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Abstract—With the cloud emerging as a successful paradigm for conveniently storing, accessing, processing, and sharing information,
the cloud market has seen an incredible growth. An ever-increasing number of providers offer today several cloud plans, with different
guarantees in terms of service properties such as performance, cost, or security. While such a variety naturally corresponds to a
diversified user demand, it is far from trivial for users to identify the cloud providers and plans that better suit their specific needs.
In this paper, we address the problem of supporting users in cloud plan selection. We characterize different kinds of requirements that
may need to be supported in cloud plan selection and introduce a very simple and intuitive, yet expressive, language that captures
different requirements as well as preferences users may wish to express. The corresponding formal modeling permits to reason on
requirements satisfaction to identify plans that meet the constraints imposed by requirements, and to produce a preference-based
ranking among such plans.
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1 INTRODUCTION

CLOUD computing is undeniably on its way to become
the de facto standard adopted by public and pri-

vate companies, governmental agencies, and individuals for
data storage and computation. The benefits of moving to
the cloud –in contrast to owning and locally managing a
computing infrastructure– are many and diverse, including
reduced economic costs, increased service availability, and
high flexibility, as users can freely scale up and down
resource demand according to their needs by renting pay-
per-use cloud infrastructures and computation capabilities.
As the ICT advances and makes fast network connections
ubiquitously available, these benefits become more and
more evident to potential customers, and make cloud-based
outsourcing more appealing than ever (e.g., [1], [2], [3]).
A recent study from Gartner, Inc. testifies this trend by
forecasting that by 2020 the “cloud shift” (i.e., the shift from
traditional IT offerings to cloud-based ones) will involve di-
rect and indirect spending for more than USD 1 Trillion [4].

The increasing demand of cloud services has also in-
troduced opportunities for a variety of offers (plans), with
different characteristics and guarantees (e.g., in terms of
performance, Quality of Service, and security). While such
variety naturally corresponds to a diversified market de-
mand, choosing the “best” cloud service plan is often not an
easy task for users. The research and industrial community
has recognized this problem and the need for approaches
supporting users in evaluating, comparing, ranking differ-
ent cloud plans or choosing the plan that best suits their
needs, though research in this respect is still in early stages.
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Some of the existing solutions focus on the problem of
comparing different cloud plans based on their cost and
performance (e.g., to select a plan that completes a task in
the shortest time within a cost budget, or that has the lowest
cost with satisfying performance [5]). Other approaches sup-
porting users in cloud plan selection consider other proper-
ties characterizing available plans (e.g., the type of provided
services, QoS values, supported operating systems, instance
sizes [6]). These solutions, however, typically do not al-
low users to express conditions on arbitrary properties of
their interest, or to specify expressive combinations among
them (e.g., they either consider pre-defined KPIs such as
response time, transparency, reliability [7] or only allow
the definition of basic conjunctions among requirements,
such as ‘supported operating system x and instance size
y’ [6]). However, users may be interested in defining more
expressive requirements. For instance, a user might want to
consider only cloud plans offered by servers located in a
specific geographical area and certified by given authorities
or that protect data using a specific encryption algorithm.

In this paper, we address this problem and propose a
flexible and expressive framework for characterizing cloud
plans, for supporting users in expressing requirements and
preferences over plan characteristics, and for taking into
account requirements and preferences in determining plans
that are acceptable as well as preferable. For the definition
of requirements, we provide a high-level and intuitive lan-
guage that users can adopt for specifying restrictions on
plans as well as an underlying formal modeling to reason
about requirement satisfaction. Our approach is based on a
simple and intuitive, yet quite expressive, characterization
of requirements, which enables users to conveniently spec-
ify constraints on the values that plans should (or should
not) assume for their attributes. Our modeling of require-
ments includes simple conditions on attribute values, com-
binations or alternatives thereof, as well as combinations
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A Dom(A)
prov Mhard, GoGo, Ghost, Amaron cloud provider
loc EU, US, JP physical location of servers
encr AES, 3DES, DES encryption algorithm
avail VH, H, MH, M, ML, L, VL level of availability
test authA, authB, authC, authD authority running penetration tests
cert certA, certB, certC, certD, certE security certification
aud 3M, 6M, 9M, 1Y frequency of security auditing

Fig. 1. An example of attributes and their domains

that should be forbidden. Similarly, our modeling of pref-
erences is intuitive and flexible, enabling users to express
a preference relationship among attribute values and also
among attributes themselves. Ranking of acceptable plans
is then based on users preferences. The contribution of the
paper is threefold. First, we identify and characterize possi-
ble requirements that users may wish to express on cloud
plans for them to be considered acceptable. Second, we
provide a characterization of preferences on plans, enabling
users to specify attribute values that are to be preferred
over others as well as preferences among attributes. Third,
we illustrate possible approaches to rank acceptable plans
based on users’ preferences.

Our approach assumes a set of plans to be evaluated
against user requirements and preferences and is agnostic
with respect to specific scenarios in which such an evalua-
tion can be needed. In particular, it can naturally be used in
brokerage services, to evaluate offers by different providers,
as well as in single-provider scenarios, to evaluate the
different plans (possibly resulting by customization) offered
by a provider.

The remainder of this paper is organized as follows.
Section 2 introduces the considered scenario and summa-
rizes basic concepts. Section 3 presents our characteriza-
tion, as well as formal modeling, of user requirements.
Section 4 illustrates our characterization of user preferences,
at both the value and attribute level. Section 5 describes
our approach for ranking cloud plans according to user
preferences. Section 6 discusses the related work. Finally,
Section 7 concludes the paper.

2 SCENARIO AND BASIC CONCEPTS

The goal of this paper is to provide a framework for sup-
porting users in selecting cloud plans that better respond
to their needs on the data and applications they wish
to outsource. We consider such needs to be expressed as
requirements and preferences over attributes (and their val-
ues) that represent characteristics of the plans of interest to
the user. In our work, we do not restrict our approach to any
specific predefined set of such attributes and assume to refer
to a generic set A of attributes encompassing all possible
properties that users may wish to consider (e.g., availabil-
ity, cost, implemented security measures), with attributes
names and values shared between users and providers as
a common ontology [8]. With such a general and flexible
approach, attributes in A (and their values) can represent
Service Level Objectives guaranteed in the Service Level
Agreement (SLA) to be signed by the provider of a plan and
the user (e.g., the guaranteed availability), as well as any
generic property/metadata of a plan that the provider can
guarantee or that the user can measure (e.g., the physical

P1 P2 P3 P4 P5 P6 P7
prov Mhard Ghost Ghost GoGo GoGo GoGo GoGo
loc JP US US EU US EU US
encr DES 3DES AES 3DES AES AES AES

avail ML M H VH H VH VH
test authC authC authB authB authA authA authB
cert certC certB certC certB certC certA certC
aud –– 1Y –– –– –– –– ––

Fig. 2. An example of plan descriptors of seven cloud plans

location where the servers are placed). In this regard, our
work can nicely complement existing approaches that aim to
provide uniform frameworks for expressing and evaluating
the characteristics of the cloud plans available on the market
(e.g., the CSA–CAI [9], [10]).

Each attribute A∈A takes values over a given domain
Dom(A), representing all the values of interest to the
user. Figure 1 illustrates an example of attributes, together
with their domains, characterizing plans in terms of their
provider (prov), the physical location where the servers
are placed (loc), the encryption algorithm offered by the
provider specified in the plan for protecting data (encr),
the guaranteed availability (avail, from very high to very
low), the authority running penetration testing (test), the
security certification (cert), and the frequency of secu-
rity auditing (aud). This set of attributes models a variety
of characteristics of the considered plans, ranging from
security-related features (e.g., encr), to performance-related
ones (e.g., avail), to more generic metadata (e.g., loc).

