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"Foodstuffs become blood; 

blood becomes heart and brain, 

the stuff of thought and attitudes. 

Human fare is the basis of human culture and thought. 

If you want to improve the people give it, 

instead of declamations against sin, better food. 

Man is what he eats." 

Ludwig A. Feuerbach 
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ABSTRACT 

Successful animal growth depends on a combination of many factors related to health, 

management and nutrition. The use of veterinary drugs in food-producing animals for 

therapeutic purposes is regulated (corticosteroids, antibiotics) or banned (anabolic 

steroids) in the European Union; however, their use as growth promoters cannot be 

excluded. Moreover, the eventual presence of residues in food constitutes a fraud and a 

health issue for the consumers. For these reasons the need to find new accumulation 

matrices and new sensitive, specific and robust methods that are able to reveal the 

presence of drug residues is essential, based on the fact that there is a low percentage 

of non-conformity in the final reports of the National Residues Plan in recent years, 

although the threat of a disproportionate use of these substances is increasingly on the 

rise. In the light of these facts, there is the need to implement the framework of controls 

aimed to food safety, due to the inefficiency of tools for the study of these substances. 

Often, the use of conventional matrices, such as urine, liver or muscle, recommended 

for the official controls of illegal treatment are not completely satisfactory due to the fast 

elimination rate of the compounds or to the difficulties arising from the compounds 

characterised also by a pseudoendogenous nature. The debate about the presence of 

β-boldenone II phase metabolites and prednisolone in urine samples, owing to 

endogenous or illicit treatment, is currently ongoing within the European Union. These 

compounds have been appropriately defined “grey-zone substances”, for their double 

origin. The simple detection of some steroids in urine is currently considered to provide 

insufficient evidence of illicit treatment. Parameters such as cut-off levels, the presence 

of metabolites, or both, must be accounted for.  

As regards antibiotics, the overuse, over the last decades, as growth promoters in food 

producing animal have caused favorable condition about the threat of bacterial 

resistance. The antibiotics can directly affect the consumer in the form of residues from 

the food chain, or by accumulation in the environment via the application of manure to 

land as organic fertiliser, via sludge storage or by direct contamination of illicitly 

additivated water and feed. The main challenge is to monitor contemporally different 

antibiotic classes, in different steps of the food chain, trying to control this phenomenon.  
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On the other hand, food contamination by new environmental contaminants should not 

be neglected. In particular, perfluoroalkyl substances (PFASs) have recently aroused 

great scientific interest and concern for public health, due to the fact they have been 

found in appreciable concentrations in human serum. On the basis of EFSA requestes 

and of analytical problems associated with their determination many studies are 

recommended to monitor their presence, building a database on PFASs in food, 

evaluate the contamination levels of the individual compound and finally draw up a 

reliable risk assesstment of European population. 

This work was born with the aim to detect residues of the most commonly used drugs in 

broad sense, and then extended over time, also following requests from public and 

private entities, based on realistic situations of risk. 

Therefore, based on the mentionated issues, the development, optimisation and 

validation of multiresidual methods and the direct application on real unconventional 

matrices allowed us to have a greater amount of information in terms of number, 

frequency, and concentration of different classes of veterinary drugs than in 

conventional matrices. We confirmed the presence of pseudoendogenous compounds 

and their precursors in the unconventional matrix bile, for example. The study of the 

unconventional matrices, e.g. bovine teeth, has also allowed us to detect esterified 

forms of some drugs, discriminating them from the active free forms that could have a 

double, exogenous and endogenous, origin. Finally, this work demonstrates the utility of 

an eventual introduction, through the food of animal origin chain, of several monitoring 

points of different types of residues, consisting of non-edible matrice analyses that are 

not destructive of the product intended for the consumer. On the other hand, the 

sensitivity and good performance of the developed LC-HRMS methods for the emerging 

PFASs, could help further studies and also EFSA to increase the number of quantifiable 

data useful to extend a risk assessment in its final reports. 
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1. INTRODUCTION 

1.1. Food safety and analysis of residues 

In recent years, food safety has become a frequently recurring phenomenon, familiar to 

the general public also as a result of media attention. In the European Union (EU), 

consumer protection is a matter of extreme importance. This is expressed in the 

precautionary principle [1] based on the Treaty of Amsterdam [2].  

In the modern agricultural practises and intensive breeding systems several 

agrochemicals and veterinary drugs are being used or administered on a large scale, 

while industrialization has led to an increased potential exposure of food to chemicals 

from both industrial and different environmental sources. If we think to the European 

Council Regulation n°315/93 [3] definition of food contaminant as “any substance not 

intentionally added to food which is present in such food as a result of the production 

(including operations carried out in crop husbandry, animal husbandry and veterinary 

medicine), manufacture, processing, preparation, treatment, packing, packaging, 

transport or holding of such food or as a result of environmental contamination” we can 

understand how this issue is so wide and complicated to deal with. 

All these aspects also create a synergic increase of health risks to humans and animals 

and in concern regarding food safety.  There are well known cases of incidence of food 

toxicity, which caused either acute or chronic effect for consumers. Some examples of 

such effects relate to the observed precocious sexual development in children of Puerto 

Rico and Italy due to the presence of estrogenic compounds in food [4, 5] or the toxic 

effects of French and Spanish people for the high content of β-agonists in the liver [6, 

7]. 

As a response to these matters, have been implemented the regulations on use of 

chemicals, their residue levels and their monitoring in food.  

In this context the residue analysis play an important role to reach the required level of 

security, to collect reliable data and to allow adequate risk assesstment and subsequent 

protection action.  

A clear but generic definition of residue was given by De Brabander in his review: “a 

residue is a trace of a substance, present in a matrix after some kind of administration” 

[8]. Codex Alimentarius Commission precised the term as following: “Residues of 
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veterinary drugs include the parent compounds and/or their metabolites in any edible 

portion of the animal product, and include residues of associated impurities of the 

veterinary drug concerned” [9]. Whether applied to study the accumulation in matrices of 

animal origin after several treatments, or to study the metabolite profile, or the effect on 

trace level in food, the analysis of residues has its last aim the ability to estabilish if food 

is safe or not for human consumption, to safeguard animal welfare, and to ensure 

eventual illicit frauds as well. 

In the light of that mentioned above, there is the need to develop sensitive, selective 

and robust analytical methods for a wide variety of residues, as well as anabolic 

steroids and antibiotics in innovative matrices of animal origins. The results of such 

surveillance is to ensure that residues, if they are present if matrices of animal origins, 

respect the estabilished maximum residue limit (MRLs) where indicated, or in case of 

prohibited substances to monitor the compliance with the regulations. 

 

1.2. The use of veterinary drugs in breeding 

Veterinary drugs are usually employed for therapeutic, metaphylactic, prophylactic 

purposes as well as for improved breeding efficiency. Although most of them are 

regulated in the European Union and can only be administered under strict control in 

specific circumstances under prescription of responsible veterinarian, sometimes they 

are illegally used also as growth promoters [10]. In this last case, feed conversion 

efficiency is improved as well as the gain in protein deposition increasing the lean to fat 

ratio.  The result is usually a meat of poorer quality due to the increase in connective 

tissue production and collagen cross-linking for the reduction in protein degradation that 

allows more time for collagen molecules to cross-link and thus, increase the toughness 

of the meat [11]. The fat amount is also substantially reduced with the subsequent loss 

in juiciness and poorer flavour development. Moreover these substances produce a 

noticeable retention of water that is released during cooking. It is evident that there are 

important benefits for the farmers when using these illegal substances, but it is also 

evident that there are important prejudices for the processing industry, like lower quality 

of products and very important prejudices to the consumers, not only for the worse 

quality or the higher water content but for the presence of residues and the consequent 
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harmful health effects [12]. For all these reasons, there is an evident interest of both 

official organisms and food industry to control the presence of these substances in 

farms and foods of animal origin. 

The EU has strictly regulated controls on the use of veterinary drugs, particularly in food 

animal species, by issuing several Regulations and Directives.  

Council Regulation 2377/90/EEC [13], established maximum residue limits (MRLs) of 

veterinary medicinal products in foodstuffs of animal origin. 

Council Directive 96/23/EC [14] contains guidelines for controlling veterinary drug 

residues in animals and their products with detailed procedures for EU Member States 

to set up national monitoring plans, including details on sampling procedures. For any 

type of animal or food, there are two main groups of substances that must be monitored 

(Table 1): 

 unauthorized substances having anabolic effect that belong to Group A (are 

defined by Council Directive 96/22/EC [15] and Annex IV of Council Regulation 

2377/90/EC [13]); and, 

 veterinary drugs with established MRLs that belong to Group B. 

Criteria to define the performance of analytical methods and the interpretation of results 

have been established in Commission Decision 2002/657/CE [16]. 
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Table 1. List of monitored substances in animal productions. 

Group A: substances having anabolic effects and unauthorized substances 

• Stilbenes, stilbene derivatives, and their salts and esters      

• Antithyroid agents  
     

  

• Steroids  
     

  

• Resorcylic acid lactones including zeranol 
  

  

•Agonists  
     

  

• Compounds included in Annex IV to Council Regulation 2377/90/EC [13]   

Group B: veterinary drugs and contaminants 

• Antibacterial substances, including sulphonamides and quinolones 

• Other veterinary drugs 

Anthelmintics  

Anticoccidiostats, including nitroimidazoles  

Carbamates and pyrethroids 

Sedatives  

Non-steroidal anti-inflammatory drugs (NSAIDs)  

Other pharmacologically active substances  

• Other substances and environmental contaminants 

Organochlorine compounds including PCBs  

Organophosphorus compounds  

Chemical elements  

Mycotoxins  

Dyes  

Others  
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1.3. Corticosteroids: biosynthesis, regulation and metabolism 

Corticosteroids are group of natural and synthetic analogues of the hormones secreted 

by the hypothalamic-anterior pituitary-adrenocortical (HPA) axis, more commonly 

referred to as the pituitary gland. These include glucocorticoids, which are anti-

inflammatory agents and play significant roles in carbohydrate, protein, and lipid 

metabolism, the immune response, and the response to stress; mineralocorticoids, 

which control salt and water balance primarily through action on the kidneys; and 

corticotropins, which control secretion of hormones by the pituitary gland. Natural 

glucocorticosteroids have also a mild mineralocorticoid activity and therefore affect fluid 

and electrolyte balance.  

The adrenal cortex secretes mineralocorticosteroids, glucocorticosteroids, and sex 

hormones, and it is composed by 3 distinct layers (Figure 1). 

 

Figure 1. Structure of the adrenal cortex (Source: http://fontanillacjnotes.blogspot.it/2013/04/structure-of-

adrenal-cortex-and.html) 

 

 The zona glomerulosa is in the outer layer were the mineralocorticoid 

aldosterone is produced to regulate the body's concentration of electrolytes, 

primarily sodium and potassium, by acting on the distal convoluted tubule of 

kidney nephrons to increase sodium reabsorption, increase potassium excretion 

and water reabsorption through osmosis [17].  
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 The zona fasciculata occupies about 70% of the cortex and it is responsible of 

the production of glucocorticosteroids with well-known effects on the metabolism 

of carbohydrate and protein. 

 The zona reticularis, the innermost layer, produces glucocorticosteroids and 

small amounts of sex androgens, oestrogens and progestins, involving in 

reproductive function [18]. 

The synthesis of glucocorticosteroids starts from the common precursor 

cholesterol (Figure 2). Most steroidogenic reactions are catalysed by enzymes of 

the cytochrome P450 family. They are located within the mitochondria and 

require adrenodoxin as a cofactor (except 21-hydroxylase and 17α-hydroxylase). 

 

Aldosterone and corticosterone share the first part of their biosynthetic pathway. 

The last part is mediated either by the aldosterone synthase (for aldosterone) or 

by the 11β-hydroxylase (for corticosterone). These enzymes are nearly identical 

(they share 11β-hydroxylation and 18-hydroxylation functions), but aldosterone 

synthase is also able to perform an 18-oxidation. Moreover, aldosterone 

synthase is found within the zona glomerulosa at the outer edge of the adrenal 

cortex; 11β-hydroxylase is found in the zona fasciculata and zona glomerulosa 

[17]. 
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Figure 2. Steroidogenesis, including corticosteroid biosynthesis (Source: 

https://en.wikipedia.org/wiki/File:Steroidogenesis.svg. Accessed Figure 3: Source: 

https://embryology.med.unsw.edu.au/embryology/index.php/BGD_Lecture_Endocrine_Histology). 

 

Glucocorticosteroids are secreted into the systemic circulation, reversibly bound (80%) 

to a specific α globulin, called transcortin or corticosteroid-binding globulin (CBG), while 

10% is bound to serum albumin and the remaining 10% is the biologically active 

unbound hormone [19]. The release of glucocorticosteroids is stimulated by the 

adrenocorticotropic hormone (ACTH, also called corticotropin), At the physiological 

level, under stress conditions or hypoglycemia, the hypothalamus secretes 

corticotropin-releasing factor that induces the pituitary prior to the production of the 

hormone ACTH, which in turn, stimulates the release of glucocorticoids in the adrenal 

glands. The mutual aid of the three glands is defined as Hypothalamus-Pituitary-Adrenal 

axis (HPA). Free glucocorticosteroids inhibit ACTH secretion, and the degree of pituitary 

inhibition is proportional to the circulating glucocorticoid level (Figure 3). The production 

and release of these hormones follows a cyclical trend (circadian rhythm), where the 

highest circulating concentrations generally occur in the early hours of the morning. 

Circulating cortisol is released depending on the intensity of the stress. In fact, the 
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literature [20] on glucocorticoid metabolism in animals, especially in cattle, is mainly 

focused to evaluate animal welfare, as possible indicator of the stress influenced by 

several factors as transport, copulation, courtship, hunting and any physiological 

stressors associated with invasive procedures. 

 

Figure 3. Mechanism of the Hypothalamus-Pituitary-Adrenal Axis (Source: synergyhw.blogspot.com). 

 

Corticosteroids are metabolised principally in the liver, but also in kidney and mammary 

glands, giving water-soluble inactive conjugates excreted in urine (75%) and faeces 

(25%). Most of the cortisol is reduced to dihydrocortisol and then to tetrahydrocortisol, 

subject to glucuronation [19]. 

Cortisol (CL) can be interconverted to the non-active hormone, cortisone (CN) through 

the activity of 11β-hydroxysteroid dehydrogenases (11β-HSD), which has two isoforms: 

type I promotes the conversion of CL into CN, while type II catalyses the conversion of 

CN into CL [21] (Figure 4).  

  

http://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiT8tD3tqbVAhVDK1AKHXGlDV8QjRwIBw&url=http://www.codicepaleo.com/stanchezza-surrenale/&psig=AFQjCNGfS_H7RWpdxAjetLtLiFdORyUmVQ&ust=1501140516811328
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Figure 4. Interconversion of cortisol and cortisone by the action of 11β-HSD (Source: 

http://www.jdsjournal.com/article/S0923-1811(16)30131-1/fulltext). 

 

 

1.3.1 Therapeutic use of corticosteroids in breeding 

Adapted modifications to natural corticosteroids have allowed producing a large number 

of synthetic molecules, with a 21-carbon steroid skeleton, synthesised from cholic acid 

obtained from cattle or steroidal saponins in plants. These compounds can be used 

pharmacologically and therapeutically in the human and veterinary field. The latter are 

produced in order to have more powerful and selective compounds than natural ones. 

From a therapeutic point of view, glucocorticoids are used predominantly for their anti-

inflammatory and antiallergic activity. Cortisone treatment can take place by oral 

administration, intramuscular, intravenous, subcutaneous, or local administration. These 

drugs have a rapid absorption when administered orally, reaching the maximum blood 

peak after 2 hours; via i.m. the maximum blood levels are reached within one hour. The 

percentage of binding of the synthesis compounds to the plasma proteins is lower than 

that of the corresponding endogenous hormones (which is about 90%) [22]. 

This explains the fact that synthetic glycocorticoids have a greater ability to move to the 

tissues than natural ones, exerting a faster and more intense action.  

Therapeutic applications [23] cover the treatment of: collagen diseases (rheumatoid 

arthritis, lupus erythematosus), allergic diseases (bronchial asthma, hay fever), 

dermatological diseases (urticaria, dermatitis and psoriasis), haematological diseases 

(leukemia, autoimmune haemolytic anemia), various diseases (multiple sclerosis, gout, 

emphysema). However, the use of corticosteroids at the therapeutic doses causes a 

series of serious effects: excessive sodium and potassium retention, edema 

(mineralocorticoid effect), increased gastric acidity, hyperglycemia, hypertension, 

susceptibility to infections, redistribution of adipose tissue, behavioral disorders 

http://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj5yrLMyfTWAhXEExoKHUItDVgQjRwIBw&url=http://www.journals.elsevierhealth.com/article/S0923-1811(16)30131-1/fulltext&psig=AOvVaw0PA_Pn_hwyxiMhP-5qAi7-&ust=1508223539446916
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(irritability, insomnia, etc.). All these effects are the expression of an over-emphasis on 

the physiological effects of these hormones. In bovine, in particular, despite the use of a 

large dose of synthetic glucocorticoids reduces the growth rate of animals, the 

macroscopic picture shows morphological alterations as well as the reduction in volume 

and weight of thyme (50-100 g up to the complete atrophy, against 400-800 g of a 

normal thymus) and adrenal glands. The histological framework, on the other hand, 

denotes thymus lymphocytic atrophy and depletion, fatty invasion and fibrosis, as well 

as hypothyroidism of the adrenal cortical [24]. Finally, their teratogenic effect pregnancy 

is well known [25]. 

 

1.3.2. The prednisolone case: pseudoendogenous or illicit treatment? 

Prednisolone (PL) is one of the most debated glucocorticosteroid, structurally different 

from CL only by the presence of the double bound at the position C1-C2 (Figure 5). This 

variation results in an anti-inflammatory activity 3–4 times higher than that of CL [26]. 

The use of PL is allowed in cattle only for therapeutic purposes and is regulated by 

Commission Regulation (EU) N°37/2010 [27], that estabilished MRLs for edible 

matrices. 

In 2012 the Italian Ministry of Health, recommended a cut-off level 5 of µg L-1 for bovine 

urine, above which a sample could be considered non-compliant, indicating the potential 

endogenous origin of PL in urine on the basis of scientific evidences [28]. 

Until the beginning of the XXI century, PL was considered an exogenous compound, 

when an increased frequency of positives for PL was detected in urine samples at 

slaughtering, puting in doubt the hypothesis of illicit treatment. A study carried out in 

2008/2009 in the North of Italy (Lombardy) on 196 bovine liver and urine samples taken 

at the slaughterhouse, showed the absence of PL in all liver sample and 72% of non-

compliant for urines. Considering the high number of positive samples one of the 

possible explanations was the production of PL as a consequence of the stress 

transport and pre-slaughter stress. The Authors demonstrated this possible relationship 

by tetracosactide exacetate treatments, a synthetic analogue to ACTH hormone, to 

simulate stress. From the urine analysis, positivity to PL was accompanied by high 

levels of cortisol and cortisone [29]. 
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The metabolic pathway of the endogenous production of prednisolone has not yet been 

clarified. Another study [30] dealt with a comparative study on cow urine samples 

collected at the farm and urine and adrenal glands (positive for corticosteroid in 

breeding) taken at the slaughterhouse from the same animals, assuming a conversion 

of endogenous CL to PL (Figure 5). The adrenal glands were positive for the presence 

of PL and could therefore be the seat of endogenous synthesis of PL, even if there are 

contrasting opinions. 

 

Figure 5. Conversion from cortisol to prednisolone (Source: 

http://www.sciencedirect.com/science/article/pii/S0039128X12003108 with some modifications). 

 

Moreover, the presence of trace amounts of the corticosteroid in urine could be a result 

of intestinal dehydrogenation of cortisol operated by bacteria [31]. 

The formation of PL from CL could be also a result of microbiological contamination of 

soil bacteria, especially when urine samples are taken at the slaughterhouse directly 

from the bladder, so practically free from fecal contamination [32]. 

Another possible explanation indicates the possibility of PL neo-formation from natural 

feed ingredients (phytosterols) under poor storage [33]. 

The endogenous origin of PL has also been described for equine, pig and human urine 

[34-37].  

Concerning the prednisolone issue resulting from Illegal treatments, a decrease in 

cortisol and endogenous cortisone levels has been demonstrated due to the increase in 

the activity of 11β-hydroxy steroid dehydrogenase [38]. 

 

1.3.3. Corticosteroids and legislations 

European Union banned the use of corticosteroids as growth promoters (either alone or 

in a cocktail with other active principles, as well as β-agonists or steroid) allowing their 

use only for therapeutic purpouses [14]. The Commission Regulation (EEC) n° 37/2010 
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established MRLs for edible matrices (muscle, kidney, liver and milk from different 

species) setting also a withdrawal period between treatment and slaughter, as indicated 

in the Annex and reported in Table 3 [27].  The monitoring control for the presence of 

corticosteroids is performed by collecting the edible tissues, for which MRLs are set, at 

the slaughterhouse, and at farm through the analysis of urine, even if for this matrix no 

MRL were set. In Italy, the National Residual Plan (NRP), estabilished in 1988 by the 

Ministry of Health-Directorate General for Health and Food Safety and Nutrition, is an 

important surveillance plan designed to detect or verify the use of prohibited 

substances, the abusive administration of authorized substances, the compliance of 

residues of veterinary drugs with MRL and maximum levels of environmental 

contaminants established by national and Community legislation. The official control 

system is carried out by the competent authorities (Regions and Autonomous 

Provinces, National Reference Laboratories and Istituti Zooprofilattici Sperimentali). 

The NRP defines the species and animal categories to be sampled, the category of 

residues or substances to be investigated, the sampling strategies, levels and sampling 

frequencies, according to the legislation and the directions of the Commission European 

[39]. Italy includes corticosteroids in the Group B2f of monitored substances (Section 1, 

Table 1), following the suggestion of the European Commission. However, 

corticosteroids without any indication or limit of control are considered illicit [15, 16]. 
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1.3.4. Analytical approaches for corticosteroids 

As mentioned above, the NRP suggests urine as control matrix in the farm and liver and 

kidney at the slaughterhouse [27, 39]. The analytical determination can be performed 

with different techniques: 

• immunochemical tests (ELISA), used for screening analyses, when a large number of 

samples are to be processed and get a quick response. However, the low specificity 

and the possibility to obtain false positives due to the compounds cross-reactivity makes 

this test less reliable than the others.  

• Instrumental techniques ss confirmatory analyses such as: 

- GC-MS (Gas Chromatography-Mass Spectrometry), specific and sensitive 

chromatographic technique constrained by the need to derivatize the corticosteroids in 

the pre-treatment phase of the sample; 

- HPLC (High Performance Liquid Chromatography), chromatographic technique which, 

when combined with a DAD (Diode Array Detection) detector, is affected by low 

sensitivity and specificity, but which becomes highly sensitive and specific if coupled to 

a mass spectrometer. In this last case, there is the possibility of working with two 

different ionization techniques and interfaces: electrospray ionization source (ESI) and 

atmospheric pressure chemical ionization (APCI).  

In case of instrumental analysis the sample needs some clean-up and purification 

phases that usually for urine include: a preliminary step of enzymatic hydrolysis to 

obtain the free compounds, before the exctraction step. However, some studies avoid 

this preliminary phase of deconjugation [40, 41]. Subsequently, liquid-liquid extraction or 

solid liquid extraction (SPE) is carried out using different organic solvents, as well as 

diethyl-ether, tert-butyl-methyl-ether or mixture of these solvents. A purification step, by 

C18 polymeric-based sorbents HLB Oasis, is usually done to eliminate interferences 

before the instrumental analysis [42]. The purification technique by immunoaffinity 

columns is the most specific and effective [43]. 

Regards solid and heterogeneous matrices, a defatting step using n-hexan is necessary 

prior the purification step or the quick, easy, cheap, effective, rugged, and safe 

(QuEChERS)-based extraction [44] is directly performed. 
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1.4.  Anabolic steroids: biosynthesis, regulation and metabolism 

Anabolic steroids, also known more properly as anabolic androgenic steroids (AAS), are 

molecules that include natural androgens like testosterone as well as synthetic 

substances that are structurally related and have similar effects to testosterone. 

Although there was an attempt to dissociate the androgenic and anabolic effects, 

complete separation, as yet, it has been impossible. However, there are now products 

available with more androgenic and substances with more anabolic properties. The 

androgenic effect primarily includes virilizing aspects, including induction of the 

development and maintenance of masculine secondary sexual characteristics such as 

the growth of the vocal cords and body hair. The anabolic action affects protein 

metabolism by stimulation of protein synthesis from amino acids, inhibition of protein 

breakdown, bone remodeling and growth, and stimulation of bone marrow, which 

increases the production of red blood cells [45, 46]. 

Testosterone (T) is the main male sex hormone. Like other steroid hormones T is 

derived from cholesterol. The synthesis pathway of T is represented in Figure 6. The 

largest amount of T is produced by testes, but it is also synthesized in smaller quantities 

by the theca cells of the ovaries, the zona reticulosa of the adrenal cortex, and the 

placenta. Substantial amounts of the testosterone in women are also produced from 

estradiol by reverse aromatization in the liver, adipose cells, and other peripheral 

tissues.  

Figure 6. Biosynthetic pathway of testosterone from cholesterol (Source: 

http://www.endotext.org/chapter/page/9/). 
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In males, testosterone is synthesized primarily in Leydig cells. The number of Leydig 

cells in turn is regulated by luteinizing hormone (LH) and follicle-stimulating hormone 

(FSH). In addition, the amount of testosterone produced by existing Leydig cells is 

under the control of LH, which regulates the expression of 17β-hydroxysteroid 

dehydrogenase [47]. 

The amount of testosterone is regulated by the hypothalamic–pituitary–testicular axis 

(Figure 7). When testosterone levels are low, gonadotropin-releasing hormone (GnRH) 

is released by the hypothalamus, which in turn stimulates the pituitary gland to release 

follicle-stimulating hormone (FSH) and luteinizing hormone (LH). These latter two 

hormones stimulate the testis to synthesize testosterone. Finally, increasing levels of 

testosterone, through a negative feedback loop, act on the hypothalamus and pituitary 

to inhibit the release of GnRH and FSH/LH, respectively [48]. 

 

Figure 7. Hypothalamic–pituitary–testicular axis and synthesis of testosterone (Source: 

https://supplementsinreview.com/testosterone/d-aspartic-acid-testosterone/). 

 

In plasma, 98% of testosterone is bound to protein, with 65% bound to sex hormone-

binding globulin (SHBG) and 33% bound weakly to albumin [49]. About 2% of T is free 

and available for the interaction with receptor cells. 

The mechanism of action of T begins with the transportation of free testosterone (T) into 

the cytoplasm of target tissue cells, where it can bind to the androgen receptor, or can 
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be reduced to 5α-dihydrotestosterone (DHT) by the cytoplasmic enzyme 5α-reductase. 

DHT binds to the same androgen receptor even more strongly than testosterone, so 

that its androgenic potency is about 5 times that of T. [50] The T-receptor or DHT-

receptor complex undergoes a structural change that allows it to move into the cell 

nucleus and bind directly to specific nucleotide sequences of the chromosomal DNA. 

The areas of binding are called hormone response elements (HREs), and influence 

transcriptional activity of certain genes, producing the androgen effects. 

The mechanism of action of AAS may differ between compounds because of variations 

in the steroid molecules. These variations are responsible for differences in the 

specificity of binding to receptor proteins or to interaction with various steroid-

metabolising enzymes [51, 52]. With respect to interactions with intracellular steroid 

receptor proteins, several pathways can be distinguished.First, binding with high affinity 

to androgen receptors – these steroids are therefore recognised as strong androgens 

(e.g. 19-nortestosterone). Secondly, several compounds are characterised by binding 

with low affinity to androgens and therefore are weak androgenic substances. Thirdly, 

some AAS do not bind to the androgen receptor at all [53]. These steroids are supposed 

to act after biotransformation to more active compounds or via alternative mechanisms 

of action. Furthermore, it has been established for AAS that other mechanisms may 

also be involved. 

The metabolism of AAS generally occurs in two phases, I and II in order to convert them 

into more polar compounds to facilitate their elimination. Both testosterone and 5α-DHT 

are metabolized mainly in the liver. Approximately 50% of testosterone is metabolized 

through conjugation into testosterone glucuronide and to a lesser extent testosterone 

sulfate by glucuronosyltransferases and sulfotransferases, respectively. The conjugates 

of testosterone and its hepatic metabolites are released from the liver into circulation 

and excreted in the urine and bile. Only a small fraction (2%) of testosterone is excreted 

unchanged in the urine [54]. 

1.4.1. Therapeutic use of anabolic steroids in breeding 

Steroid sex hormones are part of the endocrine system and are found in physiological 

ranges in animal biologic matrices. Therefore, their mere presence in animal need not 
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always be taken as a proof of illegal anabolic use. The physiological presence and 

variation of these hormones according to age, sex and many other factors make 

identification of abuse of these drugs for anabolic purpose [55]. Therapeutic 

administration of hormones and their effects on productivity have been investigated for 

years in numerous studies [56-58]. The administration of anabolics, as growth 

promoters in breeding, results in meat with a higher content of muscle tissue and lower 

amount of adipose tissue, i.e. meat of better organoleptic properties [59]. The anabolic 

effect is obtained through direct and indirect mechanisms of action resulting in 

enhanced nitrogen retention and increased protein synthesis. The efficiency of animal 

growth promotion (gain up to 20%) also depends on the animal breeding, age, 

reproductive status, and route of anabolic steroid administration [60]. When 

administered orally, the hormones are characterized by low bioavailability for their rapid 

metabolic transformation. Steroids are usually administered by subcutaneous 

implantation near the ears as synthetic ester, mostly as propionic or benzoic acid, but 

also undecanoate or undecylenate. Esterification normally determines an increase of 

the half-life of the steroids by 40 to 50% [61, 62]. The treatment with anabolic steroids is 

often explicated either individual substances or as cocktails tin order to have a 

synergistic effect and try to sidestep controls. 

1.4.2. Boldenone: another noteworthy case  

Boldenone or 17β-boldenone (β-bold) is one of the most famous anabolic steroid 

commonly used by injection in different preparations as ester forms (undecylenate or 

undecanoate), either for human, horse or cattle particularly but also orally as boldione or 

Androstadienedione (ADD), the oxidised precursor of boldenone [63]. 

β-bold differs from testosterone for the dehydrogenation of the carbon in the first 

position. The chemical structure of the analyte, including the structure of its epimer, 

17α-boldenone (or α-bold,) are shown in Figure 8. Like the other androgenic steroids, β-

bold is classified by the International Agency for Research on Cancer (IARC) as a 

probable human carcinogen [64]. 
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Figure 8. Structure of β-and α-boldenone (Source: 

http://www.sciencedirect.com/science/article/pii/S0960076015001478 with some modifications). 

 

The debate about the presence of β-boldenone II phase metabolites in urine samples, 

owing to endogenous or natural origin, or illicit treatment, is currently ongoing within the 

European Union since 1996 [65]. In fact, gradual increase of positive samples 

containing boldenone in different States of the European Union doubted the purely 

exogenous origin of the drug. This compound togheter with prednisolone (discussed in 

Section 1.3.2.) have been appropriately defined “grey-zone substances”, for their double 

origin. This concept was well defined in 2009 by Scarth et al. [66], to identify the illicit 

abuse of exogenous hormones, synthetically produced, that “are also known to be 

endogenous under certain conditions, dubbed “pseudo-endogenous” due to their dual 

synthetic/endogenous nature”. 

Several studies were also performed to define possible metabolites to use as markers in 

this discrimination [63, 66]. Already in 1983, Dumasia et al. [67]  showed that 

metabolites were mainly excreted as glucu- and sulfo-conjugated compounds, after the 

intramuscular administration of radioactive-labelled β-bold to castrated male horses. 

Subsequently, they demonstrated that the epimer of boldenone tends to be conjugated 

with the glucuronic acid, while β-bold with sulphate [68]. Studies in vivo were firstly 

performed in human [63] and then in cuttle [69] to study the boldenone metabolism.  

Also in pigs, the endogenous production of β-bold was confirmed and resulted gender 

dependent, in fact β-bold was not detect in female even if a very low concentration in 

urine result as a result of faecal contamination [70]. 

 The simple detection of these substances in bovine urine is currently considered to 

provide insufficient evidence of illicit treatment. Parameters such as cut-off levels, the 

presence of metabolites, or both, must be accounted for. The α-epimer of boldenone 

was proposed, in 2003, as a naturally occurring steroid in bovine animals by experts 

within the EU, who set the “natural threshold” for the α-boldenone conjugates in urine at 
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2 ng mL-1: a concentration above this could come from illicit treatment [71]. The 

authorities responsible for the control of residues in food must, therefore, consider either 

the possible endogenous production of these molecules or the existence of natural feed 

ingredients, such as phytosterols, present in vegetable fat, as possible precursors to 

boldenone [72, 73]. 

The fecal contamination of urine can also generate false positives because de novo 

synthesis of α-boldenone and metabolites occurs naturally in bovine faeces [74-76] Le 

Bizec [77] and Destrez [78] carried out several studies on β-bold with the purpose to 

clarify its metabolism and to discriminate the endogenous production from illegal abuse. 

They suggested sulfo-conjugated form of β-bold in urine as biomarker to indicate an 

illicit administration, while Blokland et al. in 2007 [79] proposed 6β-hydroxy-boldenone. 

From all considerations, it emerges that the ultimate answer concerning the topics of 

boldenone in bovine urine has not been accomplished yet; therefore, the topic of their 

endogenous production in bovine animals needs to be further explored. 

1.4.3. Anabolic steroids and legislations 

In the European Union, the presence of β-bold conjugated at any concentration in 

bovine urine is considered as an evidence of illegal treatment, while the detection of α-

bold conjugated higher than 2 ng mL-1 is considered a suspicion of illegal use [71].  

A Minimum Required Performance Levels (MRPL) for the analysis of β-bold and α-bold 

in bovine urine is set at 1 ng mL-1. The analytical methods provided by the NRP are 

both screening methods (ELISA) and confirmatory methods using liquid 

chromatography coupled to mass spectrometry (LC-MS/MS) [80].  

The use of anabolic steroids, in general, is banned by EU for growth promoter 

purpouses [14, 15]. 

1.4.4. Analytical approaches for anabolic steroids 

To monitor illegal use, urine and manure which are available before the animals are 

slaughtered and which contain the highest hormone concentrations, are mostly 

selected. After slaughtering, liver, kidney, hair, fat or meat can be used for monitoring 

these compunds according to the EU criteria [14, 16]. Chromatographic techniques 
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combined with mass spectrometry, should be used to confirm the identity of hormone 

residues detected in the samples. Methods used for control programmes preferably 

should have a multiresidual character so that new steroids can easily be included [81]. 

Most literature methods for analysis of urine and liver are based on the analysis of the 

free steroids, requiring their release from glucuronide and/or sulphate [82, 83]. Helix 

pomatia juice, whichs contains -glucuronidase and arylsulphatase, is widely used to this 

end.  

Several authors use liquid/liquid extraction (LLE) followed by a solid phase extraction 

(SPE) purification step [84, 85]. With solid matrices a deproteinization and a defatting 

step are usually carried out before SPE. 

Immuno-affinity extraction has been shown as another feasible procedure for trace 

analysis of anabolic steroids. As more antibodies become available and as procedures 

to develop them become more sophisticated it is likely that more methods should be 

developed [86]. 

Anabolic compounds have been developed and analysed using GC–MS, for the good 

sensitivity and sufficient selectivity as a confirmatory technique. However, GC–MS 

requires derivatization of the steroids by means of silylation, acylation or 

oxime/silylation, depending on the properties of the individual steroids. The lack of a 

universal derivatization agent, the failure of some steroids to give a single reaction 

product, and problems with chemical rearrangement of others, strongly stimulated the 

development of LC–MS-based methods [81]. 
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1.5.  Antibiotics: general aspects, synthesis and mechanisms of action 

The term “antibiotic” was invented by Selman Waksman, who discovered the antibiotic 

streptomycin. According to his definition an antibiotic is a chemical substance that is 

produced by microorganisms and that have the capacity to selectively inhibit the growth 

of and even to destroy other microorganisms. Soon scientists developed synthetic 

compounds that had antibiotic properties but were better than the natural ones, so 

antibiotics can be defined as molecules that either kill or inhibit growth of 

microorganisms and causes minimum damage to the host cells. This definition is still 

very restrictive because of the term “microorganism.” Most scientists would not consider 

viruses as microorganisms, but there are antiviral drugs available which have the same 

action mechanism of antibiotics [87]. The terms “antimicrobial,” “antibacterial,” and 

“antibiotic” are so confusing and interchangeably by US Food and Drug Administration 

(FDA) while at the same time reports this sclarification: “The term ‘antimicrobial’ refers 

broadly to drugs with activity against a variety of microorganisms including bacteria, 

viruses, fungi, and parasites” [88]. After Louis Pasteur observed, "if we could intervene in 

the antagonism observed between some bacteria, it would offer perhaps the greatest 

hopes for therapeutics" [89], in the late nineteenth century, several researchers have 

been searching for strategies to kill disease-causing germs. One powerful approach, 

developed by Pasteur was to use harmless bacteria to destroy harmful bacteria. 

Another approach was to use dyes as antibacterial agents because they were known to 

bind bacteria [90]. Arsenical compounds constituted another class of drugs used as 

chemotherapeuticagents [91]. In 1928, Fleming casually discovered, penicillin, the first 

scientifically studied antibiotic [92]. He initially characterized some of its antibacterial 

properties, but its further development was obtained by trained chemists. 

An antibiotic should have the following other properties besides being able to kill 

microorganisms: 

 water solubility: the antibiotic must be soluble in water to a sufficient extent to be 

transported through body fluids to the infected sites; 

 selectivity: the antibiotic must kill or inhibit the infecting microorganism but cause 

minimum harm to the host cells; 
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 few side reactions: side reactions of the antibiotic should be minimised. These 

include possible allergic reactions and negative interaction with food or other 

drugs that the patient may be taking; 

 stability: the antibiotic should have a long shelf life to be economically useful; 

 low cost: An antibiotic should be low enough for patients to be able to afford it; 

 slow resistance development: an ideal antibiotic will be the one to which 

resistance develops at a slow rate, due to the fact that microorganisms have 

developed resistance to most antibiotics [87];  

While some antibiotics are chemically synthesised, almost all antibiotics, used 

everyday, are produced by microorganisms. Almost all antibiotics known today, have 

been isolated from microorganisms present in the soil. Natural antibiotics are products 

of their secondary metabolic pathways, which are not necessary for their survival. 

The pathways for biosynthesis of antibiotics are turned off during exponential growth 

phase for the abundance of nutrients. However, in this stationary phase of growth, they 

compete with other microorganisms for the limiting amount of nutrients and so they turn 

on the pathways for biosynthesis of antibiotics and win the competition by killing the 

neighboring bacteria. Moreover, the surviving bacteria use the nutrients that are 

released when the dead bacterial cells lyse. 

Microorganisms which product antibiotics need to protect themselves from those 

antibiotics. Some antibiotics are exported into the environment immediately after their 

synthesis to keep low their intracellular concentrations. Some antibiotic producing 

microorganisms also make a resistance protein that inactivates their own antibiotic. 

Antibiotics in the active form are released outside but if any antibiotic comes back into 

the cell is inactivated by the resistance protein. Other antibiotics, as well as macrolides, 

are exported after the sythesis to the outside in an inactive form and then converted to 

the active one outside. Finally, others microrganisms modify the target of the antibiotic 

within themselves; e.g they alter their own cell wall using different enzymes that are not 

targeted by the producted antibiotics [93]. 

One way to classify antibiotics is based on their effect on growth and survival of the 

bacteria. An antibiotic is bacteriostatic if it inhibits growth of bacteria but does not kill 

bacterial cells at a safe and practically achievable concentration. On the other side we 
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define bactericidal the antibiiotics that irreversible damage bacterial cells thereby killing 

them at a safe and practically achievable concentration [94, 95].  

Another way to classify antibiotics is based on the microbial cell targets that they 

interact with to cause their inhibition action (Figure 9). Six major categories of antibiotics 

can be listed:  

1) those that inhibit synthesis of bacterial cell wall,  

2) those that disrupt the cell membrane, 

3) those that inhibit the synthesis of important metabolites, 

4) those that inhibit replication through DNA synthesis, 

5) those that inhibit transcription acting on RNA synthesis,  

6) those that inhibit translation interfering with protein synthesis [87]. 

Further classification is based on their target specificity: "narrow-spectrum" antibiotics 

target specific types of bacteria, such as gram-positive or gram-negative, while “broad-

spectrum” antibiotics affect a wide range of bacteria. 

 

Figure 9. Targets for antibiotics (Source: https://www.intechopen.com/books/actinobacteria-basics-and-

biotechnological-applications/production-of-antibacterial-compounds-from-actinomycetes). 
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1.5.1. Antibiotic classes 

Antibiotics can be divided in these main following classes: 

 β-lactams: consist of two classes of thermally labile compounds, penicillins and 

cephalosporins. Both classes contain a bulky side-chain attached to 6-

aminopenicillanic acid and 7-aminocephalosporanic acid nuclei, respectively (Figure 

10). The five-membered ring in penicillin contains a sulfur atom and is called the 

thiazolidine ring. The two rings together is called the penam ring and along with the 

methyl and carboxyl substituents is called penicillanic acid and is biosynthetically 

formed from the amino acids cysteine and valine. Penicillins are acyl derivatives of 

6-amino penicillanic acid. Other semisynthetic derivatives of penicillin are made from 

6-amino penicillanic acid which is obtained by deacylation of penicillin. In 

cephalosporins the β-lactam ring it is fused to a six-membered ring instead of a fi ve-

membered ring. Also cephalosporins have more variable substituents (R1 and R2) in 

the rings [87].  

The presence of an unstable four-member ring in the β-lactam structure makes 

these compounds prone to degradation by heat and in the presence of alcohols. 

Penicillins are also readily isomerized in an acidic environment [96]. About 55 % of 

all antibiotics used globally belong to this class [87]. Cephalosporins and penicillins 

are produced by different microorganisms but the pathways for their synthesis are 

similar. Their mechanisms of action are also similar. β-Lactams inhibit the formation 

of peptidoglycancross-links in the bacterial cell wall; this is achieved through binding 

of the four-membered β-lactam ring to the enzyme DD-transpeptidase. As a 

consequence, this enzyme cannot catalyse the formation of these cross-links, and 

an imbalance between cell wall production and degradation develops, causing the 

cell to rapidly die [97, 98]. Penicillins are derived semisynthetically and are active 

against many gram-positive and gram-negative bacteria. However, they are readily 

destroyed by the β-lactamases. Many members of the group are acid stable and are 

administered either orally or parenterally as suspensions in water or oil or as water-

soluble salts. The trihydrate forms of the semisynthetic penicillins have greater 

aqueous solubility than the parent compounds and are usually preferred for both 
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parenteral and oral use. The combination of β-lactamase inhibitors and broad-

spectrum penicillins markedly enhances the spectrum and action efficacy. Penicillins 

are generally excreted unchanged, but fractions of a given dose (<20%) may 

undergo metabolic transformations.  

Cephalosporins have a broader spectrum of activity than penicillins and are effective 

against both gram-negative and gram-positive bacteria. Cephalosporins are 

classified by generations (1–4). Later generations are more resistant to β-lactam 

destruction and are often characterized by extended but variable spectra. The few 

acid stable cephalosporins are used either as the free base form for oral 

administration or as sodium salts in aqueous solution for parenteral delivery. 

Cephalosporins are distributed into most body fluids and tissues, including kidneys, 

lungs, joints, bone, soft tissues, and the biliary tract. Plasma half-lives of 

cephalosporins are quite variable but generally longer than penicillins. Most 

cephalosporins are renally excreted. Biliary elimination may be also significant [99]. 

 

Figure 10. General structure of β-lactams, penicillins and cephalosporins (Source: 

https://www.intechopen.com/books/antibacterial-agents/classification-of-anti-bacterial-agents-and-

their-functions). 

 

 Tetracycline: they are broad-spectrum antibiotics against gram-positive as well as 

gram-negative bacterias. The basic structure of tetracyclines is a hydronaphthacene 

skeleton fused with four rings [97]. The different tetracyclines differ amongst them in 

their substitution patterns at the C5, C6 and C7 positions (Figure 11). 

Chlortetracycline, doxytetracycline, oxytetracycline, tetracyline are the most 

commercially available compounds, commonly applied to food-producing animals. 

Due to the presence of two ketone groups in positions 1 and 11, tetracyclines can 

readily chelate to metal ions such as calcium, magnesium, aluminum, and iron which 

prevents its absorption from the digestive system and so should not be administered 

with food [87]. All of the tetracycline derivatives are crystalline, yellowish, amphoteric 
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substances that, in aqueous solution, form salts with both acids and bases. The 

most common salt form is the hydrochloride, except for doxycycline, which is 

available as doxycycline hyclate or monohydrate. The tetracyclines are stable as dry 

powders but not in aqueous solution, particularly at higher pH ranges (7–8.5). 

Preparations for parenteral administration must be carefully formulated, often in 

propylene glycol or polyvinyl pyrrolidone with additional dispersing agents, to provide 

stable solutions [99]. There are several tetracyclines all of which have the same 

mechanism of action. Their mechanism of action is based on the inhibition of protein 

synthesis through the inhibition of the binding of amino-acyl tRNA to the A-site of the 

ribosome [87]. Tetracyclines are more effective against multiplying microorganisms 

and tend to be more active at a pH of 6–6.5. Tetracyclines generally are the drug of 

choice to treat rickettsiae and mycoplasma. After usual oral dosage, tetracyclines 

are absorbed primarily in the upper small intestine, and effective blood 

concentrations are reached in 2–4 hr. Tetracyclines at therapeutic concentrations 

should not be orally administered to ruminants because they are poorly absorbed 

and can substantially depress ruminal microfloral activity. Specially buffered 

tetracycline solutions can be administered by intramuscular and intravenous 

administration, to produces a long-acting effect. Tetracyclines distribute rapidly and 

extensively in the body, particularly after parenteral administration. They enter 

almost all tissues and body fluids; high concentrations are found in the kidneys, liver, 

bile, lungs, spleen, and bone. Tetracyclines are excreted via the kidneys (glomerular 

filtration) and the gastrointestinal tract (biliary elimination). Generally 80% of a given 

dose is unchanged recoverable from the urine. Tetracyclines are also eliminated in 

bile, feces, milk and saliva [99]. 
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Figure 11. General structure of tetracyclines and main compound substituents (. Source: 

http://www.sciencedirect.com/science/article/pii/S0039914006001627). 

