UNIVERSITA DEGLI STUDI DI MILANO

Dipartimento di Biotecnologie Mediche e Medicina Translazionale
Dottorato di Ricerca in Scienze Biochimiche

XXX Ciclo

APPROACHES TO THE MOLECULAR BASIS OF
GENETIC DISEASES

Tutor:
Prof.ssa Laura CANTU
PhD candidate:
Alessio GAMBA
Matr. R11022

Anno Accademico 2016 — 2017




Index

Summary 2
Acknowledgment 4
Chapter one

1.1 Abstract 5
1.2 Introduction 7
1.3 Materials and Methods 16
1.4 Results 27
1.5 Discussion 34
Chapter two

2.1 Abstract 37
2.2 Introduction 39
2.3 Materials and Methods 51
2.4 Results 56
2.5 Discussion 77
Final conclusions 82
References 84
Large figures 89

Gamba, A. - Approaches to the molecular basis of genetic diseases



Summary

Throughout my PhD period, [ experimented different approaches to a
complex problem, that is, assessing molecular basis of genetic diseases. In
the present thesis I will show how both experimental and computational
techniques can contribute to the study of typical biochemistry topics,
providing non-conventional points of view and advanced technical and

technological supports.

The first part of my PhD was focused on physico-chemical investigation, while
the second part was devoted to big-data and network analysis. For this

reason my thesis is divided into two chapters.

The former describes a typical bottom-up approach. I applied the physical
technique of laser light scattering to study the first stages of aggregation of
configurational variants of the beta-amyloid peptide, recognized to be either
promoting or preventing the Alzheimer Disease, as compared with the wild
type peptide. The variants correspond to genetic mutations giving rise to
either familial cases of Alzheimer Disease or protection from the pathology. I
carried out experiments aimed to assess similarities and differences in the
kinetics of evolution of the aggregated species in very dilute solution,
mimicking the physiological and pathological conditions. The outcome of this
study is the discovery of a correlation between the molecular structure and
the physico-chemical behavior, in this case aggregation, constituting the

hallmark of the disease.

The results obtained have been published in a peer reviewed journal
(Biophysical Chemistry), with the title: “Pathogenic AB A2V versus protective

AB A2T mutation: early stage aggregation and membrane interaction” (2017).

The latter is a top-down approach. I defined the criteria and developed an
algorithm for searching big databases with respect to: a) the clinical features

of inherited diseases and b) the proteins that are known to be involved in
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genetically determined diseases. I established searching criteria aiming at
regrouping extracted data according to similarity classes in each database.
Then, the developed method involves assessing the existence and degree of
similarity within and between different clusters. As a result of this approach,
we have discovered a correlation between similarity classes extracted from
the different databases (the clinical and the biological), thus establishing or

suggesting the existence of a biological basis for a genetic disease.

The obtained results have been submitted for publication in a peer reviewed
journal with the title: “The Disease Similarity Networks: Correlating the
Clinical and Biological Similarity of Inherited Diseases”, while a second

manuscript is currently under preparation.

Based on different disciplines, and designed with the typical instruments and
methodologies of physics and statistics, both approaches give non-
conventional hints for the understanding of the molecular basis of complex

genetic diseases.
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Chapter one

1.1 Abstract

The present study is focused on the aggregation of Amyloid beta (AB), a
peptide that plays an important role in the onset and progression of
Alzheimer disease (AD). This pathology is an increasing form of dementia,
affecting today large part of the elderly population. The AB deposition in the
brain starts with small aggregates and proceeds with formation of
extracellular plaques and intracellular neurofibrillary tangles, leading to
neuronal death. In our hypothesis, early aggregates of AR are crucial for
understanding the development of AD. Among the different isoforms of AB
peptides that are cleaved from the Amyloid Precursor Protein (APP), we used
in our analysis the AB 1-42, the most toxic and aggregation-prone. The four
amino acid residues at the N-terminal of AR contribute to the formation of a
stable p-sheet secondary structure. For this reason, we take into
consideration two mutations found in patients that affect the second position
of AP peptides. These mutations lead to a single amino acid substitution of
Alanine to Valine (A2V) and Alanine to Threonine (A2T). The carriers of A2T
mutation surprisingly do not develop AD, whereas A2V mutation causes an
early-onset and severe AD in homozygous, but not in heterozygous, showing

(in this last situation) a protective role.

The process of aggregation for Ap was accurately measured using static and
dynamic laser scattering techniques. This approach allows to monitor the
aggregation from the first steps of process even for small molecules and even
working at very low concentrations (25 pM). In order to start the experiment
with a monomeric sample, we used AP synthesized with depsipeptides

method. Moreover, the temperature was maintained constantly low, slowing
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down the process. Within all the duration of measurements (more than 100 h)
we calculated the diameter of particles using also the “Non Negative Least
Squares” (NNLS) algorithm to group aggregates in different populations by

their size.

As a result, it is immediately possible to observe that the AB wild type (WT)
sample shows an aggregation poorly detectable compared with the two
mutations, Ap A2V and AP A2T.

The A2V sample surely aggregates better than the other two forms, reflecting
the phenotype observed in patients, who develop a severe dementia. As
shown by measurements, WT and A2V present a very different aggregation
kinetics and characteristic diameters. Thus, we can hypothesize that the
protective role, observed in heterozygous A2V patients, is probably due to a
destructive interaction between WT and A2V peptides during their
aggregation.

People with A2T mutation are healthy but it is not due to the inability of A to
aggregate, as measured by our technique, and for this reason the causes of
A2T phenotype need to be better investigated, also with other methods.

All these finds are in accordance with results obtained with parallel studies

on cell toxicity, enzyme activity and membrane interaction.
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1.2 Introduction

1.2.1 Alzheimer disease overview

Alzheimer disease (AD) is an increasing form of dementia, affecting today 38
million people worldwide. Among different types of dementias, this pathology
result to be the most common, especially in elderly people. All the symptoms
that characterize the Alzheimer disease are related to a progressive and
irreversible deterioration of the higher cortical functions including mood,
behavior, and memory. The cause is the degeneration of neurons, a condition
depicted in the figure 1 (as also in figure 5), which clearly illustrates the
neuronal loss in a brain with advanced AD, compared with normal anatomy.
Within ten years from the onset of the disease, a cognitive disability occurs,
such as to determine the complete loss of self-sufficiency in patients. The
incidence of AD is a growing function of age as well as its prevalence (which
doubles every 5 years, starting from 1% around the age of 60), making this
severe pathology, not only a health problem but also an economic and social

plague.

Even though some molecular evidences have been emerged, the etiology of
AD at present remains controversial. Among the proposed hypothesis, one of
the most widely recognized regards the amyloid cascade (Hardy et al., 2002).
Following this hypothesis, the fundamental anomaly of AD is the progressive
deposition of Amyloid beta (AB) peptide, a short protein derived from the
cleavage of Amyloid Precursor Protein (APP), which in turn is a
transmembrane protein with a not completely understand role but with the
properties of a membrane receptor. The portion of the protein corresponding
to AP turns out to be between the extracellular portion and the
transmembrane domain. The processing of Amyloid Precursor Protein starts
with a splitting in the extra membrane domain followed by a further intra
membrane cut by specific enzymes, and is schematically illustrated in figure
2.
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advanced
alzheimer's

Figure 1: picture of a normal brain (on the left) and a brain in condition of
advanced Alzheimer disease (on the right) where a dramatic reduction of

neuronal mass is observable.
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Figure 2: a schematic picture of different processing paths (amyloidogenic

or non amyloidogenic) of APP.
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Depending on the type of extracellular proteolysis it may be either
amyloidogenic or not: if the cleavage occurs by the enzyme alfa-secretase, at
the level of the external cellular surface, followed by a second proteolytic
event, by gamma-secretase, the generated peptides are soluble and not
amilodogenic. If APP is processed by beta-secretase at the level of the N-
terminal region and then submitted to the second proteolytic event, by
gamma-secretase, the generated peptides are called Amyloid beta (AB)
peptide. The exact location of this cut may vary by giving origin to several
variants of different length of AB peptide. The principal isoforms are two: AB
1-40 (40 amino acid of length) that is the most abundant and AP 1-42, that is
recognized to be the most toxic. The figure 3 illustrates the protein AP

derived from the APP with its complete amino acid sequence.

The AP peptide, once generated, is very prone to aggregating. This process is
characterized by the formation of oligomers and then protofibrils and fibrils.
There are many evidences that even small aggregates can be directly
neurotoxic. In particular both small and large aggregates tend to stimulate
an inflammatory response, the consequences of which include alterations of
the phosphorylation of the tau protein, inducing the generation of neuro-

fibrillar clusters.

This cascade appears to offer a number of points at which to interfere with
the sequence of pathology; however, to date all strategies have faced serious
hurdles in clinical application, where the tested drugs have been ineffective
or caused severe adverse events. Thus, there is still an urgent need for safe
and effective molecules for AD treatment. The amyloid cascade hypothesis is

depicted in figure 4.
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Figure 3: the sequence of Amyloid beta (AB). Derived from APP the AR
peptides can result with different length, depending by the variable position

of the gamma-secretase cleavage.

AICD: APP intracellular domain; sAPP: soluble APP.
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Figure 4: schematic representation of progressive steps of the amyloid

cascade hypothesis.
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1.2.2 Familial Alzheimer disease forms

Most forms of Alzheimer disease are sporadic, that is, they manifest
themselves without inheritance among generations of a family and begin
after 65 years of age. In a minority of cases, however, AD manifests itself at a
younger age (before 60-65 years). 60% of these early-onset forms are
referred to affect different family members, in this case the disease is called
familial and generally observed in two or more people belonging to the same
family; 13% of them are caused by the presence of a genetic mutation

present since birth.

These familial forms result to be quite rare in population and characterized
by premature ages of onset and rapid evolution of the disease, representing
an important source of information for genetics studies. In a high percentage
of these forms, especially those characterized by an early onset and a rapid
evolution, mutations have been identified on the coding genes for Presenilin
1 (PSI) and Presenilin 2 (PSII) and for the precursor of Amyloid beta, APP.
The mutations so far identified are located on chromosomes 1, 14 and 21, for
PSII, PSI and APP, respectively. Mutations that affect APP cause an abnormal
production of amyloid beta and its pathological brain buildup in the form of
“senile plaques” typical of AD patients. PSI and PSII are proteins forming the
catalytic subunit of the gamma-secretase complex. All these three mutations
have the same effect, leading to a preferential cleavage of the C-terminus of
APP that produces AB 1-42, a longer form of the normal peptide (1-40). AB 1-
42 is the neuron-toxic peptide that was originally purified in the first
experiments from amyloid plaques, in 1984. These hereditary forms of
Alzheimer have autosomal dominant transmission and complete penetrance
(Selkoe et al., 2001).

In 2009 our research group described a new APP mutation (A673V) that
causes early-onset AD when in homozygosis (Di Fede et al., 2009). The

missense mutation consists of a C-to-T transition resulting in alanine-to-valine
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substitution at position 673 of APP, which corresponds to position 2 of AR
peptides (AP A2V peptides). Notably, heterozygous individuals with A2V do
not develop AD even in advanced age. Effectively, as reported in Di Fede et
al. (2009), five patients with heterozygous A673V, performed well on the
neuropsychological assessments, and the 88 years old aunt of the patients, in
particular, showed an excellent performance on all the tests, despite she was

non-educated.