Every cloud plan can then be characterized by the value
that the plan assumes for each attribute in the considered set
A. While for simplicity we assume attributes to take only
scalar values, we note that ranges of values can be easily
modeled with two attributes, representing the extremes of
the range (e.g., the length of the encryption key between
128 and 512 bits can be modeled as min key len=128 and
max key len=512). One aspect that should be taken into
consideration is that plans may not be complete in their
specification, that is, the value of some attributes may be
unknown (e.g., not specified or not supported by the specific
plan). We address this possibility by allowing attributes to
assume a special value ‘––’, expressing the fact that the value
is not known or the attribute is not applicable for the plan.
With this said, we characterize every cloud plan with a plan
descriptor as follows.

Definition 2.1 (Plan descriptor). Let Pj be a cloud plan and
A = {A1, . . . , Am} be the set of attributes describing properties
of interest. The plan descriptor of Pj is a vector Pj [A1, . . . , Am],
where Pj [Ai] ∈Dom(Ai) ∪ {––}, i = 1, . . . ,m, with Dom(Ai)
the domain of attribute Ai and ‘––’ the special value.

With reference to the attributes in Figure 1, Figure 2 il-
lustrates the plan descriptor of seven cloud plans, offered by
three providers (Mhard, Ghost, GoGo). Note that only plan
P2 provides explicit guarantees on security audit, declaring
the frequency with which it is performed.

3 USER REQUIREMENTS

Requirements express constraints over the values that the
attributes of a cloud plan P should satisfy to be considered
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acceptable for the user. Our modeling allows users to spec-
ify such restrictions in a simple, yet expressive, way. The
building block in the specification of requirements is the
attribute term, which permits to evaluate whether the value
of an attribute belongs (or does not belong) to a given set of
values. An attribute term is formally defined as follows.

Definition 3.1 (Attribute term). Let A be an attribute in A,
Dom(A) be its domain, and {vi, . . . , vj} ⊆ Dom(A)∪{––} be
a set of values. An attribute term t over A is an expression of
the form: ‘A IN {vi, . . . , vj}’ or ‘A NOT IN {vi, . . . , vj}’.

A positive (i.e., IN) term is satisfied if the attribute has
a value included in the set explicitly specified, while a
negative (i.e., NOT IN) term is satisfied if the attribute has
a value not included in the set explicitly specified. In the
remainder of the paper, we use A(vi, . . . , vj) as a shorthand
for ‘A IN {vi, . . . , vj}’, and ¬A(vi, . . . , vj) as a shorthand
for ‘A NOT IN {vi, . . . , vj}’. For instance, loc(EU,US) is a
positive term evaluating true if the location of servers is
either Europe or US, while ¬encr(DES) is a negative term
evaluating true if the encryption algorithm is known and is
different from DES (i.e., it is AES or 3DES for our example
– Figure 1). In the following, given an attribute term t, we
use t.attr to denote the attribute over which t is defined and
t.values to denote the set of values that make term t true,
that is:

t.values =

{
{vi, . . . , vj} if t = A IN {vi, . . . , vj}
Dom(A) \ {vi, . . . , vj} if t = A NOT IN {vi, . . . , vj}

3.1 Requirements specification

One of the motivations of our work is to provide a con-
venient and simple approach for the identification and
specification of requirements (as well as preferences, as we
will see later on) that users may have with respect to cloud
plans to consider them acceptable (or preferred). Having
defined the basic building block (Definition 3.1) for the
specification of user requirements, we now identify possible
requirements that users might wish to express. The simplest
requirement (to which we refer as base requirement) corre-
sponds to an attribute term. More complex requirements
allow users to specify combinations of terms that must be
jointly satisfied (ALL); alternatives among terms that must
be satisfied (ANY); and combinations of terms that: are not
considered acceptable (FORBIDDEN), must be satisfied only
under certain circumstances (IF-THEN), or for which at most
(AT MOST) or at least (AT LEAST) a certain number must be
satisfied. We now describe the different requirements that
users can formulate. We use notations r and R to refer
to a user requirement and to a set of user requirements,
respectively. Examples refer to the requirements in Figure 3.

• t
A base requirement of the form r=t demands that term
t be satisfied, that is, that attribute t.attr over which
t is defined assume (or do not assume) a value in
t.values. Requirements r1 and r2 are examples of base
requirements. Positive requirement r1 demands that the
provider be either Ghost, GoGo, or Mhard. Negative
requirement r2 demands availability to be different
from very low (VL) and low (L).

r1 :prov(Ghost,GoGo,Mhard)
r2 :¬avail(VL,L)
r3 :ALL({loc(EU,US),¬encr(DES)})
r4 :ANY({test(authA, authB), cert(certA, certB)})
r5 :ANY({loc(EU), cert(certC)})
r6 :IF ALL({loc(US), encr(3DES)) THEN

ANY(audit(3M, 6M), cert(certA))

r7 :IF ALL(test(––)) THEN ANY(cert(certA))

r8 :FORBIDDEN({¬loc(EU), test(authC)})
r9 :AT MOST(2, {prov(Ghost), avail(M, MH), encr(3DES)})
r10 :AT LEAST(2, {loc(EU), encr(AES), prov(Gogo, Ghost)})

Fig. 3. Well-defined set R of user requirements

• ALL({t1, . . . , th})
A requirement of the form r=ALL({t1,. . . ,th}) de-
mands that all terms in {t1, . . . , th} be satisfied. Re-
quirement r3 is an example of an ALL requirement
demanding that servers be physically located either in
Europe or in US and that the encryption used for storage
be different from DES.

• ANY({t1, . . . , th})
A requirement of the form r=ANY({t1,. . . ,th}) de-
mands that at least one term among the set {t1, . . . , th}
be satisfied. In other words, {t1, . . . , th} represents a set
of alternatives, and the satisfaction of (at least) one term
(no matter which one) suffices. Requirements r4 and
r5 are examples of ANY requirements. Requirement r4
demands that the penetration testing be done by either
authority authA or authority authB, or that the security
certification be either certA or certB. Requirement r5
demands that the servers be located in Europe or that
the security certification be certC.

• IF ALL({tp1 , . . . , tph}) THEN ANY({tp1 , . . . , tpk})
A requirement of the form r = IF ALL({tp1 , . . . , tph})
THEN ANY({tp1 , . . . , tpk}) demands that if all terms
in {tp1 , . . . , tph} are satisfied, then at least one term
in {tp1 , . . . , tpk} be also satisfied. In other words, it
imposes to satisfy an ANY requirement (consequence),
whenever an ALL requirement (premise) is satisfied.
Requirements r6 and r7 are examples of IF-THEN re-
quirements. Requirement r6 demands that if servers
are located in US and 3DES encryption is used, then
either security certification must be certA or security
auditing must be performed every 3 or 6 months.
Requirement r7 instead demands that if the authority
running penetration testing is not declared, then the
security certification must be certA.

• FORBIDDEN({t1, . . . , th})
A requirement of the form r = FORBIDDEN({t1,. . . ,th})
demands that not all terms in {t1, . . . , th} be satis-
fied (or, equivalently, that at least one of the terms in
{t1, . . . , th} be not satisfied). A FORBIDDEN require-
ment can therefore be used to specify that a given
combination of values for the attributes is considered
not acceptable. Requirement r8 is an example of FOR-
BIDDEN requirement stating that the user considers not



4

acceptable a plan for which servers are outside Europe
and penetration testing is done by authority authC.