 

 Sulfonamides: All sulphonamide antibiotics have a free amino group at the para 

position from the sulfonyl group on the benzene ring (Figure 12). Usually they 

present a 5- or 6-membered nitrogen containing ring attached to the sulfonylamino 

group [87]. 

Sulphonamides include a large number of synthetic bacteriostatic compounds, which 

act by competing with p-aminobenzoic acid in the enzymatic synthesis of 

dihydropholic acid. This leads to a decreased availability of the reduced folates that 

are essential in the synthesis of nucleic acids [97]. There is usually a time lag before 

the effect of the sulfa drug can be seen, because the bacterial cell will already have 

a certain concentration of folic acid before the administration of the drug. Also, other 

metabolites that require folic acid for their synthesis, such as purines, pyrimidines 

and amino acids, will also be already present in sufficient amount in the cell when 

the drug is administered. Another drawback of sulfa drugs is that about 3 % (which is 

a high percentage) of the general population is allergic to sulfonamides. Some 

patients also experience nonallergic response to the drugs such as nausea, 

diarrhea, and headaches [100]. 

Sulfonamides are the oldest and remain among the most widely used antibacterial 

agents in veterinary medicine, chiefly because of low cost and their relative efficacy 

in some common bacterial diseases. Sulfonamides may be given topically or by oral, 

intravenous, intramuscular or intrauterine administration, depending on the specific 

preparation. They are frequently added to drinking water or feed either for 

therapeutic purposes or to improve feed efficiency. Sulphonamides are often 
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administered together with trimethoprim, considered as a potentiator. The synergistic 

action of sulfonamides renders these drugs much more effective than sulfonamides 

alone. In most species, some of these molecules are administered 1–4 times/day to 

control systemic infections caused by susceptible bacteria. In other cases, 

administration of the sulfonamide can be less frequent if the drug is eliminated 

slowly. Sulfonamides and trimethoprim are rapdly adsorbed and distributed 

throughout all body tissues. They are rapidly excreted via the urinary tract (>90% in 

24 hr) mostly in an unchanged form; because of this, they are primarily used to treat 

urinary infections [99]. 

Figure 12. General structure of sulphonamides (Source: 

https://www.researchgate.net/figure/314119791_fig1_Figure-1-General-structure-of-sulphonamides-

RR1H-for-sulphanilamide). 

 

 Quinolones: they have position 1 nitrogen in the bicyclical aromatic ring structure, 

with an alkyl group (ethyl or perhaps cyclopropyl) often attached there (Figure 13). 

Carboxylic acid at position 3 is required for antimicrobial activity, similarly like a keto 

group at position 4. They are the highly effective broad spectrum antibiotics that 

target DNA gyrase as their site of action, a key enzyme in DNA replication [101]. 

Since there are many quinolones available, a new four-generation classification 

system has been described for quinolones. The first generation includes nalidixic 

acid, the first quinolone antibiotic discovered, that achieves only minimal serum 

concentration and so it’s not much used. Second generation quinolones, including 

ciprofloxacin, can reach high serum levels, have good tissue penetration antibiotics 

and a broader spectrum of action against gram-negative bacteria. Third generation 

are effective against both gram-negative and gram-positive bacteria and also against 

anaerobes, while fourth generation have the broadest spectrum of activity [102]. 
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Quinolones containing a fluorine substituent were developed as better gyrase-

targeting antibiotics than the non-fluorinated ones. In fact, fluoroquinolones 

especially ciprofloxacin, has a much lower minimum inhibitory concentration (MIC) 

and minimum bactericidal concentration (MBC), so it’s effective at much lower 

concentration [87]. Quinolones are well absorbed following oral administration, with 

moderate to excellent bioavailability. Elimination half-lives for the quinolones vary 

from 1.5 to 16 hours. Therefore, most of these drugs are administered every 12 to 

24 hours. The quinolones are eliminated by renal and nonrenal routes [103]. 

Common side effects include gastrointestinal effects such as nausea, vomiting, and 

diarrhea, as well as headache and insomnia [104]. They are associated with a small 

risk of tendonitis and tendon rupture [105]; nervous system effects include insomnia, 

restlessness, and rarely, seizure, convulsions, and psychosis [106].  

 

Figure 13. General structure of quinolones (Source: http://www.mdpi.com/1420-3049/18/9/11153). 

 

 Amphenicols: are characterised by a phenylpropanoid structure (Figure 14). They 

exert their action by blocking the enzyme peptidyl transferase on the 50S ribosome 

subunit of affecting microbial protein synthesis. Examples of amphenicols include 

chloramphenicol, thiamphenicol, and florfenicolare as broad-spectrum antibacterials, 

bacteriostatics with closely related chemical structures, used to control enteric and 

respiratory diseases in cattle, poultry and swine. The first-in-class compound was 

chloramphenicol, introduced in 1949, initially discovered as a natural product. It has 

a broad range of activity against most bacteria including anaerobes. One big 

advantage of the drug is that it can easily penetrate all tissues including the 

cerebrospinal fluid and so can be used to treat meningitis. It is also one of the very 

few antibiotics that can enter human cells and so can be used against intracellular 

bacteria [87]. However, it has been shown to cause a number of toxic side effects in 

humans such as aplastic anemia and other amphenicols, chemically synthesised, 
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have been suggested as potential substitutes [107]. Veterinary  medicinal  products 

and  medicated  feeds containing  Chloramphenicol  were banned  in treatment  of  

food-producing animals by the FDA in 1984. A ban has been also implemented in 

the EU since 1994 [108].  

Florfenicol is a semisynthetic derivative of chloramphenicol in which the hydroxyl 

group at C-3 is replaced by a fluorine atom and the nitro group is also replaced with 

a sulfomethyl group. Replacement of the OH group prevents acetylation of the 

antibiotic and so florfenicol is resistant to inactivation by acetyl transferase enzyme. 

Currently florfenicol is approved for use in veterinary medicine, indicated for the 

treatment of bovine respiratory disease.. Bioavailability is higher after oral 

administration than intramuscularly. Florfenicol is excreted as parent drug in the 

urine and the major urinary metabolite is florfenicol amine. Florfenicol amine is the 

longest-lived major metabolite in the liver, and, therefore, it was used as the marker 

residue for withdrawal calculations [109]. 

Thiamphenicolis is the methyl-sulfonyl analogue of chloramphenicol and has a 

similar spectrum of activity. Like chloramphenicol, it is insoluble in water, but highly 

soluble in lipids. It is used in many countries as a veterinary antibiotic in the 

treatment and control of a wide range of respiratory and alimentary tract infections of 

bacterial origin in calves, pigs and poultry. These drugs are usually orally 

administered, through feed or water. The oral product of thiamphenicol is not 

suitable for the treatment of cattle with functional rumen. Unlike chloramphenicol, 

thiamphenicol is not readily metabolized in cattle, poultry, sheep, or humans, but is 

predominantly excreted unchanged. In pigs and rats the drug is excreted both as 

parent drug and as thiamphenicol glucuronate [110]. 

 

Figure 14. Structure of the main amphenicols (Source: 

https://www.google.com.na/patents/EP1696934B1?cl=en). 
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 Macrolides: basically are macrocyclic lactones isolated first from Streptomyces spp. 

The basic chemical structures of macrolides consist of a 12-, 14- or 16-membered 

macrocyclic lactone to which sugar moieties, including amino and deoxy sugars, are 

attached (Figure 15). Macrolides are an important class of antibiotics widely used in 

veterinary practice to treat respiratory diseases and enteric infections in cattle, 

sheep, swine and poultry [97]. Although the ribosomes of both grampositive and 

gram-negative organisms are susceptible to macrolide action, these antibiotics are 

mainly used against gram-positive bacteria since they are unable to enter the porins 

of gram-negative bacteria. Erythromycin is the most commonly used and the first to 

be discovered in 1952. The other macrolides are semisynthetic derivatives of 

erythromycin. Erythromycin contains an amino group, which occurs in the protonated 

cationic form at neutral pH that is less permeable to cells than the neutral form, 

explaining why the drugs are more active at alkaline pH. Most macrolides are 

destroyed by stomach acid and so are administered intravenously or with enteric 

coating. Macrolides as well as lincosamides inhibit bacterial growth by inhibition of 

protein synthesis by binding to the 50S ribosome [87]. They are easily absorbed 

after oral administration and distribute extensively to tissues, especially the lungs, 

liver and kidneys [96]. 

 

Figure 15. General structure of macrolides (Source: 

http://people.clarkson.edu/~amelman/macrolides.html). 

 

 Lincosamides: Their sctructure contains a mycarose sugar (Figure 16). They are 

bacteriostatic and antagonists of macrolides because bind at the same sites on the 

ribosomes. As macrolides, in fact, they bind to the 50S ribosomal subunit, inhibiting 
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early chain elongation by interfering with the transpeptidase reaction [98]. Briefly, 

they prevent bacteria replicating by interfering with the synthesis of proteins. The first 

lincosamide to be discovered was lincomycin, isolated from Streptomyces 

lincolnensis in a soil sample from Lincoln, Nebraska, from which derived the name. 

Lincosamides are normally used to treat Staphylococcus and Streptococcus, in the 

treatment of toxic shock syndrome and thought to directly block the M protein 

production that leads to the severe inflammatory response. Lincosamide antibiotics 

are one of the classes of antibiotics most associated with pseudomembranous colitis 

caused by Clostridium difficile. The lincosamides, as the hydrochloride salts, are 

bitter to taste, so for oral formulation they are given as the palmitate esters, or 

formulated in capsules. Activity is enhanced at an alkaline pH. Efficacy is considered 

time dependent. Lincomycin is incompletely absorbed from the GI tract, especially if 

administered soon after feeding. They diffuse across the placenta in many species. 

50% of a dose of lincomycin is metabolically altered in the liver. Metabolites often 

retain activity. Liver disease impairs the biotransformation of lincosamides. 

Unchanged antibiotic and several metabolites may be excreted in bile and urine. 

Concentrations remain high in the feces for some days, and growth of sensitive 

microorganisms in the large intestine may be suppressed for up to 2 weeks. Milk is 

also an important excretory route. No serious organ toxicity has been reported, but 

GI disturbances do occur; disruption of GI flora is a serious adverse reaction in a 

number of species and can be lethal. Skeletal muscle paralysis may be seen at high 

concentrations. Hypersensitivity reactions occasionally are seen. Lincosamides have 

additive neuromuscular effects with anesthetic agents and skeletal muscle relaxants. 

Kaolin-pectin prevents their absorption from the GI tract. They should not be 

combined with bactericidal agents or with the macrolides [99]. 
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Figure 16. General structure of lincosamides (Source: http://unt-

ori2.crihan.fr/unspf/2014_Rennes_Tomasi_Macrolides/co/Lincosamides.html). 

 

 Aminoglicosides: Chemically, the aminoglycoside antibiotics are characterised by an 

aminocyclitol group, with aminosugars attached to the aminocyclitol ring in glycosidic 

linkage (Figure 17). Because of minor differences in the position of substitutions on 

the molecules, there may be several forms of a single aminoglycoside with relatively 

minor differences in antimicrobial spectra, patterns of resistance, and toxicities. The 

amino groups contribute to the basic nature of this class of antibiotics, and the 

hydroxyl groups on the sugar moieties contribute to high aqueous solubility and poor 

lipid solubility. If these hydroxyl groups are removed, antibiotic activity is markedly 

increased. Aminoglycosides are typically quite stable. When the water solubility of 

an aminoglycoside is marginal, it is usually the sulfate salt that is used for oral or 

parenteral administration. The pKas of these drugs are generally between 8 and 10, 

and as a result, they tend to be ionised at physiologic pH, which may limit drug 

movement, particularly in acidic environments. They need only a short contact with 

bacteria to kill them and, as such, are concentration dependent in their actions. Their 

main site of action is the membrane-associated bacterial ribosome through which 

they interfere with protein synthesis. To reach the ribosome, they must first cross the 

lipopolysaccharide covering (gram-negative organisms), the bacterial cell wall, and 

finally the cell membrane. Because of the polarity of these compounds, a specialized 

active transport process is required. The efficacy of the aminoglycosides is markedly 

reduced in an anaerobic environment. Aminoglycosides are poorly absorbed (usually 

<10%) from the healthy GI tract. Aminoglycosides are polar at physiologic pH, 

limiting distribution to extracellular fluids, with minimal penetration into most tissues. 

Exceptions include the renal cortex of the kidneys. The aminoglycosides are 

excreted unchanged in the urine by glomerular filtration, with 80%–90% of 
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administered drug recoverable from the urine within 24 hours of intramuscular 

administration. 

Elimination varies with glomerular filtration changes associated with cardiovascular 

and renal function, age, fever, and several other factors. Despite their potential to 

cause nephrotoxicity, the aminoglycosides are commonly used to control local and 

systemic infections caused by susceptible aerobic bacteria. Several 

aminoglycosides are used topically in the ears and eyes and via intrauterine infusion 

to treat endometritis. Aminoglycosides occasionally may be infused into the udder to 

treat mastitis. In general, because of their concentration dependency and potential 

for nephrotoxicity, aminoglycosides are administered once daily to reduce risks [99]. 

 

Figure 17. General structure of aminoglicosides (Source: 

https://commons.wikimedia.org/wiki/File:Neomycin_B_C.svg). 

 

 Nitrofurans: Nitrofurans are synthetic chemotherapeutic agents with a broad 

antimicrobial spectrum. However, when compared with other antibiotics, their 

potency is not so effective. The nitrofurans appear to inhibit a number of microbial 

enzyme systems, including those involved in carbohydrate metabolism, and they 

also block the initiation of translation. However, their basic mechanism of action has 

not yet been clarified. Their primary action is bacteriostatic, but at high doses they 

are also bactericidal. They are much more active in acidic conditions (pH 5.5). 

Nitrofurans are mainly used orally or topically, due to their very slight water solubility. 

No nitrofuran is effective systemically. They are either not absorbed at all from the 

gastointestinal tract or are so rapidly eliminated that they reach inhibitory 

concentrations only in the urine. Toxic signs seen with excessive doses of nitrofuran 

are excitement, tremors, convulsions, peripheral neuritis, GI disturbances, poor 
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weight gain, and depression of spermatogenesis. Various hypersensitivity reactions 

have been showed. Some nitrofurans are also carcinogenic, and so their use is not 

convenient [99]. 

 

1.5.2. Therapeutic use of antibiotics in breeding 

Antibiotic use in animal farms is a major cause of resistance development. According to 

FDA reports, only about 20 % of the approximately 18,000 tons of antibiotics sold in the 

United States of America are used by humans while the rest 80 % are used in animals 

[111]. There are two main types of antibiotic use in breeding: therapeutic use, that 

provides for the care of several animal infections accompanied by veterinary 

prescription. Similar to animals, plants may also be subject to infections, which can be 

cured with antibiotics. These antibiotics are also sprayed on the plants, a process by 

which most of the antibiotics end up in the soil thereby increasing the antibiotic 

resistance.  

Contribution of therapeutic use of antibiotics to the antibiotic resistance problem actually 

appears to be insignificant when compared to the subtherapeutic use of antibiotics in 

food producing animals, not related to any infection. Of course our farm animals are not 

so sick that they need the excessive amount of antibiotics mentioned above for 

therapeutic purpouses. A subtherapeutic use consists of a prolonged administration of 

small antibiotic amounts. Most of this antibiotic is illicitly added to drinking water or 

animal feed as growth promoter to increase animal body weight with a slower growth 

rate, which means more profit for the farmers. It is believed by some that subtherapeutic 

use has a prophylactic effect and is needed for proper health of the animals. This 

phenomenon of growth promotion was an accidental discovery in 1948 when scientists 

were testing random food additives to discover new vitamins. Stokstad and Jukes added 

cellular debris of Streptomyces auerofaciens to chicken feed and after the antibiotic 

chlorotetracycline was extracted from the bacterial culture they observed faster growth 

of the chicken. Initially they thought that it was due to vitamin B12 present in the additive 

but later it was understood that the growth promotion was due to the much less amount 

than therapeutic dose of that antibiotic [87]. Soon it was proved the same effect by 

subtherapeutic doses of many other antibiotics. On the other side, the mechanism of 
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growth promotion is not clearly understood. Maybe antibiotics kill bacteria that compete 

with beneficial bacteria in the intestines of the animals or another hypothesis is that 

antibiotics do not have to enter the bloodstream to exert the growth promoting effect 

because its site of action is in the intestines [87].  

In any case, it's getting real the negative and worrying effect of of this overuse of 

antibiotics, which far exceeds the economic advantage of growth promotion. 

1.5.3. Antibiotic resistance 

Antibiotic resistance is the ability of a microorganism to withstand the effects of an 

antibiotic. Resistance is a property of the microbe, not of the person or other organism 

infected by microbes. As a result, the medicines become ineffective and infections 

persist in the body, increasing the risk of spread to others. Without effective 

antimicrobials for prevention and treatment of infections, medical procedures such as 

organ transplantation, cancer chemotherapy, diabetes management and major surgery 

become very high risk. Drug resistant infections are already on the rise with numbers 

suggesting that up to 50000 lives are lost each year to antibiotic-resistant infections in 

Europe and the US alone. Globally, at least 700,000 die each year of drug resistance in 

illnesses such as bacterial infections, malaria, HIV/AIDS or tuberculosis [112-114].  

The development of antibiotic resistance is not a recent concept. Already in 1945, 

Fleming in his Nobel Lecture had informed [115]: “It is not difficult to make microbes 

resistant to penicillin in the laboratory by exposing them to concentrations not suffi cient 

to kill them”. It wasn’t only a prediction because he proved that by creating the resistant 

mutant bacteria. The magnitude of the problem is now accepted. 

Now, we can say that antibiotic resistance evolves naturally via natural selection 

through random mutation, but it could also be engineered by applying an evolutionary 

stress on a population. Other factors contributing towards resistance include incorrect 

diagnosis, unnecessary prescriptions, improper use of antibiotics by patients, and the 

use of antibiotics as livestock food additives for growth promotion. Antibiotic resistant 

bacteria may be transferred from animals to humans both of which can be infected by 

the same pool of resistant bacteria. The spread of resistant bacteria from animals to 

humans can take place by any of the following ways (Figure 18): by every-day direct 
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contact of farm workers with the animals; by transfer of resistant bacteria from animal 

manure to soil and water then to plants, finally to humans through the food chain; by 

transfer of bacteria from dead non-farm animals or farm animals who died because of 

disease, to the soil, water and then to plants and finally to humans; by eating 

contaminated meat that is not cooked properly. In another scenari, bacteria that cause 

diseases in animals and plants may not infect humans. However, these bacteria may 

belong to the same family as those that infect humans [87]. It was demonstrates that the 

presence of subtherapeutic level of an antibiotic induces generation of point mutations 

in the bacterial genome. Some of these mutations can confer resistance to other 

antibiotics that may not be related to the antibiotic that the cells have been subjected to; 

it’s result in emergence of resistance to various other antibiotics including multidrug 

resistance. Whatever is the mechanism of development of multidrug resistant 

phenomenon in animals, there is a real threat of transfer to humans even if they are not 

in direct contact with the animals [116]. The most vulnerable are those people who are 

already taking antibiotics for several infections, because they the lowers immune 

defences so the infecting multidrug resistant bacteria can more easily cause risks 

related to the fact that they are not killed by the antibiotic and they don’t find competition 

from any resident bacteria in the body. 

 "To contain antibiotic resistance we need to fight on three fronts at the same time: 

human, animal and the environment.” In these terms, the European Food Safety 

Authority, the European Medicines Agency and the European Centre for Disease 

Prevention and Control are concerned about the impact of use of antibiotics on the 

increase in antibiotic-resistant bacteria and they are trying to improve surveillance 

across Europe [117].  

In the meantime fundamental changes are required in the way that antibiotics are 

consumed and prescribed, to preserve the usefulness of existing drugs for longer and to 

reduce the urgency of discovering new ones. Firstly, the specific steps to reduce 

demand are: a massive global public awareness campaign, improve hygiene and 

prevent the spread of infection, reduce unnecessary use of antimicrobials in agriculture 

and their dissemination into the environment, improve global surveillance of drug 

resistance and antimicrobial consumption in humans and animals, promote new, rapid 
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diagnostic ways to cut unnecessary use of antibiotics, promote development and use of 

vaccines and alternatives, improve the numbers, pay and recognition of people working 

in infectious disease. Secondly, we must increase the number of effective antimicrobial 

drugs to defeat infections that have become resistant to existing ones through better 

incentives to promote investment. Finally, none of this will succeed without building a 

global coalition [112].  
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Figure 18. How antibiotic resistance spreads (Source: 

https://www.frontiersin.org/articles/10.3389/fmicb.2013.00096/full). 

 

1.5.4. Antibiotics and legislations 

In the European Union, the use of antibiotics in farms is subject to strict rules. Not only 

preventive treatment is forbidden, but medicines can only be used in the presence of 

illnesses and after a veterinary prescription, followed by an annotation in the appropriate 

registers. Authorised drugs are those indicated by Authorities and their use must be 

limited in time. To minimize the risk for consumers, it is compulsory to comply with the 

"suspension period", i.e. the period after the suspension of treatment before slaughter 

[118]. The use of antibiotics at sub-therapeutic doses, as growth promoters, is forbidden 

[14]. To minimize exposure of humans to antibiotics, Maximum Residue Limitits (MRLs) 

of antibiotics in different matrices have been established by the European Union [27]. In 

Table 2 are reported the MRLs for the most used antibiotics in breedings, belonging to 

the different classes. 

https://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiAxJGX9vTWAhVQIlAKHeJjBlEQjRwIBw&url=https://www.frontiersin.org/articles/10.3389/fmicb.2013.00096/full&psig=AOvVaw3pYsdXdL7XZXac05mUessa&ust=1508235560124745
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Table 2. Estabilished MRLs in the different matrices by European Union for the most used antibiotics.  

 
 Maximum residue limits (MRLs) (μg/kg) 

 

Milk Eggs Muscle Liver Kidney Fat Fish 

β-Lactams 

     

Amoxicillin (all food 

producing species) 
4 

 
50 50 50 50 

 

Ampicillin (all food 

producing species) 
4 

 
50 50 50 50 

 

Benzylpenicillin (All 

food producing 

species) 

4 
 

50 50 50 50 
 

Cloxacillin (all food 

producing species) 
30 

 
300 300 300 300 

 

Dicloxacillin (all 

food producing 

species) 

30 
 

300 300 300 300 
 

Oxacillin (all food 

producing species) 
30 

 
300 300 300 300 

 

Cefalexin (bovine) 100  200 200 1000 200  

Cefquinome 

(bovine∞, porcine, 

equidae) 

20
∞
  50 100 200 50  

 

Tetracyclines 
       

Tetracycline (All 

food-

producingspecies) 

100 200 100 300 600 
  

Oxytetracycline (All 

food-producing 

species) 

100 200 100 300 600 
  

Chlortetracycline 

(All food-producing 

species) 

100 200 100 300 600 
  

 Doxycycline (All 

food-producing   
100 300 600 300 
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species) 

 

Sulphonamides 
       

 Total sulfonamide 

residues 
100 

 
100 100 100 100 

 

 

Aminoglycosides 
       

Streptomycin 

(All 

ruminants*,porcine, 

rabbit) 

200* 
 

500 500 1000 500 
 

 

Macrolides 
       

 Erythromycin (All 

food-producing 

species) 

40 150 200 200 200 200 
 

 Tylosin (All food 

producing species) 
50 200 100 100 100 100 

 

 

Quinolones 
       

Enrofloxacin 

(bovine and 

caprine
§
,porcin, 

rabbit, poultry) 

100 
 

100 200/300
§
 200

§
/300 100 

 

Marbofloxacin 

(cattle
#
,swine) 

75
#
 

 
150 150 150 50 

 

 

Amphenicols 
       

Florfenicol (bovine 

and 

caprine
§
,porcin

¥
, 

poultry~) 
  

100
~
/200

§
/300

¥
 2000

¥
/2500

~
/3000

§
 300

§
/500

¥
/750

~
 

 
1000 

Thiamphenicol (All 

food producing 

species )   
50 50 50 50 
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1.5.5. Analytical approaches for antibiotics 

Before samples are declared to contain concentrations of antibiotics exceeding the 

MRLs, identification of the individual compounds and their confirmation need to be 

guaranteed by sufficiently selective and sensitive instrumental methods such as LC–

MS/MS or GC–MS. In particular, regards prohibited substances, Commission Decision 

2002/657/EC [16] states that “methods based only on chromatographic analysis without 

the use of molecular spectrometric detection are not suitable for use as confirmatory 

methods”. GC–MS has been routinely used in the last 35 years for the analysis of 

compounds in different matrices. However, almost all of the antibiotics are non volatile 

or very polar and some are thermally unstable, precluding their analysis by gas 

chromatography [97]. Consequently, based also on the literature results, LC-MS/MS is 

instrumentation of choise. Especially the use of the triple quadrupole, equipped by an 

ESI interface set both in positive and negative mode, allows for sensitivity far below the 

limits set in the different matrices. In recent years, the use of of liquid chromatography 

coupled to high resolution mass spectrometry (LC-HRMS) has ensured a distinctly 

enhanced selectivity by its accurate mass measurement and fast scan speed, 

compared with the other types of tandem mass instrument. 

Techniques for residue analysis have changed as different technologies have become 

available. Owing to the unique and different chemical properties of the antibiotic classes 

and between the various components of each class, different strategies must be applied 

to extract target compounds from the different matrices to avoid interferences from 

matrices and ensure good analytical performance to the method. Regardless of the 

different matrices suggested by European Authorities, a typical analytical protocol 

involves the clean-up of the sample by deproteinization and defatting steps, followed by 

Chloramphenicol   Prohibited substance 

Lincosamides    

Lincomycin 150 50             10                        500                           1500                50 

NOTES: for enrofloxacin is considered the sum with its metabolite ciprofloxacin; for florfenicol is considered the sum with its 
metabolite florfenicol amine. 
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purification on solid-phase extraction (SPE C18). Different solvents or mixtures of them 

are used in different proportions in the different literature studies. Most of the work 

focuses on the analysis of individual classes of antibiotics due to the difficulties that can 

be encountered during the analysis of different classes, from a chemical-physical point 

of view [96-97]. Using LC-ESI-MS, the effects of various mobile phase additives, such 

as formic, acetic acid, trifluoroacetic acid, ammonium acetate, etc., on sensitivity were 

assessed. Generally, the most intense signals were achieved by adding formic acid to 

water or methanol, which are the common mobile phases used.  

An analytical strategy to take in consideration, reported in literature regarding 

tetracycline, is the use of chelating agents, e.g. EDTA, in the sample preparation to 

avoid analyte loss [97]. Especially when we work with milk, the EDTA is well known as a 

Ca2+ chelating agent, which is useful in releasing and extracting tetracyclines. An 

interesting review of the chromatographic analyses of tetracycline in food has been 

published by Oka, Ito, and Matsumoto [119] and Anderson et al. [120].  

Also for β-lactams several precautions have been adopted in any step of the sample 

preparation procedure to avoid analyte degradation by heat, the presence of alcohols, 

especially for penicillins which also readily isomerized in an acidic ambient [97]. 

Confirmatory ions of β-lactams were obtained by thermal decomposition on the ESI 

source. Moreover, operating by using classical ESI, in the positive ion mode and at a 

relatively large potential difference between the sample cone and the skimmer lens, 

some Authors showed a larger or lesser extent of the characteristic cleavage product of 

the β-lactam ring of penicillins [96].  
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1.6. Environmental contamination and emergent pollutant in food chain 

Intensive industrialisation of the world and uncontrolled development of multiple human 

activities have resulted in a lot of contamination sources of both organic and inorganic 

compounds, which accumulate in the environment, deteriorating the quality of 

agricultural lands, water and consequently of food [121]. The sources of food pollution 

are numerous and hard to identify or exclude from our daily environment. Environmental 

contamination of food takes two forms: long-term, low-level contamination resulting from 

gradual diffusion of persistent chemicals through the environment, and relatively shorter 

term, higher level contamination caused by industrial accidents and waste disposal. 

Chemicals contaminate foods through different routes depending on the chemical and 

its physical properties, its use, and the source or mechanism of contamination. 

Measurable health effects depend on the toxicity of the substance, the level at which it 

is present in food, the quantity of food consumed, and the vulnerability of the individual 

or population [122].  

In last years, an open debate has been raised about the bioaccumulation of persistent 

organic pollutants (POPs), which are extremely toxic substances for environment and 

human health at a world scale [123]. They remain intact in the environment for long 

periods, become widely distributed geographically, and accumulate in the fatty tissue of 

living organisms. Their physical and chemical properties, particularly their high stability, 

give them ubiquity and capacity of accumulation and deposition far from their place of 

release. POPs include a wide range of man-made chemicals which are used worldwide 

and are indispensable for modern society as well as pesticides, perfluoroalkylated 

substances (PFASs), polychlorinated biphenyls (PCBs), polychlorinated naphthalenes 

(PCNs), polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans 

(PCDFs), polycyclic aromatic hydrocarbons (PAHs). Due to their intrinsic features, 

POPs can be considered of growing interest for both safety and market aspects. The 

Stockholm Convention, whose goal is to reduce and possibly eliminate the 

environmental presence of POPs, was implemented in 2004 [124]. 

There is little toxicological information for most of the chemicals mentioned above, 

principally with regard to long-term at low-level exposure. Long-term threats or 

intermittent exposure can destroy ecosystems and often lead to a decrease in 
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biodiversity and a loss of important functions [125]. In this context, the identification of 

future hazardous or potentially hazardous chemicals in terms of persistence, toxicity, 

endocrine disruption potential of both individual compounds and complex mixtures is 

necessary. Measurements in environmental species may also help assess the potential 

for human exposure to environmental pollutants, and for predicting the human health 

risks [126]. In the presence of safety guidelines, two different analytical strategies could 

be carried out: the first is based on the monitoring of each food commodity to be placed 

on the market, to verify its compliance with regulatory limits implying the implementation 

of national monitoring plans. The second strategy deal with the assessment of 

population exposure, to be compared with tolerable daily intake or pertinent guidelines, 

reflecting dietary, cooking, and food dressing habits of the population or sensitive 

groups [127]. 

1.7. Perfluoroalkyl substances: general aspects 

Perfluoroalkyl substances (PFASs) have been recognised as new emergent 

environmental contaminants after they have been detected in blood samples of both 

humans and wildlife [128]. In this thesis, we focused our attention only on this kind of 

environmental contaminants. Since 2010, Commission Recommendation 2010/161/EU 

have required the Member States to monitor PFASs in food and recommended to 

transmit these data to EFSA that wishes to outsource an extensive literature search in 

order to help the Panel on Contaminants in the Food Chain (CONTAM Panel) to update 

its previous risk assessment, carried out in 2008 [129, 130]. 

According to Buck et al. [131] terminology, PFASs are highly fluorinated aliphatic 

substances that contain one or more C atoms on which all the H substituents have been 

replaced by F atoms, with high chemical, thermal stability and high surface activity. The 

PFASs included:  

 perfluoroalkyl carboxylic acids (PFCAs, Figure 19), i.e. perfluorooctanoic acid 

(PFOA) and compounds with carbon chain length between C4 and C18, 

 perfluoroalkane sulfonic acids (PFSAs, Figure 19), i.e. perfluorooctane sulfonic acid 

(PFOS) and compounds with carbon chain length between C4 and C10, 
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 other PFAS as perfluoroalkane sulfinic acids, fluorotelomer alcohols, perfluoroalkane 

sulphonamides, etc. 

In particular, when a hydrophilic acid group is introduced to a PFAS, the resulting 

perfluorinated acids such as PFCAs and PFSAs exhibit both hydrophobic and 

oleophobic active behaviour, behaving as surfactants [132]. The acidic head groups will 

be predominantly dissociated in most or all environmental and biological compartments 

and engineered systems. They have low vapor pressures that decrease with increasing 

chain length and hinder volatilization from aquatic or terrestrial systems; the 

hydrophobic chain length determine whether congeners partition in the organic matter. 

Moreover, it has shown that the branched PFASs congeners are likely to be, in general, 

more thermodynamically stable than their linear compounds [133, 134]. 

Figure 19. General structure of perfluoroalkyl carboxylic acids and perfluoroalkane sulfonic acid (Source: 

EFSA supporting publication, EN-572. http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2014.EN-

572/epdf). 

 

They are produced by 2 main processes: electrochemical fluorination and 

telomerisation. PFASs have been used since decades in a wide range of industrial 

applications as for paper, photo paper, packaging materials, textiles, carpets, furniture, 

shoes, cleaning agents, floor polishing agents, paint and varnish, wax, fire-extinguishing 

liquids and insecticides [135].  

PFOA and PFOS are the most discussed molecules among PFASs. PFOS and its salts 

were included in 2010 in Annex B of the Stockholm Convention amongst the other 

POPs [125]. Several adverse health effects e.g. hepatotoxicity, immunotoxicity, 

neurobehavioral toxicity, developmental toxicity, reproductive toxicity, lung toxicity, 

hormonal effects, genotoxic and carcinogenic potential have been proved in animal 
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experiments [136-138]. In humans, the possible interference of PFASs with metabolism 

of fatty acids, as a possible risk factor for metabolic disorders and/or cardiovascular 

diseases need further investigation. Certain chronic diseases with an inflammatory 

component, including heart disease, diabetes and stroke, have been described to be 

preeinent amongst European populations; however, these evidence aretoo inconsistent 

for concrete conclusions [138, 139]. 

Food intake is the main exposure route to PFASs in humans. Fish and seafood were 

considered the most contaminated (50 to 80 %) followed by fruits and fruit products (8 

to 27 %) and meat and derivates (5 to 8 %), but high deviation in contribution was 

detected across food analyses and age classes reflecting differences in dietary patterns 

[131] (Figures 20 and 21). Food can be PFASs contributor by accumulation from the 

environment or by contact with packaging materials and cookware containing [140-142]. 

Also drinking water is one of the main sources, because purification systems of 

wastewaters can’t remove the shortest PFASs chains [133]. Finally also inhalation of air 

may contribute to the overall exposure. 

In the last EFSA report [131] several adverse effects, as well as toxicity and 

epidemiology data have recently been published, based on studies in vitro in 

experimental animals and in humans. In particular was demonstrated that PFOA and 

PFOS are well absorbed in humans [143] and detected in 100 % of maternal serum and 

umbilical cord serum samples taken from the general population of Seoul, South Korea 

[144, 145], and concentrations between paired maternal and cord sera were 

significantly correlated. PFOS was also the predominant compound (0.06 ng/mL) in 

human milk, followed by PFOA (0.05 ng/mL) although the levels were several orders of 

magnitude lower than those in serum [146]. It was found that levels of PFOS and PFOA 

in milk decreased as lactation progressed and, in parallel, maternal PFOA levels 

decreased but rose when feeding ceased [147]. 

Based on further results from a toxicological point of view, the significance of various 

PFASs to human health could be better evaluated and allow the designation of a set of 

priority PFASs for future monitoring. The development of analytical methods with 

improved sensitivity is required to monitor such priority PFASs in order to increase the 

proportion of quantified results and thereby the reliability of exposure assessments. 
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Figure 20. Percentage contribution of different food to PFOS exposure per age group (Source: EFSA 

supporting publication, EN-572. http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2014.EN-572/epdf). 

 

 

Figure 21. Percentage contribution of different food to PFOA exposure per age group (Source: EFSA 

supporting publication, EN-572. http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2014.EN-572/epdf). 

 

1.7.1. Perfluoroalkyl substances and legislations 

In 2008, the EFSA Scientific Panel on Contaminants in the Food Chain (CONTAM 

Panel) performed a risk assessment for PFOS and PFOA concluding that it is doubtful 

that adverse effects of PFOS and PFOA are occurring in the European population. 

However, due to lack of data only a limited exposure assessment was possible [129]. 
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Based on the limited data available for fish and beverage from four European countries, 

the CONTAM Panel determined an indicative dietary exposure to PFOS of 60 ng/kg 

b.w. per day for average consumers and 200 ng/kg b.w. per day for high consumers of 

fish. Indicative dietary exposure to PFOA for the same consumer categories was 

estimates at 2 ng/kg b.w. per day and 6 ng/kg b.w. per, respectively. The CONTAM 

Panel has also established a tolerable daily intake (TDI) of 150 ng/kg b.w. per day for 

PFOS and of 1500 ng/kg b.w. per day for PFOA [129].  

No MRLs are set for these compounds in food, but Commission Recommendation 

2010/161 recommended, at the beginning of this project, limits of quantification (LOQ) 

of 1 μg/kg for the monitoring of PFASs in food as left-censoring limits. In a preliminary 

analysis it appeared that the detection capabilities varied with the type of matrix and 

substance analysed. Particularly lower LODs/LOQs were reported for water and 

alcoholic beverages while higher LODs/LOQs were frequently reported for offal, mainly 

liver. It appears that analysis of PFASs is still challenging, especially in certain matrices 

as e.g. liver. In order to reduce the impact of the high left-censoring limits on the 

occurrence data analysis and on the dietary exposure estimations, but also not to 

exclude data on certain foods, the following upper limits were applied by EFSA in its 

report [129]: 

• 0.02 μg/kg for water and alcoholic beverages; 

• 5 μg/kg for edible offal of mammals and fish; 

• 3 μg/kg for all other foods. 

Nevertheless, as mentioned above, it is recommended to use higher sensitive analytical 

methods to increase the amount of quantifiable data for a reliable risk assessment. 

1.7.2. Analytical approaches for perfluoroalkyl substances 

The rapidly expanding field of perfluorinated alkyl substances research has resulted in a 

wide range of analytical strategy for pretreatment and analysis of different matrices. 

Initial studies focused on PFOA and PFOS. In recent years, a range of other PFASs 

receive increasing attention because they are produced as alternatives for PFOA and 

PFOS, as intermediates in PFAS production, as by-products or as (bio)degradation 

products.  
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Substantial attentions are necessary and a lot of suggestions are present in literature to 

avoid contamination of PFASs losses during the analysis of the samples. Storage and 

conservation of samples for PFASs analysis is critical [148]. Several authors pre-

cleaned the sampling bottles prior to sampling by rinsing with (semi-)polar solvents such 

as de-ionised water, methanol, acetone, or MTBE [149, 150]. In one study, it was shown 

that polypropylene sample bottles contained traces of PFOA [151] and pre-cleaning is 

therefore important especially when the target analytes are present in traces.  

Moreover, PFASs adsorb to glass surfaces [152, 153]. Although this may happen at low 

concentrations in analytical standards [154], it is expected that this will not happen in 

samples which contain large amounts of matrix components (such as biota, serum and 

blood) that can shield the active sites at the glass surface. On the other hand, for water 

samples, irreversible adsorption of PFASs to the sample container surface was reported 

for long chain PFCAs (>C10), and PFOS and PFOA in acidified water [155]. 

Sampling equipment should preferably be made of non-fluoropolymer-containing 

materials, and this also holds for any tubing involved.  

Due to their different polarities, the PFASs usually require different extraction strategies 

and a certain degree of sample pre-treatment to facilitate extraction or to remove matrix 

constituents that will disturb the instrumental analysis. 

For complex and solid matrices trichloroacetic acid, formic acid or acetonitrile need to 

be added to the sample for precipitation of the protein in order to prevent clogging of the 

SPE columns.  

Initially, extraction methods were based on ion pairing of the ionic PFASs with tetra-n-

butylammonium hydrogensulfate (TBA), followed by a liquid–solid extraction (LSE) with 

methyl-tert-butylether (MTBE), filtration of the extract and instrumental determination by 

liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS) 

[153]. However, several limitations have been recognised: co-extraction of lipids and 

other interferences, the absence of a clean-up step to overcome the effects of matrix 

compounds and the wide variety of recoveries typically ranging from <50% to >200%. 

The method was also laborious, taking to much time and difficult to automate [148].  
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Without further clean-up there is enhancement or suppression of the electrospray 

ionization, resulting in inaccuracies. Proteins and lipids can be destroyed by KOH 

digestion of the sample prior to SPE sample enrichment [156]. 

Abiotic matrices (soil, sediment, sewage sludge) can be cleaned-up by addition of Envi-

carb (graphitized carbon) and glacial acetic acid [157]. 

Regards purification, extraction using Oasis HLB (hydrophilic–lipophilic balance) and 

Oasis WAX (weak anionic exchange) cartridges was examined and compared in the 

work of Taniyasu et al. [157] SPE WAX resulted the best strategy, in terms of recovery 

especially for short chain PFASs, whose recoveries were less than 30% by SPE HLB. 

Briefly, as confirmed also Leeuwen and de Boer [148], the ionic PFCAs and PFSAs 

require moderately polar media (Oasis WAX SPE or methanol and acetonitrile) for 

efficiently trapping of water soluble short-chain (C4–C6) compounds. For longer chains, 

less polar or non-polar SPE phases (C18 and Oasis HLB) may be applied. Non-ionic 

PFASs may be extracted from the matrix by non-polar media (C18 SPE or hexane) or 

moderate polar media (Oasis HLB and Oasis WAX SPE, a hexane–acetone mixture or 

acetonitrile).  

Analysis of PFASs requires sensitive methods, due to the occurrence of these 

compounds at parts-per-trillion (ng/L) or lower levels. A reliable, sensitive and selective 

instrument is the liquid chromatography coupled to high resolution mass spectrometry 

(LC-HRMS). The high resolution power and fast scan speed are the two essential 

factorsfor the excellent performance of this instrumentation, both for qualitative and 

quantitative analysis. Usually, the dissociated acid (pseudo-molecular) ion (M-H)− is 

observed, and can be used for quantitative purposes or as the parent ion for multiple ion 

reactions in LC-MS2. Anyway, the use of more than one transition for monitoring PFASs 

is an important recommendation [158]. We can conclude that the analytical problems 

associated with the determination of PFASs are multiple, including all the different 

aspects mentioned in this paragraph. As a result, more studies should be done before 

the analysis of this group of analytes in vogue will be fully understood and controlled. 
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2. AIMS  

On the light of the different matters discussed in the Introduction, the specific aim of this 

research study was to look for new unconventional matrices that could accumulate 

veterinary drugs, or have a preferential way for their excretion, either in their unchanged 

or metabolised form. The development of new reliable protocols of analysis was based 

on the fact that there is a low percentage of non-conformity in the final reports of the 

National Residues Plan in recent years, although the threat of a disproportionate use of 

these substances is increasingly on the rise. 

Where possible, a comparison with the conventional matrices was carried out to confirm 

our hypothesis through the analyses on real and unknown samples. One of the main 

objectives was therefore to place controls within well-defined stages of the food chain in 

order to find evidence of treatment or clarify the question of pseudoendogeneous nature 

of certain substances. 

The approach to test the hypothesis was based on an extensive literature study, based 

on national and community issues, regulations on substance residues of actual interest 

(i.e growth promoters, antibiotics, new environmental contaminants) and input from 

public and private entities; search new unconventional accumulation matrices, on the 

basis of detected issues and molecules to search, able to detect analytes in the long 

term because substances from illegal treatment are hardly detectable and have not long 

persistence in conventional matrices, as well as urine, liver and muscle. The analytes in 

the different matrices required different approaches for sample pretreatment, extraction, 

clean up and fractionation before the analysis with liquid chromatography–tandem mass 

spectrometry (LC-MS/MS) or -high resolution mass spectrometry (LC-HRMS). The 

approach of analytical-instrumental nature has provided for the optimisation of 

instrumental performances as well as of the steps of sample pretreatment, in order to 

achieve good levels of sensitivity, specificity and robustness of the method to then make 

considerations of qualitative, quantitative and statistical nature for the comparison 

between the unconventional matrices and the classical ones. So the trials planning, 

optimisation and validation of the methods were performed according to Commission 

Decision 2002/657/EC [1]. All that, has allowed us to study the suitability of bile in the 

framework of control, together with the opportunity to obtain new information about the 
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nature of some substances and their pseudoendogenous concentrations in an 

innovative matrix not considered for corticosteroid and anabolic routine controls at the 

slaughterhouse. Bile was one of the slaughterhouse matrices provided for the first year 

of my project, compared with the conventional one, urine. Bile was used until the early 

nineties of the last century in the United Kingdom for the control on the administration to 

cattle of stilbenes, zeranol and trenbolone [2]. Moreover, O’Connor in a United States 

Patent of 1997 positively evaluated some points in routine collection of bile samples.  

Bile, although it is recoverable only to the slaughterhouse, is an innovative and 

interesting matrix especially because avoids the above mentioned problems related to 

stress, as it happens before sampling of urine at the farm. It is readily obtainable with a 

syringe after slaughter during evisceration of the animal and can be rapidly handled 

following collection. It is a non-disruptive sample collection method from individual 

carcasses and needs few treatments before analysis. It also avoids the problem of fecal 

contamination and so the false positives caused by bacterial transformation of 

pseudoendogenous substances. Moreover, the gathering within bile provokes a time-lag 

in the metabolism of steroids and, consequently, their long-term retention; the majority 

of veterinary drugs occur at a high concentration in this fluid and reflects residue 

concentrations of in the liver very accurately [3]. 

For the detection of corticosteroids and anabolics we propose also bovine teeth, as 

another innovative and not invasive matrix taken at the slaughterhouse, inspirated from 

human forensic tossicology studies [4, 5]. The hypothesis of esterified form detection of 

some drugs such as prednisolone acetate, estradiol benzoate, etc. in teeth, after a 

bovine treatment plan and slaughter of the animals, was an important goal for the 

discrimination of the pharmaceutical, esterified form from the active principle of the drug 

molecule, for the confirmation of the illicit administration of a drug in the case of 

components of pseudoendogenous nature. 