Recently, another single mutation on the same alanine residue (alanine to
threonine, A673T) has been reported by Jonsson (Jonsson et al., 2012). This
mutation, corresponding to the position 2 of AP peptides (A2T) seems to
protect from the growth of dementias and in particular to hinder the onset of
AD. The complete mechanism of this protective effect is not yet understood,
although some studies on different cell models suggest that the presence of
this mutation reduces the BACE1l-mediated processing of APP, then lowering
the levels of AP production (Maloney et al., 2014).

The two punctual mutations, A2T and A2V, and the wild type of AR 1-42
peptide are the following:

WT DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA
A2T DTEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA
A2V DVEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA

The aim of present work is to study differences in the aggregation process of
AB peptides, in particular, among the wild type peptide and the two mutated
forms, A2V and A2T. In particular we focused on the early stages of self
aggregation process, by Static and Dynamic laser Light Scattering
techniques when monomers evolved into oligomers and aggregated soluble

forms.
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Figure 5: brain magnetic resonance imaging.

Axial T2-weighted images in the early clinical stage of AD (A), after three
years (B), and after eight years from onset (C). Images after eight years
from onset (D, E). The scans show the progression of the cortico-subcortical

atrophy and subcortical white matter changes.
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1.3 Materials and Methods

1.3.1 The theory of light diffusion

When light passes through any material medium, part of it is diffused. This
observation was first described in 1871 by Lord Rayleigh. The Rayleigh's
calculus is referred to a diluted gas of molecules with a small dimensions in
relation to the wavelength of light A and where a molecule can diffuses light
independently from each others. In 1910, Einstein tried to address the
problem from a different point of view, considering the medium as a
continuum in which the diffusion of light is caused by local fluctuations of the
constant dielectric €. This demonstrated that light diffusion occurs for those
fluctuations that retain the wave vector of the diffusion process. In 1944,
Debye extended Einstein's considerations to the case of macromolecular
solutions by interpreting dielectric fluctuations in terms of local
concentration fluctuations of macromolecules. This is the work that paved the
way for the systematic use of light diffusion to determine the molecular
weights of macromolecules in solution (colloidal particles, polymers, proteins,
viruses, etc.).

With the introduction of laser radiation as a source, light diffusion technology
has become an indispensable tool in the study of biological macromolecules
and nanoparticles in solution. In addition to facilitate traditional
measurements, the laser makes possible new types of measurements thanks
to its monochromatic and temporal coherence characteristics. Indeed, the
temporal dependence of dielectric constant fluctuations can also be
measured, and not just their average quadratic value as a measure of
intensity. This allows you to obtain information about the microscopic
dynamics of the system.

It should be noted that in the case of macromolecules, the Rayleigh's model
based on single-particle can still be valid for very diluted solutions, which can

be theoretically considered to be a rarefied gas. For dimensions not more
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negligible than the wavelength of the incident radiation, there is an angular
distribution of the diffused intensity not more isotropic. In fact, in this case,
there are phenomena of light interference diffused by different points of the

same molecule.

1.3.2 Experiment of light diffusion

It is possible represent schematically an experiment of light diffusion with

the following image.

initial polarisation

q=k¢-k;

scattered wave-vector

final polarisation

A linearly polarized monochrome light beam (k;) crosses a medium. A
detector placed in P at a distance R from the origin of the reference system
measures an intensity of light propagating in a direction other than that of
the reflective or refractive beam: this is what is meant by diffuse radiation.
An intuitive explanation of the diffusion of light can be due to the fact that all
polarizable molecules, excited by an electromagnetic wave, irradiate in the
space a wave of the same frequency as the incident ray. If the diffusing
particles are present in a large number, an interference phenomenon occurs
which, if the polarizability of the medium is homogeneous, can prove to be
destructive in all directions other than that of the refracted beam. Thus, it is

necessary to have local polarizability fluctuations to have the diffusion of

Gamba, A. - Approaches to the molecular basis of genetic diseases 17



light, as in the case of particles dispersed in a solvent.

The diffused field Es (R, t) is a random function of time because it reflects the
statistical nature of dielectric constant fluctuations. For the most part, the
field statistic is gaussian, because the diffusion process is determined by a
large number of independent diffusions; this leads to a simplification of the
diffuse field characterization. In fact, it is enough to define the correlation
function to the first order of the field:

G1 (t1, t2) = <Es (t1) Es (t2)>

That is, the signal is measured at time t1, multiplied by the time t2 for all the
possible values of the delays t2-t1 = t and the products obtained on a high
number of samples are mediated, delayed by delay; so you get the correlation
function of the signal.

In the particular case where t1 = t2, we have that:

G1 (t1, t1) = <|Es (t1)|*>

corresponding to the average intensity of the diffused light. In the case of
Gaussian field statistic, there is a simple relationship between the G2 (t)
correlation function, experimentally easier access, and the field G1 (t)

directly related to the diffusion coefficients:

G2 (t1, t2) = <I>2 (1+ <|G1(t1,t2)|*>)

The properties of a laser experiment are depicted in figure 6.
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In the case of macromolecules in solution, the dynamic part of the diffusion,
that of the correlation function, is closely related to the temporal fluctuations
of the dielectric constant, or from the temporal evolution of spontaneous
concentration fluctuations in the medium. For a simplified discussion, one
can imagine that a microscopic concentration fluctuation obeys on average to
the macroscopic equation for translational diffusion, namely Fick's law, which

exponentially decays the concentration fluctuation 6c (k, t):

6c (k,t) = 6¢ (k,0) exp (-k*Dt)

where D is the translational diffusion coefficient of the macromolecule. Under
stationary conditions, with t2 - t1 = t and taking into account the relationship
between the Intensity correlation function and that of the field highlighted

above, it is possible to obtain the following equation:

G2 (1) = <Is(0) Is(t)> = <I>2 (1 + exp (-2Dk?1)

The translational diffusion coefficient D is connected to the hydrodynamic

radius Ry of the macromolecule by Stokes-Einstein's law:

D = kgT / 6 MRy

with: constant Boltzman kB, absolute temperature T and n solvent viscosity.
For polydispersed suspensions in size, the intensity correlation function will
be due to the overlap of multiple contributions, that is a sum of exponential

decreasing.
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The following figure illustrates the analysis of the characteristic time of
intensity fluctuation. Smaller particles cause the intensity to fluctuate more

rapidly than large particles.
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The diffused intensity <I>? provides information on the static properties of

the system: the size and shape of the particles in solution.

If the particle size is not negligible compared to the incident wavelength, the
diffused intensity contains the form factor P(k). Note that P(k) = 1 for k = 0

and within point-to-point diffusers.

To directly compare the intensity of light intensity diffused by different
macromolecular solutions and/or their solvents, it is useful to use the
Rayleigh ratio R’, which expresses the fraction of incident power diffused in

the solid angle unit per unit of the volume of diffusion volume.
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Called Ir-1, the fraction of incident intensity diffused by a solution, purified

by the contribution of water and normalized, has:

dn
. @it )M
:Is/IOZR :(T[l] NA)(dC)C

I.-1
IW/IO R’w R'w

T

Where [, is the accident intensity, R' is Rayleigh's ratio for macromolecules
and R'y for water, c is the sample concentration and M is the molecular mass

of the molecules in solution.

The measure of water intensity is quite difficult because we should be sure to
have to deal with absolutely pure water; for this reason, it is useful to use a
calibrator. We used a Ci;Es solution at 2% concentration, which, at 20° C, has

an intensity exactly 114 times that of water.

1.3.3 Experimental equipment

Experiments were carried out on a non-commercial apparatus equipped with
a laser (A = 532 nm), a digital correlator, and a thermostated cell (Lago et al.,
1993). High sensitivity is reached with four optical channels at 90°, displaced
5° above or below the scattering plane, that allow independent parallel
measurements of the intensity scattered from the same very dilute sample.
Data reported in the results section are obtained by averaging the signal
collected by all of the four independent optical channels. Figure 7 illustrates

the entire laser light scattering apparatus.
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Figure 7: a schema of the laser light scattering apparatus.
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1.3.4 Protocol of the experiment

We applied laser light scattering techniques to study the aggregation process
of the AP peptides, wild type and two different punctual mutations. This
technique is very sensitive to the aggregation of monomers into structures
with higher molecular mass. In particular, by static laser light scattering
technique we measured the average scattered intensity at 90°. The intensity
value is directly proportional to the mass of the particles in solution.

This technique is very sensitive, but require very pure samples. In fact the
presence of pre-aggregated species or impurities may affect dramatically the
results as usually the intensity value diffused by large particles is much
greater than that diffused by small one (intensity + number of particles x
mass?), thus making the results so ambiguous. For that reason we used AB 1-
42 depsi-peptides synthesized at the Mario Negri Institute. The depsi-peptide
method (figure 8) is a specific technique of synthesis used for amyloidogenic
sequences to obtain a batch with a low degree of aggregation, free of either
highly folded structures or fibrils and aggregates (seeds free), and as close as
possible to monomeric condition (Taniguchi et al., 2009, Beeg et al., 2011). In
the AP1-42 sequence an O-acyl isopeptide structure is inserted (Gly25-
Ser26), stable at low pH. The peptide in this condition is not prone to self
aggregation. We stored the peptides, dissolved in acidic solution
(water:trifluoroacetic acid, 0.02%) after clarification o/n (16-18 hours) at
55.000 rpm and filtration (centrifugal filter devices, c.o. 10 kDa, Millipore) in
aliquots at 200 pM concentration.

A switch to basic pH (switching procedure) is sufficient to convert the AB1-42
peptide into the native sequence. The switching procedure of depsi-AB was
carried out at basic pH: a mix of sodium hydroxide (NaOH) and ammonium
hydroxide (NH40OH) (ratio3:1) was added to the peptide solutions (final pH
0f~10) and incubated on ice for 10-15 minutes.

Finally a proper amount of PBS buffer was added to each AP solution directly

in the cell for laser light scattering measurements (final concentration 25
uM).

Gamba, A. - Approaches to the molecular basis of genetic diseases 24



The depsi-peptide structure is the following and is illustrated in figure 8:

WT DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA

The early stages of aggregation are deeply influenced by several parameters,
such as concentration and temperature. For this reason, in order to compare
the effect of either A-to-V or A-to-T mutations on the aggregation pathway of
AB, we applied the light scattering technique in the same experimental
conditions to all systems. Samples were at 25 uM peptide concentration in
PBS buffer 50 mM, at pH 7.4. The scattered intensity at 90° was measured at
22°C and the time evolution of the intensity was followed for at least 100
hours from switching.

I performed parallel measurements of the intensity correlation function
(dynamic laser light scattering) on the same samples at different time delays
from dissolution. This technique is suitable to study the size distribution of
particles in solution and its evolution as a function of incubation time. DLS
data analysis was carried out using both the cumulants method, suitable to
detect the evolution of the weight-average hydrodynamic size of particles in
solution, and the NNLS method (Lawson et al., 1995), suitable to determine

their size distribution.
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1.4 Results

As previously described, three different forms of Amyloid B peptide 1-42 have
been analyzed, the wild type and two mutated peptides (A2V and A2T),
differing only in one amino acid respect to not mutated form. The use of the
techniques of dynamic and static light scattering allows to detect and to
study in vitro the aggregation propensity of the three AB peptides. These two
techniques, used in parallel, result particular sensitive because they allow to
follow on-line the aggregation process. Moreover those techniques are non
invasive and do not interfere with the process of aggregation. By static laser
light scattering we measure the average scattered intensity by the particles
in solution which is proportional to their mass. In this way, it is possible to
calculate immediately the mass of the peptides according to their
aggregation state, starting from the first steps of the process, when
monomers and oligomers are present. Aggregation can be observed,
measuring the increase of the intensity, until soluble forms are present in
solution. When big aggregates of fibrils start to form, a sedimentation
process superimposes to the growing one. The intensity may decreases and
the results are no more useful to describe the system.

