speculate that not all features are created equal. For example, in the
formation of a friendship link between two people, discovering that they both have watched
a very popular movie may not give us much insight; knowing instead that they both have
seen an underground movie that few people have appreciated could give to their friendship
link a more solid background. In other words, in some cases rarest features matter more.

Column normalization. To implement this effect, we can normalize Z by column (recall
that columns correspond to features) in our equation, defining

←−
Z i,h =

Zi,h

||Z−,h||p
where Z−,h denotes the h-th column of Z and ||− ||p represents the ℓp norm, for some chosen

p. The notation
←−
Z is used to emphasize the fact that, if p = 1, this normalization yields a

left-stochastic (i.e., column-stochastic) matrix. Each column can be seen in this case as a
probability distribution among nodes, uniform on nodes having that feature and null on the
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others. If we plug
←−
Z in place of Z in (1), we obtain

P

(

(i, j) ∈ A
)

= φ

(

∑

h

∑

k

←−
Z i,hWh,k

←−
Z j,k

)

= φ

(

∑

h

∑

k

Zi,hWh,kZj,k

||Z−,h||p · ||Z−,k||p

)

(4)

thus reaching the effect we wanted: inside the summation, rare features will bear more weight,
and common features will be of lesser importance. This can also be seen as an adaptation of
a tf-idf-like schema [61] to our context.

Row normalization. In other contexts, row normalizations might be desirable instead.
The fact that two people x and y are friends of the same individual z in Facebook may be
a sign indicating that they have some common interest, and that they may become friends
in the future; however, if x is a public figure then the fact that he is friend with z is not
really significant, and does not tell us much about possible future friendship with y. In other
words, nodes with few features may matter more.

Formally, row normalization is defined as

−→
Z i,h =

Zi,h

||Zi,−||p
.

where Zi,− is the i-th row of Z. Again, we used the notation
−→
Z because when p = 1 we

obtain a right-stochastic matrix.

4 Inferring feature-feature interaction

The fundamental agent in shaping the graph in our framework is, as stated in the previous
section, the feature-feature matrix W. In many applications, however, the information rep-
resented by W is not directly available: in a social network, we can observe friendship links
and characteristics of each person, but the relationship between the characteristics is latent
and not observable. This is the case for many other scenarios: in a linked document cor-
pora where documents are described by a set of topics, we do not know how different topics
foster or discourage links. Knowing (at least partially) links and features of each node, but
ignoring how features interact with each other, is also a common trait of all the examples we
mentioned before.

As discussed in Section 1, knowing the latent feature-feature matrix has a lot of practical
implications: it can summarize effectively how features interact with each other – in the case
of a semantic network tagged with categories, it means getting a hold of which categories are
semantically connected, for a citation network it means being able to identify which fields of
research are being useful for a certain field, and so on. More generally, as we discussed in
Section 3, knowing W means being able to represent all the information expressed by the
graph in a more succinct way.

The problem we wish to solve is therefore the following: assuming to know A and Z, how
can we reconstruct a plausible W? In other words: if we know the arcs in a graph, and each
node is characterized by a set of (binary) features, how can we estimate how features interact
with each other?

4.1 A naive approach

Let us first describe a naive approach to construe the latent feature-feature matrix W;
remember that we are assuming (1), where Z, A and φ are fixed (the role of φ will be
discussed below) and we aim at choosing W as to maximize the probability of A.

More precisely, we shall use a naive Bayes technique [4], estimating the probability of
existence of a link through maximum likelihood and assuming independence between features;

10



that is, we are going to assume that the events {Zi,h = 1} and {Zi,k = 1} are independent
for h and k.

Let us introduce the following notation:

• let Nk ⊆ N be the set of nodes with the feature k, i.e. Nk = {i ∈ N |Zi,k = 1};

• conversely, let us write Fi for the set of features sported by a node i, that is
Fi = {k ∈ F |Zi,k = 1};

• let us also use Zi,k to denote the event {Zi,k = 1}.

Now, fixing two features h and k, let us consider the probability ph,k that there is a link
between two arbitrary nodes with those features, such as i ∈ Nh and j ∈ Nk:

ph,k := P

(

(i, j) ∈ A
∣

∣

∣
Zi,h ∩ Zj,k

)

.

Said otherwise, ph,k represents the probability that two nodes (i, j) happen to be connected,
if we assume that i has feature h and j has feature k. This quantity can be estimated as
the fraction of pairs (i, j) such that both Zi,h and Zj,k are true, that happen to be links. In
other words,

ph,k =
|(Nh ×Nk) ∩ A|
|Nh| · |Nk|

Here, and in the following, we are assuming that self-loops are allowed. For a specific
pair of nodes (i, j), the probability of the presence of a link under the full knowledge of Z is
given by

P

(

(i, j) ∈ A
∣

∣

∣

(

⋂

h∈Fi

Zi,h

)

∩
(

⋂

h∈Fj

Zj,h

)

)

.

This is the probability that (i, j) are connected, given that we know their common features.
Let us naively assume that Zi,h and Zj,k are independent for all i, j, h, k with i 6= j and
h 6= k; we also assume that they are independent even under the knowledge that (i, j) ∈ A.
Then, under these naive independence assumptions, the last probability can be expressed as

∏

h∈Fi

∏

k∈Fj

P

(

(i, j) ∈ A
∣

∣

∣
Zi,h ∩ Zj,k

)

=
∏

h∈Fi

∏

k∈Fj

ph,k

Let us define W as:

Wh,k = log
|(Nh ×Nk) ∩ A|
|Nh| · |Nk|

(5)

We will now check that such a matrix is correct. Considering again the definition of our
model (1) and plugging in the matrix W just defined, we obtain:

P

(

(i, j) ∈ A
)

= φ

(

∑

h∈Fi

∑

k∈Fj

Wh,k

)

= φ
(

log
∏

h∈Fi

∏

k∈Fj

|(Nh ×Nk) ∩A|
|Nh| · |Nk|

)

=

= φ
(

log
∏

h∈Fi

∏

k∈Fj

ph,k

)

= φ
(

log P
(

(i, j) ∈ A
∣

∣

(

⋂

h∈Fi

Zi,h

)

∩
(

⋂

h∈Fj

Zj,h

))

)

=

= φ
(

logP
(

(i, j) ∈ A
∣

∣Z
)

)

(6)
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This fact confirms that, for a certain choice of φ (namely3, φ(x) = min(1, ex) ) and under
the previously mentioned independence assumptions, this estimate of W is correct for our
model.

