
UNIVERSITÀ DEGLI STUDI DI MILANO

Scuola di Dottorato in Informatica

Dipartimento di Informatica

Informatica/XXX Ciclo

TESI DI DOTTORATO DI RICERCA

Supporting Users in Cloud Plan Selection

INF/01 INFORMATICA

DOTTORANDO

Ala Arman

TUTOR

Prof. Pierangela Samarati

CORRELATORI

Prof. Sara Foresti, Dr. Giovanni Livraga

COORDINATORE DEL DOTTORATO:

Prof. Paolo Boldi

A.A. 2016/17

A C K N O W L E D G M E N T S

I would like to dedicate this thesis, first, to my mother, an angel I owe her all achieve-
ments in my life. Second, to my father who is the symbol of power, humbleness, hard-
working, and patience in my life. Third, to my elder sister, Neda who has supported
me in every pace of my life with constant love and endless encouragement. Fourth, to
my younger sister Negah who has taught me lifetime lessons which could be abbrevi-
ated in one sentence “Do not give up!”. The spirit and motivation she brought to me
caused me to keep on going when I was ready to quit. Fifth, to my brother, Azim who
always I can trust him in every storm that comes my way. Finally, to my niece, Ghazal
who I can not love her more.

Moreover, I would like to dedicate my greatest appreciation to Prof. Pierangela Sama-
rati who has been and will be my role model. Research-wise, working with her as a
Ph.D. student, apart from learning invaluable knowledge, taught me how to be deep
and precise in research, just as she does. Character-wise, her kind heart together with
her incredible social intelligence taught me how to be humble when you are the most
well-known scientist in your field, while maintaining your disciplines and standards.
Lastly, I must mention that her always-open-door policy was my only life-saver solu-
tion whenever I found myself in a deadlock.

Also, I would like to deeply appreciate Prof. Sara Foresti who patiently supported
me with her precise and constructive comments which significantly improved my tech-
nical and writing skills. In addition, I would like to thank Prof. Giovanni Livraga who
always made time for me to answer my every single question.

In addition, I appreciate Prof. Sushil Jajodia, Prof. Roberto Di Pietro, and Prof. Mauro
Conti for reviewing my thesis and providing me constructive comments which signifi-
cantly enhanced the quality of my thesis.

Further, I would like to thank my friends namely, Abhinav Anand, Gerson Soares,
Massimo Walter Rivolta, Aleksandar Rikalovic, and Morteza Ghasemi for all their sup-
port and advises who helped me a lot with a warm smile, each time that I asked for
their favor. In particular, I would like to acknowledge Abhinav who has been like a
brother to me since I met him for the first time. He was always there for me whenever
I needed a friend to share my stories.

Finally, I would like to thank the employees of Department of Computer Science in-
cluding, Lorena, Daniela, Mario, Mirko, Claudia, and Danio for their constant support.

III

A B S T R A C T

Cloud computing is a reference paradigm for deploying applications and for storing,
managing, and processing large amounts of data. Today, thanks to significant efforts
made on optimizing the technological and business aspects of Cloud computing, Cloud
providers available on the market provide a broad range of cost-effective services over
the Internet, characterized by availability, scalability, and reliability. Therefore, indi-
viduals and organizations, ranging from small to large enterprises, can move their IT
asset to the Cloud for benefiting from the significant advantages of Cloud computing
technology.

Moving applications to the Cloud, however, requires addressing different problems.
First, applications should be assessed to see to what extent they are ready to be moved
to the Cloud, considering the specific properties (e.g., dynamic, distributed) of such
environments. Outsourcing applications that cannot be efficiently moved to the Cloud
could limit the use of Cloud computing. Also, Cloud providers offer their services
through plans that differ in terms of their characteristics. This variety ensures great
advantages for users, enabling them to choose the plan that better suits their needs
and economical availability. However, considering the different characteristics of Cloud
plans and the heterogeneous requirements of applications (e.g., the number of replicas,
CPU rates, security features), choosing a Cloud plan, among those offered by a (set of)
Cloud provider(s), is a hard challenge. The situation can get more complicated when
users wish to move multiple applications, at the same time, to the Cloud because
each application can have different (and even contrasting) requirements. Therefore, in
this scenario, it is necessary to properly combine the requirements of applications and
choose the Cloud plan that satisfies them in the best possible way.

In this thesis, we provide models and tools to help users in evaluating applications
that are moved to the Cloud and in selecting the most suitable Cloud plans among the
available ones on the market. Considering the problems mentioned above, we provide
two main contributions in this thesis.

The first contribution focuses on evaluating applications by assessing their modular-
ity. The dynamic nature of Cloud environments implies that Cloud resources usually
undergo frequent changes (e.g., resource join/leave/failure). Therefore, applications
with poor modular design, due to high coupling and low cohesion among their com-
ponents, cannot suitably adapt themselves to dynamic changes, and as a result, are
not able to run effectively on the Cloud. Likewise, such applications cannot be broken
down into components and usually are not efficient when they are distributed across
Cloud environments. In this thesis, we then propose an approach aimed at estimating
the modularity of applications to examine to what degree they can be easily moved to
the Cloud.

V

The second contribution concerns plan selection. First, we propose a consensus-
based plan selection approach aimed at choosing the plan that best balances the pref-
erences of all the applications by reaching a trade-off among their requirements. Next,
we focus on plan selection under uncertainty, by considering a scenario where a group
of users with low technical skills and a limited budget wish to outsource multiple ap-
plications to the Cloud. In this respect, we propose an approach aimed at selecting a
Cloud plan that respects budget limits according to the preferences, even imprecise, of
applications provided by a set of users. Finally, we focus on supporting the business
objectives of users when they move their applications to the Cloud. To do so, we con-
sider a multiple-application scheduling scenario, where a virtual machine is selected
for each application. Then, we propose an approach aimed at maximizing financial
profit that is estimated for each application when it is executed on the Cloud, con-
sidering compensation mechanisms offered by service providers in their service level
agreements (SLAs).

VI

C O N T E N T S

list of figures . IX

list of tables . XI

1 introduction . 1

1.1 Contributions of the Thesis . 2

1.2 Organization of the Thesis . 4

2 related works . 7

2.1 Application Assessment in Outsourcing Scenarios 7

2.1.1 Modular Design Evaluation . 8

2.2 Cloud Plan Selection in Outsourcing Scenarios 11

2.2.1 Cloud Plan Selection in a Single Application Context 14

2.2.2 Cloud Plan Selection in a Multiple-Application Context 15

2.3 Chapter Summary . 21

3 modular design evaluation in outsourcing scenarios 23

3.1 Introduction . 23

3.1.1 Chapter Outline . 24

3.2 Basic Concepts and Problem Definition . 24

3.3 Proposed Approach for Modularity Evaluation 28

3.3.1 Modularity Evaluation at Component Level 28

3.3.2 Modularity Evaluation at System Level 36

3.4 Chapter Summary . 40

4 consensus-based cloud plan selection 41

4.1 Introduction . 41

4.1.1 Chapter Outline . 42

4.2 Basic Concepts and Problem Definition . 42

4.3 Consensus for Cloud Plan Selection . 44

4.3.1 Ranking Cloud Plans for an Application 44

4.3.2 Reaching Consensus among the Applciations 47

4.4 Algorithm for the Proposed Consensus-based Cloud Plan Selection Ap-
proach . 48

4.5 Chapter Summary . 51

5 supporting cloud plan selection under uncertainty 53

VII

VIII contents

5.1 Introduction . 53

5.1.1 Chapter Outline . 54

5.2 Basic Concepts and Problem Definition . 55

5.3 Proposed Solution for Cloud Plan Selection 59

5.3.1 Measuring Importance for Each Application 59

5.3.2 Measuring Criteria Weights . 60

5.3.3 Choosing the Optimal Plan . 61

5.4 Algorithm for the Proposed Uncertainty-based Cloud Plan Selection Ap-
proach . 63

5.5 Chapter Summary . 65

6 risk-aware application scheduling in cloud computing sce-
narios . 67

6.1 Introduction . 67

6.1.1 Chapter Outline . 69

6.2 Basic Concepts and Problem Definition . 69

6.2.1 An Overview of Risk Analysis in the Proposed Study 69

6.2.2 Problem Definition . 70

6.3 Proposed Approach . 75

6.3.1 Measuring Penalty for Each VM . 75

6.3.2 Estimating Financial Profit for an Application 75

6.4 Algorithm for the Proposed Risk-aware Application Scheduling Approach 80

6.5 Chapter Summary . 83

7 conclusions and future works . 85

7.1 Summary of the Contributions . 85

7.2 Future Work . 86

bibliography . 89

a publications . 103

L I S T O F F I G U R E S

Figure 3.1 Example of modularity evaluation classification 26

Figure 3.2 Modularity evaluation meta-model 26

Figure 3.3 Two-level modularity evaluation model 27

Figure 3.4 Class diagram and component architecture for application App . 30

Figure 3.5 Deployment diagram associated with application App 37

Figure 3.6 Sequence diagram associated with application App 39

Figure 4.1 Working of the approach . 45

Figure 4.2 Algorithm for selecting the consensus-based optimal plan 50

Figure 5.1 The Reference scenario . 56

Figure 5.2 Membership functions for TFNs in d̃ 58

Figure 5.3 Algorithm for selecting the optimal plan 64

Figure 6.1 The reference scenario . 71

Figure 6.2 Example of relations between plans and VMs 72

Figure 6.3 Example of mapping function F . 74

Figure 6.4 Decision tree for selecting a VM vj ∈ V for application a1 ∈ A . . 80

Figure 6.5 Algorithm for the proposed risk-aware application scheduling
approach . 82

IX

L I S T O F TA B L E S

Table 2.1 Example of criteria for the requirements of applications 12

Table 3.1 Example of component metric set M(c) 27

Table 3.2 Example of system metric set M(s) 27

Table 3.3 Example of component-level weight vector W(c) and system-
level weight vector W(s) . 28

Table 3.4 Raw values CBCi, normalized values V
(c)
i [CBC], values V(c)

i [CBC]

of metric CBC for each component e(c)i ∈ E(c), and associated
overall value V(c)[CBC] . 31

Table 3.5 Raw valuesNOCi, normalized values V
(c)
i [NOC], values V(c)

i [NOC]

of NOC metric for each component e(c)i ∈ E(c), and associated
overall value V(c)[NOC] . 31

Table 3.6 LCOM values LCOMi,j for each class ci,j in component ci ∈
C, raw values LCOMi, normalized values V

(c)
i [LCOM], values

V
(c)
i [LCOM] of metric LCOM for each component e(c)i ∈ E(c),

and associated overall value V(c)[LCOM] 33

Table 3.7 LOC values LOCi,j for each class ci,j in component e(c)i ∈ E(c),
raw values LOCi, normalized values V

(c)
i [LOC], values V(c)

i [LOC]

of metric LOC for each component e(c)i ∈ E(c), and associated
overall value V(c)[LOC] . 34

Table 3.8 NOA values NOAi,j for each class ci,j in component e(c)i ∈
E(c), raw values NOAi, normalized values V

(c)
i [NOA], values

V
(c)
i [NOA] of metric NOA for each component e(c)i ∈ E(c), and

associated overall value V(c)[NOA] 35

Table 3.9 Raw values CBSi, normalized values V
(s)
i [CBS], values V(s)

i [CBS]

of metric CBS for each server e(s)i ∈ ECBS, and associated overall
value V(s)[CBS] . 37

Table 3.10 Raw values NUSi, normalized values V
(s)
i [NUS], and values

V
(s)
i [NUS] of metric NUS for each service e(s)i ∈ ENUS, and as-

sociated overall value V(s)[NUS] 38

Table 4.1 Example of rating vectors R1, . . . ,R5 43

Table 4.2 Example of weight vectors for applications a1 and a2 over dif-
ferent criteria . 44

Table 4.3 Decision matrix R1 for application a1∈ A 46

Table 4.4 Weighted decision matrix D1, ideal solution p+1 , anti-ideal solu-
tion p−1 , distances dist+j and dist−j of each plan pj from p+1 and
p−1 , and relative closeness S1 of each plan to the ideal solutions
for application a1 ∈ A . 47

Table 4.5 Example of rankings of the plans for each application 47

XI

XII list of tables

Table 4.6 Borda scores assigned to each plan by each application 48

Table 5.1 The example of rating vectors R1, . . . ,R6 56

Table 5.2 User weight Wu and linguistic importance vectors Wa
Alice, W

a
Bob,

Wa
Carol . 57

Table 5.3 Linguistic criteria matrix L . 57

Table 5.4 Linguistic set Ψ and TFN vector d̃ 58

Table 5.5 Application fuzzy importance W̃a
Alice, W̃

a
Bob, W̃a

Carol vectors respec-
tively for users Alice, Bob, Carol, application aggregated fuzzy
importance W̃a

agg vector, and application importance vector Wa . 60

Table 5.6 Fuzzy criteria matrix L̃, fuzzy criteria vector W̃c, and criteria
vector Wc . 61

Table 5.7 Distance vector D, price vector P, ratio vector R, and negative
difference vector ∆− . 62

Table 6.1 Service credit schedule for VMs provided by Amazon EC2 68

Table 6.2 Example of VM uptime outcomes 70

Table 6.3 Example of available VMs . 72

Table 6.4 Example of on-promise profit vector P and off-premise profit
vector P . 73

Table 6.5 Rental cost vector R, HUI vector I, service credit vector Γ , prob-
ability vector Pr1, . . . ,Pr4, penalty vectors ξ1, . . . , ξ4, HUI-wise
profit vector Pa1,vj , and estimated financial profit P

emv
a1,vj of ap-

plication a1 ∈ A w.r.t. each VM vj ∈ V 77

Table 6.6 Rental costs R[v2], R[v3], R[v4], HUI vector I, service credit vec-
tor Γ , probability vectors Pr2, . . . ,Pr4, HUI-wise profit vectors
Pa4,vj , and estimated financial profit P

emv
a4,vj of application a4

w.r.t. each VM vj ∈ V . 78

Table 6.7 Rental costs R[v3],R[v4], HUI vector I, service credit vector Γ ,
probability vectors Pr3,Pr4, penalty vectors ξ3, ξ4, HUI-wise
profit vectors Pa3,vj , and estimated financial profit P

emv
a3,vj of ap-

plication a3 w.r.t. each VM vj ∈ V 79

1
I N T R O D U C T I O N

The rapid advancement in the popularity of Information and Communication Technol-
ogy (ICT) coupled with the growing demand for storing, processing and, managing
digital data have properly justified the expansion of Cloud computing technology. To-
day, Cloud users can benefit from the significant advantages of Cloud computing over
the conventional methods of on-premise computing. First of all, Cloud computing is
considered as a cost-effective computing paradigm [1] [2] because 1) capital costs (e.g.,
hardware infrastructure, software licenses) can be ignored [3]; 2) operating expenses
(e.g., costs for administration and maintenance, server cooling) can be cut- off [4]; 3) the
elastic nature of Cloud resources and the existence of various “pay-per-use” [5] pric-
ing models allow payment only for used resources and lead to significant economic
savings [6] [5]. Second, thanks to the rapid delivery of Cloud services over the Inter-
net, data and applications can be universally accessed, processed, and managed in a
reliable and secure way. Third, due to an almost infinite amount of resources provided
by Cloud computing technology [7], users can move their data and applications to the
Cloud while being worry-free about the lack of required resources. Fourth, by delegat-
ing obligations associated with data and application management to Cloud providers,
users are relieved tedious and low-level administrative tasks [8] (e.g., software update,
backup, data replication). Therefore, in addition to eliminating the need for hiring
administrative staff, users can focus on the core workflow of their business.

Although the technological and business benefits of Cloud computing services may
be seductive, moving applications to the Cloud is a difficult challenge and involves
addressing different key problems. First, we need to assess to what extent applications
are ready to be easily outsourced to the Cloud, considering the specific properties (e.g.,
dynamic, distributed) of Cloud environments. In fact, the adoption of solutions for se-
lecting Cloud plans that suitably meet the requirements of applications would not be
useful if applications cannot run effectively on the Cloud. Second, Cloud plan selection
for outsourcing applications is a difficult problem to address. There are two major rea-

1

2 introduction

sons can be considered for this: 1) nowadays, the Cloud computing market is enriched
by several Cloud providers introducing different Cloud plans with heterogeneous char-
acteristics; 2) the significant progress in ICT has resulted in designing applications with
high levels of complexity and various requirements (e.g., availability level, CPU rates,
security guarantees). The consequences of adopting Cloud plans that do not fit the
requirements of applications can be discussed from two points of views: 1) if the char-
acteristics of selected Cloud plans are higher than the requirements of applications that
are moved to the Cloud, it could cause waste of Cloud resources and introduce unnec-
essary costs (e.g., virtual machine (VM) rental costs, software and hardware licenses)
which is to the benefit of neither Cloud providers nor users; 2) insufficiently meeting
the requirements of applications that are moved to the Cloud decreases the satisfaction
of users from Cloud computing technology and impedes its further adoption. Also, the
intuitive approach for plan selection when multiple applications, at the same time, are
moved to the Cloud is choosing a plan for each application. However, the problem
of Cloud plan selection can get even more complicated when users are interested in
choosing a single Cloud plan for multiple applications that are moved to the Cloud
because each application can have different (and possibly contrasting) requirements.
Therefore, to select a Cloud plan for a set of outsourcing applications, it is essential
to properly combine their requirements in order to balance their satisfaction which
is usually a controversial issue and needs to be carefully investigated in Cloud plan
selection scenarios.

1.1 contributions of the thesis

In general, this thesis follows two main lines of research. First, it focuses on evalu-
ating to what extent applications can be easily moved to the Cloud, considering the
distributed and dynamic nature of Cloud environments. Second, we provide novel so-
lutions for selecting suitable Cloud plans, among those available on the Cloud market,
considering several key problems involved in Cloud plan selection scenarios.

In the following, we provide a summary of the contributions of this thesis.

• Modularity evaluation. The dynamic nature of Cloud environments implies that
Cloud resources change frequently due to management operations (e.g., resource
churn) or their volatility (e.g., resource failure) [9]. Therefore, to be able to run
effectively on the Cloud, outsourcing applications should be capable of dynam-
ically adapting themselves to such frequent changes in Cloud environments [9].
Therefore, applications with poor modular design, which are difficult to recon-
figure, are not able to run effectively on the Cloud [9]. Also, such applications,
which cannot be broken into smaller parts, are not usually performant when they
are distributed across Cloud infrastructures due to high coupling between their
comprised components. We propose a software engineering approach to analyti-
cally evaluate the modularity [10] of applications to estimate to what extent they
can be easily moved to the Cloud w.r.t. change flexibility and/or distributability.
Our proposed solution operates in three main steps: i) defining an evaluation

1.1 contributions of the thesis 3

classification which includes different modularity attributes (e.g., coupling, co-
hesion) and their associated metrics (e.g., coupling between classes for coupling
attribute), according to the context of problem (e.g., application type, execution
context of application on the Cloud); ii) estimating modularity at micro (compo-
nent) level, considering attributes and metrics explored in the first step; iii) eval-
uating modularity at macro (system) level, considering the obtained modularity
at micro level (see Chapter 3).

• Cloud plan selection. The Cloud market is growing at a quick pace, offering a vari-
ety of opportunities to its users. Indeed, Cloud providers available on the market
sell plans that differ in the services they offer, the quality of services they guar-
antee, and the price lists they apply. This variety provides great advantages for
users, enabling them to choose the plan that better suits their needs and economi-
cal availability. However, selecting best-fit Cloud plans, considering the functional
and non-functional requirements of applications as well as the characteristics of
available Cloud plans, is not often an easy task and implies more than few trivial
steps. Also, moving multiple applications to the Cloud, at the same time, makes
plan selection even more complicated as each application can have different (and
possibly contrasting) requirements. Therefore, fulfiling the requirements of some
applications might leave other applications unsatisfied. Then, we provide inno-
vative solutions aimed at choosing suitable Cloud plans for a set of applications,
considering their requirements and the characteristics of Cloud plans (see Chap-
ters 4, 5, and 6). The main features of the proposed solutions can be summarized
as follows.

Consensus-based Cloud plan selection. Balancing the satisfaction of the require-
ments of all applications is considered as a fundamental objective when multiple
applications simultaneously are moved to the Cloud. We present an approach
aimed at balancing the satisfaction of applications’ requirements (e.g., availability
level, CPU rates, security guarantees) by selecting a Cloud plan that is globally
considered the most acceptable by all applications. It operates first by ranking
the available Cloud plans (matching plan characteristics and application require-
ments) and then by selecting, through a consensus-based process, the one that is
considered more acceptable by all applications.

Uncertainty management in Cloud plan selection. Conventional techniques for
selecting Cloud plans implicitly assume that users are familiar with the tech-
nical details of the requirements of their applications which might not always
be the case as unskilled IT users might move their applications to the Cloud
as well. Also, users might consider a limited budget for selecting a Cloud plan,
among those available, each with possibly a different price. This problem can get
even more complicated when a team of users/stakeholders contribute to a Cloud
plan selection process. We propose an approach aimed at choosing an affordable
Cloud plan for a set of applications when multiple users/stakeholders provide

4 introduction

imprecise information about them. We first measure crisp importance for each ap-
plication, based on the associated linguistic importance, expressed by each user,
and then, measure the crisp preference of applications over each criterion (e.g.,
availability, performance), based on the linguistic preference of each application
over the criterion and the obtained crisp importance of applications, using fuzzy
techniques. Finally, we select the affordable plan, through a cost-benefit analysis
process, that is the best fit for applications, considering the obtained preferences
of applications over the set of criteria.

Risk-aware application scheduling. Cloud providers usually apply some com-
pensation mechanisms when their promised qualities of services are not met.
Therefore, to support the business objectives of users, such compensation mecha-
nisms, which can have high impacts on the financial profit of applications when
they are executed on the cloud, should be carefully considered in application
scheduling scenarios. We propose an approach aimed at, by mapping each ap-
plication to an available VM offered by multiple Cloud providers, maximizing
financial profit that is estimated for each application, according to its importance.
It mainly works in three phases. Considering each possible VM availability sce-
nario, we first measure a penalty which is paid by its respective Cloud provider
if the promised uptime of VM is not met, and then, estimate a financial profit
for the current application to be scheduled if it is assigned to each available VM.
Finally, through a risk analysis process, we assign each application to an available
VM, according to the expected monetary value of application when it is mapped
to each available VM.

1.2 organization of the thesis

The remainder of the thesis is organized as follows.

Chapter 2 presents the state of the art of different approaches proposed for addressing
the problems associated with Cloud scenarios discussed in this thesis.

Chapter 3 illustrates an approach to evaluate modularity for an application to estimate
to what extent it can be easily moved to the Cloud w.r.t. change adaptability and/or
distributability.

Chapter 4 discusses an approach for Cloud plan selection that best balances the sat-
isfaction of the requirements of multiple applications by reaching a consensus among
them.

Chapter 5 proposes a solution for Cloud plan selection by considering different impre-
cise opinions about applications that are moved to the Cloud, provided by multiple

1.2 organization of the thesis 5

unskilled IT users with a limited budget for selecting Cloud plans.

Chapter 6 formulates Cloud plan selection as an application-to-VM assignment prob-
lem and uses quantitative risk analysis techniques to support the business objectives
of users w.r.t. the financial profit of applications, considering service level agreement
compensation mechanisms, offered by multiple Cloud providers.

Chapter 7 summarizes the contributions of this thesis and discusses the future work.

2
R E L AT E D W O R K S

This chapter provides some the-state-of-art approaches related to topics covered in
this thesis. Section 2.1 discusses the assessment of applications to see to what extent
they can be easily moved to the Cloud w.r.t change flexibility and/or distributability
as well as some related works in this area. Section 2.2 presents some basic concepts
about Cloud plans and the importance of their selection together with some interest-
ing related works in this area which are divided into two categories: 1) single-application
context which includes scenarios that a plan is selected for a single application (see Sec-
tion 2.2.1) and 2) multiple-application context which includes scenarios that a Cloud plan
is selected for multiple applications with different and possibly contrasting require-
ments (see Section 2.2.2).

2.1 application assessment in outsourcing scenarios

Today, the increasing popularity of Cloud computing due to providing almost unlim-
ited resources which are highly available worldwide in an affordable fashion, com-
pared to traditional on-premise computing, is inevitable. However, while the techno-
logical and economical advantages of Cloud computing technology may be seductive,
several issues must be considered when users move their applications to the Cloud.
First, applications are needed to be assessed to see to what extent they can be easily
moved to the Cloud, considering the properties (e.g., dynamic, distributed) of Cloud
environments. The objective of such assessment is customizing applications to improve
their efficiency when they are executed on the Cloud. For example, in [11], a method is
proposed to improve the efficiency of computation-intensive applications by decreas-
ing the analysis time of term-weighting scenarios and keeping the quality of retrieved
information in an acceptable level. As as a result, such applications can run more ef-
fectively when Cloud providers are short of resources (e.g., due to high workload,
resource churn). In fact, even we adopt an approach to choose the best-fit plans(s) for

7

8 related works

satisfying the requirements of applications, it would not be a promising approach if
they suffer from the lack of running efficiency on the Cloud. Therefore, the assessment
of applications to see to what extent they are ready to be easily moved to the Cloud
can be considered as a prerequisite for Cloud plan selection.

There are several aspects (e.g., performance, security, availability, maintenance cost)
that are needed to be assessed when moving applications to the Cloud. In particu-
lar, considering the dynamic nature of Cloud environments, Cloud resources usually
undergo several changes due to management operations (e.g., resource churn) or their
volatility (e.g., resource failure) [9]. Therefore, applications that are moved to the Cloud
need to appropriately adapt themselves to changes that they face to be able to run ef-
ficiently on the Cloud. Moreover, applications that are moved to the Cloud usually
are distributed across Cloud infrastructure(s) [12], and as a result, they are required
to get properly decomposed into smaller parts. Therefore, considering dynamic and
distributed properties of Cloud environments, we need to evaluate applications w.r.t.
change adaptability and/or decomposability to see to what extent they are ready to
be moved to the Cloud. From the software engineering point of view, applications
with modular design are more flexible to changes [13] compared to monolithic ones.
Also, a modular application can be easily decomposed into smaller parts due to the
low dependency between them, which as a result, suitably distributed across Cloud
environment(s). Therefore, modularity can be considered as a metric for the change
flexibility and/or distributability of applications. In the following section, we provide
some basic concepts about application modular design, and then, we review some
related works addressed the evaluation of application modularity.

2.1.1 modular design evaluation

Modularity is defined as the ability of a system to decompose into a set of cohesive
and loosely coupled modules/components [14]. An Application with a modular de-
sign comprises almost small and related objects, each fulfiling a clear and unique func-
tion [15]. In [16], five criteria defined for evaluating a modular design which enables
us to infer the advantages of modular applications, presented as follows [10]:

• Decomposability. The architecture of a modular application can be decomposed
to into smaller modules which enables their distribution across Cloud infrastruc-
ture(s).

• Composability. The modules of an application with a modular design can be
reused to assemble new application(s). Such reusability allows for decreasing the
required time and cost of developing new applications.

• Understandability. A module in a modular application is easily understandable
as a standalone unit. Thus, it will be easier to build and simpler to change without
having to know about and/or reference to other modules.

• Continuity. Small changes in a modular application will result in changes in
individual modules rather than system-wide changes. As a result, the impact of

2.1 application assessment in outsourcing scenarios 9

side-effects (e.g., changes in other modules, increasing dependency between mod-
ules) due to such changes will be minimized. Therefore, the more an application
is modular, the more flexible it is to changes.

• Protectability. Considering an application with a modular design, if an error
occurs within a module, the impact of side-effects induced by the error will be
minimized.

Considering the continuity (change flexibility) and decomposability properties of
modular design, modularity can be considered as a metric for evaluating the adapta-
tion capability and/or distributability of applications. Several researches (e.g., [17], [18],
[19], [20], [21]) studied the modularity of applications from a software engineering
point of view. In the following, we will discuss some related works in this area.

Modularity evolution assessment. The authors in [17] considered the following mea-
sures for assessing the modularity of applications when a new version is released: 1)
Coupling, which is defined as a measure of interconnection among the components of
an application [10]. Higher coupling values for an application reflect greater difficulties
to change its components because a change in one component may have an impact on
all other components that are coupled to it [22]; 2) Cohesion, which is defined as a mea-
sure of the degree to which a component focuses on just one single task [10]. Higher
cohesion values for an application reflect the higher division of functionalities among
components, and as a result, higher change flexibility and decomposability; 3) Complex-
ity, which is revealed by coupling and cohesion (i.e., higher cohesion indicates lower
complexity). Also, the following sub-measures considered for coupling, cohesion, and
complexity.

• w.r.t. coupling, the following sub-measures are considered: 1) coupling between
object classes [23] which measures the number of other classes that are coupled to
the assessed class; 2) response for a class [24] which counts the number of methods
that can be invoked in response to a message received by an object of the assessed
class; 3) afferent coupling [25] which is the number of classes in other packages de-
pending on classes in the assessed package; 4) efferent coupling [25] which counts
the number of packages that classes in the assessed package depend upon; v)
coupling between methods [26] which represents the total number of methods to
which all the inherited methods are coupled.

• w.r.t. cohesion, the following sub-measures are taken into account: 1) lack of co-
hesion in methods (LCOM) [24] [27] which represents the number of the pairs of
methods that are not related through the sharing of the some of instance vari-
ables; 2) lack of Cohesion in methods (LCOM3) [28] which is an improved version of
LCOM and measures the cohesion of assessed class by considering the effective
usage of instance variables.

• w.r.t. complexity, the following sub-measures are considered: 1) weighted method
per class [24] which measures the sum of the complexities of all class methods;

10 related works

2) McCabe’s Cyclomatic Complexity [29] which measures the number of different
paths (decision points) in a method plus one.

Then, the values of measures are obtained in four release versions of two open source
projects (Camel and POI). Next, the modularity of each project is described by sepa-
rately interpreting the metric values. The work in [17], while sharing the same idea of
considering measures and sub-measures for modularity evaluation, is different from
our proposed approach in Chapter 3 because we measure modularity at two levels
(micro (component) level and macro (system) level). Also, we consider a different im-
portance for each modularity metric, in contrast, to approach presented in [17] which
assumes all measures to be equally important.