To describe the kinetics of the aggregation of the three different peptides, we
want to acquire the intensity for long time, about 100 h. For this reason it is
necessary to work with a stable instrument and to set the appropriate
frequency of measures and total acquisition time, in accordance with the
behavior of the molecules in the sample.

The three peptides are synthesized in the form of depsi-peptide in order to
keep the sample in monomeric state and then they are stocked at -80° C in
order to block any reaction of aggregation.

As described in materials and methods section, the structure of depsi-peptide
is more rigid respect the original peptide conformation, for this reason the
molecule is not prone to the aggregation.

A suitable procedure (as described in the materials and methods section)

allows to switch the AP from the rigid to the original conformation, that
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immediately begins to self aggregate.

The final step of this “switch” procedure is performed when the sample is
positioned in the measuring cell in the light scattering instrument, ready to
be measured. Only in this way it is possible to observe the peptides in their
monomeric state and to see the formation of the first oligomeric aggregates.
The process of aggregation is influenced by the concentration of the peptides
and by the temperature, the lowest the temperature, the slowest the process.
The temperature of the apparatus can be regulated and it is set at 22°C, a
temperature lower than the biological temperature of the brain that is
around 37° C. The temperature is maintained constant for all the duration of
the experiment. This particular setting allows a precise observation of
different stages of aggregation and to perform comparisons with results
obtained on the same systems with other experimental techniques. Another
very important parameter is the concentration of sample, because high
concentrated solutions of peptide are more prone to aggregate. We use 25
BM peptide solutions in phosphate buffer 50 mM, pH 7.4. This is a very low
concentration, but thanks to the hight sensibility of the instrument it is
possible to make measurements also in these conditions, when the excess
scattered signal of the particles is only a fraction of the signal of the water.
The combination of depsi-peptide switching and radiation scattering
observation has already proven to be well suited to follow the kinetics of
aggregation of amyloidogenic peptides starting from monomeric condition
(Di Fede et al., 2009; Stravalaci et al., 2012; Diomede et al., 2014). In
previous studies a more pronounced propensity to aggregate have been
observed for the mutated A2V peptide as compared to the wild type (Messa
et al., 2014).

In this analysis parallel measurements of static and dynamic light scattering
are applied for at least 100 h from the procedure of switching, when the
sedimentation of particles in the sample overwhelms the aggregation. Data
are obtained by averaging the signal collected by four independent optical
channels at 90°, each of them with an inclination of 5° respect the horizontal

plane.
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Results obtained for the three systems are reported in figure 9 for
comparison.

The frequency of acquisitions in the first range of observation (t < 20h) is
quite high to describe the evolution of the scattered intensity when initial
aggregates form in solution. In particular we set the frequency at one
measure every 5 s for the first hour and then we slow the frequency to one
measure every 10 s for the first 20 hours.

Parallel independent dynamic laser light scattering measurements are
performed on the same sample. By dynamic light scattering technique we
measure the intensity correlation function, connected to the average
diffusion coefficient of particles in solution. By the programs directly
provided by the correlator, we can calculate the mean hydrodynamic radius
of particles and their size distribution. The acquisition of the intensity
correlation function, in the case of very diluted samples, requires a duration
time of at least one minute to reach good statistics. The frequency of
measurements is high at the beginning (every two minutes) and the
progressively slow down (every ten minutes). The size distribution are
calculated by the Brookhaven instrument software with the “Non Negatively
Least Squares” (NNLS) method (Lawson et al., 1995). In order to better
compare results obtained on different samples, both the same acquisition
algorithm of inversion are used for all the samples.

The initial intensity scattered from all samples is very low, < 1.5 times that of
the pure solvent, that is water with the buffer. This is the value of intensity
expected for small particles in a very dilute solutions (about 0.1 mg/ml). The
low scattered intensity confirms that at the beginning of the experiment the
peptides are in monomeric state. Looking at figure 9, it is possible to
understand immediately that the process of aggregation is very different
among the three considered AP 1-42. This is confirmed by both the dynamic
and the static techniques, in extent and in the kinetics of aggregation, as it is

described in detail in the following sections.
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1.4.1 Static light scattering

Results obtained from static light scattering are presented in the top row of
figure 9. For AB A2T and A2V we observed an evident growth of the
scattered intensity, while the increase in intensity of wild-type system is very
low. Nevertheless, looking at 40 h from the beginning of the experiment, a
small rise of intensity occurs also for the wild-type, visible in the zoomed
image reported in figure 9 first column, first row.

Interestingly, the AP A2V displays the highest intensity growth, with a
maximum value 100 times greater than the wild type. The A2T show an
intermediate growth and maximum value, respect the other analyzed
peptides.

Another very important aspect to consider is the kinetics of the process. Both
the lag time (before the beginning of aggregation) and the evolution of the
aggregation are very different in the three samples. As we can see from
figure 9, the aggregation of AP A2T begins after 13 h, similar to A2V,
whereas in wild type it begins after 40 h. It is difficult to estimate exactly the
starting point of the aggregation of A2V sample because it grows
exponentially and there are some aggregates immediately after the beginning
of experiment. All experiment are stopped at 100 h because at about 90 h the
sedimentation of large particles occurs, indicated by the decreasing of
intensity. The observed intensity of Ap A2T follows a two-steps growth. The
first step starts at 13 h, the second at 50 h. It is possible to draw the fitting

curves of the first step for wild type and A2T. These curves are obtained by
I(t) = Iﬁnal (1 —e )
where Isna is the asymptotic value of the scattered intensity growth and T is

the characteristic time. The characteristic time Tt is 9 h for the wild-type and
6.5 h for A2T.
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Figure 9: panel A, the static light scattering (SLS) results; panel B, the

dynamic light scattering (DLS) results.
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1.4.2 Dynamic light scattering

To examine the differences found with static method in deeper detail, we
compared them with the results obtained simultaneously by dynamic light
scattering, which give information on the size distributions of the aggregates.
In figure 9 we report data taken at four particularly interesting delays from
the beginning for each of the three peptides. The figure 9 (panel B) reports
on the rows the size distributions taken at 0-1 h, 20 h, 60h and at the end of
the observation time range. The bar charts illustrate the size of the
populations in nm in relative importance calculated respect to the relative
scattered intensity (from 0 to 100).

At the beginning, the substantially predominant specie is the population of
monomers with a size between 2 and 3 nm. These particles are highly
present in all three systems, but in the A2V sample is possible to detect also a
population of 350-400 nm. This result indicates that A2V displays a very high
propensity to aggregate.

The amyloid beta wild type

Regarding the sample with Ap wild type, only the monomers are detectable at
the beginning of experiment. After 20 h it is possible to reveal the formation
of intermediate aggregates of size 40 nm, in coexistence with the population
of monomers.

At 60 h delay, an increase in intensity is accompanied by the observation of
two populations of aggregates with size ~60 nm and ~400 nm. The size of
the largest aggregates slowly increases above 1000 nm, but seemingly their
number remain very low, as the population of small monomers is still
detectable at 100 h. This characteristic of wild type sample is very different
from the other two systems, where the monomers in late phases of
experiment are no more detectable, probably because the signal of other

populations is too high.
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The amyloid beta A2V

About the A2V sample, it is possible to observe that a population of size about
500 nm is always detectable, from the first hours until the end (100 h). The
aggregation starts immediately as a unique process that leads to the
formation of an increasing number of large aggregates (500 nm). At 20 h
monomers are still detectable but with an intensity of 10% respect the
second population. At 60 h monomers are no more detectable and at 90 h
sedimentation of fibrils occurs, with size bigger than 2000 nm, as we can see

looking at the final decrease of the scattered intensity.

The amyloid beta A2T

In the AB A2T, monomers disappear at 20 h, that is earlier respect the A2V
sample. A population of 500 nm growths after a lag-time of 13 h with a
characteristic time of 6.5 h. The importance of this population and its mean
size stays constant until 40 h from dissolution, when a second different
aggregation process begins, with the formation of elongated fibrils with size
greater than 200 nm, prone to sedimentation after 60 h from dissolution.

Fibrils appear faster in A2T with respect to A2V, but the number is very

different, being lower in the case of A2T.
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1.5 Discussion

During the present study, we investigated the effects of two mutations that
affect the Alanine in position 673 of the amyloid precursor protein (APP).
Mutations are punctual, meaning that only one amino acid (Alanine 673) is
changed in the whole protein. After the cleavage of amyloid precursor
protein by the beta-secretase enzyme, AP 1-42 is produced, carrying the
mutation that results in position two of the new peptide. The two mutations
regard a substitution of the alanine in position two with valine or threonine,
named A2V and A2T respectively. Those mutations have opposite effects on
the onset and severity of Alzheimer Disease. As shown in a previous study,
A2V induces early onset of the disease in homozygous individuals, while A2T

prevents the pathology.

In a parallel study also the activity of beta-secretase is investigated, finding
that the A2V mutation enhances the processing of amyloid precursor protein,
while the A2T mutation results in a quite similar level of AB production as

compared to the wild type.

Still we find that this is not the only difference. We applied a multi-technique
approach to study the structural and morphological features of the AB wild

type and the two mutations (A2T and A2V) on different length-scales.

Static and dynamic laser light scattering techniques are used to study the
aggregation process of the three peptides with a particular interest for the
early stages. These correspond to the soluble-oligomers/structured-oligomers
regime, where aggregates are claimed to be essential for the toxicity in vivo
and then for the onset and progression of Alzheimer disease. We take
advantage of the “depsi peptide method” for the synthesis of AB. This method

enables obtaining seed-free batches of monomeric peptides.

Comparative results indicate distinctive pathways of monomers aggregation
that differed in the kinetics and the extent of the process, in the size of the

aggregates, in the evolution of the secondary structure of the peptides. This
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means that at a given concentration, at the same delay from production
within a certain time lag, the three peptides display a different propensity to
establish and stabilize interactions with similar molecules. This suggests that
oligomeric species with different reactivity towards their surrounding

medium may occur, with different outcomes.

Notably, AB wild type has the lowest propensity for aggregation, and
effectively monomers were still observed at long delay from dissolution.
Differently, the mutation A2V increases the number and size of AP
aggregated structures significantly, leading to fibril formation. In accordance
with a parallel study of secondary structure folding, it is found that the A2V

peptide evolves faster to a beta-sheet conformation.

The behavior of AR A2T is complex. A double-step kinetics lead to the
formation of intermediate aggregates before the appearance of a small
number of fibrils. In parallel we also observe a slower kinetics of folding: the
distribution of secondary structures do not evolve rapidly towards an
increasing amount of beta-sheets. Thus, the A2T aggregation is found to be
different from the usual pre-fibrillar ones, observed in A2V, on different
length-scales. The present findings are also in agreement with recent studies
on monomers conformations, that show how the mutation A2T can
dramatically alter the beta-hairpin population and switch the equilibrium
towards alternative structures. Moreover, the observed evolution of the
collection of aggregates during the time suggests that the intermediate
aggregates cannot evolve simultaneously towards the progressive formation
of pre-fibrillar and fibrillar structures, but spare fibrils are formed randomly
in solution. These fibrils immediately precipitate, as observed by laser light
scattering, and therefore are no longer present in the solution to give their
characteristic contribution. Early spare fibril sedimentation can also affects
the controversial results obtained by thioflavin T fluorescent dye method,
that follows the fibrillation process by detecting the beta-sheet signal. Other
interesting results are obtained evaluating the interaction with membrane of
the three peptides and the effects on neuroblastoma NZ2a cell culture. Both

A2V and A2T interact with model membranes, leading to a decrease in the
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lipid core density and an increase of the lipid chain disorder. This is
associated with data on the toxicity on cell culture, where both A2V and A2T
result to be more toxic than the wild type. In particular, A2V shows to be the

most dangerous for cell viability, in accordance with other results (Colombo
et al., 2017).