We propose also milk replacers used in the farm for animal feeding, to control the illegal 

administration of both corticosteroids and anabolics and then antibiotics  at the 

beginning of the food chain. The inclusion of veterinary drugs in calf milk replacers is a 

matter of concern, particularly as their administration is not fully regulated and 

especially legislation varies across the Countries [6-8]. In fact, milk replacers are 



78 
 

commonly used for the daily feeding of calves as an adequate alternative to the 

mother's dairy milk and could be a simple route to illicit treatments. It should be 

emphasised that the presence of steroid hormones in feedstuffs can be also 

unintentional, due to cross-contamination or owing to the appearance of pseudo-

endogenous substances. 

Regards antibiotics, we propose also a multiclass method for the control of bovine urine,  

which could be a usefull tool to the antibiotic monitoring both at the farm and 

slaughterous, relying on the great results and high percentages of positives found in this 

simple, but not recommended, matrix. European Union, in fact, has set maximum 

residue limits (MRLs) for antibiotics residues in food of animal origin but not for urine [9]. 

With the same purpose, we propose a multiclass antibiotic method in swine urine, for 

the monitoring of their intensive breeding. In this case we compared the unconventional 

matrix, urine to the conventional one, muscle, confirming once again a more complete 

picture of urine information than the matrix indicated by the European authorities. 

Due to the increasing phenomenon of antibiotic resistance, we also propose a 

multiclass method for antibiotic in mussels and clams, as filter feeders and suitable 

bioindicators of environmental pollution. Moreover, antibiotics use in breeding and 

aquaculture is a well known major cause of concern. The two types of shellfish were 

carefully selected for a comparison, considering that mussels tend to grow on the 

surface of wave-washed rocks, while clams live in shallow water. Moreover, the 

collection from distinct FAO areas could expand the knowledge from the point of view of 

food safety, relatively also to environmental contamination. 

With the same purpose, we performed the analysis of the new emergent contaminants, 

perfluoroalkyl substances (PFASs), on the same samples of mussels and clams, trying 

to define how they can accumulate in the different marine layers and their distribution in 

edible matrixes consumed all over the world, conducting also a reliable risk assessment 

on the basis of EFSA’s requestes [10, 11]. In this context, the use of LC-HRMS Orbitrap 

has contributed to obtaining more quantifiable data thanks to the high sensitivity and 

specificity associated with the high resolution power of this instrumentation. The same 

study was also performed for another kind of edible matrix, the eels of Lake Garda 

(Nothern Italy) to evaluate the distribution and bioaccumulation of PFASs in this 
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species, facilitated by their morphological characteristics, e.g. length and body 

composition. Moreover, Lake Garda is a semi-enclosed environment, which has shown 

an increasing pollution level in recent years, in which the majority of plastic particles 

have been found [12]. 

Several collaborations with other Italian and European research groups have allowed 

the development of other small issues related to this project, as well as the period of 3 

months abroad at RIKILT, the reference laboratory for food safety, in Wageningen 

(Netherlands), which contributed to increase my knoledge in analytical and instrumental 

field. 
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Highlights 

β-boldenone use in food producing animals is banned in the European Union. 

Prednisolone is regulated only for therapeutic purposes. 

Two validated analytical methods, after a unique clean-up, are proposed on an unusual 

biological matrix, such as bile. 

α- and β-boldenone sulphate and glucuronide, their free forms, androstadienedione and 

fivecorticosteroids were determined . 

The methods demonstrated good performances both for research and control purposes. 

 

Abstract 

The presence of β-boldenone II phase metabolites and prednisolone in urine samples, 

owing to endogenous or natural origin or illicit treatment, is under debate within the 

European Union. The detection of β-boldenone conjugates, α-boldenone conjugates at 

a concentrations higher than 2 ng mL-1 and prednisolone above the cut-off level of 5 ng 

mL-1 in urine have been, until now, critical in deciding if illegal drug use has occurred. 

The use of urine sometimes is not entirely satisfactory, especially when the drug is 

administrated at low doses or when its metabolic conversion is very fast. This 

subsequently would hamper its detection in urine. The introduction of new, 

advantageous matrix where the illicit treatment can be investigated would be highly 

appreciated. In this study, we have developed and validated a simple and unique 

immunoaffinity clean-up procedure, which was applied to bovine bile samples, followed 

by two different analytical liquid chromatography, electrospray, tandem mass 

spectrometry methods. The first method tests androstadienedione, α- and β-boldenone 

sulphate, glucuronate and related free forms, while the other method assays 

prednisolone, prednisone, dexamethasone, cortisone and cortisol. The methods were 

validated according to the European Commission Decision 2002/657/EC. The evaluated 

parameters were linearity, specificity, precision (repeatability and intra-laboratory 

reproducibility), recovery, decision limit and detection capability. The decision limits 

(CCα) were between 0.38 and 0.45 ng mL−1 for anabolic steroids, and 0.13 and 0.15 ng 

mL-1 as far as corticosteroids are concerned. Intra- and inter-day repeatability was 

below 15.8 and 19.9% for all analytes, respectively. The methods were applied to the 



84 
 

analysis of some bile samples collected from untreated young bulls in order to 

investigate the presence of the studied steroids in this matrix. 

 

Keywords: boldenone sulphate, boldenone glucuronide, prednisolone, 

dexamethasone, bovine bile, food safety  

 

3.1.1. Introduction 

The use of growth promoters in food-producing animals allows animal performances to 

be improved, such as a better transformation rate, a higher meat yield at slaughter, an 

increase in milk production or a decrease in muscle fat. The use of growth promoters is 

prohibited, as detailed in Council Directives 96/22/EC and 96/23/EC [1, 2], which 

contain guidelines for controlling veterinary drug residues in animals and their products, 

with all the necessary information to set up national monitoring plans [3]. The ban of any 

growth-promoter was accomplished on 1 January 2006 with the prohibition of the last 

four antimicrobial agents [4]. 

Regulations on substance residues with hormonal activity in food of animal origin is 

essential to safeguard animal welfare, to avoid consumer health risks derived from the 

exposure and to ascertain commercial frauds. 

Nevertheless, the simple detection of some steroids in bovine urine is currently 

considered to provide insufficient evidence of illicit treatment. Parameters such as cut-

off levels, presence of metabolites, or both, must be accounted for. As an example, the 

α-epimer of boldenone was proposed, in 2003, as a naturally occurring steroid in bovine 

animals by experts within the EU, who set the "natural threshold" for the α-boldenone 

conjugates in urine at 2 ng mL-1; a concentration above this could come from illicit 

treatment [5]. The authorities responsible for the control of residues in food must, 

therefore, consider either the possible endogenous production of these molecules or the 

existence of natural feed ingredients, such as phytosterols, as possible precursors to 

boldenone [6-9]. The faecal contamination of urine can also generate false positives for 

boldenone presence [10-11].  An analogous explanation considers the in vitro formation 

of prednisolone from cortisol in bovine [12] and human urine [13]. Moreover, cattle that 

are under stress conditions [14-16] could produce prednisolone. Based on recent 
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findings and on a study that has been carried out on 100 bovine urine samples, de Rijke 

et al. [17], have suggested a threshold level of 5 ng mL-1 for regulatory purposes, which 

was based on the following calculation: average level in non-treated animals + (3 x the 

standard deviation). From all considerations, it emerges that ultimate answer 

concerning the topics of boldenone and prednisolone in bovine urine, has not been 

accomplished yet. We, therefore, suggest a different biological matrix, such as bile, 

which represents a fairly complex matrix containing a lot of information. Many 

substances undergo, through the biliary tract, entero-hepatic recycling. Until now, 

scientific reports have indicated urine, liver, faeces and hair as the major biological 

matrices for the detection of such important analytes, whereas data are scarce for bile. 

Utilisation of bile as alternative matrix is convenient, due to its possibility to accumulate 

the steroid structures. An advantage could arise from the fact that gathering within bile 

provokes time-lag of steroids metabolism and, consequently their long-term retention. 

Therefore, it is reasonable to assume that the presence of active principles could be 

demonstrated in bile, but not in urine. Moreover, analysis performed in urine or plasma 

can be affected by the stress conditions that animals are subjected during the samples. 

The fact that bile can be taken only after slaughter, despite being a limitation, keep 

away the sampling stress. This is really crucial to consider especially when “false” 

positive results for prednisolone and boldenone occur, or when extremely high level of 

cortisol appears. 

Particular research in this area includes the study of trenbolone in bovine bile and 

faeces [18], the analysis of hormonal steroids in fish plasma and bile [19, 20], and an 

automated multi-immunoaffinity chromatography screening to detect anabolic agents, 

including boldenone, in bile and urine [21]. However, these methods imply multistep 

clean-up procedure, resulting in complicated and expensive sample processing. 

In this paper, we describe two methods based on a unique immunoaffinity column (IAC) 

clean-up and two liquid chromatography–tandem mass spectrometry (LC–MS/MS) 

analyses of bile, which are validated according the technical guidelines on the analytical 

performance criteria for confirmatory and validation procedures, as described in the 

Commission Decision (2002/657/EC) [22]. 
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Anabolic steroids 17α- and 17β-boldenone, their glucuronate and sulphate conjugates, 

and their precursor androstadienedione (ADD) (Figure 1) are the analytes that were 

investigated by the first method. Second method was employed for analysis of following 

corticosteroids: prednisolone, prednisone, dexamethasone, cortisone and cortisol 

(Figure 2). 

Both methods demonstrated a good performance, allowing for the detection and 

identification of the analytes at levels lower than 0.5 ng mL-1. These validated methods 

were ultimately applied to the analysis of bile samples collected from untreated young 

bulls in order to investigate the presence of the studied steroids in this matrix. 

 

Figure 1. Chemical structures of α-boldenone and β-boldenone free and conjugated forms and ADD. 
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Figure 2. Chemical structures of the five studied corticosteroids. 

 

3.1.2. Materials and methods 

3.1.2.1. Sample collection 

Bile samples were collected after slaughtering untreated young Charolaise bulls (14–17 

months old); following collection they were immediately frozen, taken to the laboratory 

and stored at −40°C until the analysis was performed. 

 

3.1.2.2. Chemicals and reagents 

All solvents were of HPLC or analytical grade and were purchased from Fluka (Sigma-

Aldrich, St.Louis, MO, USA). Formic acid 98–100% was obtained from Riedel-de Haën 

(Sigma-Aldrich, St.Louis, MO, USA). Water was purified by a Milli-Q System. The 

immunoaffinity columns (IAC) were provided by Randox (DM 2185, Randox 

Laboratories, Antrim, UK). Concentrated wash and storage buffers, which were diluted 

following the manufacturer’s instructions before use, were supplied with the columns. 

ADD and β-boldenone were purchased from Fluka (Sigma-Aldrich, St.Louis, MO, USA); 

β-boldenone sulphate (triethylamine salt), β-boldenone glucuronide, and α-boldenone 

were obtained from LGC Standards (Teddington, UK). The internal standards were β-

boldenone sulphate-d3 for the sulphate forms, β-boldenone-d3 for the free forms (LGC 

Standards, Teddington, UK) and epitestosterone (EpiT) glucuronide-d3 for the 

glucuronate forms (National Measurement Institute, Pymble, NSW, Australia). The 
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sulphate and glucuronate forms of α-boldenone, provided by research partners, were 

prepared by a two-step synthesis procedure, in which β-boldenone (Steroid SpA, 

Cologno Monzese, Milan, Italy) was epimerised using a modified Mitsunobu protocol, 

according to Dodge and Lugar [23, 24], which was followed by sulphation, according to 

Sanaullah and Bowers [25], or glucuronation, according to Casati et al. [26]. Cortisone, 

cortisol, prednisone, prednisolone and dexamethasone were purchased from Fluka 

(Sigma-Aldrich, St.Louis, MO, USA) and their internal standard, prednisolone-d6, was 

obtained from C/D/N Isotopes Inc (Pointe-Claire, Quebec, Canada). 

 

3.1.2.3. Standard solutions 

Stock solutions (1 mg mL−1) for each standard were prepared in methanol and kept at -

40°C. Working solutions, containing each of the studied analytes at the concentrations 

of 10 and 100 ng mL−1, were prepared daily. Each working solution was maintained at 

4°C during the method validation procedures. 

 

3.1.2.4. Sample extraction 

Samples of bovine bile (5 mL) were centrifuged, spiked with the internal standards to 

the final concentration of 2 ng mL-1 and then purified by using the IAC. The column was 

previously washed with 5 mL ethanol:water (70:30 v/v) and equilibrated with 3 × 5 mL 

wash buffer (flow rate ≤ 3 mL min-1, i.e. about one drop per second). The pH value of 

the bile samples was measured resulting within the operative range (7.5–8.5) of the 

column. The samples were loaded by gravity flow. Wash buffer (2 x 5 mL) and water (1 

x 5 mL) were used to wash the column. The elution of the bound analytes was then 

performed by the application of 4 mL ethanol:water (70:30 v/v) (flow rate ≤ 3 mL min-1), 

which was collected in a 15 mL polypropylene tube. The eluate was evaporated in a 

rotary vacuum evaporator. The dried extract was reconstructed in 200 µL of 

methanol:water (50:50 v/v), transferred in vial which was placed in auto-sampler. The 

injection volume was 10µL. The IAC could be used again (up to eight runs), starting 

from the equilibration described above, after a wash step with 2 x 5 mL ethanol:water 

(70:30 v/v). 
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3.1.2.5. LC-MS/MS analyses 

LC analysis was carried out with an HPLC system (Thermo Fisher Scientific, San Jose, 

CA, USA), constituted by a Surveyor MS quaternary pump with a degasser, a Surveyor 

AS auto-sampler with a column oven and a Rheodyne valve with 20 μL loop. 

Chromatographic separation was achieved using a Synergi Hydro RP reverse-phase 

HPLC column (150 x 2.0 mm ID, 4 µm particle size), with a C18 (4 x 3.0 mm) guard 

column (Phenomenex, Torrance, CA, USA), which was kept at 30°C. The mobile phase 

consisted of methanol (solvent A) and 0.1% aqueous formic acid (solvent B). The 

gradient program for boldenone and its conjugates began at 60% A for 1 min, changing 

to 95% A in 11 min, which was then held for 2 min. Then, it returned to 60% A in 2 min 

and equilibrated for another 7 min. The flow rate was 200 L min−1 and the overall run 

time was 22 min. 

The gradient profile for corticosteroids began at 75% B, changing to 30% B in 18 min 

and then to 5% B in 1 min, which was held for 2 min. Finally, it returned to 75% B in 2 

min and equilibrated for another 6 min. The flow rate was 250 L min−1 and the overall 

run time was 29 min. 

The mass spectrometer was a triple-quadrupole TSQ Quantum MS (Thermo Fisher, 

San Jose, CA, USA) equipped with an electrospray interface (ESI) set both in the 

positive (ESI+) and in the negative (ESI-) electrospray ionisation modes. Acquisition 

parameters were optimised in the electrospray mode by direct continuous pump-syringe 

infusion of the standard solutions of analytes at a concentration of 1 g mL-1, a flow rate 

of 20 µL min-1 and a MS pump rate of 100 µL min-1. The following conditions were used: 

capillary voltage 3.5 kV, ion-transfer capillary temperature 340°C; nitrogen as sheath 

and auxiliary gases at 30 and 10 arbitrary units, respectively, argon as the collision gas 

at 1.5 mTorr and peak resolution 0.70 Da at full width half maximum (FWHM). The scan 

time for each monitored transition was 0.1 s and the scan width was 0.5 amu. Three 

diagnostic product ions were chosen for each analyte and internal standard. The 

acquisition was made in multiple reaction monitoring (MRM). The selected diagnostic 

ions, one of which was chosen for the quantification, and the collision energies are 

reported in Table 1 for boldenone and its conjugates; those results for the 
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corticosteroids are reported in Table 2. Acquisition data were recorded and elaborated 

using Xcalibur™ software from Thermo Fisher. 

 

Table 1. MS/MS conditions for the MRM acquisitions of α-boldenone and β-boldenone free and 

conjugated forms and ADD, as well as the relative internal standards. Ions for quantification are in 

boldenone. CE: collision energy, expressed in Volts. 

Analyte 

Precursor ion 

[M-H]
-
 or [M-H]

+
 

(m/z) 

Product ionsCE 

(m/z) 
ESI 

α-boldenone sulphate 365 17739, 34940, 35030 (-) 

β-boldenone sulphate 365 17739, 34940, 35030 (-) 

β-boldenone sulphate-d3 368 18041, 35240, 35331 (-) 

α-boldenone glucuronide 463 13521, 26913, 28712 (+) 

β-boldenone glucuronide 463 13521, 26913, 28712  (+) 

epitestosterone glucuronide-d3 468 25623, 27416, 29211 (+) 

ADD 285 12122, 15114, 26711 (+) 

α-boldenone 287 12123, 13514, 26910 (+) 

β-boldenone 287 12123, 13514, 26910 (+) 

β-boldenone d3 290 12127, 13814, 27210 (+) 

 

Table 2. MS/MS conditions for the MRM acquisitions of the corticosteroids and internal standards. Ions 

for quantification are in bold. CE: collision energy, expressed in Volts. 

Analyte 

Precursor ion 

[M-H]
-
 or [M-H]

+
 

(m/z) 

Product ionsCE 

(m/z) 
ESI 

prednisolone 405 18730, 28035, 32919 (-) 

prednisone 403 29921, 32719, 35712 (-) 

dexamethasone 437 30733, 36120, 39114 (-) 

cortisone 405 30121, 32920, 35912 (-) 

cortisol 407 28237, 29733, 33120  (-) 

prednisolone-d6 411 28437, 29932, 33319 (-) 

 



91 
 

3.1.2.6. Method validation 

The validation was performed according to the criteria and recommendations of the 

European Commission Decision 2002/657/EC [22]. All bile samples that were previously 

tested contained residues of α-boldenone glucuronide, cortisone and cortisol at 

considerable concentrations, in some cases, even higher than 3 ng mL-1. Therefore, we 

were able to utilize pooled-bile blank samples from untreated young bulls for the 

validation of all steroids, except for the three mentioned. The method for these last 

analytes was validated in water adjusted to pH 8 with NaOH 0.1 N as a surrogate matrix 

of the bile, following the directions of van de Merbel [27]. 

For each analyte, the method performance was assessed through its qualitative 

parameters, such as the analyte specificity, molecular identification in terms of retention 

time (RT) and transition ion ratios, through its quantitative parameters, such as the 

linearity, recovery, accuracy in term of trueness and of precision expressed as the intra- 

and inter-day repeatability, and through the analytical limits [decision limit (CCα) and 

detection capability (CCβ)]. 

Specificity identification includes detecting any extra peaks in the blank matrix 

chromatograms as well as checking the matching of the relative retention time observed 

for the spiked analytes, compared to standard analytes in methanol, with a tolerance of 

±2.5%. No evaluation of the specificity could be made for the validated analysis of the 

three chemicals in the surrogate matrix. 

The instrumental linearity was evaluated by drawing five-point calibration curves in the 

solvent containing a fixed amount of the internal standards (2 ng mL−1 each), with 

analyte concentrations corresponding to 0.3, 1.0, 2.0, 3.0 and 5.0 ng mL−1 for ADD and 

the different forms of boldenone, and to 0.1, 0.5, 1.0, 3.0 and 5.0 ng mL−1 for the five 

corticosteroids. 

Matrix calibration curves were obtained by spiking bile samples with each of the 

analytes (except the three validated in water), resulting in three analytical series; each 

series had three concentration levels (0.1, 0.2 and 0.3 ng mL−1 for corticosteroids and 

0.3, 0.6 and 0.9 ng mL−1 for boldenone and its conjugate) in six replicates. Analogue 

curves, in water adjusted to pH 8, were obtained for α-boldenone glucuronide, cortisone 

and cortisol. 
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The trueness was assessed through recovery and was evaluated using the matrix curve 

results from the three analytical series, expressed in terms of a percentage of the 

measured concentration with respect to the spiked concentration. 

The precision in terms of intra- and inter-day repeatability was evaluated by calculating 

the relative standard deviation of the results obtained for six replicates of each analyte 

at three concentration levels of the three analytical series. The data from the matrix 

calibration curve were used to calculate the decision limit (CCα) and the detection 

capability (CCβ), according to the matrix calibration curve procedure described in the 

Commission Decision 2002/657/EC [22], as clarified in the document 

SANCO/2004/2726 revision 4 [28]. 

 

3.1.3. Results and discussion 

The pseudo-endogenous nature of boldenone and prednisolone has so far hampered 

the control of the presence of their residues in conventional matrices, such as 

urine.This has led to the search of alternative indicators of treatment and different 

biomarkers have already been considered, along with establishment of cut-off levels, 

as already stated in Section 1. 

A procedure that uses bovine bile as the biological matrix to detect and distinguish 

boldenone epimers, their phase II metabolites, ADD and five corticosteroids is 

described herein and two LC-MS/MS methods are validated with the aim to be used as 

a tool to carry out research on the origin of these steroids and their conjugated forms. 

The two developed methods use a unique IAC clean-up step in bovine bile, which is 

suitable for both anabolic steroids and corticosteroids, and one of two LC-MS/MS 

analyses steps. One of the LC-MS/MS analyses can detect ADD, α- and β-boldenone 

sulphate, glucuronate and free forms, and, in the other LC-MS/MS method, 

prednisolone, prednisone, dexamethasone, cortisone and cortisol, at concentration 

levels suitable for research and control purposes. The two LC-MS/MS methods were 

developed to provide confirmatory data for the analysis of bovine bile. After preliminary 

trials, in full-scan mode from 50 to 500 m/z, the three product ions with the higher 

signal-to-noise ratio (s/n), for each analyte and internal standard were chosen for 

identification. The collision energy (CE) and the de-clustering potential (DP) were 
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adjusted in the MRM mode for each transition monitored, in order to reach the highest 

sensitivity for all analytes. 

The LC–MS/MS chromatograms for the anabolic steroids and corticosteroids in a bile 

sample spiked with each analyte at the lowest concentration level of the validation are 

shown, together with the MS spectra, in Figure 3 and Figure 4, respectively; in addition, 

on the right-hand side of each figure, internal standards (2 ng mL-1) are presented. 

For a method to be deemed confirmatory under Commission Decision 2002/657/CE 

[22], it must yield four identification points (IPs). Each one of the three product ions is 

equal to 1.5 IPs, making a total of 4.5 IPs. The three diagnostic product ions, among 

which is the ion for the quantification, the relative intensities and the CEs are reported in 

Table 1 (for anabolic steroids) and Table 2 (for corticosteroids). 
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Figure 3. LC–MS/MS chromatograms and related MS spectra of α-boldenone and β-boldenone free and 

conjugated forms and ADD in a bile sample spiked at the validation lowest concentration level (0.3 ng mL
-

1
). Right-hand side: internal standards (concentration = 2 ng mL

-1
). 

 

 



95 
 

Figure 4. LC–MS/MS chromatograms and related MS spectra of the five corticosteroids in a bile sample 

spiked at the validation lowest concentration level (0.1 ng mL
-1

). Right-hand side: internal standard 

(concentration = 2 ng mL
-1

). 

 

3.1.3.1. Performance characteristics of the methods 

The instrumental linearity was evaluated over a concentration range of 0.3– 5.0 ng mL-1 

for the anabolic steroids and 0.1–5.0 ng mL-1 for the five corticosteroids, using solutions 

of the analytes in methanol:water (50:50 v/v), containing a fixed amount of the internal 

standards (2.0 ng mL-1 each). Correlation coefficients of the curves were higher than 

0.9970 for all compounds, indicating a good fit. 

The matrix calibration curves built for the validation of each analyte were demonstrated 

to be linear in the range 0.3–0.9 ng mL-1 for the anabolic steroids and 0.1–0.3 ng mL-1 

for the corticosteroids. The regression lines, obtained using the least-square method, 
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demonstrated a good fit for all analytes with had correlation coefficient > 0.99, except α-

boldenone sulfate (0.9860). 

Specificity and matrix effect were evaluated for all analytes except the three validated in 

the surrogate matrix. Blank and spiked samples were analysed and did not show any 

interferences (signals, peaks, ion traces) in the region of interest, where the target 

analytes were expected [22]. The matrix effect was evaluated as deviation obtained 

from concentrations of fortified bile and corresponding water solutions, multiplied with 

100. For all compounds this value was minimum, less than 4%. The purification step 

using immunoaffinity approach turned to decisive for this achievement. Specificity and 

matrix effect were not evaluated for α-boldenone glucuronide, cortisone and cortisol, as 

the validation of the method for these three steroids was made in water adjusted to pH 

8, as stated in Section 2.6. 

The precision, calculated by applying the one-way analysis of variance (ANOVA), was 

expressed as coefficient of variation (CV), in terms of intra- and inter-day repeatability. 

The reported results show that the intra- and inter-day repeatability for all analytes was 

below 15.8 and 19.9%, respectively. These CVs were lower than 22%, as proposed by 

Thompson [29]. The high values were probably due to the low concentrations used for 

the method validation. The levels chosen were, however, addressed to subsequent 

research on the natural or endogenous origin of conjugated boldenone in bovine bile. 

The use of these methods for control purposes could consider higher concentration 

ranges for validation. 

The mean recoveries ranged between 94 and 106% for α-boldenone sulphate, 91 and 

109% for β-boldenone sulphate, 96 and 104% for α-boldenone glucuronide, 99 and 

101% for β-boldenone glucuronide, 94 and 106% for ADD, 98 and 103 % for α-

boldenone and 99 and 101% for β-boldenone. The mean recoveries for the 

corticosteroids ranged between 98 and 102% for prednisolone, 98 and 102% for 

prednisone, 94 and 106% for dexamethasone, 93 and 107% for cortisone and were 

about 100% for cortisol. 

The data for the anabolic steroids and corticosteroids are reported in Table 3 and Table 

4, respectively. CCα was calculated, as described in SANCO/2004/2726 revision 4 [28], 
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using parallel extrapolation to the x-axis at the lowest experimental concentration. CCα 

and CCβ values are reported in Table 5 and Table 6. 

 

Table 3. Method precision for α-boldenone and β-boldenone free and conjugated forms and ADD. 

Analyte 

Concentration level Recovery % Repeatability 

(ng mL
−1

) 
(n=18) 

intra-day 
(CV; n=6) 

inter-day  
(CV; n=18) 

 
0.3 105.8 15.6 17.5 

α-boldenone sulphate 0.6 94.2 15.8 19.5 

 
0.9 101.9 14.6 19.8 

     

 
0.3 109.4 15.2 19.9 

β-boldenone sulphate 0.6 90.5 12.9 16.5 

 
0.9 103.1 5.0 6.1 

     
 0.3 96.3 15.2 9.7 

α-boldenone glucuronide 0.6 103.7 10.1 6.8 

 0.9 98.8 11.0 8.8 

      0.3 99.2 14.4 19.3 

β-boldenone glucuronide 0.6 100.8 15.8 19.2 

 0.9 99.7 15.8 16.5 

     

 
0.3 106.4 11.2 14.7 

ADD 0.6 93.6 10.3 13.9 

 
0.9 102.1 9.0 9.5 

     

 
0.3 101.9 15.8 18.0 

α-boldenonone 0.6 98.1 10.5 12.2 

 
0.9 103.1 15.3 15.5 

     

 
0.3 99.1 15.0 19.0 

β-boldenone 0.6 100.9 8.1 15.4 

 
0.9 99.6 10.3 11.2 
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Table 4. Method precision for the five corticosteroids. 

Analyte 

Concentration level Recovery % Repeatability 

(ng mL
−1

) 
(n=18) 

intra-day 
(CV; n=6) 

inter-day  
(CV; n=18) 

 
0.1 102.0 14.7 14.9 

prednisolone 0.2 98.0 12.2 12.4 

 
0.3 100.1 9.0 9.0 

     

 
0.1 101.9 15.7 19.8 

prednisone 0.2 98.1 15.0 19.6 

 
0.3 101. 12.6 13.3 

     
 0.1 93.8 11.0 19.4 

dexamethasone 0.2 106.2 12.8 19.4 

 0.3 97.0 14.0 15.0 

      0.1 93.0 15.2 11.2 

cortisone 0.2 107.0 10.7 18.3 

 0.3 97.7 7.5 9.0 

     

 
0.1 99.9 15.4 19.4 

cortisol 0.2 100.1 10.9 15.0 

 
0.3 100.0 15.0 19.3 

 

Table 5. CCα and CCβ for α-boldenone and β-boldenone free and conjugated forms and ADD. 

Analyte CCα (ng mL
-1

) CCβ (ng mL
-1

) 

α-boldenone sulphate 0.42 0.55 

β-boldenone sulphate 0.45 0.58 

α-boldenone glucuronide 0.38 0.45 

β-boldenone glucuronide 0.44 0.59 

ADD 0.40 0.50 

α-boldenone 0.43 0.69 

β-boldenone 0.44 0.57 
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Table 6. CCα and CCβ for the five corticosteroids. 

Analyte CCα (ng mL
-1

) CCβ (ng mL
-1

) 

prednisolone 0.13 0.16 

prednisone 0.15 0.21 

dexamethasone 0.14 0.19 

cortisone 0.15 0.20 

cortisol 0.14 0.19 

 

3.1.3.2. Application of the methods 

In order to verify the developed methods in actual conditions, 20 bile samples, 

randomly collected from untreated young bulls (14–17 months old) under veterinary 

control, were subjected to the analysis for the detection of the studied molecules. 

All bile samples showed α-boldenone glucuronide residues at a concentration interval 

from 8.3 to 258.2 ng mL-1 (average concentration 68.9 ng mL-1) and evidenced traces 

of β-boldenone sulphate (concentration < CCα); α-boldenone was found in seven 

samples at a concentration interval from 0.6 to 1.3 ng mL-1 (average concentration 0.9 

ng mL-1). Only three samples showed ADD at a concentration interval from 0.7 to 2.3 

ng mL-1 (average concentration 1.3 ng mL-1). β-boldenone glucuronate, α-boldenone 

sulphate and β- boldenone were not detected. 

Our findings evidenced the presence of boldenone and some phase II metabolites in a 

matrix without faecal contamination. 

Regarding corticosteroids, the concentration values found in all samples ranged from 

0.3 to 13.5 ng mL-1 for cortisone (average concentration 5.0 ng mL-1) and from 0.3 to 

6.8 ng mL-1 for cortisol (average concentration 2.3 ng mL-1). Eight samples showed 

prednisolone at a concentration interval from 0.2 to 0.4 ng mL-1 (average concentration 

0.3 ng mL-1) and six samples evidenced prednisone from 0.2 to 0.3 ng mL-1 (average 

concentration 0.2 ng mL-1). Dexamethasone was not detected. 

 

3.1.4. Conclusion 
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We presented two LC-MS/MS methods for the analysis of bile samples. The first 

included 17α and 17β-boldenone, their precursor androstadienedione (ADD) as well as 

their glucuronides and sulphates, whereas the second one reported the detection of 

prednisolone, prednisone, dexamethasone, cortisone and cortisol. All analytes were 

extracted with a common and simple immunoaffinity chromatographic procedure. The 

performance characteristics of the two methods were evaluated in accordance with the 

criteria of the Commission Decision 2002/657/CE [22]. 

We found α-boldenone glucuronate at high concentrations as well as traces of β-

boldenone sulphate, ADD, α-boldenone, prednisolone, prednisone, cortisone and 

cortisol in bile samples of untreated young bulls.  

Further studies are ongoing in order to verify whether or not bile is an effective matrix 

for investigating the endogenous nature of boldenone phase II metabolites to 

unambiguously discriminate illicit treatments from their natural presence. 
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3.2. Suitability of bovine bile compared to urine for detection of free, sulfate 

and glucuronate boldenone, androstadienedione, cortisol, cortisone, 

prednisolone, prednisone and dexamethasone by LC-MS/MS. 

Published in: Food Chemistry, Volume 188, 2015, Pages 473-480 

https://doi.org/10.1016/j.foodchem.2015.04.131 

 

Luca Chiesaa, Maria Nobilea, Sara Panseria*, Daniele Vigoa, Radmila Pavlovica, , 

Francesco Ariolib 

aDepartment of Veterinary Science and Public Health, University of Milan, Via Celoria 

10, 20133 Milan, Italy 

bDepartment of Health, Animal Science and Food Safety, University of Milan, Via 

Celoria 10, 20133 Milan, Italy 

*Corresponding author: Sara Panseri, Department of Veterinary Science and Public 

Health, University of Milan, Via Celoria 10, 20133 Milan, Italy. Phone: 0250317931; Fax: 

00390250317941; E-mail: sara.panseri@unimi.it  

Permanent Address: Department of Chemistry, Faculty of Medicine, University of Nis, 

Bulevar Dr Zorana Djindjica 81, 18000, Nis, Serbia 

 

 

 

 

 

 

 

In this study I contributed to the experimental work planning, the execution of practical 

work and analysis of samples, data processing and writing of the article.  

https://doi.org/10.1016/j.foodchem.2015.04.131
mailto:sara.panseri@unimi.it


105 
 

Abstract 

The administration of boldenone and androstadienedione to cattle is forbidden in the 

European Union, while prednisolone is permitted for therapeutic purposes. They are 

pseudoendogenous substances (endogenously produced under certain circumstances). 

The commonly used matrices in control analyses are urine or liver. With the aim of 

improving the residue controls, we previously validated a method for steroid analysis in 

bile. We now compare urine (a ‘classic’ matrix) to bile, both collected at the 

slaughterhouse, to understand whether the detection of steroids in the latter is easier. 

With the aim of having clearer results, we tested the presence of the synthetic 

corticosteroid dexamethasone. The results show that bile does not substantially improve 

the detection of boldenone, or its conjugates, prednisolone and prednisone. 

Dexamethasone, instead, was found in 10 out of 53 bovine bile samples, but only in one 

urine sample from the same animals. Bile could constitute a novel matrix for the 

analysis of residues in food-producing animals, and possibly not only of synthetic 

corticosteroids. 

Keywords: Bile; urine; boldenone, prednisolone; dexamethasone. 

Chemical compounds studied in this article 

Boldenone (PubChem CID: 13308); Androstadienedione (PubChem CID: 13102100); 

Prednisolone (PubChem CID: 5755); Prednisone (PubChem CID: 5865); 

Dexamethasone (PubChem CID: 5743); Cortisol (PubChem CID: 5754); Cortisone 

(PubChem CID: 222786);  

3.2.1. Introduction 

Regulations on substance residues with anabolic activity in food of animal origin is 

essential to safeguard animal welfare, to avoid consumer health risks derived from 

exposure and to ascertain commercial frauds. The debate about the presence of β-

boldenone II phase metabolites and prednisolone in urine samples, owing to 

endogenous or natural origin, or illicit treatment, is currently ongoing within the 

European Union. 

cid:5755
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The use of urine as a matrix for the control of illegal treatments is not, however, entirely 

satisfactory. Parameters such as cut-off levels, the presence of metabolites, or both, 

must be accounted for. 

As an example, α-boldenone was proposed in 2003 by experts within the EU as a 

naturally occurring steroid in bovine animals. They set the "natural threshold" for α-

boldenone conjugates in veal calf urine at 2 ng mL-1; a concentration above this could 

come from illicit treatment (European Union, 2003). The authorities responsible for the 

control of residues in food must therefore consider the possible endogenous production 

of boldenone e.g. as a product of the metabolism of natural feed ingredients, such as 

phytosterols (Song, Jim, & Park, 2000). Le Bizec et al. (2006) and Destrez et al. (2009) 

suggested, in a study carried out on a limited number of calves, that the presence in 

urine of the sulpho-conjugate fraction could be useful to distinguish between natural 

situations and the illegal use of β-boldenone in cattle. The faecal contamination of urine 

can also generate false positives for the presence of boldenone (Pompa et al., 2006, 

Arioli et al., 2008). 

 Analogous explanations are given regarding the in vitro formation of prednisolone from 

cortisol in bovine (Arioli, Fidani, Casati, Fracchiolla, & Pompa, 2010) and human urine 

(Bredehöft, Baginski, Parr, Thevis, & Schänzer, 2012). Moreover, cattle that are under 

stress conditions could produce prednisolone (Pompa, Arioli, Casati, Fidani, Bertocchi, 

& Dusi, 2011), as well as α- and β-nortestosterone, as shown by Glenn Kennedy et al. 

(2009) in a study on injured male cattle. A recent study, carried out on 100 bovine urine 

samples by de Rijke, Zoontjes, Samson, Oostra, Sterk, & van Ginkel (2014), suggests a 

threshold level of 5 ng mL-1 of urinary prednisolone for regulatory purposes. 

These considerations suggest that the topic of the endogenous production of boldenone 

and prednisolone in bovine animals needs to be further explored. 

With the aim of improving our knowledge about this subject, we therefore propose a 

comparison between two matrices, bile and urine, both analysed with two methods 

based on a unique immunoaffinity column (IAC) clean-up and two liquid 

chromatography–tandem mass spectrometry (LC–MS/MS) analyses, validated 

according to the Commission Decision (2002/657/EC). Anabolic steroids 17α- and 17β-
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boldenone, their glucuronate and sulfate conjugates, and their precursor 

androstadienedione (ADD) are the analytes that were investigated in the first method. 

Corticosteroids cortisol, cortisone, prednisolone, prednisone and dexamethasone are 

the molecules searched for with the second method. 

Dexamethasone is permitted in the European Union for therapeutic use in food-

producing animals, but its use as a growth promoter, habitually in combination with 

beta-agonists, is forbidden. Several researchers have devised methods for the detection 

of dexamethasone in different conventional matrices (Friedrich, & Schulz, 1992, 

Courtheyn et al., 1994, Van den hauwe, Dumoulin, Elliott, & Van Peteghem, 2005), but 

we could find only one study conducted in bile and urine for steroidal compounds 

(Fodey, Elliott, Crooks, & McCaughey, 1996). This work used the multi-immunoaffinity 

chromatography (MIAC) followed by ELISA procedure on bile and urine samples that 

previously underwent deconjugation with Helix pomatia juice. Finally, we chose 

dexamethasone, because, unlike the above-mentioned steroids, it is a strictly synthetic 

molecule and its detection in urine and/or bile could provide clearer information about 

the suitability of the compared biological matrices studied. To the described aims, we 

therefore analysed a total of 53 bile and urine paired samples collected from male veal 

calves, young bulls and cows. 

3.2.2. Materials and methods 

3.2.2.1. Sample collection 

Bile and urine paired samples from Friesian male veal calves (aged 9 to 12 months), 

Limousine young bulls (aged 16 to 21 months) and Friesian dairy cows (aged 45 to 94 

months) of the food chain were collected in different slaughterhouses in Lombardy, 

immediately frozen, taken to the laboratory and stored at −40°C until analysis was 

performed. 

3.2.2.2. Chemicals and reagents 

All solvents were of LC or analytical grade and were purchased from Fluka (Sigma-

Aldrich, St.Louis, MO, USA). Formic acid 98–100% was obtained from Riedel-de Haën 

(Sigma-Aldrich, St.Louis, MO, USA). Water was purified by a Milli-Q System. The IAC 
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was provided by Randox; concentrated wash and storage buffers, which were diluted 

following the manufacturer’s instructions before use, were supplied with the columns 

(DM 2185, Randox Laboratories, Antrim, UK). ADD and β-boldenone were purchased 

from Fluka (Sigma-Aldrich, St.Louis, MO, USA), while β-boldenone sulfate 

(triethylamine salt), β-boldenone glucuronide, and α-boldenone were obtained from 

LGC Standards (Teddington, UK). The internal standards were β-boldenone sulfate-d3 

for the sulfate forms, β-boldenone-d3 for the free forms (LGC Standards, Teddington, 

UK) and epitestosterone (EpiT) glucuronide-d3 for the glucuronate forms (National 

Measurement Institute, Pymble, NSW, Australia). The sulfate and glucuronate forms of 

α-boldenone, provided by research partners, were prepared by a two-step synthesis 

procedure, in which β-boldenone (Steroid SpA, Cologno Monzese, Milan, Italy) was 

epimerised using a modified Mitsunobu protocol, according to Dodge and Lugar 

(Fabregat, Pozo, Marcos, Segura, & Ventura, 2013, Dodge, & Lugar, 1996) which was 

followed by sulphation according to Sanaullah & Bowers (1996), or glucuronation 

according to Casati, Ottria, & Ciuffreda (2009). Cortisone, cortisol, prednisone, 

prednisolone and dexamethasone were purchased from Fluka (Sigma-Aldrich, St. 

Louis, MO, USA) and their internal standard, prednisolone-d6, was obtained from C/D/N 

Isotopes Inc. (Pointe-Claire, Quebec, Canada). 

3.2.2.3. Sample extraction and LC-MS/MS analysis 

The bile and urine extractions and analyses were performed as previously described by 

Chiesa, Nobile, Panseri, Sgoifo Rossi, Pavlovic, & Arioli (2014) and Chiesa et al. 

(2015). Briefly, a 5 mL centrifuged bile or urine sample spiked with internal standards (2 

ng mL-1), was adjusted, when necessary, to pH=7.5-8.8 with NaOH 0.1 N; the sample 

was loaded into an IAC column that was previously washed (5 mL ethanol:water; 70:30, 

v/v) and equilibrated (3 x 5 mL wash buffer). The column was then washed (wash 

buffer, 2 x 5 mL and water, 1 x 5 mL). Elution was achieved with 4 mL ethanol:water 

(70:30, v/v) (all the flow rates were ≤ 3 mL min-1). The eluate was evaporated until dry 

in a rotary evaporator, reconstituted in 200 (bile) or 500 (urine) µL of methanol:water 

(50:50; v/v) and transferred in an autosampler vial. A volume of 10µL was analyzed by 

LC-MS/MS. The LC apparatus and chromatographic conditions were: Surveyor AS 
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autosampler and Surveyor MS quaternary pump (Thermo Fisher Scientific, San Jose, 

CA, USA), reverse-phase LC column Synergi Hydro RP 150 x 2.0 mm, i.d. 4µm, with a 

C18 4 x 3.0 mm guard column (Phenomenex, Torrance, CA, USA), and a temperature 

of 30°C.  

The mobile phase consisted of 0.1% aqueous formic acid (solvent A) and methanol 

(solvent B). The gradient program for boldenone and its conjugates began at 40% A for 

1 min, changing to 5% A in 10 min, which was then held for 2 min. Then, it returned to 

40% A in 2 min and was left to equilibrate for another 7 min. The flow rate was 200 µL 

min−1 and the overall run time was 22 min. The gradient profile for corticosteroids began 

at 75% A, changing to 30% A in 18 min and then to 5% A in 1 min, which was held for 2 

min. Finally, it returned to 75% A in 2 min and equilibrated for another 6 min. The flow 

rate was 250 µL min−1 and the overall run time was 29 min. 

The MS/MS apparatus and conditions were: triple quadrupole TSQ Quantum (Thermo 

Fisher Scientific, San Jose, CA, USA) equipped with an electrospray interface (ESI) set 

both in the positive and in negative ionisation modes; capillary voltage 3,5 kV; ion 

transfer capillary temperature 340°C; nitrogen as sheath and auxiliary gas at 30 and 10 

arbitrary units, respectively; argon as collision gas at 1.5 mTorr and peak resolution 

0.70 Da FWHM; scan time for each monitored transition was 0.1 s and scan width was 

0.5 amu. The acquisition was made in the multiple reaction monitoring (MRM) after 

selecting, for each analyte and internal standard, three diagnostic product ions, one of 

which was used for the quantification (Table 1). The injection volumes were 10 μL (bile) 

or 20 μL (urine). Data were acquired and elaborated by Xcalibur™ software from 

Thermo. 
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Table 1. MS/MS condition for the MRM acquisitions of the studied analytes, and relative internal 

standards. Ions for quantification are in boldenone. CE: collision energy, expressed in Volts, applied to 

break the precursor into the product ions.  

Analyte 

Precursor ion 

[M-H]
-
 or [M-H]

+
 

(m/z) 

Product ionsCE 

(m/z) 

ESI 

    

α-boldenone sulfate 365 17739, 34940, 35030 (-) 

β-boldenone sulfate 365 17739, 34940, 35030 (-) 

β-boldenone sulfate-d3 368 18041, 35240, 35331 (-) 

α-boldenone glucuronide 463 13521, 26913, 28712 (+) 

β-boldenone glucuronide 463 13521, 26913, 28712 (+) 

epitestosterone glucuronide-d3 468 25623, 27416, 29211 (+) 

ADD 285 12122, 15114, 26711 (+) 

α-boldenone 287 12123, 13514, 26910 (+) 

β-boldenone 287 12123, 13514, 26910 (+) 

β-boldenone d3 290 12127, 13814, 27210 (+) 

prednisolone 405 18730, 28035, 32919 (-) 

prednisone 403 29921, 32719, 35712 (-) 

dexamethasone 437 30733, 36120, 39114 (-) 

cortisone 405 30121, 32920, 35912 (-) 

cortisol 407 28237, 29733, 33120 (-) 

prednisolone-d6 411 28437, 29932, 33319 (-) 

 

3.2.2.4. Methods Validation 

The validation protocols, made accordingly 2002/657/EC, and the obtained parameters 

are described in detail in previous studies (Chiesa et al., 2014, 2015) and reported here 

in a summarised way: linear matrix calibration curves built for each analyte (0.05-0.1-0.2 
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ng mL−1 for all analytes in urine, and 0.3-0.6-0.9 ng ml−1 for anabolic steroids and 0.1-

0.2-0.3 ng mL-1 for corticosteroids in bile) (6 samples×3 concentration levels×3 series = 

54 analyses for each matrix). Intra-day and inter-day repeatability (Thompson, 2000), 

representing precision, were calculated using one-way analysis of variance (ANOVA), 

expressed as CVs, and were below 15.8 and 19.9% in bile and 17.2% and 21.8% in 

urine, for all analytes.  

In bile, CCα values calculated as described in the document SANCO/2004/2726 

revision 4 (European Union, 2008) ranged from 0.38-0.45 ng mL-1 and 0.13-0.15 ng mL-

1 for anabolic steroids and corticosteroids, respectively. CCβ values ranged from 0.45-

0.69 ng mL-1 and 0.16-0.21 ng mL-1 for anabolic steroids and corticosteroids, 

respectively.  

In urine, CCα values (European Union, 2008) ranged from 0.07-0.08 ng mL-1 and 0.06-

0.07 ng mL-1 for anabolic steroids and corticosteroids, respectively. CCβ values ranged 

from 0.08-0.10 ng mL-1 and 0.07-0.09 ng mL-1 for anabolic steroids and corticosteroids, 

respectively.  