Modularity improvement. The distribution of classes among modules in an applica-
tion is considered as an effective factor impacting modularity. In fact, classes with
higher similarity (affinity) should be placed in the same module to improve modular-
ity. In [30], a quantitative approach is proposed aimed at analyzing the modularity of
applications, and then, providing a solution for improving them. To evaluate modu-
larity, the authors in [30] propose a modularity factor, called MMF, based on the level
of coupling among classes which indicates the affinity (similarity) among them. Then,
assuming that the number of modules is known, a set of modularization solutions (i.e.,
the distribution of classes among modules) is proposed, using different cluster analysis
and affinity-rating techniques. Next, a dispersion parameter (i.e., the maximum num-
ber of classes in a module) is defined to avoid concentrating a large number of classes
on a small set of modules. Then, the best modularization solution is the one with
high MMF and not too much dispersion. The metrics considered for evaluating mod-
ularity in [30] are limited to coupling, cohesion, and size (i.e., the number of classes,
the number of modules) in contrast to our proposed method where it is possible to
consider any modularity attribute and metric, according to problem context. Also, the
authors ignore the different importance/relevance of modularity metrics in contrast
to our approach. Moreover, the work in [30] does not evaluate modularity at system
level which is different from our proposed method as we estimate modularity both
at micro (component) level and at macro (system) level. In [18] a method is proposed
aimed at providing heuristic advice on code modularity based on a heuristic design
similarity measure. The proposed similarity measure, which calculates the similarity
between two objects in an application, supports two services namely, clustering and
maverick analysis. Clustering service identifies the set of related procedures and mav-
erick analysis identifies procedures that appear to be in the wrong module. The work
in [18] focuses on code modularity which is different from ours as we consider mod-
ularity measurement at micro (component) level and macro (system) level. Also, our
proposed method is more general as it is possible to consider any modularity attribute
and associated metric which provides suitable flexibility in choosing modularity at-
tributes and metrics according to the context of problem (e.g., application architecture,
application type, Cloud service change rate, the level of application distribution). Such
modularity attributes and metrics could be defined by referring to existing guidelines

http://camel.apache.org/
http://poi.apache.org/

2.2 cloud plan selection in outsourcing scenarios 11

and classifications (e.g., [31], [32]).

In [20], a method is proposed to evaluate a quality attribute (e.g., maintainability)
considering associated quality characteristics (e.g., correctability, testability), each with
respective metrics (e.g., fault rate and required effort for testability) [21] [33]. Inspired
from [20], the authors in [21], which probably is the closest work to ours for mod-
ularity evaluation (see Chapter 3), proposed a method to measure modularity as a
quality attribute. They also considered only maintainability and reusability as quality
characteristics. In contrast to the work in [21], our work provides suitable flexibility in
modularity evaluation by defining a generic modularity evaluation classification which
modularity attributes (e.g., coupling, cohesion, size) and their associated metrics can be
considered both at micro (component) level (e.g., coupling between components [24],
for coupling attribute) and at macro (system) level (e.g., coupling between servers, for
coupling attribute). Moreover, we introduced a metric at system level for evaluating
modularity. It measures the number of use-cases for each application service which is
obtainable by adopting UML analysis (e.g., considering a sequence diagram associated
with the assessed application).

The second main issue addressed in this thesis is Cloud plan selection. In the next
subsection, we provide some basic concepts about Cloud plans and some related works
about their selection in outsourcing scenarios.

2.2 cloud plan selection in outsourcing scenarios

The growing popularity of Information and Communication (ICT) has resulted in de-
veloping applications with complex and different functional and non-functional re-
quirements. Therefore, when applications are moved to the Cloud, several aspects
should be considered to select Cloud services that suitably meet the requirements of
applications. Exploring necessary criteria for fulfilling the requirements of applications
can be one of the most important aspects of such consideration. To show the diversity
and low-levelness of the requirements of outsourcing applications, we conducted a lit-
erature review to explore criteria that are usually considered for the requirements of
applications, from both user and provider point of views. As depicted in Table 2.1, we
divide the considered criteria into four main categories, including Security, Cost, and
Performance, and Support, and then, for each category, we consider some sub-categories
(e.g., Elasticity and Latency, considering Performance criterion).

12 related works

Criterion Sub-criterion (1) Sub-criterion (2) Sub-criterion (3) Comments

Security
Confidentiality

e.g., dependency on external
third party [34], intrusion
detection time

Integrity
e.g., credential management
overhead [35]

Availability
e.g., load balancing [35],
fault resolution time [36]

Cost

Pricing

Model
Resource

e.g., per-use, subscription,
prepaid per-use

Licence
e.g., hourly, one-time charge,
free [37]

Variation
e.g., discount on the per-use
model [37]

Price changes
e.g., increasing 15% instance/hour
and storage price in 2 years [38]

Premium services e.g., fast connection [37]
Temporal replication of
components [37]

to handle spikes

Hidden extra charges
e.g., ingress and egress bandwidth
to predict in advance) [37]

Data transfer between Clouds [39]

Staff skills [40]

Technical/Experience of
IT professionals [41]
Negotiating & Engaging in
technical discussions [41]

Staff training [42]

knowledge/experience/skills
of staff
Available documentation
from the provider

e.g., Windows Azure tutorials

Operating cost [43]

Test [44]
functional and non-functional
properties [45]

(Re)-Configuration/Installation

e.g., collecting (re)configuration
information [45], GUI [46],
database, code, connection [47],
security policy [48], data
encryption/fragmenation [36], third
party tool installation [42]

Maintenance

Update [44]
e.g., patching OS, applications, and
VMs with the last security updates

Upgrade

Upgrade frequency [49]

Test [44]
functional and non-functional
properties (e.g., response time
fault tolerance) [45]

Configuration
e.g., database, code, connection [47]
, security policy [48]

Monitoring e.g., usage bills, access logs [44]

Time to market [44]
Technical/Experience skills [40]

Application complexity

Performance

Elasticity

Workload variation

Application type
e.g., data handling/exchanged
amount [50], computation-
intensive [50]

Peak usage [50]
e.g., avg. duration of load peaks/
year, avg. # of load peaks/year

of users [50]
Geographic distribution
of users [50]

Static content [51]
static contents (e.g., images,
audio files) are better candidates
to move to the Cloud

Scalability

Multi-tenancy awareness [37] e.g., virtualization overhead

Concurrency [37]
e.g., to support data replication
between (VM) instances

Scaling latency [37]
e.g., resource availability,
application architecture

Replication [52]

Latency

Distance between on-premise
and off-premise layers of
application [37]
Distance between application
and user [37]
Distance between VM
instances [37]

e.g., in the same data center, region.

Traffic shaping [53] which leads to high latency
Availability of fast
dedicated connections [37]

Available bandwidth
Input/Output operations
per second [51]

Support
Consulting

e.g., consulting prior to application
oustourcing [54]

Maintenance
e.g., maintenance for deployed
application accross several
providers [39]

Table 2.1: Example of criteria for the requirements of applications

2.2 cloud plan selection in outsourcing scenarios 13

As the complexity of outsourcing applications increases, Cloud providers are re-
quired to offer more heterogeneous Cloud plans to better satisfy the requirements of
applications. Therefore, considering the requirements of applications and the charac-
teristics of Cloud plans, selecting suitable Cloud services is usually far from straight-
forward. For example, a computation-intensive application (e.g., a signal processing
application) which works on publicly available data, may require a Cloud service with
high performance features (e.g., CPU rates, disk speed). However, another application
that processes sensitive data is mostly interested in a Cloud service with high secu-
rity features (e.g., encryption algorithms, authentication mechanisms). Cloud providers
usually offer Cloud services in the form of plans that differ in the services they offer, the
quality of services they guarantee, and the price lists they apply (e.g., a (set of) virtual
machine (VM(s)), dedicated hosts, storages). This variety provides great advantages for
users, enabling them to choose the plan that better suits their needs and economical
availability. Today, there are three main types of Cloud plans can be considered in the
Cloud market which is presented as follows.

• Provider-defined. The characteristics of these Cloud plans are defined by Cloud
providers, and as a result, provide the least flexibility for users as they need
to select plans among those offered by Cloud providers. The advantage here
is that Cloud users can choose plans considering their available characteristics
which can ease the selection process. However, users need to know about the
low-level information (e.g., implementation and management details) of Cloud
plans which are not usually revealed by Cloud providers [55].

• User-defined. The characteristics of these plans are defined by users considering
the requirements of outsourcing applications, which as a result, they provide the
maximum flexibility for users as they can ask for the most tailored plans for their
applications. However, users need to be technically aware of the requirements of
applications.

• Hybrid. Users can select these plans, offered by Cloud providers, and customize
them according to the requirements of applications. However, the flexibility of
such plans might suitably not meet the requirement of applications as Cloud
providers usually do not allow for the full customization of a hybrid plan.

The availability of various Cloud plans with heterogeneous characteristics has both
favorable and unfavorable consequences. On the one hand, the variety of Cloud plans
gives users the freedom of selecting Cloud plans that better fit the requirements of
applications. One the other hand, selecting Cloud plans, over other available ones, is
considered as an essential challenge as it has clear consequences on the quality of pro-
vided services (e.g., a plan with frequent downtimes would cause considerable incon-
veniences to users trying to interact with the applications deployed over it). Therefore,
apart from issues and difficulties in choosing the type of Cloud plans (e.g., the famil-
iarity of users with Cloud scenarios, the allowed customization level of Cloud plans
by Cloud providers), selecting suitable plans is a fundamental issue which should be
carefully investigated. To deal with these issues, the Cloud computing literature have

14 related works

addressed various issues in Cloud plan selection scenarios which will briefly be dis-
cussed in sections 2.2.1 and 2.2.2.

2.2.1 cloud plan selection in a single application context

In this section, we will discuss some related works (e.g., [56], [57], [58], [59], [60]) that
consider Cloud plan selection in a single application context.

Service discovery and selection. The authors in [56] consider a scenario characterized
by a set of Cloud providers which can publish the characteristics of their services and
a user which selects the one that better satisfies the requirements of her application.
To do so, the authors use a framework called Resources Via Web Services (RVWS) [61]
which allows web services to be stateful, and as a result, current information about
the resources of services is kept locally in the WSDL documents of services. There-
fore, resources do not need to be examined every time a WSDL document is called.
For a service, two attributes are considered: 1) state, which covers the current avail-
ability of a service and associated resources; 2) characteristics, which represents the
nonfunctional attributes of offered services (e.g., cost, QoSs). To support the discovery
of available services, a dynamic broker is considered which allows publishing detailed
information about services, keeping them updated, and finding suitable resources and
services based on application requirements. To support service selection, the user pro-
vides three groups of requirements including, service, resource, and provider with the
possibility of specifying their associated attributes on filtering. Finally, the dynamic
broker finds matching services, resources, and providers.

Cloud plan selection based on multi-level criteria. The authors in [57] proposed a
framework called Service Measurement Index Cloud (SMICloud) to select a suitable
Cloud service for an application. The authors, as the requirements of an application,
consider some attributes (e.g., performance, assurance), each with two levels of sub-
attributes (e.g., serviceability and free support, considering assurance attribute). Also,
they provide a flexible ranking model to support various types of attributes, includ-
ing boolean (e.g., free support), range (e.g., the initiation time of a VM), unordered
set (e.g., the number of supported platforms (portability)), and numerical. Then, the
authors adopt a multi-criteria decision making (MCDM) technique called Analytical
Hierarchical Process (AHP) to properly assign a different importance to each consid-
ered attribute and sub-attribute, and then, rank available Cloud services.

Another major line of work focuses on security issues in multi-Cloud scenarios,
proposing solutions to protect integrity (e.g., [62, 63, 64, 65]) and confidentiality of
accesses (e.g., [66, 67]) to data outsourced to multiple providers. While sharing with
us a scenario characterized by multiple Cloud providers, these proposals are com-
plementary to our provided methods and tools for Cloud plan selection in this the-
sis as they specifically focus on the enforcement of protection mechanisms. All the
above-mentioned works operate in a single-application context. That is, Cloud plans
are selected based on a single set of requirements. However, the problem of select-

2.2 cloud plan selection in outsourcing scenarios 15

ing Cloud plan selection can get even more complicated when multiple applications,
at the same time, are moved to the Cloud because each application can have differ-
ent (and possibly contrasting) requirements. For example, an application with unpre-
dictable workload patterns is more interested in plans with efficient elasticity algo-
rithms, while an “always-on” application (e.g., mission-critical web applications) cares
more about the availability characteristics of plans (e.g., the number of replicas, failure
recovery time). Therefore, users need to properly combine applications’ requirements
and choose plans that satisfy them in the best possible way. Since the focus of proposed
models and tools in this thesis is on supporting Cloud plan selection in a multiple-
application context, we will review some related works in this context in the following
section.

2.2.2 cloud plan selection in a multiple-application context

The research community have addressed Cloud plan selection in a multiple-application
context (e.g., [60], [68], [69]). In the following, we will briefly review some interested
related works in this area.

Supporting security requirements as constraints. An interesting method proposed
in [68] to support considering various security requirements when the best suite of ser-
vices is selected. The authors define security requirements in term of three sets of con-
straints, including application-oriented, infrastructure-oriented, and global constraints.
For example, an application-oriented constraint, called Restrict, implies that all avail-
able VM instances are required to place within a given community area (e.g., within
EU countries), based on security and privacy policies, and government enforced obli-
gations. Also, another application-oriented constraint, called Distribute, implies that if
user replicates her application on two VM instances, to avoid single points of failure,
they never should be located on the same physical host at the same time. Forbid is
an example of infrastructure-oriented constraint which indicates that VM instances,
owned by a user, cannot place on some specific physical hosts as they are considered
for system-level services (e.g., access control engines). An infrastructure-oriented con-
straint, named Count, limits the number of VM instances on a physical host to avoid
their performance degradation. Also, resource capacity, as a global constraint, states that
the amount of resources, consumed by all VMs that are located on a physical host, can-
not exceed the total capacity of physical host in any dimension (e.g., CPU, memory).
After constraint definition phase, the authors map available VM instances on a set of
physical hosts which are classified into some clusters. To do so, adopting a greedy
heuristic-based algorithm, available clusters and physical hosts are analyzed and those
can perform VM provisioning are identified, considering the defined constraints. The
algorithm tries to map available VM instances to a cluster with the highest amount
of available resources to reduce the load variance between clusters. Also, to reduce
energy consumption costs, when a cluster with maximum resource availability is se-
lected, each physical host within the cluster is analyzed to map as many VM instances
as possible on that physical host. While the work in [68] shares with our work (see

16 related works

Chapter 4) the idea of the satisfaction of multiple sets of user requirements (in terms
of constraints), it also focuses on the reduction of the energy costs as well as the run-
ning physical hosts from the provider’s point of view. Therefore, it is different from
our scenario as it is not completely based on the consensus among the sets of user
requirements on their satisfaction level.

Composition-based Cloud provider selection. In [69], the authors suggest a method
for selecting the best set of Cloud providers, according to multiple sets of requirements.
To do so, first, the authors, capture major relationships between user requirements and
Cloud providers, while filtering the minor ones which are considered as noises, adopt-
ing Singular Value Decomposition Technique (SVD) [70]. Then, the centroid values of
user requirements are calculated as the weighted sum of user requirements. Finally, a
set of Cloud providers is selected based on measuring Cosine similarity between the
obtained centroid values of requirements and the characteristics of Cloud providers.
The work in [69] is different from ours (see Chapter 4) as it focuses on selecting a set
of Cloud providers, while we consider the selection of a single Cloud plan.

In this thesis, considering Cloud plan selection in a multiple-application context, we
followed two major lines of research: supporting the business objectives of users (see
Chapter 6) and their uncertainty about the requirements of applications (see Chapter 5).
Therefore, in the following subsections (Section 2.2.2.2 and Section 2.2.2.1), we will
review some related works, considering these lines of works, respectively.

2.2.2.1 cloud plan selection under uncertainity

Traditional techniques for selecting suitable Cloud plans for applications implicitly as-
sume that users are aware of the technical details of the requirements of applications.
However, it is not always the case as users, possibly without an IT background, can also
be interested in moving their applications to the Cloud. Therefore, since such users may
not have precise ideas about the requirements of applications, quantitative approaches
might not precisely capture the uncertainty of users about applications’ requirements,
and as a result, select plans that do not adequately meet them. Supporting Cloud plan
selection under uncertainty studied also in the past (e.g., [71], [72], [73], [74], [75]). In
the following, we review some interesting works in this area.

Supporting service composition for unskilled users. A method in [71] proposed
which tries to support users with vague ideas about the requirements of multiple appli-
cations by simplifying the process of the selection of a set of services. The main compo-
nents of proposed architecture are as follows: 1) user portal which presents all available
services to users. Also, it provides some graphical interfaces for capturing user re-
quirements; 2) translator which translates Cloud service information to a provided web
service modeling language format; 3) Cloud service repositories which maintains Cloud
services’ information; 4) discovery and negotiation service which maps requirements to
resources, using a provided ontology-based discovery technique; 5) composition which
builds possible service compositions and excluding incompatible ones; 6) optimizer
which evaluates service composition candidates, considering user’s QoS preferences;

2.2 cloud plan selection in outsourcing scenarios 17

7) planning which determines the order of deploying services; 8) image packaging which
builds the discovered services and meta-data into deployable packages (e.g., Amazon
machine images); 9) deployment which configures and sets up services (e.g., firewall
configurations). The authors consider four composition criteria including, deployment
cost, deployment time (i.e., required time for deploying a service on a VM), reliability,
and compatibility. Considering deployment cost, the authors define some categories in-
cluding, acquisition cost (e.g., licensing cost), ongoing cost (e.g., data transfer cost), and
decommissioning cost (e.g., costs related to archiving and removing data at the end of
application lifecycle). Considering reliability, the authors introduce a metric called SLA
confidence level which measures how services are reliable, considering their associated
SLAs and their performance history. The final objective is to find a fully-compatible
service composition for a set of applications which minimizes deployment time and
cost, and improves reliability. To do so, first, Pareto front composition solutions are
identified using multi-objective algorithms, considering the preferences of users which
are described by defining some high level “if-then” rules to build a fuzzy rule-based
engine. The proposed fuzzy inference engine has three inputs including, deployment
time, deployment cost, and composition reliability. The output of fuzzy inference en-
gine is the desirability level of composition. Then, the best Pareto front composition
solution is chosen by ranking the identified ones. The work in [71], which shares the
idea of supporting Cloud plan selection for unskilled users, is different from ours as it
provides a composition of services to meet the requirements of applications, while we
consider the selection of one single Cloud plan. Also, the authors in [71], contrasting
to us, focus on Cloud service selection in a single-user context (i.e., a single user con-
tributes to the service selection process).

QoS-based service composition optimization. In [72], a method is proposed for the
optimization of multiple service selection for a complex job which includes several
simple jobs (sub-jobs). The proposed service composition optimization is carried out
in four steps: i) job analysis which the QoS importance of each job is measured in this
step. For this, the authors consider four categories of QoS indices including, market
or manufacturing response time, cost, quality, and the guaranteed ability of contract.
Also, for each QoS index, a set of sub-indices are considered (e.g., success rate and
reliability, considering the guaranteed ability of contract). Then, QoS indices and their
sub-indices are organized into a hierarchy in order to calculate the job-specific impor-
tance of all QoS indices and their sub-indices, adopting fuzzy AHP technique; ii) service
discovery which in this step, through a semantic matchmaking process (e.g., semantic
UDDI [76]), a list of alternative services is obtained for each sub-job; iii) SLA negotia-
tion between service provider and consumer to get the volumes of each service’s QoS
indices; iv) establish a multi-objective optimization model for service composition, consid-
ering optimization objective and constraints (e.g., for each job, maximizing the perfor-
mance/cost ratio of services, while ensuring that total time and price do not exceed
time budget and price budget); v) solve the model to get the optimal solution, adopting
an optimization algorithm. The work in [72], apart from service composition-based sce-
nario, is different from ours in Chapter 5 as we focus on selecting a single Cloud plan

18 related works

when multiple users contribute to the Cloud plan selection process. Also, the authors
in [72] assume that sub-jobs are to be equally important, in contrast to our scenario
where each application can have a different imprecise importance.

Hierarchical Cloud service selection. In [73], a Cloud trust evaluation system is pro-
posed for selecting the best Cloud service, considering numerical (e.g., CPU speed)
and linguistic (e.g., security policy, network security) requirements. To do so, the
authors generate a hierarchical fuzzy inference system which includes four compo-
nents: 1) web interface which provides users an interface to submit their functional and
non-functional requirements; 2) discovery service which retrieves services that can meet
functional requirements (e.g., the number of CPU cores, memory amount), static QoS
requirements (e.g., security, policy), and business policies; 3) Cloud benchmark service
which constantly monitors the performance of Clouds by running benchmark services;
4) trust evaluation service which returns the best service, according to considered criteria.
The proposed hierarchical fuzzy inference system is composed of connected atomic typ-
ical fuzzy inference modules, defined for considered criteria. The inputs of upper-level
modules in the proposed hierarchical fuzzy inference system are the outputs of lower
level modules. The inputs of leaf interface modules are obtained from the services’
past benchmark results. The system dynamically generates fuzzy “If-Then” rules for
each module, according to user requirements and a pessimistic rule generation strat-
egy (i.e., the output trust level is acceptable only if all input variables satisfactory). In
this manner, the proposed hierarchical evaluation framework ranks available services,
according to their evaluated trust values, user requirements, and the services’ bench-
marking results. The work in [73], while shares with our work in Chapter 5 the idea of
selecting a Cloud service/plan, is different from our scenario as we consider multiple
users who contribute to the process of selecting a Cloud plan for multiple applications.

Hybrid Cloud service selection. In [74], the authors propose a fuzzy decision-making
framework for selecting Cloud services. The authors introduce a fuzzy Cloud ontol-
ogy to model the relationship between service concepts (e.g., network management)
and service properties (e.g., service response time) as well as the relationship between
service concepts. Also, the proposed fuzzy Cloud ontology supports the calculation
of similarity between Cloud service concepts and the query of service compositions.
Then, the authors choose k-top services having the highest similarities with the sub-
mitted query. Next, adopting fuzzy AHP, the importance of non-functional properties
(e.g., QoSs, price) is calculated. Finally, adopting fuzzy TOPSIS, candidate services are
rated. The final ranking of services is based on the linear combination of service sim-
ilarity with the submitted query and service ratings. The work in [74], which focuses
on the selection of Cloud services in a single-user context, is different from ours pro-
posed in Chapter 5 as we consider selecting a Cloud plan for multiple applications
with different and possibly contrasting preferences over a set of criteria (e.g., availabil-
ity, performance) in a multiple-user context.

2.2 cloud plan selection in outsourcing scenarios 19

Group-based Cloud service selection. In [75], a multi-attribute group decision-making
tool is proposed to help users for selecting Cloud providers. To do so, a committee of
decision makers (DMs) is formed and asked to provide their qualitative assessments
about Cloud providers for subjective attributes (e.g., technology, environment) and
quantitative assessments for objective attributes (e.g., cost). The subjective and objec-
tive assessment of attributes is calculated using linguistic weighted arithmetic aver-
aging (LWAA) [77] operator and the statistical variance of quantitative assessments,
respectively. Then, based on a weighted combination method, the subjective and objec-
tive preferences of attributes are combined to obtain their integrated preferences. Next,
considering the integrated attribute preferences, the objective (adopting an improved
TOPSIS method [78]) and subjective (adopting a Delphi-AHP method [79]) importance
of DMs are measured. Then, the integrated importance of each DM is calculated as the
linear combination of subjective and objective importances. Finally, Cloud providers
are scored and raked, according to the aggregated decision opinions of DMs, consider-
ing the preferences of attributes and the importance of DMs. The work in [75], while
shares with our work in Chapter 5 the idea of selecting a Cloud plan/provider in a
group-based context, is different from ours as we consider the selection of a Cloud
plan for multiple applications, each with possibly a different importance.

2.2.2.2 business-oriented cloud plan selection

The growing popularity of Cloud computing technology lies in several reasons. Among
them, the business-effectiveness of Cloud plans is considered as one of the important
ones. In fact, for a majority of Cloud users, the cost-effectiveness of Cloud solutions is
one of the main motivations for outsourcing their data and applications to the Cloud.

As we mentioned before in Section 2.2, a Cloud plan can be any type of customized
Cloud service such as a (set of) VM(s). In VM provisioning scenarios, when multiple
applications are moved to the Cloud, they usually are scheduled by mapping each one
to a VM, among a set of available VMs. Here, a fundamental challenge is supporting
the business objectives of users in application scheduling scenarios. In particular, when
applications to be outsourced are business-critical ones (e.g., e-commerce applications),
users expect not only minimizing the risk of the financial loss of applications but also
efficiently supporting their financial profit, when they are executed on the Cloud. Then,
it is essential to carefully investigate the process of the scheduling of such applications
to suitably support the business objectives of users w.r.t. the financial profit of appli-
cations. In the literature, there are several business-oriented methods to support VM
provisioning scenarios (e.g., [80], [81], [82], [83], [84]). In the following, we review some
interesting related works in this area.

SLA-based resource provisioning in virtualized Cloud datacenters. In [80], the au-
thors proposed a method for improving resource provisioning in virtualized Cloud
data centers w.r.t. the profit of Cloud providers. The proposed method includes four
key components: 1) admission control which decides whether the requested VM for an
application can be allocated and the QoS requirements can be met if the requested VM

20 related works

is allocated; 2) VM manager which initiates a VM and allocates it to a physical host hav-
ing the required capacity; 3) job scheduler which schedules applications on newly initi-
ated VMs; 4) SLA manager which monitors current SLAs for each application. Also, the
authors consider two types workloads: i) transactional workloads (e.g., web applications
with time-varying workloads); 2) non-interactive workloads which there is no commu-
nication between tasks. For transactional workloads, the authors consider three types
of penalties for SLA violation including, fixed, proportional, and delay-independent.
The fixed penalty, as its name clearly states, is applied whenever a Cloud provider
fails to meet current resource capacity demand. The delay-independent penalty is pro-
portional to delay incurred by a Cloud provider in returning the resource capacity.
The proportional penalty is proportional to delay that is incurred by a Cloud provider
in returning some resource capacity, considering times that the resource capacity was
requested and allocated. For non-interactive workload, the authors consider a penalty
considering the required number of CPU cycles and a deadline to provide such amount
of resource. The authors used artificial neural network techniques to forecast the future
workload (VMs’ CPU utilization) and predict the amount of available resources in fu-
ture. Based on such prediction, it is decided if a new application can be accepted for
assigning to available VM(s) or not. Finally, for resource provisioning, the priority is
given to applications with lower penalty rates. The work in [80], which shares with
our work presented in Chapter 6 the idea of mapping applications to VMs by consid-
ering SLA penalty rates to support the profit of Cloud providers, is orthogonal to our
scenario as we focus on supporting the business objective of users w.r.t. the financial
profit of applications.

Auction-based VM provisioning. In [81], a method is proposed to efficiently allocate
resources in a combinatorial auction system and reduce SLA penalty cost. The authors
define SLA in terms of a deadline for the execution of a job. They consider a scenario
in which a set of users request computing resources in the form of VM instances. Each
user requests resources for a job by submitting a bid including, the number of VM in-
stances for each type of VM and price that she is willing to pay for using the requested
bundle of VMs. Cloud provider runs an auction mechanism periodically and users bid
for VM bundles for a unit of time. If a user needs VM instances for more than one unit
of time, she needs to bid periodically. The bidding process is continued until either its
deadline is exceeded or the job execution is completed. To maximize the profit of Cloud
provider by reducing penalty cost, the probability of deadline violation is computed,
and then, the profit of Cloud provider is estimated based on the deadline violation
probability obtained in the previous step, the revenue of VMs, their running cost, and
SLA violation penalty cost. The authors conclude that jobs with impending deadlines
are more likely to be determined as auction winners because the probability of allocat-
ing resources to them is higher as they incur less SLA penalty for Cloud providers. The
proposed work in [81] focuses on maximizing the profit of Cloud provider, in contrast
to our scenario which tries to maximize the financial profit of applications, owned by
users.

2.3 chapter summary 21

Profit optimization in VM provisioning scenarios. In [83], the authors propose a
constraint-based approach to support the overall profit optimization of Cloud providers
in VM provisioning scenarios. To do so, they consider a scenario which consists of a
set of virtual clusters (VC). Each VC is defined as a set of VMs, running on private re-
sources and possibly some VMs rented from public Cloud providers. Also, each VC is
associated with a specific application type which is managed by a corresponding pro-
gramming framework (e.g., for batch application types, it is possible to use Oracle Grid
Engine (OGE)). Each VC hosts a subset of applications. Also, each application runs on a
set of VMs, including private and public ones. The proposed profit estimation policy is
called when a new request to deploy an application is received and no resource is avail-
able on the associated VC to run the application. To meet the objective of optimization
policy (i.e., maximizing the overall profit of Cloud provider), the authors try to avoid
getting resources from public Cloud providers by giving private resources to a new
request. Such resources could be obtained from private resources that are already as-
signed to running applications. However, the performance of such applications could
be decreased, and as a result, guaranteed QoSs in their SLAs could be violated. To
avoid such situations, the authors ensure, as a constraint, that profit achieved from a
request for hosting a new application would be more than the penalties for impacted
applications. Also, taking resources from already hosted applications could impact the
reputation of Cloud provider. To avoid such situations, the authors consider a con-
straint which implies that the percentage of impacted applications should be less or
equal to a predefined threshold. The authors propose two ways to provide resources
for a new request. First, resources are borrowed from running applications during their
execution which could impact on their performance with a cost called bid which is the
sum of penalties for the impacted applications. The second way is waiting until some
resources are released by some running applications which impacts on the resource re-
quest with a waiting time. When a new resource request to host an application arrives,
among the VM prices of public Cloud providers, the cheapest one is selected. Then, all
available VCs provide their waiting time and a bid, according to the percentage of im-
pacted applications. Then the smallest bid that the associated percentage of impacted
applications is less than a predefined threshold is selected. Next, the cost of shortest
waiting time that the percentage of impacted application is less than the predefined
threshold is calculated. Further, the cost of selected bid and waiting time is compared,
the minimum one is selected, and added to the cost of running application on the pri-
vate resources. Finally, the cost of private resources and public resources is compared,
and the resource type (public or private) with the minimum cost is chosen to host the
new application.

2.3 chapter summary

In this chapter, we discussed some related works in the literature that addressed issues
discussed in this thesis. We started with reviewing some related works that evaluate
the modularity of applications to see to what extent they can be easily moved to the

22 related works

Cloud w.r.t. adaptation capability and/or decomposability. Then, we focused on re-
lated works that addressed Cloud plan selection in a single-application context which
a set of requirements is considered for selecting Cloud plans. Next, we presented some
related works for Cloud plan selection in a multiple-application context with a special
focus on supporting the uncertainty of users about the requirements of applications as
well as the business objectives of users.