Gamba, A. - Approaches to the molecular basis of genetic diseases 36



Chapter two

2.1 Abstract

Background and rationale

In the last decades, many mutated genes have been identified as causative of
human diseases. The modified proteins coded by these genes are directly

responsible for the symptoms and signs observed in patients.

Proteins can suffer a dramatic change in their functions that affects the
normal cellular activities and that is reflected, at organism level, in the
expressed phenotype. The complex path that connects a protein with a
phenotype, however, is not easy to identify, and remains in many cases
unknown. The aim of our study is to develop a method useful to bridge this
gap. To achieve this goal, we focused on a particular condition that occurs
when different proteins give rise to very similar (almost identical)
phenotypes, also if the proteins are apparently unrelated. It is supposed that,
in this situation, the proteins share a similar function or co-participate in a

more general process that is related to the phenotype.

Experimental design

Very similar phenotypes have been recently grouped together into clusters
that have been named “Phenotypic Series”. In this way, a Phenotypic Series is
a list of different variants of the same disease. Comparing all these diseases,
we searched for similarities among either proteins or phenotypes. In order to
quantify the similarities, we considered terms that describe proteins and
phenotypes, and that are retrieved from specific databases, structured in
ontological way. Thanks to the present availability of this detailed and

curated databases, we developed an algorithm for calculate a similarity
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coefficient based on the shared terms of annotation.

We hypothesize that clinical similarities among Phenotypic Series reflect
biological similarities in the underlying mechanisms of disease. To clearly
illustrate the correlation among all diseases we use network and cluster
analysis. A network is a graph formed by nodes linked by edges, and in our
case each node is a Phenotypic Series, whereas edges represent the
similarity among them. In particular, two types of network have been
generated: the biological and clinical similarity network, based on protein
and phenotype similarities, respectively. The assembled networks are fully
connected, representing all diseases and every possible similarities among
them. However, we are interested in the highest similarities only. For this
reason, we proceeded gradually by increasing the threshold of similarity
coefficient, a procedure that removes the majority of the connections among

nodes.

Results and conclusions

By progressively increasing the threshold, the networks become fragmented
into islands that are not mutually linked. These islands are composed of
diseases that are similar to each other from the biological and/or clinical
point of view. Then, using cluster analysis on the diseases of the fragments,

we obtained results similar to the previous fragmentation.

Moreover, the obtained clusters allow defining subsets of Phenotypic series,

that are characterized by varying degrees of clinical and biological similarity.

As hypothesized, groups of phenotypically similar diseases show an
interesting high level of biological similarity as well, suggesting that the
relevant proteins perform similar activities in the cell. As examples, we
proposed two types of disease clusters: with high biological but low clinical

similarity and with low biological but high clinical similarity.

To conclude, our analysis of the similarities, as expected, can propose
different modalities of correlation (or lack of correlation) between clinical

manifestations and biological mechanisms of diseases.
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2.2 Introduction

2.2.1 Overview

One of the most important improvement in the world of biology is probably
the recent introduction of computer and algorithm for the analysis of
biological data. New computational approach results in some cases
mandatory, in first instance for the intrinsic complexity of biological systems,
and in second instance in order to manipulate the big number of data
provided by new approaches and in particular the high throughput
technologies as the next generation sequencing, micro array, and mass
spectroscopy. So many data can provide an equivalent quantity of information
if we are able to organized and analyzed them, unveiling the hidden
properties they bring. Frequently, more contributions for the comprehension
arise from the comparison of many data respect to a deep analysis of the

singlets.

Nowadays, many computational studies are focused on biological data that
principally regards genes and the proteins encoded by them. In the past
decades, thanks to the improvement of fast-sequencing technology, entire
genomes have become available. Therefore, In the post-genomic era, the new
challenge is no more to obtain the sequence of genes, whereas to understand
the role of these genes, meaning reveal all the process in which gene
products are involved. Particularly, we are interested in the effects of a
mutation or suppression of one gene product in the cell, and also the
consequences that the change have on the whole organism. This can be very
important for a better understanding of the phenotype that is observed in the
contest of a disease with a genetic evidence. It would be also interesting, as
we can obtain an about complete map of coding genes and their products,
obtain an equally detailed map of all functions of these gene products.
Nevertheless, among the incredible number of discovered genes, many of

them still remain “orphan”, meaning that, at present we are not able to
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assign a specific role to that gene in the cell. It would be also very important
to be able to move in both directions: from a gene to the corresponding
phenotype, as from an observed phenotype to the causative gene or genes. In
the study of genetic diseases, the method proposed in this thesis, should be
an important tool to fill the gaps in present knowledge, thus resulting useful

for the possible development of treatments.

2.2.2 The OMIM database and Phenotypic Series

Today exists a big effort in characterizing genetic diseases on their molecular
basis. For this reason several databases have been developed with the aim to
catalog the available knowledge. Probably the principal resource about
genetic diseases is the “On-line Mendelian Inheritance in Man”, known as
OMIM. The OMIM database enlist all known diseases with a recognized gene
causing them, and is organized using different entries, where each entry
provides information of different types regarding one disease, such as the
responsible gene, the chromosomal localization, the inheritance mode. The
two principal data that we are interested in are the disease name and the

gene product causing it, this last called Disease Gene Product (DGP).

The OMIM web site recently added also another feature to the database,
called Phenotypic Series (Amberger et al., 2015). Phenotypic Series (PS) are
groups of OMIM diseases that are associated based on their clinical
similarity. This procedure of clustering is not automated, but depend by the
clinical judgment of experts in those disease fields and is based on many
evidences. For these reasons we consider the grouping procedure made by
OMIM team very accurate. The Phenotypic Series clusters are very useful for
our analysis because they reduce the number of diseases to be consider, that
is, very similar diseases are considered as only one disease (one Phenotypic

Series).

In addition to OMIM database, many other databases have been developed in

medical and biological field. We take advantage of them, and consider the

Gamba, A. - Approaches to the molecular basis of genetic diseases 40



usage of these databases for our analysis.

2.2.3 Ontologies

The importance of a common language

Some databases result particularly useful because are organized with an
ontological structure. To understand what is an ontology and its importance
for the organization of knowledge, we can consider the following example.
We imagine to be interested in searching information on one known gene that
participates in a particular cellular process. During our research, we can be
overwhelmed by a vast amount of biological data available on-line, such as
books and journal articles, information on protein structures, genome maps,
biochemical pathways, drug efficacy studies, and much more. Thus, often, the
problem is not a lack of data, but data are so many that peruse all of them to
find relevant information can be a lengthy process. Moreover, obtaining the
principal information can be complicated because starting from our detailed
query we can retrieves undesired results or even very generic descriptions.
We might also miss some interesting results because, within different
databases, the same process might be referred to in different way. As we can
understand, filtering the relevant results is impossible for a computer
algorithm, as it is true it is able to search for words and compare them, it is
not able to understand the meaning of these words. The human mind can
understand and chose the right results among the proposed, but this
operation really requires a lot of time. All of these problematics have been

emerged into the need to have an universal information easy to access.

Classification of the information is the first step to make scientific data easier
to find, and for this purpose a common language is mandatory. This language
describes the entities of a particular field of knowledge, for instance, in
biological field, it is used to describe genes, proteins, diseases, or any of

other biological entities.
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A universal language allows to a program to browse the world wide web, to
automatically extract relevant information, and to compare them with similar
data from other databases. Thus, it is very important that the language
utilized by different sources has a common dictionary of terms and that it is
recognized by scientific community. Nevertheless, a controlled vocabulary is
not sufficient if we do not have any information on how different concepts are
mutually related. A logical relationship should be present among the terms of
the language. This last point is very important because regards the structure
in which the terms are organized and also the type of relation that link the
terms. Such type of structured language presents several advantages in its
usage and is properly called ontology. At the beginning of the study of
ontologies it was a topic for philosopher, but then ontologies began to be

used also in math, physics, and recently, in biology.

Probably, all the effort put into biological classification is inspired by the
taxonomic system introduced by Linnaeus, that in ancient times represented
a revolution in the world of biology, providing classification of different
species and their relationship. Now, ontologies are widespread and can be
used to describe potentially anything, even if one single ontology is normally
developed to provide information on a restricted and well defined area of

knowledge.

Gene Ontology and Human Phenotype Ontology

Starting from 1998 the Gene Ontology Consortium have developed the “Gene
Ontology project” with the aim to bridge the gap between different biological
communities (Gene Ontology Consortium, 2000). Gene Ontology (GO) is
divided into three domains, called: Biological Process, Molecular Function
and Cellular Component. The three aforementioned parts are actually three
independent ontologies, each of them providing a different type of
information about the role and localization of gene products in the cell. In
particular, Molecular Function classifies gene products by what they do in the
cell, Biological Process by what general processes these gene products are

part of and Cellular Component by where they act in the cell. In addition to

Gamba, A. - Approaches to the molecular basis of genetic diseases 42



the Gene Ontology, there are also many other ontologies that classify
concepts for different biological domains, such as organism anatomy,
development, experimental details, phenotype, the environment, and more.
All these ontologies are compiled by a consortium of leading biologists by
means of a cyclic process that continuously correct errors and update the

information.

In addition to Gene Ontology, another ontology result particularly useful for
the scope of our study, that is the Human Phenotype Ontology (HPO). This
ontology catalogs the observed phenotypes of a disease in humans, providing
in this way a very rich and standardized terminology to describe clinical
manifestations of pathologies in patients. Human Phenotype Ontology is
developed to describe potentially any disease, but in particular it is referred
to OMIM diseases. About all of the entries present in OMIM are described

with terms from this ontology.

Structure of ontologies

The structure of an ontology is very important, because it expresses the
semantic relationships between entities. A very useful structure that can be
used is the “directed acyclic graph” (DAG). A graph is formed by nodes linked
by edges, where in our case the nodes are the terms of the ontology and

edges are relationships that connect the terms.

The relationships used in an ontology are not predetermined, so any real-
world relationship can be logically defined and used to connect terms and
reflect the reality. This makes ontologies a flexible framework for modeling
many different types of data. However, the two basic relationships used by
many ontologies are “is a” and “part of” (Smith et al., 2005). The “is a”
relationship allows for simple, hierarchical connections between terms. The
“part of” relationship is used for describing how the components of a living
system fit together and it can be referred to physical parts, but can also apply
to processes, such as those modeled by the Biological Process of Gene
Ontology. Just to give an example, prophase, anaphase, metaphase, and

telophase are all terms from the Biological Process Ontology and they are
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“part of” the mitotic cell cycle.

It is called directed acyclic graphs because relationships are directed,
meaning that they are only true in one direction, for instance, a nucleus is
part of a cell, but a cell is not part of a nucleus. All the relations imply that
each node is linked to a more general node, named “parent”, as in the
previous example the “cell” term is more general respect to the “nucleus”
term. This is a fundamental properties of ontologies, that result hierarchical
in structure but differing from “strict hierarchies”, because the directed
acyclic graph allows a node to have multiple parent nodes and not only a
parent to have multiple descendants. However, being the graph “acyclic”,
loops are strictly forbidden, meaning that every route proceeds linearly. In
this way, following the linear directions of edges each term is thus child of
another more general term, by one of the semantic relations mentioned
above, and so on. At the end, the common ancestor of all of the terms in the
ontology is reached, which is often called “root”. The root is the most generic
term and does not provide any specific information (at least, within that
knowledge domain). Conversely, the specificity of the provided information
increases as we move downward, away from the root, reaching the last terms

that are the most detailed.