4.2 A perceptron-based approach

The independence assumptions behind the naive approach (hereby referred to as Naive) are
not realistic. One of the potentially undesirable consequences of such assumptions is that
the responsibility for the existence of a link are shared among all the features of the two
involved entities. To understand how misleading this approach can be, consider a semantic
link between the entity for “Ronald Reagan” and the one for “Cattle Queen of Montana” (a
1954 Western film starring Ronald Reagan). Naive will count that link as a member of
the set {(Npresidents × Nmovies) ∩ A}, and it will consequently increase the corresponding
entry (Wpresidents, movies) in the feature-feature matrix. We would like instead to design
an algorithm that is able to recognize that this link is already well explained by the matrix
element Wactors, movies and that does not enforce a false association between politicians and
Western movies. In other words, we want an algorithm that perceives if some feature is
already explaining a link, and updates its estimate of W only if it is not. In this perspective,
we want to properly cast our problem in the setting of machine learning.

A deterministic model. In order to obtain this result, let us simplify our framework by
letting φ be the step function χ(0,∞), that is

φ(x) =

{

1 if x > 0,

0 otherwise.

This can be also seen as a sigmoid (2) whose parameters are ϑ = 0 and K →∞. In previous
work [5], we found that, even if such an activation function produces a more disconnected
network, the network degree distribution will converge even more sharply to a power law.

It is important to note that this choice will make our model fully deterministic. In other
words, given the complete knowledge of Z and W, the model will not allow for any missing
or wrong link. For this reason, with this model we can not measure the likelihood of a real
network; instead, we will just separate its links into explained and unexplained by the model
with respect to a certain set of feature F .

A decision rule. By using this deterministic activation function, the equation of our
model (1) becomes:

(i, j) ∈ A ⇐⇒
∑

h

∑

k

Zi,hZj,kWh,k > 0 (7)

Let us indicate the i-th row of Z with zi (as a column vector), the outer product with ⊗
and the Hadamard product with ◦. Then, we can alternatively write the above rule in one
of these two equivalent forms:

(i, j) ∈ A ⇐⇒ z
T
i Wzj > 0

or
(i, j) ∈ A ⇐⇒

∑

h,k

[

(

zi ⊗ zj

)

◦W
]

h,k
> 0 (8)

3We need the min in this formula to respect our assumption that φ only has values in [0, 1]. However,
it does not change anything in practice, since in (6) the argument of the logarithm is a probability, and
therefore it is forced to be in [0, 1].
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zi and zj zi⊗zj

min

min

min

min

min
∑

sgn (i, j) ∈ A

min

min

min

min

zi,1

zi,2

zi,3

zj,1

zj,2

zj,3

Figure 2: A neural-network view of the perceptron-like algorithm, for the case of m = 3
features. We indicate fixed weights with double lines, with min those nodes activating only
if and only if both input nodes are active (that is, the min of their inputs), and with sgn the
sign function. The only non-fixed weights (learned by the perceptron update rule) are those
from the zi ⊗ zj layer to the

∑

neuron: they correspond to the matrix W appearing in our
model.

4.2.1 A perceptron.

Equation (8) is in fact a special case of the decision rule of a perceptron [53], the simplest
neural network classifier. The idea here is that by learning how to separate links from non-
links (in fact a form of link prediction), the classifier infers W as its internal state.

Let us briefly recall the standard definition: a perceptron is a binary classifier whose
internal state is represented by a vector4 w ∈ R

p, and it classifies an instance x ∈ R
p as

positive if and only if sgn(w · x) > 0.
The internal state w is typically initialized at random; then, during the learning phase,

for each i ∈ {0, 1, . . . , t− 1}:

1. the perceptron observes an example xi ∈ R
p;

2. it emits a prediction ŷi = sgn(w · xi);

3. it receives the true label yi ∈ {−1, 1};
4. if yi 6= ŷi, it updates its internal state with w = w + yiλxi, where λ ∈ (0, 1] is a

parameter called learning rate.

4For the purposes of this paper, we limit ourselves to describing perceptrons with null bias.
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The key point here is that the decision rule for emitting a prediction can be cast to be
fundamentally the same as in our model. Specifically, if we view the latent feature-feature
matrix W as a vector of length m2, and we do the same for zi ⊗ zj , then we can see that
the decision rule sgn(w ·xi) = 1 corresponds to (8), if we set W as the vector w and zi ⊗ zj

as the example x.
Note that in our case an example for the perceptron will be a pair of nodes (i, j), rep-

resented not by a vector but by the m ×m matrix zi ⊗ zj : this is a matrix whose element
[zi ⊗ zj ]h,k is 1 if and only if the first node exhibits the feature h and the second exhibits
the feature k. This trick is sometimes called the outer product kernel : we are embedding a
pair of vectors of dimension 2m into a higher-dimensional representation of dimension m2.
This m×m-matrix in fact can be alternatively thought of as a vector of size m2, allowing us
to use such vectors as training examples for the perceptron, where the label is y = 1 if and
only if (i, j) ∈ A, and y = −1 otherwise. The learned vector w will be, if seen as a matrix,
the desired W appearing in (7), as we are going to analyze next.

To recap, the perceptron we are going to use operates like this: given a T sequence of
pairs of nodes (elements of N ×N):

1. the perceptron observes the next pair (i, j) ∈ T , through their binary feature vectors
(zi, zj);

2. it computes a prediction on whether they form a link, according to (8); more precisely,
the prediction will be ŷi,j = sgn(zTi Wzj)

3. it receives the ground-truth: yi,j = 1 if (i, j) ∈ A, and yi,j = −1 otherwise;

4. if the prediction was wrong, the updates its internal state by adding to W the quantity
yi,jλ(zi ⊗ zj).