3
M O D U L A R D E S I G N E VA L U AT I O N I N O U T S O U R C I N G

S C E N A R I O S

Cloud computing environments are highly dynamic because Cloud resources continu-
ously evolve, according to changes that occur in such environments. Therefore, to run
effectively on the Cloud, outsourcing applications should be able to adapt themselves
to dynamic frequent changes in Cloud environments. Moreover, since applications can
be distributed across several Cloud environments, they are required to suitably be de-
composed into smaller parts. In this chapter, we focus on the evaluation of applications
to see to what extent they can be easily moved to the Cloud w.r.t. change adaptabil-
ity and/or decomposability, considering the dynamic and distributed nature of Cloud
environments.

3.1 introduction

Today, considering the significant benefits of Cloud computing, compared to tradi-
tional on-premise computing, more and more organizations as well as individuals are
moving their applications to the Cloud. However, due to the specific properties of
Cloud environments, applications should be carefully assessed to see to what extent
they are ready to be moved to the Cloud. In this chapter, we consider the dynamic and
distributed properties of Cloud environments to evaluate applications which will be
discussed in detail in the following.

Dynamic. Cloud computing environments are highly dynamic and unpredictable [85]
due to several reasons. To mention a few, 1) resource management (e.g., virtual machine
(VM) migration, VM consolidation) is highly dynamic to properly meet the elasticity
requirements imposed by available pay-as-you-go pricing models [86]; 2)fault tolerance
strategies, which imply the possibility of system accommodation to faults arising in the
course of operation [87], should have dynamic features [88]; 3) introducing new laws

23

24 modular design evaluation in outsourcing scenarios

and regulations (e.g., security and privacy regulations), standards (e.g., REST, SOAP), ser-
vices, and updates increase the dynamicity of Cloud environments; 4) service level agree-
ments (SLAs) can change frequently, according to changes in the quality of services
(QoSs) (e.g., response time, real-time throughput [89]), guaranteed by Cloud providers,
penalty mechanisms when SLA is violated, service price). Therefore, the dynamic na-
ture of Cloud environments implies that applications need to be flexible enough to
properly accommodate themselves to variant changes in such environments. Therefore,
applications that are not properly configurable and customizable cannot run effectively
in Cloud environments [9].
Distributed. The essence of Cloud computing technology is inherited from distributed
computing [90]. Distributed Cloud data centers across the world include many com-
puting physical machines [91] [92]. Also, thanks to the virtualization technology, each
physical machine can host several VMs, each with possibly different characteristics
(e.g., CPU rates, memory, price). Therefore, considering the distributed nature of Cloud
environments, applications are usually distributed across several VMs [93] and even
several Cloud providers [94]. In addition, in some outsourcing scenarios, applications
are needed properly distributed across public and private Clouds [95]. That is, some
applications’ components are needed to be executed locally, while other ones should be
executed on the Cloud. Therefore, applications are required to be properly decompos-
able into smaller parts with separate functionalities to be efficiently distributed across
Cloud environments.

Considering the second objective of this thesis to support users in selecting suitable
Cloud plans for applications, we need to, first, evaluate applications to see to what ex-
tent they can be easily moved to the Cloud. Otherwise, even selecting suitable Cloud
plans for applications would not be efficient, and as a result, it might hinder further
Cloud computing adoption. In this chapter, we provide an approach aimed at evalu-
ating the modularity of applications to estimate to what degree they are ready to be
moved to the Cloud w.r.t. their change adaptability and/or decomposability. In fact,
modular applications, due to having functional independent components (i.e., compo-
nents with “single-minded” function and “aversion” to excessive communication with
other components [10]), are properly reconfigurable and distributable. In the following
sections, we present our proposed method for evaluating the modularity of applica-
tions in detail.

3.1.1 chapter outline

This chapter is structured as follows. Section 3.2 provides some basic concepts on the
problem and its definition. Section 3.3 presents our approach for the defined problem.
Finally, we provide chapter summary and concluding remarks in Section 3.4.

3.2 basic concepts and problem definition

To evaluate modularity for an application App, we consider a bottom-up approach.
That is, we estimate the modularity of application App, first, at micro (component)

3.2 basic concepts and problem definition 25

level, denoted as Q(c), and then, at macro (system) level, denoted as Q(s). Applica-
tion App includes a set E(c) = {e(c), . . . , e(c)n } of component-level entities (e.g., Ec =

{e
(c)
1 , e(c)2 , e(c)3 } in our running example). Each component-level entity e

(c)
i ∈ E(c),

which hereafter simply called component, is composed of h classes maintained in a
class set Ci = {ci,1, . . . , ci,h}.

As the first step to estimate the modularity of application App, it is important to
consider necessary modularity attributes, according to the context of problem (e.g,
application type, QoS guarantees). Such attributes are maintained in an attribute set
A = {a1, . . . ,am} (e.g., A = {Coupling,Cohesion,Size} in our running example). We note
that in the literature, coupling, cohesion, and size are known as three main modularity
attributes, which as a result, are suitable candidates to be considered for the set A of
attributes in our running example. In the following, we will present these attributes in
more detail.

• Coupling. This attribute is defined as a measure of interconnection among the
components of application [10]. Higher coupling values for an application reflects
a greater difficulty to change its components because a change in one component
may have an impact on other components that are coupled to it [22]. Moreover, a
high coupling for an application indicates its low efficiency when it is distributed
across Cloud environments due to the tight dependency between its components.
Therefore, coupling is considered as an attribute with a negative impact on mod-
ularity.

• Cohesion. This attribute is defined as a measure of the degree to which a compo-
nent focuses on just one single task [10]. High cohesion for an application reflects
the suitable division of functionalities among components, and as a result, proper
change flexibility and decomposability in dynamic Cloud environments. There-
fore, cohesion is considered as an attribute with a positive impact on modularity.

• Size. This attribute is one of the common indicators for maintenance effort and
re-configurability [96]. In fact, high size for an application reflects its high com-
plexity when it is re-configured. Therefore, application size is considered as an
attribute with a negative impact on modularity.

Also, for each attribute a ∈ A, some metrics are considered both at component
level and at system level, which respectively maintained in a component metric set
M(c) = {m

(c)
1 , . . . ,m(c)

p } and a system metric set M(s) = {m
(s)
1 , . . . ,m(s)

q }. Figure 3.1
shows a classification for modularity evaluation in our running example which clearly
shows the considered attributes and their associated metrics. We note that modularity
attributes and metrics can be defined considering several parameters such as appli-
cation architecture (e.g., peer-to-peer, client-server), application type (e.g., real-time,
web-based), and the execution context of application (Cloud service change rate, the
level of application distribution), etc. by referring to existing guidelines and classifica-
tions (e.g., [31], [32]). Figure 3.2, inspired from [21], shows the static relation between
modularity and the associated attributes in the set A of attributes as well as the re-
spective metrics in the sets of component metrics M(c) and system metrics M(s). In

26 modular design evaluation in outsourcing scenarios

Figure 3.1: Example of modularity evaluation classification

Figure 3.2: Modularity evaluation meta-model

our running example, the sets of component metric and system metric respectively are
M(c) = {CBC,NOC,LCOM,LOC,NOA} and M(s) = {CBS,NUS}, as depicted in Table 3.1
and Table 3.2. We will discuss about these metrics later in this chapter (see Section 3.3),
in more detail.

Figure 3.3, inspired from [21], shows our two-level modularity evaluation model in
our running example. We note that, according to Figure 3.3, we consider component-
level modularityQ(c) as an external metric for system-level modularity. The motivation
behind such consideration lies in providing more flexibility in evaluating system-level
modularity. In fact, when the whole application is moved to the Cloud, micro-level
modularity may not have a high relevance in evaluating change flexibility and/or de-
composability as we are more focused on the evaluation of application-level modu-
larity by considering system-level entities and their associated metrics. Therefore, by
considering component-level modularity as a metric for system-level modularity, we
can manage its impact on system-level modularity.

Also, not all metrics in the sets of component metrics M(c) and system metrics M(s)

can be assumed to be equally important for modularity evaluation. For example, metric
CBC can have a higher importance compared to NOC and LOC. To express the impor-
tance/relevance of each component-level metric m(c)

j ∈ M(c) and system-level metric

m
(s)
j ∈ M(s), they are associated with a weight, where higher weights model higher

importance/relevance of the metric for modularity evaluation. Formally, component
metric set M(c) and system metric set M(s) are associated with a component-level weight
vector W(c)[1, . . . , |M(c)|] and a system-level weight vector W(s)[1, . . . , |M(s)|+ 1], respec-
tively, where W(c)[j] and W(s)[k] are the weights of metrics m(c)[j] and m(s)[k], re-
spectively. To enable comparison among component metric weights and system metric

3.2 basic concepts and problem definition 27

Figure 3.3: Two-level modularity evaluation model

M(c) Impact on Modularity

Coupling
Coupling Between Components (CBC) [97] Negative

Number Of Children (NOC) [24] Negative

Cohesion Lack of COhesion in Methods (LCOM) [24] [27] Negative

Size
Lines Of Code (LOC) [98] Negative

Number Of Attributes (NOA) [99] Negative

Table 3.1: Example of component metric set M(c)

M(s) Impact on Modularity

Coupling Coupling Between Servers (CBS) Negative
Size Number of Usecases for a Service (NUS) Negative

Table 3.2: Example of system metric set M(s)

weights, we assume that vectors W(c) and W(s) are normalized (i.e.,
|M(c)|∑
j=1

W(c)[j] = 1

and
|M(s)|+1∑
k=1

W(s)[k] = 1). We note that, as we discussed before, we consider modularity

at component level as a metric for system-level modularity. Therefore, W(s)[|M(s)|+ 1]

represents the weight of component-level modularityQ(c). Table 3.3 shows component-
level weight vector W(c) = [0.40, 0.05, 0.20, 0.05, 0.30] and system-level weight vector
W(s) = [0.50, 0.30, 0.20]. For example, W(c) states that metrics NOC and LOC have the
same relative importance (0.05 each), while metric CBC is more relevant (0.40). Also,
W(s)[3] = 0.20 represents the weight of component-level modularity Q(c) in evaluating
system-level modularity.

28 modular design evaluation in outsourcing scenarios

W(c)

CBC 0.40

NOC 0.05

LCOM 0.20

LOC 0.05

NOA 0.30

W(s)

CBS 0.50

NUS 0.30

Q(c)
0.20

Table 3.3: Example of component-level weight vector W(c) and system-level weight vector
W(s)

3.3 proposed approach for modularity evaluation

In [20], a method is proposed to estimate software quality attributes (e.g., maintainabil-
ity), considering their associated quality characteristics (e.g., correctability, testability),
each with respective metrics (e.g., fault rate and required effort for testability) [21] [33].
Based on [20], in [21], a solution is proposed for evaluating the modularity of an ap-
plication, considering only maintainability and re-usability, as modularity attributes.
Inspired from these works, our proposed method, first, estimates modularity at com-
ponent level Q(c) (see Section 3.3.1), and then, at system level Q(s) (see Section 3.3.2).
We note that a higher modularity for an application reflects its higher change flexibility
and/or decomposability, and as a result, its higher efficiency when it is moved to the
Cloud w.r.t. the dynamic and distributed properties of Cloud environments.

3.3.1 modularity evaluation at component level

Figure 3.4, which is an extended version of Figure 1. in [100], shows a class diagram
associated with application App as well as its comprised components. To estimate
component-level modularity Q(c), for each component e(c)i ∈ E(c), we need to mea-
sure the values of metrics in component metric set M(c), associated with modularity
attributes in attribute set A = {Coupling,Cohesion,Size}. To enable comparison between
all measured metric values at component level, we normalize them. Formally, suppose
that v(c)i [j] is the raw value of metric m(c)

j ∈M(c) for component e(c)i ∈ E(c). Then, the

associated normalized value V
(c)
i [j] is calculated as:

V
(c)
i [j] =


v
(c)
i [j]−vmin
vmax−vmin

, if v(c)i [j] 6= vmin ∧ v
(c)
i [j] 6= vmax

0, if v(c)i [j] = vmin

1, if v(c)i [j] = vmax

(3.1)

where vmin and vmax are the minimum and maximum raw values of m(c)
j ∈ M(c)

for component e(c)i ∈ E(c), respectively. Normalized values V
(c)
i [j] for component

e
(c)
i ∈ E(c) are maintained in a normalized component-level vector V

(c)
i [1, . . . , |M(c)|].

Also, if each metric m(c)
j ∈M(c) at component level has a negative impact on modular-

3.3 proposed approach for modularity evaluation 29

ity, the associated normalized measured value V
(c)
i [j] is subtracted from 1. Therefore,

the value V(c)
i [j] of metric m(c)

j ∈ M(c) with a negative impact on modularity for

component e(c)i ∈ E(c) is defined as:

V
(c)
i [j] =

1− V
(c)
i [j], if m(c)

j has a negative impact on modularity

V
(c)
i [j], otherwise

(3.2)

where such values V(c)
i [j] of metrics for component e(c)i ∈ E(c) are maintained in a

component-level vector V(c)
i [1, . . . , |M(c)|]. Back to our running example, considering Ta-

ble 3.1, metrics associated with Coupling and Size attributes (CBC, NOC, LOC, NOA,
CBS, NUS), have negative impacts on modularity. Therefore, their associated normal-
ized metric values are subtracted from 1 (see Sections 3.3.1.1 and 3.3.1.3). Also, metrics
associated with Cohesion attribute (e.g., tight class cohesion (TCC), loose class cohesion
(LCC) [101], and Class Cohesion (CC) [102]) have positive impact on modularity. How-
ever, in our running example, metric LCOM, as its name clearly states, measures the
lack of cohesion for a component, and thus, has a negative impact on modularity. As
a result, the normalized measured values of LCOM metric are subtracted from 1 (see
Section 3.3.1.2).

Also, the overall value V(c)[j] of metric m(c)
j ∈ M(c) is calculated as the average of

the values V(c)
i [j] of metric m(c)

j measured for each component e(c)i ∈ E(c), that is:

V(c)[j] =

|E(c)|∑
i=1

V
(c)
i [j]

|E(c)|
(3.3)

where such overall values for component-level metrics are maintained in a overall
component-level vector V(c)[1, . . . , |M(c)|]. In the following, we will present our approach
for the evaluation of component-level modularity.

3.3.1.1 evaluation of component-level coupling metrics

Let us start with the evaluation of component-level metrics associated with attribute
coupling. To do so, considering Figure 3.1, we need to evaluate CBN and NOC metrics
which is presented in detail in the following.

Coupling Between Components (CBC). This metric is considered detrimental to mod-
ular design [103] which indicates the degree of mutual interdependence between com-
ponents. Therefore, the more the coupling between components is less, the more they
are modular, and consequently, the easier they are to change and decompose. Met-
ric CBC measures, for a component, the number of other components that are cou-
pled with the component. To measure the value of this metric, we use a metric called
coupling between objects (CBO) [23] which measures, for a class, the number of non-
inheritance relations with other classes [104]. An object of a class is coupled to another
class if methods or instance associated with the class are used by the other one [97].
Then, we define CBC for a component as the sum of coupling CBO between the classes

30 modular design evaluation in outsourcing scenarios

Figure 3.4: Class diagram and component architecture for application App

of component. Formally, suppose that, CBOi,j denotes the coupling CBO between class
ci,j ∈ Ci in component e(c)i and classes in other components E(c)\{e(c)i }. Then, the raw
CBC value CBCi of component e(c)i ∈ E(c) is measured as follows:

CBCi =

|Ci|∑
j=1

CBOi,j (3.4)

Back to our running example, considering Figure 3.4, Table 3.4 shows the raw value
e
(c)
i , normalized value V

(c)
i [CBC], the value V(c)

i [CBC] of metric CBC for each com-
ponent e(c)i ∈ E(c), and the associated overall value V(c)[CBC]. For example, consid-
ering component e(c)2 ∈ E(c) and the associated classes (Order and OrderItem), the
values of metric CBO for classes Order and OrderItem are CBO

e
(c)
2 ,Order = 1 (due to

coupling between class Order and Class Customer in component e(c)1 ∈ E(c)) and
CBO

e
(c)
2 ,OrderItem = 1 (due to coupling between class OrderItem and class Product in

component e(c)3 ∈ E(c)), respectively. Therefore, according to Formula 3.4, the raw
value CBC2 of metric CBC for component c2 ∈ E(c) is calculated as 1+ 1 = 2 which
is the maximum metric CBC value among other components in E(c). Therefore, the
normalized value V

(c)
2 [CBC] of metric CBC for component e(c)2 ∈ E(c) is equal to 1,

according to Formula 3.1. Moreover, since metric CBC has a negative impact on mod-
ularity, to measure the value V(c)

i [CBC] of metric CBC for component e(c)i ∈ E(c), the
associated normalized value V

(c)
i [CBC] is subtracted from 1 (see Section 3.3.1.1 and

Formula 3.2). Therefore, considering component e(c)2 ∈ E(c), V(c)
2 [CBC] = 1− 1 = 0.

Also, according to Formula 3.3, the overall value V(c)[CBC] of metric CBC is calculated
as 1+0+1/3 = 0.666.

3.3 proposed approach for modularity evaluation 31

CBCi V
(c)
i [CBC] V(c)

i [CBC] V(c)[CBC]

c1 1 0 1

0.666c2 2 1 0

c3 1 0 1

Table 3.4: Raw values CBCi, normalized values V
(c)
i [CBC], values V(c)

i [CBC] of metric CBC
for each component e(c)i ∈ E(c), and associated overall value V(c)[CBC]

NOCi V
(c)
i [NOC] V(c)

i [NOC] V(c)[NOC]

c1 2 0.66 0.34
0.673c2 0 0 1

c3 3 1 0

Table 3.5: Raw values NOCi, normalized values V
(c)
i [NOC], values V(c)

i [NOC] of NOC metric

for each component e(c)i ∈ E(c), and associated overall value V(c)[NOC]

Number Of Children (NOC). This metric measures, for a component, the total number
of classes inherited from other classes in the component. As the number of the children
of a class grows, increasing the number of methods and instance variables that the
class is coupled to them is more probable [105]. Therefore, the more the number of
the children of a class is, the less it is flexible to change. To evaluate metric NOC at
component-level, we consider class-level NOC which measures, for a class, the number
of classes inherited from the class. Then, the value of metric NOC at component level is
measured as the sum of class-level NOC values. Formally, suppose thatNOCi,j denotes
the value of metric NOC for class ci,j in component e(c)i ∈ E(c). Then, the raw value
NOCi of metric NOC for component e(c)i ∈ E(c) is measured as follows:

NOCi =

|Ci|∑
j=1

NOCi,j (3.5)

Back to our running example, considering Figure 3.4, Table 3.5 shows the raw value
NOCi, normalized value V

(c)
i [NOC], the value V(c)

i [NOC] of NOC metric for each
component e(c)i ∈ E(c), and the associated overall value V(c)[NOC]. For example, con-
sidering component e(c)1 ∈ E(c), the values of metric NOC for classes Customer, Person,
and Company are NOC

e
(c)
1 ,Customer = 2,NOC

e
(c)
1 ,Person = 0, and NOC

e
(c)
1 ,Company = 0, re-

spectively. Therefore, according to Formula 3.5, the raw value NOC1 of metric NOC
for component e(c)1 ∈ E(c) is 2+ 0+ 0 = 2. Also, according to Formula 3.1, the asso-
ciated normalized value V

(c)
1 [NOC] = 2−0/3 = 0.66. Since metric NOC has a negative

impact on modularity, to measure the value V(c)
1 [NOC] of metric NOC for component

e
(c)
i ∈ E(c), the associated normalized value V

(c)
i [NOC] is subtracted from 1. There-

fore, considering component e(c)1 ∈ E(c), V(c)
1 [NOC] = 1− 0.66 = 0.34. Also, the overall

value V(c)[NOC] of metric NOC is calculated as 0.34+1+0/3 = 0.673.

32 modular design evaluation in outsourcing scenarios

3.3.1.2 evaluation of component-level cohesion metrics

In this section, we consider the evaluation of component-level metrics associated with
attribute cohesion. To do so, considering Figure 3.1, we need to measure the value of
LCOM metric which is presented in the following.

Lack of COhesion in Methods (LCOM). To evaluate this metric, we first consider
class-level LCOM which measures how well the methods of a class are related to each
other [106]. The value LCOMi,j of metric LCOM for class ci,j in component e(c)i ∈ E(c)

is defined as [24]:

LCOMi,j =

|P|− |Q|, if |P| > |Q|

0, otherwise.

where Q is the set of the pairs of methods sharing at least one used instance variable
and P is the set of the pairs of methods that do not share any used instance variables.
Considering a class, the more the value of metric LCOM is, the more the class is com-
plex and less cohesive. We note that the value of metric LCOM is undefined for classes
with no or only one method [107] and for classes with no instance variables [102].

Example. Class Order in component e(c)2 ∈ E(c) has 6 methods including, createOrder,
setDeliveryDate, setShippingCost, setTotalCost, editOrder, and checkOut. There are 4 pairs
of methods that at least share one instance variable with other methods in class Order,
maintained in set Q.

Q = {(createOrder,setDeliveryDate),(createOrder,setShippingCost),

(setDeliveryDate,setShippingCost),(editOrder,checkOut)}

For example, methods createOrder and setDeliveryDate share one instance variable (Cus-
tomerID). Also, there are 11 pairs of methods that do not share any instance variable
which are maintained in set P as follows.

P = {(createOrder,setTotalCost),(createOrder,editOrder),(setDeliveryDate,

setTotalCost),(setDeliveryDate,editOrder),(setShippingCost,setTotalCost),

(setShippingCost,editOrder),(setTotalCost,editOrder),(createOrder,checkOut),

(setDeliveryDate,checkOut),(setShippingCost,checkOut),(setTotalCost,checkOut)}

Therefore, |Q| = 4 and |P| = 11. As a result, the value LCOMc2,Order of metric LCOM
for class Order in component e(c)2 ∈ E(c) is equal to |P|− |Q| = 11− 4 = 7.

Then, the raw value of metric LCOM for a component can be measured as the sum
of the values LCOMi,j of metric LCOM for each class ci,j in component e(c)i ∈ E(c).
Formally, suppose that, LCOMi,j denotes the value of metric LCOM for class ci,j in

3.3 proposed approach for modularity evaluation 33

ci,j |P| |Q| LCOMi,j LCOMi V
(c)
i [LCOM] V(c)

i [LCOM] V(c)[LCOM]

c1 Customer 2 4 0 0 0 1

0.666
c2

Order 11 4 7
7 1 0

OrderItem 0 3 0

c3
Product 0 1 0

1 0 1
Clothing 1 0 1

Table 3.6: LCOM values LCOMi,j for each class ci,j in component ci ∈ C, raw values LCOMi,
normalized values V

(c)
i [LCOM], values V(c)

i [LCOM] of metric LCOM for each com-

ponent e(c)i ∈ E(c), and associated overall value V(c)[LCOM]

component e(c)i ∈ E(c). Then, the raw value LCOMi of metric LCOM for component
e
(c)
i ∈ E(c) can be measured as:

LCOMi =

|Ci|∑
j=1

LCOMi,j (3.6)

Back to our running example, considering Figure 3.4, Table 3.6 shows the value
LCOMi,j of metric LCOM for each class ci,j ∈ Ci in component e(c)i ∈ E(c). Also, it
shows the raw value LCOMi, normalized value V

(c)
i [LCOM], the value V(c)

i [LCOM]

of metric LCOM, for each component e(c)i ∈ E(c), and the associated overall value
V(c)[LCOM]. For example, considering component e(c)2 ∈ E(c), the values LCOM

e
(c)
2 ,Order,

LCOM
e
(c)
2 ,OrderItem of metric LCOM for classes Order and OrderItem are 7 and 0, respec-

tively. Therefore, according to Formula 3.6, the raw value LCOM2 of metric LCOM for
component e(c)2 ∈ E(c) is 7+ 0 = 7. Also, the associated normalized value V

(c)
2 [LCOM]

is equal to 1, according to Formula 3.1. Since metric LCOM has a negative impact
on modularity, to measure the value V(c)

i [LCOM] of metric LCOM for each compo-
nent e(c)i ∈ E(c), the associated normalized value V

(c)
i [LCOM] is subtracted from

1. Therefore, for component e(c)2 ∈ E(c), V(c)
2 [LCOM] = 1 − 1 = 0. Also, accord-

ing to Formula 3.3, the overall value V(c)[LCOM] for metric LCOM is calculated as
1+0+1/3 = 0.666. We note that, as we mentioned before, metric LCOM is not defined
for classes with no or only one method as well as classes with no instance variables.
Therefore, considering our running example, we did not include these classes (i.e., Com-
pany, Person, Grocery, Electronic) in Table 3.6, for the sake of brevity.

3.3.1.3 evaluation of component-level size metrics

In this section, we consider the evaluation of component-level metrics associated with
attribute size. To do so, considering Figure 3.1, we need to measure the values of met-
rics LOC and NOA which is presented in the following.

Lines Of Code (LOC). This metric counts, for a class, all code lines, excluding blank
and comment ones [27]. Then, the value of metric LOC for a component can be ob-
tained as the sum of the values of metric LOC measured for classes in the component.

34 modular design evaluation in outsourcing scenarios

ci,j LOCi,j LOCi V
(c)
i [LOC] V(c)

i [LOC] V(c)[LOC]

c1

Customer 250

290 0 1

0.545

Company 30

Person 10

c2
Order 800

1100 1 0
OrderItem 300

c3

Product 500

585 0.364 0.636
Electronic 20

Grocery 20

Clothing 45

Table 3.7: LOC values LOCi,j for each class ci,j in component e(c)i ∈ E(c), raw values LOCi,

normalized values V
(c)
i [LOC], values V(c)

i [LOC] of metric LOC for each component

e
(c)
i ∈ E(c), and associated overall value V(c)[LOC]

Formally, suppose that, LOCi,j denotes the value of metric LOC for class ci,j in compo-
nent e(c)i ∈ E(c). Then, the raw value LOCi of metric LOC for component e(c)i ∈ E(c)

can be measured as:

LOCi =

|Ci|∑
j=1

LOCi,j (3.7)

Back to our running example, considering Figure 3.4, Table 3.7 shows the values
LOCi,j of metric LOC for each class ci,j ∈ Ci in component e(c)i ∈ E(c). Also, it shows
the raw values LOCi, normalized values V

(c)
i [LOC], the value V(c)

i [LOC] of metric
LOC for each component e(c)i ∈ E(c), and the associated overall value V(c)[LOC]. For
example, component e(c)2 ∈ E(c) includes two classes namely, Order and OrderItemID.
The values LOC

e
(c)
2 ,Order, LOCe(c)2 ,OrderItem of metric NOC are 800 and 300, respectively.

Therefore, according to Formula 3.7, the raw value LOC2 of metric LOC for compo-
nent e(c)2 ∈ E(c) is 800+ 300 = 1100. Then, according to Formula 3.1, the associated
normalized value V

(c)
2 [LOC] = 1. Also, since metric LOC has a negative impact on

modularity, to measure the value V(c)
i [LOC] of metric LOC, the associated normal-

ized value V
(c)
i [LOC] is subtracted from 1. Therefore, for component e(c)2 ∈ E(c),

V
(c)
2 [LOC] = 1− 1 = 0. Also, according to Formula 3.3, the overall value V(c)[LOC]

for metric LOC is calculated as 1+0+0.636/3 = 0.545.

Number OF Operations (NOA). This metric, at class level, measures the number of
attributes in a class. Then, the value of NOA metric for a component can be measured
as the sum the values of metric NOA for classes in the component. Formally, suppose
that, NOAi,j denotes the value of NOA metric for class ci,j in component e(c)i ∈ E(c).
Then, the raw value NOAi of metric NOA for component e(c)i ∈ E(c) can be calculated
as:

3.3 proposed approach for modularity evaluation 35

ci,j NOAi,j NOAi V
(c)
i [NOA] V(c)

i [NOA] V(c)[NOA]

c1

Customer 6

9 0 1

0.666

Company 2

Person 1

c2
Order 7

13 1 0
OrderItem 6

c3

Product 5

9 0 1
Electronic 1

Grocery 1

Clothing 2

Table 3.8: NOA values NOAi,j for each class ci,j in component e(c)i ∈ E(c), raw values NOAi,

normalized values V
(c)
i [NOA], values V(c)

i [NOA] of metric NOA for each compo-

nent e(c)i ∈ E(c), and associated overall value V(c)[NOA]

NOAi =

|Ci|∑
j=1

NOAi,j (3.8)

Back to our running example, considering Figure 3.4, Table 3.8 shows the values
NOAi,j of metric NOA for each class ci,j in component e(c)i ∈ E(c). Also, it shows the
raw values NOAi, the normalized values V

(c)
i [NOA], the values V(c)

i [NOA] of metric
NOA for each component e(c)i ∈ E(c), and the associated overall value V(c)[NOA]. For
example, component e(c)2 ∈ E(c) includes two classes namely, Order and OrderItemID.
The values NOA

e
(c)
2 ,Order, NOAe(c)2 ,OrderItem of metric NOA are 7 and 6, respectively.

Therefore, according to Formula 3.8, the raw value NOA2 of metric NOA for com-
ponent e(c)2 ∈ E(c) is 7+ 6 = 13. Also, the associated normalized value V

(c)
2 [NOA] = 1,

according to Formula 3.1. Since metric NOA has a negative impact on modularity, to
measure the value V(c)

i [NOA] of metric NOA for component e(c)i ∈ E(c), the associated
normalized value V

(c)
i [NOA] is subtracted from 1. Therefore, considering component

e
(c)
2 ∈ E(c), V(c)

2 [NOA] = 1− 1 = 0, according to Formula 3.2. Also, according to For-
mula 3.3, the overall value V(c)[NOA] for metric NOA is calculated as 1+0+1/3 = 0.666.

3.3.1.4 measuring component-level modularity

We have measured, so far, the values of each component-level metric m(c)
j ∈ M(c) for

each component e(c)i ∈ E(c). Now, considering component-level weight vector W(c),
we evaluate modularity 0 6 Q(c)[i] 6 1 at component level as:

Q(c) =

|M(c)|∑
j=1

V(c)[j] ·W(c)[j] (3.9)

36 modular design evaluation in outsourcing scenarios

Back to our running example, considering component-level weight vector W(c) =

[0.40, 0.05, 0.20, 0.05, 0.30] and overall component-level vector V(c) = [0.666, 0.673, 0.666,
0.545, 0.666], according to Formula 3.9, component-level modularity Q(c) for applica-
tion App is calculated as 0.666 · 0.40 + 0.673 · 0.05 + 0.666 · 0.2 + 0.545 · 0.05 + 0.666 ·
0.30 = 0.660.