• AT MOST(n, {t1, . . . , th})
A requirement of the form r = AT MOST(n,{t1,. . . ,th})
demands that at most a given number n (with n ≤ h)
of terms in set {t1, . . . , th} be satisfied. Intuitively, it
expresses combinations of attribute values that must
be controlled and accepted only up to some limit (ex-
pressed by the number of terms whose satisfaction can
be tolerated). Requirement r9 is an example of AT MOST
requirement, stating that at most two conditions can
be satisfied among: i) the provider being Ghost; ii) the
availability being MH or H; and iii) the encryption
being 3DES.

• AT LEAST(n, {t1, . . . , th})
A requirement of the form r = AT LEAST(n,{t1,. . . ,th})
is complementary to an AT MOST(n, {t1, . . . , th}) re-
quirement, and demands that, among a set {t1, . . . , th}
of possible terms, at least a given number n (with
n ≤ h) be satisfied. Requirement r10 is an example
of AT LEAST requirement, demanding that at least two
requirements be satisfied among i) being run on a server
in Europe; ii) providing AES encryption; and iii) being
provided by Gogo or Ghost.

Note that base, ALL, and ANY requirements, which we
distinguish for clarity, could be seen as of the same (IF-
THEN) form. In fact, an ALL requirement can be seen as
a set of base requirements. In turn, a base requirement
can be seen as an ANY requirement composed of a single
term, and an ANY requirement corresponds to an IF-THEN
requirement whose premise is bound to ‘true’. We also note
that the assumption of having IF-THEN requirements with
only one ALL requirement in the premise and only one ANY
requirement in the consequence is motivated by clarity and
simplicity, and does not affect expressiveness of our model.
An IF-THEN requirement with an ANY(tp1 , . . . , tph) require-
ment in the premise could in fact be easily expressed by a set
of h IF-THEN requirements, all with the same consequence
and each with a different term tpi (with i = 1, . . . , h) in
the premise. Similarly, an ALL(tc1 , . . . , tck) requirement in
the consequence corresponds to a set of k IF-THEN require-
ments, all with the same premise and each with one term tcj
(with j = 1, . . . , k) in the consequence. We also note that the
specification of an AT LEAST(n, {t1, . . . , th}) requirement
and an AT MOST(n, {t1 . . . , th}) requirement with the same
value for parameter n and the same set of terms corresponds
to require that exactly n terms in {t1, . . . , th} be satisfied.

These observations on the expressive power of our mod-
eling with respect to the ability of capturing different user
needs show that the same needs could be expressed by
different sets of requirements (e.g., requiring encr to be AES
and test to be authB could be modeled with two base re-
quirements, or equivalently with a single ALL requirement).
A user can then formulate her set of requirements in a
flexible way by choosing the kinds of requirements she feels
more appropriate and convenient for her.

When formulating requirements, special care has to be
taken in using special value ‘––’ in attribute terms, due to
its semantics of unknown/undeclared value. For instance,

a base requirement of the form A(––) would mean that
the user is interested in a cloud plan P only if attribute
A assumes an unknown/undeclared value (i.e., only if
P[A] = ––), which clearly makes little sense in practice. The
special value could instead be used in a base requirement
corresponding to a negative term (i.e., ¬A(––)): this is per-
fectly legitimate as such requirement, while not explicitly
specifying any particular value that A must assume, im-
poses the value of A to be explicitly declared in the plan.
In summary, since value ‘––’ denotes absence of a declared
value for an attribute in a plan, we generally expect it to be
used in negative terms. Exceptions to this rule allow value
‘––’ to be used (only) in a positive term t when t is included in
a FORBIDDEN or AT MOST requirement, or in the premise of
an IF-THEN requirement. In fact, FORBIDDEN and AT MOST
requirements state that value ‘––’ belongs to configurations
that the user does not appreciate (in line with its semantics).
In the premise of an IF-THEN requirement, terms of the
form A(––) can be used to identify those plans for which
additional requirements (specified in the consequence) must
be satisfied by plans for which attribute A is not declared.

In the remainder of this paper we assume that: i) the
set R of requirements defined by the user includes, for
each attribute A ∈ A, at most one term over A in the
set of base and ALL requirements; and ii) each requirement
r ∈ R includes at most one term over each attribute A (if
not, the multiple terms over A would be either in conflict,
or redundant). A set R of requirements satisfying these
two conditions is said to be well-defined, as defined in the
following.

Definition 3.2 (Well-defined set of requirements). Let A be
a set of attributes, T be a set of terms over A, and R be a set of
requirements over T . R is well-defined iff:

1) ∀A ∈ A : |T ∗
A | ≤ 1, with T ∗

A the set of terms appearing in
base and ALL requirements in R over A;

2) ∀A ∈ A, ∀r ∈ R : |T r
A | ≤ 1, with T r

A the set of terms over
A appearing in r.

Condition 1 ensures that each attribute A appears in
at most one term in base and ALL requirements in R all
together. Condition 2 ensures that each requirement in R
includes at most one term for each attribute A. It is easy to
see that the set of requirements in Figure 3 is well-defined.

3.2 Acceptable plans
Requirements impose conditions that a user requires to be
satisfied by a cloud plan to consider such a plan acceptable.
As already mentioned, all the requirements in the specified
set R must be satisfied and therefore plans that do not sat-
isfy at least one requirement are not considered to be accept-
able to the user. To evaluate whether a plan P is acceptable,
we interpret the terms over which R is defined as Boolean
variables, and each requirement r ∈ R as one (or more)
Boolean formula(s) b over such variables. Figure 4 illustrates
the translation of the requirements discussed in Section 3.1
into Boolean formulas. Base requirements do not need
special translations, as they simply correspond to attribute
terms (and hence Boolean variables). An ALL({t1, . . . , th})
requirement translates to a set of h attribute terms. ANY
and IF-THEN requirements translate to Boolean disjunctions



5

Requirement Translation
t t
ALL({t1, . . . , th}) {t1, . . . , th}
ANY({t1, . . . , th}) t1 ∨ . . . ∨ th
IF ALL({tp1 , . . . , tph})THEN ANY({tc1 , . . . , tck) (tp1 ∧ . . . ∧ tph) =⇒ (tc1 ∨ . . . ∨ tck)
FORBIDDEN({t1, . . . , th}) (¬t1) ∨ . . . ∨ (¬tn)
AT MOST(n, {t1, . . . , th}) ∀T ∈ T n+1 :

∨
j(¬tj), with tj ∈ T

AT LEAST(n, {t1, . . . , th})
∨|T n|

i=1 (
∧

j tj), with tj ∈ T n
i , T

n
i ∈ T n

Fig. 4. Translation of user requirements in their equivalent Boolean formulas (T denotes an arbitrary set of terms, Tn a set of n terms, T n the set
of all Tn)

b1 :prov(Ghost,GoGo,Mhard)
b2 :¬avail(VL,L)

b3.1 :loc(US,EU)

b3.2 :¬encr(DES)
b4 :test(authA, authB) ∨ cert(certA, certB)
b5 :loc(EU) ∨ cert(certC)

b6 :loc(US) ∧ encr(3DES) =⇒ audit(3M, 6M) ∨ cert(certA)

b7 :test(––) =⇒ cert(certA)

b8 :loc(EU) ∨ ¬test(authC)

b9 :¬prov(Ghost) ∨ ¬avail(M, MH) ∨ ¬encr(3DES)
b10 :(loc(EU) ∧ encr(AES)) ∨ (loc(EU) ∧ prov(Gogo, Ghost))∨