The mean recoveries for all analytes ranged between 92 and 110%, considering both 

matrices and all analytes.  

3.2.2.5. Statistical analysis  

The descriptive statistics was performed taking into account only the samples in which 

the studied analytes were found. The Kolmogorov–Smirnov test was performed to 

check the normality of the results related to α-boldenone glucuronide, cortisol and 

cortisone in bile and urine: the Pearson correlation or the non-parametric Spearman 

correlation test were calculated to verify the effective pairing of the datasets, depending 

on whether the Kolmogorov–Smirnov normality test was positive or negative. Then, the 

differences in the results obtained from the analysis of urine or bile were checked using 

different tests depending on the normality of each dataset and the correlation between 

the considered datasets. The unpaired t-test was used when there was no correlation 

and both passed the normality test. The Wilcoxon matched-pairs signed-ranks test was 

used when a correlation, but not the normality, was found between datasets. The Mann-
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Whitney test was used when there was no correlation and at least one dataset did not 

pass the normality test. The null hypothesis was set at P>0.05. GraphPad InStat version 

3.10 for Windows (GraphPad Software, San Diego, CA, USA) was used to perform 

these calculations. 

3.2.3. Results 

3.2.3.1. Boldenone, Boldenone conjugates and ADD 

The overall results related to boldenone, its conjugates and ADD are reported in Table 

2.  

Table 2. Concentrations, expressed as means ± SDs in ng mL
-1

, number and percentage of positives of 

the studied analytes in bovine bile and urine samples. 

  BILE URINE 

  
Male Veal 

Calves 

(n=16) 

Young 

Bulls 

(n=18) 

Cows  

(n =19) 

Male Veal 

Calves 

(n=16) 

Young 

Bulls 

(n=18) 

Cows  

(n =19) 

α-boldenone 

glucuronide 

Mean±SD 76.0±53.6 23.2±16.2 15.8±16.6 2.01±3.06 0.75±0.73 1.76±2.93 

Positives 16 18 18 15 18 19 

% 

positives 

100 100 95 94 100 100 

β-boldenone 

glucuronide 

Mean±SD nd nd nd nd nd nd 

Positives 0 0 0 0 0 0 

% 

positives 

0 0 0 0 0 0 

α-boldenone 

sulfate 

Mean±SD nd nd nd nd 0.39±0.05 0.34±0.02 

Positives 0 0 0 0 7 2 

% 

positives 

0 0 0 0 39 11 

β-boldenone 

sulfate 

Mean±SD 0.39 nd nd 0.07±0.01 0.08 0.07±0.01 

Positives 1 0 0 7 1 4 

% 

positives 

6 0 0 44 6 21 

α-boldenone  
Mean±SD 2.14±3.34 0.59±0.04 1.44±1.47 1.17±0.85 0.54±0.01 0.54±0.06 

Positives 6 6 9 2 8 14 

% 

positives 

38 33 47 13 44 74 

β-boldenone  
Mean±SD nd nd 0.48±0.07 nd 0.45±0.03 0.44±0.01 

Positives 0 0 3 0 10 6 

% 

positives 

0 0 16 0 56 32 

ADD 
Mean±SD 1.12±0.85 0.57±0.12 0.80 0.79±0.25 0.60±0.09 0.51±0.01 

Positives 4 6 1 3 14 4 

% 

positives 

25 33 5 19 78 21 

Cortisol Mean±SD 2.40±1.86 3.50±1.64 5.94±9.28 17.9±14.7 14.4±11.8 22.0±17.5 

Positives 16 18 19 16 18 19 
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% 

positives 

100 100 100 100 100 100 

Cortisone 
Mean±SD 2.77±1.67 2.03±1.28 2.78±1.92 6.46±3.31 5.70±4.42 6.54±5.04 

Positives 16 17 19 16 18 19 

% 

positives 

100 94 100 100 100 100 

Prednisolone 
Mean±SD nd nd 0.53±0.26 0.79±0.65 0.97±0.59 0.38±0.27 

Positives 0 0 2 6 2 10 

% 

positives 

0 0 11 38 11 53 

Prednisone 
Mean±SD 0.47±0.28 nd nd 0.72±0.64 0.16 0.13±0.01 

Positives 2 0 0 6 1 2 

% 

positives 

13 0 0 38 6 11 

Dexamethasone 
Mean±SD 0.14±0.01 0.51±0.54 47.5±66.5 nd nd 10.6 

Positives 3 5 2 0 0 1 

% 

positives 

19 28 11 0 0 5 

nd: not detected 

 

Illustrative chromatograms with the corresponding mass spectra of one bile and one 

urine sample are shown in Fig. 1. The presence of α-boldenone glucuronide in almost 

all samples in bile and urine has to be noted. 
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Fig.1 Illustrative chromatograms with the relative ion spectra obtained through the LC-MS/MS analysis of 

one bile and one urine sample for the presence of free sulfate and glucuronate, α- and β-boldenone and 

ADD.  

 

This datum is confirmed by the results concerning α-boldenone free form that, although 

at a much lower frequency, is the only other form of boldenone found at least once in 

bile and urine from male veal calves, young bulls and cows, which can also be asserted 

for ADD. These observations agree with previous studies showing the role of ADD as a 

precursor of boldenone (De Brabander et al., 2004, Ferretti et al., 2007), the higher 

concentrations of α-boldenone in urine than β-boldenone (Nielen, Rutgers, van 

Bennekom, Lasaroms, & van Rhijn, 2004), the prevalence of 17α- to 17β-steroid 

epimers in bile, indicating that epimerisation mainly takes place in the liver (Rico, 1983) 

and the preponderance of the glucuro- over sulpho-conjugation of α-boldenone in 

bovine (Le Bizec et al., 2006). With regard to the comparison between bile and urine, 

the results are shown in Table 3. We compared the detected concentration of α-

boldenone glucuronide in bile and urine because this conjugated steroid was almost 
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always found in both matrices, such as the adrenal hormone cortisol and its direct 

metabolite cortisone. The similar frequencies once more indicate, although indirectly, 

the endogenous origin of boldenone. A significant correlation for α-boldenone 

glucuronide was found in young bulls and cows, not in male veal calves, which, 

however, showed a higher average concentration of this steroid. We cannot explain this 

finding, even if involvement of the achievement of sexual maturity could be 

hypothesized. 

We occasionally detected α-boldenone glucuronide in urine at concentrations higher 

than the cut-off level of 2 ng mL-1. A draft proposal of European Union in fact states: “If 

only α-boldenone conjugates are found at levels of 2 ppb or higher in urine of veal 

calves, additional investigations, in order to prove the abuse of boldenone, are strongly 

recommended” (European Union, 2003). The concentrations in these samples ranged 

from 2.60 to 12.2 ng mL-1 in veal calves (n=4), and from 2.33 to 11.1 ng mL-1 in cows 

(n=4), while only one detection was made in young bulls (3.33 ng mL-1). In these 

samples, α-boldenone sulfate was never found. On the contrary, when it was detected 

together with the glucuronate conjugate (n=9), the total concentration was ≤ 1.13 ng mL-

1, which is lower than the recommended cut-off level. As for β-boldenone, the 

glucuronate metabolite was never found, in both bile and urine; β-boldenone sulfate was 

detected in the urine of 7 veal calves, 1 young bull and 4 cows at concentrations ≤0.08 

ng mL-1. These findings suggest treatment with boldenone or ADD, as stated by Destrez 

et al. (2009). The differences in the analytical limits must, however, be accounted for: 

the CCα indicated by those Authors was 0.2 ng mL−1 and the CCβ was 0.4 ng mL−1, 

obtained by LC–MS/MS (negative ESI, SRM acquisition, triple quadrupole). The lower 

CCβ of our method would seem to re-open the possibility of considering β-boldenone 

sulfate a biomarker of treatment as proposed by Le Bizec et al. (2006) and Destrez et 

al. (2009); therefore, much more than a direct or indirect inter-conversion with α-

boldenone sulfate could be hypothesised, given the presence of this conjugate epimer 

in some samples. The simple detection of β-boldenone sulfate could be not a 

satisfactory condition, making the determination of other parameters like a cut-off level, 

other metabolites or concentration ratios necessary. 
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With regard to the comparison between bile and urine, the very lower analytical limits in 

urine do not indicate bile as an alternative matrix for the detection of α- and β-

boldenone, their Phase II metabolites and ADD. Only α-boldenone glucuronide allowed 

correlation tests between the two matrices to be performed (Table 3), as the detection 

of other analytes often did not overlap and their frequencies were too low or too different 

in urine and bile. 

3.2.3.2 Cortisol, cortisone, prednisolone and prednisone 

The overall results regarding cortisol, cortisone, prednisolone and prednisone are 

reported in Table 2.  

Illustrative chromatograms with the corresponding mass spectra of one bile and one 

urine sample are shown in Fig. 2. 

Fig.2 Illustrative chromatograms with the relative ion spectra obtained through the LC-MS/MS analysis of 

one bile and one urine sample for the presence of prednisone, cortisone, prednisolone and cortisol. 

 

Due to their endogenous nature and therefore their constant presence, cortisol and 

cortisone were used to compare the two matrices (Table 3); a correlation was only 
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found for cortisol in veal calves, thus demonstrating again a general lack of 

superimposability for these two matrices. This lack is moreover confirmed by the very 

low detection frequency of prednisolone and prednisone in bile, which resulted in a 

value lower than 4% for both corticosteroids if the total number of sampled animals 

(n=53) was considered. In urine, prednisolone was found at a frequency of 34% and 

prednisone of 17% considering all of the animals. An influence of gender on the 

presence in urine of prednisolone and consequently of its metabolite prednisone could 

be suggested. The higher frequencies were found in cows and male veal calves. 

Considering that the latter have not yet reached full sexual maturity, then adult males, 

i.e. the young bulls, show a frequency that is always lower than those seen in other 

animals. Finally, the average concentration of prednisolone was lower than the cut-off 

level of 5 ng mL-1 indicated by the European Union for urine. The highest concentration 

of prednisolone was 1.97 ng mL-1, which was found in a male veal calf.  

Table 3. Statistical analyses performed on male veal calves, young bulls and cows: normality, correlation 

and comparison of the results related to α-boldenone glucuronide, cortisol and cortisone in bile and urine 

samples. 

  
Matrix Analyte 

Normalit
y 

Correlation 
Mean or 
median 

comparison 

Male  
veal calves 

Bile 
α-boldenone 
glucuronide 

yes 
Spearman r= 

0.37 P>0.05, NS 
Mann-Whitney 

test P<0.0001, S 
Urine 

α-boldenone 
glucuronide 

no 

Bile Cortisol no Spearman r= 
0.60 P<0.05, S 

Wilcoxon test 
P<0.0001, S Urine Cortisol no 

Bile Cortisone no Spearman r= 
0.48 P>0.05, NS 

Mann-Whitney 
test P<0.001, S Urine Cortisone yes 

Young bulls 

Bile 
α-boldenone 
glucuronide 

no 
Spearman r= 

0.70 P<0.01, S 
Wilcoxon test 
P<0.0001, S 

Urine 
α-boldenone 
glucuronide 

no 

Bile Cortisol yes Pearson r= 0.30 
P>0.05, NS 

Unpaired t-test 
P<0.001, S Urine Cortisol yes 

Bile Cortisone yes Pearson r= 0.12 
P>0.05, NS 

Unpaired t-test 
P<0.01, S Urine Cortisone yes 

Cows 
Bile 

α-boldenone 
glucuronide 

no Spearman r= 
0.58 P<0.05, S 

Wilcoxon test 
P<0.0001, S 

Urine α-boldenone no 
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glucuronide 

Bile Cortisol no Spearman r= 
0.05 P>0.05, NS 

Mann-Whitney 
test P<0.0001, S Urine Cortisol no 

Bile Cortisone no Spearman r=-
0.04 P>0.05, NS 

Mann-Whitney 
test P=0.001, S Urine Cortisone yes 

S: significant; NS: non-significant 

 

3.2.3.3 Dexamethasone 

Dexamethasone is worth of a separate argument. It is a merely exogenous 

corticosteroid, so its detection is undoubtedly the evidence of treatment. It has to be 

stressed that the animals came from the food chain, that the samples were completely 

anonymous and not used for official controls on residue presence. Belonging to the food 

chain indicates bile as a better matrix than urine when dexamethasone is searched. 

This corticosteroid was found in one only urine sample but in 10 bile samples that were 

collected from the same 53 animals, i.e. a 10-fold higher frequency in bile than urine. 

The chromatograms with the corresponding mass spectra of one bile and urine sample, 

belonging to the same animal, are shown in Fig. 3.  

Fig.3 Illustrative chromatograms with the relative ion spectra obtained through the LC-MS/MS analysis of 

a solution of dexamethasone in methanol (10 ng mL
-1

), one bile and one urine sample for the presence of 

dexamethasone. 
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As confirmation of this result, the range of concentration in 9 bile samples was 0.14-1.5 

ng mL-1, while in the tenth sample, the level of dexamethasone was 94.7 ng mL-1. This 

last bile sample came from the only cow whose urine tested positive: the concentration 

found in urine was 10.5 ng mL-1, a relatively high value, but much lower than that found 

in bile, thus indicating a better suitability of bile for the determination of dexamethasone. 

Some considerations must anyway be made. First, the 2013 final report from the Italian 

national residue plan (PNR), (Italian Ministry of Health, 2013), states that only two non-

compliant bovines to corticosteroids were found, not specifying if the matrix was urine or 

liver. This corresponds to the 0.16% of the whole number of bovine samples analysed 

for these drugs. It is a very lower percentage than the 19% we found. In a study by 

Vincenti et al. (2009) the excretion kinetics of dexamethasone in young bulls, when 

administered as sodium phosphate salt, showed a very fast urinary excretion after both 

an intra-muscular therapeutic protocol or an oral growth promoting schedule: “namely a 

couple of days after drug withdrawal, after which the drug rapidly disappears from the 

urine”. The high difference between our results, and the data from the 2013 Italian PNR 

could be therefore due to slower excretion through bile. Second, synthetic 

corticosteroids are now becoming the most commonly used growth promoters, 

administered both alone or in combination with anabolizing agents (steroids with 

hormonal activity, β-agonists), as their detection is not per se a proof of a non-

therapeutic treatment (Gottardo et al., 2008). If our data on urine were used for official 

controls, the non-compliant samples to α-boldenone conjugate (glucuronide + sulfate 

forms concentration higher than 2ng mL-1) would be 10, to presence of β boldenone 

conjugate would be 12 (European Union, 2003), and just one positive for 

dexamethasone, not corresponding to any “non-compliant“ sample for boldenone. When 

the 10 bile samples positive for dexamethasone are considered with respect to urinary 

conjugated boldenone, the simultaneous presence of α-boldenone glucuronide was 

observed in one animal and of α- and β- boldenone in two animals. The use of 

dexamethasone alone or in cocktails, as above reported, could explain these data, while 

the low frequency of dexamethasone detection in bile concomitant to “non compliant” 

boldenone presence in urine from the same animal, could confirm the likely 

pseudoendogenous nature of boldenone found in our samples. Furthermore it is well 
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documented that, even if the illegal use of growth promoters seems to decrease, “the 

results obtained on samples of preparations (vials, syringes, needles, etc.), however, 

are in high contrast with these reassuring figures” (Courtheyn et al., 2002). The use of 

the method described in this study, could therefore give new information about the illicit 

use of the synthetic corticosteroids. 

3.2.4. Conclusions 

The results shown in this study indicate that some of the considered steroids, 17α-

boldenone glucuronide, 17α-boldenone, and dexamethasone are generally found at 

higher concentrations in bile than in urine. The levels of 17β-boldenone sulfate, 17β-

boldenone, and ADD are comparable, while the endogenous cortisol and cortisone, and 

pseudoendogenous prednisolone and prednisone, are present at higher concentrations 

in the urine. We found a general lack of correlation for the presence of the natural 

steroids in bile or urine. Because of the dissimilarity of the two matrices, the most 

noticeable observation relates to the detection of dexamethasone, the only purely 

exogenous steroid. For this substance, the results show a greater possibility of 

detection in bile than in urine: this finding could lead to a substantial improvement in the 

control of residues in food-producing animals. It is moreover conceivable that other 

substances may also be more easily detectable in bile than urine. Further studies 

therefore have to be carried out on food chain animals, possibly analysing bile and urine 

by LC-HRMS techniques, to identify residues in bile that are not found in urine or on 

animals treated purposely with known pharmacologically active principles. 
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Abstract 

The use of corticosteroids and anabolic steroids in food producing animals is regulated 

or banned in the European Union (EU). However, their use as growth promoters cannot 

be excluded. Milk replacers, considered by EU legislation as feeds, may be a good way 

of administration of these compounds. In order to improve the control of growth 

promoter utilization in animal husbandry and preventing possible consequences to 

animal welfare, we developed a method for multiresidue analysis of prednisolone, 

prednisone, dexamethasone, cortisone, cortisol, 17α- and 17β-boldenone and their 

precursor androstadienedione (ADD), testosterone, epitestosterone, 17α- and 17β-

nandrolone, and trenbolone in powdered milk for calves. All analytes were extracted, 

after a common deproteinization and defatting sample pre-treatment, by a unique 

immunoaffinity column and analysed by liquid chromatography tandem mass 

spectrometry (LC–MS/MS) in both positive and negative electrospray ionization (ESI) 

modes. The method was validated according to the criteria of the Commission Decision 

2002/657/CE. The analytical limits were from 0.39 to 0.73 ng mL-1 for the decision limit 

(CCα) and 0.46 to 0.99 ng mL-1 for detection capability (CCβ). The analysis of 50 

samples of milk replacers for calves, always revealed the presence of cortisol and 

cortisone (average concentrations 2.56 and 1.06 ng mL-1, respectively), frequently 

testosterone and epitestosterone (1.24 and 0.63 ng mL-1, respectively), occasionally β-

nandrolone (0.82 ng mL-1) and prednisolone (0.41 ng mL-1). The other anabolic steroids 

were never found. 

Keywords: calf milk replacers, corticosteroids, anabolic steroids, immunoaffinity 

columns, liquid chromatography tandem mass spectrometry. 

Chemical compounds studied in this article: 

Cortisol (PubChem CID: 5754); Cortisone (PubChem CID: 222786); Prednisolone 

(PubChem CID: 5755); Prednisone (PubChem CID: 5865); Dexamethasone (PubChem 

CID: 5743); Testosterone (PubChem CID: 6013); Epitestosterone (PubChem CID: 

10204); Nandrolone (PubChem CID: 9904); Trenbolone (PubChem CID: 25015); 

Boldenone (PubChem CID: 13308). 
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3.3.1. Introduction 

Successful calf growth depends on a combination of many factors related to health, 

management and nutrition (Heinrichs, Wells, & Losinger , 1995). From the alimentary 

aspect, natural milk, as a wholesome food, is the most important source of nutrition for 

young mammals before they are able to digest other types of food. Powdered milk is 

commonly used for the daily feeding of calves, as it is an adequate alternative to the 

mother’s dairy milk and an economically feasible source of all essential nutriments. 

Feeding with high quality milk replacers allows healthy growth in calves equal to that 

attainable with whole milk (Jorgensen, Hoffman, & Nytes,  2006). Since manufacturing 

powdered milk directly from whole milk is an expensive process, the bulk of the 

constituents of commercial calf milk replacers are either by-products of dairy processing 

or non-dairy products. Powdered milk replacers are generally made up of ingredients 

such as skim milk powder, vegetable or animal fat, whey protein, soy lecithin and 

vitamin-mineral premix (Geiger et al., 2014). Protein levels in dry milk replacers range 

from 18% to 30% with an average value of approximately 20–22%, preferably of diary 

origin, but can also include soy protein, soy flour, wheat proteins, potato and animal 

plasma protein. Fat levels range from 10% to 28–30%, with 18% to 22% being the most 

common fat levels, mainly added as tallow, lard or coconut oil (Bamn, 2014 and Ontario 

veal association, 2015). 

The inclusion of veterinary drugs in calf milk replacers is a matter of concern, 

particularly if their administration is not fully regulated and especially when legislation 

varies across the Countries. For example, in the USA medications (decoquinate, 

lasalocid, oxytetracycline, chlortetracycline, and neomycin) are approved for inclusion in 

milk replacers, but the U.S. Food and Drug Administration (FDA, 2013)  recommended 

a three-year judicious period (starting from December 2013) during which utilisation of 

antibiotics in animal husbandry has to be reduced. European legislation does not treat 

milk replacers individually, but sets out the conditions under which medicated animal 

feeds may be prepared, placed on the market and used within the Community 

(European Union, 1990 and European Union, 2010 a). 
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The use of steroids in food-producing animals for therapeutic purposes is regulated 

(corticosteroids) or banned (anabolic steroids) in the European Union; however, their 

use as growth promoters cannot be excluded (Pavlovic et al., 2012). Cortisol, cortisone, 

testosterone and epitestosterone are endogenous, prednisolone (Bertocchi et al., 2013) 

, boldenone (Chiesa et al., 2014 a) and nandrolone (Glenn Kennedy et al., 2009) are 

considered pseudoendogenous steroids while dexamethasone and trenbolone are well-

known synthetic steroids. A faster feed conversion rate, improvement of the carcass 

with improved meat quality, fat reduction, and increase in milk production are some of 

the notable features that could be achieved by treatment with these substances. Thus, 

regulations on steroid residues with hormonal activity in food of animal origin are 

essential in order to safeguard animal welfare and ascertain any fraud. In the case of 

therapeutic use of regulated substances, a prescription by a veterinarian is needed and 

a suspension period has to be respected between the end of treatment and slaughter or 

milk marketing. The European Commission has established the maximum residue limits 

(MRLs) for four corticosteroids in several matrices such as muscle, liver, kidney and 

milk from different animal species (European Union, 2010 b) 

On the basis of the regular protocol applied, there are a few principal techniques by 

which medication can be introduced into an animal: oral administration, intramuscular, 

subcutaneous and intravenous injection or implantation under the skin (Courtheyn et al., 

2002). Unfortunately, some illegal growth-promoting agents are suspected of being 

administered with feed, despite the fact that they are not licensed as additives 

(Courtheyn et al., 1993 and European Union, 2004). Therefore, in order to achieve 

comprehensive surveillance and have insight into how a medication was delivered to an 

animal, analysis of the feed for the presence of steroids should be included as well. It 

should be emphasized that the presence of steroid hormones in feedstuffs can be also 

unintentional, due to cross-contamination or owing to the appearance of pseudo-

endogenous substances such as prednisolone (Chiesa et al.; 2014 b). Among 

feedstuffs used in animal husbandry, powdered milk replacers are perhaps most 

suitable for illegal tampering as drug distribution via this route is very simple: during the 

reconstitution of milk replacers, immediately before feeding. As hormones and steroids 

migrate to milk from the cow bloodstream, we need additional information about their 
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physiological levels in milk related to milk replacers (Jouan, Sylvie, Gauthier, & Laforest, 

2006). To the best of our knowledge, there has been neither a preliminary assessment 

of the status of endogenous or exogenous steroids, nor a fully validated method for their 

screening in powdered milk used in calf breeding.  

Taking into account all the above mentioned factors, with the intention of improving 

residue control and preventing possible consequences for animal welfare and the 

consumer, our aim was to develop a liquid chromatography–tandem mass spectrometry 

(LC-MS/MS) analytical method for evaluating selected glucocorticosteroids and anabolic 

steroids in milk replacers used as dairy feed replacement in calf rearing. 

Nowadays, LC-MS/MS is the most suitable technique for detecting veterinary drugs in 

feedstuffs because it provides unambiguous identification and a reliable confirmation. 

On the other hand, milk replacers are complex matrices, containing many solutes with 

different physico-chemical properties: fatty acids, proteins, neutral lipids (glycerides, 

phospholipids and sterols), glycides, vitamins and minerals, which may interfere with 

analyses. The removal of these compounds is necessary in LC-MS/MS methods, 

especially if low ng mL-1 of steroid levels are to be screened for. Applying adequate and 

efficient purification, ion suppression can be successfully avoided together with 

improvements in overall method performances such as the detection limit and 

reproducibility.  

There have been just a few studies in the literature on powdered milk – infant formulas 

for human use (Romero-González, Aguilera-Luiz, Plaza-Bolaños, Frenich, & Vidal, 2011 

and Zhan et al., 2013) and only one that described a multi-residue method for detecting 

17 selected veterinary hormones in six different powdered ingredients derived from 

bovine milk used modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) 

sample preparation (Ehling, & Reddy, 2013). Other researchers devised a method for 

the detection of eight corticosteroids in milk replacers, through C18 SPE, but with 

relatively high detection limits (Fiori, Pierdominici, Longo, & Brambilla, 1998). 

Immunology-based pre-treatment techniques have been introduced recently, but have 

not yet been used in powdered milk analysis. For other matrices (urine, bile) this kind of 

purification in general has exhibited better selectivity than those obtained with common 
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procedures (Chiesa et al., 2014a and 2015). This is the reason we decided to take 

advantage of an immunoaffinity sample cleaning approach in the multi-drug method 

presented in this paper.  

To this end, the main objective of this study was the establishment of a LC-MS/MS 

method able to identify steroids such as corticosteroids (prednisolone, prednisone, 

dexamethasone, cortisone and cortisol) and anabolic steroids (17α- and 17β-

boldenone, their precursor androstadienedione (ADD), testosterone, epitestosterone, 

17α- and 17β-nandrolone and trenbolone) in calf milk powder. All analytes were 

investigated after a common pretreatment step of deproteinization and defatting 

followed by immunoaffinity column (IAC) clean-up and LC–MS/MS analysis, validated 

according to Commission Decision 2002/657/EC (European Union, 2002). Finally, we 

applied the validated method to the analysis of 50 samples of commercially available 

powdered bovine milk. 

3.3.2. Chemicals and reagents 

All solvents were of HPLC or analytical grade and were purchased from Fluka (Sigma- 

Aldrich, St.Louis, MO, USA). Formic acid 98–100% was obtained from Riedel-de Haën 

(Sigma-Aldrich, St.Louis, MO, USA). Water was purified by a Milli-Q System. The IACs 

were provided by Randox (DM 2185, Randox Laboratories, Antrim, UK). Concentrated 

wash and storage buffers, diluted following the manufacturer’s instructions before use, 

were supplied with the columns. ADD and β-boldenone were purchased from Fluka 

(Sigma-Aldrich, St.Louis, MO, USA); α-boldenone was obtained from LGC Standards 

(Teddington, UK). Their internal standard was β-boldenone-d3 (LGC Standards, 

Teddington, UK). Cortisol, prednisone, prednisolone and dexamethasone were 

purchased from Fluka (Sigma-Aldrich, St.Louis, MO, USA) and their internal standard, 

prednisolone-d6, was obtained from C/D/N Isotopes Inc. (Pointe-Claire, Quebec, 

Canada). Testosterone, epitestosterone, 17α- and 17β-nandrolone, trenbolone and their 

internal standard 17β-nandrolone-d3 were purchased from Fluka (Sigma-Aldrich, 

St.Louis, MO, USA). 

 

3.3.2.1 Powdered milk replacer used for method validation and application  
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 For the method validation we used a commercially available powdered calf milk. It 

contained partially skimmed milk whey, whey protein, fat, wheat gluten, vegetable oil, 

pregelatinized wheat flour, pea fibre and potato protein. The analytical constituents 

were: crude protein 22.50%, oils and fats 22.50%, crude fibre 0.30%, crude ash 8%, 

calcium 0.65%, sodium 0.50% and phosphorus 0.65%. Vitamin A, vitamin D3 and 

vitamin E were present as additives in all complementary milk (25000 UI kg-1, 3700 UI 

kg-1 and 75 mg kg-1, respectively). The formulation also contained the following 

quantities per kg: choline 5 mg, copper pentahydrate sulfate 5 mg, manganese sulfate 

45 mg, zinc sulfate 135 mg, potassium iodide 1 mg and sodium selenite 0.32 mg. All the 

information about the feedstuff composition came from the manufacturer’s certificates. 

With the aim to check the method effectiveness, we used 50 samples of powdered calf 

milk, collected in farms from North Italy. No information about their composition was 

available. 

3.3.2.2. Standard solutions 

Stock solutions (1 mg mL-1) for each standard were prepared in methanol and kept at -

40°C. Working solutions containing each of the studied analytes at concentrations of 10 

and 100 ng mL-1 were prepared daily. Each working solution was maintained at 4°C 

during the method validation procedures. 

3.3.2.3. Sample extraction 

The sample was initially deproteinized and defatted following the Wang et al. protocol 

(Wang, Zhou, & Jiang, 2011) slightly modified as regard the relative amounts of matrix 

and reagents, and acetonitrile substituted by methanol. Briefly, samples of powdered 

milk (1 g) were spiked with the internal standards to a final concentration of 2 ng mL-1 

and reconstituted in water (10 mL). The mixture was vortexed and then sonicated for 10 

min, followed sequentially by through the addition of methanol (10 mL), 2 min of 

shaking, and 10 min of sonication. After the addition of sodium chloride (2 g), 2 min of 

shaking, and 10 min of centrifugation 4500×g were carried out. The supernatant was 

transferred into a 50 mL polytetrafluoroethylene centrifuge tube and defatted with 2 × 7 

mL of n-hexane extraction. Each time, after centrifugation at 2500×g, the n-hexane layer 
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was removed. The methanol/water layer was evaporated and reconstituted in 5 mL of 

water for further purification and extraction by using the IAC. The column was previously 

washed with 5 mL ethanol:water (70:30 v/v) and equilibrated with 3 × 5 mL wash buffer 

(flow rate ≤ 3 mL min-1, i.e. about one drop per second). The samples were loaded by 

gravity flow. Wash buffer (2 × 5 mL) and water (1 × 5 mL) were used to wash the 

column. The elution of the bound analytes was then performed by the application of 4 

mL ethanol:water (70:30 v/v) (flow rate ≤ 3 mL min-1), which was collected in a 15 mL 

polypropylene tube. The IAC could be used again, starting from the equilibration 

described above, after a washing step with 2 x 5 mL ethanol:water (70:30 v/v). We also 

checked the number of runs sustainable by a column and the results were similar to the 

ones already shown for urine (Chiesa et al., 2015): using a column for 10 cycles before 

discarding it is advisable.The eluate was evaporated in a rotary vacuum evaporator. 

The dried extract was reconstituted in 200 μL of methanol:water (50:50 v/v) and 

transferred into an auto-sampler vial. The injection volume was 10 μL.  

3.3.2.4. LC-MS/MS analyses 

LC analysis was carried out with an HPLC system (Thermo Fisher Scientific, San Jose, 

CA, USA) consisting of a Surveyor MS quaternary pump with a degasser, a Surveyor 

AS auto-sampler with a column oven and a Rheodyne valve with a 20 μL loop. 

Chromatographic separation was achieved using a Synergi Hydro RP reverse-phase 

HPLC column (150 x 2.0 mm, 4 μm internal diameter) with a C18 (4 x 3.0 mm) guard 

column (Phenomenex, Torrance, CA, USA), which was kept at 30°C.The mobile phase 

consisted of methanol (solvent A) and 0.1% aqueous formic acid (solvent B). The 

gradient program began at 60% A for 1 min, changing to 95% A in 10 min, which was 

then held for 2 min. Then it returned to 60% A in 2 min and equilibrated for another 7 

min. 

The flow rate was 200 µL min-1 and the overall run time was 22 min. The mass 

spectrometer was a triple-quadrupole TSQ Quantum MS (Thermo Fisher, San Jose, 

CA, USA) equipped with an electrospray interface (ESI) set in both positive (ESI+) and 

negative (ESI-) electrospray ionization modes. Acquisition parameters were optimized in 

the ion-spray mode by direct continuous pump-syringe infusion of standard solutions of 
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the analytes at a concentration of 1 µg mL-1, a flow rate of 20 μL min-1 and a MS pump 

rate of 100 μL min-1. The following conditions were used: capillary voltage 3.5 kV, ion-

transfer capillary temperature 340°C; nitrogen as sheath and auxiliary gas at 30 and 10 

arbitrary units, respectively, argon as the collision gas at 1.5 mTorr and peak resolution 

0.70 Da at full width half maximum (FWHM). The scan time for each monitored 

transition was 0.1 s and the scan width was 0.5 amu. Three diagnostic product ions 

were chosen for each analyte and internal standard. The acquisition was made in 

multiple reaction monitoring (MRM). The selected diagnostic ions, one of which was 

chosen for quantification, and the collision energies are reported in Table 1. Data were 

acquired and elaborated using Xcalibur™ software from Thermo Fisher. 

Table 1. MS/MS conditions for MRM acquisitions of all analytes and relative internal standards. Ions for 

quantification are in bold characters. CE: collision energy, expressed in Volts.  

Analyte 

Precursor ion 

[M-H]
-
 or [M-H]

+
 

(m/z) 

Product ionsCE 

(m/z) 
ESI 

cortisol 407 28237,29733, 33120 (-) 

cortisone 405 30121, 32920, 35912 (-) 

prednisolone 405 18730,28035, 32919 (-) 

prednisone 403 29921, 32719, 35712 (-) 

dexamethasone 437 30733,36120, 39114 (-) 

prednisolone-d6 411 28437, 29932,33319 (-) 

Testosterone and epitestosterone 289 9721, 10923, 25316 (+) 

ADD 285 12122, 15114, 26711 (+) 

α- and β-boldenone 287 12123, 13514, 26910 (+) 

β-boldenone d3 290 12127, 13814, 27210 (+) 

 

 

 

α- and β-nandrolone 275 9140, 10927, 23916 (-) 

trenbolone 271 16556, 19923, 25319 (+) 

β-nandrolone–d3 278 10919, 24216, 26015 (+) 
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3.3.2.5. Method validation 

Validation was performed according to the criteria and recommendations of European 

Commission Decision 2002/657/EC (European Union, 2002). After a preliminary 

screening of some samples of reconstituted milk as described in the ‘Sample extraction’ 

section, it was observed that all of them contained cortisol, cortisone, testosterone and 

epitestosterone.  

We therefore made preliminary trials using a milk replacer batch, containing the lowest 

amount of these analytes, diluted 1:10 with water: no analyte was so detected. Then we 

compared the 2 six-point standard curves (0.0, 0.5, 1.0, 2.0, 5.0 and 10.0 ng mL−1) 

performed both in milk replacer reconstituted following the manufacturer indication and 

in the diluted one. The slopes and the Y-intercepts for each analyte of each curve were 

then compared with the unpaired t-test. No significant difference was observed in slopes 

of all analytes. The Y-intercepts of cortisol, cortisone, testosterone and epitestosterone 

were slightly different (P<0.05) in the two standard curves, due to the presence of these 

endogenous hormones in milk. Therefore, the validation was performed on diluted 1:10 

calf milk replacer. 

For each analyte, the method’s performance was assessed through its qualitative 

parameters [molecular identification in terms of retention time (RT) and transition ion 

ratios that characterize selectivity and specificity], through its quantitative parameters 

(linearity, recovery, accuracy in terms of trueness and precision expressed as intra- and 

inter-day repeatability) and through the analytical limits [decision limit (CCα) and 

detection capability (CCβ)]. At the end, we also tested the robustness of the method and 

the stability of the standard solutions in the solvent and in the matrix. 

Specificity, for analytical methods, is the power to discriminate between the analyte and 

closely related substances (isomers, metabolites, degradation products, endogenous 

substances, matrix constituents, etc.). Therefore, potentially interfering substances 

should be chosen and relevant blank samples should be analysed to detect the 

presence of possible interference and estimate the impact of the interference. We 

analysed an appropriate number of representative blank samples (n= 20) and checked 

for any interference (signals, peaks, ion traces) in the region of interest where the target 
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analyte was expected to elute. Selectivity was evaluated in the same samples. 

Selectivity requires compliance with the relative retention times for each analyte. 

Moreover, three transitions from the analyte molecular peak were monitored with a 

signal-to-noise ratio greater than 3.  

Instrumental linearity was evaluated by drawing five-point calibration curves in the 

solvent containing a fixed amount of the internal standards (2 ng mL−1 each) with 

analyte concentrations corresponding to 0.5, 1.0, 2.0, 5.0 and 10.0 ng mL−1. Matrix 

validation curves were obtained by spiking milk samples with each of the analytes, 

resulting in three analytical series; each series comprised of six replicates for three 

concentration levels (0.3, 0.6 and 0.9 ng mL−1 for all analytes except for 17α- and 17β-

nandrolone, positivized at 0.5, 1.0 and 1.5 ng mL−1). Trueness was assessed through 

recovery and was evaluated using the matrix curve results from the three analytical 

series, expressed in terms of the percentage of the measured concentration with 

respect to the spiked concentration. 

The precision in terms of intra- and inter-day repeatability was evaluated by calculating 

the relative standard deviation of the results obtained for six replicates of each analyte 

at three concentration levels of the three analytical series. The data from the matrix 

validation curves were used to calculate the decision limit (CCα) using parallel 

extrapolation to the x-axis at the lowest experimental concentration and detection 

capability (CCβ) according to the guideline described in Commission Decision 

2002/657/EC (European Union, 2002) and clarified in document SANCO/2004/2726 

revision 4 (European Union, 2008). Experiments to evaluate matrix effects 

corresponded to Matuszewski’s strategy (Matuszewski, Constanzer, & Chavez-Eng, 

2003), that requires sample extracts with the analyte of interest added postextraction 

compared with pure solutions prepared in mobile phase containing equivalent amounts 

of the analyte of interest. The difference in response between the postextraction sample 

and the pure solution divided by the pure solution response determines the extent of the 

matrix effect occurring for the analyte in question under chromatographic conditions. 

Stability was evaluated by testing spiked samples and standard solutions over time from 

one week to one month under defined storage conditions (-20° C), and quantitation of 
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components was determined by comparison to freshly prepared standards. If the 

concentration variations were lower than 2% the stability was considered acceptable.  

Finally, we evaluated robustness using the approach of Youden (European Union, 

2002), a fractional factorial design. Eight experiments were carried out, fortifying eight 

samples at the lowest validation level, changing the nominal values reported in the 

‘Sample extraction’ section slightly (± 10%) of seven factors that may influence the 

outcome of the analysis. The seven factors were: the initial reconstitution volume in 

water, the volume of methanol during the deproteinization step, the sonication time, the 

volume of exane during the defatting step, the percentage ethanol in the elution solution 

of the IAC column, the elution volume of the IAC column and the resuspension volume 

of the dry extract. Finally, the eight samples were quantified using a calibration curve 

constructed in conjunction with the Youden experiment.  

3.3.3. Results and discussion 

3.3.3.1 Method development 

During method development, different options were evaluated in order to optimize 

chromatographic separation and detection parameters as well as sample extraction. 

3.3.3.2. Optimization of LC–MS/MS conditions 

An LC–MS/MS method was developed to perform analyses of selected synthetic and 

natural corticosteroids and anabolic steroids in calf milk powder. Initially, in order to 

achieve high sensitivity of the target analytes, optimisation of the liquid chromatography 

and mass spectrometry conditions was performed by injecting standard solutions of a 

mixture of all the analytes. After preliminary trials, in full-scan mode from 50 to 500 m/z, 

the three product ions with the highest signal-to-noise ratio (s/n) for each analyte and 

the internal standards were chosen for identification. The collision energy (CE) and de-

clustering potential (DP) for each transition were adjusted in multiple reaction monitoring 

(MRM) mode in order to reach the highest sensitivity. For a method to be deemed 

confirmatory under Commission Decision 2002/657/CE, (European Union, 2002) it must 

yield a minimum of four identification points (IPs) for Group A (forbidden substances) of 

Directive 1996/23/CE or three IPs for substances listed in Group B (permitted 
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substances) (European Union, 1996). Each one of the three product ions is equal to 1.5 

IPs, making a total of 4.5 IPs. The three diagnostic product ions, among which is the ion 

chosen for quantification, their CEs are reported in Table 1.  

Special attention was paid to the separation of stereoisomeric compounds (α-boldenone 

from β-boldenone, α-nandrolone from β-nandrolone) (Fig. 2) that exhibited the same (or 

similar) fragmentation pattern. Additionally, the composition of the mobile phase was 

shown to be adequate for both types of ionisation (positive and negative), further 

promoting the remarkable sensitivity to the target compounds. Under our LC–MS/MS 

conditions, it was possible to individuate all compounds of interest at concentration 

levels suitable for research aimed for control purposes (Fig. 1 and 2). 

Fig. 1. LC–MS/MS chromatograms and related MS spectra of the five corticosteroids in a powdered milk 

sample spiked at the lowest concentration level for validation. Right-hand side: internal standard 

(concentration = 2 ng mL
-1

). 
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Fig. 2. LC–MS/MS chromatograms and related MS spectra of the selected anabolic steroids in a 

powdered milk sample spiked at the lowest concentration level for validation. Right-hand side: internal 

standards (concentration = 2 ng mL
-1

). Chromatographic peaks and ion spectra of stereoisomers are in 

the sequence listed in their respective headings. 

 

3.3.3.3. Optimization of sample purification and IAC extraction 

The critical step in the method setup is the sample preparation procedure, owing to the 

high percentages of proteins and lipids and the overall complexity of the matrix. There 

are a number of potential pitfalls associated with corticosteroid and anabolic steroid 

analysis of milk samples. A major problem with some currently available methods is 
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interference with steroid determination by a significant number of other lipids. The 

purification procedure using an immunoaffinity approach could eliminate most of these 

interferences. Additionally, in our previous studies we demonstrated the high efficiency 

of IAC purification of bile (Chiesa et al., 2014 a) and urine samples (Chiesa et al., 2015). 

IAC also turned out to be a good strategy in this study, as selected analytes were 

retained and extracted with satisfactory efficiency: overall method recoveries ranged 

between 99.6 and 105.4 % for all analytes investigated (Table 2).  

Table 2. Validation parameters for all analytes. 

Analyte Concentration 

level 

Recovery % Repeatability % CCα CCβ 

(ng mL
−1

) (n= 18) intra-day 

(CV; n=6) 

inter-day 

(CV; n=18) 

(ng mL
−1

) (ng mL
−1

) 

 0.3 95.1 10.2 20.1   

cortisol 0.6 105.0 10,0 20.0 0.51 0.73 

 0.9 98.4 9.1 17.3   

 0.3 95.0 14.8 16.0   

cortisone 0.6 105.0 10.0 11.8 0.41 0.51 

 0.9 98.3 7.7 7.9   

 0.3 101.5 15.3 16.1   

prednisolone 0.6 98.5 13.1 14.0 0.41 0.51 

 0.9 100.5 9.0 9.2   

 0.3 98.1 12.2 13.1   

prednisone 0.6 101.9 7.7 8.9 0.39 0.46 

 0.9 99.4 10.8 10.9   

 0.3 105.4 10.8 14.7   

dexamethasone 0.6 94.6 7.6 12.6 0.40 0.49 

 0.9 101.8 9.5 10.1   

 0.3 98.9 7.9 13.0   

testosterone 0.6 101.1 10.7 14.9 0.39 0.48 

 0.9 99.6 9.1 9.7   

 0.3 97.0 15.4 19.2   

epitestosterone 0.6 99.0 10.0 10.2 0.43 0.54 

 0.9 102.9 8.0 9.8   

 0.3 100.2 14.8 15.4   

ADD 0.6 99.8 6.8 8.1 0.41 0.49 

 0.9 100.0 9.2 9.3   

 0.3 101.3 13.2 14.4   

α-boldenone 0.6 99.0 9.4 11.0 0.40 0.49 

 0.9 100.4 8.1 8.4   

 0.3 102.7 9.7 18.6   

β-boldenone 0.6 97.3 15.1 20.9 0.43 0.57 
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3.3.3.4. Performance characteristics of the methods 

The curves prepared to check instrumental linearity showed correlation coefficients 

greater than 0.99 for all compounds, indicating a good fit. 

Selectivity showed compliance with the relative retention times for each analyte, which 

in our case were found to be within a tolerance of 2.5% when compared with standards. 

Moreover all ion ratios of analytes in the samples were within recommended tolerances 

as required by Commission Decision 2002/657/EC (European Union, 2002) when 

compared with standards. 

Blank and spiked samples were analysed and did not show any interference (signals, 

peaks, ion traces) in the region of interest where the target analytes were expected to 

be (European Union, 2002). 

The matrix validation curves were demonstrated to be linear in the range 0.3–0.9 ng mL-

1 for all analytes except 17α- and 17β-nandrolone, which spiked in the range between 

0.5 and 1.5 ng mL−1. A linear regression, obtained using the least-square method, 

demonstrated a good fit for all analytes with a correlation coefficient > 0.99. 

The matrix effect value calculated according to Matuszewski et al., (2003) was 

approximately 100% for each compound, indicating the absence of ion suppression. It is 

likely the clean up performed by IAC tends to eliminate the matrix effect.  

The precision, calculated by applying one-way analysis of variance (ANOVA), was 

expressed as the coefficient of variability (CV) in terms of intra- and inter-day 

repeatability. The reported results showed that the intra- and inter-day repeatability for 

 0.9 101.0 8.0 9.6   

 0.5 102.4 12.8 13.6   

α-nandrolone 1.0 97.6 8.9 9.5 0.65 0.78 

 1.5 100.8 13.9 14.0   

 0.5 96.2 12.2 20.1   

β-nandrolone 1.0 103.7 14.2 20.2 0.73 0.99 

 1.5 98.8 10.6 11.9   

 0.3 96.7 15.4 20.3   

trenbolone 0.6 103.3 16.2 20.2 0.45 0.61 

 0.9 98.8 12.0 12.3   
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all analytes was less than 16.2 and 20.9 %, respectively. These CVs were lower than 

22%, as proposed by Thompson (Thompson, 2000), representing good method 

repeatability.  

CCα and CCβ were calculated as described in SANCO/2004/2726 revision 4 (European 

Union, 2008) using parallel extrapolation to the x-axis at the lowest experimental 

concentration (Table 2).  

Standard solutions and samples showed an acceptable stability with less than 2% 

change after one month. 

Finally, according to Youden’s experiment (European union, 2002), none of the seven 

changed factors showed significant variation in the concentration measurements, 

confirming the good robustness of the method. 