Development and maintenance cycle

The maintenance of an ontology is really an enormous work, and
collaboration is essential. At the beginning, the initial version of an ontology
is created by experts in the field. Every ontology is a work-in-progress, never
reaching completeness, reflecting the present level of knowledge. Thus the
structure is dynamic, growing and evolving as users found areas that need
improvement. Some terms definitions and relationships can be initially
wrong, or not properly correct, with either lack or surplus of details, or
missing synonyms. It is also possible to encounter unbridgeable gaps in the
ontology due to a lack of knowledge or due to an on-going or incomplete
research. Errors are find also with the help of the users. All the problems are

reported by the community to the experts who maintain the ontology, and the
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necessary check and changes are made. Then a new version of the ontology
is released to the users, incorporating the required changes, and the process
of maintenance go ahead in a cyclic improvements. Gene Ontology and other
ontologies represent a good example of the collaborative nature of ontology
development. Effectively, GO Consortium organizes also workshops where

problems and relevant topics can be discussed by the scientific community.

After the build of an ontology it can be used to describe entities, for example
genes and diseases. The process of assign terms chosen from an ontology to
provide a description to entities is called annotation, or also biocuration
when it is referred to the biological field. Genes can be annotated using
terms taken from Gene Ontology and diseases can be annotated with terms
from HPO. The biocuration is carried out by expert scientist. The curators
read recent findings browsing scientific literature and, also with their
personal knowledge, annotate newly discoveries with ontological terminology
(Howe et al., 2008). The advantage of the entire work is that the entities are
tagged with a universal language concerning all the benefits previously

described.

One of the most challenging task is probably the annotation project of Gene
Ontology, that try to relates each genes with the corresponding Biological
Process, Molecular Function and Cellular Component (Hill et al., 2008).
Curators of Gene Ontology need to identify important results from genetic,
molecular, and biochemical laboratory experiments that are reported in the
published literature and then annotate the gene with the appropriate
ontological terms. The combination of these annotations, together with the

knowledge contained in the ontology, allows striking results to be achieved.

A particular effort is required to encode scientific findings in a structured,
knowledge-enhanced way using ontologies, but then, the obtained data can
be used for discovering novel connections, which maximizes the overall
scientific impact of all research efforts. Unveil existing relations between

diseases and genes is the aim of our study.
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2.2.4 Setting of the study

The discovery of all molecular mechanism in which gene products are
involved is undoubted useful for the understanding of how the whole cell
works in normal condition. Although, in our study, we restricted the area of
analysis on the genetic diseases, because the understanding of the underling
mechanism in a presence of a reported pathological phenotype can be more
feasible. As previously discussed, several databases and ontologies are
available generated by the effort put in the characterization of diseases and

genes.

Today exists a big effort in characterizing diseases on their molecular basis
and for this reason diseases with their corresponding phenotypes are
collected in databases that provide us with a rich and detailed information,
essentially as starting point of our study. The only analyzed diseases are
associated with a gene that is clearly identify to cause the disease upon a
demonstrated evidence. We can classify the source of information for setting
up our study in two type: at microscopic level, regarding the biological
function of genes, and at macroscopic level, regarding the observed
phenotype. The figure 10 tries to give an overview of these two level, the
phenotypical and biological, provided by Human Phenotype Ontology (HPO)
and Gene Ontology (GO), respectively. The terms provided by the two
ontologies can be referred to each OMIM entries, that is formed by the
association of two elements, the disease (D) and its causative gene (G). A

Phenotypic Series is formed by a varying number of OMIM diseases.

With the benefit of availability of comprehensive databases it is possible
establish comparative study among all the information related to diseases
and set a “multi-level” study. The immediate benefit of this type of analysis is
the identification of common elements between diseases (or Phenotypic
Series) that apparently may be very distant. This systemic analysis span from
biological up to clinical level, and offers a new opportunity for gaining deep
understanding of the wunderlying mechanisms of several diseases.

Nevertheless, it is foreseeable that a comprehensive study of all the
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molecularly-defined diseases will facilitate the identification of recurrent
biological mechanisms that are dysfunctional in diseases. Diseases under
examination can be clinically or genetically unrelated, but some common
elements are identifiable. For example, mutations in different disease gene
products (DGP) affect the same biological mechanism and therefore result in
the same clinical phenotype. This is an attractive relation that produce the
hypothesis we followed and expand in our analysis. The previous contention
is supported by the frequent occurrence of clinical similarity even among
diseases that are caused by mutations in apparently unrelated genes
(Hoehndorf et al., 2015).
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Figure 10: representation of one generic disease of the OMIM database,
formed by two part, the disease (D) and the associated gene (G) that is
causative of the genetic disease. Moreover, it is possible to associate more
information to this central part, that are taken from external sources (in this
case ontologies). On the left side we have phenotypes, that can be referred to
the disease part using terms from HPO. On the right side we have biological
information, that can be referred to the gene part using terms from GO. In
this way we can describe both part of the OMIM disease. Note: phenotypic
and biological levels are no actually connected, the image wants to represent
the aim of our work, that is to put in communication these two different

domains.
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2.2.5 Networks

In our study, after the collection of all information from different databases,
we need a powerful tool to extrapolate properties of interest from new build
system. Probably network analysis is the most appropriate tool to achieve
this goal, not only for the comparison of elements but also for the
visualization of the results. Networks simply is formed by two types of data:
nodes and edges. Graphically, nodes are positioned in a two dimensional
space and are linked by a line called edge. While the nodes represent the
elements of interest, such as genes, proteins or diseases, the edges represent
the relation that occurs between two nodes. In this way, a network can allows
a comprehensive display of complex systems, also if it is composed of a large
number of elements with the respective interactions among them (Barabasi
et al., 2011). In our particular case, networks structure results very useful to
study diseases at different levels of complexity and thus to link conceptually
the molecular determinants with the clinical manifestations of disease (Vidal
et al., 2011). Specifically, each Phenotypic Series can be thought of as a
meta-node in the network, representing a group of similar diseases. The
meta-nodes are an assumption that greatly facilitates the analysis of the
interactions among all the elements involved (i.e., genes, gene products,
biological characteristics, phenotypes and diseases). In this way, we have
generated two networks, the Clinical Similarity Network (CSN) and the
Biological Similarity Network (BSN), based on HPO and GO, respectively. In
both networks, each node represents a Phenotypic Series (PS), whereas each
edge linking a pair of nodes represents the degree of similarity between two
PS. The similarity coefficient of a pair of PS is calculated with a procedure
that take into consideration the terms of annotation assigned to gene (GO) or
disease (HPO) and their information content. For the part regarding
Biological Similarity Network, it is important to note that GO is divided into
three domain and provide, in such way, three different type of annotation,
regarding Biological Process (BP), Cellular Component (CC) and Molecular

Function (MF). Such we generated three Biological Similarity Networks,

Gamba, A. - Approaches to the molecular basis of genetic diseases 49



BSN-BP, BSN-CC and BSN-MF. After this procedure, we also assembled a
more general BSN, in which the strongest edge only (among the three sub-

ontology-related BSN) is used to link two PS.

The formed networks are fully connected, at the beginning of the analysis.
This means that each PS is connected in the networks to all the other PS,
even though many links represent shared ancestors of low specificity. Thus,
to focus on the strongest links only, we assigned a weight to each edge,
which is proportional to the similarity coefficient. To remove the weaker
links, we increased progressively the similarity thresholds for the clinical and
the biological similarity coefficients. This way, we can analyze the two
similarity networks (clinical and biological) and define groups of PS, which
are characterized by different degrees of clinical and/or biological similarity.
Finally, by directly comparing the two types of similarity coefficients for each
PS-PS pair, we can define different modes of correlation (or lack of

correlation) between the clinical and biological levels of disease.

Gamba, A. - Approaches to the molecular basis of genetic diseases 50



2.3 Materials and methods

2.3.1 Data and databases

The PS, together with the corresponding diseases and the associated DGP,
are retrieved from OMIM (Amberger et al., 2015). The clinical phenotypes
that annotate the OMIM-encoded diseases are retrieved from Human
Phenotype Ontology (HPO) (Kohler et al., 2017). The biological features that
annotate the disease-related gene products are retrieved from each of the
three sub-ontologies, precisely, the biological processes, the cellular
components and the molecular functions of Gene Ontology (GO) (Gene
Ontology Consortium, 2015). The disease categories that annotate the
diseases are retrieved from Disease Ontology (Kibbe et al., 2015). In addition,
HPO, GO and DO are accessed for retrieving not only the annotating terms
mentioned above, but also the complete ontologies, in particular, our work
requires the sets of hierarchical relations that link each term to its parent,

ancestor, child and descendant terms.

2.3.2 Disease classification

In our networks, the nodes were color-coded according to the Disease
Ontoloy terms annotating the majority of diseases within each PS (Kibbe et
al., 2015). Specifically, the DO terms used were the eight child terms of the
root ‘disease’ (that are: ‘syndrome’, ‘genetic disease’, ‘physical disorder’,
‘disease by infectious agent’, ‘disease of metabolism’, ‘disease of mental
health’, ‘disease of cellular proliferation’ and ‘disease of anatomical entity’),
as well as the eleven child terms of ‘disease of anatomical entity’ (that are:
thoracic disease, as well as immune, urinary, integumentary, musculoskeletal,

reproductive, respiratory, cardiovascular, endocrine, gastrointestinal and
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nervous system disease).

2.3.3 Algorithms used and scripting language

Most of the work presented in chapter two of the present thesis was
performed using computer programs. Except for network visualization and
cluster analysis, all other jobs have been carried out by algorithms developed
with the scripting language Python. The development of these programs is
part of the work of my thesis. Python is a very easy to learn and simple to use
programming language (in my opinion the most easy). It was used not only
for the analysis but also for the initial data manipulation, helping in a study

with so many data.

2.3.4 Network visualization and analysis

Cytoscape version 2.8.2 (Yeung et al., 2008) and Network Analyzer (Assenov
et al., 2008) were used to display and analyze the two networks of this study
(CSN and BSN). To select the strongest PS-PS associations only, a threshold
for the edge weights was set, as described (Hidalgo et al., 2009).

2.3.5 Cluster analysis

For cluster analysis, the binary similarity coefficients between any PS; and PS;
pair were assembled in a symmetrical matrix M composed of m rows and m
columns (each row and each column corresponding to one PS), such that M;
denotes the (HPO- or GO-based) similarity between the i* and the j© PS (self-
similarity excluded). Then, hierarchical cluster analysis was performed using
Multiple Experiment Viewer, setting the following parameters: Pearson

correlation uncentered (as distance metrics) and average-linked (as linkage

Gamba, A. - Approaches to the molecular basis of genetic diseases 52



method).

2.3.6 Parameters of the networks considered

The first parameter we assessed is the connectivity k of a node i, that
represents the number of neighbors of the given node. Neighbors of node i
are only the nodes directly linked to i. In the figure 11 (panel A) the node
called “a” is connected to 3 other nodes, “b”, “c” and “d”, and thus its
connectivity is 3, whereas the connectivity of node “e” is 4 (panel B). In our
networks, connectivity represents the number of PS similar to a given PS.
The connectivity does not consider if neighbors are linked with other nodes.
We consider also the average connectivity of the network <k>, that is the
average among the connectivities calculated for each node. A hight value of
<k> indicates that, on average, each PS in the network is well connected to
other PS. Here dashed lines indicate possible connection.