(encr(AES) ∧ prov(Gogo, Ghost))

Fig. 5. Set BR or Boolean formulas representing the set R of require-
ments in Figure 3

and implications among terms, respectively. The transla-
tion of FORBIDDEN, AT MOST, and AT LEAST requirements
deserves more explanation. A FORBIDDEN({t1, . . . , th}) re-
quirement corresponds to the Boolean disjunction of the
negation of the terms. The semantics of ¬t, in our problem,
translates a positive (i.e., IN) term into a negative (i.e., NOT
IN) term, and viceversa (i.e., if t = A IN {vi, . . . , vj} then
¬t = A NOT IN {vi, . . . , vj}, and viceversa). The translation
of an AT MOST(n, {t1, . . . , th}) requirement corresponds
to a set of disjunctions, one for each subset T (n+1) of
(n + 1) terms in {t1, . . . , th}, each demanding that such a
combination be not satisfied (i.e., the terms are negated).
An AT LEAST(n, {t1, . . . , th}) requirement translates into a
disjunction among the conjunctions, one for each subset
T n of n terms in {t1, . . . , th}, of the terms in T n (i.e., the
satisfaction of any combination of n terms in {t1, . . . , th}
satisfies the requirement). Figure 5 illustrates the result of
the translation of the set R of requirements in Figure 3 into
an equivalent set BR of Boolean formulas (BR denotes the
set of Boolean formulas obtained from a set R of require-
ments). Formulas b1, b2 , b3 .1, b3 .2 represent the base and ALL
requirements (r1, r2 , and r3 ). The Boolean disjunctions in
b4 and b5 represent the ANY requirements (r4 and r5 ), the
implications in b6 and b7 the IF-THEN requirements (r6 and
r7 ), and the disjunction in b8 the FORBIDDEN requirement
(r8 ). Formula b9 represents the AT MOST requirement (r9 ).
Lastly, b10 represents the AT LEAST requirement (r10 ).

The interpretation of terms as Boolean variables permits
to easily check whether a plan P is acceptable to the user.
Intuitively, to verify whether P is acceptable it is sufficient to
check whether the corresponding truth assignment to terms
satisfies all the formulas BR resulting from the translation

of the set R of requirements. More precisely, given a set T
of terms and a plan P with descriptor P[A1, . . . , Am], we
consider P as a truth assignment P : T → {0, 1} assigning
a Boolean value to the terms in T . Given a term t ∈ T , the
truth value assigned by P to t, denoted P(t), is determined
as follows:

P(t) =

{
1, if P[t.attr] ∈ t.values

0, otherwise

A cloud plan P satisfies a term t iff t is assigned value
1 by P as a truth assignment, as formally defined in the
following.

Definition 3.3 (Term satisfaction). Let P be a plan with de-
scriptor P[A1, . . . , Am], t be an attribute term over attribute Ai,
with Ai ∈ {A1, . . . , Am}. Plan P satisfies term t iff P(t) = 1.

For instance, consider plan P1 in Figure 2 and two terms
of the form th = loc(EU,US) and tk = prov(Mhard). We
have that P1(th) = 0, since P1[loc] = JP, and JP ̸∈ th.values .
On the contrary, P1(tk) = 1, since P1[prov] = Mhard, and
MHard ∈ tk.values . We then say that P1 does not satisfy th,
while it satisfies tk.

Extending the definition above, we say that a plan
P satisfies a Boolean formula b over a set of terms de-
fined over attributes Ax, . . . , Ay iff the evaluation of
b over the truth values assigned by P to the terms re-
turns value 1. We denote the evaluation of b over the
truth values assigned by P with P(b). To illustrate, con-
sider formula b4 : test(authA, authB) ∨ cert(certA, certB)
in Figure 5 and plan P3 in Figure 2. Since P3 (b4 ) =
(P3 (test(authA, authB)))∨(P3 (cert(certA, certB))) = (1)∨
(0) = 1, we have that P3 satisfies b4 .

We are now ready to formally define an acceptable cloud
plan, that is, a plan that satisfies all the user requirements.

Definition 3.4 (Requirement satisfaction). Let P be a plan
with descriptor P[A1, . . . , Am], R be a set of requirements,
and BR be the set of Boolean formulas representing R. Plan P
satisfies R, and is said to be acceptable, iff ∀b ∈ BR : P(b) = 1.

A plan P satisfies a set R of requirements if it satisfies
all the Boolean formulas BR resulting from the translation
of R. It is easy to see that, among the plans in Figure 2,
only plans P3 , . . . ,P7 satisfy the requirements in Figure 3
and are then acceptable. Plan P1 in fact does not satisfy
Boolean formulas b3 .1, b3 .2 , b4 , b8 , and b10 (i.e., it does not
satisfy requirements r3 , r4 , r8 , and r10 ). Plan P2 instead does
not satisfy b5 , b6 , b8 , b9 , and b10 (i.e., it does not satisfy
requirements r5 , r6 , r8 , r9 , and r10 ).
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Since plans that do not satisfy requirements are not
acceptable for the user, we remove them from consideration
and, in the following, we will consider only acceptable
plans.

As a last remark on our Boolean interpretation of the
problem, we note that with the possibility of reasoning
in terms of Boolean formulas, we can identify cases in
which a set R of requirements, while being well-defined
(Definition 3.2), includes requirements that are in conflict.
This can be done by evaluating whether there exists a
truth assignment (i.e., a plan in our framing of the prob-
lem) respecting the condition in Definition 3.4. As a sim-
ple example, consider a well-defined set of requirements
R = {r1, . . . , r4}, with r1 = t1, r2 = t2 , r3 = t3 , and r4 =
AT MOST(2, {t1, t2 , t3}). In this case, no cloud plan could
ever be considered acceptable. The problem of verifying the
existence of an acceptable plan translates into the problem
of checking the satisfiability of a set of Boolean formulas,
solvable by adopting any off-the-shelf SAT/CSP solver.
Indeed, the Boolean formulas to be checked for satisfiability
will include all formulas in BR, and additional formulas that
constrain, for each attribute A ∈ A, at most one term over
A (among the terms over A appearing in the constraints) to
assume value 1. For example, a truth assignment satisfying
all formulas representing a set R = {r1, r2} of requirements
such that r1 = A1(v1) and r2 = ANY({A2 (v2 ), A1(v3 )})
could assign value 1 to all the three terms, but would of
course not correspond to any meaningful plan since, in a
plan, A1 can assume either value v1 or v2 or v3 , but not all
of them.

4 USER PREFERENCES

Requirements establish constraints that plans should satisfy
to be considered acceptable for the user. Clearly, more plans
might exist satisfying such constraints. For instance, plans
P3 , . . . ,P7 in Figure 2 all satisfy the requirements in Figure 3.
Among the acceptable plans, we can expect that some might
be preferred over others. Our next contribution is to provide
a way for users to express preferences. Our approach will
then take preferences into account to produce a preference-
based ranking of acceptable plans. Also for preferences, our
aim is to be expressive while at the same time maintain
simplicity and intuitiveness of specifications.

We consider two levels of specification for preferences,
on attribute values in the first place, and then on attributes
themselves.

4.1 Preferences on attribute values

Preferences on attribute values allow users to specify, among
the values that can be assumed by an attribute, which
ones are to be preferred over others. Before defining pref-
erences, we need to define values that can be assumed by
an attribute. Such values can be all values of the attribute
domain, in case the attribute is not involved in a base or
ALL requirement, or the values that the user has specifically
indicated as acceptable, otherwise. Given a set of require-
ments, we then define attribute domains as restricted by
requirements as follows.