In doing this, we are using m2 features, in fact a kernel projection of a space of dimension
2m into the larger space of size m2. Similarly, the weight vector to be learned has size m2.
Positive examples are those that correspond to existing links. We can view this as a shallow,
simple neural network, as depicted in Figure 2.

Interpretation of the error bound. One advantage of casting our approach to the
perceptron algorithm is that the latter is a well studied and its performance was analyzed in
all details. In particular, many bounds on its accuracy are known: let us consider the bounds
discussed5 in [10, Theorem 12.1]. Casting it to our case, some easy manipulations get the
following bound for the number of misclassifications M = |{(i, j) ∈ T s.t. ŷi,j 6= yi,j}|:

M ≤ inf
U∈Rm×m

(

H(U) +
(

R‖U‖
)2

+R‖U‖
√

H(U)
)

(9)

where ‖ − ‖ denotes the Frobenius norm and

• H(U) =
∑

(i,j)∈T max
(

0, 1− z
T
i Uzj

)

is the sum of the so-called hinge losses and

• R = max(i,j)∈T ‖zi ⊗ zj‖ is called the radius of the examples.

Let us try to give an interpretation of this bound, by looking at all factors affecting the
number M of errors of the algorithm. In the following, we want to use the bound above to
compute the number of misclassification which we undergo using (8). For this purpose, let
us set U = W as in (8). Suppose also, for the sake of simplicity, that T = A (that is, that
we are using all and only the links as examples). We can define two subsets of T :

EU =
{

(i, j) ∈ A
∣

∣ z
T
i Uzj ≤ 0

}

BU =
{

(i, j) ∈ A
∣

∣ 0 < z
T
i Uzj < 1

}

.

5In fact, for the sake of simplicity we are considering only Euclidean norm and standard hinge loss.
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The set EU contains the examples that are incorrectly classified (i.e., those which are not
classified as links according to (8)); the set BU contains the examples that are correctly
classified but with a very small margin. We have that

H(U) =
∑

(i,j)∈A

max
(

0, 1− z
T
i Uzj

)

=
∑

(i,j)∈EU∪BU

(

1−zTi Uzj

)

≤ (1+a) |EU|+b |BU| , (10)

for some a, b > 0 with b < 1. In other words, the term H(U) in the right-hand-side of (9) is
connected with the amount of misclassifications and borderline-correct classifications: each
misclassification has a cost that is larger than one, whereas borderline-correct classifications
are paid less than one each. In a way, H(U) is a measure of how well our model could fit in

the best case this particular feature-rich graph.
One way to reduce the number of borderline-correct classifications would be to multiply

U by a constant larger than one: note that this operation does not change the classification
of (8), but at the same time it increases the cost of misclassifications (the coefficient a of
(10)) and the norm of ||U||, that also appears on the right-hand-side of (9). The presence
of ||U|| in the bound is explained by the fact that a model with a large norm is (apart from
scaling) more complex: e.g., a very sparse U (one where only a few pairs of features interact)
will have a very low norm.

The last term appearing in (9) is R2, that can be rewritten as

R2 = max
(i,j)∈T

∑

h

∑

k

zi,hzj,k = max
(i,j)∈T

|Fi| · |Fj |.

In other words, it measures how many pairs of features we need to consider in our set
of examples. More precisely, this is the number of possible pairs among the features of the
source and the target of each arc. Of course R2 ≤ m2: this fact means that the bound is
smaller if we need less features to explain the graph. It is also small if there is little overlap
of features (i.e., if maxi∈N |Fi| is small).

In the case of a feature-rich graph that can be perfectly explained by a latent feature-
feature matrix W (according to our deterministic model), we have H(W) = 0. In this case,
in fact, all the elements of the sum (that is, the losses suffered by the algorithm) would
be null. This can be seen using for example the inequality given in (10): the set |EW|
would be empty, and the same can be said for |BW|, possibly scaling W by a constant. In

this special case, the bound simplifies to M <
(

R‖W‖
)2

. This is the perceptron convergence
theorem [54], which in our case tells us that if a perfect W exists, the algorithm will converge
to it.

4.2.2 A passive-aggressive algorithm

Online learning. In general, what we did was to recast our goal in the framework
of online binary classification. Binary classification, in fact, is a well-known problem in
supervised machine learning; online classification simplifies this problem by assuming that
examples are presented in a sequential fashion and that the classifier operates by repeating
the following cycle:

1. it observes an example;

2. it tries to predict its label;

3. it receives the true label;

4. it updates its internal state consequentially, and moves on to the next example.
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Algorithm 1
Llama, the passive-aggressive algorithm to build the latent feature-feature matrix W.

Input:
The graph G = (N,A), with A ⊆ N ×N
Features Fi ⊆ F for each node i ∈ N
A parameter κ > 0

Output:
The feature-feature latent matrix W

1. W← 0

2. Let (i1, j1), . . . , (iT , jT ) be a sequence of elements of N ×N .

3. For t = 1, . . . , T

(a) ρ← 1/(|Fit | · |Fjt |)
(b) µ←∑

h∈Fit

∑

k∈Fjt
Wh,k

(c) If (it, jt) ∈ A
δ ← min(κ,max(0, ρ(1− µ)))

else
δ ← −min(κ,max(0, ρ(1 + µ)))

(d) For each h ∈ Fit , k ∈ Fjt :
Wh,k ←Wh,k + δ

An online learning algorithm, generally, needs a constant amount of memory with respect
to the number of examples, which allows one to employ online algorithms in situations where
a very large set of voluminous input data is available. A survey is available in [9].