3.3.2 modularity evaluation at system level

To evaluate modularity at system level, we need to measure the value of each system-
level metric m(s)

k ∈M(s) (e.g., M(s) = {CBS,NUS} in our running example). To enable
comparison between measured values for each metric in M(s), we normalize them.
Formally, suppose that E(s)k is the set of system-level entities (e.g., services and servers
in our running example) w.r.t. system-level metric m(s)

k ∈ M(s). Also, suppose that,
v
(s)
i [k] is the raw value of system-level metric m(s)

k ∈ M(s) for system-level entity
ei ∈ E

(s)
k . Then, the associated normalized value V

(s)
i [k] of m(s)

k for entity ei ∈ E
(s)
k is

calculated as:

V
(s)
i [j] =


v
(s)
i [k]−vmin
vmax−vmin

, if v(s)i [k] 6= vmin ∧ v
(s)
i [k] 6= vmax

0, if v(s)i [k] = vmin

1, if v(s)i [k] = vmax

(3.10)

where vmin and vmax are minimum and maximum raw values of metric m(s)
k ∈M(s)

for system-level entity e(s)i ∈ E(s)k , respectively. Normalized measured values V
(s)
i [k]

for entity e(s)i ∈ E(s)k are maintained in a normalized system-level vector V
(s)
i [1, . . . , |M(s)|].

Also, if system-level metric m(s)
k ∈M(s) has a negative impact on modularity, to mea-

sure the value V(s)
i [k] of metric m(s)

k for entity e(s)i ∈ E(s)k , the associated normalized
measured value V

(s)
i [k] is subtracted from 1. That is:

V
(s)
i [k] =

1− V
(s)
i [k], if m(s)

k has a negative impact on modularity

V
(s)
i [k], otherwise

(3.11)

where such values are maintained in a system-level vector V(s)
i [1, . . . , |M(s)|]. Back to our

running example, both metrics (i.e., CBS and NUS) in the set M(s) of system metrics
have negative impacts on modularity as they are associated with Coupling and Size
attributes, respectively (see Figure 3.1). Therefore, to evaluate the modularity of system-
level entities w.r.t. CBS and NUS, their associated normalized values are subtracted
from 1. Also, the overall value V(s)[k] of metricm(s)

k ∈M(s) is calculated as the average
of the values V(s)

i [k] of metric m(s)
k ∈ M(s), measured for each system-level entity

e
(s)
i ∈ E(s)k , that is:

3.3 proposed approach for modularity evaluation 37

Figure 3.5: Deployment diagram associated with application App

CBSi V
(s)
i [CBS] V(s)

i [CBS] V(s)[CBS]

Web Server 1 0 1

0.750
Application Server 3 1 0

Cache Server 1 0 1

Database Server 1 0 1

Table 3.9: Raw values CBSi, normalized values V
(s)
i [CBS], values V(s)

i [CBS] of metric CBS for

each server e(s)i ∈ ECBS, and associated overall value V(s)[CBS]

V(s)[k] =

|Ek|∑
i=1

V
(s)
i [k]

|Ek|
(3.12)

where such overall values are maintained in a overall system-level vector V(s)[1, . . . , |M(s)|+

1]. We note that, as we discussed in Section 3.2, we consider component-level modular-
ity Q(c) as a metric for evaluating modularity at system level. Therefore, V(s)[|M(s)|+

1] in overall system-level vector is component-level modularity Q(c). In the following,
we will present our approach for evaluating the values of system-level metrics.

Coupling Between Servers (CBS). This metric, which can be the extension of CBN met-
ric in [20], measures coupling between servers including physical and virtual servers.
Considering the set E(s)CBS = {Web server,Cache server,Application Server,Database Server}
of system-level entities w.r.t. metric CBS in our running example, Figure 3.5 depicts
relations between servers in application App in a deployment diagram. The raw value
CBSi of metric CBS for a server e(s)i ∈ E(s)CBS can be measured as the sum of connections
between server ei and other servers in deployment diagram associated with the as-
sessed application. For example, as depicted in Table 3.9, the raw value CBSApplication Server

of metric CBS for server Application Server is equal to 3 as it is coupled to three other
servers including, Web Server, Cache Server, and Database Server. Moreover, considering
Formula 3.10, the associated normalized value V

(s)
Application Server[CBS] is equal to 1. Also,

since metric CBS has a negative impact on modularity, to measure the value V(s)
i [CBS]

of metric CBS for server e(s)i ∈ E(s)CBS, the associated normalized value V
(s)
i [CBS] is

subtracted from 1, according to Formula 3.11. For example, considering server Applica-
tion Server, V(s)

Applciation Server[CBS] = 0. Also, according to Formula 3.12, the overall value

38 modular design evaluation in outsourcing scenarios

NUSi V
(s)
i [NUS] V(s)

i [NUS] V(s)[NUS]

View 15 1 0

0.612

Stock Management 2 0.071 0.928
User Management 2 0.071 0.928

Authentication 1 0 1

Order Management 11 0.714 0.286
Repository 12 0.785 0.215
Payment 2 0.071 0.928

Table 3.10: Raw values NUSi, normalized values V
(s)
i [NUS], and values V(s)

i [NUS] of metric

NUS for each service e(s)i ∈ ENUS, and associated overall value V(s)[NUS]

V(s)[CBS] of metric CBS is 1+0+1+1/4 = 0.750.

Number of Use-cases for a Service (NUS). This metric is proposed, to the best of our
knowledge, for the first time. It measures, for a service, the total number of usecases
handled by the service. The more the value of metric NUS for a service is, the more the
service is complex, and as a result, the less it is modular. Back to our running example,
to measure the value of metric NUS for each service in the set E(s)NUS = {View,Stock
Management,User Management,Authentication,Order Management,Repository,Payment} of
system-level entities w.r.t. metric NUS, we consider sequence diagram associated with
application App as depicted in Figure 3.6. Considering a service, we define a use-case
as a message that the service is received from other services, including itself, in se-
quence diagram associated with the assessed application. For example, considering
Figure 3.6, the raw value NUSStock Management of metric NUS for service Stock Manage-
ment is equal to 2 because there are two massages received by service Stock Manage-
ment (Manage Add Product, Manage View Stock Information Request). Table 3.10 shows the
raw values NUSi, normalized values V

(s)
i [NUS], values V(s)

i [NUS] of metric NUS for
each service e(s)i ∈ E(s)NUS, and the associated overall value V(s)[NUS]. For example,
considering service Order Management, the raw value NUSOrder Management of metric NUS
is equal to 11 as there are 11 usecases for this service. Also, the associated normal-
ized value V

(s)
Order Management[NUS] is equal to 0.714, according to Formula 3.10. More-

over, since metric NUS has a negative impact on modularity, to measure the value
V
(s)
i [NUS] of NUS metric for service e(s)i ∈ E(s)NUS, the associated normalized value

V
(s)
i [NUS] is subtracted from 1. For example, considering service Order Management,

V
(s)
Order Management[NUS] = 1− 0.714 = 0.286. Also, according to Formula 3.12, the l value

V(s)[NUS] of metric CBS is 0+0.928+0.928+1+0.286+0.215+0.928/7 = 0.612.
Therefore, overall system-level vector in our running example is V(s) = [0.750, 0.612,

0.660] which, for instance, V(s)[3] = 0.660 represents component-level modularity Q(c)

(see Section 3.3.1.4). Then, considering overall system-level vector V(s) and system-
level weight vector W(s) (see Table 3.3), we can evaluate the value 0 6 Q(s) 6 1 of
modularity at system level, according to the following formula:

3.3 proposed approach for modularity evaluation 39

Figure 3.6: Sequence diagram associated with application App

40 modular design evaluation in outsourcing scenarios

Q(s) =

|M(s)|+1∑
k=1

V(s)[k] ·W(s)[k] (3.13)

Higher values for Q(s) indicate higher levels of modularity for the assessed ap-
plication. Back to our running example, considering V(s) = [0.750, 0.612, 0.660] and
W(s) = [0.50, 0.30, 0.20], system-level modularity Q(s) for application App is calculated
as 0.750 · 0.50 + 0.612 · 0.30 + 0.660 · 0.20 = 0.690. Considering the modularity of an
application, there are two possible options for the application that is not ready to be
moved to the Cloud, w.r.t. change flexibility and/or distributability: i) if the cost of the
reconfiguration of application is affordable for the application owner, it can be reconfig-
ured by application developers to improve the modularity of application; ii) otherwise,
moving the application to the Cloud is ignored. Such investigation, which is beyond
the objectives of our study presented in this chapter, can be considered as a future line
of research.

3.4 chapter summary

In this chapter, we provided a solution to estimate the modularity of an application to
see to what extent it can be easily moved to the Cloud, w.r.t. change flexibility and/or
decomposability. To do so, we considered a “bottom-up” approach which evaluates
modularity, first, at component-level, and then, at system-level. We note that we pro-
vided a generic classification including attributes that are considered important for
an application, together with their associated metrics. Such classification notably im-
proves the flexibility of solution as attributes and metrics for modularity evaluation can
be selected based on several considered parameters (e.g., application type, application
architecture, the execution context of the application on the Cloud). Also, apart from
using well-known attributes and metrics for evaluating modularity, we proposed a new
system-level size metric which measures the total number of use-cases for a service.

4
C O N S E N S U S - B A S E D C L O U D P L A N S E L E C T I O N

An important task when an application is moved to the Cloud is finding a Cloud plan,
among those available ones offered by a (set of) Cloud provider(s), according to the
requirements of an application and the characteristics of available Cloud plans. Also,
if a user wishes to move multiple applications, at the same time, to the Cloud, plan
selection can be even more complicated by the fact that different applications can have
different (and possibly contrasting) requirements.

This chapter defines an approach enabling users to select a Cloud plan that best
balances the satisfaction of the requirements of multiple applications. Our solution op-
erates by first ranking the available plans for each application (matching plan character-
istics and application requirements) and then by selecting, through a consensus-based
process, the one that is considered more acceptable for all applications.

4.1 introduction

Cloud computing represents today the reference paradigm for deploying applications
and for storing, managing, and processing large amounts of data. Thanks to the ad-
vantages in providing an illusion of an infinite amount of resources by offering cost-
effective elastic services which are universally accessible on-demand, more and more
private and public organizations as well as individuals are moving their data and ap-
plications to the Cloud [7] [68]. Cloud providers sell Cloud plans that differ in the
services they offer, the quality of services they guarantee, and applied pricing models.
This variety provides great advantages for users, enabling them to choose the plan that
better suits their needs and economical availability.

Moreover, when multiple applications, at the same time, are moved to the Cloud,
the problem of Cloud plan selection can even get more complicated. In fact, each ap-
plication can have a different “ideal” Cloud plan, according to its requirements. For ex-
ample, applications operating with sensitive data will mostly care about security (e.g.,

41

42 consensus-based cloud plan selection

encryption algorithms, security auditing), while applications running data-intensive
computations on publicly available or non-confidential data will be more interested in
performance (e.g., CPU and disk speed, network latency). Therefore, since each appli-
cation can have different and possibly contrasting requirements, a single Cloud plan
that satisfies the requirements of all applications might not exist. As a result, the user
needs to properly combine applications’ requirements and choose a plan that satis-
fies them in the best possible way. A naive approach to choose the most suitable plan
would consist in identifying the best plan for each application, and then, selecting the
one chosen by the majority of the applications. However, such an approach would risk
leaving the requirements of some applications completely unsatisfied.

This chapter defines an approach aimed at balancing the satisfaction of requirements
of multiple applications. To this purpose, our solution first produces, for each appli-
cation, a ranking of the available plans according to the requirements of applications.
It then selects the plan that is globally considered the most acceptable by all appli-
cations. To implement these two steps, we put forward the idea of jointly adopting
a multi-criteria decision-making technique (TOPSIS [108]) to rank applications, and a
consensus-based voting technique (Borda count [109]) to choose a plan that is ranked
high by all applications. The combined adoption of these techniques enables the user
to choose a Cloud plan that better balances the requirements of all the applications,
reaching a trade-off among their (possibly contrasting) needs.

4.1.1 chapter outline

This chapter is structured as follows. Section 4.2 presents a reference scenario for our
problem together with some basic concepts on the problem. Section 4.3 illustrates an
approach for selecting Cloud plans based on the consensus between the applications
by jointly adopting TOPSIS and Borda Count. Section 4.4 presents a pseudo-code algo-
rithm for our proposed solution. Finally, Section 4.5 presents concluding remarks.

4.2 basic concepts and problem definition

We consider a scenario characterized by a user wishing to outsource to Cloud a set
A = {a1, . . . ,an} of applications. To this aim, she needs to find the most suitable among
a set P = {p1, . . . ,pm} of plans offered by a set of Cloud providers. Each plan p ∈ P
might have different characteristics with respect to a set C = {c1, . . . , cl} of criteria that
the user considers of interest for the set A of applications. For instance, C can include
criteria such as the guaranteed availability, the charged costs, or the security guaran-
teed by the providers. In the definition of C, the user can refer to existing guidelines
and classifications (e.g., [110]), combined with her personal needs.

Since plans in P differ in the characteristics of the offered services, we assume the
user to rate the degree to which a criterion ci ∈ C is “satisfied” by a plan pj ∈ P.
Intuitively, this degree expresses how much the services offered by pj are close to an
ideal scenario that maximizes the satisfaction of ci (e.g., a Cloud provider offering its
services for free would have the maximum rating for the Cost criterion). Each plan pj is

4.2 basic concepts and problem definition 43

R1 R2 R3 R4 R5

Availability 0.40 0.50 0.90 0.40 0.20

Performance 0.50 0.60 0.97 0.30 0.30

Security 0.60 0.70 0.80 0.20 0.40

Costs 0.50 0.40 0.10 0.60 0.70

· · · · · · · · · · · · · · · · · ·
Backup 0.40 0.60 0.30 0.30 0.20

StorageSpace 0.50 0.30 0.40 0.30 0.20

MobileSupport 0.60 0.80 0.30 0.40 0.50

Table 4.1: Example of rating vectors R1, . . . ,R5

then associated with a rating vector Rj[1, . . . , l], where 0 6 Rj[i] 6 1 represents the rating
of pj with respect to criterion ci, where higher ratings represent better satisfaction of
the criterion. For instance, a plan pj providing more than 10 synchronized replicas,
sophisticated authentication mechanisms and encryption algorithms, high CPU rates
and network bandwidth, but applying expensive price lists, will have a high rating w.r.t.
security, availability, and performance, and a low rating w.r.t. cost. Table 4.1 illustrates
an example of rating vectors R1, . . . ,R5 for plans p1, . . . ,p5 respectively, over different
criteria. For instance, p5 is rated lower for criterion Availability (R5[Availability] = 0.20)
than for criterion Costs (R5[Costs] = 0.70).

The set C of criteria is defined by the user considering all the requirements of all
her applications in A. Indeed, as mentioned in Section 4.1, not all criteria in C may be
relevant to all applications in A. We denote with Ck ⊆ C the set of criteria relevant to
application ak ∈ A. For instance, with reference to our running example, the set C1
of criteria relevant to a1 is C1 = {Availability, Performance, Security, Cost}, and the set
C2 relevant to a2 is C2 = {Backup, StorageSpace, MobileSupport}. Also, given an applica-
tion ak∈ A with its set Ck of relevant criteria, not all criteria ci ∈ Ck can be assumed
to be equally important to ak. For instance, with reference to the example above, a1
might value Security more than Availability. A natural way to express the requirements
of an application ak ∈ A consists in associating a weight to each criterion in Ck. In
fact, this permits to model applications having different (and possibly disjoint) relevant
criteria, with different relevance for different applications. Considering an application
ak∈ A, the importance of each criterion ci ∈ Ck is modeled by associating ci with a
weight, where higher weights model higher importance of the criterion for ak. Formally,
the requirement for an application ak∈ A is expressed as a weight vector Wk[1, . . . , |Ck|],
whereWk[i] represents the weight (i.e., the relative importance) of criterion ci for appli-
cation ak∈ A. To enable comparison among the weights, we assume the weight vectors
to be normalized (i.e.,

∑|Ck|
i=1Wk[i]=1, k = 1, . . . ,n). Table 4.2 illustrates two example of

weight vectors for two applications, a1∈ A and a2∈ A, where C1 = {Availability, Per-
formance, Security, Costs} and C2 = {Backup, StorageSpace, MobileSupport}. For instance,
the weight vector W2 = [0.30, 0.40, 0.30] of application a2∈ A states that criteria Backup

44 consensus-based cloud plan selection

W1

Availability 0.04

Performance 0.02

Security 0.04

Costs 0.90

W2

Backup 0.30

StorageSpace 0.40

MobileSupport 0.30

Table 4.2: Example of weight vectors for applications a1 and a2 over different criteria

and MobileSupport have the same relative importance (0.30 each), while criterion Stor-
ageSpace is more relevant (0.40).

Given an application ak ∈ A and a set P of plans, the user can identify the plan
p ∈ P that best matches the requirements of ak by using classical multi-criteria deci-
sion making approaches (e.g., [111]). Because of the heterogeneity of the requirements
of the applications, however, the plan maximizing the satisfaction of the requirements
of an application ak∈ A may not be the plan maximizing the satisfaction of the require-
ments of another application ax 6= ak. It would instead be desirable to combine the
requirements of all the applications, to select a plan that satisfies all of them in the best
possible way. A simple solution would choose the plan that better satisfies the majority
of the application requirements. However, such a trivial approach may select a solu-
tion that fully satisfies the requirements of applications A \ {ak} while not satisfying
the requirements of ak at all. This solution might then be considered not desirable as
it would strongly penalize application ak∈ A. To prevent such a situation, we propose
to adopt a consensus-based approach aimed at choosing the plan that balances the
preferences of all the applications, hence enabling the user to determine a solution that
provides a good trade-off in the satisfaction of the requirements of all her applications.

4.3 consensus for cloud plan selection

Our approach to choose the plan that best fits the user requirements operates in two
steps (see Figure 4.1): 1) rank, for each application, the providers on the basis of their
compliance with the application requirements; 2) reach a consensus in the choice of the
provider that better suits the application requirements, based on the rankings obtained
in the first step. In the following, we present our approach, based on TOPSIS for com-
puting rankings, and Borda count for reaching a consensus.

4.3.1 ranking cloud plans for an application

The first step of our solution aims at producing a ranking of the plans in P for each
application ak ∈ A. Such a ranking reflects the satisfaction of the requirements of ak
by the different plans, being the first plan in the ranking the one better satisfying all
the requirements of ak.

To rank the plans for an application, we propose to adopt traditional multi-criteria
decision making (MCDM) techniques. In fact, MCDM approaches effectively identify,

4.3 consensus for cloud plan selection 45

Figure 4.1: Working of the approach

in a pool of alternative solutions, the one that optimizes a set of objective functions
(i.e., application requirements in our terminology). Among several MCDM techniques,
a possible approach relies on adopting TOPSIS [108] as it showed to provide good re-
sults when applied to Cloud scenarios, traditionally characterized by many alternatives
compared to the number of criteria [112].

Given an application ak ∈ A, a set P of alternative solutions (plans, in our scenario),
a set Ck of criteria relevant to ak, the weights Wk assigned by ak to the criteria in Ck,
and the ratings Rj[i], i = 1, . . . , |Ck|, j = 1, . . . , |P| assigned to plan pj ∈ P for criterion ci,
TOPSIS produces a ranking of the alternatives in P, ordering them according to how
well they satisfy the criteria (from the best to the worst). To produce such a ranking,
TOPSIS evaluates the distance of each plan in P from the ideal and anti-ideal solutions,
ranking higher those plans that are closer to the ideal solution and farthest from the
anti-ideal solution. Intuitively, the ideal solution p+k for ak is a plan (which may not
belong to P) that satisfies in the best possible way all the criteria relevant to ak. On
the contrary, the anti-ideal solution p−k for ak is a plan (which may not belong to P)
that satisfies in the worst possible way the criteria relevant to ak. For each application
ai ∈ Ain A, TOPSIS works in three steps: i) it first computes a weighted decision
matrix, based on weights and ratings; ii) it then identifies the ideal and anti-ideal
solutions; and iii) finally, it ranks the plans based on their distance from the ideal and
anti-ideal solutions.

In the remainder of this section, we illustrate more in details the working of TOP-
SIS in our scenario. For simplicity, in the following, we refer our discussion to one

46 consensus-based cloud plan selection

p1 p2 p3 p4 p5

Availability 0.40 0.50 0.90 0.40 0.20

Performance 0.50 0.60 0.97 0.30 0.30

Security 0.60 0.70 0.80 0.20 0.40

Costs 0.50 0.40 0.10 0.60 0.70

Table 4.3: Decision matrix R1 for application a1∈ A

application only (ak ∈ A), with the note that the process described is executed for all
applications in A.

Weighted decision matrix. To determine the weighted decision matrix for each appli-
cation ak∈ A, TOPSIS uses a decision matrix Rk, with a row for each criteria c ∈ Ck
and a column for each plan p ∈ P. Basically, the decision matrix for application ak∈ A
is composed of the rating vectors Rj (restricted to the criteria Ck relevant to ak): each
cell Rk[i][j] in the decision matrix represents the rating Rj[i] assigned to plan pj ∈ P,
for criteria ci ∈ Ck. Table 4.3 illustrates the decision matrix for a1, obtained from the
rating vectors in Table 4.1 restricted to the first four criteria (i.e., those relevant for a1).
The original TOPSIS proposal normalizes the decision matrix, to guarantee that values
in different cells can be properly compared. Since the rating values assigned to plans
are already a-dimensional values between 0 and 1, in our scenario, it is not necessary
to normalize the decision matrix Rk.
To properly take into consideration the importance of the different criteria in Ck for
the considered application ak ∈ A, the decision matrix Rk is composed with vector
Wk (i.e., with the weights assigned to each criteria to reflect the application needs).
Each cell in the weighted decision matrix Dk for application ak∈ A is computed as
the product Dk[i][j] = Rk[i][j] ·Wk[i] of the rating obtained by plan pj ∈ P for crite-
rion ci, and the weight of criterion ci for application ak ∈ A. Table 4.4 illustrates the
weighted decision matrix for application a1 ∈ A of our running example. For instance,
D1[Availability][p1] is obtained as R1[Availability][p1]·W1[Availability]=0.4 · 0.04=0.016.
Note that the weighted decision matrix permits to identify, for each criterion ci singu-
larly taken, the best and the worst plan, which correspond to the highest and lowest
values in the row representing ci. As an example, the best plan w.r.t. the Security crite-
rion for application a1 ∈ A is p3 ∈ P, while the worst is p4 ∈ P.

Ideal and anti-ideal solutions. Based on the weighted decision matrix Dk, TOPSIS
is able to identify both the ideal and the anti-ideal solutions p+k and p−k for appli-
cation ak∈ A. For the ideal solution p+k , the weighted rating for criterion ci (de-
noted D+

k [i]) is the maximum weighted rating obtained by a plan in P for ci (i.e.,
D+
k [i]=max{Dk[i][j] : pj ∈ P}, line 13). For instance, the ideal solution for application

a1 ∈ A, considering the weighted decision matrix in Table 4.4, has weighed ratings
D+
1 =[0.036, 0.019, 0.032, 0.630]. Similarly, for the anti-ideal solution p−k , the weighted

rating for criterion ci (denoted D−
k [i]) is the minimum weighted rating obtained by a

plan in P for ci (i.e., D+
k [i]=min{Dk[i][j] : pj ∈ P}, line 14). For instance, the anti-ideal

4.3 consensus for cloud plan selection 47

p1 p2 p3 p4 p5 p+
1 p−

1

Availability 0.016 0.020 0.036 0.016 0.008 0.036 0.008

Performance 0.010 0.012 0.019 0.006 0.006 0.019 0.006

Security 0.024 0.028 0.032 0.008 0.016 0.032 0.008

Costs 0.450 0.360 0.090 0.540 0.630 0.630 0.090

dist+j 0.182 0.271 0.540 0.096 0.035

dist−j 0.360 0.271 0.039 0.450 0.540

S1 0.665 0.500 0.068 0.824 0.939

Table 4.4: Weighted decision matrix D1, ideal solution p+1 , anti-ideal solution p−1 , distances
dist+j and dist−j of each plan pj from p+1 and p−1 , and relative closeness S1 of each
plan to the ideal solutions for application a1 ∈ A

a1 a2 a3 a4 a5 a6 a7

1◦ p5 p3 p5 p1 p3 p4 p3

2◦ p4 p2 p4 p2 p2 p5 p2

3◦ p1 p1 p1 p5 p1 p1 p1

4◦ p2 p4 p2 p3 p5 p2 p5

5◦ p3 p5 p3 p4 p4 p3 p4

Table 4.5: Example of rankings of the plans for each application

solution for application a1 ∈ A, considering the weighted decision matrix in Table 4.4,
has weighted ratings D+

1 =[0.008, 0.006, 0.008, 0.090].

Ranking. To produce a ranking, TOPSIS then computes the Euclidean distance of each
plan pj ∈ P from the ideal p+k and anti-ideal p−k solution in an l-dimensional space
(with l the number of criteria in Ck). Then, it computes the relative closeness of each

plan pj to the ideal solutions as
dist−j

dist+j +dist
−
j

, where dist+j and dist−j are the distance

of pj ∈ P from p+k and p−k , respectively, where such closeness values are maintained
in a score vector Sk). For instance, the relative closeness values of the plans in P to
p+1 for application a1 ∈ A considering the weighted decision matrix in Table 4.4, is
S1=[0.665, 0.500, 0.068, 0.824, 0.939]. The higher the value Sk, the better the plan satisfies
the requirements of application ak∈ A. Then, TOPSIS produces a ranking of the plans
for application ak ∈ A by ordering them in decreasing order of Sk. For instance, with
reference to our running example, the ratings in Table 4.1, and the weights in Table 4.2,
the ranking of plans produced by TOPSIS for application a1 ∈ A is 〈p5,p4,p1,p2,p3〉
(see column a1 in Table 4.5).

4.3.2 reaching consensus among the applciations

The second step of our solution aims at choosing a Cloud plan that balances the prefer-
ences of all user applications. A straightforward approach to maximize requirements

48 consensus-based cloud plan selection

a1 a2 a3 a4 a5 a6 a7 Tot

p1 3 3 3 5 3 3 3 23
p2 2 4 2 4 4 2 4 22

p3 1 5 1 2 5 1 5 20

p4 4 2 4 1 1 5 1 18

p5 5 1 5 3 2 4 2 22

Table 4.6: Borda scores assigned to each plan by each application

satisfaction would adopt a majority voting, that is, it would choose Cloud plan ranked
first by most applications. For instance, consider a scenario characterized by a set
A = {a1, . . . ,a7} of applications and a set P = {p1, . . . ,p5} of plans, where the rankings
computed by TOPSIS for each application are illustrated in Table 4.5. The plan that
would win with the majority voting approach would be p3. However, as already noted,
this solution might be not desirable as p3 ∈ P is ranked last by three applications a1,
a3, and a6, which would then be strongly penalized.

We then propose to adopt a consensus-based voting technique, that permits to
choose an alternative that is acceptable for a broad set of voters (applications, in our
scenario), rather than simply counting majority. While noting that there are different
approaches that can be applied (e.g., [113], [114]), we consider - as an example - the
Borda count method [109]. In our Cloud scenario, alternatives correspond to plans and
the applications play the role of voters. To express its vote, each application ak ∈ A
associates a Borda score Bk[j] with each plan pj ∈ P. Such a score reflects the rankings
computed by TOPSIS (or, more in general, by the chosen MCDM technique) by assign-
ingm = |P| points to the first ranked plan, 1 to the last ranked plan, andm+1−x to the
x-th ranked plan. The overall Borda score Borda(pj) of a plan pj ∈ P is then obtained
by summing the scores assigned to the plan by each application, that is,

∑n
k=1 Bk[j].

The plan with the highest Borda score is the one that is chosen by the user, since it
has the consensus of all the applications. As an example, Table 4.6 illustrates the Borda
scores assigned by each application to each plan and the overall score of each plan. It
is interesting to see that the chosen plan is p1 ∈ P, which is ranked first by one applica-
tion only, while p3 ∈ P is only the third choice, even though it is ranked first by three
applications.

4.4 algorithm for the proposed consensus-based cloud plan se-
lection approach

Given the problem of choosing a Cloud plan, among those available ones offered by a
(set of) Cloud provider(s), we provide a pseudocode algorithm for our consensus-based
approach. The algorithm, reported in Figure 4.2, takes as input a setA of applications, a
set P of Cloud plans, a set C of criteria, weight vectors W1, . . . ,Wn, and rating vectors
R1, . . . ,Rm. Also, it returns plan p ∈ P as an optimal plan based on the consensus
between applications.

4.4 algorithm for the proposed consensus-based cloud plan selection approach 49

First, the algorithm obtains a decision matrix Rk for each application ak∈ A (lines 2–
5). As we mentioned before, each cell Rk[i][j] in the decision matrix represents the
rating Rj[i] assigned to plan pj ∈ P for criteria ci ∈ Ck. Then, for each application ak ∈
A, a weighted decision matrix Dk is obtained (lines 6–9). Each cell in Dk for application
ak∈ A is computed as the product Dk[i][j] = Rk[i][j] ·Wk[i] of the rating obtained by
plan pj ∈ P for criterion ci, and the weight of criterion ci for application ak ∈ A. Then,
to produce a ranking for each application ak ∈ A, the Euclidean distance of each Cloud
plan pj ∈ P from the ideal p+k and anti-ideal p−k solution in an l-dimensional space
(with l the number of criteria in Ck) is measured, according to TOPSIS (lines 10–14).

Then, the relative closeness of each plan pj to the ideal solutions as
dist−j

dist+j +dist
−
j

, where

dist+j and dist−j are the distance of pj ∈ P from p+k and p−k , respectively (lines 15–19).
Next, for each application ak ∈ A, the algorithm defines a list Ok of size |P| to maintain
plans in ranked order for ak, and then, inserts plans in Ok in decreasing order of Sk[j]
(lines 21–22).

Then, to produce a global ranking based on the consensus between applications,
for each application ak ∈ A, a vector Bk of size |P| is considered (lines 24). Next, for
each plan pj ∈ P and application ak ∈ A, a Borda score Bk[j] is calculated (lines 25–
27). Further, a Borda score Borda(pj) =

∑n
k=1 Bk[j] for each plan pj ∈ P is obtained

(lines 28–29). Finally, plan p ∈ P is returned as the optimal plan, which is the plan with
the highest Borda score Borda(p) (line 30).