A DomR(A)
prov Mhard, GoGo, Ghost
loc EU, US
encr AES, 3DES
avail VH, H, MH, M, ML
test authA, authB, authC, authD, ––
cert certA, certB, certC, certD, certE, ––
aud 3M, 6M, 9M, 1Y, ––

Fig. 6. Restricted domains for the attributes in Figure 1 according to
requirements in Figure 3

Definition 4.1 (Restricted domain). Let R be a set of re-
quirements over a set A of attributes. The restricted domain
DomR(A) of an attribute A ∈ A is defined as:

DomR(A) =

⎧
⎨

⎩

t.values if ∃ r ∈ R, r = t or r = ALL(T )

with t ∈ Tand t.attr = A

Dom(A) ∪ {––}otherwise

Figure 6 reports the restricted domains for the attributes
in Figure 1 assuming the set of requirements in Figure 3.

Among the values that can be assumed by an attribute,
we can imagine that a user may consider some values to
be - among themselves - equally preferable, while having
instead preferences of some values over others. For instance,
authB might be preferred over authC and authD for at-
tribute test, but either of the latter two may be equally
preferable for the user.

Such generic form of preferences can be easily and
simply expressed by defining a totally order relationship
among sets of attribute values, as captured by the following
definition.

Definition 4.2 (Preference relationship). Let A be an at-
tribute in A and P(A) be a partition over the restricted domain
DomR(A) of A. A preference relationship over DomR(A),
denoted ≻ A , is a total order relationship over P(A).

For instance, a possible preference relationship
over attribute test can define partition P(test) =
⟨{authA}, {authB}, {authC, authD}, {––}⟩, with preference
relationship {authA} ≻ test {authB} ≻ test {authC,
authD} ≻ test {––}. Given two partitions Vi, Vj ∈ P(A) if
Vi ≻ A Vj , then all values in Vi are considered preferable
over all values in Vj (for simplicity, we apply notation
≻ A also to values, and we write vi ≻ Avj to indicate that
vi ∈ Vi, vj ∈ Vj and Vi ≻ A Vj ). Note that, when special
value ‘––’ is included in DomR(A), we expect it to appear
as the least preferred value, since an unknown value cannot
certainly be more preferred than the least preferred among
the ones known to the user.

Figure 7 illustrates, via the corresponding Hasse dia-
grams, an example of preference relationships for the at-
tributes in Figure 1 (we will discuss numbers appearing
at the sides of nodes shortly). For instance, considering
attribute loc, we have that {EU} ≻ loc {US}, meaning that
the user prefers a European location over one in US.

Taking into consideration preferences on values when
considering different attributes (as it is the case of our plans)
it might happen that, given two plans, none of them has
all values preferred over the ones in the other but, while
one plan has a more preferred value for an attribute (e.g.,
authB against authC for testing), the other might have a
much more preferred value for another attribute (e.g., certA
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loc encrprov avail test cert aud

EU AESMHard VH authA certA 3M

3DESGoGo H authB certB 6M

ML

certC 1YGhost

−

US

πloc

1

1/2

πencr

1

1/2

πprov

1

2/3

1/3

πavail

1

3/4

2/4

1/4

πtest

1

3/4

2/4

1/4

πcert

1

4/5

3/5

2/5

1/5−

−

πaud

1

3/4

2/4

1/4

Preferences on attribute values

Preferences on attributes

w(loc) = 1 w(encr) = 1w(prov) = 1 w(avail) = 10 w(test) = 1 w(cert) = 1 w(aud) = 1

authC
authD

MH
M

certD
certE

Fig. 7. Preference relationships and score functions over the restricted domains in Figure 6, and weight function over the attributes in Figure 1

over certD for certification). To easily determine when a
values is much more preferred than another one, we trans-
late preferences over attribute values into numerical scores
by simply assigning to each value a score reflecting the
relative position of the value in the ordering dictated by
the preference relationship defined for the attribute. More
precisely, the score associated with a value represents the
relative closeness of the value to the most preferred value(s)
in the restricted domain: the most preferred value(s) is (are)
assigned score 1, while the least preferred value(s) is (are)
assigned score 1/k, with k the number of sets in partition
P(A). Formally, such score function is defined as follows.

Definition 4.3 (Score function). Let A be an attribute in A,
and ≻ A be a preference relationship over DomR(A). The score
function πA : DomR(A) → Z+ over A associates with each
value v ∈ DomR(A) a positive score πA(v) = 1− i

k , with k the
cardinality of P(A) and i the number of sets in {Vj ∈ P(A) :
Vj ≻ A Vl, v ∈ Vl}.

To illustrate, consider attribute prov and its preference
relationship ≻ prov in Figure 7. The preference relation-
ship distinguishes k = 3 sets, and scores will then be:
πprov(MHard) = 1 = 1 − 0

3 (i = 0, most preferred),
πprov(GoGo) = 2/3 = 1 − 1

3 (i = 1, second most preferred),
πprov(Ghost) = 1/3 = 1 − 2

3 (i = 2, third and least
preferred).

4.2 Preferences on attributes
Preferences on values, and corresponding score functions,
allow us to reason about how (and how much) better
a plan is with respect to another one with reference to
each specific attribute. To reason about which plans can be
considered better than others, it is clearly important to take
into consideration also the specific attributes on which plans
assume better values. For instance, a plan might be better
than another one with respect to availability but worse with
respect to encryption. Which one is to be preferred depends
then, besides on how much better the two are for such
attributes, on which attribute (either availability or encryp-
tion) the user cares more. For instance, a user outsourc-
ing sensitive data may give more importance to security-

related attributes (e.g., encryption) while a user outsourcing
high-performance applications may consider performance-
related attributes (e.g., availability) more important than all
the other attributes. To take this into consideration, we allow
users to specify how important attributes are for them. For
attributes, we consider importance to be specified as a weight
(number) that the user assigns to each attribute: attributes
with equal weights are considered equally important, while
attributes with greater weights are considered more impor-
tant. Weights are formally defined as follows1.

Definition 4.4 (Weight function). Let A be a set of attributes.
The weight function w : A → N+ associates a positive weight
with each attribute in A.

The reason for considering weights instead of a simple
preference relationship like for values is that, while for
values generic weights might be cumbersome and probably
not that intuitive (also considering the different cardinalities
of attribute domains), for attributes explicit support for user-
defined weights adds expressiveness without introducing
complexity. Note also that weights could be either explicitly
specified or derived from an order relationship specified
among attributes. This can be supported, for example, by
simply assigning weight 1 to the least relevant attribute
and increasing the weight by 1 at each step of such order
relationship.

Figure 7 reports a possible weight function for the at-
tributes of our example, identifying availability as the most
(by and large) relevant attribute, with w(avail) = 10, and
giving equally low importance to the other attributes (all
with weight 1). Note that the case where all the attributes are
considered equally important, or their relative importance is
not a significant aspect for the user, can be modeled simply
by assigning the same weight to all attributes.