A well-known type of online learning algorithms are the so-called perceptron-like algo-
rithms. They all share the same traits of the perceptron: each example must be a vector
xi ∈ R

p; the internal state of the classifier is also represented by a vector w ∈ R
p; the

predicted label is yi = sign(w · xi). The algorithms differ on how w is built. However, since
their decision rule is always the same, they all lead back to the decision rule of our model (8).
This observation allow us to employ any perceptron-like algorithm for our purposes.

Perceptron-like algorithms (for example, ALMA [19] and Passive-Aggressive [13]) are
usually simple to implement, provide tight theoretical bounds, and have been proved to be
fast and accurate in practice.

A Passive-Aggressive algorithm. Among the existing perceptron-like online classifica-
tion frameworks, we will heavily employ the well-known Passive-Aggressive classifier, charac-
terized by being extremely fast, simple to implement, and shown by many experiments [8,48]
to perform well on real data.

Le us now describe the well-known Passive-Aggressive algorithm [13], while showing how
to cast this algorithm for our case. To do this let us consider a sequence of pairs of nodes

(i1, j1), . . . , (iT , jT ) ∈ N ×N

(to be defined later). Define a sequence of matrices W
0, . . . ,WT and of slack variables

ξ1, . . . , ξT ≥ 0 as follows:

• W
0 = 0
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• W
t+1 is a matrix minimizing ‖Wt+1 −W

t‖+ κξt+1 subject to the constraint that

yit,jt ·
∑

h∈Fit

∑

k∈Fjt

W t+1
h,k ≥ 1− ξt+1, (11)

where, as before

yit,jt =

{

−1 if (i, j) 6∈ A

1 if (i, j) ∈ A
,

‖−‖ denotes again the Frobenius norm and κ is an optimization parameter determining
the amount of aggressiveness.

The intuition behind the above-described optimization problem, as discussed in [13], is
the following:

• the left-hand-side of the inequality (11) is positive if and only if Wt+1 correctly predicts
the presence/absence of the link (it, jt); its absolute value can be thought of as the
confidence of the prediction;

• we would like the confidence to be at least 1, but allow for some error (embodied in
the slack variable ξt+1);

• the cost function of the optimization problem tries to keep as much memory of the
previous optimization steps as possible (minimizing the difference with the previous
iterate), and at the same time to minimize the error contained in the slack variable.

By merging the Passive-Aggressive solution to this problem with our aforementioned
framework, we obtain the algorithm described in Algorithm 1. We will refer to this algorithm
as Llama: Learning LAtent MAtrix.

Normalization. For perceptron-like algorithms, normalizing example vectors (in our
case, the matrix zi⊗zj) often gives better results in practice [14]. This is equivalent to using
the ℓ2-row-normalized version of our model, as discussed in Section 3.4 (setting p = 2). The
assumption behind that model is in fact that nodes with fewer features provide a stronger
signal for the small set of features they have; nodes with many features bear less information
about those feature.

It is immediate to see that Algorithm 1 can be adapted to use the ℓ2-row-normalization
by changing step (c) to:

(c) If (it, jt) ∈ A:
δ ← √ρmin(κ,max(0, 1−√ρµ))

else: (12)
δ ← −√ρmin(κ,max(0, 1 +

√
ρµ))

Similar adaptations would allow one to implement any row normalization.

Sequence of pairs. Finally, let us discuss how to build the sequence of examples. We
want W to be built through a single-pass online learning process, where we have all positive
examples at our disposal (and they are in fact all included in the training sequence), but
where negative examples cannot be all included, because they are too many and they would
produce overfitting.

Both the Passive-Aggressive construction described above and the Perceptron algorithm
depend crucially on the sequence of positive and negative examples (i1, j1), . . . , (iT , jT ) that
is taken as input. In particular, as discussed in [32], it is critical that the number of negative
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and positive examples in the sequence is balanced. Taking this suggestion into account – and
also considering [63] suggestions about uniform sampling – we build the sequence as follows:
we draw uniformly at random |A| node pairs (i, j) s.t. (i, j) /∈ A; then, nodes are enumerated
(in arbitrary order), and for each node i ∈ N , all arcs of the form (i, •) ∈ A are added to the
sequence, followed by all non-links node pairs of the form (i, •). Of course, in the end the
sequence contain T = 2 · |A| node pairs – that is, |A| links along with |A| non-links.

Obviously, there are other possible ways to define the sequence of examples and to select
the subset of negative examples. However, we chose to adopt this technique (single pass on
a balanced random sub-sample of pairs) in order to define and test our methodology with a
single, natural and computationally efficient approach. However, when experimenting with
real data in Section 6, we will also test whether the ordering of nodes affects the results, by
comparing natural (i.e. chronological) and random order.

Error bound for Passive-Aggressive. The analysis of the error bound for misclassifi-
cations of the perceptron (9) can be made more precise for the case of the Passive-Aggressive
algorithm: using Theorem 4 of [13], the bound becomes:

M ≤ inf
U∈Rm×m

max
(

R2, 1/κ
)

(

2κH(U) + ‖U‖2
)

. (13)

If κ = 1/R2, the bound reduces to

M ≤ inf
U∈Rm×m

2H(U) + (R‖U‖)2 ,

and our discussion of (9) is essentially confirmed. We encounter R2 = max(i,j)∈T |Fi| · |Fj |,
that is the maximum number of pairs of features we observe at the same time; H(U), the total
loss of the “best” (in terms of the infimum in the equation) possible feature-feature matrix;
and ‖U‖, the norm of such a matrix, which is fundamentally a measure of its complexity. Also
for Passive-Aggressive, these factors define the performance of the algorithm on a specific
instance of feature-rich graph.

A truly on-line approach with unnormalized samples will require a constant κ (in our
experiments we set 1.5), which yields

M ≤ inf
U∈Rm×m

cR2H(U) + (R‖U‖)2 ,

for some constant c.

5 Experiments on synthetic data

In this section, we will test how the methods described in this paper perform on synthetic
graphs generated within our framework using the techniques described in previous work [5];
in the next section we will see how they behave on real-world data.