50 consensus-based cloud plan selection

INPUT
A = {a1, . . . ,an} /* set of applications */
P = {p1, . . . ,pm} /* set of plans */
C = {c1, . . . , cl} /* set of criteria */
W1, . . . ,Wn /* weight vectors */
R1, . . . ,Rm /* rating vectors */

OUTPUT
p ∈ P /* optimal plan */

MAIN

/* Step 1: rank plans for each application in A */

1: for each ak ∈ A do
2: let Rk be the decision matrix of size |Ck|× |P|

3: for each i = 1, . . . , |Ck| do
4: for each j = 1, . . . , |P| do
5: Rk[i][j] := Rj[i] /* fill Rk with values in the rating vectors */
6: let Dk be the weighted decision matrix of size |Ck|× |P| for ak
7: for each i = 1, . . . , |Ck| do
8: for each j = 1, . . . , |P| do
9: Dk[i][j] := R[i][j] ·Wk[i] /* fill Dk with weighted ratings */

10: let D+
k be the weighted rating vector of size |Ck| for p+k

11: let D−
k be the weighted rating vector of size |Ck| for p−k

12: for each i = 1, . . . , |Ck| do
13: D+

k [i] := max{Dk[i][j] | j = 1, . . . , |P|} /* p+k rating for ci */
14: D−

k [i] := min{Dk[i][j] | j = 1, . . . , |P|} /* p−k rating for ci */
15: let Sk be a vector of size |P| for ak /* to store closeness values */
16: for each j = 1, . . . , |P| do
17: let dist+j be the distance between pj and p+k
18: let dist−j be the distance between pj and p−k
19: Sk[j] :=

dist−j
dist+j +dist

−
j

/* closeness between pj and ideal solutions */

20: let Ok be a list of size |P| to contain plans in ranked order for ak
21: for each j = 1, . . . , |P| do
22: insert pj in Ok in decreasing order of Sk[j]

/* Step 2: reach consensus */

23: for each ak ∈ A do
24: let Bk be the Borda vector of size |P| for ak
25: for each j = 1, . . . , |P| do
26: let x be the position of pj in Ok /* TOPSIS ranking of pj */
27: Bk[j] := |P|+ 1− x /* Borda score for plan pj and application ak */
28: for each j = 1, . . . , |P| do
29: Borda(pj) :=

∑n
k=1 Bk[j] /* Borda score for plan pj*/

30: return p ∈ P s.t. @p ′ ∈ P,p ′ 6= p : Borda(p ′) > Borda(p)

Figure 4.2: Algorithm for selecting the consensus-based optimal plan

4.5 chapter summary 51

4.5 chapter summary

This chapter presented a solution enabling Cloud users to choose a plan, among those
available ones offered by a (set of) Cloud provider(s), which is based on reaching a
consensus between applications. In our approach, each application individually ranks
the available Cloud plans depending on how well they satisfy the application require-
ments. The choice on the final plan is then taken adopting a consensus-based approach
on the different rankings. The proposed solution provides a tool which guarantees that
the selected Cloud plan is globally considered the most acceptable by all applications,
according to a consensus among them.

5
S U P P O RT I N G C L O U D P L A N S E L E C T I O N U N D E R

U N C E RTA I N T Y

In Chapter 4, we focused on the consensus between multiple applications to select a
Cloud plan. Indeed, in Chapter 4 it was assumed that the user is aware about the
technical requirements of applications and the characteristics of Cloud plans. However,
it might be not always the case as unskilled users might be interested in moving their
applications to the Cloud. Also, users/stakeholders might consider a limited budget
for selecting a Cloud plan, among those available, each with possibly a different price.
The problem of Cloud plan selection can get even more complicated when multiple
users/stakeholders contribute to a Cloud plan selection process. To deal with these
issues, in this chapter, we propose an approach aimed at choosing a Cloud plan when
a set of unskilled IT users/stakeholders are interested in moving multiple applications
to the Cloud, while suitably satisfying the budget constraints of users for selecting a
Cloud plan. Our solution operates by first measuring the importance of applications
and then by calculating their aggregated preferences, over a set of criteria, using fuzzy
techniques. Finally, we select, through a cost-benefit analysis process, the affordable
Cloud plan that is considered the best fit for all applications.

5.1 introduction

Cloud computing is one of the most revolutionary advances in the history of comput-
ing. Thanks to the significant benefits of Cloud-based solutions regarding the delivery
of elastic services, which can be accessed universally in a cost-effective fashion, more
organizations and individuals are relying on external Cloud providers for storing and
processing their data and applications [115][116]. Today, Cloud providers suggest dif-
ferent plans, with various interesting characteristics, to compete in the highly compet-
itive Cloud market. Such diversity allows users to choose plans that efficiently satisfy
both functional and nonfunctional requirements of their applications.

53

54 supporting cloud plan selection under uncertainty

However, the availability of several Cloud plans in the market is a dual-edged sword.
On the one hand, the variety of Cloud plans, which notably increases their flexibility
to meet user requirements, may be seductive. On the other hand, choosing a suitable
Cloud plan when multiple applications, at the same time, are moved to the Cloud, is
an essential challenge as different applications might have different (and possibly) con-
trasting requirements. For example, while computation intensive applications (e.g. im-
age/signal processing applications) that manage data with no security protection (e.g.,
publicly available or non-confidential data) require plans with high performance fea-
tures (e.g., CPU rates, disk speed), applications that process sensitive data are mostly
interested in plans with high security features (e.g., encryption algorithms, authenti-
cation mechanisms) to meet their requirements. Therefore, due to the heterogeneous
requirements of applications, a single Cloud plan that meets all of them might not ex-
ist. It is then important to properly combine the requirements of applications to select
a Cloud plan that satisfies them in the best possible way.

The problem of Cloud plan selection can get even more complicated when multiple
users, possibly without an IT background, contribute to the selection process as they
might not have precise ideas about the requirements of applications and the character-
istics of Cloud plans. For example, they might be uncertain about the required number
of synchronized replicas or backup schedule for an application to be outsourced. In
this case, she may prefer to state “high” as the relevance of availability criterion for
the application. In such context, traditional quantitative approaches for helping users
in selecting a Cloud plan, which implicitly assume the user to be familiar with the
technical requirements of applications and the characteristics of Cloud plans, are not
considered as efficient. Such approaches might not precisely capture the uncertainty
of users about application requirements, and as a result, select plans that do not ade-
quately meet them.

In this chapter, we propose an approach aimed at choosing the Cloud plan, among
those available from a Cloud provider that best satisfies imprecise information asso-
ciated with applications to be outsourced, expressed by multiple users with a limited
budget for selecting a Cloud plan. To do so, our approach, first, calculates the im-
portance of applications, and then, their aggregated preferences over each considered
criterion, using a fuzzy technique (weighted triangular average (WTA) [117]). It then
selects, through a cost-benefit analysis process, the affordable plan that best fits the ag-
gregated preferences of applications. The proposed approach provides a flexible tool
which efficiently manages Cloud plan selection scenarios that include dealing with in-
formation, provided by a set of unskilled IT users, while properly meets their budget
constraints for selecting Cloud plans.

5.1.1 chapter outline

This chapter is organized as follows. Section 5.2 presents our problem. Section 5.3
illustrates our proposed solution. Section 5.4 provides a pseudo-code algorithm for
the proposed solution. Finally, Section 5.5 presents chapter summary and concluding
remarks.

5.2 basic concepts and problem definition 55

5.2 basic concepts and problem definition

We consider a scenario, as depicted in Figure 5.1, characterized by a setU = {u1, . . . ,uh}
of users who wish to outsource a set A = {a1, . . . ,an} of applications to the Cloud. In
the proposed scenario, users can be considered as the representatives of their respec-
tive organization who are responsible for selecting one single Cloud plan, among a set
P = {p1, . . . ,pm} of plans, offered by a set of Cloud providers, for all applications in A.
Each plan is associated with a price vector P[1, . . . ,m], where P[j] denotes the price of
plan pj. For example, P = [70, 55, 45, 45, 35, 30], where P[2] = 55$ is the price of plan
p2. Also, users in U consider a budget b which represents their financial constraint for
selecting a Cloud plan. For example, budget b = 60$ implies that the users can afford
plans with prices less than or equal to the budget (60$).

Each plan p ∈ P might have different characteristics (w.r.t. a set C = {c1, . . . , cl} of
criteria) that are considered necessary for the set A of applications. For example, C can
include criteria such as availability, performance, security, and elasticity, guaranteed
by the providers (i.e., C = {Availability, Performance, Security, Elasticity}). Since users in
U may not come from an IT background, they may not be aware of criteria that are
necessary for each application ai ∈ A. Therefore, to simplify the process for users in
U, we consider a trusted third auditor (TTA), which provides consultation services to
users. We assume that the TTA is trusted by both users in U and the Cloud provider(s).
Then, the TTA defines the set of criteria C for the applications. In the definition of
C, the TTA can consider existing references and classifications (e.g., [110]) as well as
individual requirements for each application in A.

To enable comparison between the plans in P, we assume that each plan pj ∈ P is
rated by the TTA, considering each criterion ck ∈ C, denoted as pj Rj in Figure 5.1.
This rating indicates the degree to which a criterion ck ∈ C is “satisfied” by a plan
pj ∈ P. That is, it instinctively shows how much the offered services by a plan are close
to an optimal scenario that maximizes the fulfilment of criterion ck (e.g., a plan offer-
ing its services in an “always-available” manner would have the maximum rating for
Availability criterion). Formally, each plan pj is associated with a rating vector Rj[1, . . . , l],
where 0 < Rj[k] 6 1 denotes the rating degree of plan pj, considering criterion ck. For
example, a plan providing a low number of synchronized replicas, high CPU rates,
simple encryption, and load balancing algorithms, will have a high rating w.r.t. Per-
formance and low ratings for Availability, Security, and Elasticity. Table 5.1 shows the
example of rating vectors R1, . . . ,R6 for plans p1, . . . ,p6, over criteria defined in C. As
an example, plan p2 is rated lower for Availability (R2[Availability] = 0.720) compared
to Performance (R2[Performance] = 0.780).

Moreover, each user might consider a different importance for each application. A
natural way to consider the importance of applications is associating a weight to each
application ai, by each user. However, as we discussed in Section 5.1, it is not often
an easy task when users are uncertain about exact and specific requirements that are
considered for applications, including their importance. In other words, if users, pos-
sibly without IT skills, are interested in considering some importance for application
ai, compared to application aj, they may not be able to quantitatively express it (e.g.,

56 supporting cloud plan selection under uncertainty

Figure 5.1: The Reference scenario

Availability Performance Security Elasticity

R1 0.900 0.800 0.850 0.950
R2 0.720 0.780 0.620 0.750
R3 0.740 0.650 0.450 0.640
R4 0.910 0.570 0.400 0.580
R5 0.240 0.650 0.520 0.700
R6 0.200 0.300 0.350 0.400

Table 5.1: The example of rating vectors R1, . . . ,R6

the importance of application ai is twice more than the importance of aj). Then, they
may prefer to linguistically express the importance of applications. For example, Al-
ice believes that the importance of application a4 is important, while Bob finds it as
normal. Therefore, Alice and Bob may express the importance of application a4 as
“High” and “Medium”, respectively, which are not precise enough to reason about
it. To alleviate this concern, each user uv ∈ U is associated with a linguistic impor-
tance vector Wa

v , where Wa
v [i] ∈ Ψ is the linguistic importance of application ai. We

note that, Ψ = {ψ1, . . . ,ψt} is a linguistic set that is totally ordered under the relation
< (i.e., ψ1 < ψ2 < . . . < ψt). Back to our running example, Ψ = {Very Low (VL),
Low (L), Medium (M), High (H), Very High(VH)}, where, as an instance, “VH” indicates
higher importance compared to “H”. Table 5.2 shows the linguistic importance vectors
Wa

Alice,W
a
Bob,Wa

Carol for Alice, Bob, and Carol in our running example, respectively. For

5.2 basic concepts and problem definition 57

Alice Bob Carol

Wu 0.7 0.4 0.2

Wa

a1 H L H
a2 VL M M
a3 M H M
a4 H M VH

Table 5.2: User weight Wu and linguistic importance vectors WaAlice, W
a
Bob, WaCarol

Availability Performance Security Elasticity

a1 VL H VL H
a2 L H VH L
a3 H M H M
a4 VL H M VH

Table 5.3: Linguistic criteria matrix L

instance, Wa
Alice[a4] = H and Wa

Bob[a4] = M are the linguistic importance of application
a4, expressed by Alice and Bob, respectively.

In addition, given an application ai and a set of criteria C, not all criteria ck ∈ C can
be assumed to be equally relevant to application ai, from the view of users. For ex-
ample, suppose that for application a1, which is not an “always-on” application, due
to the high frequency of request variations, Elasticity criterion is more relevant than
Availability criterion. Therefore, for each application ai, to consider the relevance of
criterion ck, it is associated with a linguistic weight ψ ∈ Ψ. Formally, the extent of the
relevance of criterion ck ∈ C for application ai ∈ A is expressed in a linguistic criteria
matrix L of size n× l, with a row for each application ai ∈ A and a column for each
criterion ck ∈ C. Each cell L[i][k] ∈ Ψ represents the linguistic weight of criterion ck
for application ai. Table 5.3 presents the linguistic criteria matrix L in our running ex-
ample. For example, Availability criterion for application a1 (L[a1][Availability] =M)
is less relevant than for application a3 (L[a3][Availability] =H).

In order to capture the uncertainty of each linguistic variable ψ ∈ Ψ, it is associated,
by the TTA, with a triangular fuzzy number (TFN) as one of the most popular and
widely used types of fuzzy numbers due to its representation and computational sim-
plicity [118]. Formally, translated TFNs are maintained in a vector d̃[1, . . . , t], where
d̃[ψ] is the associated TFN of linguistic variable ψ, denoted as ψ d̃[ψ] in Table 5.1.
We note that it is possible to consider different TFN vectors for the importance of ap-
plications (see columns in Table 5.2) as well as a different TFN vector for each criterion
ck ∈ C (see columns in Table 5.3). However, to keep the model simple, we skip con-
sidering such TFN vectors. Table 5.4 shows the TFN vector d̃ in our running example.
For instance, d̃[M], which is the associated TFN with the linguistic variable “M” is
(0.1, 0.3, 0.75) (i.e., d̃[M] = (0.1, 0.3, 0.75)). In order to provide a graphical illustration
of associations between the linguistic variables in Ψ and TFNs in d̃, Figure 5.2 presents

58 supporting cloud plan selection under uncertainty

ψ d̃

Very Low (VL) (0, 0, 0.1)
Low (L) (0, 0.1, 0.3)

Medium (M) (0.1, 0.3, 0.75)
High (H) (0.3, 0.75, 1)

Very High (VH) (0.75, 1, 1)

Table 5.4: Linguistic set Ψ and TFN vector d̃

Linguistic Variables
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
eg

re
e

of
 M

em
be

rs
hi

p

0

0.2

0.4

0.6

0.8

1 VL L M H VH

Figure 5.2: Membership functions for TFNs in d̃

the membership functions for each TFN in d̃. For example, the associated membership
function of TFN (0.1, 0.3, 0.75) is plotted with continuous lines.

Moreover, opinions that each user u ∈ U holds about the relevance of each criterion
ck ∈ C for each application ai ∈ A, might have a different influence (e.g., according
to the organizational role of user, his/her experience) in Cloud plan selection process
which can be defined in several ways (e.g., by the organization manager). For example,
considering the set U = {Alice,Bob,Carol} of users, the opinions of Alice, which has
a higher role in her organization compared to Bob, have more influence than those
of Bob in choosing a suitable plan. To consider the extent of the influence of each
user uv in Cloud selection process, s/he is associated with a weight 0 < Wu[v] 6 1,
where higher weights model higher influence of user uv in the plan selection process.
Such user weights are maintained in a user weight vector Wu[1, . . . ,h]. Considering the
user weight vector Wu = [0.7, 0.4, 0.2] in our running example, the influence of the
opinions of Alice (Wu[Alice] = 0.7) in Cloud plan selection process is more than Bob
(Wu[Bob] = 0.4) and Carol (Wu[Carol] = 0.2).

Given an application ai and a set P of plans, a user u ∈ U can choose the best fit
Cloud plan p ∈ P considering the requirements of application ai, by using classical
multi-criteria decision making approaches (e.g., [111]). However, the problem can get
more aggravated when a set of unskilled IT users, with a limited budget for selecting
a Cloud plan, contribute in the process of choosing a Cloud plan for multiple out-
sourcing applications as it could significantly increase the rate of high-level imprecise
information, provided by users. To overcome these challenges, we propose an approach

5.3 proposed solution for cloud plan selection 59

aimed at choosing an affordable plan considering imprecise information provided by a
set of users which may not have precise ideas about the requirements of applications.

5.3 proposed solution for cloud plan selection

Our methodology to choose the best fit affordable plan, based on imprecise information
about applications in A, provided by users in U, operates in three main steps: i) measure
crisp importance for each application ai ∈ A, based on the linguistic importance of
ai ∈ A, expressed by each user in U; ii) measure crisp weight for each criterion ck ∈
C, based on the crisp importance of applications, obtained in the first step, and the
linguistic weight of criterion ck ∈ C ; iii) select a plan that is the best fit for applications,
considering the obtained aggregated weight of each criterion and budget b of users for
selecting a Cloud plan.

Initially, to handle the impreciseness of linguistic criteria matrix L (see Table 5.3) and
linguistic importance vectors Wa

1 , . . . ,Wa
h (see Table 5.2), we obtain fuzzy criteria matrix

L̃ and fuzzy importance vectors W̃a
1 , . . . , W̃a

h , respectively. To do so, we replace each
linguistic variable ψ ∈ Ψ with the associated TFN d̃[ψ] ∈ d̃ (see Table 5.4). Tables 5.5
and 5.6 show fuzzy importance vectors for Alice, Bob, and Carol and fuzzy criteria matrix
L̃, respectively.

In the following, we present our approach for, first, measuring the crisp importance
of each application in A, and then, computing the aggregated weight of each criterion
ck ∈ C, using WTA. Finally, we choose, through a cost-benefit analysis process, the
plan that is the best fit for applications in A, considering the obtained aggregated
weight of each criterion ck ∈ C and budget b of users in U for selecting a Cloud plan.

5.3.1 measuring importance for each application

To be able to consider the importance of applications when computing a crisp weight
for each criterion ck ∈ C (see Section 5.3.2), the first step of our solution aims at measur-
ing a numerical importance for each application ai ∈ A which reflects the aggregated
opinions of users in U about the importance of ai, considering their weights, main-
tained in the user weight vector Wu. In the remainder of this section, we will present
our solution for computing the importance of applications in A in detail.

Aggregated fuzzy importance vector. To determine the importance of each applica-
tion ai ∈ A, we propose to adopt WTA technique to aggregate the fuzzy impor-
tance values W̃a

1 [i], . . . , W̃
a
h [i] of ai (see Table 5.5), respectively expressed by users

u1, . . . ,uh, considering their weights maintained in the user weight vector Wu. To do
so, for each application ai ∈ A, we obtain an aggregated fuzzy importance W̃a

agg[i] =

(Wa
L [i],Wa

M [i],Wa
U [i]) as

|U|∑
v=1

Wu[v] · W̃a
v [i]/

|U|∑
v=1

Wu[v], maintained in an aggregated

fuzzy importance vector W̃a
agg[1, . . . ,n]. We note that Wa

M [i] is the middle value, and
Wa

L [i] and Wa
U [i] respectively are the lower and the upper bound values for the

importance of application ai. For example, as depicted in Table 5.5, the aggregated

60 supporting cloud plan selection under uncertainty

Alice Bob Carol
Wu 0.7 0.4 0.2

W̃a
Alice W̃a

Bob W̃a
Carol W̃a

agg Wa

a1 (0.3, 0.75, 1) (0, 0.1, 0.3) (0.3, 0.75, 1) (0.207, 0.550, 0.784) 0.514
a2 (0, 0, 0.1) (0.1, 0.3, 0.75) (0.1, 0.3, 0.75) (0.046, 0.138, 0.400) 0.194
a3 (0.1, 0.3, 0.75) (0.3, 0.75, 1) (0.1, 0.3, 0.75) (0.161, 0.438, 0.826) 0.475
a4 (0.3, 0.75, 1) (0.1, 0.3, 0.75) (0.75, 1, 1) (0.307, 0.650, 0.923) 0.626

Table 5.5: Application fuzzy importance W̃aAlice, W̃
a
Bob, W̃aCarol vectors respectively for users Alice,

Bob, Carol, application aggregated fuzzy importance W̃aagg vector, and application
importance vector Wa

fuzzy importance W̃a
agg[a1] of application a1 is

3∑
v=1

Wu[v] · W̃a
v [a1]/

3∑
v=1

Wu[v] = (0.7 ·

(0.3, 0.75, 1) + 0.4 · (0, 0.1, 0.3) + 0.2 · (0.3, 0.75, 1))/(0.7+ 0.4+ 0.2) = (0.207, 0.550, 0.784).
Application importance. To obtain a crisp numerical value for the importance of each
application ai, the aggregated fuzzy importance W̃a

agg[i] = (Wa
L [i],Wa

M [i],Wa
U [i]) of

ai is defuzzified into its best non-fuzzy performance (BNP) value Wa[i] as ((Wa
U [i] −

Wa
L [i]) + (Wa

M [i] −Wa
L [i]))/3 +Wa

L [i]. We use the center of area (COA) method to
measure the BNP value of W̃a

agg[i], which is one of the most popular and widely used
defuzzification methods due to its simplicity and practicality [119] [120]. The impor-
tance Wa[i] of each application ai is maintained in an importance vector Wa. For ex-
ample, as depicted in Table 5.5, the importance Wa[a1] of application a1, measured
as ((Wa

U [a1] −W
a
L [a1]) + (Wa

M [a1] −W
a
L [i]))/3+Wa

L [a1] = ((0.784− 0.207)+ (0.550−
0.207))/3 + 0.207 = 0.514, is higher than the importance Wa[a2] of application a2

(0.194).

5.3.2 measuring criteria weights

To be able to compare the preferences of applications in A, over criteria in C, as a single
global ecosystem with the characteristics of plans in P (see Section 5.3.3), the second
step of our solution aims at measuring a numerical weight for each criterion ck ∈ C,
where higher weights for ck represent higher importance of ck for applications. In the
remainder of this section, we will present our solution for measuring the weight of
each criterion ck ∈ C in detail.

Fuzzy criteria vector. We adopt WTA technique to properly consider the importance
Wa[i] ∈Wa of each application ai ∈ Awhen aggregating the fuzzy weights of each cri-
terion Ck ∈ C for applications, expressed in fuzzy criteria matrix L̃ (see Table 5.6). We
then obtain, for each criterion ck ∈ C, a fuzzy weight W̃c[k] = (Wc

L [k],Wc
M [k],Wc

U [k])

as
|A|∑
i=1

Wa[i] · L̃[i][k]/
|A|∑
i=1

Wa[i], maintained in a fuzzy criteria vector W̃c[1, . . . , l]. We

note that Wc
M [k] is the middle value, and Wc

L [k] and Wc
U [k] are respectively the lower

and upper bound values for the weight of criterion ck ∈ C. For example, as depicted

5.3 proposed solution for cloud plan selection 61

L̃

Wa Availability Performance Security Elasticity

a1 0.514 (0.1, 0.3, 0.75) (0.3, 0.75, 1) (0, 0, 0.1) (0.3, 0.75, 1)

a2 0.194 (0.3, 0.75, 1) (0.3, 0.75, 1) (0.75, 1, 1) (0, 0.1, 0.3)

a3 0.475 (0.3, 0.75, 1) (0.1, 0.3, 0.75) (0.3, 0.75, 1) (0.1, 0.3, 0.75)

a4 0.626 (0.75, 1, 1) (0.3, 0.75, 1) (0.1, 0.3, 0.75) (0.75, 1, 1)

W̃c (0.398, 0.708, 0.929) (0.247, 0.631, 0.934) (0.194, 0.408, 0.658) (0.370, 0.648, 0.859)

Wc 0.678 0.604 0.420 0.626

Table 5.6: Fuzzy criteria matrix L̃, fuzzy criteria vector W̃c, and criteria vector Wc

in Table 5.6, the fuzzy weight W̃c[Availability] of Availability criterion is
4∑
i=1

Wa[i] ·

L̃[i][Availability]/
4∑
i=1

Wa[i] = (0.514 · (0.1, 0.3, 0.75) + 0.194 · (0.3, 0.75, 1) + 0.475 ·

(0.3, 0.75, 1) + 0.626 · (0.75, 1, 1))/(0.514+ 0.194+ 0.475+ 0.626) = (0.398, 0.708, 0.929).
Criterion weight. In order to measure a numerical value for the weight of each criterion
ck, adopting COA method, the fuzzy weight W̃c[k] = (Wc

L [k],Wc
M [k],Wc

U [k]) of crite-
rion ck is defuzzfized into its BNP value as ((Wc

U [k]−Wc
L [k])+ (Wc

M [k]−Wc
L [k]))/3+

Wc
L [k], maintained in a criteria vectorWc[1, . . . , l]. For example, as depicted in Table 5.6,

the weight Wc[Availability] of Availability criterion, measured as ((Wc
U [Availability] −

Wc
L [Availability])+(Wc

M [Availability]−Wc
L [Availability]))/3+Wc

L [Availability] = ((0.929−
0.398) + (0.708− 0.398))/3+ 0.398 = 0.678, is higher than the weight Wc[performance]
of performance criterion (0.604).

5.3.3 choosing the optimal plan

The third step of our approach aims at choosing an affordable plan that best satis-
fies the aggregated weights of criteria, considering criteria vector Wc and budget b,
adopting a cost-benefit analysis process. In doing so, to measure to what extent plans
in P satisfy criteria in C, w.r.t. criteria vector Wc, for each plan pj ∈ P, we obtain a
distance D[j] between pj and criteria vector Wc as

∑|C|
k=1 Rj[k] −W

c[k], where higher
distance values indicate the better satisfaction of criteria in C by plan pj. Such distance
values are maintained in a distance vector D[1, . . . ,m]. For example, as depicted in Ta-
ble 5.7, plan p1 better satisfies criteria in C, w.r.t. criteria vector Wc, compared to plan
p2 because distance D[1] between p1 and Wc (i.e., 0.016) is higher than distance D[2]

between p2 and Wc (i.e., 0.009).
To choose a plan, we first consider plans in P that are dominant, maintained in a

dominant plan set Pdom = {p1, . . . ,pd}. A dominant Cloud plan pj in our scenario, is
one that, considering each criterion ck ∈ C, the associated rating Rj[k] is higher than
(or equal to) the respective criterion weight Wc[k] in criteria vector Wc. Therefore,
dominant plans in Pdom can better satisfy criteria in C, and as a result, more desirable
to be selected applications in A. Back to our running example, considering the set of
dominant plans Pdom = {p1,p2,p3}, for instance, the rating R1[k] of plan p1, for each
criterion ck ∈ C, is higher than the associated criterion weightWc[k]. However, plan p4

62 supporting cloud plan selection under uncertainty

Availability Performance Security Elasticity D P R ∆−

R1 0.900 0.800 0.850 0.950 1.172 70 0.016

R2 0.720 0.780 0.620 0.750 0.542 55 0.009

R3 0.740 0.650 0.450 0.640 0.152 45 0.003

R4 0.910 0.570 0.400 0.580 0.132 45 −0.1

R5 0.240 0.650 0.520 0.700 −0.218 35 −0.438

R6 0.200 0.300 0.350 0.400 −1.078 30 −1.078

Wc 0.678 0.604 0.420 0.626

Table 5.7: Distance vector D, price vector P, ratio vector R, and negative difference vector ∆−

is not a dominant one because, considering Performance and Security criteria, the rating
of p4 (i.e., R4[Performance] = 0.570 and R4[Security] = 0.400) are respectively lower
than the associated weights in criteria vector Wc (i.e., Wc[Performance] = 0.604 and
Wc[Security] = 0.420). To measure to what extent the satisfaction of criteria in C by
each dominant plan pj ∈ Pdom, w.r.t. criteria vector, prevails the associated price P[j],
we measure the distance-to-price ratio of plan pj as D[j]

P[j] , maintained in an ordered
ratio vector R[1, . . . ,d] satisfying R[1] > . . . > R[d]. Then, considering budget b and
price vector P, we choose an affordable plan pj ∈ Pdom (i.e., b >= P[j]) with maximum
distance-to-price ratio. Back to our running example, as depicted in Table 5.7, consid-
ering budget b = 60$ and price vector P, plan p2 ∈ Pdom is the dominant one that
is chosen for applications in A as it is an affordable plan (b > P[2]) with maximum
distance-to-price ratio (R[2] = 0.009).

If users in U can not afford a dominant plan, among those in Pdom, then to select a
plan, we inevitably need to consider plans that are not dominant. For example, if bud-
get b = 50$, then plans in the set Pdom of dominant plans are not affordable for users,
and as a result, we need to select a plan among non-dominant ones (e.g., with reference
to our running example, p4, p5, and p6). Different ways can be suggested to select an
affordable non-dominant plan pj ∈ (P\Pdom) (e.g., selecting the one with minimum
number of negative distance values w.r.t. each criterion ck (i.e., Rj[k] −Wc[k]), select-
ing the one with maximum distance value, w.r.t. either of criteria in C). In this work,
to select a non-dominant plan, among those in P\Pdom, we choose the affordable one
pj ∈ (P\Pdom), with the maximum sum of negative differences between the rating Rj[k]
of pj and criteria vector Wc (i.e.,

∑
∀ck∈C:Rj[k]<Wc[k] Rj[k] −W

c[k]), where such sum
values are maintained in an ordered negative difference vector ∆−[1, . . . ,m − d] which
satisfies that ∆−[1] >= . . . >= ∆−[m− d]. In this fashion, it can be assured that, by se-
lecting non-dominant plan pj, while criterion each ck ∈ C is adequately fulfilled when
Rj[k] >=W

c[k], fulfilling criteria that are not suitably satisfied (i.e., Rj[k] < Wc[k], w.r.t.
criterion ck ∈ C) is maximized. Back to our running example, as depicted in Table 5.7,
considering budget b = 50$ and negative difference vector ∆− = [−0.1,−0.438,−1.078],
plan p4 is the one that is chosen for applications in A as it is an affordable plan (P[4] =

45$) with the maximum sum of negative differences between the rating of p4 and
criteria vector Wc (i.e., ∆−[1] = (R4[Performance] −Wc[Performance]) + (R4[Security] −
Wc[Security]) + (R4[Elasticity] −Wc[Elasticity]) = −0.034 − 0.02 − 0.046 = −0.1), com-
pared to other non-dominant plans (i.e., p5 and p6). We note that, if we need to select

5.4 algorithm for the proposed uncertainty-based cloud plan selection approach 63

a plan, among those affordable non-dominant ones, when the sum of negative differ-
ences between their ratings and criteria vector Wc is equal, we will choose the one
with the highest distance from Wc, and in this manner, it is guaranteed that the se-
lected plan is the best fit for applications in A, considering Wc and the budget b of
users in U for selecting a plan.