The second parameter examined is the clustering coefficient C, that
differently from k take into consideration the neighbors of a given node. C
simply considers if the neighbors of one node are mutually connected or not.
This is expressed as the ratio between actual and maximal possible number
of edges that link mutually the neighbors of one node. In the figure 11 on
panel A, the node “a” has 3 neighbors: “b”, “c” and “d”, but only nodes “c”
and “d” are connected, so the ratio is one link among 3 possible, and C is
equal to 1/3 (or 0.33). It is possible calculate C for each node in the network
and then obtain the average C (or <C>), that is in the range 0 to 1. A hight
<C> indicates that a hight percentage of the PS, which are clinically similar
to a given PS, are similar to each other as well.

Next parameter is Density, that is a general parameter referred to entire
network taking into consideration how many edges are present respect the
possible number of edge, so is the ratio between the given network and a
fully connected network. Density can be in the range between zero and one,

and in the figure 11 panel A, being maximal number of possible edges equal
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to 6 and the present edges 4, it is 4 divided 6.

The last parameter considered is the length (I) that is the shortest path
between two nodes. Given two nodes i and j, [ is the minimal number of edges
that put in connection the two nodes (figure 11, panel B). The average I (or
<[>) is calculated between each possible pair of nodes, and a low value of I

means that network is also well connected.
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Figure 11: examples of the parameters considered and network properties.
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2.4 Results

2.4.1 Similarity coefficient

The method developed for comparing phenotypic series is part of the result
of this thesis, and for this reason it is not discussed into methods section.

As we can understand, a key feature of entire study is the analysis of the
similarity between phenotypic series. Being a value, similarity can be
calculated and expressed as a number using our algorithm. Different
methods are today available for calculating the similarity between either two
diseases or two genes, but not for phenotypic series. In fact, phenotypic
series are not single diseases or genes, but groups of them, which have been
clustered using several criteria related to a similar phenotype. Therefore, we
needed a different method for calculating the similarity between phenotypic
series. In general, one utilizes the annotation terms, which are referred to
either the phenotypes of a disease or the biological functions of a gene (see
schema in figure 10). In our specific case, however, we could not use the
annotation terms of the single entity, but rather we needed, first, a method to
obtain general annotations for the entire group of entities. Only after this
step, it was possible to calculate the similarity between phenotypic series
with the same strategy that other investigators have used for calculating the

similarity between individual diseases or genes.

2.4.2 Information content

In general, the information content of a given term is a numerical value
indicating how much information is contained within that term (for instance,
the information on either a gene or a disease annotated by that term). The
concept of information content can also be applied to ontological terms as

well. In the latter case, the information content indicates the specificity of the
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term within the ontology. The information content is calculated based on the
frequency of the given term, and the frequency is defined as the proportion of
objects that are annotated by the term or any of its descendant terms of the
ontology (see figure 12).

For example, if a disease is annotated with the term “atrial septal defect” in
Human Phenotype Ontology, it is also implicitly annotated with all the
ancestors of the term, because the term has the meaning also of its
ancestors, as “atrial septal defect” is an “abnormality of the atrial septum”,
that, at a more general level, is also an “organ abnormality” (see figure 12).
Always each of the terms converges at the root of its ontology, and therefore
the root is implicitly always present in any annotation. It results that the
information given by the root term is null and takes the value of zero.
Different terms can be required for the description of either a gene or a
disease. Actually, each entity is normally annotated with many terms.
Conversely, it is possible to have a situation of very poor or incomplete
provisional annotations (this happens in particular for some genes of not
completely known function or role).

A high value of information content calculated for a term reflects its high
quality in information. Terms of this kind are normally located far away from
the root. However, the algorithm for the calculation of information content
does not take into consideration only the position of the term in the hierarchy
but also its frequency within all annotated entities. The information content
is defined as the negative natural logarithm of the frequency of usage (Cover
et al., 1991).

Schematically, the procedure is depicted in figure 13, 14 and 15.

For example, the information content of a given term is calculated on the
basis of its presence within the whole database of annotation. Specifically,
the Human Phenotype Ontology provides terms that annotate 4,813 different
OMIM diseases. The terms “atrioventricular block” is used to annotate three
diseases among the total number of diseases (4813), so that its information
content is:

-log(3/4813) = 7.38
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The term “abnormality of the musculoskeletal system” is more general, as we
can easily understand from its name. Actually, it is used to annotate 2,352
diseases. The information content in this case is:

-log(2352/4813) = 0.72.

We can briefly see, with this last examples, how the information content
tends to increase, as we move from the root term of the ontology down to

more specific descendant terms.

In the past decades, several similarity measures have been proposed (Resnik,
1995; Jiang et al.,1997; Lin, 1998) and they can find an application also for
biomedical ontologies. We chose to calculate the similarity between two
terms as described by Resnik (Resnik, 1995). Briefly, similarity can be
calculated as the information content of their most informative common
ancestor (MICA). The “most informative” in general corresponds to the first
common ancestor found. For example, in the figure 12, “abnormality of the
cardiac septa” meets “abnormality of the cardiac atria” exactly at the term
named “cardiac malformation” and their similarity will be the information
content of this term, that corresponds to the most informative common

ancestor.
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Figure 12: a small part of the HPO. Example from the specific term “atrial
septal defect” to a more general term. Arrows indicates the direction of the

“is a” relationship.
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Figure 13: in this example we start in the calculus of information content for
the terms of annotation. In our library (that means all genes) we have five
genes: A, B, C, D and E (in real world we have thousands genes, but it is a an
example very simplified). Each gene has terms of Gene Ontology associated
(normally ten or more, but in the example just 1, 2 or 3). The terms are taken
from an ontology and are used to describe the genes. Then we proceed
counting the usage of these terms. For example the term GO:8 means not
only GO:8, but also GO:5, GO:3, GO:1 (all its ancestors). Due to this property,
the root term (GO:1) is always present (in all five genes) and its count is 5
(orange tag), as the count of GO:7 is only one (only one gene: precisely the

gene C is the only with that term). The procedure continue in image 14.
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Figure 14: the information content of each term of an ontology is calculated

as the negative natural logarithm of its frequency (see also the image 13

and the text for details).
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2.4.3 Find annotation terms for the PS

By describing in detail how the Phenotypic Series are compared to each
other, we will show how the algorithm works. As previously anticipated, to
achieve this goal, it is first essential to identify the annotation terms that are
referred to each PS. As mentioned above, each PS is composed of diseases
(identified in the OMIM database) and, in turn, each OMIM-defined disease is
associated with one gene, whose mutation reportedly causes the disease.
Therefore, starting from the annotations of genes and diseases that form the
PS we can get new annotations. Obtained annotations will be intermediate
terms with respect to the original genes and diseases.

By using the annotations, the method described here can be applied to either
diseases or genes, and to any other type of entity with annotations in an
ontology.

The procedure is depicted in figure 15 schematically and explained here in
detail. As an example, we have a PS with three associated genes (A, B and C),
each of which has a given number of Gene Ontology (GO) annotations. Here,
the gene A, B and C are annotated with 3, 1 and 2 number of terms,
respectively. Each of the annotation terms (referred to each gene in the PS)
is compared with all the annotation terms of the first gene, until a common
ancestor is found, which is the closest to both terms under exam. It should be
noted that the closest, and not the most informative, term is selected
(however the procedure is the same as used in Resnik similarity). Then, the
same procedure is performed between the terms of the second gene, and so
on, until all the genes in the PS have been analyzed. The selected terms are
then sorted, using the same principle adopted for selecting them, i.e., their
distance from the root. At the end, the ‘median term’ (that is, the term in the
middle) is used as new annotation term for the PS. In a list of ordered terms,
the central term is used, in case of an odd number of annotations, whereas
the term immediately before the middle one is used, in case of an even
number of annotations. In the specific example reported in the figure 15, in

which we have three genes and an ordered list of three annotations, the
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central annotation is used (indicated with bold character).

By and large, this method selects new terms that are more general than the
original terms (i.e., the ones used for annotating the single entities), even
though it can also select the same original term. Actually, even highly specific
terms can be retained, if they are present in at least half of the entities that
form the PS, without loss of information. In other cases, the closer
intermediate term is selected. In contrast to a small loss of information, the
advantage of the procedure is to produce annotations that are more
representative of a group of heterogeneous elements. Moreover, we can
remove terms of annotation that are highly specific but very uncommon in
the PS, thus avoiding the risk of overestimating terms that are not

representative of the general characteristics of the PS.
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Figure 15: see the text for details.
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2.4.4 Similarity between PS

After generating new annotation terms for each individual PS, it is possible to
proceed with the comparison between PS. Similarity is calculated between
only a pair of different PS and the direction is not important (the similarity
between A and B is exactly the same as the similarity between B and A).
Among different methods proposed for the calculation of similarity between
two elements using their annotations, we chose the Best-Match Average
(BMA) method, that, in our opinion, is the most complete (Wang et al.).
Briefly, it consists of an average of the maximal values between all the most
common ancestor found for each terms of the first and second PS compared.

Looking at the figure 16, we can imagine to build a big matrix. We denote
the two PS to compare as PS1 and PS2, and with color green and blue,
respectively. On the matrix, we put all the terms of the former PS along one
axis and all the terms of the latter PS along the other axis. Then, we take the
maximal most informative common ancestor of each row and each column of
the matrix. At this point, the arithmetic mean of these values is calculated.

This value correspond to the similarity coefficient.
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Figure 16: similarity calculated between two generic PS.

PS1 has 4 terms of annotation from Gene Ontology (GO): 1, 4, 5 and 8.

PS2 has 3 terms of annotation from Gene Ontology (GO): 2, 3 and 6.

Each of the 4 terms of PS1 (green) is matched with each of the 3 terms of

PS2 (blue). In this way we obtain values from 4 columns plus 3 rows (7

values) that are then averaged, obtaining the similarity coefficient (edge

weight).
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2.4.5 Assembling the networks

First, we obtain from the OMIM web-site all the diseases forming the PS. We
retain only the OMIM diseases that are molecularly defined, assembling in
this way a database that enlists a starting set of 319 PS.

Then, being each PS formed by an association of different diseases with
respective genes, we retrieve the annotation terms referred to each of these
diseases and genes, from HPO and GO, respectively.

At this point, starting from original terms of annotation, we can calculate new
terms for the annotation of the whole PS. We use the procedure illustrated in
the following section.

Then, using the newly obtained terms, it is possible begin the calculation of
similarity score between PS, two by two. In order to have a complete view we
want obtain all possible similarity, eliminating then the not significants of
them. For this reason we perform, using our algorithm, the calculus of
similarity between all possible pairs of PS. This is an enormous number,
because with a given number of PS, “N”, we have a number of PS-PS pairs
that is expressed as: N(N-1)/2. For example with 319 PS the calculated
similarities are 50,721.

Now, it is possible assemble a network in which PS are the nodes, whereas
calculated similarities are the edges. The resulting network is fully
connected, meaning that each node is linked to each other. An example of a
fully connected network is presented in figure 17, as we can see the number
of edge can be calculated with the formula N(N-1)/2.

We calculate not just one but different type of similarity, and in particular, it
is possible assemble two type of network that we named “Biological
Similarity Network” (BSN) and “Clinical Similarity Network” (CSN). The
Biological Similarity Network is based on similarity calculated with GO
annotations, whereas the Clinical Similarity Network is based on HPO
annotations. Moreover, the BSN comprehends three networks. Effectively, GO

is divided into three independent domains, BP, CC and MF, and thus we are
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Figure 17: procedure to build a generic (very small) network of Phenotypic
Series (PS). In the example 4 nodes are present: PS1, PS2, PS3 and PS4.
After the calculation of similarities among all pairs of PS, only the edges with
a weight 2 and 3 are retained, the others are eliminated. Then, also the node

PS4 is removed from the network, because it is not connected to the others.
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able to build three independent networks, based on these three type of
annotations. We call them BSN-BP, BSN-CC and BSN-MF. Moreover we
decide to generate an additional network starting from the three BSN. This
last is simply called BSN and among the three similarity calculated (BP, CC
and MF) use the one with the highest value.