3.3.3.5. Application of the method 

In order to monitor selected corticosteroids and anabolic steroid residues in bovine 

powdered milk, 50 samples were subjected to analysis. All samples analysed revealed 

the presence of cortisol and cortisone; testosterone was found in 45, epitestosterone in 

34, prednisolone in 2 and β-nandrolone in 7 samples (Table 3), quantified by 

extrapolation from calibration curves which were built specifically of 6 points: 0, 0.5, 1.0, 

2.0, 5.0, 10.0 ng mL-1 for all analytes. Very good, satisfactory linearity was obtained for 

all curves (R2>0.99). 

The average concentration is expressed as ng mL-1 of reconstituted milk (1 g/10 mL, 

considering that the dilution generally recommended by the manufacturers is 

approximately 100 g of powdered milk in 1 L of water).  
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Table 3. Survey of the steroids detected in the 50 samples of reconstituted calf milk replacers (1 g/10 

mL). Concentration is expressed in ng mL
-1

. 

 cortisol cortisone prednisolone testosterone epitestosterone β-nandrolone 

Positives 50 50 2 45 34 7 

Concentration 
mean±SD 

2.56±0.89 1.06±0.37 0.41±0.00 1.24±0.68 0.63±0.23 0.82±0.13 

Maximum 
concentration 

3.81 1.64 0.41 3.72 1.33 1.03 

Minimum 
concentration 

0.76 0.42 0.41 0.48 0.43 0.73 

 

The physiological concentrations of cortisol and cortisone in milk vary from 0 to 50 ng 

mL–1 (Jouan, Sylvie, Gauthier, & Laforest, 2006), a range that includes the 

concentrations shown in Table 3. As regards testosterone and epitestosterone in milk, 

very high variability is reported in the literature. The concentration of testosterone 

increases proportionally during pregnancy from 20 to 120 pg mL-1 (Gaiani, Chiesa, 

Mattioli, Nannetti, & Galeati, 1984), varying from undetectable to 50 pg mL–1 in milk at 

oestrus and 150 pg mL–1 during the luteal phase (Hoffman, & Rattenberger, 1977). 

These steroids are probably found in lower concentrations or are even absent after the 

process of milk skimming, but they are present in tallow and lard (Ontario veal 

association, 2015), often added to raise the lipid concentrations of milk replacers. 

However, in bovine fat and boar backfat, testosterone is present at concentrations of up 

to 10.95 ± 8.68 µg kg-1 and 20.34 µg kg-1, respectively (Hartmann, Lacorn, & Steinhart, 

1998). In light of the above, available information does not allow defining the “natural” 

values of testosterone and epitestosterone concentrations in powdered milk. We 

occasionally detected in the milk replacers the pseudoendogenous steroids 

prednisolone and β-nandrolone. To our knowledge, no data are available in the 

scientific literature about their presence in cow milk so we are not able to hypothesize if 

their origin is endogenous or due to administration.  

3.3.4. Conclusions 
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The validation parameters of this method demonstrate its effectiveness for the analysis 

of selected corticosteroids and anabolic steroids in milk replacers. As already stated, 

this feed could be the vehicle for the administration of regulated or forbidden 

substances. Moreover, no studies are available on the presence in cow milk of 

substances with a pseudoendogenous origin. This method could therefore be a useful 

tool both for research purposes aimed to the improvement of control of feedstuff.  
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Abstract 

Veterinary drugs usually have rapid clearance rates in the liver and kidney, hampering 

their detection in conventional matrices like liver or urine. Pharmacological principles 

may be esterified to facilitate their administration and increase drug half-life. 

Prednisolone, whose therapeutic administration is regulated for food producing animals 

in the European Union, is available in its acetate form as well as nandrolone, a banned 

anabolic steroid, may be obtained as nandrolone phenylpropionate and estradiol as 

benzoyl ester. While the distribution and accumulation of lipophilic and hydrophilic 

substances in human teeth has been well documented, studies on residues in bovine 

teeth are lacking. We hypothesised that analysis of bovine teeth could be used to detect 

both regulated and banned veterinary drugs. Steroids may be illegally used as growth 

promoters in food producing animals, alone or combined with β2-agonists; therefore, we 

developed, and validated, in accordance with the Commission Decision 2002/657/EC, 

two analytical confirmatory HPLC-MS/MS methods to detect these classes of 

compounds following a unique liquid extraction procedure. We finally analysed teeth 

from three male Friesian veal calves treated with intramuscular estradiol benzoate, oral 

prednisolone acetate or intramuscular nandrolone phenylpropionate in combination with 

oral ractopamine, respectively, and from seven bovines from the food chain. Teeth from 

treated animals were positive for their respective drugs, with the exception of 

nandrolone phenylpropionate. One sample from a food chain bovine was positive for 

isoxsuprine, one of the seven β2-agonists studied. Non-esterified forms of the steroids 

were not found. These results demonstrate that bovine teeth are a suitable matrix for 

the determination of pseudoendogenous substances or illicit administration of veterinary 

drugs. 

Keywords: bovine teeth; residues; steroids; β2-agonists; HPLC-MS/MS 
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3.4.1. Introduction  

The illicit administration of veterinary drugs for growth promoting purposes in cattle 

breeding has been banned from European Union (EU) since 1988 (European Union 

2003) and detailed in Council Directives 96/22/EC and 96/23/EC (European Union 

1996a, 1996b). Veterinary drugs generally show high clearance rates in conventional 

biological matrices such as urine, blood, liver and muscle, hampering the detection of 

many active compounds. This is true for the active compounds of synthetic, natural or 

pseudoendogenous origin depending on the commercial formulation. 

β2-adrenoceptor agonists have powerful bronchodilator and tocolytic actions, but may 

also be administered as growth promoters to improve the production of lean meat by 

lowering fat levels through increased lipolytic activity. Although the European Union 

(EU), China and other Asian countries have banned the use of β2-agonists for growth 

promoting purposes, the United States of America (USA) authorised ractopamine as a 

feed additive for swine in 1999, cattle in 2003 and turkey in 2008 (Flynn 2014).The EU 

has set the maximum residue levels (MRL) for clenbuterol in muscle, liver and kidney of 

bovine and horses as well as in cow milk (European Union 2010). Its only approved 

usage is as a tocolytic to parturient cows (EMEA 2000). and cannot be used under any 

circumstances on other categories of cattle. Isoxsuprine administration is similarly 

regulated, but MRLs are not indicated (European Union 2010) due to its infrequent use; 

moreover it is rapidly absorbed, distributed and excreted making it unlikely the animal 

will be sent for slaughter during or immediately after the treatment (EMEA 1996). The 

metabolic cycle of ractopamine is also very short and its degradation pathway varies 

among animals making it hard to test for ractopamine during the withdrawal period (Wu 

et al. 2014). 

Estradiol benzoate is often used in combination with a progestin to induce oestrus, 

ovulation and increase the number of embryos in domestic livestock. Estradiol also 

stimulates the somatotropic axis to produce growth hormone and increase carcass 

weight and feed efficiency. As it is a potential carcinogen, its use in food producing 

animals has been banned since 2008 in the EU (European Union 1999, 2008). The 

possibility of widespread abuse of hormonal substances by unscrupulous farmers and 
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veterinary professionals in some parts of Europe has been reported, due to economic 

benefits that these illicit substances provide in animal husbandry and the possibility to 

get them in non-European countries where they are authorized (Stephany 2001). 

Nandrolone phenylpropionate can be utilised in medical veterinary practices to slow 

degenerative processes and to promote tissue repair. Its use in cattle breeding is 

prohibited in the EU (European Union 1996a), yet it is one of the most frequently 

applied illegal anabolic steroids. The controls by the official organisms are complicated 

by the pseudoendogenous nature of nandrolone in bovine. The presence of its 

metabolites in untreated, injured males and pregnant females is detectable (Kennedy et 

al. 2009).  

The same applies to prednisolone (Bertocchi et al. 2013), a corticosteroid commercially 

available as an acetate that is allowed for therapeutic purposes as an anti-inflammatory 

drug or for treatment of ketosis (Aiello 2014; McSherryt et al. 1960). Apart from its legal 

usage, prednisolone could also be administered at low doses, either alone or in 

combination with other steroids or β2-agonists, to promote growth. 

The natural or pseudoendogenous origin, rapid excretion and low dosages (especially if 

cocktails are used) of illegally applied anabolic substances make it challenging to 

concretely verify their use. Thus, it is necessary to identify a matrix in which these drugs 

accumulate and persist in their administered chemical form to undoubtedly demonstrate 

that treatment occurred, discriminate between exogenous or endogenous origin and 

improve the framework of controls.  

In recent years, many studies have proposed hair analysis as a useful strategy to detect 

drug residues in food producing animals (Nielen et al. 2006; Rambaud et al. 2005; 

Gaillard et al. 1999) Although hair provides a long retention window, it is limited to a 

monthly time scale (Hinners et al. 2012) in teeth, exposure or administration markers 

remain stable enabling a longer detection window (Gulson et al. 1997). Human teeth 

have been used to assess exposure to inorganic chemicals since the 1960s (Altshuller 

et al. 1962) and to determine prenatal exposure to environmental organic chemicals in 

the early 2000s (Andra et al. 2015). Particularly, 14C-labeled substances have been 

shown to penetrate into the calcified tissues and pulp of deciduous and permanent teeth 
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in humans, rendering this biological matrix a potentially important deposit of exogenous 

substances (Haustein et al. 1994). The studies that to date use teeth as a matrix, 

however, are almost exclusively limited to human teeth and have been used to detect 

drugs of abuse (opiates, cocaine, nicotine, etc.) or environmental contaminants. To our 

knowledge, only Spinner et al. (2014) used artificially loaded bovine dentine as an 

experimental model to demonstrate the possibility to detect common drugs of abuse for 

toxicological-forensic purposes. However, bovine teeth have not yet been demonstrated 

as a useful matrix to determine illicit anabolic treatment in veterinary medicine.  

We propose that the analysis of bovine teeth, a non-disruptive matrix when collected at 

the slaughterhouse, is a powerful strategy to demonstrate the administration of growth 

promoters in livestock. To test whether teeth could be used for detection of drugs in 

food producing animals, we developed a simple and unique liquid extraction procedure 

from teeth followed by two HPLC-MS/MS analyses. The first one dealt with seven β2-

agonists (cimaterol, clenbuterol, isoxsuprine, mabuterol, ractopamine and terbutaline) 

and the second one with selected steroids (prednisolone acetate, prednisolone, 

dexamethasone, estradiol benzoate, nandrolone phenylpropionate and nandrolone). 

Their structures are shown in Figure 1.  
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Figure 1. Chemical structures of the seven β2-agonists and the selected steroids. 

 

The developed methods were validated according to Commission Decision 

657/2002/CE (European Union 2002) to demonstrate the power of this novel, 

unconventional matrix to uncover illicit administration of these drugs. Finally, these 

methods were used to analyse teeth from experimentally treated veal calves collected 

at the slaughterhouse and from bovines from the food chain. 

3.4.2. Materials & Methods  

3.4.2.1. Chemicals and reagents  
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All solvents were of HPLC or analytical grade and were purchased from Fluka (Sigma-

Aldrich, St.Louis, MO, USA). Formic acid 98-100% was obtained from Riedel-de Haën 

(Sigma-Aldrich, St.Louis, MO, USA). Water was purified by a Milli-Q System (Millipore, 

Merck KGaA, Darmstadt, Germany). Ractopamine, isoxsuprine, clenbuterol, 

salbutamol, terbutaline, mabuterol, cimaterol, estradiol benzoate, prednisolone acetate, 

prednisolone, dexamethasone and nandrolone were purchased from Sigma-Aldrich (St. 

Louis, MO, USA). The veterinary medicament Nandrosol (AST Farma B.V. Oudewater, 

the Netherlands) consisting of nandrolone phenylpropionate 50 mg mL-1 was used. The 

internal standards were ractopamine-d6 and testosterone benzoate-d3 (RIKILT 

laboratory, Wageningen, Netherlands), prednisolone-d6 (C/D/N Isotopes Inc, Pointe-

Claire, Quebec, Canada) and testosterone-d3 (LGC Standards, Teddington, UK). 

3.4.2.2.Standard solutions 

Stock solutions (1 mg mL-1) for each standard were prepared in methanol and stored at 

-20°C. Working solutions at concentrations of 10 and 100 ng mL-1 were prepared daily. 

Each working solution was maintained at -20°C during the method validation procedure. 

3.4.2.3. Sample collection 

The teeth used for the analyses included 20 blank samples used for validation of the 

methods, taken at the slaughterhouse from the food chain bovines, gathered in a pool 

(two molars or premolars and two incisors for each animal), and teeth samples used for 

application of the methods. In the last case, the samples (two molars or premolars and 

two incisors) were collected from seven bovines from the food chain and from three 

male Friesian veal calves aged three months with known treatments. The first treated 

animal was intramuscularly given once a week 5 mg estradiol benzoate for six weeks 

and slaughtered one week after the last treatment. The second calf was orally treated 

with 15 mg day-1 prednisolone acetate for 32 days and slaughtered three days after the 

last treatment. The third calf was intramuscularly treated with 150 mg of nandrolone 

phenylpropionate every two weeks for six weeks in combination with 80 mg day-1 oral 

ractopamine, starting from the twenty-first day for 32 days, and slaughtered four days 

after the last treatment with ractopamine. All teeth were collected at the slaughterhouse 

and stored at −20°C until the analysis was performed. 
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3.4.2.4. Sample extraction 

Prior to analysis, teeth samples were cleaned by immersing them in distilled boiling 

water for 10 minutes to remove residual blood and, subsequently, the adherent tissue 

was removed with a scalpel. Once dry, teeth were cleaved and reduced in size with a 

hammer. After scraping out the pulp, teeth were pulverised by a ball mill (30 freq sec-1, 

40 sec). One gram of teeth was spiked with internal standards at a concentration of 2 ng 

g-1 and, after the addition of 3 mL of ethyl acetate:tert-butyl methyl ether (4:1, v/v) 

mixture, was sonicated for 1 hour. After centrifugation at room temperature at 2500 x g 

for 5 min, the supernatant was collected and evaporated in a rotary vacuum evaporator 

at 37°C. The dried extract was reconstituted in 200 µL of methanol:aqueous formic acid 

0.1% (50:50 v/v) and then transferred to an auto-sampler vial. The injection volume was 

10 µL. 

3.4.2.5. HPLC-MS/MS analyses 

Chromatographic separations were carried out with an HPLC system (Thermo Fisher 

Scientific, San Jose, CA, USA) made up of a Surveyor MS quaternary pump with a 

degasser, a Surveyor AS auto-sampler with a column oven kept at 30°C and a 

Rheodyne valve with a 20 μL loop equipped with a Synergi Hydro RP reverse-phase 

HPLC column (150 x 2.0 mm, internal diameter 4 µm) and a C18 guard column (4 x 3.0 

mm; Phenomenex, Torrance, CA, USA). The mobile phase consisted of a binary 

mixture of solvents A (aqueous formic acid 0.1%), and B (methanol). The following 

gradient program was used for β2-agonists: solvent A was decreased from 95% to 45% 

over 10 min, decreased to 10% over 1 min, held for 6 min at 10%, increased to 95% 

over 5 min and equilibrated for another 8 min. The flow rate was 0.2 mL min-1 and the 

overall run time was 30 min. Anabolic steroids were separated with the following 

gradient program: solvent A was maintained at 60% for 1 min, decreased to 40% over 1 

min, decreased to 5% over 11 min, held at 5% for 1 min, increased to 40% over 2 min, 

increased 60% over 5 min and equilibrated for another 8 min. The flow rate was 0.2 mL 

min-1 and the overall run time was 29 min. 

The mass spectrometer was a triple-quadrupole TSQ Quantum mass spectrometer 

(MS) (Thermo Fisher) equipped with an electrospray ionisation (ESI) interface that was 
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set in both positive (ESI+) and negative (ESI-) mode. Acquisition parameters were 

optimised in the electrospray mode by direct continuous pump-syringe infusion of 

standard 1 μg mL-1 solutions of analytes at a flow rate of 20 µL min-1 and a MS pump 

rate of 100 µL min-1. The following conditions were used: capillary voltage 3.5 kV; ion-

transfer capillary temperature 340°C; nitrogen as sheath and auxiliary gases at 30 and 

10 arbitrary units, respectively; argon as the collision gas at 1.5 mTorr; and peak 

resolution 0.70 Da at full-width half-maximum (FWHM). Three diagnostic product ions 

were chosen for each analyte and internal standard. The acquisition was made in 

multiple reaction-monitoring (MRM) mode. The selected diagnostic ions (one of which 

was chosen for the quantification), their relative intensities and the collision energies are 

reported in Tables 1 and 2 for β2-agonists and anabolic steroids, respectively. 

Acquisition data were recorded and elaborated using Xcalibur™ software from Thermo 

Fisher. 

Table 1. MS/MS conditions for the MRM acquisitions of the seven β2-agonists, as well as for the internal 

standard. Ions used for quantification are in bold. The values in parentheses represent the relative 

intensities (%). CE: collision energy, subscripted and expressed in volts. 

Analyte 

Precursor ion 

 (m/z) 

Product ions(%)CE 

(m/z) 

ESI 

cimaterol 220 143(55)23, 160(60)16, 202(100)7 (+) 

terbutaline 226 125(30)24, 152(100)16, 170(20)11 (+) 

salbutamol 240 130(35)29, 148(50)18, 222(100)10 (+) 

clenbuterol 277 158(18)29, 203(50)18, 259(100)10 (+) 

ractopamine 302 107(53)30, 121(62)22, 164(100)15 (+) 

isoxsuprine 302 107(25)29, 150(20)21, 284(100)14 (+) 

mabuterol 311 217(50)26, 237(100)17, 293(45)11 (+) 

ractopamine-d6 308 121(58)23, 168(95)16, 290(100)12 (+) 

 

 



156 
 

Table 2. MS/MS conditions for the MRM acquisitions of the selected steroids, as well as for the internal 

standards. Ions used for quantification are in bold. The values in parentheses represent the relative 

intensities (%). CE: collision energy, subscripted and expressed in volts. 

Analyte 

Precursor ion 

 (m/z) 

Product ions(%)CE 

(m/z) 

ESI 

prednisolone acetate 403 307(78)13, 325(40)11, 385(100)9 (+) 

prednisolone 405 187(7)30, 280(18)35, 329(100)19 (-) 

dexamethasone 437 307(24)33, 361(100)20, 391(7)14 (-) 

prednisolone-d6 411 284(20)37, 299(18)32, 333(100)19 (-) 

estradiol benzoate 377 105(100)26, 135(20)15, 359(32)11 (+) 

testosterone benzoate-d3 396 105(100)25, 256(36)20, 274(40)16 (+) 

nandrolone phenylpropionate 

 

 

407 105(100)31, 239(82)18, 257(94)16 (+) 

 

 

nandrolone 

 

 

275 91(75)40, 109(98)27, 239(100)16 (-) 

 
testosterone-d3 292 109(100)25, 123(20)27, 256(19)18 (+) 

 
 

3.4.2.6.Method validation 

The unique pre-treatment method followed by two different HPLC-MS/MS analyses was 

fully validated for all analytes according to the criteria of Commission Decision 

657/2002/CE (European Union 2002). The following performance parameters were 

assessed for each analyte: specificity, selectivity, linearity, trueness, recovery, 

precision, decision limit (CCα), detection capability (CCβ), ruggedness and matrix 

effect. 

To confirm specificity of these methods, 20 bovine tooth blank samples previously 

checked for the absence of the analytes were tested to ensure the absence of possible 

interferences at the retention time where the target analyte was expected to elute.  

Selectivity was tested by verifying a signal-to-noise ratio greater than three at the 

expected retention time of the analyte and the ion abundance ratio for all MRM 

transitions.  
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Matrix validation curves were performed by spiking the pooled blank samples with 

known concentrations of each analyte resulting in three analytical series. Each series 

had six replicates for three concentration levels C0, 2xC0 and 3xC0, where C0 was the 

minimum concentration detectable with our instrumentation. The β2-agonists, estradiol 

benzoate, nandrolone, nandrolone phenylpropionate and dexamethasone were tested 

at 0.1, 0.2 and 0.3 ng g−1. Prednisolone was tested at 0.2, 0.4, 0.6 ng g−1 and 

prednisolone acetate was tested at 0.5, 1.0, 1.5 ng g−1. The chromatograms and 

MS/MS spectra of the β2-agonists and of the steroids in the matrix spiked with each 

analyte at the lowest validation level (C0) are shown with their related internal standards 

(2 ng g-1) in Figures 2 and 3, respectively. 

Figure 2. HPLC–MS/MS chromatograms and related MS spectra of the seven β2-agonists in teeth 

sample spiked at the lowest validation concentration level (0.1 ng g
-1

) and the internal standard 

ractopamine-d6 (2 ng g
-1

). 
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Figure 3. HPLC–MS/MS chromatograms and related MS spectra of the selected steroids in teeth sample 

spiked at the lowest validation concentration level (0.1 ng g
-1

 for estradiol benzoate, nandrolone, 

nandrolone phenylpropionate and dexamethasone; 0.2 ng g
−1

 for prednisolone and 0.5 ng g
−1

 for 

prednisolone acetate). Each group of analytes is followed by the related internal standard (2 ng g
-1

). 

 

Instrumental linearity was evaluated on pure standard solutions at six concentration 

levels in two replicates, from the minimum concentration detectable with our 

instrumentation up to 15 ng mL−1, in order to estimate if method’s quantification range 

overlaid the instrumental linear range. From this data, slope and intercept were 

determined by the least squares regression method and the linear fit was verified using 

squared correlation coefficient (R2).  
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Matrix calibration curves, applied for the quantitation of the real samples, were similarly 

built by analysing two replicates of blank tooth samples spiked with working solutions at 

the same concentration range used to evaluate instrumental linearity. The following 

deuterated standards were used for quantitation: ractopamine-d6 for β2-agonists; 

testosterone benzoate-d3 for estradiol benzoate; prednisolone-d6 for prednisolone 

acetate, prednisolone and dexamethasone; testosterone-d3 for nandrolone 

phenylpropionate and nandrolone. 

The trueness estimated through recovery was evaluated using the data from the 

validation points of the three analytical series and expressed in terms of percentage of 

the measured concentration with respect to the spiked concentration.  

The precision in terms of intra- and inter-day repeatability, estimated as the percent 

coefficient of variation (CV%), was evaluated by calculating the relative standard 

deviation of the results obtained from the 54 validation replicates and applying analysis 

of variance test (ANOVA).  

CCα and CCβ values were calculated from the validation curves using the x-axis 

extrapolation method as clarified in the document SANCO/2004/2726 revision 4 

(European Union 2008b). 

Ruggedness was evaluated using the fractional factorial design of Youden as described 

in the Commission Decision 2002/657/EC (European Union 2002). This test was 

conducted by introducing slight variations (±10%) to seven potentially critical analytical 

parameters in eight different trials by fortifying eight blank teeth samples at the lowest 

validation concentration. The parameters selected included the frequency of the ball mill 

during pulverization, the time of pulverization, the extraction mixture volume, the 

extraction mixture percentage composition, the sonication time, the centrifugation time 

and the evaporation temperature of the extract. The Fisher test was applied to compare 

the standard deviation of the differences obtained from the high- and the low-value 

setting for each experimental parameter with the standard deviation of the method 

carried out under within-laboratory reproducibility condition. 
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The Matuszewski et al. strategy (Matuszewski et al. 2003) was used to evaluate matrix 

effects. Sample extracts spiked with the analyte of interest before analysis were 

compared to pure solutions prepared in the mobile phase containing equivalent 

amounts of the analyte. The percentage ratio between the corresponding peak area for 

the standard spiked after extraction and the peak area obtained in standard solution 

was used to determine the extent of the matrix effect occurring for the analyte in 

question under chromatographic conditions. 

3.4.3. Results & Discussion 

The proposed analytical protocol was entirely validated as confirmation method, in 

agreement with the European guidelines (European Union 2002, 2008b) for all steroids 

and β2-agonists tested. Previous trials were made to develop a unique procedure, i.e. 

one extraction followed by just one analysis for all studied molecules. However, in a 

unique chromatographic run, the separation of the steroids hampered the retention of 

some β2-agonists (cimaterol, terbutaline and salbutamol) that instantly eluted, making 

their detection impossible. As the purpose of this study was to demonstrate the 

suitability of bovine teeth as a matrix for the detection of veterinary drugs, we preferred 

to perform two chromatographic analyses having optimal conditions.  

The chromatographic profiles obtained from blank tooth samples did not show the 

presence of any interference signals at the relative retention time expected for our 

compounds, demonstrating the method specificity. The methods also displayed 

selectivity with signal to noise ratios greater than three and the expected ion ratio 

abundances in correspondence of retention time for each analyte. 

The least squares regression method was used to confirm instrumental linearity of 

standard solutions, with a R2 greater than 0.997. Similarly, the R2 was greater than 

0.991 for the calibration curves for quantitation of the real samples, indicating a good fit 

of the curves on the experimental points. 

The validation parameters presented in Tables 3 and 4 confirm that the extraction 

method and analyses are compliant with European guidelines. In particular, the 

recoveries ranged from 95 to 106% for the β2-agonists and from 94 to 105% for the 
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steroids, demonstrating that a simple liquid extraction without incubation in acidic or 

alkaline solution, as some Authors perform (Andra et al. 2015), was able to extract all 

analytes from the complex structure and composition of the tooth.  

Table 3. Validation parameters for the seven β2-agonists. 

Analyte 
CCα 

(ng g
−1

) 

CCβ 

(ng g
−1

) 

Concentration 

level 

(ng g
−1

) 

Recovery % 

(n=18) 

Repeatability 

intra-day 

(CV; n=6) 

inter-day 

(CV;n=18) 

   0.1 102 18 20 

cimaterol 0.16 0.20 0.2 97 14 17 

   0.3 101 13 14 

   0.1 97 17 19 

terbutaline 0.16 0.19 0.2 99 13 15 

   0.3 100 12 13 

   0.1 104 17 20 

salbutamol 0.17 0.21 0.2 96 16 18 

   0.3 101 13 15 

   0.1 97 13 14 

clenbuterol 0.13 0.16 0.2 103 13 14 

   0.3 99 10 10 

   0.1 106 17 18 

ractopamine 0.15 0.19 0.2 97 12 14 

   0.3 102 12 12 

   0.1 97 17 18 

isoxsuprine 0.15 0.19 0.2 102 12 15 

   0.3 95 10 11 

   0.1 95 16 19 

mabuterol  0.14 0.18 0.2 104 14 17 

   0.3 98 12 12 
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Table 4. Validation parameters for the selected steroids. 

Analyte 
CCα 

(ng g
−1

) 

CCβ 

(ng g
−1

) 

Concentration 

level 

(ng g
−1

) 

Recovery 

% 

(n=18) 

Repeatability 

intra-day 

(CV; n=6) 

inter-day 

(CV;n=18) 

   0.5 104 18 21 

prednisolone 0.76 0.87 1.0 96 16 17 

acetate   1.5 101 13 14 

   0.2 101 19 20 

prednisolone 0.25 0.37 0.4 96 13 15 

   0.6 100 11 13 

   0.1 105 16 17 

dexamethasone 0.16 0.23 0.2 94 13 15 

   0.3 101 11 12 

   0.1 99 19 21 

estradiol 0.20 0.35 0.2 101 19 20 

benzoate   0.3 100 19 20 

   0.1 95 14 17 

nandrolone 0.25 0.38 0.2 105 15 16 

phenylpropionate   0.3 98 11 12 

   0.1 103 11 15 

nandrolone 0.17 0.25 0.2 100 9 13 

   0.3 100 10 11 

 

The precision, in terms of intra- and inter-day repeatability, calculated by applying the 

one-way analysis of variance (ANOVA) and expressed as the percent coefficient of 

variation (CV%),ranged from 10 to 20% for β2-agonists and from 9 to 21% for steroids. 

These values were lower than 23%, as proposed by Thompson (2000). and considered 

satisfactory according to the international guidelines. 

Calculated CCα values ranged from 0.13 to 0.17 ng g-1 and from 0.16 to 0.76 ng g-1, for 

β2-agonists and steroids, respectively. The CCβ values ranged from 0.16 to 0.21 ng g-1 

and from 0.23 to 0.87 ng g-1 for β2-agonists and steroids, respectively. These 

experimentally determined levels were slightly higher than the lowest levels of validation 
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chosen through the minimum concentration detectable with our instrumentation, 

ensuring compliance with all the identification criteria.  

The sample quantitation planned to carry out the Youden (European Union 2002) 

approach for ruggedness evaluation, was interpreted through both Student and Fisher 

tests. No significant variation was found by these analyses even when slight alterations 

of the seven potentially critical analytical parameters were introduced in the sample 

preparation and extraction steps.  

The modest matrix effect gave values ranging from 88 to 106% for the β2-agonists and 

from 84 to 109% for the anabolic steroids. 

3.4.3.1. Application of the methods to real samples 

We next applied our method consisting of a common liquid extraction followed by two 

analyses to test our hypothesis of accumulation of veterinary drugs in teeth. Samples 

from three veal calves subjected to treatment and from seven anonymous bovines were 

analysed. Importantly, all of the analytes from the treatment protocols were detectable 

in their respective tooth samples (ractopamine 8.90 ng g-1, estradiol benzoate 8.78 ng g-

1, prednisolone acetate 2.90 ng g-1) except nandrolone phenylpropionate. A major 

observation is that we did not find the free form where the hydrophilic pharmaceutical 

esterified form was detected, likely due to the nature of the matrix, constituted for the 

most part by hydroxyapatite, for which the esterified form should have a much higher 

affinity. The detection of the pharmaceutical form could therefore be a valid proof of 

illegal treatment, particularly in the case of endogenous (estradiol) or 

pseudoendogeneous substances (nandrolone and prednisolone) (Kennedy et al. 2009 

and Bertocchi et al. 2013). The data collected do not allow us to explain the absence of 

nandrolone ester. Some suggestion could however be given: the gap between the last 

administration and the slaughtering was two weeks long, different from all the time 

intervals of other drugs. Nandrolone phenylpropionate could not accumulate into teeth, 

as well as need a longer time to reach the teeth and/or the cocktail with ractopamine 

could affect the distribution of the steroid. 
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Finally, we detected isoxsuprine in one of the unknown teeth samples at a concentration 

of 13.67 ng g-1, a further evidence of the effectiveness of this method. None of the other 

analytes in this study was ever found. 

3.4.4. Conclusion 

Two HPLC–MS/MS methods for the analysis of bovine teeth with a common liquid 

extraction was validated and applied to samples from treated and anonymous bovines. 

The analytes included seven β2-agonists (cimaterol, clenbuterol, isoxsuprine, mabuterol, 

ractopamine, salbutamol and terbutaline), and four steroids in free or esterified forms 

(prednisolone acetate, prednisolone, dexamethasone, estradiol benzoate, nandrolone 

phenylpropionate and nandrolone). The methods were validated in accordance with the 

criteria of the European Commission Decision (2002/657/CE) ( European Union 2002) 

and SANCO/2004/2726 revision 4 (European Union 2008b).  

The application of the methods to teeth from animals with known anabolic treatment 

lead to effective detection of ractopamine, prednisolone acetate and estradiol benzoate. 

However, nandrolone phenylpropionate was not found in teeth. The detection of 

isoxsuprine in one unknown sample confirms the suitability of this method for detection 

of β2-agonists use.  

The utilization of teeth as an accumulation matrix will be the subject of further studies 

dealing with different tooth groups and animals of varying ages. 
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Highlights 

• The fighting stress is considerably lower than that induced by slaughtering. 

• Prednisolone presence in one urine sample is correlated with high level of stress. 

• Concurrence of prednisolone with high cortisol level rules out its exogenous origin. 

Abstract 

Natural corticosteroids include two families of substances: mineralocorticoids and 

glucocorticoids. Several drugs of similar structure and biological activity have been 

synthesized and are currently used in the clinical practice. Beside legal pharmacological 

treatments, these drugs have been consistently misused in animal breeding. One of the 

most abused corticosteroids is prednisolone. For many years, prednisolone has been 

considered of exclusive synthetic origin, but nowadays a debate about its possible 

endogenous production is under way. Several studies have been addressed to 

ascertain the potential relationship between stressful conditions, such as transportation 

and slaughtering, and endogenous production of prednisolone. In order to verify further 

the effect of stressful conditions, our laboratory analysed urine samples collected from 

the cows participating to the “Batailles des Reines” (a traditional contest based on ritual 

and spontaneous fights of pregnant cows), to verify if an endogenous prednisolone 

production may occur in these animals. We developed and validated a LC-MS/MS 

method for the simultaneous determination of cortisol, cortisone, prednisolone and five 

of its metabolites. The method was applied to the analysis of urine samples collected 

from “Batailles des Reines” competitions in 2012 and 2013. All these samples had been 

previously analysed within an anti-doping control program and tested compliant to all 

screenings. 

Keywords Prednisolone; Stress; Bovine urine; Cortisol; Cortisone 

 

3.5.1. Introduction 

Natural corticosteroids are a class of steroid hormones synthesized in the adrenal 

cortex from cholesterol and include two families of substances: mineralocorticoids and 
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glucocorticoids. Mineralocorticoids influence the electrolyte-water balance, while 

glucocorticoids act on carbohydrate and protein metabolism (Courtheyn et al., 2002; 

Savu et al., 1996). Several further synthetic corticosteroids have been produced so far 

to be used in the clinical practice. In synthetic corticosteroids an increased 

pharmacological activity is obtained by introducing small modifications in the chemical 

backbone of physiological glucocorticoids. Such modifications result in both prolonged 

therapeutic effects and a several-fold increase in pharmacological potency, particularly 

in the anti-inflammatory action. These features, combined with the absence of a parallel 

increase of sodium-retaining effects, enhance the suitability of synthetic glucocorticoids 

for therapeutic purposes (Ferguson and Hoenig, 1995). A number of commercial 

preparations are currently available for administration to cattle, covering a wide range of 

therapeutic applications, including primary ketosis, disorders of tendons and the 

musculoskeletal system, allergic reactions, skin diseases, and shock (McDonald et al., 

2007). Besides legal treatments, glucocorticoids may be illicitly administered shortly 

before the animals' sale, to mask various pathologies, as in the case of old cows at the 

end of their productive cycle. Another common law infringement is the administration of 

intra-mammary glucocorticoid infusion without applying an appropriate withdrawal time. 

One of the most utilized corticosteroids is prednisolone (Chiesa et al., 2016, 2014), 

which has been considered for years as an exclusively exogenous substance. In 2008, 

the official veterinary controls of Regione Lombardia, a high positivity rate for 

prednisolone (82% of all non-compliances) in the urine samples collected in 

slaughterhouses, whereas the urine samples collected in farms from living animals did 

not give any positivity to either prednisolone or prednisone (Regione Lombardia, Unità 

Organizzativa Veterinaria-Struttura Controllo degli Alimenti di Origine Animale, 2008). 

The European Commission reported that 0.14% of the bovine urine samples officially 

tested in 2010 were non-compliant for prednisolone (De Clercq et al., 2013). From these 

results, it was hypothesised that the stress evoked by handling the animals before their 

slaughter resulted in the endogenous production of prednisolone and/or prednisone to a 

level that could be detected using the current analytical methods. In 2011, Pompa and 

coworkers treated three dairy cows with tetracosactide hexaacetate, a synthetic 

analogue of adrenocorticotropic hormone, able to simulate stress. The animals were 
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slaughtered at the end of the study and the results indicated that prednisolone could be 

only occasionally detected in the non-treated animals, but was consistently found in the 

urine of pharmacologically stressed cows (the concentrations ranged from 1.01 to 4.08 

ng/mL). The stress condition was also confirmed by unusually high urinary cortisol and 

cortisone levels in urine, typically detected at concentrations of hundreds ng/mL. The 

results of this preliminary study did not reveal the specific metabolic pathway 

responsible for prednisolone biosynthesis, but suggested that a mechanism of 

endogenous production exists (Bertocchi et al., 2013). Still in 2011 and 2013, other 

studies found prednisolone residues in urine samples collected from control bovines 

especially at the slaughterhouse, together with high levels of hydrocortisone and 

cortisone (Ferranti et al., 2013, 2011). 

In 2012, Vincenti et al. conducted a field survey on urine samples collected from 131 

guaranteed untreated cows and analysed for to verify the possible occurrence of 

prednisolone and prednisone, and also for determined cortisol concentrations. None of 

the examined samples exhibited prednisolone or prednisone levels higher than the CCα 

limit (0.70 ng/mL and 0.66 ng/mL respectively), therefore resulting officially compliant for 

both analytes. Trace amounts of prednisolone, estimated in the range 0.1–0.3 ng/mL, 

were found in only 7 samples from cows also showing high urinary cortisol level, 

possibly resulting from stressful conditions (Vincenti et al., 2012). 

In accordance with the European Union Reference Laboratory (de Rijke et al., 2014), 

the Italian Ministry of Health enacted a new disposition that considers a bovine urine 

sample noncompliant only when the prednisolone concentration exceeds 5.0 ng/mL 

(Department of Public and Veterinary Health, 2012). This threshold appears to be 

largely conservative in avoiding false non-compliant results: a study from our laboratory 

demonstrated that the urine of beef cattle treated with low doses of prednisolone 

acetate for extended periods of time, as occurs in growth-promoting illegal treatments, 

may contain prednisolone at 1 ng/mL or even below even during the administration 

period (Cannizzo et al., 2011). 

In order to obtain better insight into the metabolic fate of prednisolone, our laboratory 

evaluated the possible presence of prednisolone metabolites in the urine of treated and 
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untreated beef cattle (Leporati et al., 2013). We found that 20β-dihydroprednisolone is a 

major urinary prednisolone metabolite in beef cattle experimentally treated with low 

dosages of prednisolone acetate according to a growth-promoting schedule. The 

complete metabolic urinary excretion profile of prednisolone was also characterized 

after intramuscular (i.m.) administration to healthy finishing bulls and cows using a 

therapeutic schedule, in which three other prednisolone metabolites and one 

prednisone metabolite were found (Nebbia et al., 2014). All these results indicate that 

the merely quantitative testing currently adopted for prednisolone (5 ng/mL cut-off for 

the parent drug in urine) is not adequate to ascertain the illicit administration of 

prednisolone to cattle, according to both a growth-promoting schedule and a single 

high-dose treatment. Similar conclusions were obtained by Famele et al. (Famele et al., 

2015). Besides the effect of stress, the hypothesis of a conversion of the natural cortisol 

into prednisolone during inappropriate sample storage conditions, i.e., in the presence 

of faecal microbiota, was investigated through studies on long-term stability of natural 

and synthetic glucocorticoids in livestock urine (De Clercq et al., 2013) and feaces 

(Arioli et al., 2010; De Clercq et al., 2014). Recently, a metabolic fingerprinting approach 

proved to be a powerful tool to classify unknown bovine urine samples that tested 

positive for prednisolone, while providing information about the stress status of the 

animal (De Clercq et al., 2015). 

Whereas stressful conditions (i.e. transport and slaughter imminence) proved to 

generate a dramatic increase of cortisol and cortisone urinary concentrations (Bertocchi 

et al., 2013; De Clercq et al., 2015; Capra, 2016), we decided to evaluate the effects of 

a different source of stress, namely the fight between cows participating to the “Batailles 

des Reines”, on the endogenous production of cortisol, cortisone, and, possibly, 

prednisolone, in these animals. 

The “Batailles des Reines” (Association Régionale Amis des Batailles de Reines, 2017) 

is a traditional event, typically taking place in the alpine regions of Valle d'Aosta (Italy), 

Valais (Switzerland), and Haute-Savois (France), in which couples of pregnant cows 

spontaneously fight against each other, by joining their head and pushing, until one of 

the two backs down from the contest and is eliminated. Each “bataille” takes place 
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between two “Reines”, namely the most combative representatives of the herd, who 

struggles for dominance, especially during the summer period when they instinctively 

compete for the best mountain pastures. During the course of the “Bataille de Reines”, 

the cows are not forced to struggle by their breeders, who remains mere spectators. 

Competition is fair and totally bloodless: the animal instinctively fight against an equal 

opponent. 

3.5.2. Materials and methods 

3.5.2.1. Chemicals, reagents and standard solutions 

Acetonitrile, methanol, ethyl acetate, acetic acid glacial, ammonium acetate, 

prednisolone, prednisone, cortisol and cortisone were supplied by Sigma Aldrich Srl 

(Milan, Italy) and were all of analytical grade. The analytical standards 20α-

dihydroprednisolone, 20β-dihydroprednisolone, 6β-hydroxyprednisolone and 20β-

dihydroprednisone were from Steraloids (Newport, RI, USA). The internal standards 

(ISTDs) prednisolone D6, cortisol D2 and cortisone D2 were from CDN Isotopes 

(Pointe-Claire, QC, Canada). β-glucuronidase/aryl-sulfatase was from Roche 

Diagnostics (Mannheim, Germany). Sodium hydroxide and hydrochloric acid were from 

Carlo Erba Reagenti (Milan, Italy). Ultrapure water was obtained by a Milli-Q Millipore 

system (Bedford, MA, U.S.A.). Stock standard solutions of analytes and ISTDs were 

prepared in acetonitrile at a concentration of 200 ng/mL and stored at − 20 °C in the 

dark. 

3.5.2.2. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) 

Chromatographic separations were performed on an Agilent 1100 series liquid 

chromatograph (Agilent Technologies, Palo Alto, CA, USA), including a vacuum 

degasser, a binary pump, an autosampler and a column thermostat. The liquid 

chromatograph was equipped with a Waters (Milford, MA, USA) X-Select HSS T3 (2.5 

μm, 3.0 × 100 mm) column and a Phenomenex (Castel Maggiore, BO, Italy) 

SecurityGuard 4.0 mm × 2.0 mm precolumn. The column was kept in a column oven at 

23 °C. The chromatographic run was carried out by a binary mobile phase of a 0.1% v/v 

aqueous acetic acid solution and acetonitrile, using the following program: isocratic with 
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20% acetonitrile for 2 min; linear gradient from 20% to 40% in 10 min; isocratic with 

40% acetonitrile for 6 min; linear gradient from 40% to 70% in 1 min; isocratic with 70% 

acetonitrile for 2 min; total run time 21 min. The injection volume was 10 μL, while the 

flow-rate was 0.2 mL/min. The LC was interfaced to an Applied Biosystems API 4000 

triple–quadrupole mass spectrometer (Applied Biosystems Sciex, Ontario, Canada), 

operating in electrospray ionization (ESI) – negative ionization mode. The other MS 

parameters were set as follows: curtain gas: 30 psi; nebulizer gas: 40 psi; probe 

temperature: 300 °C; IS voltage: − 4200 V; gas for collisional activation: N2 at 2 psi. Ion 

acquisition was operated at unit mass resolution in the selected reaction monitoring 

(SRM) mode, using the transitions from the acetate adduct ion of each analyte 

(precursor ion) to the fragment ions indicated in Supplementary Material. 

3.5.2.3. Sample preparation 

After centrifugation at 3500 rpm for 5 min, 5.0 mL of urine was transferred into 30 mL 

glass tubes and 100 μL of the ISTDs solution at 0.1 μg/mL was added. 1.0 mL of 

aqueous ammonium acetate solution 1.1 M pH = 4.8 was added and the pH was 

checked out and adjusted to 5.0 with HCl 1 M, if required. Then 20 μL of β-

glucuronidase/arylsulfatase solution, obtained by 1:20 dilution of the enzyme in 

deionized water, was added and the enzymatic deconjugation was carried out for 2 h at 

37 °C. The sample mixture was cooled at room temperature and loaded onto a Strata-X 

33 μm, 60 mg × 3 mL SPE column (Phenomenex, Castel Maggiore (BO), Italy), 

previously conditioned with 3 mL of methanol and 3 mL of aqueous ammonium acetate 

solution 0.15 M pH = 4.8. After sample loading, the column was washed with 3 mL of 

deionized water, 6 mL of a methanol:sodium hydroxide 0.02 M (30:70 v/v) mixture and 3 

mL of deionized water. The analytes were eluted with 4 mL of ethyl acetate. The 

resulting solution was evaporated to dryness under a gentle stream of nitrogen and mild 

heating (50 °C) using a Techne Sample Concentrator (Barloworld Scientific, Stone, UK). 

The residue was dissolved in 100 μL of 0.1% acetic acid aqueous solution and 

acetonitrile (80:20 v/v) mixture and transferred into the analytical vials for LC–MS/MS 

analysis (injection volume = 10 μL). 

3.5.2.4. Analytical method validation 
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A first set of experiments on prednisolone, prednisone, 20α-dihydroprednisolone, 20β-

dihydroprednisolone, 20β-dihydroprednisone and 6β-hydroxyprednisolone used blank 

bovine urine preliminarily tested as negative to these molecules. A pool of 20 urines of 

female animals of “Valdostana” breed, aged between one and three years, were used. 

Since cortisol and cortisone are endogenous corticosteroids, they are commonly 

present in blank urine samples, therefore their validation experiments were conducted 

on a second set of samples, collected from animals treated with prednisolone acetate. A 

pool was obtained from the urines of six Friesian non-lactating cows at the end of their 

productive cycle. These samples were available from another work (Nebbia et al., 2014) 

and they were obtained in adherence to Italian regulations and guidelines for the care 

and use of experimental animals. The study was approved by the Ministry of Health and 

the local Committee for Animal Welfare. The treatment with this synthetic corticosteroid 

suppressed the production of endogenous glucocorticoids, making the collected urine 

negative for cortisol and cortisone. Recently published practical guidelines were 

followed for reporting analytical calibration results (Olivieri, 2015). Also the guiding 

principles expressed in the Commission Decision 2002/657/EC were considered 

(European Commission, 2002). Positive identification of the analytes was expressed by 

the recognition of 4 identification points, namely the SRM transitions and retention times 

listed in Supplementary material. Specificity, linearity, precision, trueness, limit of 

detection (LOD), limit of quantification (LOQ) and ruggedness were evaluated. 

3.5.2.5. Creatinine detection 

Urinary creatinine was measured using a creatinine assay by ARCHITECT C8000 

System (Abbott, Abbott Park, IL, USA). The creatinine assay is based upon the reaction 

between creatinine and sodium picrate to form a creatinine-picrate complex. The rate of 

increase in absorbance at 500 nm due to the formation of this complex is directly 

proportional to the concentration of creatinine in the sample. Since the creatinine kit is 

proposed for the quantitation of creatinine in human serum, plasma or urine and not for 

bovine urine, in a previous experimentation the creatinine level was measured in ten 

samples of bovine urine by means of both the creatinine kit and a quantitative LC-

MS/MS method. Strong correlation (Pearson correlation r = 0.9755) and no significant 
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differences were found between the two sets of results. A p-value of 0.00236 was 

obtained, allowing us to reject the null hypothesis and accept the alternative hypothesis 

(i.e. there is actually a positive correlation between the different methods). 