We are in fact building upon previous methods [5] to generate a realistic node-feature
association Z that, when used as input to the model of (1), is able to synthesize feature-rich
networks with the same traits (e.g., distance distribution, degree distribution, fraction of
reachable pairs, etc) as typical real complex networks. In particular, in [5] we discuss how to
generate a synthetic feature-rich graph with the same properties as a given real one. These
experiments allow us to employ graphs generated through this approach as a test bed for the
algorithms presented in the Section 4.
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Avg. features per node

S χ exp

B 5.84± 1.63 5.17± 1.63 5.22± 1.51
N 5.76± 1.43 5.30± 1.56 5.51± 1.31

Avg. degree

S χ exp

B 109.4± 325 163.2± 329 15.6± 217
N 10.9± 145 11.8± 138 26.3± 299

Mean harmonic distance

S χ exp

B 2.16± 92 2.43± 1 339 2.02± 3 290
N 2.31± 3 034 11.0± 2 472 2.01± 1 606

Table 1: Properties of the synthetic feature-rich graphs. The 6 generated graph families are
indicated according to the φ function used (S is the sigmoid, χ is the step function, and exp
is the exponential) and to the distribution of the values of W (Bernoullian or normal). The
listed properties represents the median, inside each graph family, of: the average number of
features per node, the average degree and and the mean harmonic distance.

5.1 Experimental setup

To generate each network, we first produced its node-feature association Z with the Indian
Buffet Model method [5], using the same parameter values adopted in previous work: α = 3,
β = 0.5, c = 0. Then, we fed these matrices Z to our model equation (1) to generate a
number of graphs. For the graph model, we employed the following parameters:

• We used n = 10 000 nodes.

• We applied three different types of activation function φ, to compare their results:

1. The classic sigmoid function S(x) =
(

eK(ϑ−x) + 1
)−1

, cited in Section 3.1 as well
as in [5] as the standard approach; we set ϑ = 0 and K = 5. Please note that
this function does not respect the assumptions for which we derived Llama, nor
those of Naive.

2. The step function χ(0,∞), characterizing the model behind Llama.

3. The exp function, which characterizes the model behind Naive.

• The latent matrix W was generated assuming that its entries are i.i.d., with the fol-
lowing two value distributions:

1. A generalized Bernoulli distribution Wh,k ∼ B(p) that assumes the value 10 with
probability p = 10

m
and −1 with probability 1 − p. This choice was determined

through experiments, with the purpose of obtaining graphs with a realistic density
independently from the number of features m.

2. A normal distribution Wh,k ∼ N (µ, σ) with mean and variance identical to the
previous Bernoulli distribution.
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3. We had to slightly modify these distributions for the case φ = exp, in order to
obtain realistic graphs also in that case: in particular, when φ = exp we used a
Bernoulli distribution with value 1 with probability p = 1

m
and−1 with probability

1−p, and a normal distribution that had the same mean and variance as the just-
described Bernoulli distribution. In the following, when we say that φ = exp we
imply that we used one of these two modified distributions to generate W.

With these three choices for φ and two choices for the generation of W, we obtained six
different families of feature-rich graphs. For each graph family, we generated 100 different
graphs. The properties of these networks are summed up in Table 1. They represent a wide
range of realistic traits we could actually observe in complex networks.

5.2 Evaluation

First of all, even if the aim of both Llama and Naive is to reconstruct the matrix W, we are
not interested in the actual values of the elements of W. Our goal is to find a feature-feature
matrix for which our model works: it is not important if the values are scaled up or shifted
as long as the predictions of our model for the links remain correct.

For this reason, we will measure directly how accurate our methods are in terms of
predicting if a node pair (i, j) forms a link, given their features. To keep this evaluation
meaningful, our algorithms will not be allowed to see the whole graph: we will use the
standard approach of 10-fold cross-validation; i.e., we divide the set of nodes N into ten
subsets (folds) of equal size, and we used nine folds to train the algorithm and the tenth
remaining fold to test the results (for each possible choice of the latter).

Our evaluation closely resembles the approach followed for link prediction. There are of
course some differences: first of all, we are using an external source of information (the node
features) that is not available to link-prediction methods; second, our aim is to evaluate our
model and our algorithms to find W through link prediction. That is, we are not interested
in finding the best existing link predictor, but in measuring if our algorithms can correctly
fit our model on a specific instance of feature-rich graph (G,Z). However, we followed the
evaluation guidelines for link prediction recently stated by Yang et al. [63].

• We evaluated how accurate our algorithms are in prediction by showing precision/recall
curves: Yang et al. [63], in fact, observe that other alternatives, such as the ROC curve,
are heavily biased after undersampling negative examples and can yield misleading
results; since tied scores do affect results (especially for Naive), we employed the
techniques described in [43] to compute precision and recall values for tied scores.

• Using precision/recall curves allow us to avoid using a fixed threshold between “link”/“not
link”; it is important, in fact, to evaluate the scores themselves; on the contrary, by
choosing a threshold ϑ and then converting each score x to a binary event x > ϑ would
make the comparison unfair; we instead used directly the score computed by our model
(the argument of φ in (1)) since the larger this score, the more probable that link should
be.

• We used the same test set for all the tested algorithms.

• Although in our case it was necessary to undersample negatives (the total number of
node pairs would be unmanageable), we took care of sampling uniformly the edges
missing from the test network: we draw node pairs (i, j) such that (i, j) /∈ A uniformly
from the set N ×N , until we had a number of non-arcs equal to the number of arcs.

Since our methods are not influenced by the distances of the pairs of nodes involved
(contrarily to standard link prediction approaches), we avoided to gather our results by
geodesic distance.
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AUPR Time (s)

Naive 0.824± 0.028 0.034± 0.034
Llama 0.893± 0.020 0.097± 0.097
SVM 0.915± 0.014 6439.303± 6439.303

Table 2: Area under the precision-recall curve (on average across 10 folds and 4 experiments)
and the required training time in seconds. For each value we report the mean and the
standard deviation.