5.4 algorithm for the proposed uncertainty-based cloud plan

selection approach

Given the problem of choosing a Cloud plan, among those available ones, we provide
a pseudo-code algorithm for our proposed solution. The algorithm, reported in Fig-
ure 5.3, takes as input a set U of users, a set A of applications, a set P of plans, a set C
of criteria, a set Ψ of linguistic variables, a linguistic criteria matrix L, a set of linguistic
importance vectors Wa

1 , . . . ,Wa
h , a user weight vector Wu, and a set of rating vectors

R1, . . . ,Rm, a plan price vector P, and a budget b. Also, it returns plan p ∈ P as an
optimal plan based the uncertain requirements of applications, provided by the users
in U.

First, it is checked if there is no affordable plan, then there is no feasible solution for
the problem (lines 1–2). Then, if there is only one affordable plan, then it is returned as
only feasible solution (lines 3–4). Next, to handle the impreciseness of linguistic criteria
matrix L (see Table 5.3) and linguistic importance vectors Wa

1 , . . . ,Wa
h (see Table 5.2),

fuzzy criteria matrix L̃ (lines 5–6) and fuzzy importance vectors W̃a
1 , . . . , W̃a

h (lines 7–9) are
obtained, respectively. In addition, for each application ai ∈ A, the aggregated fuzzy
importance W̃a

agg[i] is calculated. Next, the aggregated fuzzy importance W̃a
agg[i] for

each application is defuzzified to obtain a crisp importance Wa[i] of each application
(lines 10–14). Further, for each criterion ck ∈ C, its fuzzy weight W̃c[k] is determined.
Then, a crisp weight Wc[k] is calculated for criterion ck ∈ C, through a defuzzifica-
tion process (lines 15–19). Next, we choose the affordable plan, through a cost-benefit
analysis described in Section 5.3.3, that best fits criteria vector Wc. (lines 20–40).

64 supporting cloud plan selection under uncertainty

INPUT
U = {u1, . . . ,uh} /* set of users */
Wu /* user weight vector */
A = {a1, . . . ,an} /* set of applications */
Wa
1 , . . . ,Wa

h /* application linguistic importance vectors associated with
users */
C = {c1, . . . ,cl} /* set of criteria */
P = {p1, . . . ,pm} /* set of plans */
R1, . . . ,Rm /* rating vectors */
P /* plan price vector */
b /* budget for selecting a Cloud plan */
Ψ = {ψi, . . . ,ψt} /* set of linguistic variables */
L /* linguistic criteria matrix */
d̃ /* TFN vector */

OUTPUT
p ∈ P /* optimal plan */

MAIN

1: if (@pj ∈ P : P[j] < b) /* if there is no affordable plan */
2: return “There is no feasible solution!”
3: if (∃! pj : P[j] < b) /* if there is only one affordable plan */
4: return pj
5: let L̃ be the fuzzy criteria matrix of size |A|× |C|

/* fill L̃ with TFNs in d̃ */
6: L̃ :=Fill_Fuzzy_Criteria_Matrix(L, d̃,Ψ)
7: let W̃a

1 , . . . ,W̃a
h be the fuzzy importance vectors of size |A|

8: for each v = 1, . . . , |U| do
/* fill W̃a

v with TFNs in d̃ */
9: W̃a

v :=Fill_Fuzzy_Importance_Vector (Wa
v , d̃,Ψ)

/* Step 1: measure the importance of each application ai ∈A */

10: let W̃a
agg be the aggregated fuzzy importance vector of size |A|

11: let Wa be the importance vector of size |A|

12: for each i = 1, . . . , |A| do
13: W̃a

agg[i] := Fuzzy_Importance(Wu,W̃a
1 , . . . ,W̃a

h) /* fuzzy importance of ai */
14: Wa[i] := Defuzzify_Importance(W̃a

agg[i]) /* importance of ai */

/* Step 2: measure the weight of each criterion ck ∈ C */

15: let W̃c be the fuzzy criteria vector of size |C|

16: let Wc be the criteria vector of size |C|

17: for each k = 1, . . . , |C| do
18: W̃c[k] := Fuzzy_Weight(Wa, L̃) /* fuzzy weight of ck */
19: Wc[k] := Defuzzify_Weight(W̃c[k]) /* weight of ck */

/* Step 3: Select optimal plan */

20: let D be the distance vector of size |P|

21: for each j = 1, . . . , |P| do
22:

∑|C|
k=1 Rj[k] −W

c[k] /* distance between pj and Wc */
23: for each j = 1, . . . , |P| do
24: if (@ck ∈ C : Rj[k] <W

c[k]) /* pj is dominant * /
25: Pdom := Pdom ∪pj
27: let R be the ratio vector of size |Pdom|

28: for each j = 1, . . . , |Pdom| do
29: insert D[j]

P[j] in R in decreasing order /* distance-to-price ratio for pj ∈ Pdom */
30: for each j = 1, . . . , |Pdom| do
31: let px be the plan s.t. R[j] =

D[x]
P[x]

32: if b > P[x] then /* px is affordable */
33: return pk
34: let ∆− be the negative difference vector of size P\Pdom
35: for each j = 1, . . . , |P\Pdom| do

/* negative differences between Rj[k] and Wc[k] for non-dominant plan pj*/
36: insert

∑
pj∈(P\Pdom)

∀ck∈C:Rj[k]<Wc[k]

Rj[k] −W
c[k] in ∆− in decreasing order

37: for each j = 1, . . . , |P\Pdom| do
38: let px be the plan s.t. ∆−[j]=

∑
px∈(P\Pdom)

∀ck∈C:Rx[k]<Wc[k]

Rx[k] −W
c[k]

39: if b > P[x] then /* px is affordable */
40: return px

Figure 5.3: Algorithm for selecting the optimal plan

5.5 chapter summary 65

5.5 chapter summary

In this chapter, we proposed to adopt an approach aimed at choosing a Cloud plan for
a set of applications, where the preferences of each application, over a set of criteria
(e.g., availability, performance), expressed by multiple users, with a limited budget for
selecting a Cloud plan, in an imprecise (and possibly a linguistic) way. In our approach,
first, the crisp importance of each application, and then, the aggregated preferences of
applications over each criterion (e.g., availability, performance) are calculated, using
fuzzy techniques. Finally, through a cost-benefit analysis process, the affordable plan
that is the best fit for the set of applications is selected, considering the obtained ag-
gregated criteria preferences. The proposed approach provides a flexible tool which
efficiently manages Cloud plan selection scenarios that include dealing with imprecise
information, provided by a set of unskilled IT users with a limited budget for selecting
Cloud plans.

6
R I S K - AWA R E A P P L I C AT I O N S C H E D U L I N G I N C L O U D

C O M P U T I N G S C E N A R I O S

An essential challenge in outsourcing scenarios is supporting the business objectives
of users when they move their applications to the Cloud. In particular, when outsourc-
ing applications are business-critical (e.g., e-commerce applications), it could cause
significant financial loss if they are not available, even for a very short time. There-
fore, the presence of the risk of financial loss can make users skeptical about moving
their business-critical applications to the Cloud. Therefore, it is important to satisfy
the business objectives of users w.r.t the financial profit of applications when they are
moved to the Cloud. This chapter introduces a solution in a multiple-application con-
text aimed at maximizing financial profit estimated for each application by selecting a
virtual machine (VM), among those available, for each application.

6.1 introduction

Virtualization is known as the central key technology to deliver on-demand resources
(e.g., CPU, memory, network) to users in a cost-efficient and flexible fashion [121].
Cloud providers offer their services to their users by encapsulating their Internet-scale
content storage, processing, and delivery capabilities in the form of VMs [122] de-
ployed on multiple physical machines (PMs). For example, Amazon EC2 [123] provides
a diverse spectrum of VM instances which shifts away from general purpose VMs to
those optimized for specific tasks (e.g., memory or computation intensive tasks).

Also, the economic advantages of Cloud services are considered as one of the main
motivations of users for moving their applications to the Cloud. In particular, Cloud
users with business-critical applications are concerned with not only avoiding a fi-
nancial loss but also supporting the financial profit of their applications when they
are executed on the Cloud. Since the quality of services (QoSs), guaranteed by Cloud
providers, has clear consequences on the financial profit of outsourcing applications,

67

68 risk-aware application scheduling in cloud computing scenarios

Monthly Uptime Service Credit

Less than 99.95% but equal to or greater than 99.0% 10%
Less than 99.0% 30%

Table 6.1: Service credit schedule for VMs provided by Amazon EC2

it is vital to carefully consider such QoSs when VMs are selected for applications. In
particular, one of the principal concerns of Cloud users, when they outsource their
applications to the Cloud, is the availability of Cloud services [124] because service
outage, even for a very short time, can raise serious consequences [125]. Therefore,
Cloud providers should guarantee that their offered services support “plug and play”,
just as on-premise applications [124] which such assurances are provided in SLAs,
according to negotiations between Cloud users and providers. Today, major Cloud
providers (Microsoft, Amazon, Rackspace) have made huge investments to make their
provided services highly available [126]. However, due to several service outage or cor-
ruption [127] [128], it is vital to carefully address such issues in scheduling applications
because they would result in losing unsatisfied customers to other Cloud providers
and even hindering the further adoption of Cloud computing, if the objectives of users
cannot be suitably met when they move their applications to the Cloud.

To alleviate these issues, Cloud providers consider some compensation mechanisms
when SLA is violated. In particular, if a Cloud provider fails to provide its promised ser-
vice availability, the provider should compensate users based on some service credit [129].
Service credits play a major role in SLA violation compensation. For example, Rackspace
paid 2.5−3.5million dollars to its users following a power outage in its Dallas data cen-
ter in late June 2009 [130]. Moreover, they can restrict the behaviors of Cloud providers
to prevent SLA violation, and as a result, avoid penalty costs [131]. Service credits can
be measured in different ways. However, they are usually calculated by how long a
service was unavailable within a specific billing period [129]. For example, the current
service credit of Amazon EC2 service is defined as a percentage of total charges paid by
a user for a running VM instance, according to a schedule presented in Table 6.1 [132].
For instance, Amazon compensates each user with 10% of her total monthly payment
for her adopted VM, if the uptime percentage of VM is between 99.95% and 99%. Also,
Amazon does not refund or any other payment, if the uptime percentage of VMs is
more than 99.95% in any monthly billing cycle.

Then, in VM provisioning scenarios, which applications are usually scheduled by
mapping each one to a VM, to properly meet the business objectives of users w.r.t. the
financial benefit of applications, it is essential to investigate: 1) service credit considered
for each VM, if its uptime percentage is less than the commited one by Cloud provider
that offers the VM; 2) off-premise profit that is the profit of an application when it is
mapped to a VM. In fact, the financial profit of each application highly depends on
different uptime intervals which is defined in service credit schedules associated with
VM that is selected for the application. Two main reasons can be provided for support-
ing this argument: 1) if the uptime percentage of a VM, in a defined period (e.g., in
an hour), falls in each uptime interval, a different service credit is applied for the VM

6.2 basic concepts and problem definition 69

which should be added to the financial profit of application that is mapped on the VM
(see Table 6.1); 2) since the availability of an application is tied to the availability of
selected VM for the application (as it is deployed on the VM), the financial profit of
application differs, if the uptime percentage of VM falls in a different uptime interval.

This chapter provides an approach in a multiple-application context aimed at, through
selecting an available VM for an application, maximizing the estimated financial profit
of each application, considering defined service credit schedules by several Cloud
providers.

6.1.1 chapter outline

This chapter is structured as follows. Section 6.2 provides some basic concepts on
the problem and its definition. Section 6.3 presents our proposed approach for the
defined problem. Section 6.4 provides an algorithm for the proposed solution. We
present chapter summary and concluding remarks in Section 6.5.

6.2 basic concepts and problem definition

In this section, we first provide an overview of risk analysis to properly clarify the
motivation behind its use in our study. Then, we provide basic concepts on the problem
together with its definition.

6.2.1 an overview of risk analysis in the proposed study

Risks to human comes to light from an inherent characteristic to make plans and try to
make them fulfilled, while external forces (e.g., failure time, failure recovery time in our
scenario) resist and tend to move our attempts away from the objectives of plan [133]
(e.g., supporting the business objectives of users in our scenario). The definition of risk
involves both uncertainty as well as some consequence might be received which could
be symbolically written as [134]:

risk=uncertanity+damage

Considering our discussion in Section 6.1, the definition of risk in the context of our
problem includes responses to the three following questions [134]:

1. What can happen?

• Answer: falling the uptime percentage of available VMs in different uptime
intervals

2. How likely is it that this will happen?

• Answer: the probability of falling the uptime percentage of available VMs
in each uptime interval

3. In case of happening, what are the consequences?

70 risk-aware application scheduling in cloud computing scenarios

Consequence

Monthly Uptime Interval Probability Service Credit Monthly Financial Profit

[99.96 100] 0.997 0% 17280 (usd)
[99 99.95] 0.002 10% 12960 (usd)
[98.5 98.99] 0.001 30% 7560 (usd)

Table 6.2: Example of VM uptime outcomes

• Answer: Changes in 1) the financial profit of application that is mapped on
a VM; 2) applied service credit percentage for the VM

To answer these questions, we need to make a list of outcomes. For example, as
suggested in Table 6.2, which has been inspired from Table I in [134], considering the
uptime percentage of a VM that is selected for an application, we can consider three
outcomes:

1. if it falls in uptime interval [99.96 100];

2. if it falls in uptime interval [99 99.95];

3. if it falls in uptime interval [98.5 98.99].

For each considered outcome, with a different probability, two possible consequences
can be considered. For example, considering Table 6.2, if the uptime percentage of VM
falls in interval [99.96 100], with probability 0.997, no service credit is applied and
the average financial profit of application is 17280 (usd/month). For simplicity, in the
context of our problem, we refer to risk as falling the uptime percentage of available
VMs in uptime intervals instead of an outcome list including, uptime intervals, their
probabilities, and consequences (applied service credits and the financial profit of ap-
plications).

Risk analysis properly deals with decision making in situations that involve uncer-
tainty (i.e., situations with the lack of complete and accurate knowledge about the state
of system [135] [136] [137]). Therefore, since we cannot be certain about falling the up-
time percentage of an available VM in an uptime interval, we adopt risk analysis to
maximize the estimated financial profit of each application by choosing a VM, among
those available ones, for each application.

6.2.2 problem definition

We consider a scenario, as depicted in Figure 6.1, characterized by a user wishing to
outsource a set A = {a1, . . . ,an} of applications. To this aim, she needs to choose a VM
vj, from a set V = {v1, . . . , vm} of VMs that are offered by multiple Cloud providers,
for each application ai ∈ A (m >= n). Since in this chapter, we focus on meeting the
business objectives of users w.r.t. the financial profit of applications, to enable compari-
son between VMs in V based on their economic characteristics (e.g., rental cost, service

6.2 basic concepts and problem definition 71

Figure 6.1: The reference scenario

credit), we assume that all VMs in V have the same technical characteristics (e.g., CPU
rates, memory). In the next two subsections, we present the modeling of available VMs
in V and outsourcing applications in A, receptively.

6.2.2.1 modeling available vms

As we mentioned before in Chapter 2, a Cloud plan can be any type of customized
Cloud service (e.g., a (set of) VM(s)). While noting that, in our application scheduling
scenario, we do not consider any pre-defined plans, each subset of available VMs that
the number of its members is equal to the number |A| of applications in A can be
considered as a plan. Figure 6.2, shows an example of three Cloud plans which each
plan includes four VMs (e.g., plan p1 includes v2, v3, v4, and v6).

Table 6.3 shows available VMs in our running example. Since it does not affect our
solution, we assume that the number m of available VMs in our running example is
equal to the number n of applications for the sake of simplicity (i.e., m = n = 4). Each
VM vj ∈ V is associated with an hourly rental cost, defined by Cloud providers, which
is paid by the user for deploying her application on vj. Such rental cost values are
maintained in a rental cost vector R[1, . . . ,m], where R[j] is the hourly rental cost of VM
vj ∈ V . For example, considering Table 6.3, the rental cost R[1] of VM v1 ∈ V is equal
to 0.01 (usd/hour). Moreover, we assume that the hourly uptime percentage (HUP) of
each VM vj ∈ V falls in an interval maintained in an uptime interval vector I[1, . . . ,d],
where I[k] is the kth hourly uptime interval (HUI) of VMs, defined by Cloud providers.
For example, considering Table 6.3, I[2] = [99 99.95] is the 2nd HUI of VMs in V . Also,
all VMs in V are associated with a service credit vector Γ = [1, . . . ,d], where Γ [k] is
service credit percentage (SCP) that is associated with kth hourly uptime interval I[k].
For example, considering Table 6.3, Γ [2] = 30% is the SCP that is associated with HUI
I[2] = [99 99.95].

Also, each VM vj ∈ V is associated with a probability vector Prj[1, . . . ,d], where Prj[k]
is probability that the HUP of VM vj ∈ V falls in kth hourly uptime interval Ik. For
example, considering Table 6.3, Pr2[3] = 0.0004 is the probability that HUP of VM

72 risk-aware application scheduling in cloud computing scenarios

Figure 6.2: Example of relations between plans and VMs

R[1] I Γ Pr

v1 0.01

[99.96 100] 0 0.997
[99 99.95] 30 0.002
[95 98.99] 50 0.0009
[90 94.99] 60 0.0001

R[2] I Γ Pr

v2 0.007

[99.96 100] 0 0.96
[99 99.95] 30 0.0395
[95 98.99] 50 0.0004
[90 94.99] 60 0.0001

R[3] I Γ Pr

v3 0.004

[99.96 100] 0 0.86
[99 99.95] 30 0.03
[95 98.99] 50 0.095
[90 94.99] 60 0.015

R[4] I Γ Pr

v4 0.002

[99.6 100] 0 0.8
[99 99.95] 30 0.1
[95 98.99] 50 0.095
[90 94.99] 60 0.005

Table 6.3: Example of available VMs

6.2 basic concepts and problem definition 73

Service type P I P1

a1 Social medial marketing 4.9

[99.96 100] 4.8
[99 99.95] 3.6
[95 98.99] 2.1
[90 94.99] 1.2

Service type P I P2

a2 Average traffic website 1.9

[99.96 100] 4.1
[99 99.95] 3.1
[95 98.99] 2.1
[90 94.99] 0.9

Service type P I P3

a3 Business logic 2.11

[99.96 100] 4.3
[99 99.95] 3.3
[95 98.99] 2.5
[90 94.99] 1.5

Service type P I P4

a4 Music streaming 4.5

[99.6 100] 4.6
[99 99.95] 3.7
[95 98.99] 2.9
[90 94.99] 1.9

Table 6.4: Example of on-promise profit vector P and off-premise profit vector P

v2 ∈ V falls in HUI I3 = [95 98.99]. We note that such probabilities either could be
defined by Cloud providers, if they are trusted ones or by a third party which is
trusted by both the user and Cloud providers, based on the analysis of historical data
regarding the availability of VMs in V . Details about the process of obtaining such
probabilities are outside of the scope of this chapter.

6.2.2.2 modeling outsourcing applications

The user defines, for each application ai ∈ A, an on-premise financial profit which is
the average hourly financial profit of ai ∈ A before moving to the Cloud. For example,
considering Table 6.4, the on-promise financial profit of application ai ∈ A is 4.9 (us-
d/hour). Such on-premise financial profit values are maintained in an on-promise profit
vector P[1, . . . ,n], where P[i] is the on-premise financial profit of application ai ∈ A.
Also, the user estimates, for each application ai ∈ A, an off-premise financial profit
Pi[k] which is the average hourly financial profit of application ai ∈ A, if the HUP
of VM vj ∈ V that is selected for ai falls in HUI I[k] ∈ I. Such off-premise financial
profit values are maintained in an off-premise profit vector Pi[1, . . . ,d], where Pi[k] is the
off-premise financial profit of application ai ∈ A. For example, considering Table 6.4,
the off-premise financial profit of application ai ∈ A is equal to 4.8 usd/hour.

74 risk-aware application scheduling in cloud computing scenarios

Figure 6.3: Example of mapping function F

Let us introduce a one-to-one mapping function F : A → V that takes the set A of
applications as input and maps each ai ∈ A to a VM vj ∈ V , according to our pro-
posed application scheduling approach. The notation F(a) = v indicates that VM v is
selected for application a. Figure 6.3, which has been inspired from Figure 1.b in [68],
shows an example for a mapping generated by F(a1, . . . ,an) → (v1, . . . , vm), where
F(a1) = vm, F(a2) = v1, and F(an) = v2. Mapping function F should satisfy the follow-
ing two objectives when maps applications in A to VMs in V :

First, mapping function F has to guarantee the supporting of the financial profit of
each application ai ∈ A when ai is assigned to a VM vj ∈ V . To do so, mapping
function F must capture risk associated with the falling of the HUP of each VM vj ∈ V
in each HUI I[k] ∈ I as it can affect:

1. hourly penalty for a VM vj ∈ V . For example, suppose that, application a1 ∈ A (see
Table 6.4) is mapped on VM v1 ∈ V (see Table 6.3) with rental cost R[1] = 0.01
(usd/hour). If the HUP of VM v1 ∈ V falls in HUI I[3], its hourly penalty is
R[1] · Γ [3] = 0.01 · 50% = 0.005 (usd/hour). However, if the HUP of VM v1 falls in
HUI I[2], its hourly penalty is R[1] · Γ [2] = 0.01 · 30% = 0.003 (usd/hour).

2. hourly off-premise financial profit Pi[k] of application ai ∈ A. For example, consid-
ering Table 6.4, if F(a1) = v1 and the HUP of VM v1 ∈ V falls in HUI I[3], then
P1[3] = 2.1 (usd/hour), while if the HUP of v2 falls in HUI I[2], then P1[2] = 3.6
(usd/hour).

Second, mapping function F must satisfy importance assigned to each application
ai ∈ A when a VM vj ∈ V is selected for ai. For example, suppose that application
ai ∈ A has a higher importance compared to application aj ∈ A. Also, suppose that,
both applications ai,aj ∈ A would make their maximum financial profit if they are
mapped on VM vj ∈ V . Therefore, VM Vj ∈ V must be assigned to application ai ∈ A
due to its higher importance compared to application aj ∈ A. In our scenario, the im-
portance of applications is defined by the user, according to their on-premise financial

6.3 proposed approach 75

profit maintained in P (i.e., applications with higher on-premise financial profit Pi
have higher importance from the view of user). For example, as depicted in Table 6.4,
applications a1 ∈ A (which is a social media marketing application) and a2 ∈ A (which
is a website with average traffic) respectively have the highest and the lowest impor-
tance from the view of user, considering their associated on-premise financial profit
(i.e., P[1] = 4.9 (usd/hour) and P[2] = 1.9 (usd/hour)).

In the light of above discussion, now we can elaborate the problem definition more
clearly. Given a set A = {a1, . . . ,an} of applications and a set V = {v1, . . . , vm} of
VMs, since the HUP of each VM vj ∈ V can fall in any of d HUIs in I = [1, . . . ,d], it
may not be possible to measure a precise hourly financial profit for each application
ai ∈ A when it is assigned to vj (i.e., F(ai) = vj). Therefore, a solution to this problem
is the estimation of average hourly financial profit for each application ai ∈ A, con-
sidering risk associated with the falling of the HUP of VM vj ∈ V in each HUI I[k]
with probability Prj[k]. In the next section, we will present our risk-aware application
scheduling approach aimed at, by selecting a VM vj ∈ V for each application ai ∈ A,
maximizing hourly financial profit that is estimated for each application, considering
the importance of applications.

6.3 proposed approach

Our approach, presented in the following sections, operates in two main steps i) mea-
sure an hourly penalty for each VM vj ∈ V w.r.t. each HUI I[k] ∈ I; ii) estimate hourly
financial profit for each application to be scheduled w.r.t. each VM vj ∈ V .

6.3.1 measuring penalty for each vm

The first step of our proposed approach is measuring an hourly penalty for each VM
vj ∈ V , w.r.t. its HUP, which is paid by Cloud providers. In fact, since the HUP of each
vj ∈ V can fall in any HUI Ik ∈ I, we should calculate the hourly penalty of vj ∈ V ,
considering each I[k]. To do so, each VM vj ∈ V is associated with a penalty vector
ξj[1, . . . ,d], where ξi[k] is the hourly penalty of vj ∈ V if its HUP falls in HUI I[k] ∈ I
and calculated as:

ξi[k] = R[j] · Γk (6.1)

For example, as depicted in Table 6.5, the penalty of ξ2[3] of VM v2 ∈ V , if its HUP
falls in HUI I[3] is calculated as R[2].Γ [3] = 0.007 · 50% = 0.0035 (usd/hour). In the next
subsection, we will present our approach for estimating the hourly financial profit of
each application ai ∈ A.

6.3.2 estimating financial profit for an application

The second step of our proposed approach is estimating an average hourly financial
profit for each application ai ∈ A if it is mapped on each VM vj ∈ V . As we discussed

76 risk-aware application scheduling in cloud computing scenarios

in Section 6.2.2, in our scenario, the importance of each application ai ∈ A is defined
according to its hourly on-premise financial profit P[i]. Also, as we discussed before in
Section 6.2.2, the second objective of mapping function F : A → V is to guarantee the
satisfaction of the importance of applications in A. To meet this objective, we schedule
applications in A in the decreasing order of their importance. Back to our running
example, the first application to be scheduled is application a1 ∈ A with the highest
importance among others in A. Then, we schedule applications a4 ∈ A and a3 ∈
A, and finally a2 ∈ A. For simplicity, in the following, we refer our discussion for
scheduling the first application to be scheduled (i.e., a1 ∈ A) with the note that the
process described is executed for all applications in A.

6.3.2.1 estimating hui-wise financial profit for an application

As we mentioned in Section 6.2.2.1, we assume that the HUP of each VM vj ∈ V falls
in a HUI I[k] ∈ I. Also, as we discussed before in Section 6.2.2, risk associated with the
falling of the HUP of selected VM vj ∈ V for application ai ∈ A (i.e., F(ai) = vj) in
each HUI Ik ∈ I can affect: 1) hourly penalty for a VM vj ∈ V and 2) off-premise financial
profit for application ai ∈ A. Therefore, to efficiently estimate the financial profit of
applications in A, we need to consider all possible outcomes of falling the HUP of
VMs in V in HUIs in I, each with a different probability maintained in Prj. In other
words, to select a VM for application ai ∈ A, we need to estimate, for each HUI I[k] ∈ I,
a financial profit if ai ∈ A is assigned to a VM vj ∈ V (i.e., F(ai) = vj). For example,
considering Table 6.3, the HUP of each VM vj ∈ V can fall in four HUIs in I (d = 4),
which as a result, we need to estimate four values for the financial benefit of ai ∈ A,
considering each VM vj ∈ V .

Let Pi,j[k] denotes the estimated hourly financial profit of current application ai ∈ A
to be scheduled when it is mapped on a VM vj ∈ V (i.e., F(ai) = vj) and the HUP
of vj ∈ V , with rental cost R[j], falls in I[k] ∈ I with penalty ξj[k]. Then, we propose
Formula 6.2 for Pi,j[k].

Pi,j[k] = Pi[k] + ξj[k] − R[j] (6.2)

Such estimated values for the HUI-wise financial profit of application ai ∈ A are
maintained in an HUI-wise profit vector Pi,j[1, . . . ,d]. For example, as depicted in Ta-
ble 6.5, the estimated hourly financial profit Pa1,v2 [3] of application a1 ∈ A when it
is mapped on VM v2 ∈ V (i.e., F(a1) = v2) and the HUP of v2 ∈ V falls in HUI I[3]
is equal to 2.096 (usd/hour). In the next sub-section, through a risk analysis process,
we choose a VM vj ∈ V for the current application ai ∈ A to be scheduled which
maximizes the estimated financial profit of application ai ∈ A.