It is worth remember that also two completely different PS have a value of
similarity, because every ontological term meets anyone of the other terms at
the ancestor term, called root of ontology. So, every term has at least one
ancestor in common with another, and for this reason it is always possible
calculate the similarity. As previously observed, the information content
provided by the root is null and in this case the calculated similarity is zero.
By the way, we take all similarities, also if equal to zero and this results in a
network where every possible connection is present. Fully connected network
are not useful because they are not very informative. Obviously, we want
remove very weak edges, retaining only strong connections, in order to carry
out our analysis. We proceed assigning a weight w to each edge, where w is
equal to the similarity. Then we gradually increase the threshold for w, in
order to remove the weaker similarities, while retaining the edges that link
the most similar PS (Figure L1 panel A). We found that for both CSN and
BSN the majority of edges have a very low value of similarity, as described in

detail in the next section.
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2.4.6 Analysis of the Clinical Similarity Networks (CSN)

At the beginning CSN is a fully connected network composed of 293 nodes
linked by 42,778 edges (table 1).

Each PS is connected to another PS but the majority of these connections
represent a very weak PS-PS similarity. Nevertheless, by gradually increasing
the threshold for w, it is possible retaining the most significant edges only.
Effectively, setting a threshold > 1.0, the 87% of the least specific edges were
removed, but the number of nodes remains practically unchanged, with just
2% of them removed. Specifically, the CSN retains 287 nodes but only 5,660
edges and was still composed of one giant connected component, meaning
that network is not fragmented in more part and every node is connected
through a path to another node (indirectly) (see the table 1 and 2).

The average connectivity <k> of CNS is 39.4 indicating that, on average,
each PS in the CSN is connected to about 39 other PS. Interestingly, the
connectivity is not homogeneous in whole network but differs depending by
the clinical class, that is assigned based on Disease Ontology.

PS in the class “Syndrome” have the highest <k> (66 * 33), which likely
reflects the phenotypic variety of these diseases. Effectively, syndromic
diseases are more connected because often interests more organs and have
multiple symptoms and this results in have similarity with different PS. Then
we considered the average clustering coefficient <C> of CSN, which is 0.635
indicating that 63.5% of the PS, which are clinically similar to a given PS, are
similar to each other as well. As last, the average lenght (<I>) is equal to
2.29 indicating that, even for those pairs of PS that are not similar to each
other (and thus are not linked directly in the CSN), there is at least a third PS
that is similar to the two unconnected PS. Taken together, the high <k>, the
high <C> and the low <[> indicate that, on average and at a threshold > 1.0,
most PS already display a significant degree of clinical similarity to each

other.
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2.4.7 Islands and clusters of high clinical similarity within the CSN

To identify examples of the high clinical similarities, the threshold was
further increased until, at a value of 2.46, about 20% of PS, but only 0.2% of
PS-PS similarities, are retained (i.e., 58 nodes and 63 edges; figure L1 and
L2). It is important to note that at this threshold the number of edges is
similar to the number of nodes. This great reduction, not only removes most
of the edges, but also a good part of the nodes. In our opinion this is
important, because effectively some PS do not show any similarity (or at least
strong similarity) with other PS, and are correctly excluded by the analysis.
Moreover with this elimination the CSN becomes much more disconnected
and result divided into 13 fragments. These are called islands, and represent
sub-network not communicating with other islands. The PS inside an island
are highly similar with respect to the phenotypes but the data are also in
accord with the classification of Diseases Ontology (DO), represented by
node colors. The highest similarity coefficient measured is 4.394 and
connects two PS named “Seizures, familial febrile” and “Epilepsy,
generalized, with febrile seizures, plus”, corresponding to the ID PS121210
and PS604233, respectively. These PS provide an example of how the
coefficient reflects the sharing of highly informative phenotypes, including
both identical terms (e.g., “Febrile seizures”) and common ancestors (e.g.,
“Dialeptic seizures”, which is the ancestor of both “Focal seizures with
impairment of consciousness or awareness” and “Absence seizures” in
PS604233 and PS121210, respectively).

However, CSN fragmentation does not imply that disconnected PS are
completely dissimilar, but merely that their similarity is below the threshold.
It remains possible that even some disconnected PS islands are similar (to
each other) and dissimilar (to the other PS). To this purpose, the CSN is
analyzed also by hierarchical cluster analysis, using the same threshold
(figure L7). In this way, we identify eight clusters (red areas along the
diagonal in figure L7), many of which are mostly composed of clinically

similar groups of PS islands (dotted lines in figure L2), e.g., convulsive
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(cluster 1), renal (cluster 4), inflammatory (cluster 5), proliferative
(cluster 7) and cardiovascular (cluster 6) PS. In addition, clustering also
allow grouping similar PS that, at this threshold used, are disconnected. For
instance, seven PS, scattered in three small islands, could be grouped into
cluster 8, which is characterized by ocular involvement (even though the PS

affect different components of the eye, such as cornea, iris and retina).

The case of “Inflammatory Bowel disease” and “Colorectal cancer”

It is worth noting that the similarity among the PS may extend beyond the
boundaries of the previously considered clusters (red areas off the diagonal).
For instance, “Inflammatory Bowel Disease” (PS266600) inserted in cluster 5
and “Colorectal cancer, hereditary non-polyposis” (PS120435) in cluster 7,
have a similarity coefficient of 2.17, which is 4.2-fold higher than the average
similarity in the whole CSN (0.52 = 0.72), but lower than the threshold of
2.46. for this reason the two diseases are not connected, and result also to be
associated to different clusters. However, their hight value of similarity is
mostly due to the shared phenotype “Abnormality of the large intestine”. In
effect, Inflammatory Bowel Disease is annotated with term “Rectal abscess”,
whereas Colorectal cancer, is annotated with term “Colon cancer”.

Inflammatory Bowel Disease is principally characterized by inflammatory
process at intestinal level, fistula, abscess also in colon-rectal trait, including

ulcer, folliculitis, proctitis.

2.4.8 The Biological Similarity Networks (BSN)

Using the same procedure previously described for the assemblage of CSN,
we build the Biological Similarity Networks (BSN) that is not unique, but
divided into three networks representing the fact that they are derived from

the similarity calculated based on the three ontologies.
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We also assembled an additional network, simply called BSN, in which each
edge (linking any two PS) is the strongest (i.e., the one with the highest w)
among the three sub-ontology-related BSN.

Like the CSN, also the BSN-BP, BSN-CC, BSN-MF and BSN are fully
connected networks, even though most edges represent weak PS-PS
biological similarities (table 1). Thus, the threshold was gradually increased,
to focus on the most significant similarities only (figure L1 panels B-E).

A threshold of 1.0 was used for network analysis. At this threshold, all the
four biological networks are still composed of one GCC, despite the loss of
many edges. However, they differ in the fraction of nodes and edges that are
retained (with respect to the initial conditions, i.e., at a zero threshold). As
reported in table 2, more edges are retained in the BSN-BP than in either
the BSN-CC or (to an even greater extent) the BSN-MF. Consequently, at the
threshold of 1.0, more nodes remain connected to the GCC, thus indicating
that BP generates more informative edges than the other two sub-ontologies.
In addition, compared with the BSN-CC and the BSN-MF, the BSN-BP is also
a more dense networks, whose nodes have more connections and lie at closer
distances to each other. Finally, all these parameters are even greater in the
BSN, which is not unexpected, as each edge in the BSN corresponds to the

most informative edge among the three sub-ontology-restricted BSN.

2.4.9 Islands and clusters of high biological similarity within the BSN

The threshold is further increased until, at the values indicated in figure L1
(panels B-E), about 20% of the PS are retained and the networks are
fragmented into islands of biologically similar PS. As for the CSN,
hierarchical cluster analysis is applied to identify clusters of PS and PS-
containing islands within the BSN-BP (figure L3), BSN-CC (figure L4), BSN-
MF (figure L5) and BSN (figure L6). Most of the clusters carry a clear
biological meaning, which can be interpreted by searching for the GO terms

that most significantly annotate the PS-related DGP. These terms are
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indicated in the Figures as labels for the clusters (or, for subsets of nodes
within large clusters). For instance, most PS clusters in the BSN-CC (figure
L4) correspond, according to this criterion, to diseases (e.g., the ciliopathies)
that are specifically due to defects in a defined sub-cellular structure (e.g.,
the cilium; figure L4, cluster 7).

The cilium constitute an organelle very important for eukariotic cell. They are

involved in many disease that involves motile cilia.

Notably, in the largest cluster of the BSN-BP (figure L3, cluster 8), the
majority of PS are diseases of cardiovascular system, and in particular ion-
channel disorders (Cerrone et al., 2012), which are characterized clinically
by an arrhythmic phenotype. Among them, the highest similarity coefficient
(4.44) links the “Brugada syndrome” with the “Short QT syndrome”, because
the two PS share numerous and highly informative processes, including the
BP annotation “Potassium ion export from cell”. Surprisingly, however, some
PS in the same cluster are not cardiologic diseases, but rather convulsive
(e.g., “Seizures, benign familial infantile”), respiratory (“Bronchiectasis”),
renal (“Bartter syndrome”) and other syndromic (“Familial episodic pain
syndrome”) disorders. The same PS cluster together also in the BSN-CC
(igure 14, cluster 8) and the BSN-MF (figure L5, cluster 5). The reason
behind such heterogeneity is that most of the DGP participate in the activity
of transporting ion across the membrane, at the level of voltage-gated
(cardiac, convulsive and episodic pain-related disorders) and ligand-gated
(bronchiectasis) sodium and chloride channels (Bartter syndrome). In the GO
terminology, a defined MF takes place in distinct CC to carry out specific BP.
Thus, the different ontology-related BSN, albeit at different levels of
informational contents, converge in identifying a broad community of

clinically diverse (but biologically related) disorders.
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Table 1: all five networks fully-connected (all possible edges are present for

the given number of nodes)

Nodes Edges

CSN 293 42,778
BSN-BP 316 49,770
BSN-CC 314 49,141
BSN-MF 305 46,360
BSN 319 50,721

Table 2: all five networks in which only similarities > 1 are retained (edge
threshold = 1). Also four network parameters are calculated (as described in

Materials and Methods section).

Nodes Edges <k> <C> <I> Density
CSN 287 5,660 39.440 0.635 2.294 0.138
BSN-BP 298 11,223 75.320 0.708 1.950 0.254
BSN-CC 258 2,821 21.870 0.653 2.486 0.085
BSN-MF 209 1,633 15.630 0.691 2.829 0.075
BSN 311 13,282 85.420 0.654 1.799 0.276
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2.4.10 Correlations of the CSN and the BSN

So far, the clinical and biological similarities have been considered
separately. Next, however, we compared the clinical and biological similarity
coefficients of all the 42,782 PS-PS pairs, for which both coefficients were
available. The resulting scatter plot indicates that the vast majority of PS
pairs have low clinical and low biological similarity (figure L9 panel A).
However, there are other instances of potential interest.