With the above considerations in mind, we proceeded to evaluate our approach using
precision-recall curves. For each of the networks and for each fold, we gave the training
graph as input to the algorithm (Llama or Naive) and obtained an estimated matrix W.
This matrix is defined by6 (5) for Naive and by7 Algorithm 1 for Llama. Each method then
assigned its score (i.e., the argument of φ in (1)) to each node pair in the test set, according
to our model.

5.3 Training time

Before discussing the results, let us present a measure of the training times of the algorithms
we propose, in comparison with SVM, a baseline previously employed in the literature for
feature-rich graphs [17]. For this algorithm, we are using an efficient implementation (the one
from WEKA [24]), written in the same language as our own algorithms, and using therefore
the same methods for I/O. We employed a linear kernel (the fastest) for the SVM.

The results we show are about a single graph family of the ones discussed above (specifi-
cally, the case where Wh,k ∼ N (µ, σ) and the sigmoid function S(x) is used as an activation
function). These are the most common cases treated in the literature. Also, we needed to
set a lower number of nodes n = 1000 in order for the SVM to terminate.

Our results (Table 2) show a training time for the SVM that is four orders of magnitude
longer than Naive or Llama, i.e., taking on the scale of hours for graphs of thousands of
nodes. These results are consistent with the previous literature. Perceptron-like algorithms
are known to be much less computationally expensive than traditional SVMs [56]. However,
despite them to be unusable at the scale we want to operate (tens millions of nodes), it is
worth noting that their performance is (slightly) better than Llama in this particular case.

5.4 Results

We report detailed performance results for Naive and Llama in Table 3. There, we show
the average AUPR (Area Under Precision-Recall curve) obtained across all the graphs inside
each graph family considered. To compute the AUPR we used the technique described by
Davis and Goadrich [16].

Following the previous suggestions [63], we use this area as an overall measure of the
goodness of our approach. We can see how the results of Llama are on average above 95%
for both the step function and the sigmoid activation function. The exp case, in fact, is the

6In the case (Nh ×Nk)∩A = ∅, the Naive approach as described by (5) would set Wh,k = log 0. We tried
two alternative strategies to solve this issue: (i) setting Wh,k equal to a large negative number for those pairs
(de facto putting a lower bound to Wh,k); (ii) employing an add-one smoothing [55], i.e., using log(x+ 1) in
place of log(x). The experimental results are essentially the same in the two cases. The figures presented in
this section are the ones obtained by (i).

7We tried also the normalized version of Llama expressed in (12), for different values of p, leaving the
model unchanged. Again, the experimental results obtained are the same on our dataset, so we are here
presenting the values obtained by the unnormalized version of the algorithm.

21



S,B S,N χ,B χ,N exp,B exp,N
Naive .843± .060 .951± .148 .599± .288 .798± .258 .931± .232 .972± .084
Llama .974± .016 .951± .151 .973± .018 .967± .117 .529± .279 .880± .155

Table 3: Area under the precision-recall curve of Naive and of Llama. For each of the
considered graph families, we report the mean and the standard deviation across all the
graphs.

one where Naive works better – as it was expected from the theory. In the normal case, the
performance of Llama is still good; a Bernoulli distribution with an exponential activation
function is instead the only case when Llama performance is inadmissible. As we shall see
in Section 6, though, the exp case does not correspond to a realistic setting.

Let us discuss in details the results obtained, gathering them by the activation function
employed to generate the graph. To be able to grasp what happens across different folds in
a single graph, and to avoid overcrowding the plots, we will report the precision-recall plots
for a single graph inside each family.

Step activation (Figure 3 and 4). Let us first consider the case of the networks
generated with a step activation function. Note that by using χ(0,∞) as the activation
function we are making our model deterministic — a pair forms a link if and only if its score
is positive. Furthermore, this is precisely the activation function for which we have formal
guarantees on the Llama performances. In fact, its results are remarkably good, as testified
by an area under curve beyond 96% in both the Bernoullian and the Gaussian case.

Naive is able to take advantage of this clean activation function only with a normal
distribution on the values of W (where its performance is around 80%); in the bernoullian
case, it degrades toward a random classifier.

Exponential activation (Figure 5 and 6). Let us now look at the exponential acti-
vation function, for which we have formally derived Naive. The results obtained by Naive

are in fact very good at all recall levels.
Llama, on the other hand, obtains its worst performance on this simulation, due to the

fact that the exponential function is mostly dissimilar from Llama’s natural one (the step
function). In the bernoullian case its performance is chaotic, and depends very much on the
training set; instead, in the normally-distributed case, the area under the precision-recall
curve is definitely better, around 80% on average.

Sigmoid activation (Figure 7 and 8). Finally, let us look at the results obtained when
the activation function is a sigmoid (2) with K = 5. We emphasize that this activation func-
tion is one for which we have no theoretical guarantees, neither for Llama (which assumes
a step function) nor for Naive (which assumes an exponential); also, it is the function of
choice in previous literature (e.g. [47]).

We report in Figure 7 the precision-recall curves for the case of the Bernoulli distribution
and in Figure 8 the precision-recall curves for the case of the normal distribution. We
can see how Naive performances display a high variance and are way behind the Llama

performances, especially in the Bernoulli-distributed case. Llama performances in fact are
almost as good as in its natural step function case, with an area under curve consistently
beyond 95%.

The unambiguous prevalence of Llama in this “natural” case could explain the results
we are showing in the next section.
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Figure 3: Precision-recall curves in the network χ,B. Different colors represent different
folds used in cross-validation.
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Figure 4: Precision-recall curves in the network χ,N . Different colors represent different
folds used in cross-validation.

6 Experiments on real data

In this section, we will focus on (1) how our algorithms behave on real-world feature-rich
networks and (2) how our framework can be used to evaluate the relationship between a
network and a particular set of features for its nodes. In particular, we will consider the
fitness of our model as a measure of how much a certain set of features can explain the links
in such a graph.