5 PLAN RANKING

Having defined value and attribute preferences, we are now
ready to discuss how to take them into consideration for

1. For simplicity, we assume the weight function to assume values
in N+. We note that other co-domains could be used, with the only
restriction that the smallest weight be greater than or equal to 1.
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GoGo EU AES VH authA certA –
1/4

GoGo US AES H authA certC –
1/2 3/41/4

GoGo US AES VH authB certC –
1/2 1/4

GoGo EU 3DES VH authB certB –
1/4

Ghost US AES H authB certC –
1/2 3/41/4

GoGo EU AES VH authA certA –
2/3 1 1 1 1 1 1/4

GoGo EU 3DES VH authB certB –
2/3 1 1/2 1 3/4 4/5 1/4

GoGo US AES VH authB certC –
2/3 1/2 1 1 3/4 3/5 1/4

GoGo US AES H authA certC –
2/3 1/2 1 3/4 1 3/5 1/4

Ghost US AES H authB certC –
1/3 1/2 1 15/2 3/4 3/5 1/4

GoGo EU AES VH authA certA –
2/3 1 1 10 1 1 1/4

GoGo EU 3DES VH authB certB –
2/3 1 1/2 10 3/4 4/5 1/4

GoGo US AES VH authB certC –
2/3 1/2 1 10 3/4 3/5 1/4

GoGo US AES H authA certC –
2/3 1/2 1 15/2 1 3/5 1/4

Ghost US AES H authB certC –
1/3 1/2 1 3/4 3/4 3/5 1/4

0.82

1.01

1.07

1.24

0.82

1.01

1.07

2.70

2.78

(a) Pareto dominance

(b) D-dominance (c) WD-dominance

1.07

P6

P7 P5

P3

Π6

Π4

Π5

Π3
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P4
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P5

P7

Π7

Πw
6

Πw
4

Πw
7

Πw
5

Πw
3

P6

P4

P3

P7

P5

P4

Fig. 8. Rankings of plans P3, . . . ,P7 in Figure 2 that satisfy the requirements in Figure 3

ranking plans. We introduce our approach to ranking incre-
mentally, identifying and introducing concepts that dictate
dominance among plans. We first identify the following
Pareto dominance relationship as the natural extension of
value preferences.

Definition 5.1 (Pareto dominance). Let Pi,Pj be two accept-
able plans with respect to a set R of requirements over set A
of attributes and, ∀A ∈ A, ≻ A be the preference relationship
over DomR(A). Pi Pareto-dominates Pj , denoted Pi ≻ P Pj ,
iff ∀A ∈ A,Pi[A] ≽ A Pj [A], and ∃Al ∈ A such that
Pi[Al] ≻ Al Pj [Al].

According to Definition 5.1, Pi dominates Pj (in other
words, Pi is preferred –higher in ranking– over Pj) if Pi has,
for all attributes, values that are equally or more preferred
than those in Pj and, for at least one attribute, a more
preferred value than the one in Pj .

Figure 8(a) illustrates the Pareto dominance relationship
among plans P3 , . . . ,P7 of our running example.

Pareto dominance, while natural, provides only an ini-
tial step for defining a ranking since all plans that have
reversed relationships for at least two attributes will remain
not ordered (incomparable). For instance, in Figure 8(a),
plans P3 and P4 remain incomparable (i.e., P3 ̸≻ P P4 and
P4 ̸≻ P P3 ), since one has a more preferred availability
(P3 [avail] ≻ avail P4[avail]) while the other has a more
preferred security certification (P4 [cert] ≻ cert P3[cert]). A
similar reasoning also applies to P7 and P5 , P7 and P4 , and
P5 and P4 .

We then define a strategy for ranking plans taking into
consideration the importance of values (i.e., their scores),

and possibly also the importance of attributes (i.e., their
weights) as specified by the user. Our approach for ranking
is based on the distance of a plan from an ideal plan, that is, a
plan where all attributes assume the most preferred values.

An ideal plan is defined as follows.

Definition 5.2 (Ideal plan). Let A be a set of attributes and
∀A ∈ A, ≻ A be the preference relationship over DomR(A).
An ideal plan, denoted P⊤, is a plan such that ∀A ∈ A, ∀v ∈
DomR(A), P⊤[A] ≽ A v.

For instance, with reference to our running
example, there is a single ideal plan, that is
[Mhard,EU,AES,VH, authA, certA, 3M]. Note that more
than one ideal plan may exist (as many as the possible
different combinations of most preferred values for the
attributes in A).

To define how distant a generic plan is with respect
to an ideal one, we associate with each plan the score
vector containing the scores of the plan’s attribute values
as follows.

Definition 5.3 (Score vector). Let A be a set of m attributes, Pj

be an acceptable plan with respect to a set R of requirements over
a set A of attributes, and πA be a score function over A, ∀A ∈ A.
The score vector associated with Pj is a vector Πj [A1, . . . , Am],
with Πj [Ai] = πAi(Pj [Ai]), ∀Ai ∈ A.

Note that, by definition, the score vector Π⊤ of an ideal
plan P⊤ has all values equal to 1.

We are now ready to introduce our ranking based on the
distance from an ideal plan. For simplicity, we first introduce
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the ranking without taking into account attribute weights
and then extend it to consider them.

To measure how much a cloud plan P differs from an
ideal plan P⊤, we interpret P as a point in an m-dimensional
space (with m the number of attributes in A), and its score
vector Π as its Cartesian coordinates in the space. For
each cloud plan P, we then measure the distance between
the point corresponding to P and the one corresponding
to P⊤. While noting that any notion of distance in an
m-dimensional space would work, we use the Euclidean
distance. Let us recall that, in our framing of the problem, the
Euclidean distance between a pair of generic points Ph and
Pk characterized (i.e., located in the m-dimensional space)
by score vectors Πh and Πk is defined as:

dist(Πh,Πk) =

√√√√
m∑

i=1

(Πh[Ai] − Πk[Ai])2

We then define a dominance relationship D-dominance
(D for distance) among plans based on such a distance from
P⊤ as follows.

Definition 5.4 (D-dominance). Let Pi and Pj be two acceptable
plans with respect to a set R of requirements. Pi D-dominates Pj ,
denoted Pi ≻ D Pj , iff dist(Πi,Π⊤) < dist(Πj ,Π⊤), where dist
is the Euclidean distance of the score vectors Πi, Πj of the given
plans, from Π⊤.

Figure 8(b) illustrates the D-dominance among the ac-
ceptable plans of our running example where, for each
plan Pi, we report value dist(Πi,Π⊤) in boldface on the
right of the node representing Pi and Πi. The D-dominance
among the acceptable plans implies a ranking from the plan
closest (P6 , with dist(Π6 ,Π⊤) = 0.82) to the farthest (P3 ,
with dist(Π3 ,Π⊤) = 1.24) from the ideal one. Note that for
P5 and P7 the D-dominance is not defined, both being at
distance 1.07 from the ideal plan. On this latter observation,
let us note that (unlike the Pareto dominance) whenever ≻ D

in Definition 5.4 is not defined for a pair of plans Px and Py

(i.e., Px ̸≻ D Py and Py ̸≻ D Px), we have the guarantee that
the distances of the score vectors of Px and Py from that of
the ideal plan are equal, and we can therefore conclude that
Px and Py can be regarded as being equivalent w.r.t. the value
preferences formulated by the user. In fact, the distances can
be equal only if: i) Px and Py , while being different plans,
have the same descriptor; or ii) Px and Py have different
descriptors but the ‘good’ values for some attributes are
compensated by the ‘bad’ values for other attributes (i.e., the
reversed relationships that caused incomparable results for
the Pareto dominance). Referring to our running example,
since dist(Π5 ,Π⊤) = dist(Π7 ,Π⊤) = 1.07, both P5 and P7

have the same position in the ranking induced by ≻ D. In
fact, it is easy to see that, despite having the same values for
attributes prov, loc, encr, cert, and aud, the better value
assumed by P7 for avail (i.e., VH as opposed to H for P5 )
is ‘compensated’ by the worse value assumed for test (i.e.,
authB as opposed to authA for P5 ).