3.5.2.6. Chemical analysis of real samples 

The analytical method was applied to the urine samples collected for anti-doping control 

from the winner cows (three weight categories) for each eliminating round and finals 

during the 2012 and 2013 “Batailles des Reines” tournaments (about 20 eliminating 

rounds plus one final event each year). Since at the final round participated the winners 

of the eliminatory rounds, for three animals each year urine samples were collected in 

two distinct events resulting in a total of 114 samples for 108 animals. Unfortunately, for 

24 samples the urine volume was not sufficient for the creatinine analysis. Therefore, 

creatinine was measured only on 90 samples. Animals arrived on the site of competition 

around 9:00 a.m. from their locations on the mountains (eliminating rounds) in order to 

undergo the registration operations. The cows taking part in the “Bataille des Reines” 

events were brought to the contest field and were allowed to rest before and after each 

fight. In the eliminating round, from which most of the urine samples arose, the cows 

generally walked to the contest field coming from the mountain pastures where they 

spend the summer season. Before each of the matches, and between them, the cows 

were separated from one another and allowed to rest. On average, the three best-

classified cows, from which urine samples were collected, competed in about 3–5 

matches. Only in the final event, more complex operations were necessary to transport 

the animals (about 120–140 cows competed in each category in the final event, but only 

the winners were sampled). In general, sampled animals equally competed for 3–5 

matches each. In general, the competitions started around 1:30 p.m. and went on until 

late-afternoon. Urine sampling was performed with care to prevent faecal contamination 

by a licensed veterinarian under conditions of natural micturition at the end of the 

challenge after watering. After collection, the urine specimens were immediately stored 

at − 20 °C pending their analysis, which were carried out within one week. Beside the 

present method, all samples had been previously analysed within an anti-doping control 
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program and tested negative to all target analytes. The samples underwent two freeze-

thaw cycles, one for antidoping analysis and one for corticosteroids analysis. 

3.5.2.7. Data analysis 

In Table 2 descriptive statistics data relevant to creatinine, cortisol and cortisone 

concentration are summarized. Prednisolone was found in one sample only, while no 

prednisone metabolites were detected in the analysed samples. Results on the 90 urine 

samples collected during “Batailles des Reines” tournaments (group A) are compared 

with those collected in previous works investigating 6 tethered cows reared in traditional 

farms, without traces of prednisolone, in the following reproductive status: early 

pregnancy (4 months) n = 2, late pregnancy (8 months) n = 2, oestral phase n = 1, 

anoestrus n = 1 (group B) (Vincenti et al., 2012), and with 6 cows, aged between 4 and 

6 years, whose urines were collected after slaughter (group C) (Capra, 2016). While 

urine samples from group A were necessarily collected in the afternoon, after 

competition, those from groups B and C, i.e. under programmed experiments, were 

collected in the morning (group B) or at the slaughterhouse (group C). The lack of 

uniformity in the urine withdrawal timing represents an unavoidable constraint, that did 

not allowed us to evaluate the changes of cortisol and cortisone levels due to the 

circadian rhythm. 

Missing values, corresponding to concentration levels below the limit of detection (LOD) 

of the analytical method, were replaced with a value equal to half of the validated LOD, 

as a rule-of-thumb useful for statistical purposes. Cortisol and cortisone concentrations 

for each sample were standardized according to the creatinine levels, to compensate for 

the degree of urine dilution. In particular, cortisol and cortisone values were multiplied 

by a correction factor equal to the ratio between the average creatinine level (calculated 

from all animals participating to the “Batailles des Reines” tournaments) and the 

creatinine value for each cow. Then, base-10 logarithm transformation was performed 

on the collected data. The creatinine, cortisol, and cortisone data values for all animals 

are reported in the Supplementary Material. Boxplots, Gaussian and Kernel density 

estimation (KDE) plots were evaluated to identify possible outliers and compare the 

data distributions. Then, t-tests together with one-way ANOVA and Tukey's tests were 
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performed to compare the corrected cortisol and cortisone mean values for the different 

groups of animals. All calculations were performed with R software version 3.2.2 (R 

Core Team, 2015). 

3.5.3. Results 

3.5.3.1. Method development 

In the course of method development, liquid-liquid extraction was compared with SPE 

extraction, the latter yielding cleaner extracts and consequent better sensitivity. Three 

solvents were tested for liquid-liquid extraction: ethyl acetate, tert-butyl-methyl ether and 

diethyl ether. The best recovery results were obtained with ethyl acetate (46%), but 

much lower than those obtained with SPE (87%). The chromatographic run was 

optimized so as to assure adequate separation of the 20α- and 20β-

dihydroprednisolone isomers (see Fig. 2). Calculated resolution is 1.0933 (Snyder et al., 

2010). No other compounds with the same MS-transitions was affected by separation 

problems. Positive and negative ionization modes were compared in ESI-MS setting: 

the latter proved to provide better sensitivity for the entire set of target analytes. The ion 

[M + acetate]− ion was selected as the precursor for all the analytes. 

3.5.3.2. Validation 

Occurrence of possible interferences from endogenous substances was tested by the 

analysis of twenty blank urine samples as described above; no interfering substances 

were found. Linear matrix calibration curves were built for each analyte (0, 0.4, 0.8, 1.2, 

2.5, 5 ng/mL for prednisolone, cortisol and cortisone, 0, 0.3, 0.5, 1, 2, 5 ng/mL for 6β-

hydroxyprednisolone and prednisone and 0, 1, 2, 5, 8, 10 ng/mL for 20β-

dihydroprednisolone, 20α-dihydroprednisolone and 20β-dihydroprednisone), with two 

replicates for each level. Since IUPAC discourages the correlation coefficient (R) as an 

indicator of linearity in the correlation between concentration and signal (Danzer and 

Curriet, 1998), we reported the experimental F value, corresponding to the ratio of 

residual variance to squared pure error, and the tabulated critical F for comparison in 

order to test linearity (lack-of-fit test). This test is the best linearity indicator, as 

recommended by IUPAC. The lack-of-fit test was passed for all the analytes in the 
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concentration ranges considered (see Table 1), with F-values below 1.4 for the main 

analytes (cortisol, cortisone, prednisone, prednisolone). LOD and LOQ were calculated 

as reported by Olivieri (Olivieri, 2015) and ranged between 0.13 ng/mL to 0.69 ng/mL 

and to 0.39 ng/mL to 2.08 ng/mL respectively (see Table 1). 

Table 1. Calibration curves obtained from spiked urine samples (quantitative determinations) with 

corresponding linearity test results, LOD and LOQ values (where Ftab and Fexp are the tabulated critical 

and the experimental F values, respectively, LOD is the limit of detection and LOQ is the limit of 

quantitation). 

Analyte 
Spiked urine 

LOD (ng/mL) LOQ (ng/mL) 
Linearity range (ng/mL) Ftab Fexp 

6β-Hydroxyprednisolone 0–5.0 

4.060 

0.800 0.17 0.51 

20α-Dihydroprednisolone 0–10 3.230 0.57 1.72 

20β-Dihydroprednisolone 0–10 3.230 0.69 2.08 

20β-Dihydroprednisone 0–7.6 2.345 0.67 2.04 

Prednisolone 0–5.0 0.800 0.14 0.44 

Prednisone 0–5.0 0.772 0.16 0.49 

Cortisol 0–5.0 1.327 0.14 0.42 

Cortisone 0–5.0 1.254 0.13 0.39 

 

Precision and trueness were evaluated at three levels and were estimated both intra-

day (n = 6) and inter-day (n = 18). An ANOVA test was set for each validation level. 

Intra-day precision, expressed by the experimental coefficients of variation, ranged 

between 2.9% and 16%, while inter-day precision was between 5.3% and 19%. Quite 

similarly, limited bias from true values were recorded (from − 6.2% to + 7.8% for intra-

day trueness and from − 5.9% to + 6.7% for inter-day trueness). 

Ruggedness test was conducted by introducing slight variations (± 10% maximum) to 

previously selected analytical parameters and observing the resulting changes in term 

of quantitative response on blank urine samples spiked at the lowest validation level 

(see Supplementary material). A Youden approach was used, in order to minimize the 

number of experiments required. It was found that some factors influenced the final 

results for 6β-hydroxyprednisolone and the critical factors were identified using a t-test. 
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They are the methanol percentage in SPE washing mixture - methanol:sodium 

hydroxide 0.02 M (30:70 v/v) - and its volume. 

The urine extracts were stable for six days at least, if stored under appropriate 

conditions, as proved by the negligible differences (i.e., lower than the limit of 

repeatability of the method) in the absolute concentration values determined at day 0 

and day 6 for all the target analytes. Complete validation data are reported in the 

Supplementary Materials. 

3.5.3.3. Real samples 

Cortisol and cortisone were found above the LOQ value in all the urine samples, with 

only one exception. In 2012 and 2013 sample collections, the average concentrations 

measured for cortisol were 8.65 ± 5.24 ng/mL and 8.00 ± 5.11 ng/mL respectively, and 

for cortisone 4.90 ± 3.09 ng/mL and 4.96 ± 3.14 ng/mL, respectively. It was observed no 

significant difference in the comparison between the two years (two-tailed t-test, p < 

0.01). 

Prednisolone was found in only one sample, at a concentration of 1.45 ng/mL. In this 

sample, both cortisol and cortisone were found at the highest concentration among all 

114 urines, i.e. 35.5 and 18.1 ng/mL, respectively. Trace amounts of prednisolone were 

also found in three other samples (at estimated concentrations of 0.35, 0.12 and 0.10 

ng/mL, respectively, all values were under the LOQ). In the same samples, cortisol and 

cortisone concentrations were above the average, but not exceedingly high (14.3 and 

7.78 ng/mL, 11.6 and 10.8 ng/mL, 10.3 and 9.55 ng/mL, respectively). Some other 

samples exhibited higher cortisol and cortisone concentrations, but no prednisolone was 

found. In no samples, any of prednisolone metabolites were detected, not even at trace 

level, unlike what was observed in the urine samples of bovines treated with 

prednisolone (Leporati et al., 2013; Nebbia et al., 2014). 

3.5.3.4. Descriptive statistics 

Minimum, maximum, quartiles and the median values of creatinine, cortisol and 

cortisone values were calculated for the 3 groups of cows (A–C). Data are reported in 
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Table 2(a–c). Creatinine detection was possible only on 90 samples out of 114 because 

insufficient volume was available for the remaining 24 urines. 

Table 2. Descriptive statistics relevant to the urinary creatinine (2a), cortisol (2b) and cortisone (2c) 

values of cows from “Batailles des Reines” tournaments (A), the tethered cows reared in traditional farms, 

without traces of prednisolone (B) and the slaughtered ones (C). Cortisol and cortisone values were 

multiplied by a corrected factor according to the creatinine data in order to standardize the different 

dilution degrees of the urine samples. 

Cows Minimum 1st Quartile Median 3rd Quartile Maximum 

2a 

A 61 151 214 291 750 

B 19 34 60 111 168 

C 14 62 107 198 248 

2b 

A 1.23 4.38 9.05 14.1 48.8 

B 0.80 1.03 1.63 3.93 128 

C 9.11 14.8 44.0 112 291 

2c 

A 0.90 2.54 4.86 8.61 32.6 

B 0.59 0.75 0.84 2.31 58.9 

C 6.42 10.3 19.4 41.2 141 

 

Boxplots and distribution plots relevant to cortisol (Fig. 1a–b) and cortisone (Fig. 1c–d) 

values were calculated. In particular, Fig. 1(b–d) shows both Gaussian and KDE 

distribution plots (red and green lines, respectively) for the 90 urine samples of the cows 

participating to the “Batailles des Reines” tournaments (group A, blue histograms), 

together with their mean, standard deviation and CV% values. Cortisol and cortisone 

levels of the 6 tethered cows reared in traditional farms (group B) and of slaughtered 

animals (group C), are reported too. Although boxplots show overlaps among the 

groups, appreciable difference exists among the central quartiles for the three groups, 

whose significance was tested to evaluate whether the populations can be distinguished 

by the target analytes. Furthermore, 5 out of 6 animals of groups B and C showed 

http://www.sciencedirect.com/science/article/pii/S0034528816307573#f0005
http://www.sciencedirect.com/science/article/pii/S0034528816307573#f0005
http://www.sciencedirect.com/science/article/pii/S0034528816307573#f0005
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largely increased cortisol and cortisone values when they were transported to the 

slaughterhouse and had to wait before their slaughter (i.e. animals 2, 3, 4, 5 and 6). 

Conversely, animal #1 showed an opposite trend. 

 

Fig. 1. Boxplots, histograms (only for group A) Gaussian (red line, only for group A), KDE (green line, only 

for group A) plots relevant to cortisol (a–b) and cortisone (c–d) values of the different groups of cows, 

where (A) represents the animals from “Batailles des Reines” tournaments (n = 90), (B) indicates the 

tethered cows reared in traditional farms, without traces of prednisolone (n = 6) (Vincenti et al., 2012) and 

the slaughtered ones (C), whose urines were collected after the death (n = 6) (Capra, 2016). Cortisol and 

cortisone values of the 6 animals from groups B and C are indicated by circles and arranged below the 

plots relevant to the urine samples from group A. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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Fig. 2. Chromatographic separation of the two isomers 20α- (peak B) and 20β- (peak A) 

dihydroprednisolone. 

 

Fig. 3. Tukey's test plot relevant to the 95% family-wise confidence level of all the pairwise comparisons 

(reported on the Y-axis) relevant to the cortisol (a) and cortisone (b) concentration of the different groups 

of cows, where (A) represents the animals from “Batailles des Reines” tournaments (n = 90), (B) indicates 

the tethered cows reared in traditional farms, without traces of prednisolone (n = 6) (Vincenti et al., 2012) 

and the slaughtered ones (C), whose urines were collected after the death (n = 6) (Capra, 2016). 

3.5.4. Discussion 

The appraisal of cortisol, cortisone, and prednisolone as potential biomarkers for 

assessing the occurrence of fighting-generated stress requires the consideration under 

which the cows taking part in the various “Bataille des Reines” events are brought to the 

contest field and are allowed to rest before and after each fight (see “Material and 

methods – Chemical analysis of real samples”). The natural conditions under which the 

cows walk to the contest field and rest before competing made us conclude that 
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transport and environmental conditions are not likely to add a significant contribution 

(bias) to the stress originated by the fight itself, at least for the eliminating rounds. 

By comparing the global analytical results of the present investigation with those 

collected in a previous study (Vincenti et al., 2012), it can be observed that the stress 

generated by the struggle during each “Bataille”, and measured by means of cortisol 

and cortisone concentrations, is significantly higher (t-test, p value < 0.05) than that 

commonly experienced by the cows living in a farm (Fig. 1, groups A and B). 

On the other hand, the comparison of the same data with those collected in another 

more recent study (Capra, 2016), show that the fighting stress produced in the 

“Batailles” is significantly lower (t-test, p value < 0.05) than that experienced by the 

animals that are transported to the slaughterhouse and wait before their killing (Fig. 1, 

groups A and C). Furthermore, one-way ANOVA and Tukey's tests were performed on 

the collected data with the aim of comparing the analytical results of this study with 

those from the previous studies, involving groups of cows living in a farm or 

slaughtered. At first, one-way ANOVA test was performed and p-values equal to 7.39 × 

10− 6 and 3.36 × 10− 5 for cortisol and cortisone, respectively, were observed, thus 

revealing that there was at least one group significantly different from the other ones. 

Secondly, Tukey's test was employed with the aim of investigating such differences 

more accurately. As it is reported in Fig. 3(a–b), all groups proved to be significantly 

different as no confidence intervals including the zero value were observed. In this case, 

Tukey's test proved that all the tested groups of cows were significantly different as p-

values lower than 0.05 were obtained for all the pairwise comparisons of both cortisol 

(Fig. 3a) and cortisone (Fig. 3b), with the unique exception of the cortisone levels from 

samples collected during “Batailles des Reines” tournaments (A) and those from the 

cows reared in loose housing farms (B), that shows a p-value slightly higher than 0.05 

(i.e. 0.067), possibly because cortisone is a somewhat less efficient stress biomarker 

than cortisol. 

3.5.5.Conclusions 
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The repeated fighting and environmental conditions produced in the “Batailles des 

Reines” events assuredly generates relatively high concentrations of cortisol and 

cortisone in the urines of the struggling cows, together with occasional presence of 

traces of prednisolone. On this basis, it is apparent that a significant stress is induced in 

the “Batailles des Reines” fighting cows, with respect to the general living conditions of 

the cows reared in loose housing farms. However, the fighting stress of the “Batailles 

des Reines” is considerably lower than that induced in the bovines transported to the 

slaughterhouse, which is extremely high indeed (De Clercq et al., 2015). 

While the occasional presence of prednisolone in the urine of the competing cows can 

be somehow associated with the fighting stress, its rare occurrence (3%) make 

prednisolone an unreliable biomarker for stress. The differentiated and random 

production of prednisolone in stressed animals might be attributed to both the intensity 

and the source of stressful conditions. 

The presence of prednisolone in the urine of the fighting cows was in no cases 

associated with the concurrent presence of its metabolites, particularly 20β-

dihydroprednisolone, which was by contrast observed at concentrations often exceeding 

the parent compound when exogenous prednisolone was administered, both at high 

(therapeutic) and low (mimicking illicit purposes) dose (Leporati et al., 2013; Nebbia et 

al., 2014). Simultaneously, suppression of cortisol and cortisone was documented in 

these studies. 

While the official cut-off of 5.0 ng/mL for prednisolone avoids false positive results due 

to endogenous production under stressful conditions, it does not appear to be adequate 

to ascertain the illicit repeated low-dose administration of prednisolone typical of a 

growth–promoting schedule. 

For these reasons, a more biologically-oriented strategy involving the simultaneous 

determination of urinary cortisol, cortisone, prednisolone, prednisone, and 20β-

dihydroprednisolone is likely to represent an effective approach for surveillance 

purposes and consumer's protection. 
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Highlights 

Analysis of antibiotics in bovine urine, as a non-invasive matrix, is convenient. 

Antibiotics presence in bovine urine might be considered as an environmental risk. 

Multiclass HPLC–MS/MS method for antibiotics assay in bovine urine was validated. 

Majority of samples enrolled in this study were positive on tetracyclines. 

It is crucial to screen antibiotics in bovine urine before processing in food industry. 

Abstract 

A follow-up of antibiotics (tetracyclines, fluoroquinolones, cephalosporins, penicillins and 

amphenicols) in the bovine urine is important for two reasons: to understand if they are 

still present in organism, and whether their occurrence in urine might be considered as 

an environmental risk. A validated HPLC–MS/MS method (Decision 2002/657/EC) for 

antibiotics determination in bovine urine was developed. CCα and CCβ were in the 

range of 0.58–0.83 and 0.55–1.1 ng mL−1, respectively. Recoveries were 92–108%, 

with inter-day repeatability below 12%. Analysis of bovine urine revealed frequent 

presence of tetracyclines, which was related with animal’s age. The cause, most 

presumably, might be found in different therapeutic protocols applied for veal calves and 

young bulls enrolled in this study. Most abundant was oxytetracycline with highest level 

in veal calves (1718 ng mL−1) vs. young bulls (2.8 ng mL−1). Our results indicate the 

necessity of antibiotics monitoring in bovine urine before animals undergo further 

processing in the food industry. 

 

Keywords: Tetracyclines; Fluoroquinolones; Cephalosporins; Penicillins; Amphenicols; 

Bovine urine; LC–MS/MS 

 

3.6.1. Introduction 

Antibiotics constitute an important group of pharmaceuticals that have been widely used 

in veterinary medicinal practices to treat a wide range of diseases. Only 20% of 

antibiotics are used to medicate sick animals, while 80% are used as production tools: 

either to prevent diseases that arise from the way animals are treated during breeding 

(so-called “production diseases”), or for growth-promotion purposes. The widespread 
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exploitation of antibiotics in the past has favoured the growth of resistant 

microorganisms, resulting in ever widening antimicrobial resistance, an important 

human health issue. On Dec. 11th, 2013, the U.S. Food and Drug Administration (FDA) 

announced important steps to ensure the judicious use of antibiotics in food animals, as 

one approach to addressing antimicrobial resistance in human medicine (FDA, 

implementing plan). European Union (EU) national and international authorities 

emphasise the need for environmental and health risk assessment for chemicals with 

antimicrobial effects (Kools, Moltmann, & Knacker, 2008; Serratosa et al., 2006). As a 

result, new strategies to reduce antibiotic utilisation in animal husbandry have been 

proposed (Trevisi et al., 2014). The increasing awareness of food safety with respect to 

antimicrobial resistance (European Community, 2005a) has resulted in the banning of 

any antibiotic with growth-promoting activity: antibiotics are only allowed to be added to 

animal feed for therapeutic purposes (European Community, Regulation 

1831/2003/EC). This decision was based on opinions from the Scientific Steering 

Committee, which recommended the progressive phasing-out of antibiotics used for 

growth stimulation, while still preserving animal health and animal welfare (European 

Community, 2005b). 

Generally, the food animal industry has grown into an integrated production system 

where large quantities of antibiotics are administered to the animals for therapeutic or 

sub-therapeutic purposes. This may lead to accumulation of residues in food matrices 

as milk (Zhan et al., 2012) or meat (Stubbings & Bigwood, 2009). These residues may 

include the non-altered parent compounds as well as metabolites, and may have direct 

or indirect toxic effects on consumers. Logically, these compounds are excreted by the 

animals and end up in the urine and faeces. This, consequently, carries substantial 

environmental problems, as during the maturation process, the animal dejections 

become manure, which is frequently used in agriculture. 

To minimise the exposure of antibiotics to humans and safeguard public health, 

European legislation (Commission Regulation ECC/2377/90 and 37/2010) has 

established corresponding tolerance levels, termed as maximum residual limits or levels 

(MRLs), for controlling the use of antibiotics in food-producing animals. Also, the Italian 

National Residue Control Plan (NRCP, 2014) is very precise: samples taken at 
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slaughterhouse are screened for the presence of residues/metabolites on the bases of 

MRLs. Analysis of positive screening tests for these residues in animal products must 

adhere to legislation laid out in Council Directive 96/23/EC and Commission Decision 

2002/657/EC, whereby suitable confirmatory methods are based on chromatographic 

analysis and mass spectrometric detection. 

Despite the above mentioned research that deals with the determination of antibiotics in 

food, manure (Panseri et al., 2013), soil (Carballo, Barreiro, Scharf, & Gans, 2007) and 

waste water (Babic, Asperger, Mutavdzic Horvat, & Kastelan-Macan, 2006), the data on 

the animal’s urine content of the most frequently exploited antibiotics in veterinary 

medicine are sporadic. To the best of our knowledge, no method has previously been 

reported for simultaneous screening of major antibiotics groups in bovine urine as a 

starting matrix, although reports on detection of antibiotics in general in bovine urine are 

already available (Heller, Smith, & Chiesa, 2006; Kondo, Morikawa, & Tateyama, 1989). 

In addition, reports on multiclass analysis of antibiotics in human urine has been 

published recently (Cazorla-Reyes, Romero-González, Frenich, Rodríguez Maresca, & 

Martínez Vidal, 2014; Wang, Wang, Zhou, & Jiang, 2014) as well as determination of 

some individual groups e.g. tetracyclines (Jin et al., 2010). 

Urine analysis is a useful alternative to improve the effectiveness of surveillance plans, 

as it offers several advantages compared to the analysis of other biological samples 

(liver, kidney, blood, muscles, etc.). Urine collection, similarly to hair sampling 

(Fernández et al., 2014) is a non-invasive procedure and offers a possibility to evaluate 

drug withdrawal time after eventual inevitable treatment of sick animals. 

The antibiotics considered in this investigation were selected using the following criteria: 

documented frequent utilisation, lower degree of metabolism in animals’ bodies, and 

environmental traits. Additionally, the exemplification of different classes of antibiotics 

was aimed at covering a wide-ranging assortment of substances with antimicrobial 

activity used in Italian animal husbandry. Therefore, our antibiotics of interest were 

amoxicillin and ampicillin (penicillins), chlortetracycline, doxycycline, oxytetracycline, 

tetracyclines (tetracyclines), ciprofloxacin, enrofloxacin, lomefloxacin, marbofloxacin 

(fluoroquinolones), cephalexin, cefquinome (cephalosporins), florfenicol, florfenicol 

amine (amphenicols APHs) and streptomycin (aminoglycoside). 
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The simultaneous determination of these compounds is especially difficult because of 

large differences in their physicochemical properties, such as polarity, solubility, pKa, 

and stability. Many liquid chromatography–tandem mass spectrometry (LC–MS/MS) 

methods have been employed for a multiclass determination of antibiotics in various 

matrices including foodstuffs and environmental samples, relying on different 

purification strategies (Boix et al., 2014). There are various factors which need to be 

taken into consideration during development of a method that would be capable of 

analysing the wide range of compounds to the required level (e.g. pH, extraction 

methods, mobile phase composition, mass spectrometry acquisition parameters). 

This paper reports the results of our work on multi-residue analysis using LC–MS/MS to 

determine the concentrations of target antibiotics, with a single SPE pre-treatment, 

chromatographic separation and mass detection method. The method was developed in 

order to test eventual presence of antibiotics residues in bovine urines collected at a 

slaughterhouse. 

 

3.6.2. Materials and methods 

3.6.2.1. Chemicals and reagents 

All solvents were of HPLC or analytical grade and were purchased from Fluka (Sigma-

Aldrich, St. Louis, MO, USA). Formic acid 98–100% and hydrochloric acid 37% were 

obtained from Riedel-de Haën (Sigma-Aldrich, St. Louis, MO, USA). Water was purified 

by a Milli-Q system. The chemicals for the preparation of artificial urine were from 

Sigma-Aldrich (St. Louis, MO, USA). The extraction cartridges (Oasis HLB 3cc, 60mg) 

were provided by Waters (Milford, MA, USA). Amoxicillin, ampicillin, cefalexin, 

cefquinome sulphate, florfenicol, florfenicol amine, lomefloxacin hydrochloride, 

ciprofloxacin, enrofloxacin, marbofloxacin, tetracycline hydrochloride, doxycycline 

hyclate, chlortetracycline hydrochloride, streptomycin solution (1mg mL-1 in 1 mM 

EDTA) and sulfameter (internal standard IS) were purchased from Fluka (Sigma-

Aldrich, St. Louis, MO, USA). Oxytetracycline was obtained from European 

Pharmacopoeia Reference Standard.  

 

3.6.2.2 Artificial urine preparation 
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Artificial urine was prepared in our laboratory for the validation studies, as described by 

Fabregat et al. (2013). Briefly, 0.1 g of lactic acid, 0.4 g of citric acid, 2.1 g of sodium 

bicarbonate, 10 g of urea, 0.07 g of uric acid, 0.8 g of creatinine, 0.37 g of calcium 

aschloride·2H2O, 5.2 g of sodium chloride, 0.0012 g of iron II sulfate·7H2O, 0.49 g of 

magnesium sulfate·7H2O, 3.2 g of sodium sulfate·10H2O, 0.95 g of potassium 

dihydrogen phosphate, 1.2 g of dipotassium hydrogen phosphate, and 1.3 g of 

ammonium chloride were dissolved in 1 L of ultrapure water. 

 

3.6.2.3. Standard solutions 

Stock solutions (1 mg mL−1) for each standard were prepared in methanol and kept at –

40°C. Working solutions, containing each of the studied analytes at the concentrations 

of 10 and 100 ng mL−1, were prepared daily. Each working solution was maintained at 

4°C during the method validation procedures. 

 

3.6.2.4. Sample collection 

In order to verify the developed method in actual conditions, 39 urine samples were 

collected at the slaughterhouse before processing. The samples arrived from three 

different slaughterhouses and were randomly collected from Friesian veal calves (6 and 

11 months old) and Limousine young bulls (18 months old). Following collection they 

were immediately frozen (−20 °C) and taken to laboratory. During the transportation, the 

samples remained frozen using the dry ice. Upon the arrival in laboratory the samples 

were finally stored at −40 °C until the analysis was performed. 

 

3.6.2.5. Sample extraction 

Urine samples (5.5 mL) were centrifuged 5 min at 2500g at 4 °C. Five mL of 

supernatant was spiked with the internal standard to the final concentration of 2 ng 

mL−1. The compounds of interest were extracted by using the Oasis HLB Cartridges 

under vacuum. The SPE cartridges were preconditioned with 3 mL of methanol, 3 mL of 

0.5 M HCl and 3 mL of Milli-Q water. The samples were loaded, and after all the urines 

passed through the SPE, the cartridges were washed with 3 mL of water and 3 mL of 

methanol: water (20:80, v/v). Finally, samples were eluted using 5 mL of methanol and 
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collected in a 15 mL polypropylene tube. The eluate was evaporated in a rotary vacuum 

evaporator. The dried extract was reconstructed in 200 μL of methanol:water (10:90 

v/v), then transferred to a vial which was placed in auto-sampler. The injection volume 

was 10 μL. 

 

3.6.2.6. LC-MS/MS analyses 

LC analysis was carried out with an HPLC system (Thermo Fisher Scientific, San Jose, 

CA, USA), constituted by a Surveyor MS quaternary pump with a degasser, a Surveyor 

AS auto-sampler with a column oven and a Rheodyne valve with 20 μL loop. During 

method development, attempts to accomplish satisfactory analytical separation were 

made employing Synergi Hydro RP reverse-phase HPLC column 150 × 2.0 mm, internal 

diameter 4 μm, with a C18 guard column, 4 × 3.0 mm (Phenomenex, Torrance, CA, 

USA). As this column did not give satisfactory results, final chromatographic separation 

was achieved using a Raptor (Restek) biphenyl column (150 × 2.1 mm, internal 

diameter 2.7 μm with a Raptor (Restek) biphenyl 2.7 (5 × 2.1 mm) guard column, which 

was kept at 30 °C. Simultaneous separation of studied pharmaceuticals were achieved 

at the following flow rate and mobile phase gradient program. The mobile phase used in 

the chromatographic separation consisted of a binary mixture of solvents A (aqueous 

formic acid 0.1%)) and B (MeOH). The elution started with 98% of A, which was 

maintained for 5 min, followed by a linear gradient toward 50% up to 22th min. 

Subsequently, the mobile phase B gradually increased on 95% (at 24th min), which 

remained constant up to 29th min. The initial conditions were reached at 31st min, with 

equilibration time that included interval from 31st to 40th min. In order to provide good 

separation of all antibiotics, avoiding the peaks overlapping, we applied two flow rates 

during the chromatographic run: first 5 min and equilibration period (both with 98% of A) 

were set at 0.1 mL/min, while rest of the run was performed at 0.2 mL/min. 

The mass spectrometer was a triple-quadrupole TSQ Quantum MS (Thermo Fisher, 

San Jose, CA, USA) equipped with an electrospray interface (ESI) set for all analytes in 

the positive (ESI+) electrospray ionisation modes and in the negative (ESI−) only for 

florfenicol. Acquisition parameters were optimised in the electrospray mode by direct 

continuous pump-syringe infusion of the standard solutions of analytes at a 
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concentration of 1 μg mL−1, a flow rate of 20 μL min−1 and an MS pump rate of 100 μL 

min−1. The following conditions were used: capillary voltage 3.5 kV; ion-transfer capillary 

temperature 340 °C; nitrogen as sheath and auxiliary gases at 30 and 10 arbitrary units, 

respectively; argon as the collision gas at 1.5 mTorr; and peak resolution 0.70 Da at full 

width half maximum (FWHM). The scan time for each monitored transition was 0.1 s 

and the scan width was 0.5 amu. Three diagnostic product ions were chosen for each 

analyte and internal standard. The acquisition was made in multiple reaction monitoring 

(MRM). The selected diagnostic ions, one of which was chosen for the quantification, 

and the collision energies are reported in Table 1. The LC–MS/MS chromatograms for 

the antibiotics at the lowest concentration level of the validation are shown, together 

with the ion spectra, in Fig. 1; in addition, at the end, there is the internal standard (2 ng 

mL−1). Acquisition data were recorded and elaborated using Xcalibur™ software from 

Thermo Fisher. 

 

Table 1. MS/MS conditions for the MRM acquisitions of investigated antibiotics. Ions for quantification are 

in bold. The values in brackets represent the relative intensities (%). CE: collision energy, subscripted and 

expressed in volts. 

Analyte 
Precursor ion* 

 (m/z) 

Product ionsCE 

(m/z) 
ESI 

Amoxicillin 366 114(80)20, 134(21)31, 349(100)7 (+) 

Ampicillin 350 106(100)18, 114(14)29, 160(14)14 (+) 

Cefalexin 348 158(63)5, 174(100)15, 191(23)6 (+) 

Cefquinome  529 134(100)15, 324(43)15, 396(44)10 (+) 

Ciprofloxacin 332 268(16)22, 288(100)17, 314(94)21 (+) 

Enrofloxacin 360 245(49)26, 316(100)18, 342(29)21 (+) 

Lomefloxacin  352 265(100)23, 288(16)19, 308(63)16 (+) 

Marbofloxacin 363 72(83)23, 320(100)15, 345(18)21 (+) 

Florfenicol 356 169(1)39, 185(35)21, 336(100)12 (-) 

Florfenicol amine 248 130(24)23, 134(8)28, 230(100)11 (+) 

Chlortetracycline  479 154(39)27, 444(100)21, 462(69)16 (+) 
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Doxycycline  445 321(10)31, 410(8)24, 428(100)19 (+) 

Oxytetracycline 461 337(26)29, 426(100)19, 443(52)12 (+) 

Tetracycline  445 154(38)30, 410(100)19, 427(43)14 (+) 

Streptomycin 614 221(100)42, 263(1)35, 583(20)19 (+) 

Sulfameter 281 108(6)26, 126(11)25, 215(100)17 (+) 

* [M+H]
+  

for all compounds except:  [M-H]
-
 - florfenicol and [M+H+CH3OH]

+
 - streptomycin 
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Figure 1. LC–MS/MS chromatograms and relative ion spectra of analytes in artificial urine spiked at the 

lowest concentration level validated (0.5 ng mL
−1

). At the end relative internal standard (concentration = 2 

ng mL
−1

).

 

3.6.2.7. Method validation 

The validation was performed according to the criteria and recommendations of the 

European Commission Decision 2002/657/EC. Starting with method validation, we – 

http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0080
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completely unexpectedly faced with a substantial number of positive results (generally 

tetracyclines). This, along with the fact that bovine urines were collected from few 

slaughterhouses, and that they differed among each other considerably as far as the 

presence of common interferences were concerned, we decided to use artificial urine as 

a surrogate matrix for method validation, following the directions of Van de Merbel 

(2008). 

For each analyte, the method performance was assessed through its qualitative 

parameters, such as molecular identification in terms of retention time (RT) and 

transition ion ratios; through its quantitative parameters, such as the linearity, recovery, 

accuracy in terms of trueness and of precision expressed as the intra- and inter-day 

repeatability; and through the analytical limits [decision limit (CCα) and detection 

capability (CCβ)]. 

The instrumental linearity was evaluated by drawing five-point calibration curves in the 

solvent containing a fixed amount of the internal standards (2 ng mL−1 each), with 

analyte concentrations corresponding to 0.5, 1.0, 2.0, 3.0 and 5.0 ng mL−1. Also, six-

point calibration curves (0–10 ppb) both in blank and artificial urine were prepared in 

order to verify the artificial urine suitability. 

Matrix calibration curves were obtained by spiking urine samples with each of the 

analytes, resulting in three analytical series; each series had three concentration levels 

(0.5, 1.0 and 1.5 ng mL−1) in six replicates. The precision in terms of intra-day 

repeatability was evaluated by calculating the relative standard deviation of the results 

obtained for six replicates of each analyte at three concentration levels. For inter-day 

repeatability the same procedure was repeated in three analytical series executed in 

three different days. The data from the matrix calibration curves were used to calculate 

the decision limit (CCα) and the detection capability (CCβ), according to the matrix 

calibration curve procedure described in the Commission Decision 2002/657/EC, as 

clarified in the Document SANCO/2004/2726 revision 4. 

Whenever the concentrations found in the real samples (namely of tetracyclines) were 

above the highest point of matrix calibration curve used for validation, corresponding 

quantification calibration curves were constructed, as well. 

http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0190
http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0190
http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0080
http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0080
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The trueness was assessed through recovery and was evaluated using the matrix curve 

results from the three analytical series, expressed in terms of a percentage of the 

measured concentration with respect to the spiked concentration. 

We evaluated robustness using the approach of Youden, (Commission Decision 

2002/657/EC) that is a fractional factorial design. 

Selectivity and specificity were tested for all analytes, except for tetracyclines that were 

almost always present in our real bovine samples.  

 

3.6.2.8. Statistical analysis 

The statistical analysis was performed only when the antibiotics (exclusively 

tetracyclines) were found. The Kolmogorov–Smirnov test was used to check the 

normality of results. Non-parametric Kruskal–Wallis one way analysis of variance by 

ranks and, subsequently, all pairwise multiple comparison procedures (Dunn’s Method) 

were used to check the differences between the medians of three datasets. The 

statistical analysis was performed using Microsoft Excel spreadsheets and Sigma Stat 

(Statistical Analysis System, version 2.03) statistical software package (Jandel Scientific 

GmbH, Herckrath, Germany). A p-value of <0.05 was defined as the level of statistical 

significance. 

 

3.6.3. Results and discussion 

3.6.3.1. Method development 

During method development, different options were evaluated to optimise sample 

extraction, chromatographic separation and detection parameters. 

The critical step in method setup is the sample preparation procedure, especially when 

compounds of interest possess amphoteric properties. Hydrophilic–lipophilic balance 

cartridges (HLB) have been commonly used for this purpose as referred to in the 

literature (Moreno-Bondi, Marazuela, & Rodriguez, 2009). In this study, this turned out 

to be a good strategy as selected antibiotics were retained and extracted with 

satisfactory efficiency: the mean method recoveries ranged between 92% and 108% for 

all antibiotics investigated (Table 2). However, due to the complexity of the matrix, in 

most cases an extraction step for sample clean-up requires pH adjustment in order to 

http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0080
http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0080
http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0140
http://www.sciencedirect.com/science/article/pii/S0308814615004707#t0010
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achieve the optimal recovery. Regardless, we did not notice significant improvement in 

extraction recovery (p-value <0.05), bringing the pH of the sample to the weak acidic 

conditions, pH-4 (data not shown), as was shown for other types of sample (Tong, Li, 

Wang, & Zhu, 2009). As a matter of fact urine exhibits weak basic properties that were 

favourable to the satisfactory extraction of amoxicillin and ampicillin, which were proven 

to be susceptible to degradation in acidic conditions (Khuroo, Monif, Verma, & Gurule, 

2008). 

 

Table 2. Validation data for the 15 studied antibiotics in artificial urine. 

Analyte 

CCα CCβ Concentration 
level 

Recovery % Repeatability 

  (ng mL
−1

) 
(n=18) 

intra-day 
(CV; n=6) 

inter-day 
(CV; n=18) 

   0.5 98 6 11 

Amoxicillin 0.63 0.74 1.0 102 5 11 

   1.5 99 6 7 

   0.5 101 10 12 

Ampicillin 0.64 0.77 1.0 99 8 11 

   1.5 100 8 9 

   0.5 106 6 10 

Cefalexin 0.61 0.71 1.0 94 4 9 

   1.5 102 10 10 

   0.5 100 10 13 

Cefquinome  0.65 0.83 1.0 100 12 20 

   1.5 100 12 12 

   0.5 103 11 15 

Ciprofloxacin 0.67 0.87 1.0 97 12 20 

   1.5 101 9 10 

   0.5 102 6 11 

Enrofloxacin 0.62 0.73 1.0 98 6 11 

   1.5 101 7 7 

   0.5 104 8 17 

Lomefloxacin  0.70 0.90 1.0 96 9 17 

   1.5 101 12 13 

   0.5 97 5 8 

http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0180
http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0180
http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0125
http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0125
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Marbofloxacin 0.53 0.55 1.0 103 6 6 

   1.5 99 5 7 

   0.5 102 10 20 

Florfenicol 0.73 0.97 1.0 98 9 19 

   1.5 101 12 14 

   0.5 102 10 11 

Florfenicol amine 0.63 0.75 1.0 98 11 12 

   1.5 101 10 10 

   0.5 93 6 11 

Chlortetracycline  0.63 0.74 1.0 107 5 10 

   1.5 98 5 6 

   0.5 108 7 7 

Doxycycline 0.58 0.68 1.0 92 12 12 

   1.5 103 8 8 

   0.5 108 15 17 

Oxytetracycline 0.70 0.89 1.0 92 13 15 

   1.5 103 10 11 

   0.5 108 8 11 

Tetracycline  0.63 0.74 1.0 92 7 10 

   1.5 103 7 7 

   0.5 107 12 17 

Streptomycin 0.83 1.11 1.0 93 4 8 

   1.5 102 12 12 

 

To obtain satisfactory separation and high sensitivity of the target analytes, an 

optimisation of the liquid chromatography and mass spectrometer conditions was 

performed by the injection of standard solutions of a mixture of all analytes. The column 

chosen was the Raptor (Restek) biphenyl column (150 × 2.1 mm, 2.7 μm), which 

achieved superior resolution and sensitivity as compared with the Synergi Hydro RP 

reverse-phase HPLC column. The Synergi column was our first choice regarding its 

potential to retain polar compounds, and it showed good performances for the majority 

of compounds involved in this study. Nevertheless, it turned out to be problematic where 

streptomycin was concerned, which had practically been lost in all attempts to prolong 

its retention time. On the contrary, the biphenyl stationary phase from Raptor proved to 

be particularly suitable for this purpose as this column was potentially compatible with 
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98% of the aqueous mobile phase. Previously, it was suggested that hydrophilic 

interaction liquid chromatography (HILIC) or volatile ion pair approach were the most 

convenient for aminoglycoside analysis (Jadhav et al., 2013). Moreover, the unique 

composition of Raptor biphenyl groups in sterically favourable positioning enhances the 

interactions with tetracyclines fused-ring moieties, resulting in complete separation and 

satisfactory selectivity. On another hand, amoxicillin and fluoroquinolones, preferably 

analysed by the HILIC technique (Rossmann, Schubert, Gurke, Oertel, & Kirch, 2014), 

in our conditions express considerable retention with very good peak shape. Also, the 

gradient elution program with suitable flow rates was carefully optimised until it 

permitted the best separation ability for all the analytes investigated. 

Sulfameter is an antibiotic that is chemically distinct from antibiotics included in the 

assay, and initially was used as the internal standard just to control eventual shifts in 

retention time as it was suggested by others (Dias et al., 2013). However, we observed 

that its extraction recovery correlated with all antibiotics analysed. Also we noticed that 

the chromatographic properties and MS/MS fragmentation of sulfameter were always 

stabile and reproductive even when different Oasis SPE preliminary trials were tried out. 

Therefore, it was concluded that this substance can be used as an internal standard in 

the quantitative purposes. 

The LC–MS/MS analyses can detect all antibiotics at concentration levels suitable for 

research and control purposes and was developed to provide confirmatory data for the 

analysis of bovine urine. After preliminary trials, in full-scan mode from 50 to 500 m/z, 

the three product ions with the higher signal-to-noise ratio (s/n) for each analyte and 

internal standard were chosen for identification. The collision energy (CE) and the de-

clustering potential (DP) were adjusted in the MRM mode for each transition monitored, 

in order to reach the highest sensitivity for all analytes. The m/z-values of the selected 

parent and daughter ions used for MS detection are generally in agreement with those 

previously reported in the literature (Rossmann et al., 2014; Stubbings & Bigwood, 

2009; Tong et al., 2009). 

For a method to be deemed confirmatory under Commission Decision 2002/657/EC, it 

must yield four identification points (IPs). Each one of the three product ions is equal to 

http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0115
http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0155
http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0045
http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0155
http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0155
http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0080
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1.5 IPs, making a total of 4.5 IPs. The three diagnostic product ions, among which is the 

ion for the quantification, the relative intensities and the CEs are reported in Table 1. 

3.6.3.2. Performance characteristics of the methods 

The suitability of artificial urine was evaluated according to procedures explained 

elsewhere (Chiesa et al., 2015). Addition experiments were performed by comparing the 

slopes of six-point standard curves (0–10 ng mL−1) performed both in blank and artificial 

urine (Table 3). Differences in percentage for all compounds ranged from 0.02% up to 

1.3%. 

Table 3. Calibration curves and linearity in both blank and artificial urine spiked with standard solutions at 

six concentrations (0, 0.5, 1, 3, 5 and 10 ng mL
−1

). 

Antibiotics Blank urine R
2
 Artificial urine R

2
 

Florfenicol y = 0.0839x + 0.0014 0.9989 y = 0.0833x + 0.0019 0.9997 

Florfenicol amine y = 0.1923x + 0.0052 0.9921 y = 0.1984x + 0.0036 0.9914 

Ciprofloxacin y = 0.8736x + 0.0164 0.9951 y = 0.8776x − 0.022 0.9936 

Cefalexin y = 0.0886x − 0.0175 0.9906 y = 0.0896x + 0.0057 0.9987 

Ampicilline y = 0.0976x − 0.0439 0.9864 y = 0.0987x − 0.0347 0.9811 

Lomefloxacin y = 10.531x + 0.0553 0.9972 y = 10.443x − 0.5319 0.9977 

Enrofloxacin y = 2.8914x + 0.2809 0.9922 y = 2.9044x − 0.0449 0.9912 

Marbofloxacin y = 0.7877x − 0.0483 0.9939 y = 0.8007x − 0.1071 0.9959 

Amoxicilline y = 0.0092x + 0.0016 0.9911 y = 0.009x + 0.0029 0.9902 

Tetracycline y = 1.4699x − 0.3115 0.9936 y = 1.4541x + 0.296 0.9968 

Doxycycline y = 0.9613x − 0.2145 0.9906 y = 0.9673x − 0.044 0.9968 

Oxytetracycline y = 1.2634x − 0.1871 0.9956 y = 1.2681x − 0.1633 0.9972 

Chlorotetracycline y = 0.245x − 0.0383 0.9966 y = 0.2476x − 0.021 0.9933 

http://www.sciencedirect.com/science/article/pii/S0308814615004707#t0005
http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0035
http://www.sciencedirect.com/science/article/pii/S0308814615004707#t0015
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Antibiotics Blank urine R
2
 Artificial urine R

2
 

Cefquinome y = 0.0423x − 0.0077 0.9961 y = 0.0434x − 0.0092 0.9965 

Streptomycin y = 0.0057x + 0.0005 0.9931 y = 0.0056x + 0.0006 0.9914 

 

The instrumental linearity was evaluated over a concentration range of 0.5–5.0 ng mL−1 

for all antibiotics, using solutions of the analytes in methanol:water (10:90 v/v), 

containing a fixed amount of the internal standards (2.0 ng mL−1 each). Correlation 

coefficients of the curves were higher than 0.9980 for all compounds, indicating a good 

fit. 