First, many PS pairs have high clinical and high biological similarity (both
coefficients being = 2 in 57 PS pairs). For example, many of the ion channel-
related cardiac arrhythmias display the highest similarity in both clinical and
biological terms (figure L9 panel B, red diamonds). Similarly, few
convulsion-related PS display medium-high levels of clinical and biological
similarity (green diamonds). The graphical equivalent of these correlations
are the thicker edges in the high biological similarity view of the BSN shown
in figure L6 (cluster 8), where edge thickness is proportional to the clinical
similarity.

Second, many pairs have high biological but low clinical similarity, their
similarity coefficients being = 2 (biological) and < 2 (clinical) in 500 pairs.
Interestingly, many heterogeneous PS pairs composed of one cardiac
arrhythmias and one convulsion-related PS are examples of this condition

(vellow diamonds in figure L9 B and thinner edges in figure L6, cluster 8).

Third, many PS pairs have low biological but high clinical similarity, their
similarity coefficients being < 2 (biological) but = 2 (clinical) in 178 PS pairs.
Among others, the renal diseases in of the CSN (purple diamonds in figure
L9 panel B and thinner edges in figure L2, cluster 4) are examples of
clinical similarity, which reflect, on one side, the sharing of highly informative
phenotypes (e.g., “proximal tubule” nephrolithiasis, bone pain and fractures),
but, on the other hand, biological alterations as diverse as defective
endocytosis in Dent’s disease (Devuyst and Thakker, 2010), defective
glyoxylate metabolism in primary hyperoxaluria (Cochat and Rumsby, 2013)
or decreased renal absorption of phosphate in the hypophosphaturic

nephrolithisais (Sayer, 2017).
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2.5 Discussion

As a result of our analysis, we have obtained three findings.

First, networks, the principal tool used in the study, are well suited to give a
general overview of biological and clinical similarity existing among
molecularly characterized OMIM diseases, and particularly among
Phenotypic Series (PS). Moreover, using weighted connections, represented
by the thickness of edges, it is possible to observe, both locally and globally,
the level of similarity.

Second, the gradual increase of threshold for the similarity between
Phenotypic Series, allows the identification of different clusters with
progressively higher similarity, from both the clinical and the biological point
of view.

Third, perhaps most importantly, the clinical and the biological similarities
are not always directly correlated, allowing the observation of particular
situations in which one outnumbers the other one. These types of lack of
correlation, lead to the formulation of potential pathogenic mechanisms and
the identification of possible molecular targets for pharmacological

intervention.

The use of networks in medicine and pharmacology is not unprecedented
(Barabasi et al.,, 2011; Vidal et al., 2011, Bazzoni et al.,, 2015; Hopkins,
2008) , also with purpose of investigating the clinical similarity among
diseases (Hoehndorf et al., 2015). The novelty of the present study, however,
is three-fold, because, in parallel to the clinical similarity of the diseases, we
have also examined the biological similarity of the Disease Gene Products
(DGP), and then we have analyzed the correlation between these two types of
similarity. Finally, we have based the analysis not on individual diseases but
rather on all OMIM-defined Phenotypic Series (Amberger et al., 2015), which
can be regarded to as “meta-nodes” in the networks. The use of Phenotypic
Series, in place of the individual diseases, is justified by the widespread

occurrence of locus heterogeneity in human genetics, whereby mutations in
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different genes cause similar diseases that are hardly (if at all)
distinguishable at the clinical level. Thus, by merging similar diseases into
the same Phenotypic Series (or, in graphical terms, by reducing thousands of
disease nodes into just few hundreds of Phenotypic Series meta-nodes), the
Phenotypic Series have greatly simplified our analysis of the networks. An
alternative approach (focused on the individual diseases) would have
required comparing millions of disease-associated phenotypes and then
identifying clusters of similar diseases. Thus, we argue that the use of the
Phenotypic Series is more advantageous, because it is computationally less
demanding and relies more on authoritative clinical judgment (rather than on
the arbitrary choice of a similarity threshold to define the boundaries of the

clusters).

Apart from the Phenotypic Series, our study has also benefited from the
availability of similarity metrics that have allowed us to quantify the
similarity of both the clinical (Human Phenotype Ontology-defined)
phenotype annotations (Hoehndorf et al., 2015) and the biological (Gene
Ontology-defined) cellular annotations (Wang et al., 2007) that are shared by
Phenotypic Series pairs. As both Human Phenotype Ontology and Gene
Ontology are ontologies, in which each term is a specific instance of a more
general parent term, the similarity methods identify the shared term within
the hierarchical structure of the ontology. Thus, many shared terms are
common ancestors endowed with various degrees of information content. At
the lowest extreme of the spectrum, even the most dissimilar annotations
share, as common ancestor, the root, which is the least specific term of the
ontology (and thus, the one with the lowest informational content). The
downside of retrieving the informational content of an annotation from an
ontology is that, at the end, each Phenotypic Series has some similarity with
all the other Phenotypic Series. As a further consequence, the resulting
network has limited usefulness, because each of its N nodes is connected to
all the other (N-1) nodes by means of all the theoretically possible N(N-1)/2

edges. Nevertheless, assigning a similarity coefficient to each PS pairs allows
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converting the fully-connected network into a weighted graph (Barrat et al.,
2004; Newman, 2001), in which the weight of each edge characterizes the
strength of the similarity. Importantly, by increasing the threshold for such
weight, it becomes feasible to retain the strongest links only, thereby making
the network usable for analytical purposes. Clearly, losing edges results in a
progressive fragmentation of the network. Nonetheless, the resulting
fragments are those highly related sets of PS that were the initial goal of the
study and that have been described throughout the text.

Far from considering the clinical and the biological similarities as separate
entities, this study has also attempted at integrating them. Actually, the basic
question we had in mind at the inception of this study, was to test whether
the altered biological functions, which are caused by gene mutations (at the
level of cells and tissues), might account for the clinical phenotypes that are
observed in the clinics (at the level of anatomical systems and the whole
organism). As a corollary, we had hypothesized that the clinical and biological
similarities should be correlated and, specifically, that clinically similar PS
should be biologically similar as well. We did identify PS in the Clinical
Similarity Network (CSN) that were similar not only clinically (as expected,
given the definition of CSN) but also biologically and, conversely, PS in the
Biological Similarity Network (BSN) that were similar not only biologically
(again, not unexpectedly) but also clinically. For example, similar clusters of
cardiac arrhythmia PS were detectable in both CSN and BSN. However, the
correlation of the two types of similarity indicates that the picture is more
complex. In many instances, missing correlations are likely due to non-
specific annotations of either the disease phenotypes or the gene products (in
the related ontology). In particular, when performing a binary PS-PS
comparison, even a low specificity annotation of just one of the two PS (in
one ontology) results in a poorly informative common ancestor being
retrieved, which lowers the overall similarity coefficient of the two PS (with
regard to that ontology) and ultimately affects the correlation between the

two types of similarity. Nevertheless, we propose that several cases reflect
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not simply defective annotations but rather conditions of potential pathogenic
interest. For ease of analysis, we have identified two major categories of lack

of biological-clinical correlation.

The former category consists of PS pairs with high biological, but low
clinical, similarity. The category is exemplified by those PS, whose normal
(i.e., non-mutated) gene products all participate in the channel-mediated
transport of cations during the repolarization of excitable cells. Yet, in spite
of the high biological similarity, the PS comprise clinical conditions as diverse
as cardiac arrhythmia- and seizure-related disorders. A likely explanations for
the different clinical manifestations of a similar biological dysfunction is the
tissue-specific expression of many DGP. For instance, it is known that several
ion channel subunits are specifically expressed in excitable cells of the heart
and the brain (Seitter and Koschak, 2017). The latter category consists of PS
pairs with high clinical, but low biological, similarity. We propose that this
condition highlights how different biological mechanisms converge in a
composite response, thus ultimately resulting in clinically similar phenotypes.
An interesting example is a cluster of three PS within the CSN (Robinow, van
Maldergem and Carpenter syndromes), which are all characterized by severe
skeletal dysplasia (with limb shortening and craniofacial anomalies).
Although the corresponding DGP annotate apparently unrelated Biological
Process (thereby accounting for their low biological similarity), most DGP
that are mutated in these syndromes (i.e., WNT5A, DVL1, DVL3 and ROR2 in
the Robinow syndrome, FAT4 and DCHS1 in the van Maldergem syndrome
and RAB23 in the Carpenter syndrome) participate in the non-canonical Wnt
signaling pathway, which underlies the developmental process of planar cell
polarity (Butler and Wallingford, 2017).

It is also important to take into account, as a general and final consideration
of our study, that most of the analysis suffers from two principal limitations.
First, our current biological knowledge is incomplete, thereby resulting in

missing information (and, consequently, missing annotation) of a fraction of
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genes. Second, even for diseases or genes that are known, annotation can be
missing. Actually, annotation (of both HPO and GO) is still under progress
and thus incomplete. Moreover, also the OMIM database, from which the
diseases have been retrieved, has many limitations. For these reasons,
actually we considered our primary source of information largely incomplete
but it can be improved in the future using our system and also with similar

methods.

In conclusion, our findings indicate that, even with the intrinsic limitations of
the available databases and of our current biological understanding, it is
already possible to rely on semi-automated procedures with the final aim of
identifying altered biological responses as likely mechanisms for many

inherited diseases with a known molecular basis.
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Final conclusions

In the work presented in this thesis, I have focused on complex diseases with
a known molecular-genetic basis. Several approaches to the study of these
genetic disorders can be used and, during my PhD, I chose two strategies
that are very different (albeit not entirely unrelated to each others). The aim
is to explore different techniques, that can be complementary in several
aspects, helping to face a complex problem. Each of the analysis proposed
has particular fields of application, as also advantages and disadvantages
that are present and are important to consider.

One of the used methods is purely computational and is based on the
information provided by large clinical and biological databases. The big data
science makes use of huge quantity of information, that is also as much
complete as possible. This method starts from diseases in their general
aspects and tries to find the properties that emerge from the system. The
shared properties can help to understand the molecular basis of diseases. For
this reason, the approach is top-down, moving from general to particular
phenomena.

Nevertheless, this type of analysis can be applied only when a big quantity of
data is available. For individual diseases, such as Alzheimer, it is important to
study particular events, in detail. An event that seems to play a relevant role
in Alzheimer disease is the amyloid-beta aggregation. An approach of such
type starts from a precise event and tries to rise at the general properties for
understanding of entire disease. In this case, the approach is bottom-up, as it

moves from particular to general phenomena.

The projects for a future expansion of these methods are the following:
1) Development of computational approaches also for those diseases, such as
Alzheimer, for which not so much is known and for which a therapy is not

available.
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2) Development of a database, freely available, able to collect all the
information generated by our computational study, presenting clearly the
data and that can results useful for researchers.

3) Use classic methods (experimental) in order to verify the hypothesis that
emerged from the computational analysis, that automatically has highlighted

an hight number of relations among different diseases.
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Large figures

Figure L1:

Variation in number of nodes and edges at different thresholds.

Figure L2:
The Clinical Similarity Network (CSN).

Figure L3:
The Biological Similarity Network - Biological Process (BSN-BP).

Figure L4:
The Biological Similarity Network - Cellular Component (BSN-CC).

Figure L5:
The Biological Similarity Network - Molecular Function (BSN-MF).

Figure L6:
The Biological Similarity Network (BSN). The edge thickness is proportional

to the clinical similarity.

Figure L7:
Cluster analysis of the CSN represented in figure L2.

Figure L8:
Cluster analysis of the BSN represented in figure L6.

Figure L9:
Scatter plot of all PS-PS similarities (A) and a particular of cardiac,

convulsive and renal diseases (B).
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Fraction of Nodes (Edges) in the network
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Figure L6
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