D-dominance captures the distance among plans consid-
ering all attributes equally valuable. To account for prior-
ity among attributes, as specified by the user with corre-
sponding weights (Definition 4.4), we need to adjust the
definition of distance accordingly. We do so by scaling the

1

Ph

Pk

P⊤

(a)

0.5

0.5

1

1

Ph

Pk

P⊤

(b)

0.5 1.5 2

0.5

1

0.25

0.25 0.25

X X

Y Y

Fig. 9. Graphical representation of the Euclidean distance between Ph,
Pk and P⊤ before (a) and after (b) the scaling by a factor 2 on the x-axis

m-dimensional space using, as a scaling factor along each
dimension (attribute), the weight assigned by the user to
the attribute. Scaling stretches the axes representing the at-
tributes according to their weights (i.e., anisotropic scaling).
Every point in the original m-dimensional space moves in
the scaled space accordingly. More precisely, each element
of a score vector is multiplied by the weight assigned by
the user to the corresponding attribute. In the following, we
use notation Πw to denote the score vector after the scaling
operation performed according to weight function w. This is
captured by the following definition of weighted score vector.

Definition 5.5 (Weighted score vector). Let A be a set of m
attributes, Pj be an acceptable cloud plan with respect to a set
R of requirements over a set A of attributes, Πj be the score
vector of Pj , and w be a weight function over A. The weighted
score vector associated with Pj is a vector Πw

j [A1, . . . , Am],
with Πw

j [Ai] = Πj [Ai] · w(Ai), ∀Ai ∈ A.

To illustrate the concept, consider a simple hypotheti-
cal bi-dimensional space and two plans Ph and Pk with
Πh = [1/2, 1/4] and Πk = [1/4, 1/2]. Figure 9(a) illus-
trates their position in the corresponding bi-dimensional
space, where the x-axis corresponds to the first attribute
X , the y-axis corresponds to the second attribute Y , and
point Π⊤ = [1, 1] corresponds to ideal plan P⊤. The two
plans have the same distance (0.90) from P⊤, hence neither
dominates the other with respect to D-dominance. Let us
now take into consideration attribute weights and assume
that w(X) = 2 and w(Y ) = 1, meaning that attribute
X is considered more important than (twice as important
as) attribute Y . Using w(X) and w(Y ) as scaling factors
along the dimensions corresponding to attributes X and Y ,
respectively, the points in the space are moved along the x-
axis by a factor of 2. The weighted score vectors representing
the positions of the plans in the anisotropic scaled space
are: Πw

h = [1, 1/4], Πw
k = [1/2, 1/2], with Πw

⊤ = [2, 1] (Fig-
ure 9(b)). The distances between the corresponding plans are
then dist(Πh,Π⊤) = 1.25 and dist(Πk,Π⊤) = 1.58, with dist
now computed over the weighted score vectors, differentiat-
ing Ph as closer to the ideal plan, and hence preferable over
Pk. This consistently with the fact that Ph is closer to P⊤ on
the dimension representing attribute X , which is considered
more important. Taking into account the weighted score
vectors, we formally define a WD-dominance (W for weight)
among plans based on weighted score vectors as follows.

Definition 5.6 (WD-dominance). Let Pi and Pj be two ac-
ceptable plans with respect to a set R of requirements, and w be
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a weight function. Pi WD-dominates Pj , denoted Pi ≻ WD Pj ,
iff dist(Πw

i ,Π
w
⊤) < dist(Πw

j ,Π
w
⊤), where dist is the Euclidean

distance of the weighted score vectors Πw
i , Πw

j of the given plans,
from Πw

⊤.

Figure 8(c) reports the WD-dominance relationships
among the acceptable plans of our running example assum-
ing attribute weights as in Figure 7, where w(avail) = 10
while the weight of all other attributes is 1. The WD-
dominance relationship now identifies P7 as closer to the
ideal plan than P5 , and hence preferable.

We note that when all attributes have weight 1, no
scaling is performed, the weighted score vectors Πw are
exactly the original score vectors Π, and WD-dominance
reduces to D-dominance. Note also that, clearly, both rela-
tionships respect the Pareto dominance. In fact, given any
two plans Pi and Pj , any preference relationship, and any
weight function, if Pi Pareto-dominates Pj , then plan Pi D-
dominates and WD-dominates Pj . Also, if Pi D-dominates
or WD-dominates Pj , then it cannot be that Pj Pareto-
dominates Pi. This property is formalized by the following
theorem.

Theorem 5.1. Let A be a set of attributes, and Pi, Pj be two
acceptable plans with respect to a set R of requirements. For
any score function and for any weight function, the following
properties hold:

1) Pi ≻ P Pj =⇒ Pi ≻ D Pj and Pi ≻ WD Pj ;
2) Pi ≻ D Pj or Pi ≻ WD Pj =⇒ Pj ̸≻ P Pi.

Proof. We prove the two properties separately.

1) Pi ≻ P Pj =⇒ Pi ≻ D Pj .
Suppose, by contradiction, that ∃Pi,Pj such that
Pi ≻ P Pj and Pi ̸≻ D Pj . Since Pi ≻ P Pj , we have that
(Definition 5.1): i) ∀A ∈ A,Pi[A] ≽ A Pj [A]; and ii)
∃Al ∈ A such that Pi[Al] ≻ Al Pj [Al]. By Definition 4.3,
this in turn implies that: i) ∀A ∈ A,Πi[A] ≥ Πj [A];
and ii) ∃Al ∈ A,Πi[Al] > Πj [Al]. Therefore,
dist(Πi,Π⊤) < dist(Πj ,Π⊤), resulting into Pi ≻ DPj and
hence contradicting our hypothesis.

Pi ≻ P Pj =⇒ Pi ≻ WD Pj .
Suppose, by contradiction, that ∃Pi,Pj , w such
that Pi ≻ P Pj and Pi ̸≻ WD Pj . Again, since
Pi ≻ P Pj , we have that (Definition 5.1): i)
∀A ∈ A,Pi[A] ≽ A Pj [A]; and ii) ∃Al ∈ A such
that Pi[Al] ≻ Al Pj [Al]. By Definition 4.3, this in
turn implies that: i) ∀A ∈ A,Πi[A] ≥ Πj [A]; and ii)
∃Al ∈ A,Πi[Al] > Πj [Al]. Since by Definition 4.4
∀A ∈ A, ∀w : w(A) ∈ N+ and by Definition 4.3
∀A ∈ A, ∀v ∈ DomR(A) : πA(v) ∈ Z+, we have
that ∀A ∈ A, ∀v ∈ DomR(A), ∀w : Πi[A] =
Πj [A] =⇒ w(A) · Πi[A] = w(A) · Πj [A], and
that ∀A ∈ A, ∀v ∈ DomR(A), ∀w : Πi[A] >
Πj [A] =⇒ w(A) · Πi[A] > w(A) · Πj[A]. Therefore,
dist(Πw

i ,Π
w
⊤) < dist(Πw

j ,Π
w
⊤), resulting into Pi ≻ WDPj

and hence contradicting our hypothesis.

2) Pi ≻ D Pj =⇒ Pj ̸≻ P Pi.
Suppose, by contradiction, that ∃Pi,Pj such that
Pi ≻ D Pj and Pj ≻ P Pi. Since Pj ≻ P Pi,
then (as proved for Property 1 of the theorem)

we have that Pj ≻ D Pi. This would result in
Pi ≻ D Pj =⇒ Pj ≻ P Pi =⇒ Pj ≻ D Pi, which is
a contradiction.