6.3.2.2 measuring expected monetary value for an application

To select a VM for the current application ai ∈ A to be scheduled, we estimate, for
each VM vj ∈ V , the hourly financial profit P

emv
i,j of ai ∈ A, as its expected monetary

value (EMV), if it is mapped on vj ∈ V as:

6.3 proposed approach 77

R[v1] I Γ Pr ξ Pa1,v1
P

emv
a1,v1

v 0.010

[99.96 100] 0 0.997 0 4.790

4.784
[99 99.95] 30 0.002 0.003 3.593
[95 98.99] 50 0.0009 0.005 2.095
[90 94.99] 60 0.0001 0.006 1.196

R[v2] I Γ Pr ξ Pa1,v2
P

emv
a1,v2

v 0.007

[99.96 100] 0 0.96 0 4.793

4.744
[99 99.95] 30 0.0395 0.0021 3.595
[95 98.99] 50 0.0004 0.0035 2.096
[90 94.99] 60 0.0001 0.0042 1.197

R[v3] I Γ Pr ξ Pa1,v3
P

emv
a1,v3

v 0.004

[99.96 100] 0 0.86 0 4.796

4.449
[99 99.95] 30 0.03 0.0012 3.597
[95 98.99] 50 0.095 0.002 2.098
[90 94.99] 60 0.015 0.0024 1.198

R[v4] I Γ Pr ξ Pa1,v4
P

emv
a1,v4

v 0.002

[99.6 100] 0 0.8 0 4.798

4.403
[99 99.95] 30 0.1 0.0006 3.598
[95 98.99] 50 0.095 0.001 2.099
[90 94.99] 60 0.005 0.0012 1.199

Table 6.5: Rental cost vector R, HUI vector I, service credit vector Γ , probability vector
Pr1, . . . ,Pr4, penalty vectors ξ1, . . . , ξ4, HUI-wise profit vector Pa1,vj , and estimated
financial profit Pemva1,vj of application a1 ∈ A w.r.t. each VM vj ∈ V

P
emv
i,j =

d∑
k=1

Pi,j[k] · Prj[k] (6.3)

We note that Pi,j[k] denotes the estimated HUI-wise financial profit of application
ai ∈ A (see Section 6.3.2.1) and Prj[k] denotes the probability that the HUP of VM
vj ∈ V falls in HUI Ik ∈ I. Back to our running example, Table 6.5 shows the estimated
hourly financial profit of application a1 ∈ A w.r.t. each VM vj ∈ V . To meet the first
objective of mapping function F (see Section 6.2.2), we need to select a VM vj ∈ V
for the current application ai ∈ A to be scheduled that, compared to other VMs in V ,
application ai ∈ A would make the maximum hourly financial profit, if it is mapped
on vj ∈ V . Back to our running example, considering Table 6.5, VM v1 ∈ V is selected
for the current application a1 ∈ A (i.e., F(a1) = v1) because a1 ∈ A would make the
maximum hourly financial profit, if it is mapped on v1 ∈ V (P

emv
a1,v1 = 4.784 (usd/hour)),

compared to other other VMs in V .
As we discussed before in Section 6.2.2, in our scenario, the function F : A → V

is a one-to-one mapping function. That is, each application ai ∈ A is mapped on

78 risk-aware application scheduling in cloud computing scenarios

R[v2] I Γ Pr ξ Pa4,v2
P

emv
a4,v2

v 0.007

[99.96 100] 0 0.96 0 4.593

4.556
[99 99.95] 30 0.0395 0.0021 3.695
[95 98.99] 50 0.0004 0.0035 2.896
[90 94.99] 60 0.0001 0.0042 1.897

R[v3] I Γ Pr ξ Pa4,v3
P

emv
a4,v3

v 0.004

[99.96 100] 0 0.86 0 4.596

4.367
[99 99.95] 30 0.03 0.0012 3.697
[95 98.99] 50 0.095 0.002 2.898
[90 94.99] 60 0.015 0.0024 1.898

R[v4] I Γ Pr ξ Pa4,v4
P

emv
a4,v4

v 0.002

[99.6 100] 0 0.8 0 4.598

4.333
[99 99.95] 30 0.1 0.0006 3.698
[95 98.99] 50 0.095 0.001 2.899
[90 94.99] 60 0.005 0.0012 1.899

Table 6.6: Rental costs R[v2], R[v3], R[v4], HUI vector I, service credit vector Γ , probability
vectors Pr2, . . . ,Pr4, HUI-wise profit vectors Pa4,vj , and estimated financial profit
P
emv
a4,vj of application a4 w.r.t. each VM vj ∈ V

one VM vj ∈ V and each vj is selected for one ai ∈ A. Therefore, to avoid mapping
an application to an already selected VM, we remove VM vj ∈ V from the set V of
available VMs when it is selected for application ai ∈ A (i.e., F(ai) = vj). Back to our
running example, since application ai ∈ A is mapped on VM v1 ∈ V (i.e., F(a1) = v1),
then v1 is removed from the set V of available VMs (i.e., V = {v2, v3, v4}).

According to our discussion in Section 6.3.2 and considering Table 6.4, the next
application to be scheduled is a4 ∈ A, then a3 ∈ A, and finally, a2 ∈ A. As depicted
in Table 6.6, application a4 ∈ A is mapped on VM v2 ∈ V (i.e., F(a4) = v2) because
hourly financial profit P

emv
a4,v2 = 4.556 (usd/hour) estimated for a4 ∈ A is maximum,

if it is mapped on v2 ∈ V , compared to VMs v3 (P
emv
a4,v3 = 4.367 (usd/hour)) and

v4 ∈ V (P
emv
a4,v4 = 4.333 (usd/hour)). Also, VM v2 ∈ V is removed from the set V of

available VMs (i.e., V = {v3, v4}) to avoid its selection for unscheduled application(s)
(i.e., a2,a3 ∈ A).

The next application to be scheduled is a3 ∈ A, which according to Table 6.7, is
mapped on VM v3 ∈ V (i.e., F(a3) = v3), because financial profit P

emv
a3,v3 = 4.053

(usd/hour) that is estimated for a3 ∈ A is maximum, if it is mapped on v3 ∈ V ,
compared to VM v4 ∈ V (P

emv
a3,v4 = 4.013 (usd/hour)). Also, VM v3 ∈ V is removed

from the set V of available VMs (i.e., V = {v4}) to avoid its selection for unscheduled
applications (i.e., a2 ∈ A). Finally, the last application to be scheduled is a2 ∈ A which
is mapped on VM v4 ∈ V as the only available VM in the set V of available VMs and,
as a result, V = {}.

6.3 proposed approach 79

R[v3] I Γ Pr ξ Pa3,v3
P

emv
a3,v3

v 0.004

[99.96 100] 0 0.86 0 4.296

4.053
[99 99.95] 30 0.03 0.0012 3.297
[95 98.99] 50 0.095 0.002 2.498
[90 94.99] 60 0.015 0.0024 1.498

R[v4] I Γ Pr ξ Pa3,v4
P

emv
a3,v4

v 0.002

[99.6 100] 0 0.8 0 4.298

4.013
[99 99.95] 30 0.1 0.0006 3.298
[95 98.99] 50 0.095 0.001 2.499
[90 94.99] 60 0.005 0.0012 1.499

Table 6.7: Rental costs R[v3],R[v4], HUI vector I, service credit vector Γ , probability vectors
Pr3,Pr4, penalty vectors ξ3, ξ4, HUI-wise profit vectors Pa3,vj , and estimated finan-
cial profit Pemva3,vj of application a3 w.r.t. each VM vj ∈ V

Figure 6.4 shows a decision tree which graphically presents the risk (falling the HUP
of VM vj ∈ V in each HUI Ik ∈ I, if F(a1) = vj) of mapping a1 ∈ A on each available
VM in V and the associated consequence (changes in estimated HUI-wise financial
profit Pi,j[k]).

80 risk-aware application scheduling in cloud computing scenarios

F(a1)

4.403(usd/hour)

1.199(usd/hour)

2.099(usd/hour)

3.598(usd/hour)

4.798(usd/hour)

4.449(usd/hour)

1.198(usd/hour)

2.098(usd/hour)

3.597(usd/hour)

4.796(usd/hour)

4.744(usd/hour)

1.197(usd/hour)

2.096(usd/hour)

3.595(usd/hour)

4.793(usd/hour)

4.784(usd/hour)

1.196(usd/hour)

2.095(usd/hour)

3.593(usd/hour)

4.790(usd/hour)

v4

I4

I3

I2

I1

v3

I4

I3

I2

I1

v2

I4

I3

I2

I1

v1

I4

I3

I2

I1

Figure 6.4: Decision tree for selecting a VM vj ∈ V for application a1 ∈ A

6.4 algorithm for the proposed risk-aware application schedul-
ing approach

In this section, given our application scheduling problem, we provide a pseudo-code al-
gorithm for the proposed solution which is reported in Figure 6.5. Our algorithm takes
as input the set of applications A, the set of VMs V , rental cost vector R, probability
vectors Pr1, . . . ,Prm, uptime interval I, service credit vector Γ , on-premise profit vector
P, and off-premise profit vectors P1, . . . ,Pn and returns mapping function F : A→ V .

6.4 algorithm for the proposed risk-aware application scheduling approach 81

The algorithm, first, for each VM vj ∈ V , calculates an hourly penalty ξj[k], if the
HUP of vj ∈ V falls in HUI Ik ∈ I (lines 1–4). Next, applications in A are sorted
in decreasing order of their on-premise financial profit, maintained in P (lines 5–7).
Then, for the current application ai ∈ A to be scheduled, an HUI-wise financial profit
Pi,j[k] is estimated (lines 8–13), considering each HUI I[k] ∈ I defined in the service
credit schedule of each VM vj ∈ V . Next, an hourly financial profit P

emv
i,j for the

current application ai ∈ A to be scheduled is estimated as the EMV of ai ∈ A, if it is
mapped on each VM vj ∈ V (lines 14–16). Then, a VM vj ∈ V is selected for application
ai ∈ A that, compared to other VMs in V , ai ∈ A would make the maximum hourly
financial profit P

emv
i,j if it is mapped on vj ∈ V (lines 17–21). Finally, VM vj ∈ V that

is selected for the current application ai ∈ A to be scheduled is removed from the set
V of available VMs to avoid selecting vj for other unscheduled applications in A\{ai}
(line 22).

82 risk-aware application scheduling in cloud computing scenarios

INPUT
A = {a1, . . . ,an} /* set of applications */
V = {v1, . . . , vm} /* set of VMs */
R[1, . . . ,m] /* vector of hourly rental costs for VMs v1, . . . , vm*/
I[1, . . . ,d] /* vector of uptime interval */
Pr1, . . . ,Prm /* vectors of probability for VMs v1, . . . , vm */
Γ /* vector of service credit */
P /* vector of on-premise profit */
P1, . . . ,Pn /* off-premise profit vectors for applications a1, . . . ,an */

OUTPUT
F : A→ V /* mapping function */

MAIN

/* Step 1: Calculate hourly penalty for VMs */

1: for each vj ∈ V do
2: let ξj be the penalty vector of size |I|

3: for each k = 1, . . . , |I| do
4: ξj[k] := R[j] · Γ [k] /* penalty for vj w.r.t. I[k] */

5: let S be a list of size |A| to contain sorted applications
6: for each i = 1, . . . , |A| do
7: insert ai ∈ A in S in decreasing order of P

/* Step 2: estimate a financial profit for the current application to be scheduled */

8: for each i = 1, . . . , |A| do
9: let ax be the application in the position of i in S

10: let Px,j be the HUI-wise profit vector of size |I|

11: for each j = 1, . . . , |V | do
12: for each k = 1, . . . , |I| do
13: Px,j[k] := Px[k] + ξj[k] − R[j] /* HUI-wise estimated profit for ax, if F(ax) = vj w.r.t. I[k] */
14: for each j = 1, . . . , |V | do
15: for each k = 1, . . . , |I| do
16: P

emv
x,j := Px,j[k] · Prj[k] /* estimated profit for ax if F(ax) = vj */

17: let Ox be a list of size |V | to contain estimated profit P
emv
x,j of ax w.r.t. vj ∈ V

18: for each j = 1, . . . , |V | do
19: insert each VM vj ∈ V in O in decreasing order of P

emv
x,j

20: let VM v∗ ∈ V be the VM in the first position of O
21: F(ax) := v∗ /* map ax to v∗ */
22: V := V\{v∗} /* remove v∗ from V */

Figure 6.5: Algorithm for the proposed risk-aware application scheduling approach

6.5 chapter summary 83

6.5 chapter summary

In this chapter, we provided a solution for scheduling a set of applications to support
the business objectives of users w.r.t. the financial profit of applications. To do so,
through a risk analysis process, we map each application to an available VM, according
to the expected monetary value of application when it is mapped to each available
VM. In this manner, our solution maximizes the estimated financial profit of each
application when it is mapped on an available VM, according to its importance.

7
C O N C L U S I O N S A N D F U T U R E W O R K S

In this thesis, we provided models and tools to support users in evaluating applications
that are moved to the Cloud and in selecting the most suitable Cloud plans, consider-
ing their characteristics and the requirements of applications. After a brief introduction
and reviewing some related works, we focused mainly on four specific aspects: 1) eval-
uating the modularity of applications, 2) Consensus-based selection of Cloud plans, 3)
business-oriented Cloud plan selection, and 4) Cloud plan selection under uncertainty.
In this chapter, we shortly review the original contributions of this thesis and present
some future work.

7.1 summary of the contributions

The main contributions of this thesis can be summarized as follows.

Application assessment in outsourcing scenarios. We presented a software-engineering-
based approach for evaluating the modularity of applications as a metric for their
change flexibility and/or distributability. The proposed approach could be used as a
tool to see to what extent applications can be easily moved to the Cloud, considering
the dynamic and/or distributed properties of Cloud environments.

Consensus-based Cloud plan selection. We proposed a solution aimed at balancing
the satisfaction of applications’ requirements by selecting a Cloud plan according to a
consensus among them. The proposed solution provides a tool which chooses a plan
that is globally considered the most acceptable by all applications.

Cloud plan selection under uncertainty. We proposed a method aimed at selecting a
Cloud plan for multiple applications when a set of users, with a limited budget for se-
lecting a Cloud plan, do not have precise ideas about the requirements of applications.

85

86 conclusions and future works

Our approach provides a tool which efficiently captures the uncertainty of imprecise
information about applications, provided by multiple unskilled IT users, while satisfies
the budget constraints of users for selecting a Cloud plan.

Business-oriented Cloud plan selection. We proposed a method aimed at, by assign-
ing each application to a virtual machine (VM) offered by multiple Cloud providers,
maximizing financial profit that is estimated for applications when they are executed
on the Cloud, according to the importance of each application. Our approach pro-
vides a tool which suitably supports the business objectives of users w.r.t. the financial
profit of applications, considering service level agreement compensation mechanisms,
offered by Cloud providers.

7.2 future work

The research described in this thesis leaves several opportunities for future work which
can be summarized as follows.

Application assessment in outsourcing scenarios. Our approach for estimating the
modularity of applications properly supports users to see to what extent applications
are ready to be moved to the Cloud w.r.t. adaptability and/or distributability. Con-
sidering this contribution, we plan to focus on providing an assessment framework
to evaluate the suitability of applications for running on the Cloud. To do so, w.r.t.
different criteria (e.g., maintainability, reliability) that are considered necessary for ap-
plications, their suitability for moving to the Cloud will be evaluated.

Consensus-based Cloud plan selection. In our approach for selecting a Cloud plan
based on the consensus between applications on the satisfaction of their requirements,
we did not consider a consensus degree between applications on the level of the satis-
faction of their requirements. Also, we did not consider the satisfaction of the objectives
of Cloud provider(s) (e.g., maximizing the profit of Cloud provider by renting Cloud
resources) as well as applications’ requirements. Therefore, an interesting future line of
research could be providing a solution aimed at reaching a partial consensus between
applications as well as fulfilling the objectives of Cloud providers.

Cloud plan selection under uncertainty. In our solution for supporting Cloud plan
selection in the presence of multiple users, possibly without an IT background, we
considered Cloud plans, with fixed prices and predefined ratings for each criterion
which is almost consistent with the current trends of plan selection in the Cloud mar-
ket. Also, to select a Cloud plan, we assume that users have the same opinions about
the preferences of applications, over considered criteria, which is often the case in typ-
ical scenarios. An interesting line of research for future studies would be deciding on
a customized plan, considering imprecise information which is provided by a set of
unskilled IT users, each with possibly different opinions about the requirements of ap-

7.2 future work 87

plications.

Business-oriented Cloud plan selection. Our approach for supporting the business
objectives of users w.r.t. the financial profit of applications is risk neutral as we did not
consider uncertainty degree in the proposed scenario. That is, we considered an equal
number of uptime intervals, each with equal service credits for all VMs. Therefore, the
proposed approach is indifferent between VMs with equal estimated financial profit,
and as a result, a VM with a higher degree of uncertainty in the associated service
credit schedule (e.g., a VM with a higher number of uptime intervals, each with a pos-
sibly different service credit) could be selected for an application. Then, the potential
consequence could be selecting a VM for an application which would not maximize
the financial profit of application. Therefore, scheduling applications by selecting a
VM, among those available ones, for each application when Cloud providers consider
service credit schedules with different degrees of uncertainty could be an alternative
to investigate for future research.

B I B L I O G R A P H Y

[1] M. Sagar, S. Bora, A. Gangwal, P. Gupta, A. Kumar, and A. Agarwal, “Factors af-
fecting customer loyalty in cloud computing: A customer defection-centric view
to develop a void-in-customer loyalty amplification model,” Global Journal of Flex-
ible Systems Management, vol. 14, no. 3, pp. 143–156, 2013.

[2] A.-R. Sadeghi, T. Schneider, and M. Winandy, “Token-based cloud computing,”
in Proc. of the 3rd International Conference on Trust and Trustworthy Computing
(TRUST 2010), Berlin, Germany, June 2010, pp. 417–429.

[3] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art and
research challenges,” Journal of Internet Services and Applications, vol. 1, no. 1, pp.
7–18, 2010.

[4] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Wait a minute! a fast, cross-
VM attack on AES,” in Proc. of the 17th International Workshop on Recent Advances
in Intrusion Detection (RAID 2014), Gothenburg, Sweden, September 2014, pp.
299–319.

[5] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing, “How is the weather to-
morrow?: Towards a benchmark for the cloud,” in Proc. of the 2nd International
Workshop on Testing Database Systems (DBTest ’09), New York, NY, USA, June 2009,
pp. 9:1–9:6.

[6] G. Rosen, “The business of clouds,” Crossroads, vol. 16, no. 3, pp. 26–28, 2010.

[7] A. Arman, A. Al-Shishtawy, and V. Vlassov, “Elasticity controller for cloud-based
key-value stores,” in Proc. of the 18th International Conference on Parallel and Dis-
tributed Systems (ICPADS), Singapore, December 2012, pp. 268–275.

[8] Y. Liu and R. K. Tyagi, “Outsourcing to convert fixed costs into variable costs: A
competitive analysis,” International Journal of Research in Marketing, vol. 34, no. 1,
pp. 252–264, 2017.

[9] J. S. Rellermeyer and S. Bagchi, “Dependability as a cloud service - a modular
approach,” in Proc. of the IEEE/IFIP International Conference on Dependable Systems
and Networks Workshops (DSN 2012), Boston, MA, USA, June 2012, pp. 1–6.

[10] R. S. Pressman, Software Engineering: A Practitioner’s Approach. McGraw-Hill
Higher Education, 2001.

[11] M. Jabalameli, A. Arman, and M. Nematbakhsh, “Improving the efficiency of
term weighting in set of dynamic documents,” International Journal of Modern
Education and Computer Science, vol. 7, no. 2, p. 42, 2015.

89

90 bibliography

[12] K. Alhamazani, R. Ranjan, P. P. Jayaraman, K. Mitra, F. Rabhi, D. Georgakopoulos,
and L. Wang, “Cross-layer multi-cloud real-time application QoS monitoring and
benchmarking as-a-service framework,” IEEE Transactions on Cloud Computing,
vol. PP, no. 99, pp. 1–1, 2015.

[13] M. Rönkkö, C. Frühwirth, and S. Biffl, “Integrating value and utility concepts into
a value decomposition model for value-based software engineering,” in Proc. of
the International Conference on Product-Focused Software Process Improvement (PRO-
FES 2009), Oulu, Finland, June 2009, pp. 362–374.

[14] T. N. Al-Otaiby, M. AlSherif, and W. P. Bond, “Toward software requirements
modularization using hierarchical clustering techniques,” in Proc. of the 43rd An-
nual Southeast Regional Conference - Volume 2 (ACM-SE 43), Kennesaw, Georgia,
March 2005, pp. 223–228.

[15] S. Nelson and J. Schumann, “What makes a code review trustworthy?” in Proc. of
the 37th Annual Hawaii International Conference on System Sciences, Big Island, HI,
USA, January 2004, pp. 10–pp.

[16] B. Meyer, Object-oriented software construction. Prentice hall New York, 1988.

[17] M. Alenezi and M. Zarour, “Modularity measurement and evolution in object-
oriented open-source projects,” in Proc. of the International Conference on Engineer-
ing & MIS (ICEMIS ’15), Istanbul, Turkey, September 2015, pp. 16:1–16:7.

[18] R. W. Schwanke, “An intelligent tool for re-engineering software modularity,” in
Proc. of the 13th International Conference on Software Engineering, Austin, TX, USA,
May 1991, pp. 83–92.

[19] C. Sant’Anna, E. Figueiredo, A. Garcia, and C. Lucena, “On the modularity as-
sessment of software architectures: Do my architectural concerns count?” in Proc.
the International Workshop on Aspects in Architecture Descriptions (AARCH. 07), Van-
couver, Canada, March 2007, pp. 183–192.

[20] H. Deng and C. Mercado, “A method for metric-based architecture level quality
evaluation,” Master’s thesis, Blekinge Inistitue of Technology, 2008.

[21] P. Johansson and H. Holmberg, “On the modularity of a system,” Master’s thesis,
Malmö högskola/Centrum för teknikstudier, 2010.

[22] P. Meirelles, C. S. Jr., J. Miranda, F. Kon, A. Terceiro, and C. Chavez, “A study of
the relationships between source code metrics and attractiveness in free software
projects,” in Proc. of the Brazilian Symposium on Software Engineering, Salvador,
Brazil, September–October 2010, pp. 11–20.

[23] S. R. Chidamber and C. F. Kemerer, Towards a metrics suite for object oriented design.
ACM, 1991.

[24] ——, “A metrics suite for object oriented design,” IEEE Transactions on Software
Engineering, vol. 20, no. 6, pp. 476–493, 1994.

bibliography 91

[25] C. Sant’Anna, E. Figueiredo, A. Garcia, and C. J. P. Lucena, “On the modularity
of software architectures: A concern-driven measurement framework,” in Proc.
of the 1st European Conference on Software Architecture (ECSA 2007), Madrid, Spain,
Septmeber 2007, pp. 207–224.

[26] M.-H. Tang, M.-H. Kao, and M.-H. Chen, “An empirical study on object-
oriented metrics,” in Proc. of the 6th International Software Metrics Symposium (Cat.
No.PR00403), Boca Raton, FL, USA, November 1999, pp. 242–249.

[27] S. Yeresime, J. Pati, and S. K. Rath, “Review of software quality metrics for object-
oriented methodology,” in Proc. of the 6th International Conference on Internet Com-
puting and Information Communications (ICICIC Global), Milan, Italy, September
2014, pp. 267–278.

[28] M. Hitz and B. Montazeri, “Measuring coupling and cohesion in object-oriented
systems,” in Proc. of the International Symposium on Applied Corporate Computing
(ISACC’95), Monterrey,Mexico, October 1995, pp. 25–27.

[29] T. J. McCabe, “A complexity measure,” IEEE Transactions on Software Engineering,
vol. SE-2, no. 4, pp. 308–320, 1976.

[30] F. B. e Abreu and M. Goulao, “Coupling and cohesion as modularization drivers:
are we being over-persuaded?” in Proc. of the 5th European Conference on Software
Maintenance and Reengineering, Lisbon, Portugal, March 2001, pp. 47–57.

[31] M. Hitz and B. Montazeri, “Chidamber and kemerer’s metrics suite: a measure-
ment theory perspective,” IEEE Transactions on Software Engineering, vol. 22, no. 4,
pp. 267–271, 1996.

[32] A. S. Nuñez-Varela, H. G. Pérez-Gonzalez, F. E. Martínez-Perez, and
C. Soubervielle-Montalvo, “Source code metrics: A systematic mapping study,”
Journal of Systems and Software, vol. 128, no. C, pp. 164–197, 2017.

[33] A. Nicklas and K. Jimmy, “Att utforma och utvärdera ett komponentbaserat pro-
grammeringsgränssnitt,” Master’s thesis, Malmö högskola/Teknik och samhälle,
2013.

[34] J.-F. Zhao and J.-T. Zhou, “Strategies and methods for cloud migration,” Interna-
tional Journal of Automation and Computing, vol. 11, no. 2, pp. 143–152, 2014.

[35] S. Subashini and V. Kavitha, “A survey on security issues in service delivery
models of cloud computing,” Journal of Network and Computer Applications, vol. 34,
no. 1, pp. 1–11, 2011.

[36] P. Samarati and S. D. C. di Vimercati, Cloud security: Issues and concerns. Wiley,
New York, 2016.

[37] V. Andrikopoulos, T. Binz, F. Leymann, and S. Strauch, “How to adapt applica-
tions for the cloud environment,” Computing, vol. 95, no. 6, pp. 493–535, 2013.

92 bibliography

[38] A. Khajeh-Hosseini, D. Greenwood, J. W. Smith, and I. Sommerville, “The cloud
adoption toolkit: supporting cloud adoption decisions in the enterprise,” Soft-
ware: Practice and Experience, vol. 42, no. 4, pp. 447–465, 2012.

[39] A. Khajeh-Hosseini, I. Sommerville, J. Bogaerts, and P. Teregowda, “Decision
support tools for cloud migration in the enterprise,” in Proc. of the 4th IEEE In-
ternational Conference on Cloud Computing (CLOUD), Washington, DC, USA, July
2011, pp. 541–548.

[40] G. Garrison, S. Kim, and R. L. Wakefield, “Success factors for deploying cloud
computing,” Communications of the ACM, vol. 55, no. 9, pp. 62–68, 2012.

[41] P. V. Beserra, A. Camara, R. Ximenes, A. B. Albuquerque, and N. C. Mendonça,
“Cloudstep: A step-by-step decision process to support legacy application migra-
tion to the cloud,” in Proc. of the 6th IEEE International Workshop on the Maintenance
and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA 2012), Trento,
Italy, September 2012, pp. 7–16.

[42] V. Tran, J. Keung, A. Liu, and A. Fekete, “Application migration to cloud: A
taxonomy of critical factors,” in Proc. of the 2nd International Workshop on Software
Engineering for Cloud Computing (SECLOUD ’11), New York, NY, USA, May 2011,
pp. 22–28.

[43] P. Saripalli and G. Pingali, “MADMAC: Multiple attribute decision methodology
for adoption of clouds,” in Proc. of the 4th IEEE International Conference on Cloud
Computing (CLOUD), Washington DC, USA, July 2011, pp. 316–323.

[44] “Migrating your existing applications to the AWS cloud,” White Paper, Amazon,
October 2010.

[45] W. Zhang, A. J. Berre, D. Roman, and H. A. Huru, “Migrating legacy applica-
tions to the service cloud,” in Proc. of the 14th Conference companion on Object Ori-
ented Programming Systems Languages and Applications (OOPSLA 2009), Orlando,
Florida, USA, October 2009, pp. 59–68.

[46] Q. H. Vu and R. Asal, “Legacy application migration to the cloud: Practicability
and methodology,” in Proc. of the 8th IEEE World Congress on Services Services
(SERVICES), Honolulu, HI, USA, June 2012, pp. 270–277.

[47] V. T. K. Tran, K. Lee, A. Fekete, A. Liu, and J. Keung, “Size estimation of cloud
migration projects with cloud migration point (CMP),” in Proc. of the International
Symposium on Empirical Software Engineering and Measurement (ESEM), Banff, AB,
Canada, September 2011, pp. 265–274.

[48] M. Hajjat, X. Sun, Y.-W. E. Sung, D. Maltz, S. Rao, K. Sripanidkulchai, and
M. Tawarmalani, “Cloudward bound: Planning for beneficial migration of en-
terprise applications to the cloud,” SIGCOMM Comput. Commun. Rev., vol. 40,
no. 4, pp. 243–254, 2010.

bibliography 93

[49] K. Hashizume, D. G. Rosado, E. Fernández-Medina, and E. B. Fernandez, “An
analysis of security issues for cloud computing,” Journal of Internet Services and
Applications, vol. 4, no. 1, p. 5, 2013.

[50] S. C. Misra and A. Mondal, “Identification of a company’s suitability for the
adoption of cloud computing and modelling its corresponding return on invest-
ment,” Mathematical and Computer Modelling, vol. 53, no. 3, pp. 504–521, 2011.

[51] “Planning the migration of enterprise applications to the cloud,” White Paper,
Cisco, August 2010.

[52] M. A. Babar and M. A. Chauhan, “A tale of migration to cloud computing for
sharing experiences and observations,” in Proc. of the 2nd International Workshop
on Software Engineering for Cloud Computing (SECLOUD ’11), Waikiki, Honolulu,
HI, USA, May 2011, pp. 50–56.

[53] D. Durkee, “Why cloud computing will never be free,” Queue, vol. 8, no. 4, pp.
20:20–20:29, 2010.

[54] P. Costa, J. P. Santos, and M. M. d. Silva, “Evaluation criteria for cloud services,”
in Proc. of the 6th IEEE International Conference on Cloud Computing (CLOUD),
Santa Clara, CA, USA, June–July 2013, pp. 598–605.

[55] W. Liu, “Research on cloud computing security problem and strategy,” in Proc.
of the 2nd International Conference on Consumer Electronics, Communications and Net-
works (CECNet), Yichang, China, April 2012, pp. 1216–1219.

[56] A. Goscinski and M. Brock, “Toward dynamic and attribute based publication,
discovery and selection for cloud computing,” Future Generation Computer Sys-
tems, vol. 26, no. 7, pp. 947–970, 2010.

[57] S. K. Garg, S. Versteeg, and R. Buyya, “A framework for ranking of cloud com-
puting services,” Future Generation Computer Systems, vol. 29, no. 4, pp. 1012–1023,
2013.

[58] Z. u. Rehman, F. K. Hussain, and O. K. Hussain, “Towards multi-criteria cloud
service selection,” in Proc. of the 5th International Conference on Innovative Mobile
and Internet Services in Ubiquitous Computing (IMIS), Seoul, South Korea, 30 June–
02 July 2011, pp. 44–48.

[59] E. Cavalcante, T. Batista, F. Lopes, F. C. Delicato, P. F. Pires, N. Rodriguez, A. L.
de Moura, and R. Mendes, “Optimizing services selection in a cloud multiplat-
form scenario,” in Proc. of the IEEE Latin America Conference on Cloud Computing
and Communications (LatinCloud), Porto Alegre, Brazil, November 2012, pp. 31–36.

[60] M. Sun, T. Zang, X. Xu, and R. Wang, “Consumer-centered cloud services selec-
tion using AHP,” in Proc. of the International Conference on Service Sciences (ICSS),
Shenzhen, China, April 2013, pp. 1–6.

94 bibliography

[61] M. Brock and A. Goscinski, “Publishing dynamic state changes of resources
through state aware WSDL,” in Proc of the IEEE International Conference on Web
Services (ICWS ’08), Beijing, China, September 2008, pp. 449–456.

[62] Y. Zhu, H. Hu, G. J. Ahn, and M. Yu, “Cooperative provable data possession
for integrity verification in multicloud storage,” IEEE Transactions on Parallel and
Distributed Systems, vol. 23, no. 12, pp. 2231–2244, 2012.

[63] K. D. Bowers, A. Juels, and A. Oprea, “HAIL: A high-availability and integrity
layer for cloud storage,” in Proc.of the 16th ACM conference on Computer and com-
munications security (CCS ’09), Chicago, IL, USA, November 2009, pp. 187–198.

[64] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, G. Livraga, S. Paraboschi, and
P. Samarati, “Integrity for distributed queries,” in Proc. of the IEEE Conference on
Communications and Network Security (CNS), San Francisco, CA, USA, October
2014, pp. 364–372.

[65] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati,
“Efficient integrity checks for join queries in the cloud,” JCS, vol. 24, no. 3, pp.
347–378, 2016.

[66] E. Stefanov and E. Shi, “Multi-cloud oblivious storage,” in Proc. of the ACM
SIGSAC conference on Computer & communications security (CCS’13), Berlin, Ger-
many, November 2013, pp. 247–258.

[67] S. D. C. di Vimercati, S. Foresti, S. Paraboschi, G. Pelosi, and P. Samarati, “Three-
server swapping for access confidentiality,” IEEE Transactions on Cloud Computing,
vol. PP, no. 99, pp. 1–1, 2015.