Very high levels of tetracyclines (tetracycline, oxytetracycline, doxycycline) found in 

almost all samples were extrapolated from quantification calibration curves which were 

built specifically of 6 points that cover the whole range of concentration: 0–100 ng mL−1 

for tetracycline and doxycycline and 0–2000 ng mL−1 as far as oxytetracycline is 

concerned. Very good, satisfactory linearity was obtained for all three curves 

(R2 > 0.990). The matrix calibration curves built for the validation of each analyte were 

demonstrated to be linear in the range 0.5–1.5 ng mL−1 for the detected antibiotics. The 

regression lines, obtained using the least-square method, demonstrated a good fit for all 

analytes with a correlation coefficient >0.99. 

MRLs for antibiotic in bovine urine have been not defined, up to now. Therefore, the 

lowest points of calibration curves were chosen on the bases of minimum required 

performance limits (MRPL) of analytical methods for the compounds for which permitted 

limit has not been established, as it was suggested by Commission Decision 

2002/657/CE. 

Specificity was evaluated for all antibiotics, except tetracyclines, as those compounds 

were presented in samples that we had available, as stated in Section 2.6. Blank urine, 

artificial urine and spiked samples were analysed and did not show any interference 

(signals, peaks, ion traces) in the region of interest, where the target analytes were 

expected to be (Commission Decision 2002/657/CE). Selectivity requires compliance 

http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0060
http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0060
http://www.sciencedirect.com/science/article/pii/S0308814615004707#s0040
http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0080
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with the relative retention times for each analyte, which in our case were found to be 

within 2.5% tolerance when compared with standards. Moreover three transition from 

the analyte molecular peak were monitored with a signal-to-noise ratio greater than 3. 

All ion ratios of samples were within the recommended tolerances as required by the 

2002/657/EC when compared with standards. 

The precision, calculated by applying the one-way analysis of variance (ANOVA), was 

expressed as coefficient of variability (CV), in terms of intra- and inter-day repeatability. 

The reported results show that the intra- and inter-day repeatability for all analytes was 

below 12% and 20%, respectively (Table 2). These CVs were lower than 22%, as 

proposed by Thompson (2000), representing good method performance. 

CCα and CCβ was calculated, as described in SANCO/2004/2726 revision 4, using 

parallel extrapolation to the x-axis at the lowest experimental concentration (Table 2). 

These results are obtained as the first of their kind for this type of matrix. The acquired 

levels might, however, be used in subsequent research on the presence of antibiotics in 

bovine urine, especially when MPLs for these compounds in urine remain to be 

established. 

Samples and standards were tested at a distance of one week to one month under 

defined storage conditions (−20 °C), and quantification of components was determined 

by comparison to freshly prepared standards with an acceptable stability (CV = 2%). 

The special attention was paid on cefquinome and amoxicillin that were expressed 

lower stability compared to others. 

Robustness was observed in eight different trials, fortifying eight blank urine samples at 

a concentration of 10 ng mL−1, changing slightly (±10%) the nominal values, reported in 

the Section 2.5, of seven factors that may influence the outcome of the analysis. The 

factor were: centrifugation time of urine, HCl concentration for the conditioning of the 

SPE columns, % methanol in the washing solution of the SPE columns, the volume of 

the methanolic solution of washing SPE columns, the elution volume of the SPE 

columns, evaporation temperature of the extract, resuspension volume of the dry 

http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0080
http://www.sciencedirect.com/science/article/pii/S0308814615004707#t0010
http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0175
http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0080
http://www.sciencedirect.com/science/article/pii/S0308814615004707#t0010
http://www.sciencedirect.com/science/article/pii/S0308814615004707#s0035
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extract. None of the factors showed a significant variation in the concentration 

measurements. 

3.6.3.3. Application of the methods 

In order to monitor antibiotic residues in bovine urine, 39 samples, collected from male 

veal calves and young bulls, were subjected to analysis. All samples were taken from 

live animals at the slaughterhouse before processing and were divided into free groups 

according to their age. 

Only one sample showed florfenicol amine at a concentration level of 0.75 ng mL−1, 

while the other two revealed traces of florfenicol and amoxicillin (concentration < CCα) 

respectively. The great majority of samples were positive for tetracyclines (Table 4, Fig. 

2), which can be explained by the fact that those four members of this antibiotic group 

are commonly used in the treatment of animal diseases because of their high activity 

and low production costs. Only 3 from the oldest group (group C) were completely 

negative, while the remaining 6 exposed an oxytetracycline presence. Astonishing 

results were found with regard to oxytetraycline, with an overwhelming level observed in 

the calves’ samples (group A). As a matter of fact, oxytetracycline is poorly metabolised 

in target animals and is excreted practically in its parent form, probably due to its high 

water solubility (log Kow = −1.12) (Slana & Dolenc, 2013). This datum is of particular 

concern as after administering to target animals, this compound can be excreted into 

the environment. Calves’ urine samples were also positive for the presence of 

tetracycline and doxycycline, which, along with oxytetracycline outcomes, implies that 

those animals are more susceptible to infection and, most presumably, treated with 

higher drug doses as a result. The other two groups also tested positive for tetracycline 

presence, but to a lesser extent. Thoughtful statistical analysis indicates the differences 

between groups with regard to each of the tetracyclines analysed. 

 

 

 

http://www.sciencedirect.com/science/article/pii/S0308814615004707#t0020
http://www.sciencedirect.com/science/article/pii/S0308814615004707#f0010
http://www.sciencedirect.com/science/article/pii/S0308814615004707#f0010
http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0165
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Table 4. Urinary concentrations of tetracyclines in bovine urines at slaughterhouse. Data are reported as 

median (ng mL
−1

) with corresponding 25th–75th percentile. 

 Tetracycline Doxycycline Oxytetracycline Chlortetracycline 

Veal calves 
      6 months old  
      n-20 

Positive (%)   100% 100% 100% 0% 
 32.0 

(21.0 – 51.3) 
34.6 

(18.7-45.9) 
1718.0 

(1220.9-2180.3) 
ND 

Veal calves 
      11 months old  
      n-15 
Positive (%) 47% 100% 100% 93% 
 0

#
 

(0 – 1.4) 
19.4 

(10.0-25.5) 
6.7

#
 

3.5-11.30 
2.1

#, £
 

1.3-4.0 

Young bulls 
      18 months old  
      n-9 

Positive (%) 0% 0% 33% 0% 
 ND

§
 

 
ND

§,£
 2.8

§
 

0-5.7 
ND 

ND = not detected 

Non-parametric Kruskal-Wallis one-way analysis of variance by ranks was used to test the 
significance between the groups: there is a statistically significant difference within groups for all 
compounds (p<0.001) 
 
To isolate the group that differs from the others, all pairwise multiple comparison procedures 
(Dunn's Method) were applied: 
# 
Group A vs group B (p<0.05) 

§ 
Group A vs group C (p<0.05) 

£ 
Group B vs group C (p<0.05) 
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Figure 2. Reconstructed LC-MS/MS chromatograms and respective ion spectra of the analytes detected 

in a urine sample from male Friesian veal calf (0.7, 14.5, 6.4 and 2.3 ng mL
-1

 for tetracycline, doxycycline, 

oxytetracycline and chlortetracycline, respectively). 

 

In this paper, we presented the results obtained at the slaughterhouse, having no 

information about eventual treatment, urinary metabolic rate or excretion profile of these 

pharmaceuticals in bovines. The available data in literature are limited; for instance, the 

degree of metabolism for tetracyclines and β-lactams antibiotics is lower than 20%, 

whereas it is higher than 80% for sulphonamides (Boxall et al., 2004). Therefore, further 

and more profound study in this area is necessary. 

Antibiotics administered to food-producing animals close to the time of slaughter often 

result in prohibited antimicrobial residues in the animal tissues at slaughter, while only 

one report has been published as far as evaluation of its presence in urine is concerned 

(Omeiza, Ajayi, & Ode, 2012). Nevertheless, urine analysis can be appropriate even for 

correction of the so-called “withdrawal period”. Generally, as defined in Article 1, Point 9 

of Directive 2001/82/EC, the withdrawal period is the time interval necessary between 

the last administration of a veterinary medicinal product to animals, and the production 

of foodstuffs from such animals, to protect public health. The withdrawal period 

estimated by urine analysis is much more convenient as it can be systematically 

performed at the farm during breeding. In this manner, animals legally treated with 

antibiotics cannot be processed before the complete elimination of antibiotic residues. 

http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0015
http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0145
http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0055


211 
 

Consequently, it should be evaluated if control systems applied for other drugs (group 

A, i.e. anabolic hormones and corticosteroids) (NRCP, 2014) that are based on the 

analysis of urine samples could be applied for antibiotic (group B). This matrix has the 

advantage of being one of the few matrices available while the animals are still alive 

(Chiesa et al., 2015). However, it remains to be established as to whether high 

concentrations of antibiotics in urine correlate with their content in meat and dairy 

products produced from those animals. 

3.6.4. Conclusion 

We developed and validated a LC–MS/MS method for the multiclass analysis of 

antibiotics in bovine urine samples. All analytes were extracted with a unique clean-up 

step using SPE cartridges. The performance characteristics of the method were 

evaluated in accordance with the criteria of the Commission Decision 2002/657/CE. We 

found tetracycline, doxycycline, oxytetracycline and chlortetracycline in all urine 

samples of male veal calves, while only a small quantity of oxytetracycline was detected 

in young bulls. Our research pointed out the possibility to use a non-invasive sample 

such as urine to identify antibiotic residues. It remains to be established what the effects 

and significance are of tetracycline levels found in bovine urine samples enrolled in this 

study: that is, whether these levels could be a warning sign for administration of sub-

therapeutic doses (prevention of diseases or growth-promotion purposes), or if they are 

indicative of legal therapeutic use, which necessitates adequate safety (withdrawal) 

periods during which the animals cannot be used for human consumption. 

Acknowledgment 

Maria Nobile is the recipient of a Ph.D. fellowship in Veterinary and Animal Science in 

the Laboratory of Inspection of Food of Animal Origin at the University of Milan. 

References 
 
Babic, S., Asperger, D., Mutavdzic Horvat, A. J. M., & Kastelan-Macan, M. (2006). Solid 

phase extraction and HPLC determination of veterinary pharmaceuticals in wastewater. 

Talanta, 70, 732–738. 

http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0110
http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0035
http://www.sciencedirect.com/science/article/pii/S0308814615004707#b0080


212 
 

Boix, C., Ibáñez, M., Sancho, J. V., León, N., Yusá, V., & Hernández, F. (2014). 

Qualitative screening of 116 veterinary drugs in feed by liquid chromatography–high 

resolution mass spectrometry: Potential application to quantitative analysis. Food 

Chemistry, 160, 313–320. 

Boxall, A. B. A., Fogg, L. A., Kay, P., Blackwell, P. A., Pemberton, E. J., & Croxford, A. 

(2004). Veterinary medicines in the environment. Reviews of Environmental 

Contamination and Toxicology, 182, 1–91.  

Carballo, E. M., Barreiro, C. G., Scharf, S., & Gans, O. (2007). Environmental 

monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. 

Environmental Pollution, 148, 570–579. 

Cazorla-Reyes, R., Romero-González, R., Frenich, A. G., Rodríguez Maresca, M. A., & 

Martínez Vidal, J. L. (2014). Simultaneous analysis of antibiotics in biological samples 

by ultra high performance liquid chromatography–tandem mass spectrometry. Journal 

of Pharmaceutical and Biomedical Analysis, 89, 203–212. 

Chiesa, L., Pavlovic, R., Dusi, G., Pasquale, E., Casati, A., Panseri, S., et al. (2015). 

Determination of a- and b-boldenone sulfate, glucuronide and free forms, and 

androstadienedione in bovine urine using immunoaffinity columns clean-up and liquid 

chromatography tandem mass spectrometry analysis. Talanta, 131,163–169. 

Dias, E., Hachey, B., McNaughton, C., Nian, H., Yu, C., Straka, B., et al. (2013). An LC–

MS assay for the screening of cardiovascular medications in human samples. Journal of 

Chromatography B, 937, 44–53. 

European Community (1990). Regulation ECC/2377/90: Laying down a community 

procedure for the establishment of maximum residue limits of veterinary medicinal 

products in foodstuffs of animal origin. Official Journal of the European Union, L224, 

221–228. 

European Community (2001). Directive 2001/82/EC on the community code relating to 

veterinary medicinal products. Official Journal of the European Union, L311, 1–66. 



213 
 

European Community (2002). Commision Decision 2002/657/EC Commission decision 

concerning the performance of analytical methods and the interpretation of results. 

Official Journal of the European Union, L221, 8–36. 

European Community (2003). Regulation 1831/2003/EC: Regulation on additives for 

use in animal nutrition. Official Journal of the European Union, L289, 29–43. 

European Community (2005a). Ban on antibiotics as growth promoters in animal feed 

enters into effect (Document reference: IP/05/1687). Retrieved from 

<http://europa.eu/rapid/press-release_IP-05-1687_en.htm#PR _metaPressRelease 

Bottom>. 

European Community (2005b). Regulation 183/2005/EC: Laying down requirements for 

feed hygiene. Official Journal of the European Union, L35, 1–22. 

European Community (2008). European Commission. Health and Consumer Protection, 

Directorate General, Directorate E, Safety of the Food Chain, Document 

SANCO/2004/2726-revision 4, December 2008, Guidelines for the Implementation of 

Decision 2002/657/EC. 

European Community (2010). Commission Regulation (EU) No. 37/2010 on 

pharmacologically active substances and their classification regarding maximum 

residue limits in foodstuffs of animal origin. Official Journal of the 

European Communities, L18(15), 1–72. Fabregat, A., Pozo, O. J., Marcos, J., Segura, 

J., & Ventura, R. (2013). Use of LC–MS/MS for the open detection of steroid 

metabolites conjugated with glucuronic acid. Analytical Chemistry, 85, 5005–5014. 

FDA (2013). FDA implementing plan to ensure judicious use of antibiotics in food 

animals. Retrieved from <http://www.fda.gov/AnimalVeterinary/NewsEvents/ 

CVMUpdates/ucm378166.htm>. 

Fernández, F., Pinacho, D. G., Gratacós-Cubarsí, M., García-Regueiro, J. A., Castellari, 

M., Sánchez-Baeza, F., et al. (2014). Immunochemical determination of fluoroquinolone 



214 
 

antibiotics in cattle hair: A strategy to ensure food safety. Food Chemistry, 157, 221–

228.  

Heller, D., Smith, M. L., & Chiesa, O. A. (2006). LC/MS/MS measurement of penicillin G 

in bovine plasma, urine, and biopsy samples taken from kidneys of standing animals. 

Journal of Chromatography B, Analytical Technologies in the Biomedical Life Sciences, 

1, 91–99. 

Italian Ministry of Health (2014). National residue control plan (NRCP) (Final Report). 

Dept. of Food Safety and Veterinary Public Health. 

Jadhav, M. R., Utture, S. C., Banerjee, K., Oulkar, D. P., Sabale, R., & Ahammed 

Shabeer, T. P. (2013). Validation of a residue analysis method for streptomycin and 

tetracycline and their food safety evaluation in pomegranate (Punica granatum L.). 

Journal of Agricultural and Food Chemistry, 61, 8491–8498. 

Jin, H., Kuma, A. P., Paik, D. H., Ha, K. C., Yoo, Y. J., & Lee, Y. I. (2010). Trace 

analysis of tetracycline antibiotics in human urine using UPLC–QToF mass 

spectrometry. Microchemical Journal, 94, 139–147. 

Khuroo, A. H., Monif, T., Verma, P. R., & Gurule, S. (2008). Simple, economical, and 

reproducible LC–MS method for the determination of amoxicillin in human plasma and 

its application to a pharmacokinetic study. Journal of Chromatographic Science, 46(10), 

854–861. 

Kondo, F., Morikawa, S., & Tateyama, S. (1989). Simultaneous determination of six 

tetracyclines in bovine tissue, plasma and urine by reverse-phase highperformance 

liquid chromatography. Journal of Food Protection, 52, 41–44. 

Kools, S. A. E., Moltmann, J. F., & Knacker, T. (2008). Estimating the use of veterinary 

medicines in the European Union. Regulatory Toxicology and Pharmacology, 50, 59–

65. 



215 
 

Moreno-Bondi, M. C., Marazuela, M. D., & Rodriguez, S. H. E. (2009). An overview of 

sample preparation procedures for LC–MS multiclass antibiotic determination in 

environmental and food samples. Analytical and Bioanalytical Chemistry, 395, 921–946. 

Omeiza, G., Ajayi, I. T., & Ode, O. J. (2012). Assessment of antimicrobial drug residues 

in beef in Abuja, the federal Capital Territory, Nigeria. Veterinaria Italiana, 48(3), 282–

289. 

Panseri, S., D’Imporzano, G., Pognani, M., Cavalli, M., Chiesa, L., & Adani, F. (2013). 

Effect of veterinary antibiotics on biogas and bio-methane production. International 

Biodeterioration and Biodegradation, 85, 205–209. 

Rossmann, J., Schubert, S., Gurke, R., Oertel, R., & Kirch, W. (2014). Simultaneous 

determination of most prescribed antibiotics in multiple urban wastewater by SPE–LC–

MS/MS. Journal of Chromatography B, 969, 162–170. 

Serratosa, J., Blass, A., Rigau, B., Mongrell, B., Rigau, T., Tortadès, M., Tolosa, E., 

Aguilar, C., Ribó, O., & Balagué, J. (2006). Residues from veterinary medicinal 

products, growth promoters and performance enhancers in food-producing animals: A 

European Union perspective. Panel on Animal Health and Welfare, European Food 

Safety Authority. Revue Scientifique et Technique (International Office of Epizootics), 

25(2), 637–653. 

Slana, M., & Dolenc, S. M. (2013). Environmental risk assessment of antimicrobials 

applied in veterinary medicine: A field study and laboratory approach. Environmental 

Toxicology and Pharmacology, 35, 131–141. 

Stubbings, G., & Bigwood, T. (2009). The development and validation of a multiclass 

liquid chromatography tandem mass spectrometry (LC–MS/MS) procedure for the 

determination of veterinary drug residues in animal tissue using a QuEChERS (QUick, 

Easy, CHeap, Effective, Rugged and Safe) approach. Analytica Chimica Acta, 637, 68–

78. 



216 
 

Thompson, M. (2000). Recent trends in inter-laboratory precision at ppb and subppb 

concentrations in relation to fitness for purpose criteria in proficiency testing. Analyst, 

125, 385–386. 

Tong, L., Li, P., Wang, Y., & Zhu, K. (2009). Analysis of veterinary antibiotic residues in 

swine wastewater and environmental water samples using optimized SPE– LC/MS/MS. 

Chemosphere, 74, 1090–1097. 

Trevisi, E., Zecconi, A., Cogrossi, S., Razzuoli, E., Grossi, P., & Amadori, M. (2014). 

Strategies for reduced antibiotic usage in dairy cattle farms. Research in Veterinary 

Science, 96, 229–233. 

Van de Merbel, N. C. (2008). Quantitative determination of endogenous compounds in 

biological samples using chromatographic techniques. Trends in Analytical Chemistry, 

27, 924–933. 

Wang, H. X., Wang, B., Zhou, Y., & Jiang, Q. W. (2014). Rapid and sensitive screening 

and selective quantification of antibiotics in human urine by two-dimensional ultra 

performance liquid chromatography coupled with quadrupole time-offlight mass 

spectrometry. Analytical and Bioanalytical Chemistry, 406, 8049–8058. 

Zhan, J., Yu, X. J., Zhong, Y. Y., Zhang, Z. T., Cui, X. M., Peng, J. F., et al. (2012). 

Generic and rapid determination of veterinary drug residues and other contaminants in 

raw milk by ultra performance liquid chromatography–tandem mass spectrometry. 

Journal of Chromatography B, 906, 48–57. 

  



217 
 

3.7. A Liquid Chromatography-Tandem Mass Spectrometry Method for the 

Detection of Antimicrobial Agents from Seven Classes in Calf Milk 

Replacers: Validation and Application. 

Published in: J. Agric. Food Chem., 64 (12), 2016, Pages 2635–2640 

DOI: 10.1021/acs.jafc.6b00155 

 

Luca Maria Chiesa†, Maria Nobile†, Sara Panseri†*, Bartolomeo Biolatti‡, Francesca 

Tiziana Cannizzo‡, Radmila Pavlovic†, Francesco Arioli§ 

† Department of Veterinary Science and Public Health, University of Milan, Via Celoria 

10, 20133 Milan, Italy 

‡ Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, 10095 

Grugliasco, Italy 

§ Department of Health, Animal Science and Food Safety, University of Milan, Via 

Celoria 10, 20133 Milan, Italy 

*Corresponding author: (Tel.: +390250317930; Fax: +390250317941; E-mail: 

sara.panseri@unimi.it) 

 

 

 

 

 

 

In this study I contributed to the experimental work planning, the execution of practical 

work and analysis of samples, data processing and writing of the article.  

mailto:sara.panseri@unimi.it


218 
 

ABSTRACT 

Calf milk replacers are low-cost feeds that contain available, digestible protein. During 

their reconstitution, however, the addition of drugs, like antibiotics, could make them a 

very simple route for illicit treatment for therapeutic, preventive or growth promoting 

purposes. We developed an HPLC-MS/MS method, preceded by a unique extraction 

step, able to identify 17 antibiotics from seven classes (penicillins, tetracyclines, 

fluoroquinolones, sulphonamides, cephalosporins, amphenicols and lincosamides) in 

this matrix. Prior to solid phase extraction (SPE), the sample underwent deproteinization 

and defatting. The method was fully validated according to Commission Decision 

2002/657/EC. Decision limits (CCα) ranged from 0.13-1.26 ng/mL, and detection 

capability (CCβ) from 0.15-1.47 ng/mL, respectively, for sulfadimidine and 

chlortetracycline. Thirty-eight samples were finally analyzed, showing the occasional 

presence of marbofloxacin (six samples) and amoxicillin (one sample).  

Keywords: calf, milk replacers, antibiotics, HPLC-MS/MS.  

3.7.1. INTRODUCTION 

Milk replacers can be an economical and valid source of calf nutrition. Their formulation 

is carried out in order to: increase the protein level to ensure maximum muscle growth 

of the calves; enhance the palatability and consequently, the ingestion to facilitate the 

weaning phase; make energy from diverse sources (starch, soluble fibre and digestible 

fat) for maximum growth without digestive problems (acidosis, intestinal problems, etc.); 

increase the range of supply, both from the point of view of the nutritional characteristics 

and from the point of view of prices; and simplify the management of calves' food, due 

to the availability of products used at each stage (starter, weaning, breeding until 6 

months). Since milk replacers were introduced, there have been two primary objectives 

in formulating them: first, to find ingredients containing available, digestible protein, and 

second, to reduce the cost of feeding calves. Balancing these two objectives is not 

easy. Historically, as the price of ingredients has changed, milk-replacer manufacturers 

have changed their formulations to reduce the cost of their products.1 
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Powdered milk replacers are usually made up of skimmed-milk powder, whey protein, 

vegetable or animal fat, soy lecithin and vitamin-mineral premix.2 Fat levels range from 

10%-30%, with 18-22% being the most common fat levels, which are mainly added as 

tallow, lard or coconut oil. Protein levels in dry milk replacers range from 18%-30% with 

an average value of approximately 20-22%, preferably of diary origin, but can also 

include soy protein, soy flour, potato, wheat proteins and animal plasma protein.3, 4 

Antibiotics are usually added to preweaned calf milk replacer to: treat bacterial 

infections; decrease the incidence of scours, morbidity and mortality; improve calf 

growth; improve feed consumption; and increase average daily gains.5-7 Among 

feedstuffs used in animal husbandry, powdered milk replacers are perhaps the most 

suitable for illegal treatments and, for example, drug administration via this route is very 

simple, i.e. during the reconstitution of milk replacers or immediately before feeding. It 

should be considered that the antibiotics found in milk replacers might result from prior 

treatment of cows producing milk, what the milk replacer was made with, or they may 

have intentionally been added directly to the feed.8 Whatever the reason, the overuse of 

antibiotics in animal husbandry may affect the antibiotic resistance of pathogens 9-11 and 

the consequent risk of human infection with resistant zoonotic bacteria.12, 13  

The inclusion of veterinary drugs in calf milk replacers has become an increasingly 

important public health concern, particularly as their regulation varies between 

countries. For example, inclusion in milk replacers of decoquinate, lasalocid, 

oxytetracycline, chlortetracycline and neomycin-based medications is approved in the 

USA. The Food and Drug Administration (FDA) in 2013, however, recommended a 3-

year “judicious period” during which utilisation of antibiotics should be reduced. 

Therefore, the presence of these antibiotics in feedstuff can be authorised for 

therapeutic and prophylactic purposes but is not authorised as a growth promoter. 14 

European legislation does not treat milk replacers individually, but sets out the 

conditions under which feedstuffs may be prepared, marketed and employed within the 

European Community.15, 16 From 2006, the use of antibiotics (other than coccidiostats 

and histomonostats) as feed additives is no longer allowed.17 Currently, the use of 
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antibiotics for auxinic purposes has been abolished and is illegal. The EU has 

established Maximum Residue Limits (MRLs) for several classes of antibiotics in milk 

and edible tissues with the aim of minimising the risk to human health.18 However until 

now, no legislation has been published regarding maximum levels of antibiotics either in 

feedstuff in general or in milk replacers. 

  



221 
 

Figure 1. Structures of the seven classes of antimicrobial agents. The substituents of the two antibiotics 

found in the samples are shown in the boxes. 

 

The analytical methods for monitoring the presence of undesirable pharmacological 

principles must have high sensitivity and selectivity. As feedstuffs are heterogeneous 

matrices with different protein, fatty acid, neutral lipid (phospholipids, glycerides and  

sterols), glucide, vitamin and mineral contents, the occurrence of interferences is a 

major issue in the analysis. The methods used for the detection of drug residues in 

these matrices often need intensive steps for the preparation and extraction of samples 

in order to improve the analysis performances. Studies in the literature on antibiotics in 

powdered calf milk or feed in general include a rapid multi-residue and multi-class 

screening method for 50 antimicrobials in feed19 , some about detection of 

chloramphenicol and florfenicol in powdered milk, 20-22  one about a specific class of 

antibiotics, as well as fluoroquinolone residues, but in powdered infant formulae 23 and 

many more on milk for human consumption.24  The purpose of this study was the 

development of a unique extraction and HPLC MS/MS analysis method that is able to 

identify antibiotics from different classes in calf powdered milk with the aim of improving 

residue control and preventing possible consequences for animal and consumer 

welfare. The considered antibiotics included: amoxicillin and ampicillin (penicillins); 
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chlortetracycline, doxycycline, oxytetracycline, and tetracycline (tetracyclines); 

ciprofloxacin, enrofloxacin, lomefloxacin and marbofloxacin (fluoroquinolones); 

sulfadimidine and sulfathiazole (sulphonamides); cephalexin and cefquinome 

(cephalosporins); florfenicol and its metabolite florfenicol amine (amphenicols); and 

lincomycin (lincosamides). The chemical structures of the seven antimicrobial classes 

are shown in Figure 1. The method validation was made according to Commission 

Decision 2002/657/EC25 , and the application of the analysis to 38 real samples of 

powdered bovine milk was performed. 

3.7.2. MATERIALS AND METHODS 

3.7.2.1. Chemicals and reagents. All solvents were of HPLC or analytical grade and 

were purchased from Fluka (Sigma-Aldrich, St. Louis, MO). Formic acid (98–100%) and 

hydrochloric acid (37%) were obtained from Riedel-de Haën (Sigma-Aldrich, St. Louis, 

MO). Water was purified by a Milli-Q system (Millipore, Merck KGaA, Darmstadt, 

Germany). The extraction cartridges (Oasis HLB 3 mL, 60 mg) were provided by Waters 

(Milford, MA). Amoxicillin, ampicillin, cefalexin, cefquinome sulphate, florfenicol, 

florfenicol amine, lomefloxacin hydrochloride, ciprofloxacin, enrofloxacin, marbofloxacin, 

tetracycline hydrochloride, doxycycline hyclate, chlortetracycline hydrochloride, 

oxytetracycline, lincomycin, sulfathiazole sulfadimidine and enrofloxacin d5 as the 

internal standard (IS) were purchased from Fluka. 

3.7.2.2. Composition of powdered milk replacer. For the method validation, we used 

a commercially available complete milk replacer for calves being weaned. The chosen 

milk replacer, which was proven free of antibiotics, contained whey powder, vegetable 

oils (palm and coconut oil), hydrolysed wheat protein, soy protein concentrate, calcium 

carbonate and magnesium sulphate. The analytical constituents were: crude protein 

21%, oils and fats 16%, crude fibre 0.3%, crude ash 9%, calcium 0.8%, sodium 0.8%, 

phosphorus 0.7%, lysine 1.5%, methionine 0.4% and cysteine 0.4%. Additives included 

vitamin A (40,000 IU/kg), vitamin D3 (5000 IU/kg), vitamin E (200 mg/kg), vitamin B1 (6 

mg/kg), vitamin B6 (4 mg/kg), vitamin C (158 mg/kg), vitamin K (4 mg/kg) and niacin (40 

mg/kg). The formulation also contained the following quantities per kg: iron 
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monohydrate sulphate 273.6 mg, copper pentahydrate sulphate 39.3 mg, manganese 

monohydrate sulphate 141.7 mg, zinc monohydrate sulphate 230.2 mg, potassium 

iodide 2.62 mg and sodium selenite 0.66 mg. All the information about the feedstuff 

compositions came from the manufacturer’s certificates. 

3.7.2.3. Standard solutions. Stock solutions (1 mg/mL) for each standard were 

prepared in methanol and kept at -20 °C. Working solutions in methanol, containing 

each of the studied analytes at concentrations of 10 and 100 ng/mL, were prepared 

daily. Each working solution was maintained at -20 °C during the method validation 

procedures. 

3.7.2.4. Sample extraction. The preliminary deproteinization and defatting steps were 

performed using the protocol of Wang et al.,26 which was slightly modified with regard to 

the relative amounts of matrix and reagents, and acetonitrile was substituted by 

methanol. The whole procedure was as follows: 1 g of powdered milk was reconstituted 

in 10 mL of water, and 1 mL of this solution was spiked with the internal standard to a 

final concentration of 2 ng/mL. The sample was vortexed and then sonicated for 10 min, 

followed sequentially by deproteinization through the addition of methanol (10 mL), 2 

min of shaking, and 10 min of sonication. After the addition of sodium chloride (2 g), 

samples underwent 2 min of shaking and 10 min of centrifugation at 4500×g. The 

supernatant was transferred into a 50-mL polytetrafluoroethylene centrifuge tube and 

defatted with 2 × 7 mL of n-hexane extraction. Each time, after centrifugation at 2500×g, 

the n-hexane layer was removed. The methanol/water layer was evaporated by a 

vacuum rotary evaporator at 40 °C and was then reconstituted in 5 mL of water for 

further purification and extraction using the Oasis HLB Cartridges under vacuum. The 

SPE cartridges were preconditioned with 3 mL of methanol, 3 mL of 0.5 M HCl and 3 

mL of Milli-Q water. The samples were loaded, and then the cartridges were washed 

with 3 mL of water and 3 mL of methanol:water (20:80, v/v). Finally, samples were 

eluted using 5 mL of methanol and were collected in a 15 mL polypropylene tube. The 

solvent was evaporated w a rotary vacuum evaporator. The dried extract was 

reconstituted in 200 µL of methanol:water (10:90 v/v), and then transferred to an auto-

sampler vial. The injection volume was 10 µL. 27 
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3.7.2.5. HPLC-MS/MS analyses. HPLC analysis was carried out with an HPLC system 

(Thermo Fisher Scientific, San Jose, CA) that was made up of a Surveyor MS 

quaternary pump with a degasser, a Surveyor AS auto-sampler with a column oven and 

a Rheodyne valve with a 20-μL loop. Analytical separation was carried out using a 

reverse-phase HPLC column 150 mm x 2 mm i.d., 4 µm, Synergi Hydro RP, with a 4 

mm x 3 mm i.d. C18 guard column (Phenomenex, Torrance, CA). The mobile phase 

used in the chromatographic separation consisted of a binary mixture of solvents A 

(0.1%aqueous formic acid), and B (MeOH). The elution started with 98% A, which was 

maintained for 5 min, followed by a linear gradient to 50% A at 22 min. Subsequently, 

the mobile phase was gradually increased to 95% B at 24 min, then held constant until 

29 min. The mobile phase was returned to initial conditions at 31 min, with equilibration 

time that included the interval from 31–40 min. The run was performed at 0.2 mL/min. 

The mass spectrometer was a triple-quadrupole TSQ Quantum MS (Thermo Fisher) 

equipped with an electrospray interface (ESI) that was set in the positive (ESI+) 

electrospray ionisation mode for all analytes except for florfenicol in which it was set in 

the negative (ESI-) mode. Acquisition parameters were optimized in the electrospray 

mode by direct continuous pump-syringe infusion of the standard solutions of analytes 

at a concentration of 1 μg/mL, a flow rate of 20 µL/min and a MS pump rate of 100 

µL/min. The following conditions were used: capillary voltage 3.5 kV; ion-transfer 

capillary temperature 340 °C; nitrogen as sheath and auxiliary gases at 30 and 10 

arbitrary units, respectively; argon as the collision gas at 1.5 mTorr; and peak resolution 

0.70 Da at full-width half-maximum (FWHM). Three diagnostic product ions were 

chosen for each analyte and internal standard. The acquisition was made in multiple 

reaction-monitoring (MRM) mode. The selected diagnostic ions, one of which was 

chosen for the quantitation, and the collision energies are reported in Table 1. 

Acquisition data were recorded and elaborated using Xcalibur software from Thermo 

Fisher. 
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Table 1. MS/MS Conditions for the MRM Acquisitions of Investigated Antibiotics.  

analyte 

precursor ion* 

(m/z) 

product ionsCE 

(m/z) 

ESI 

amoxicillin 366 114(80)20, 134(21)31, 349(100)7 (+) 

ampicillin 350 106(100)18, 114(14)29, 160(14)14 (+) 

cefalexin 348 158(63)5, 174(100)15, 191(23)6 (+) 

cefquinome  529 134(100)15, 324(43)15, 396(44)10 (+) 

ciprofloxacin 332 268(16)22, 288(100)17, 314(94)21 (+) 

enrofloxacin 360 245(49)26, 316(100)18, 342(29)21 (+) 

lomefloxacin  352 265(100)23, 288(16)19, 308(63)16 (+) 

marbofloxacin 363 72(83)23, 320(100)15, 345(18)21 (+) 

florfenicol 356 169(1)39, 185(35)21, 336(100)12 (-) 

florfenicol amine 248 130(24)23, 134(8)28, 230(100)11 (+) 

chlortetracycline  479 154(39)27, 444(100)21, 462(69)16 (+) 

doxycycline  445 321(10)31, 410(8)24, 428(100)19 (+) 

oxytetracycline 461 337(26)29, 426(100)19, 443(52)12 (+) 

tetracycline  445 154(38)30, 410(100)19, 427(43)14 (+) 

lyncomicin 407 126(100)16, 359(10)18, 389(5)28 (+) 

sulfathiazole 256 92(50)27, 108(45)25, 156(100)15 (+) 

sulfadimidine 279 108(32)26, 124(39)265, 186(100)18 (+) 

enrofloxacin-d5 (IS) 365 245(49)32, 321(100)27, 347(46)19 (+) 

* [M+H]
+ 

for all compounds except [M-H]
-
 for florfenicol. Ions for quantitation are in bold. The values in 

brackets represent the relative intensities (%). CE: Collision Energy, subscripted and expressed in Volts. 

3.7.2.6. Method validation. After a preliminary screening of a few samples of 

reconstituted milk to search the “blank” milk, the validation was performed according to 

the criteria of the European Commission Decision 2002/657/EC.25 For each analyte, the 

method performance was assessed as follows: through its qualitative parameters, as 
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well as molecular identification in terms of retention time (RT) and transition ion ratios, 

specificity and selectivity; through its quantitative parameters, such as linearity, 

recovery, accuracy in terms of trueness, and precision expressed as the intra- and inter-

day repeatability; and through the analytical limits, i.e. decision limit (CCα) and detection 

capability (CCβ), as clarified in the document SANCO/2004/2726 revision 4. 28 

Finally we evaluated robustness, matrix effect and stability of antibiotics in the standard 

solutions and in the spiked samples.  

3.7.3. RESULTS AND DISCUSSION 

3.7.3.1. Performance characteristics of the methods. The specificity was good as an 

appropriate number of representative blank samples (n≥20) was analyzed and no 

interference were found (signals, peaks, ion traces) in the region of interest where the 

target analyte was expected to elute.  

Selectivity showed a good compliance with the relative retention times for each analyte, 

which in our case were found to be within 2.5% tolerance, when compared with the 

standards. Moreover, the three chosen transitions showed an ion ratio within the 

recommended tolerances,25 when compared with the standards. 

Validation was performed by spiking milk samples with each of the analytes, resulting in 

three analytical series (matrix validation curves). Each series had six replicates for three 

concentration levels that were previously chosen according to the minimum 

concentration detectable with our instrumentation: 0.1, 0.2 and 0.3 ng/mL for 

lomefloxacin, lyncomicin, sulfathiazole and sulfadimidine; 0.3, 0.6 and 0.9 ng/mL for 

ampicillin, cefalexin, florfenicol amine, ciprofloxacin, marbofloxacin, tetracycline, 

doxycycline and oxytetracycline; 0.5, 1.0 and 1.5 ng/mL for amoxicillin, cefquinome and 

florfenicol; and 1.0, 2.0 and 3.0 ng/mL for chlortetracycline. The matrix validation curves 

demonstrated a good fit for all analytes with a correlation coefficient of >0.99.  

The HPLC–MS/MS chromatograms for the antibiotics at the lowest concentration level 

of the validation and of the internal standard (2 ng/mL) are shown, together with the ion 

spectra, in Figure 2.  
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Figure 2. Chromatograms performed in matrix and related ion spectra of antibiotics at the lowest 

concentration level of validation (0.1 ng/mL for lomefloxacin, lyncomicin, sulfathiazole and sulfadimidine; 

0.3 ng/mL
 

for ampicillin, cefalexin, florfenicol amine, ciprofloxacin, marbofloxacin, tetracycline, 

doxycycline, and oxytetracycline; 0.5 ng/mL for amoxicillin, cefquinome and, florfenicol, 1.0 ng/mL for 

chlortetracycline) and of the Internal Standard ( 2 ng/mL).  
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The instrumental linearity was also evaluated by drawing six-point calibration curves in 

the solvent containing a fixed amount of the internal standards (2 ng/mL), with the initial 

analyte concentration corresponding to the minimum detectable for each group up to 10 

ng/mL. 

The correlation coefficients of these curves were >0.99 for all compounds, this 

indicating a good fit. 

Calibration curves were made in matrix to quantitate the analytes eventually detected 

during the application of the method. The levels were the same used for the 

assessment of the instrumental linearity. Also these curves demonstrated a good fit for 

all analytes with a correlation coefficient of >0.99.  

The trueness was assessed through recovery and was evaluated using the data from 

the validation points of the three analytical series, expressed in terms of a percentage of 

the measured concentration with respect to the spiked concentration. The recoveries 

ranged between 89% and 111%. 

The precision was evaluated by calculating the relative standard deviation of the results 

obtained for six replicates of each analyte at three concentration levels of the three 

analytical series, performed in three different days. It was expressed as the coefficient 

of variability (CV) in terms of intra- and inter-day repeatability, which never exceeded 

20% and 22%, respectively. These CVs were ≤22%, as proposed by Thompson,29 and 

thus represent good method performance.  

In Table 2, the analytical limits, recoveries and precision are shown. CCα and CCβ, 

which were calculated as described in SANCO/2004/2726 revision 4 28 using parallel 

extrapolation to the x-axis at the lowest experimental concentration, were in the orders 

of magnitude 0.1–1.0 ng/mL.  
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Table 2. Validation Parameters for Antibiotics.  

analyte 

CCα 

(ng/mL) 

CCβ 

(ng/mL) 

concentration 

levels 

(ng/mL) 

recovery % 

(n=18) 

repeatability 

intra-day 

(CV; n=6) 

inter-day 

(CV;n=18) 

amoxicillin 0.78 1.04 0.5-1.0-1.5 104-96-101 18-8-7 22-17-9 

ampicillin 0.47 0.62 0.3-0.6-0.9 101-99-100 20-13-9 21-15-9 

cefalexin 0.53 0.80 0.3-0.6-0.9 102-97-101 19-19-16 22-21-18 

cefquinome  0.75 0.93 0.5-1.0-1.5 103-91-109 19-11-8 20-12-9 

ciprofloxacin 0.41 0.52 0.3-0.6-0.9 95-105-98 14-15-11 16-16-12 

enrofloxacin 0.13 0.17 0.1-0.2-0.3 100-100-100 8-8-7 15-15-8 

lomefloxacin  0.18 0.27 0.1-0.2-0.3 97-103-98 20-14-16 22-21-18 

marbofloxacin 0.45 0.58 0.3-0.6-0.9 103-97-101 17-11-8 20-16-9 

florfenicol 0.69 0.88 0.5-1.0-1.5 98-101-100 11-12-8 16-17-9 

florfenicol amine 0.38 0.47 0.3-0.6-0.9 93-107-98 6-11-10 12-15-11 

chlortetracycline  1.26 1.47 0.1-0.2-0.3 92-103-98 7-5-7 11-11-10 

doxycycline 0.46 0.64 0.3-0.6-0.9 104-96-101 18-16-12 22-21-13 

oxytetracycline 0.41 0.52 0.3-0.6-0.9 102-98-101 10-8-8 16-15-9 

tetracycline  0.48 0.63 0.3-0.6-0.9 89-111-96 20-9-10 21-12-10 

lyncomicin 0.15 0.19 0.1-0.2-0.3 101-99-100 17-13-11 20-17-12 

sulfathiazole  0.16 0.21 0.1-0.2-0.3 104-96-101 20-10-9 21-17-10 

sulfadimidine 0.13 0.15 0.1-0.2-0.3 101-99-100 8-4-6 11-9-7 

The recovery, intra- and inter-day repeatability values follow one another in reference to the three 

validation levels. 

We evaluated robustness using the approach of Youden,25 which has a fractional 

factorial design. It was observed in eight different trials by fortifying eight blank milk-

replacer samples at the lowest validation concentration, changing slightly (±10%) the 

nominal values of seven factors that may influence the outcome of the analysis. The 

factors included: the methanol volume for the deproteinization milk step; HCl 
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concentration for the conditioning of the SPE columns; percentage methanol in the 

washing solution of the SPE columns; the volume of the methanolic solution used for 

washing the SPE columns; the elution volume of the SPE columns; evaporation 

temperature of the extract; and resuspension volume of the dry extract. Applying the 

Fisher test to compare the standard deviation of the differences between high- and low-

value settings for each experimental parameter with the standard deviation of the 

method carried out under within-laboratory reproducibility condition,25 none of the 

parameters showed a significant variation in the concentration measurements, so 

demonstrating the method robustness.  

Experiments to evaluate matrix effects corresponded to the strategy applied by 

Matuszewski et al.30 that compares sample extracts plus the analyte of interest added 

post-extraction with pure solutions prepared in the mobile phase containing equivalent 

amounts of the analyte of interest. The percentage ratio between the corresponding 

peak areas for standards spiked after extraction and the peak areas obtained in neat 

solution standards determines the extent of the matrix effect occurring for the analyte in 

question under chromatographic conditions. It ranged from 93%-114% for each 

compound, indicating a very low ion suppression and sometimes a low ion 

enhancement.  

Stability was evaluated by testing spiked samples and standard solutions over time from 

one week to one month under defined storage conditions (-20 °C), and quantitation of 

components was determined by comparison to freshly prepared standards. 

All the analytes in the working solutions and in the samples showed an acceptable 

stability (CV≤ 2%) until one month storage at -20 °C, except amoxicillin and cefquinome. 

After one week, the concentration of these two antibiotics decreased more than the 

acceptable value. We therefore decided to daily prepare the working solutions. 

This paper describes a sensitive, selective and robust multi-class method for 

antimicrobials in calf milk replacers. A number of studies is retrievable in the literature 

on the determination of single classes of antibiotics as well as β-lactam antibiotics in 

milk for human use31, 32 and fluoroquinolones both in dairy milk33 and in powdered milk 
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for infants.23 The only multiclass method for antibiotics regarding feedstuffs is a 

qualitative screening method on feed different from milk replacers. The validation level 

are usually 5 to 100 times higher than our analytical limits, except florfenicol and 

doxycycline.19  

3.7.3.2. Application of the method. The use of medicated feeds is most common in 

intensive production.16 Although the studied antimicrobials are authorized, they must be 

absent in non-medicated feed. In order to fully demonstrate the applicability of the 

proposed method, 38 anonymous samples collected from different farms in Lombardy 

were subjected to analysis. Only one sample was positive for amoxicillin at a 

concentration of 1.26 ng/mL, while six samples contained marbofloxacin residues 

ranging from 0.52-0.91 ng/mL, with an average concentration of 0.74±0.15 ng/mL. In 

Figure 1 the substituents of these two antimicrobial agents are itemized in the boxes. 