Pi ≻ WD Pj =⇒ Pj ̸≻ P Pi.
Suppose, by contradiction, that ∃Pi,Pj , w such that
Pi ≻ WD Pj and Pj ≻ P Pi. Again, since Pj ≻ P Pi,
then (as proved for Property 1 of the theorem)
we have that Pj ≻ WD Pi. This would result in
Pi ≻ WD Pj =⇒ Pj ≻ P Pi =⇒ Pj ≻ WD Pi, which is a
contradiction.

We also note that if Pi D-dominates or WD-dominates
Pj , we cannot say anything about whether Pi also Pareto-
dominates Pj (in fact, Property 2 of Theorem 5.1 elaborates
on whether Pj Pareto-dominates Pi). As an example, con-
sider plans P4 and P5 . It is easy to see that P4 D-dominates
and WD-dominates P5 but they are not comparable with
respect to the Pareto dominance relationship. We finally
note that neither D-dominance implies WD-dominance nor
the opposite. Indeed, a plan that is preferred according to
D-dominance could be considered worse according to WD-
dominance and viceversa. To illustrate, consider a simple
hypothetical bi-dimensional space and two plans Ph and Pk

such that Πh = [0.24, 0.5] and Πk = [0.5, 0.25]. By evaluat-
ing the Euclidean distance between these plans and the ideal
plan P⊤, it is easy to see that Pk ≻ DPh, since dist(Πk,Π⊤) =
0.9013 < dist(Πh,Π⊤) = 0.9097. Now consider a weight
function w such that w(A1) = 1, w(A2 ) = 2. We have
now that dist(Πw

k ,Π
w
⊤) = 1.5811 > dist(Πw

h ,Π
w
⊤) = 1.2560.

Hence, we have that Pk ≻ DPh, and Ph ≻ WDPk.
We close this section with a note on the complexity of the

process of ranking a set of acceptable plans. The final rank-
ing to be returned to the user reflects the dominance rela-
tionships existing among the plans. The complexity of com-
puting such a ranking then depends on the adopted dom-
inance relationship. Ranking a set of n plans according to
the Pareto dominance (Definition 5.1) requires, in the worst
case, to establish the dominance relationship between all
pairs of plans, and hence its computational cost is quadratic
in the number n of acceptable plans (i.e., O(n2 )). Ranking a
set of n plans according to the D-dominance (Definition 5.4)
or the WD-dominance (Definition 5.6) requires instead to
compute, for each plan, the Euclidean distance between its
(weighted) score vector and the (weighted) score vector of
the ideal plan P⊤. The computation of such distances has
linear cost in the number n of acceptable plans, and the
computation of the ranking itself can be performed simply
by sorting the plans based on the computed distances (i.e.,
O(nlog(n))).

We also note that, while computation of acceptable plans
and their ranking are assumed to happen once (i.e., at
the time of cloud plan selection by the user), changes in
specifications can be taken into consideration incrementally.
For requirements: i) deletion of a requirement simply re-
quires evaluating the remaining requirements against the
plans not considered acceptable before to see if some of
them are now acceptable, and placing them in the ranking
depending on the adopted dominance relationship (nothing
needs to be done on the acceptable plans); ii) insertion of
a requirement simply requires to evaluate the new require-
ment on the acceptable plans and discard plans that do not
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satisfy it (as they are not acceptable anymore); iii) update
of a requirement can be interpreted as a deletion followed
by an insertion. For preferences, changes clearly require
to recompute dominance relationships among plans, but
do not change the acceptability of plans (and then do not
require to re-evaluate requirements). For plans: i) deletion
of a plan simply requires deleting it from the solution; ii)
insertion of a new plan simply requires evaluating the plan
against the requirements and, if it is acceptable, placing it
in the ranking according to dominance relationships; iii)
changes in a plan can be interpreted as a deletion followed
by an insertion.

6 RELATED WORK

The problem of cloud provider or cloud plan selection has
been widely recognized and several solutions have been
proposed to support users in their choice. Before ranking
and selecting a cloud plan (or cloud provider), users need
to measure and compare the guarantees offered by cloud
providers. Different works have addressed this problem,
proposing techniques for measuring, for example, perfor-
mance, costs, and Quality of Service offered to final users
(e.g., [5], [7], [11]), possibly using also feedbacks by users
and/or by a trusted third party (e.g., [12], [13], [14]). These
proposals are complementary to the work presented in this
paper as the information produced by them (i.e., the value
of some properties) could be used as input to our approach.

The line of work closest to ours focuses on the problem
of ranking and/or selecting cloud services that satisfy user
requirements. Some proposals are based on the adoption
of a third party (broker [15]) that helps users in selecting
the “best service” according to their requirements. In [6] the
authors present a brokerage-based approach for selecting
cloud services that takes into consideration which proper-
ties and values a user desires from service providers as
well as the order of importance of the properties. Apart
from the similarity with our approach in considering user
requirements and preferences, our approach is more general
and flexible. As a matter of fact, we consider a variety of
requirements in contrast to the proposal in [6] that considers
only conjunctions of requirements defined over a limited
number of properties. Also, our approach supports different
kinds of preferences. In [16], the authors present a cloud
broker service that uses high-level requirements expressed
as objectives for selecting cloud elements/services from
multiple providers to deploy an application. Our work has
however a different focus. In [17], the authors propose
a solution enabling users to express their requirements
through an SLA template that is then matched to the SLAs
of a set of candidate providers. Our approach differs from
it since we consider generic requirements as well as pref-
erences, and propose different strategies for ranking the
cloud plans. In [18], the authors propose a brokerage-based
system supporting user requirements on QoS levels (e.g.,
response time and throughput, which should be minimized
or maximized) to find optimal compositions of web services.
The work shares with ours the aim to provide a broker
supporting users in service selection. However, the scenario,
final goal, and requirements (QoS levels in [18] and generic
requirements and preference in our work) are different.

Some proposals reduce the problem of ranking cloud
services based on multiple attributes (in particular, QoS re-
quirements) to a problem of Multi-Criteria Decision-Making
(MCDM) and use specific approaches (e.g., the Analytic
Hierarchy Process) to solve it (e.g., [7], [19]), possibly taking
into consideration also the implicit vagueness in certain
requirements (e.g., [20], [21]). Although these solutions con-
sider some forms of user requirements and preferences, our
approach is more expressive as we support requirements
expressed as Boolean formulas and preferences at both
attribute and value level.

The problem addressed in this paper also resembles the
more general problem of selecting cloud providers under
specific circumstances (e.g., [22], [23], [24], [25], [26]). In [22],
the authors present an approach for ranking cloud providers
according to their ability in satisfying the requirements of
multiple applications. In [23], the authors present a solution
for allocating virtual machines to cloud providers so that all
user and cloud provider requirements on their placement
are satisfied. In [24], the authors illustrate a solution for
selecting a combination of cloud services according to users’
preferences expressed though fuzzy requirements. In [25],
[26], the authors show a solution for identifying an SLA be-
tween a user and a cloud provider that satisfies user require-
ments as well as dependencies among different properties.
While interesting, all these proposals are complementary to
our work, which focuses on the definition of an expressive
and flexible model for user requirement specification and
for cloud plan ranking.

7 CONCLUSIONS

To fully benefit from the wide availability of a multitude of
cloud providers and plans in the growing cloud market, it
is important to provide users with support for expressing
their needs and taking them into consideration in cloud
plan selection. Our work makes a step forward in this
direction by providing a flexible and expressive approach
that enables users to specify requirements they want to be
satisfied on plans as well as preferences they may have
on plan characteristics. Our approach identifies different
kinds of requirements, which users can define in a simple
and intuitive manner, and ensures their enforcement and
consideration in the identification of acceptable plans, as
well as in producing a preference-based ranking.
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