[68] R. Jhawar, V. Piuri, and P. Samarati, “Supporting security requirements for re-
source management in cloud computing,” in Proc. of the 15th IEEE International
Conference on Computational Science and Engineering (CSE), Paphos, Cyprus, De-
cember 2012, pp. 170–177.

[69] Z. Wang and X. Xu, “A sharing-oriented service selection and scheduling ap-
proach for the optimization of resource utilization,” Service Oriented Computing
and Applications, vol. 6, no. 1, pp. 15–32, 2012.

[70] G. H. Golub and C. Reinsch, “Singular value decomposition and least squares
solutions,” Numerische Mathematik, vol. 14, no. 5, pp. 403–420, 1970.

[71] A. V. Dastjerdi and R. Buyya, “Compatibility-aware cloud service composition
under fuzzy preferences of users,” IEEE TCC, vol. 2, no. 1, pp. 1–13, 2014.

[72] L. Zhang, F. Ding, Y.-d. Fang, and J.-y. Wu, Service Scheduling Optimization in the
Next Generation Networked Manufacturing Systems. Springer Berlin Heidelberg,
2013, pp. 251–261.

bibliography 95

[73] C. Qu and R. Buyya, “A cloud trust evaluation system using hierarchical fuzzy
inference system for service selection,” in Proc. of the 28th IEEE International Con-
ference on Advanced Information Networking and Applications (AINA 2014), Victoria,
BC, Canada, May 2014, pp. 850–857.

[74] L. Sun, J. Ma, Y. Zhang, H. Dong, and F. K. Hussain, “Cloud-FuSeR: Fuzzy on-
tology and MCDM based cloud service selection,” Future Generation Computer
Systems, vol. 57, no. C, pp. 42–55, 2016.

[75] S. Liu, F. T. Chan, and W. Ran, “Decision making for the selection of cloud
vendor: An improved approach under group decision-making with integrated
weights and objective/subjective attributes,” Expert Systems with Applications,
vol. 55, no. C, pp. 37–47, 2016.

[76] L. Zhang, Y. d. Fang, and J. y. Wu, “Multi granularity resource encapsulation for
p2p semantic manufacturing grid (ie&em),” in Proc. of the 18th IEEE International
Conference on Industrial Engineering and Engineering Management (IE&EM 2011),
Changchun, China, September 2011, pp. 458–462.

[77] Z. Wu and Y. Chen, “The maximizing deviation method for group multiple at-
tribute decision making under linguistic environment,” Fuzzy Sets and Systems,
vol. 158, no. 14, pp. 1608–1617, 2007.

[78] Z. Yue, “A method for group decision-making based on determining weights of
decision makers using TOPSIS,” Applied Mathematical Modelling, vol. 35, no. 4, pp.
1926–1936, 2011.

[79] S.-I. Chang, D. C. Yen, C. S.-P. Ng, and W.-T. Chang, “An analysis of IT/IS out-
sourcing provider selection for small- and medium-sized enterprises in Taiwan,”
Information & Management, vol. 49, no. 5, pp. 199–209, 2012.

[80] S. K. Garg, S. K. Gopalaiyengar, and R. Buyya, “SLA-based resource provisioning
for heterogeneous workloads in a virtualized cloud datacenter,” in Proc. of the
11th International Conference on Algorithms and Architectures for Parallel Processing -
Volume Part I (ICA3PP 2011), Melbourne, Australia, October 2011, pp. 371–384.

[81] Y. Choi and Y. Lim, “Resource management mechanism for SLA provisioning on
cloud computing for IoT,” in Proc. of the International Conference on Information and
Communication Technology Convergence (ICTC 2015), Jeju, South Korea, October
2015, pp. 500–502.

[82] L. Wu, S. K. Garg, and R. Buyya, “SLA-based resource allocation for software as
a service provider (SaaS) in cloud computing environments,” in Proc. of the 11th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid
2011), Newport Beach, CA, USA, May 2011, pp. 195–204.

[83] D. Dib, N. Parlavantzas, and C. Morin, “SLA-based profit optimization in cloud
bursting PaaS,” in Proc. of the 14th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), Chicago, IL, USA, May 2014, pp. 141–150.

96 bibliography

[84] X. Chen, H. Chen, Q. Zheng, W. Wang, and G. Liu, “Characterizing web appli-
cation performance for maximizing service providers’ profits in clouds,” in Proc.
of the International Conference on Cloud and Service Computing (CSC), Hong Kong,
China, December 2011, pp. 191–198.

[85] L. Gkatzikis and I. Koutsopoulos, “Mobiles on cloud nine: Efficient task migra-
tion policies for cloud computing systems,” in Proc. of the 3rd IEEE International
Conference on Cloud Networking (CloudNet), Luxembourg, October 2014, pp. 204–
210.

[86] P. D. Sanzo, D. Rughetti, B. Ciciani, and F. Quaglia, “Auto-tuning of cloud-based
in-memory transactional data grids via machine learning,” in Proc. of the 2nd
Symposium on Network Cloud Computing and Applications (NCCA), London, UK,
December 2012, pp. 9–16.

[87] A. N. Zhirabok, Ü. Kotta, and A. E. Shumsky, “Accommodation to defects in
the discrete dynamic systems,” Automation and Remote Control, vol. 75, no. 6, pp.
997–1009, 2014.

[88] M. Azaiez and W. Chainbi, “A multi-agent system architecture for self-healing
cloud infrastructure,” in Proc. of the International Conference on Internet of Things
and Cloud Computing (ICC ’16), New York, NY, USA, March 2016, pp. 7:1–7:6.

[89] F.-L. Lian, J. Moyne, and D. Tilbury, “Network design consideration for dis-
tributed control systems,” IEEE Transactions on Control Systems Technology, vol. 10,
no. 2, pp. 297–307, 2002.

[90] J.-Y. Huang, “Patent portfolio analysis of the cloud computing industry,” Journal
of Engineering and Technology Management, vol. 39, no. C, pp. 45–64, 2016.

[91] W. Tian, C. S. Yeo, R. Xue, and Y. Zhong, “Power-aware scheduling of real-time
virtual machines in cloud data centers considering fixed processing intervals,”
in Prof. of the 2nd IEEE International Conference on Cloud Computing and Intelligence
Systems (CCIS), Hangzhou, China, October–November 2012, pp. 269–273.

[92] M. Zhang, R. Ranjan, M. Menzel, S. Nepal, P. Strazdins, W. Jie, and L. Wang,
“An infrastructure service recommendation system for cloud applications with
real-time QoS requirement constraints,” IEEE Systems Journal, no. 99, pp. 1–11,
June 2017.

[93] H. Yuan, J. Bi, and B. Li, “Workload-aware request routing in cloud data center
using software-defined networking,” Journal of Systems Engineering and Electronics,
vol. 26, no. 1, pp. 151–160, 2015.

[94] D. Trihinas, G. Pallis, and M. Dikaiakos, “Monitoring elastically adaptive multi-
cloud services,” IEEE Transactions on Cloud Computing, vol. PP, no. 99, pp. 1–1,
2017.

bibliography 97

[95] M. Lecznar and S. Patig, “Cloud computing providers: Characteristics and
recommendations,” in Proc. of the 5th International Conference on E-Technologies
(MCETECH 2011), Les Diablerets, Switzerland, January 2011, pp. 32–45.

[96] A. Wirotyakun and P. Netisopakul, “Improving software maintenance size met-
rics a case study: Automated report generation system for particle monitoring in
hard disk drive industry,” in Proc. of the 9th International Conference on Computer
Science and Software Engineering (JCSSE), Bangkok, Thailand, May–June 2012, pp.
334–339.

[97] A. Mitchell and J. F. Power, “Using object-level run-time metrics to study cou-
pling between objects,” in Proc. of the 20th Annual ACM Symposium on Applied
Computing (SAC ’05), Santa Fe, New Mexico, USA, March 2005, pp. 1456–1462.

[98] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C. Lucena, and A. von Staa,
Modularizing Design Patterns with Aspects: A Quantitative Study. Springer Berlin
Heidelberg, 2006, pp. 36–74.

[99] U. Kumari and S. Bhasin, “Application of object-oriented metrics to C++ and
Java: A comparative study,” SIGSOFT Softw. Eng. Notes, vol. 36, no. 2, pp. 1–10,
2011.

[100] M. Choi, J. Lee, and J. Ha, “A component cohesion metric applying the properties
of linear increment by dynamic dependency relationships between classes,” in
Proc. of the International Conference on Computational Science and Its Applications
(ICCSA 2006), Part II, Glasgow, UK, May 2006, pp. 49–58.

[101] J. M. Bieman and B.-K. Kang, “Cohesion and reuse in an object-oriented system,”
in Proc. of the Symposium on Software Reusability (SSR ’95), Seattle, Washington,
USA, April 1995, pp. 259–262.

[102] C. Bonja and E. Kidanmariam, “Metrics for class cohesion and similarity between
methods,” in Proc. of the 44th Annual Southeast Regional Conference (ACM-SE 44),
Melbourne, Florida, March 2006, pp. 91–95.

[103] C. Sant’Anna, A. Garcia, C. Chavez, C. Lucena, and A. Von Staa, “On the reuse
and maintenance of aspect-oriented software: An assessment framework,” in
Proc. of the Brazilian symposium on software engineering, Manaus, Brazil, October
2003, pp. 19–34.

[104] K. El Guemhioui, “A framework for distributing object-oriented designs,” Inter-
national Journal on Software Tools for Technology Transfer, vol. 4, no. 3, pp. 381–396,
2003.

[105] I. Chowdhury and M. Zulkernine, “Can complexity, coupling, and cohesion met-
rics be used as early indicators of vulnerabilities?” in Proc. of the ACM Symposium
on Applied Computing (SAC ’10), Sierre, Switzerland, March 2010, pp. 1963–1969.

98 bibliography

[106] P. He, B. Li, X. Liu, J. Chen, and Y. Ma, “An empirical study on software de-
fect prediction with a simplified metric set,” Information and Software Technology,
vol. 59, no. C, pp. 170–190, 2015.

[107] J. A. Dallal, “Improving the applicability of object-oriented class cohesion met-
rics,” Information and Software Technology, vol. 53, no. 9, pp. 914–928, 2011.

[108] H. Ching-Lai and K. Yoon, Multiple attribute decision making: methods and applica-
tions. Springer-Verlag, 1981.

[109] J. C. de Borda, Memoire sur les Elections au Scrutin. Histoire de l’Academie Royale
des Sciences de Paris, 1781.

[110] M. Galster and E. Bucherer, “A taxonomy for identifying and specifying non-
functional requirements in service-oriented development,” in Proc. of the IEEE
Congress on Services - Part I (SERVICES-1), Honolulu, HI, USA, July 2008, pp.
345–352.

[111] R. T. Marler and J. S. Arora, “Survey of multi-objective optimization methods
for engineering,” Structural and multidisciplinary optimization, vol. 26, no. 6, pp.
369–395, 2004.

[112] Z. Rehman, O. Hussain, and F. Hussain, “IaaS cloud selection using MCDM
methods,” in Proc. of the 9th International Conference on e-Business Engineering
(ICEBE), Hangzhou, China, September 2012, pp. 246–251.

[113] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar, “Rank aggregation methods
for the web,” in Proc. of the 10th international conference on World Wide Web (WWW
’01), Hong Kong, China, May 2001, pp. 613–622.

[114] W. D. Cook and L. M. Seiford, “On the Borda-Kendall consensus method for
priority ranking problems,” Management Science, vol. 28, no. 6, pp. 621–637, 1982.

[115] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati,
“Integrity for approximate joins on untrusted computational servers,” in Proc. of
the 30th International Information Security and Privacy Conference (SEC 2015), Ham-
burg, Germany, May 2015, pp. 446–459.

[116] P. Samarati and S. De Capitani di Vimercati, “Cloud security: Issues and con-
cerns,” in Encyclopedia on Cloud Computing, S. Murugesan and I. Bojanova, Eds.
Wiley, 2016.

[117] G. Bojadziev and M. Bojadziev, Fuzzy logic for business, finance, and management.
World Scientific, 1997.

[118] İ. Ertuğrul and N. Karakaşoğlu, “Comparison of fuzzy AHP and fuzzy TOP-
SIS methods for facility location selection,” The International Journal of Advanced
Manufacturing Technology, vol. 39, no. 7, pp. 783–79, 2008.

bibliography 99

[119] M.-F. Chen and G.-H. Tzeng, “Combining grey relation and TOPSIS concepts
for selecting an expatriate host country,” Mathematical and Computer Modelling,
vol. 40, no. 13, pp. 1473–1490, 2004.

[120] A. Jamshidi, A. Yazdani-Chamzini, S. H. Yakhchali, and S. Khaleghi, “Develop-
ing a new fuzzy inference system for pipeline risk assessment,” Journal of Loss
Prevention in the Process Industries, vol. 26, no. 1, pp. 197 – 208, 2013.

[121] R. Nasim and A. J. Kassler, “Deploying Openstack: Virtual infrastructure or ded-
icated hardware,” in Proc. of the 38th IEEE International Computer Software and Ap-
plications Conference Workshops (COMPSACW), Vasteras, Sweden, July 2014, pp.
84–89.

[122] H. Hu, Y. Wen, T. S. Chua, J. Huang, W. Zhu, and X. Li, “Joint content replication
and request routing for social video distribution over cloud CDN: A community
clustering method,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 26, no. 7, pp. 1320–1333, 2016.

[123] “Amazon EC2 instance types.” [Online]. Available: https://aws.amazon.com/
ec2/instance-types/

[124] W.-J. Fan, S.-L. Yang, H. Perros, and J. Pei, “A multi-dimensional trust-aware
cloud service selection mechanism based on evidential reasoning approach,” In-
ternational Journal of Automation and Computing, vol. 1, no. 2, pp. 208–219, 2015.

[125] T. Mather, S. Kumaraswamy, and S. Latif, Cloud security and privacy: an enterprise
perspective on risks and compliance. O’Reilly Media, Inc., 2009.

[126] B. P. Rimal, E. Choi, and I. Lumb, A Taxonomy, Survey, and Issues of Cloud Comput-
ing Ecosystems. Springer London, 2010, pp. 21–46.

[127] K. Kumar and Y. H. Lu, “Cloud computing for mobile users: Can offloading
computation save energy?” Computer, vol. 43, no. 4, pp. 51–56, 2010.

[128] P. T. Jaeger, J. Lin, and J. M. Grimes, “Cloud computing and information policy:
Computing in a policy cloud?” Journal of Information Technology & Politics, vol. 5,
no. 3, pp. 269–283, 2008.

[129] L. Badger, T. Grance, R. Patt-Corner, J. Voas et al., “Cloud computing
synopsis and recommendations,” 2012. [Online]. Available: http://ws680.nist.
gov/publication/get_pdf.cfm?pub_id=909505

[130] K. Dahbur, B. Mohammad, and A. B. Tarakji, “A survey of risks, threats and
vulnerabilities in cloud computing,” in Proc. of the International Conference on In-
telligent Semantic Web-Services and Applications (ISWSA ’11), New York, NY, USA,
April 2011, pp. 12:1–12:6.

[131] Y. Gu, W. Zhang, and J. Tao, “A study of SLA violation compensation mecha-
nismin complex cloud computing environment,” in Proc. of the 2nd International

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=909505
http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=909505

100 bibliography

Conference on Instrumentation, Measurement, Computer, Communication and Control
(IMCCC), Harbin, China, December 2012, pp. 1448–1451.

[132] “Amazon EC2 service level agreement.” [Online]. Available: https://aws.
amazon.com/ec2/sla/

[133] C. Kirchsteiger, “On the use of probabilistic and deterministic methods in risk
analysis,” Journal of Loss Prevention in the Process Industries, vol. 12, no. 5, pp. 399–
419, 1999.

[134] S. Kaplan and B. J. Garrick, “On the quantitative definition of risk,” Risk Analysis,
vol. 1, no. 1, pp. 11–27, 1981.

[135] S. Ferson, L. Ginzburg, V. Kreinovich, H. T. Nguyen, and S. A. Starks, “Un-
certainty in risk analysis: towards a general second-order approach combining
interval, probabilistic, and fuzzy techniques,” in Proc. of the IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE’02), Honolulu, HI, USA, May 2002, pp.
1342–1347.

[136] G. E. Gürcanli and U. Müngen, “An occupational safety risk analysis method at
construction sites using fuzzy sets,” International Journal of Industrial Ergonomics,
vol. 39, no. 2, pp. 371–387, 2009.

[137] V. Kreinovich and S. Ferson, “A new cauchy-based black-box technique for un-
certainty in risk analysis,” Reliability Engineering & System Safety, vol. 85, no. 1,
pp. 267–279, 2004.

[138] A. Karami and Z. Guo, “A fuzzy logic multi-criteria decision framework for
selecting it service providers,” in Proc. of the 45th Hawaii International Conference
on System Sciences (HICSS), Maui, HI, USA, January 2012, pp. 1118–1127.

[139] M. Tajvidi, R. Ranjan, J. Kolodziej, and L. Wang, “Fuzzy cloud service selection
framework,” in Proc. of the 3rd IEEE International Conference on Cloud Networking
(IEEE CloudNet 2014), Luxembourg, October 2014, pp. 443–448.

[140] K. Toczé, M. Vasilevskaya, P. Sandahl, and S. Nadjm-Tehrani, “Maintainability
of functional reactive programs in a telecom server software,” in Proc. of the 31st
Annual ACM Symposium on Applied Computing (SAC ’16), Pisa, Italy, April 2016,
pp. 2001–2003.

[141] M. Wimmer, A. Schauerhuber, G. Kappel, W. Retschitzegger, W. Schwinger, and
E. Kapsammer, “A survey on UML-based aspect-oriented design modeling,”
ACM Comput. Surv., vol. 43, no. 4, pp. 28:1–28:33, 2011.

[142] C. Atkinson and T. Kuhne, “Aspect-oriented development with stratified frame-
works,” IEEE Software, vol. 20, no. 1, pp. 81–89, 2003.

[143] S. Sehestedt, C.-H. Cheng, and E. Bouwers, “Towards quantitative metrics for
architecture models,” in Proc. of the 11th Working IEEE/IFIP Conference on Software
Architecture (WICSA 2014), Sydney, Australia, April 2014, pp. 5:1–5:4.

https://aws.amazon.com/ec2/sla/
https://aws.amazon.com/ec2/sla/

bibliography 101

[144] A. F. M. Hani, I. V. Paputungan, and M. F. Hassan, “Renegotiation in service level
agreement management for a cloud-based system,” ACM Comput. Surv., vol. 47,
no. 3, pp. 51:1–51:21, 2015.

[145] Y. Yao and H. Chen, “QoS-aware service composition using NSGA-II1,” in Proc.
of the 2nd International Conference on Interaction Sciences: Information Technology,
Culture and Human (ICIS ’09), Seoul, Korea, November 2009, pp. 358–363.

[146] T. Lin, B. Park, H. Bannazadeh, and A. Leon-Garcia, SAVI Testbed Architecture and
Federation. Springer International Publishing, 2015, pp. 3–10.

[147] H.-J. Shyu and R. Hillson, “A software workbench for estimating the effects of
cumulative sound exposure in marine mammals,” IEEE Journal of Oceanic Engi-
neering, vol. 31, no. 1, pp. 8–21, 2006.

[148] Y. Cai, S. Huynh, and T. Xie, “A framework and tool supports for testing modu-
larity of software design,” in Proc. of the 22nd IEEE/ACM International Conference
on Automated Software Engineering (ASE ’07), New York, NY, USA, 05–09 2007, pp.
441–444.

[149] P. Inverardi and M. Tivoli, Software Architecture for Correct Components Assembly.
Springer Berlin Heidelberg, 2003, pp. 92–121.

[150] C.-C. Chiang and C. W. Ford, “Maintainability and reusability issues in corba-
based systems,” in Proc. of the 43rd Annual Southeast Regional Conference - Volume
2 (ACM-SE 43), Kennesaw, Georgia, March 2005, pp. 275–280.

[151] J.-H. Lo, S.-Y. Kuo, M. R. Lyu, and C.-Y. Huang, “Optimal resource allocation
and reliability analysis for component-based software applications,” in Proc. of
the 26th Annual International Computer Software and Applications (COMPSAC 2002),
Oxford, UK, UK, August 2002, pp. 7–12.

[152] J. Idziorek, M. Tannian, and D. Jacobson, “Modeling web usage profiles of cloud
services for utility cost analysis,” in Proc. of the Winter Simulation Conference
(WSC), Phoenix, AZ, USA, December 2011, pp. 3318–3329.

[153] X. Xu, “From cloud computing to cloud manufacturing,” Robotics and Computer-
Integrated Manufacturing, vol. 28, no. 1, pp. 75 – 86, 2012.

[154] F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, and D. Leaf, “NIST cloud
computing reference architecture,” NIST special publication, 2011.

[155] R.-C. Tsaur, “Decision risk analysis for an interval topsis method,” Applied Math-
ematics and Computation, vol. 218, no. 8, pp. 4295–4304, 2011.

[156] C. J. Guo, W. Sun, Y. Huang, Z. H. Wang, and B. Gao, “A framework for na-
tive multi-tenancy application development and management,” in Proc. of the
9th IEEE International Conference on E-Commerce Technology and The 4th IEEE Inter-
national Conference on Enterprise Computing, E-Commerce and E-Services (CEC-EEE
2007), Tokyo, Japan, July 2007, pp. 551–558.

102 bibliography

[157] S. Kolb and G. Wirtz, “Towards application portability in platform as a service,”
in Proc. of the 8th IEEE International Symposium on Service Oriented System Engineer-
ing (SOSE), Oxford, UK, April 2014, pp. 218–229.

[158] R. N. Calheiros, C. Vecchiola, D. Karunamoorthy, and R. Buyya, “The Aneka
platform and QoS-driven resource provisioning for elastic applications on hybrid
clouds,” Future Generation Computer Systems, vol. 28, no. 6, pp. 861–870, 2012.

[159] D. Talia, “Cloud computing and software agents: Towards cloud intelligent ser-
vices,” in Proc. of the 12th Workshop on Objects and Agents, Rende (CS), Italy, July
2011, pp. 2–6.

[160] S. A. Baset, “Cloud SLAs: Present and future,” SIGOPS Oper. Syst. Rev., vol. 46,
no. 2, pp. 57–66, 2012.

[161] A. Undheim, A. Chilwan, and P. Heegaard, “Differentiated availability in cloud
computing SLAs,” in Proc. of the 12th IEEE/ACM International Conference on Grid
Computing (Grid 2011), Lyon, France, September 2011, pp. 129–136.

[162] Y. B. Ma, S. H. Jang, and J. S. Lee, “Ontology-based resource management for
cloud computing,” in Proc. of the 3rd Asian Conference on Intelligent Information
and Database Systems (ACIIDS 2011), Part II, Daegu, Korea, April 2011, pp. 343–
352.

[163] L. Wu, R. Buyya et al., “Service level agreement SLA in utility computing
systems,” 2012. [Online]. Available: https://arxiv.org/ftp/arxiv/papers/1010/
1010.2881.pdf

[164] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield, “Xen and the art of virtualization,” SIGOPS Oper. Syst.
Rev., vol. 37, no. 5, pp. 164–177, 2003.

[165] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs Containerization to sup-
port PaaS,” in Proc. of the IEEE International Conference on Cloud Engineering (IC2E),
Boston, MA, USA, March 2014, pp. 610–614.

[166] A. Arman, S. Foresti, G. Livraga, and P. Samarati, “A consensus-based approach
for selecting cloud plans,” in Proc. of the 2nd IEEE International Forum on Research
and Technologies for Society and Industry (RTSI 2016), Bologna, Italy, September
2016, pp. 1–6.

https://arxiv.org/ftp/arxiv/papers/1010/1010.2881.pdf
https://arxiv.org/ftp/arxiv/papers/1010/1010.2881.pdf

A
P U B L I C AT I O N S

Some ideas and significant results present in this thesis were published in:

1. “A consensus-based Approach for Selecting Cloud Plans”

A. Arman, S. Foresti, G. Livraga, and P. Samarati

2nd International Forum on Research and Technologies for Society and Industry
(RTSI 2016), Bologna, Italy, September 2016

Abstract: An important problem when moving an application to the cloud con-
sists in selecting the most suitable cloud plan (among those available from cloud
providers) for the application deployment, with the goal of finding the best match
between application requirements and plan characteristics. If a user wishes to
move multiple applications at the same time, this task can be complicated by the
fact that different applications might have different (and possibly contrasting)
requirements. In this paper, we propose an approach enabling users to select a
cloud plan that best balances the satisfaction of the requirements of multiple ap-
plications. Our solution operates by first ranking the available plans for each ap-
plication (matching plan characteristics and application requirements) and then
by selecting, through a consensus-based process, the one that is considered more
acceptable by all applications.

2. “A Risk-aware Application Scheduling Model in Cloud Computing Scenarios”

A. Arman

103

104 publications

International Journal of Intelligent Systems and Applications(IJISA), vol. 8, no.
10, pp. 11− 20, 2016

Abstract: Cloud providers usually apply some compensation mechanisms when
their promised qualities of services are not met. Therefore, to support the busi-
ness objectives of users, such compensation mechanisms, which can have high
impacts on the financial profit of applications when they are executed on the
cloud, should be carefully considered in application scheduling scenarios. We
propose an approach aimed at, by mapping each application to an available VM
offered by multiple Cloud providers, maximizing financial profit that is estimated
for each application, according to its importance. It mainly works in three phases.
Considering each possible VM availability scenario, we first measure a penalty
which is paid by Cloud provider if the promised uptime of VM is not met, and
then, estimate a financial profit for the current application to be scheduled if it is
assigned to each available VM. Finally, through a risk analysis process, we assign
each application to an available VM, according to the expected monetary value
of application when it is mapped to each available VM.

3. “Towards an Analytical Approach to Measure Modularity in Software Archi-
tecture Design”

M. Ghasemi, S. M. Sharafi, and A. Arman

Journal of Software, vol. 10, no. 4, pp. 465− 479, 2015

Abstract: We propose a software engineering approach to analytically evaluate
the modularity of applications to estimate to what extent they can be easily
moved to the Cloud w.r.t. change flexibility and/or distributability. Our pro-
posed solution operates in three main steps: i) defining an evaluation classifica-
tion which includes different modularity attributes (e.g., coupling, cohesion) and
their associated metrics (e.g., coupling between classes for coupling attribute),
according to the context of problem (e.g., application type, execution context of
application on the Cloud); ii) estimating modularity at micro (component) level,
considering attributes and metrics studied in the first step; iii) evaluating modu-
larity at macro (system) level, considering the obtained modularity at micro level.

4. “Improving the Efficiency of Term-weighting in Dynamic Sets of Documents”

M. Jabalameli, A. Arman, and M. Nematbakhsh

International Journal of Modern Education and Computer Science, vol. 7, no. 2,
pp. 42-47, 2015

publications 105

Abstract: The performance refinement of outsourcing applications is considered
as an essential issue because it can considerably avoid the wasting of Cloud re-
sources and unnecessary extra costs, paid by Cloud users. In this paper, a me-
thod is proposed to improve the efficiency of computation-intensive applications
in term-weighting scenarios by considering a special part of dynamic documents’
revisions instead of their whole revision history. The evaluation of proposed me-
thod shows its ability to keep the quality of retrieved information at an acceptable
rate, while notably decreases the analysis time.

5. “Considering Application Importance in Cloud Plan Selection” (Manuscript
in preparation)

Abstract: Selecting the right cloud plan is a key issue when outsourcing applica-
tions to the cloud. When multiple applications need to be deployed at the same
time on the same plan, it is necessary to combine their requirements to deter-
mine a plan that is suitable for all applications. In this paper, we address the
problem of selecting a cloud plan when the outsourced applications have dif-
ferent importance, differentiating the impact that their preferences should have
in the selection process. Our approach permits different stakeholders to express
applications importance, to simplify definition and capture the imprecision of
human judgements, through linguistic variables. Our solution then aggregates
the importance of applications, considering the opinions of different stakehold-
ers with different relevance in the decision process. Applications importance is
then taken into consideration for cloud plan selection.

	Contents
	List of figures
	List of tables
	1 Introduction
	1.1 Contributions of the Thesis
	1.2 Organization of the Thesis

	2 Related Works
	2.1 Application Assessment in Outsourcing Scenarios
	2.1.1 Modular Design Evaluation

	2.2 Cloud Plan Selection in Outsourcing Scenarios
	2.2.1 Cloud Plan Selection in a Single Application Context
	2.2.2 Cloud Plan Selection in a Multiple-Application Context

	2.3 Chapter Summary

	3 Modular Design Evaluation in Outsourcing Scenarios
	3.1 Introduction
	3.1.1 Chapter Outline

	3.2 Basic Concepts and Problem Definition
	3.3 Proposed Approach for Modularity Evaluation
	3.3.1 Modularity Evaluation at Component Level
	3.3.2 Modularity Evaluation at System Level

	3.4 Chapter Summary

	4 Consensus-based Cloud Plan Selection
	4.1 Introduction
	4.1.1 Chapter Outline

	4.2 Basic Concepts and Problem Definition
	4.3 Consensus for Cloud Plan Selection
	4.3.1 Ranking Cloud Plans for an Application
	4.3.2 Reaching Consensus among the Applciations

	4.4 Algorithm for the Proposed Consensus-based Cloud Plan Selection Approach
	4.5 Chapter Summary

	5 Supporting Cloud Plan Selection Under Uncertainty
	5.1 Introduction
	5.1.1 Chapter Outline

	5.2 Basic Concepts and Problem Definition
	5.3 Proposed Solution for Cloud Plan Selection
	5.3.1 Measuring Importance for Each Application
	5.3.2 Measuring Criteria Weights
	5.3.3 Choosing the Optimal Plan

	5.4 Algorithm for the Proposed Uncertainty-based Cloud Plan Selection Approach
	5.5 Chapter Summary

	6 Risk-Aware Application Scheduling in Cloud Computing Scenarios
	6.1 Introduction
	6.1.1 Chapter Outline

	6.2 Basic Concepts and Problem Definition
	6.2.1 An Overview of Risk Analysis in the Proposed Study
	6.2.2 Problem Definition

	6.3 Proposed Approach
	6.3.1 Measuring Penalty for Each VM
	6.3.2 Estimating Financial Profit for an Application

	6.4 Algorithm for the Proposed Risk-aware Application Scheduling Approach
	6.5 Chapter Summary

	7 Conclusions and Future Works
	7.1 Summary of the Contributions
	7.2 Future Work

	Bibliography
	A Publications