Explainability. Given a graph G = (N,A) and a particular set of features F̂ that can
be associated to its nodes (with Ẑ ⊆ N × F̂ ), we can define the explainability of F̂ for G to
be the area under the precision-recall curve obtained by the scores provided by our model;
with “score” we mean, as before, the argument of φ in (1), where the matrix W is the one
found by Algorithm 1 when it is given G and Ẑ as input. We again use the AUPR (Area
Under Precision-Recall curve) as a measure of fitness, as we did in Section 5.3.

6.1 Experimental setup

We are going to consider a scientific network recently released by Microsoft Research, and
known as the Microsoft Academic Graph [57]. It represents a very large (tens of millions),
heterogeneous corpus of scientific works; each scientific work has some metadata associated
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Figure 5: Precision-recall curves in the network exp,B. Different colors represent different
folds used in cross-validation.
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Figure 6: Precision-recall curves in the network exp,N . Different colors represent different
folds used in cross-validation.

with it.
We will consider the citation network formed by these papers: this is a directed graph

whose nodes are the papers, and with an arc (i, j) ∈ A if and only if paper i contains a
citation to paper j. As for the features, we will consider the following alternative sets of
node features:

• authors’ affiliations : for each paper, all the institutions that each author of the pa-
per claims to be associated to. “University of Milan” and “Google” are examples of
affiliations.

• the set of fields of study: the field of study associated by the dataset curators [57]
to the keywords of the paper. “Complex network” and “Vertebrate paleontology” are
examples of fields of study.

These features fully respect all the assumptions we made: they are attributes of the nodes,
they are binary (a node can have a feature or not, without any middle ground), they are
possibly overlapping (a paper can have more than one affiliation/field associated with it).

Our goal now is to compare the explainability (as defined above) of these two sets of
features for the citation network. Since we want to compare them fairly, we reduced the
dataset to those nodes for which the dataset specifies both features: that is, papers for which
both the affiliations and the fields of study are reported. In this way we obtained:
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Figure 7: Precision-recall curves in the network S,B. Different colors represent different
folds used in cross-validation.
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Figure 8: Precision-recall curves in the network S,N . Different colors represent different
folds used in cross-validation.

• A graph G = (N,A) where N is a set of 18 939 155 papers, and A contains the
189 465 540 citations between those papers.

• A set Fa of 19 834 affiliations, and the association Za between papers and affiliations.
Each paper has between 1 and 182 affiliations; on average, we have 1.36 affiliations per
paper.

• A set Ff of 47 269 fields, and the association Zf between papers and those fields of
study. Each paper involves between 1 and 200 fields; on average, we have 3.88 fields
per paper.

• As a further type of test, we performed the experiments also on the union Fa ∪ Ff .

We proceeded then to evaluate the explainability of Fa and Ff for G with the same
approach presented in Section 5.3:

1. We divide the set N in ten folds N0, . . . , N9.

2. For each fold Ni:

(a) We apply Algorithm 1 to the part of A and Z related to the training set ∪j 6=iNj.

(b) We obtain a matrix W.
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Figure 9: Precision-recall curves of the Naive baseline and of Llama, when explaining
the citation network using the affiliation of authors as features. Different colors represent
different folds used in cross-validation.
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Figure 10: Precision-recall curves of the Naive baseline and of Llama, when explaining the
citation network using the fields of study of each paper as features. Different colors represent
different folds used in cross-validation.

(c) We compute the scores of our model with W on the test set Ni.

(d) We measure the precision-recall curve for these scores.

In order to validate on real data the results we obtained in Section 5.3 for synthetic data,
we also carried out the same procedure also with the W matrix found by Naive. As a
result, we obtained two ten-folded precision-recall curves for each of the three set of features
considered: Fa, Ff and Fa ∪ Ff .

Furthermore, we are comparing two different orderings for node sequences in Llama: one
is purely random (the one we suggested in Section 4.2.2), while the other is the natural order
of nodes in this case, i.e., the chronological order of paper publication. Please note, however,
that the 10-fold cross-validation is still operated a random (each train-test split is performed
randomly, regardless of ordering).

6.2 Results

In Table 4 we report the explainability we obtained (measured as the area under the precision-
recall curves shown). We report in Figure 9, 10 and 11 the precision-recall curves for Naive

and for Llama concerning the feature set Fa, Ff and Fa ∪ Ff , respectively.
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Affiliations Fields of study Both

Llama .5551± .0028 .9162± .0003 .9210± .0012
Llama (natural order) .5446± .0013 .9063± .0004 .9176± .0002
Naive .5237± .0005 .6007± .0004 .6345± .0002

Table 4: Area under the precision-recall curve of the Naive baseline and of Llama. For
each of the feature sets considered, we report the mean and the standard deviation across
the ten folds. We highlighted the explainability for the citation network of the affiliations
and of the fields of study, respectively.
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Figure 11: Precision-recall curves of the Naive baseline and of Llama, when explaining the
citation network using both the affiliations and the fields, together, as features. Different
colors represent different folds used in cross-validation.

From the table, we can see that the explainability of the fields of study for the citation
network is much larger than that of the authors affiliations: the first is above 92%, while the
second is 56%. In this sense, our model allows us to say that the fields of study of a paper
explain very well its citations, while the affiliations of its authors do not. This might not
come as a surprise (the relationship between the fields a paper belongs to and its citations
is quite natural) but our contribution here is the formal framework which allows us to back
this assertion with solid numbers, through (1) and Algorithm 1.

We can further validate this statement by looking at the explainability for Fa ∪ Ff : its
value of 92.1% is just faintly over the value of 91.6% obtained for fields alone, implying
that the gain obtained by including the whole new set Fa of 19 834 features is practically
negligible.

Finally, it is worth noting that the ordering of the node does not affect much the results,
that go from 91% of the usual random order to 90% for the natural order.

We can grasp more details by looking at the specific precision-recall curves. By com-
paring the Llama curve for affiliations in Figure 9 and the one for fields in Figure 10, we
can see immediately that the latter depicts a valid classification instrument; there, the pre-
cision/recall break-even point is around 83%. Also, we can see some specific characteristic
of the affiliation feature set: it is in fact able to reach a large precision, but only in the very
low range of recall. Here, a precision of 83% is possible only with a recall lower than 7%:
the reason behind this is that an author’s affiliation is effective in encouraging a citation in a
very limited set of circumstances; we can conjecture that homophily within small institutions
could be an example.

Finally, let us remark how the results we obtained on synthetic data in Section 5.3 are
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fully confirmed by the real data we presented here: Llama, in all the three cases, behaves
much better than Naive. This is especially true for the feature set that actually explains the
network: for the fields of study, Llama is able to get a 91% value for AUPR, while the W

matrix found by Naive approach can barely get a 63%. In particular, precision-recall curves
look similar to the one shown in Figure 7, corresponding to the simulation obtained with φ
set to a sigmoid and W having a Bernoulli distribution; real data is actually less shaky, due
to the fact that we have 18 millions of nodes instead of the 10 000 used in the simulation.
Besides confirming the validity of Llama, this observation also confirms the goodness of our
model in explaining a real graph.

7 Conclusions and future work

In this work, we investigated large, feature-rich complex networks (networks where each
node is characterized by set of features). Specifically, we wanted to analyze a model where
node features induce the formation of the links we observe. This hypothesis is reasonable in
many scenarios (the citation networks used in our experiments are just one example). As
discussed in Section 2, we employed the Miller-Griffiths-Jordan model as our starting point.
The problem we dealt with was how to infer the latent feature-feature matrix: this matrix
is the main unknown of the model; it determines how features interact between each other
to give raise to the observed links.

Specifically, we focused on the following scenario: assume to have complete knowledge
of a node-feature association matrix – i.e., to know for every node, the features it exhibits
(embodied in the binary matrix Z); also, assume to have an (at least partial) knowledge of
the links between these nodes (the graph G). Our goal was, given these elements, to find
the latent interaction between features that governs link formation in the graph G; i.e., to
discover the latent matrix W of our model (1). This estimate alone allows us to use our model
as a possible way to predict which pair of nodes form a link. Other possible applications
include dimensionality reduction of the features, measuring semantic distance, discovering
hidden relationships, and so on.

While many possible methods are available in literature to attack these problems, they
generally only can handle small/medium sized networks, while we are interested in large-scale
networks. This ruled out many well-known techniques, like MCMC. Our first approach was
guided by a Naive Bayes scheme: we demonstrated that a very simple equation to estimate
the matrix can be derived by assuming (naively) independence between features, and by
making a few assumptions to restrict our model. However, we pointed out how its naive
assumptions can cause problems in practical applications, and for this reason we described
a more sophisticated approach, based on perceptrons.

To link it formally with our model of choice, we assumed it to be deterministic by choosing
a step activation function φ in (1). This assumption allowed us to align our model equation
to a perceptron decision rule, by applying an outer product kernel to the binary vectors zi

and zj representing the features in nodes i and j, and to make the perceptron predictions
represent whether they form a link or not. In this way, the internal state of the perceptron
converges to the latent feature-feature matrix W. We described this learning-based approach,
and analyzed what a classical bound on the number of errors of a perceptron means in this
case. Then, since any perceptron-like algorithm can be adapted for this purpose, we chose
the simple and fast Passive-Aggressive algorithm [13] to concretely implement this approach
(Algorithm 1).

In the experimental section, we tested how this algorithm behaves on synthetic data.
We generated graphs and node-feature associations according to the model presented in [5],
under different assumptions. In measuring the outcomes, we adopted the same techniques as
suggested in [63]: specifically we measured the link prediction capability of the estimated W

through a ten-fold cross-validation. Results showed how our learning approach outperforms
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the Naive baseline in all the analyzed cases, except for the exp activation function.
Finally, we conducted an experiment on a real dataset, a citation network composed by

18 939 155 nodes and 189 465 540 link; running the algorithm required about 20 minutes. In
fact, we used the tools we developed for estimating the feature-feature matrix in order to
validate their performance on real data, and to show how they can be used to assess which
feature set can be more useful in explaining the links of a network.

In this work, our main contribution consisted in laying out a bridge between perceptron-
like learning algorithms and feature-rich graph models; we formally presented the connection
between them, and we showed how they can be valuable from a practical point of view when
analyzing graphs that have tens of millions of nodes or more.

We hope that the intersection of machine learning and complex network models will
attract more research in the future; many questions are left open on these topics. Given a
specific graph (possibly with features) how can we understand what is the best model that
can explain its links? Can this model also offer a learning algorithm that allows us to make
predictions about unknown nodes? A full answer to this question would look, from one side,
like a network “family tree”: it would enumerate possible models of networks by describing
the formation of their links, each being more or less reasonable depending on the specific
network at hand. From the other side, such a “family tree” would look like a toolbox in the
hands of the network scientist: each model should offer algorithms for link prediction that
could be more or less accurate or computationally efficient.

Regarding the efficiency of algorithms for our models, there are some alternatives that
are left unexplored: for example other online algorithms, like PEGASOS; also, we would like
to investigate better formal connections between neural networks and complex networks; for
example, can deeper neural networks also be read as a sensible feature-rich graph model?

Other future directions stem, on the contrary, from modifying our model. The latent
matrix W, as reconstructed by the algorithms described in this paper, will be dense; what
happens if we reduce its density (e.g., by thresholding the absolute value of its entries)? How
much would that impact on our ability to reconstruct A? This density/precision tradeoff
can be taken into consideration from start: we may want to try to construct a latent matrix
that satisfies some constraints (e.g., on its density, or on its norm). This constrained version
of the problem may shed new light on the relation between features and links, and can be a
fruitful research direction.

Finally, we remark how it would be definitely important to test the proposed techniques
on other real feature-rich complex networks, in order to see in which concrete cases they can
improve over the current techniques for link prediction and, more generally, for understanding
hidden patterns in network data.

We consider these questions of primary importance, in order to be able to avoid viewing
graph mining algorithms as black boxes, but considering instead what they could say about
the structure and the evolution of specific complex networks.
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