Tetracyclines were not found, in contrast to our previous work on urine,27 in which this 

class of antibiotics was present in almost all samples. These data could be a 

demonstration of the good quality of the milk replacers analyzed as milk is the major 

tetracycline excretion route after urine (50–80%) and bile (10-20%).34 Considering that 

calves eat from 400 to 2500 g of powdered milk per day, the control of residues in this 

non-invasive matrix is, however, still of concern due to the practicality of illicit 

administration of drugs via this route. 
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Abstract 

The antibiotic overuse in zoothechnics, due to prophylactic and therapeutic treatments, 

or to their growth-promoting activity, is a major cause for the onset of widespread 

antibiotic resistance. Of particular relevance to this study, is the antibiotic abuse in pig 

breeding. Despite the comprehensive literature on residue controls in pig muscle, data 

on pig urine, a non-invasive, on-farm collectable matrix, are lacking. Therefore, we 

validated an HPLC-MS/MS method to detect 29 antimicrobials from eight classes and 

applied it to 43 anonymous pig urine and muscle paired samples and fulfilled the 

parameters in agreement with the Commission Decision 2002/657/UE. The analytical 

limits were moreover much lower than the maximum residue limits (MRLs) required by 

the Commission Regulation 37/2010/UE. In the samples, antibiotics were usually 

detected at higher frequencies and concentrations in urine than muscle. Urine proved a 

useful tool to detect antibiotic administration and their excessive use in pig farming is 

depicted. 

 

Keywords: antibiotics, HPLC-MS/MS, muscle tissue, swine, urine 

Highlights  

Antibiotic overuse in pig breeding is of concern, due to antibiotic resistance onset. 

Despite being invasive, muscle is usually the matrix used for the residue control. 

Urine could allow improved monitoring, as on-farm sample collection is feasible.  

A multiclass method for antibiotics detection in urine and muscle was validated. 

Its application to 43 paired urine and muscle samples was effective. 

 

Chemical compounds studied in this article 

Amoxicillin (PubChem CID: 33613), ampicillin (PubChem CID: 6249), cloxacillin 

(PubChem CID: 6098), dicloxacillin (PubChem CID: 18381), benzylpenicillin (PubChem 

CID: 5904), oxolinic acid (PubChem CID: 4628), nalidixic acid (PubChem CID: 4421), 

cefquinome sulphate (PubChem CID: 9577261), cefalexin (PubChem CID: 27447), 

florfenicol (PubChem CID: 114811), florfenicol amine (PubChem CID: 156406), 
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chloramphenicol (PubChem CID:5959), flumequine (PubChem CID: 3374), lomefloxacin 

hydrochloride (PubChem CID: 68624), ciprofloxacin (PubChem CID: 2764), enrofloxacin 

(PubChem CID: 71188), marbofloxacin (PubChem CID: 60651), tetracycline 

hydrochloride (PubChem CID: 54704426), doxycycline hyclate (PubChem CID: 

54686183), chlortetracycline (PubChem CID: 54737570), oxytetracycline (PubChem 

CID: 54675779), lincomycin (PubChem CID: 3000540), sulfathiazole (PubChem CID: 

5340), sulfadimidine (PubChem CID: 5327), sulfadiazine (PubChem CID: 441244), 

sulfadimethoxine (PubChem CID: 5323), trimethoprim (PubChem CID: 5578), 

erythromycin (PubChem CID: 12560), tylosin (PubChem CID: 5280440). 

 

3.8.1. Introduction  

Over the last decade, the overuse of antimicrobial agents as growth promoters in food-

producing animals have caused favourable conditions for the threat of bacterial 

resistance. It is well-established that multiantibiotic-resistant microorganisms results 

from chromosomal mutations or the exchange of mobile genetic elements, such as 

plasmids and transposons (Neu, 1992). The presence of antimicrobial residues in food, 

their environmental accumulation via the application of manure to soil as organic 

fertiliser or sludge storage, and the direct contamination of illicitly additivated water and 

feed, represents a threat to consumers. 

It seems reasonable to hypothesise that an increase in the antibiotics concentrations in 

natural ecosystems may not only influence antibiotic resistance but also affect the 

broader microbial population dynamics in various natural environments (Martínez, 

2008). The swine and poultry industries are the main users of antimicrobials (Castanon, 

2007; der Fels-Klerx, Puister-Jansen, van Asselt, & Burgers, 2011). In an attempt to 

decrease their environmental and health risk, the use of antibiotics as animal growth 

promoters has been banned in EU countries and their monitoring is regulated in Council 

Directive 96/23/EC (European Union, 1996). In order to ensure food safety, the 

European Union (2010) has also set maximum residue limits (MRLs) for antibiotic 

residues in food of animal origin. 

In the United States of America, in the year 2000, the Food and Drug Administration 

(FDA) approved 17 antimicrobial agents in swine feed (Cromwell, 2002). Some are 
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permitted in combination like chlortetracycline plus penicillin plus sulphamethazine, or 

sulphathiazole, neomycin plus oxytetracycline. Most pigs receive antimicrobials in their 

feed. The chemical composition and mode of action of antibiotics are variable and 

heterogeneous, but all antimicrobials that are used in swine production should have one 

common goal. Namely, the capacity to inhibit or decrease the growth of systemic 

pathogens, even if these characteristics are less readily associated with the ability of a 

given antimicrobial agent to stimulate growth. The efficacy of antibiotics in improving the 

rate and efficiency of growth in pigs is well-documented in the scientific literature 

(Cromwell, 1991; Hays, 1981). Furthermore, antibiotics in breeding and during lactation 

provide reproductive benefits and improve lactational performance in sows. In this 

context, the economic benefits are several times greater than the cost of the antibiotic 

(Cromwell, 2002). Even if these economic benefits are greater in the short terms, there 

is a growing awareness that antibiotics should be used with more care or avoided, due 

to the development of antibiotic resistant bacteria, that is the real and potential threat to 

human health. Different approach, which includes good husbandry practices based on 

prevention of microbial exposure, infection controls through vaccination, optimizing 

hygiene to separate potential pathogens from the target animal, the isolation of sick 

animals, etc., will probably be most effective in the long term (Wierup, 2000). 

Despite researches that deal with the multiclass determination of antibiotics in soils and 

pig slurry (Blackwell, Lützhøft, Ma, Halling-Sørensen, Boxall, & Kay, 2004), swine 

wastewater (Tong, Li, Wang, & Zhu, 2009), in pig muscle and kidney (Granelli & 

Branzell, 2007) and nitrofurans in the retina of pigs (Cooper & Kennedy, 2005), the data 

on pig urine are lacking, except a work regarding only one antibiotic, chloramphenicol, 

in swine urine and muscle (Gantverg, Shishani, & Hoffman, 2003). To the best of our 

knowledge, no method has previously been reported for simultaneous screening of 

major antibiotics groups in swine urine. Urine analysis could be a useful alternative to 

tissues to improve the effectiveness of surveillance controls, as it offers several 

advantages compared to the analysis of other biological samples as well as muscle 

tissue. In particular, urine analysis is non-invasive, thus, it could permit the controls at 

farms and slaughterhouses. We previously reported the multi-residual screening of 
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antibiotics in bovine urine by LC–MS/MS analyses that detected (Chiesa et al., 2015) 29 

antimicrobial agents from eight different classes, as shown in Figure 1.  

 

Fig. 1. General structures of the nine classes of studied antimicrobial agents. 

 

In the current study, we used these detected antibiotics to develop a new method for the 

analysis of pig urine, enabling a direct comparison between the suitability of urine (not 

contemplated in most EU countries as a conventional matrix) and swine muscle tissue 

by analysing 43 paired urine and muscle samples. The multi-residual antibiotic 

strategies for the two matrices were developed and validated according to the 

Commission Decision 657/2002/CE (European Union, 2002), clarified by 

SANCO/2004/2726 revision 4. (European Union, 2008). 

 

3.8.2. Materials and methods 

3.8.2.1. Chemicals and reagents 

All HPLC or analytical grade solvents were from Fluka (SigmaAldrich, St. Louis, MO, 

USA). Formic (98–100%) and hydrochloric acid (37%) were from Riedel-de Haën 

(SigmaAldrich, St. Louis, MO, USA). Purified water was obtained through a Milli-Q 

system (Millipore, Merck KGaA, Darmstadt, Germany). Amoxicillin, ampicillin, cloxacillin, 

dicloxacillin, benzylpenicillin, oxolinic acid, nalidixic acid, cefquinome sulphate, 
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cefalexin, florfenicol, florfenicol amine, chloramphenicol, flumequine, lomefloxacin 

hydrochloride, ciprofloxacin, enrofloxacin, marbofloxacin, tetracycline hydrochloride, 

doxycycline hyclate, chlortetracycline hydrochloride, oxytetracycline, lincomycin, 

sulphathiazole, sulphadimidine, sulphadiazine, sulphadimethoxine, trimethoprim, 

erythromycin, tylosin and enrofloxacin d5 were used as the internal standard (IS) and 

purchased from Fluka. 

For the preparation of EDTA-McIlvaine buffer solution (pH 4.0), 15 g of disodium 

hydrogen phosphate dihydrate, 13 g of citric acid monohydrate and 3.72 g of EDTA 

were dissolved in water and made up to 1 L with distilled water. Trichloroacetic acid 

20% (w/v) aqueous solution was also prepared. All these reagents were purchased from 

Fluka. 

 

3.8.2.2. Sample collection 

Paired urine and muscle samples from 27 male and 16 female heavy pigs (160170 kg 

weight) derived from ten different farms, were collected from the food chain in different 

slaughterhouses of Lombardy, Italy. The samples were immediately frozen, taken to the 

laboratory and stored at -20°C until analysis. 

 

3.8.2.3. Standard solutions 

Stock solutions (1 mg mL-1) for each standard were prepared in methanol and kept at -

20°C. Working solutions containing each of the studied analytes at 10 and 100 ng mL-1 

were prepared daily. Each working solution was maintained at 4°C during the method 

validation procedures. 

 

3.8.2.4. Sample extraction 

3.8.2.4.1. Urine 

Each urine sample (5 mL) was centrifuged at 2500 x g at 4°C for 5 min, then spiked with 

the IS to give a final concentration of 2 ng mL-1. The compounds of interest were 

extracted by using Oasis HLB cartridges (3 mL, 60 mg, Waters, Milford, MA, USA) 

under vacuum. The cartridges were preconditioned with 3 mL of methanol, 3 mL of 0.5 

M HCl and 3 mL of Milli-Q water. The sample was loaded, and then the cartridges were 
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washed with 3 mL of water and 3 mL of methanol:water (20:80, v/v). Finally, the 

analytes were eluted with 5 mL of methanol and collected in a 15-mL polypropylene 

tube. The eluate was evaporated by rotary vacuum evaporation. The dried extract was 

reconstituted in 200 µL of methanol:water (10:90 v/v), then transferred to an HPLC vial.  

 

3.8.2.4.2. Muscle tissue 

Each minced muscle sample (1 g) was spiked with the IS to give a final concentration of 

2 ng g-1. The analytes were then extracted by adding 5 mL of McIlvaine buffer (pH 4.0). 

Trichloroacetic acid (100 µl, 20% w/v) was added for protein precipitation and the 

sample then vortexed followed by sonication for 10 min. After centrifugation (2500 × g, 

4°C, 10 min), the supernatant was transferred into a new polytetrafluoroethylene 

centrifuge tube and defatted with 2 × 3 mL of n-hexane. After each centrifugation (2500 

× g, 5 min), the n-hexane layer was removed. The sample was further purified and 

extracted using Oasis HLB cartridges under vacuum. SPE cartridges were 

preconditioned with 3 mL of methanol and 3 mL of Milli-Q water. The sample was 

loaded, and then the cartridge was washed with 2 x 3 mL methanol:water (5:95 v/v). 

Finally, the compounds were eluted with 5 mL of methanol and were collected in a 15-

mL polypropylene tube. The eluate was evaporated using a rotary vacuum evaporator 

Hei-VAP (Heidolph, Germany). The dried extract was reconstituted in 200 µL of 

methanol:water (10:90 v/v) and then transferred to an HPLC vial.  

 

3.8.2.5. HPLC-MS/MS analyses 

The HPLC system (Thermo Fisher Scientific, San Jose, CA, USA) was equipped with a 

Surveyor MS quaternary pump with a degasser, a Surveyor AS auto-sampler with a 

column oven and a Rheodyne valve with a 20-μL loop. Analytical separation was carried 

out using a Synergi Hydro-RP reverse-phase HPLC column (150 x 2.0 mm, internal 

diameter 4 µm), with a C18 guard column (4 x 3.0 mm, Phenomenex, Torrance, CA, 

USA). The injection volume was 10 µL. The flow rate was 0.2 mL min-1. The mobile 

phase consisted of a binary mixture of solvents A (0.1% aqueous formic acid) and B 

(MeOH). The elution started with 98% A, which was maintained for 5 min, followed by a 

linear gradient to 50% A at 22 min. Mobile phase B was then gradually increased to 
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95% at 24 min, which remained constant up to 29 min. The initial conditions were 

reached at 31 min, with an equilibration time that included the interval from 31–40 min. 

The mass spectrometer was a triple-quadrupole TSQ Quantum MS (Thermo Fisher) 

equipped with an electrospray interface (ESI) that was set in both the positive (ESI+) 

and negative (ESI-) modes. Acquisition parameters were optimised in the ESI mode by 

direct continuous pump-syringe infusion of the standard analyte solutions at 1 μg mL-1, 

a flow rate of 20 µL min-1 and an MS pump rate of 100 µL min-1. The following 

conditions were used: capillary voltage 3.5 kV; ion transfer capillary temperature 340°C; 

nitrogen as sheath and auxiliary gas at 30 and 10 arbitrary units, respectively; argon as 

the collision gas at 1.5 mTorr; and peak resolution 0.70 Da at full-width half-maximum 

(FWHM). Three diagnostic product ions were chosen for each analyte and IS. The 

multiple reaction-monitoring (MRM) mode was used for all data acquisition. The 

selected diagnostic ions, one of which was chosen for the quantification, the collision 

energies and the relative intensities are reported in Table 1. Acquisition data were 

recorded and elaborated using Xcalibur™ software from Thermo Fisher. 

 

Table 1 MS/MS conditions for the MRM acquisitions of investigated antibiotics. Ions for quantification are 

in bold. The values in brackets represent the relative intensities (%). The collision energy (CE) is 

subscripted and expressed in volts. 

Analyte 
Precursor ion 

(m/z) 

Product ions CE 

(m/z) 
ESI 

Amoxicillin 366 114(80)20, 134(21)31, 349(100)7 (+) 

Ampicillin 350 106(100)18, 114(14)29, 160(14)14 (+) 

Cloxacillin 436 160(48)13, 178(35)33, 277(100)14 (-) 

Dicloxacillin 468 291(100)21, 327(63)16, 424(32)12 (-) 

Benzylpenicillin 335 114(61)32, 160(92)12, 176(100)14 (+) 

Oxolinic acid 262 160(5)35, 216(10)29, 244(100)18 (+) 

Nalidixic acid 233 159(22)33, 187(69)26, 215(100)16 (+) 

Cefalexin 348 158(63)5, 174(100)15, 191(23)6 (+) 

Cefquinome 529 134(100)15, 324(43)15, 396(44)10 (+) 
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Ciprofloxacin 332 268(16)22, 288(100)17, 314(94)21 (+) 

Enrofloxacin 360 245(49)26, 316(100)18, 342(29)21 (+) 

lomefloxacin 352 265(100)23, 288(16)19, 308(63)16 (+) 

Marbofloxacin 363 72(83)23, 320(100)15, 345(18)21 (+) 

Florfenicol 356 169(1)39, 185(35)21, 336(100)12 (-) 

Florfenicol amine 248 130(24)23, 134(8)28, 230(100)11 (+) 

Chloramphenicol 321 152(65)20, 194(35)16, 257(100)14 (-) 

Flumequine 262 174(13)39, 202(54)32, 244(100)19 (+) 

Chlortetracycline 479 154(39)27, 444(100)21, 462(69)16 (+) 

Doxycycline 445 321(10)31, 410(8)24, 428(100)19 (+) 

Oxytetracycline 461 337(26)29, 426(100)19, 443(52)12 (+) 

Tetracycline 445 154(38)30, 410(100)19, 427(43)14 (+) 

Lyncomicin 407 126(100)16, 359(10)18, 389(5)28 (+) 

Sulphathiazole 256 92(50)27, 108(45)25, 156(100)15 (+) 

Sulphadimidine 279 108(32)26, 124(39)265, 186(100)18 (+) 

Sulphadiazine 251 92(58)27, 108(62)23, 156(100)16 (+) 

Sulphadimethoxine 311 92(30)31, 108(34)28, 156(100)20 (+) 

Trimethoprim 291 230(100)22, 261(75)24, 275(47)21 (+) 

Erythromycin 735 116(32)36, 158(100)30, 576(37)19 (+) 

Tylosin 817 156(12)42, 174(100)37, 772(38)29 (+) 

Enrofloxacin-d5 (IS) 365 245(49)32, 321(100)27, 347(46)19 (+) 

 
 

3.8.2.6. Methods validation 

After the preliminary screening of a few samples of urine and muscle tissue, to identify 

“blank” samples, the validation was performed according to the criteria of the 

Commission Decision 2002/657/EC (European Union, 2002). For each analyte, the 

method performance was evaluated through its qualitative parameters, as well as 

molecular identification by retention time (RT) and transition ion ratios; through its 

quantitative parameters, such as linearity, recovery, accuracy in terms of trueness, and 
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precision expressed as the intra- and inter-day repeatability; and through the analytical 

limits, i.e. decision limit (CCα) and detection capability (CCβ), as clarified in 

SANCO/2004/2726 revision 4. (European Union, 2008). 

Validation was performed by spiking the samples with each of the analytes, resulting in 

three analytical series (matrix validation curves). Each series had six replicates for three 

concentration levels that were previously chosen according to the minimum 

concentration detectable with our instrumentation (C0), which was 0.5 ng mL−1 for all 

analytes in urine and ranged from 1.010 ng mL−1 for the different analytes in the 

muscle samples (Table 2 and 3). 

The instrumental linearity was also evaluated by drawing six-point calibration curves in 

the solvent containing a fixed amount of the IS (2 ng mL−1), with the initial analyte 

concentration corresponding to the minimum detectable concentration for each group 

up to 100 ng mL−1. 

We evaluated robustness using the fractional factorial Youden design (European Union, 

2002).  

The experiments to evaluate matrix effects corresponded to the strategy used by 

Matuszewski, Constanzer and Chavez-Eng (2003). 

 

 Table 2. Validation parameters of all investigated antibiotics in pig urine samples. 

Analyte 

CCα 

(ng mL
−1

) 

CCβ 

(ng mL
−1

) 

Concentration 

level 

(ng mL
−1

) 

Recovery % 

(n=18) 

Repeatability 

intra-day 

(CV; n=6) 

inter-day  

(CV;n=18) 

   0.50 95 13 20 

Amoxicillin 0.54 0.71 1.00 93 11 14 

   1.50 103 9 11 

   0.50 98 12 20 

Ampicillin 0.51 0.69 1.00 99 11 11 

   1.50 99 10 9 

   0.50 90 15 19 

Cloxacillin 0.57 0.73 1.00 92 10 12 

   1.50 93 10 11 

   0.50 95 13 18 
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Dicloxacillin 0.60 0.75 1.00 99 10 15 

   1.50 99 10 12 

   0.50 91 15 18 

Benzylpenicillin 0.86 1.10 1.00 91 12 15 

   1.50 92 11 15 

   0.50 98 9 12 

Oxolinic acid 0.55 0.63 1.00 99 9 8 

   1.50 99 7 8 

   0.50 99 10 13 

Nalidixic acid 0.54 0.60 1.00 100 7 9 

   1.50 101 7 7 

   0.50 105 7 10 

Cefalexin 0.62 0.73 1.00 100 5 9 

   1.50 102 5 9 

   0.50 99 10 20 

Cefquinome  0.66 0.81 1.00 99 11 13 

   1.50 100 11 13 

   0.50 102 12 20 

Ciprofloxacin 0.63 0.84 1.00 100 12 16 

   1.50 101 8 10 

   0.50 101 8 11 

Enrofloxacin 0.60 0.71 1.00 100 7 10 

   1.50 101 7 8 

   0.50 104 10 15 

Lomefloxacin  0.72 0.91 1.00 102 8 15 

   1.50 102 8 13 

   0.50 104 6 11 

Marbofloxacin 0.55 0.62 1.00 101 5 7 

   1.50 100 5 7 

   0.50 103 12 19 

Florfenicol 0.70 0.90 1.00 102 10 19 

   1.50 106 9 14 

   0.50 100 11 12 

Florfenicol amine 0.65 0.76 1.00 100 10 11 

   1.50 100 10 11 

   0.50 97 10 15 

Chloramphenicol 0.54 0.62 1.00 97 10 12 

   1.50 98 8 11 
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   0.50 94 15 15 

Flumequine 0.58 0.67 1.00 93 11 15 

   1.50 95 8 13 

   0.50 99 7 11 

Chlortetracycline  0.56 0.68 1.00 98 5 8 

   1.50 98 5 6 

   0.50 102 8 12 

Doxycycline 0.55 0.65 1.00 103 8 10 

   1.50 103 8 7 

   0.50 100 10 13 

Oxytetracycline 0.69 0.85 1.00 99 9 11 

   1.50 100 8 10 

   0.50 105 9 11 

Tetracycline  0.65 0.76 1.00 105 8 9 

   1.50 101 8 8 

   0.50 100 10 12 

Lyncomicin 0.53 0.62 1.00 101 7 9 

   1.50 100 6 7 

   0.50 98 12 13 

Sulfathiazole  0.55 0.71 1.00 98 10 11 

   1.50 97 10 10 

   0.50 99 8 10 

Sulfadimidine 0.57 0.74 1.00 99 8 8 

   1.50 100 7 8 

   0.50 100 10 15 

Sulfadiazine 0.55 0.73 1.00 98 10 11 

   1.50 100 9 11 

   0.50 97 13 18 

Sulfadimethoxine 0.58 0.78 1.00 98 9 15 

   1.50 98 9 13 

   0.50 92 11 17 

Trimethoprim 0.60 0.79 1.00 95 11 13 

   1.50 96 10 11 

   0.50 92 15 19 

Erythromycin 0.63 0.80 1.00 95 9 10 

   1.50 95 9 10 

   0.50 96 14 19 

Tylosin 0.54 0.76 1.00 95 13 18 

   1.50 96 8 12 
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Table 3. Validation parameters of all investigated antibiotics in pig muscle samples 
 

Analyte 

CCα 

(ng mL
−1

) 

CCβ 

(ng mL
−1

) 

Concentration 

level 

(ng mL
−1

) 

Recovery % 

(n=18) 

Repeatability 

intra-day 

(CV; n=6) 

inter-day  

(CV;n=18) 

   10.00 90 11 21 

Amoxicillin 10.02 10.51 20.00 91 9 16 

   30.00 101 9 10 

   5.00 90 15 20 

Ampicillin 5.11 5.63 10.00 98 13 14 

   15.00 101 10 9 

   10.00 96 15 18 

Cloxacillin 10.05 10.54 20.00 97 11 13 

   30.00 99 9 10 

   5.00 93 14 19 

Dicloxacillin 5.10 5.68 10.00 97 12 17 

   15.00 99 11 11 

   5.00 90 14 20 

Benzylpenicillin 5.32 5.89 10.00 92 14 16 

   15.00 93 13 14 

   1.00 90 17 22 

Oxolinic acid 1.10 1.63 2.00 93 15 17 

   3.00 95 12 12 

   1.00 93 14 18 

Nalidixic acid 1.14 1.67 2.00 93 10 14 

   3.00 95 9 11 

   5.00 101 15 21 

Cefalexin 5.51 5.82 10.00 99 13 20 

   15.00 102 11 17 

   10.00 90 14 22 

Cefquinome  10.09 11.02 20.00 91 13 16 

   30.00 103 9 10 

   1.00 95 14 16 

Ciprofloxacin 1.40 1.52 2.00 105 14 16 

   3.00 98 11 12 
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   1.00 101 11 19 

Enrofloxacin 0.95 1.13 2.00 100 9 19 

   3.00 101 7 9 

   1.00 97 15 20 

Lomefloxacin  1.17 1.29 2.00 102 14 20 

   3.00 99 13 17 

   1.00 103 13 20 

Marbofloxacin 1.42 1.57 2.00 99 13 14 

   3.00 100 8 10 

   1.00 97 14 20 

Florfenicol 1.32 1.84 2.00 99 12 17 

   3.00 100 9 9 

   1.00 92 11 16 

Florfenicol amine 1.30 1.45 2.00 95 11 15 

   3.00 97 10 11 

   1.00 90 15 18 

Chloramphenicol 0.97 1.20 2.00 91 15 15 

   3.00 91 11 12 

   1.00 90 13 17 

Flumequine 0.96 1.23 2.00 93 10 16 

   3.00 95 9 11 

   1.00 92 7 11 

Chlortetracycline  1.22 1.49 2.00 103 5 11 

   3.00 98 7 10 

   1.00 106 14 19 

Doxycycline 0.97 1.74 2.00 98 12 19 

   3.00 101 12 13 

   1.00 102 11 18 

Oxytetracycline 1.21 1.52 2.00 99 9 14 

   3.00 101 9 9 

   1.00 99 14 19 

Tetracycline  1.33 1.65 2.00 102 11 13 

   3.00 98 9 10 

   1.00 101 14 20 

Lyncomicin 1.15 1.29 2.00 99 13 17 

   3.00 100 11 12 

   1.00 95 15 19 

Sulfathiazole  1.08 1.26 2.00 93 12 16 

   3.00 97 9 11 
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   1.00 98 10 13 

Sulfadimidine 1.13 1.25 2.00 99 8 11 

   3.00 100 7 8 

   1.00 101 12 17 

Sulfadiazine 1.09 1.28 2.00 98 10 14 

   3.00 103 9 11 

   1.00 90 14 20 

Sulfadimethoxine 1.19 1.42 2.00 90 11 16 

   3.00 93 11 11 

   1.00 90 12 19 

Trimethoprim 1.15 1.41 2.00 91 11 16 

   3.00 91 8 11 

   5.00 90 14 18 

Erythromycin 5.23 5.55 10.00 91 10 12 

   15.00 92 11 11 

   1.00 91 13 19 

Tylosin 1.06 1.24 2.00 95 11 15 

   3.00 95 9 13 

 

3.8.3. Results and discussion 

3.8.3.1 Validation performances 

The mean recoveries for all analytes ranged between 90107%, considering both 

matrices and all analytes. The 20 urine and muscle blank swine samples analysed to 

evaluate specificity, did not show any interference (signals, peaks, ion traces) in the 

region of interest, i.e. where the target analytes were expected to elute. The selectivity 

showed a good compliance with the relative RTs for each analyte, which was found to 

be within the 2.5% tolerance, with a signal-to-noise ratio >3 when compared with the 

standards. Moreover, the three chosen transitions showed an ion ratio within the 

recommended tolerances (European Union, 2002), when compared with the standards. 

The matrix validation curves constructed for each analyte demonstrated a good fit for all 

the analytes with a correlation coefficient >0.99 in both matrices. The intra- and inter-

day repeatability (Thompson, 2000), representing precision, were calculated using one-

way analysis of variance (ANOVA) and expressed as coefficients of variation (CVs) For 

all analytes, the intra-day repeatability values were below 15 and 17% in the urine and 
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muscle tissue samples, respectively, while the corresponding inter-day repeatability 

values were below 20 and 22%.  

Based on the methods described in SANCO/2004/2726 revision 4 (European Union, 

2008), the CCα ranged from 0.540.86 and 0.9510.09 ng mL-1 in the urine and muscle 

tissue, respectively, while the CCβ values ranged from 0.601.10 ng mL-1 in urine and 

1.1311.02 ng mL-1 in muscle tissue (Table 2 and 3). 

The method ruggedness, evaluated using the fractional factorial Youden design 

(European Union, 2002), was good in both matrices. Using the strategy of Matuszewski 

et al. (2003), a modest matrix effect was obtained, with values ranging from 89104 and 

82109% for the different compounds in the urine and muscle tissue samples, 

respectively. 

As we proved in other previous works (Chiesa et al., 2015 and Chiesa et al., 2016), all 

analytes in the working solutions and in the spiked samples showed an acceptable 

stability (CV ≤ 2%) until 1 month of storage at −20 °C, except amoxicillin and 

cefquinome. After 1 week, the concentration of these two antibiotics decreased more 

than the acceptable value. We therefore decided to daily prepare the working solutions. 

 

3.8.3.2 Application of the method 

The developed and validated methods were applied to the analyses of 43 urine and 

muscle paired samples from male and female heavy pigs, collected from different 

slaughterhouses. The samples were completely anonymous and represented official 

controls for monitoring residues of antibiotics within the food chain. A comparison of the 

average concentrations ± SD and the medians for the analytes detected in the paired 

urine and muscle tissue samples (Table 4), revealed the suitability of urine samples for 

the majority of detected antibiotics and for the antibiotics present at higher concentration 

in the urine than muscle tissue. 
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Table 4 Average concentration ±SD, number and percentage of positives and median of the analytes 

detected in urine and muscle samples. 

 Urine samples muscle samples 

Analyte Average 
conc.±SD 
(ng mL

-1
) 

Positives % 
Positives 

Median Average 
conc.±SD 

(ng g
-1

) 

Positives % 
Positives 

Median 

Chloramphenicol 7.83±2.07 4 9 0 1.42±0.67 5 12 0 
Florfenicol 7.27±9.92 5 12 0 0 0 0 0 
Florfenicol 
amine 

7.68±5.60 17 40 0 0 0 0 0 

Doxycycline 46.59±74.89 34 79 4.55 6.12±6.53 15 35 0 
Tetracycline 1.71±1.27 10 23 0 0 0 0 0 
Oxytetracycline 17.06±16.55 12 28 0 1.89 1 2 0 
Chlortetracyclin 0.86±0.38 7 16 0 0 0 0 0 
Lyncomicin 0.86±0.38 17 40 0 2.66±1.34 3 7 0 
Tylosin 110.27±112.09 8 19 0 0 0 0 0 
Sulphadiazine 86.47±66.66 5 12 0 0 0 0 0 
Trimethoprim 14.59±5.81 5 12 0 0 0 0 0 
Enrofloxacin 2.36±1.20 6 14 0 0 0 0 0 

 

These data provide evidence that supports urine as the preferential elimination route of 

most antibiotics in their unchanged form, as observed previously in bovine urine (Chiesa 

et al., 2015). The possibility to do on-farm controls using this matrix is controversial, 

considering that most illegal treatments could be detected in the instance of illicit drug 

administration or non-recorded administration of regulated drugs. Even if most of the 

antibiotics found are below the MRLs set by the European Regulation (European Union, 

2010), the results reveal the contemporary presence of different classes of antibiotics in 

the urine of the analysed sample. Moreover, identical combinations of antibiotics were 

found in the samples belonging to the same farm, but distinct from those obtained from 

different slaughterhouses. In particular, chloramphenicol, a strictly forbidden antibiotic, 

was detected both in urine and muscle tissue samples coming from the same farm (on 

four occasions in urine and five occasions in muscle). In this instance, their urine 

concentrations were more than four-fold higher than in muscle tissue. 

Regarding the other antimicrobial agents studied, when they were found in muscle, the 

MRLs were never exceeded. For all the antimicrobials studied, the MRL value was 100 

μg kg-1, except for florfenicol, whose MRL is 200 μg kg-1 because it represents the sum 

of the antimicrobial and its metabolite, florfenicol amine (European Union, 2010).  
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Doxycycline was one of the antibiotics most frequently found in urine (in 37 samples, at 

a maximum of 339.45 μg L-1). In the muscle tissues, doxycycline was found 15 times 

and the maximum recorded was 21.05 μg kg-1. When it was present in the muscle, it 

was always detected in the urine but not vice versa. However, when the concentration 

in the urine was > 13.28 μg L-1 it was also detected in the muscle. When compared with 

muscle tissue, the urinary doxycycline concentration was 1.350 times higher. In the 

muscle tissue, its concentration never exceeded 100 μg L-1. In contrast, this value was 

exceeded in six urine samples, four of which belonged to the same farm. However, all 

the samples were from anonymous animals. Consequently, we could neither discern if 

the animals had been illicitly treated, or if they had undergone a prophylactic or 

therapeutic treatment nor identify the route of administration, so it is not possible to 

evaluate pharmacokinetic considerations. 

For the other antimicrobial agents evaluated, oxytetracycline was detected in some 

urine samples from four different farms, but only once in a muscle sample (1.89 μg kg-1) 

with its paired urine sample showing the highest concentration, which was 52.14 μg L-1. 

Tetracycline was found in all urine samples derived from one farm and sporadically in 

other instances, but was never detected in the muscle. Its highest concentration was 

4.28 μg L-1. Chlortetracycline was found in all urine samples from one farm, and in one 

another urine sample derived from a different farm (maximum value 1.27 μg L-1), but 

was never detected in the muscle. Lincomycin was in 17 urine samples at a maximum 

of 120.69 μg L-1 and only three times in the muscle tissue. Its urine-to-muscle 

concentration ratio ranged from 0.212.88. Florfenicol and florfenicol amine, alone or 

combined, were detected in 17 urine samples at a maximum of 40.28 μg L-1. Neither 

florfenicol nor its metabolite was found in the corresponding muscle samples. Tylosin 

was detected seven times, mostly in urine samples from two different farms but never in 

the muscle samples. The highest concentration detected was 267.74 μg L-1. 

Sulphadiazine was found at a maximum 180.42 μg L-1 in five samples from one farm 

and concomitantly with trimethoprim, but never in the muscle. Enrofloxacin was 

detected in almost all the urine samples originating from two farms and in one other 

sample from a different farm (3.72 μg L-1 maximum), but never in the muscle. 
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3.8.4. Conclusion 

The results shown in this study indicate that different classes of antibiotics are 

contemporary used for swine breeding and are generally found at a higher frequency 

and at higher concentrations in urine than in muscle tissue. We did not find a strict 

correlation between the two matrices, but usually, when the concentration in urine was 

very high, the analyte was detected in the paired muscle sample. The detection in urine 

depicts an overall framework of an excessive use of the antibiotics in pig farming. The 

use of urine as a control matrix may, therefore, be useful to ascertain any illicit 

treatment or to monitor the antibiotic concentrations after therapeutic uses, at the farm 

through a non-invasive collection method or, alternatively, at the slaughterhouse for the 

higher concentrations detectable in urine than in muscle. Consequently, withdrawal 

periods should be accurately scrutinised to ensure the safety of meat in the supply 

chain before it is presented to consumers. Moreover, it highlights the overuse of 

antibiotics associated with the increasingly urgent threat of antibiotic resistance. 
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ABSTRACT 

Filter feeders, like mussels and clams, are suitable bioindicators of environmental 

pollution. These shellfish, when destined for human consumption, undergo a depuration 

step that aims to nullify their pathogenic microorganism load and decrease chemical 

contamination. Nevertheless, the lack of contamination by drugs may not be 

guaranteed. Antimicrobials are a class of drugs of particular concern due to the 

increasing phenomenon of antibiotic resistance. Their use in breeding and aquaculture 

is a major cause of this. We developed a multiclass method for the HPLC-MS/MS 

analysis of 29 antimicrobials, validated according to the Commission Decision 

2002/657/UE guidelines, and applied it to 50 mussel and 50 clam samples derived from 

various Food and Agricultural Organisation marine zones. The results obtained, indicate 

a negligible presence of antibiotics. Just one clam sample showed the presence of 

oxytetracycline at a concentration slightly higher than the European Union Maximum 

residue limit set for fish.  

Keywords: Antibiotics, Clam, HPLC-MS/MS, Mussel 

 

Highlights  

A multiclass LC-MS/MS method for 29 antibiotics was developed and validated. 

Our detection limits were much lower than the maximum residue limits. 

Pool of mussels and clams from different FAO zones were analysed. 

Antibiotic presence in the analysed shellfish is negligible. 

 

Chemical compounds studied in this article 

Amoxicillin (PubChem CID: 33613); Ampicillin (PubChem CID: 6249); Benzylpenicillin 

(PubChem CID: 5904); Cefalexin (PubChem CID: 27447); Cefquinome sulphate 

(PubChem CID: 9577261); Chloramphenicol (PubChem CID:5959); Chlortetracycline 

(PubChem CID: 54737570); Ciprofloxacin (PubChem CID: 2764); Cloxacillin (PubChem 

CID: 6098); Dicloxacillin (PubChem CID: 18381); Doxycycline hyclate (PubChem CID: 

54686183); Enrofloxacin (PubChem CID: 71188); Erythromycin (PubChem CID: 12560); 

Florfenicol (PubChem CID: 114811); Florfenicol amine (PubChem CID: 156406); 
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Flumequine (PubChem CID: 3374); Lincomycin (PubChem CID: 3000540); 

Lomefloxacin hydrochloride (PubChem CID: 68624); Marbofloxacin (PubChem CID: 

60651); Nalidixic acid (PubChem CID: 4421); Oxolinic acid (PubChem CID: 4628); 

Oxytetracycline (PubChem CID: 54675779); Sulphadiazine (PubChem CID: 441244); 

Sulphadimethoxine (PubChem CID: 5323); Sulphadimidine (PubChem CID: 5327); 

Sulphathiazole (PubChem CID: 5340); Tetracycline hydrochloride (PubChem CID: 

54704426); Trimethoprim (PubChem CID: 5578); Tylosin (PubChem CID: 5280440). 

 

3.9.1. Introduction 

Antibiotics are among the most frequently detected group of potentially toxic 

pharmaceuticals; this underscores the following ecotoxicological concerns: 1) the 

cumulative toxic effects of antibiotics on aquatic animals are not well understood, 2) 

their continuous presence leads to the development of antibiotic-resistant bacteria, and 

3) antibiotics can act, at very low concentrations, as signalling agents and change the 

natural microbial diversity in aquatic ecosystems (Fatta-Kassinos, Meric, & Nikolaou, 

2011).An unknown amount of these drugs ends up either indirectly in the receiving 

waters, through sewer plants and land-fields, or directly as a result of intensive fish 

farming. For these reasons, organisms could also be exposed to a variety of 

compounds present in the environment at low concentrations. In recent years, 

pharmacological substances in the aquatic environment have become an increasing 

concern. In this respect, municipal wastewater effluents represent the main source of 

pharmaceuticals in the environment (Kolpin et al., 2002).  

Bivalves and the blue mussel (Mytilus edulis), in particular, are successfully used as 

indicator organisms for marine pollution monitoring (Baumard Budzinski, & Garrigues, 

1998; O’Connor, 1998; Widdows et al., 1995). The general assumption is that mussel 

appears to be an appropriate sentinel organism because of its global distribution of 

large and accessible populations, its large size and sedentary adulthood, its tolerance to 

diverse environmental conditions, the ventilation of large volumes of water for nutrition, 

respiration and excretion (Krieger, Gee, & Lim, 1981), and its ability to accumulate 

numerous contaminants (Moy & Walday, 1996).  
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Hence, an increasing demand for biological studies of aquatic organisms has become a 

major impetus for the development and validation of high-performing analytical 

techniques capable of determining various antibiotics. Zouiten, Beltifa, Van Loco, 

Mansour and Reyns (2016) demonstrated the usefulness of ultra-performance liquid 

chromatography-tandem mass spectrometry (UPLC-MS/MS) to detect certain antibiotic 

residues in Mytilus galloprovincialis exposed to pharmaceutical wastewater in Tunisia. 

Li, Shi, Gao, Liu and Cai (2012) reported 22 antibiotics in molluscs obtained from the 

Bohai sea (China), based on accelerated solvent extraction pressurised liquid 

extraction, followed by a solid-phase extraction (SPE) clean-up. An enzymatic-

microwave assisted extraction method with subsequent high-performance liquid 

chromatography (HPLC) was developed for the determination of 11 antibiotics in fish 

tissue and mussels of Spain (Fernandez-Torres, Lopez, Consentino, Mochon, & Payan, 

2011). Conversely, Le Bris and Pouliquen (2004) studied the bioaccumulation of two 

antibiotics, oxytetracycline and oxolinic acid, by the blue mussel, and stated that most 

veterinary and human antibiotics, such as tetracyclines and sulphonamides, should 

weakly accumulate in mussel. 

In this context, the current study aimed to develop and validate (European Community, 

2002; European Union, 2008) a sensitive, specific and robust HPLC-MS/MS multiclass 

method, for the determination of 29 antibiotics belonging to eight different chemical 

classes (penicillin, quinolones, tetracyclines, sulphonamides, macrolides, lincosamides, 

cephalosporins, amphenicols), in mussels and clams, both wild and farmed, collected 

from various geographic areas of the world and, particularly, Italy. The two types of 

shellfish were carefully selected for a comparison, considering that mussels tend to 

grow on the surface of wave-washed rocks, while clams live in shallow water. Hence, 

the development of a high sensitive multiclass method for antibiotics in this two edible 

organisms located from distinct areas and marine layers, and the differences in 

bioaccumulation between these organisms could be achieved to expand the knowledge 

from the point of view of food safety, relatively also to environmental contamination, to 

increase the proportion of quantified data and accurately monitor the presence of 

antibiotics due to the antibiotic resistance matter. 
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3.9.2. Material and methods 

3.9.2.1. Chemicals and reagents 

All solvents were of HPLC or analytical grade and were purchased from Fluka (Sigma-

Aldrich, St. Louis, MO, USA). Formic acid (98–100%) was obtained from Riedel-de 

Haën (Sigma-Aldrich, St. Louis, MO, USA). Trichloroacetic acid (TCA) crystals and the 

ingredients required to prepare EDTA-McIlvaine buffer solution, pH 4 (disodium 

hydrogen phosphate dihydrate, citric acid monohydrate and EDTA) were purchased 

from Fluka. Water was purified by a Milli-Q system (Millipore, Merck KGaA, Darmstadt, 

Germany). The extraction cartridges (Oasis HLB 3 mL, 60 mg) were provided by Waters 

(Milford, MA, USA). Amoxicillin, ampicillin, cloxacillin, dicloxacillin, benzylpenicillin, 

oxolinic acid, nalidixic acid, cefquinome sulphate, cefalexin, florfenicol, florfenicol amine, 

chloramphenicol, flumequine, lomefloxacin hydrochloride, ciprofloxacin, enrofloxacin, 

marbofloxacin, tetracycline hydrochloride, doxycycline hyclate, chlortetracycline 

hydrochloride, oxytetracycline, lincomycin, sulphathiazole, sulphadimidine, 

sulphadiazine, sulphadimethoxine, trimethoprim, erythromycin, tylosin and enrofloxacin 

d5 as the internal standards (IS) were purchased from Fluka. 

 

3.9.2.2. Standard solutions 

For each standard, stock solutions were prepared (1 mg mL-1) in methanol and kept at -

20 °C. Working solutions at 10 and 100 ng mL-1, were prepared daily to spike the 

samples during the validation and to construct the calibration curves for the 

quantification of the real samples. Each working solution was maintained at 4 °C during 

the method validation procedures. 

 

3.9.2.3. Sample collection 

We collected a total 100 samples (500 g each one), and we created 100 pools obtained 

by dispersing 200 g of shellfish edible parts pooled by using an Ultraturrax (IKA®-Werke 

GmbH and Co. KG, Staufen, Germany) at 13500 rpm for 4 minutes. Mussels (a total of 

50 pool samples of three species: M. galloprovincialis, Mytilus edulis and Mytilus 

chilensis) and clams (a total of 50 pool samples of six species: Meretrix lyrata, 

Venerupis decussata, Venerupis philippinarum, Meretrix meretrix, Paphia textile and 
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Venus gallina), half wild and half farmed to evaluate the presence of antibiotics due to 

eventual antibiotic treatments in farms and/or the presence of these drugs due the 

environmental pollution in case of wild shellfish. Moreover they were collected from 

various Food and Agricultural Organisation (FAO) marine zones (Fig. 1) to evaluate the 

antibiotic detection relatively to the different geographical location. The samples were 

also collected from different marine layers because mussels tend to grow on the surface 

of wave-washed rocks, while clams live in shallow water so in depth. The samples were 

immediately frozen, transported to the laboratory and stored at -20 °C, until further 

analysis. 

 

Figure 1. Map of sample collection sites and magnification of Italy (inset). 

 

 

3.9.2.4. Sample extraction 

An aliquot (1 g wet weight) of homogenised shelled mussel or clam, spiked with the IS 

at a final 2 ng mL-1, 100 µl of 20% TCA for protein precipitation, and 5 mL McIlvaine 

buffer (pH 4.0), were combined. The samples were vortexed and sonicated for 15 min. 

After centrifugation (2500g, 4 °C, 10 min), the supernatant was transferred to a clean 

polytetrafluoroethylene centrifuge tube and defatted with 2 × 3 mL n-hexane. Each time, 

the n-hexane layer was discarded after centrifugation at 2500g, 4 °C for 5 min. The 

obtained extracts were purified by SPE Oasis HLB cartridges under vacuum. The SPE 

cartridges were preconditioned with 3 mL methanol and 3 mL Milli-Q water. The 

samples were loaded, and then washed with 2 x 3 mL methanol:water (5:95 v/v). 

Finally, the analytes were eluted with 5 mL methanol and collected in a 15-mL glass 

tube. The eluate was evaporated in a rotary vacuum evaporator at 40 °C. The dried 
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extract was reconstituted in 200 µL methanol:water (10:90 v/v), and then transferred to 

an auto-sampler vial. The injection volume was 10 µL. 

 

3.9.2.5. HPLC-MS/MS analyses 

The chromatographic separation was performed by a Surveyor MS quaternary pump 

with a degasser, a Rheodyne valve with a 20-μL loop and a Surveyor AS autosampler 

with a column oven (Thermo Fisher Scientific, San Jose, CA, USA). Chromatographic 

separation of the compounds was obtained using a Synergi Hydro-RP reverse-phase 

HPLC column (150 x 2.0 mm, internal diameter 4 µm), with a C18 guard column (4 x 3.0 

mm; Phenomenex, Torrance, CA, USA). The mobile phase was a binary mixture of 

solvents A (aqueous formic acid 0.1%) and B (methanol). The run (0.2 mL min-1) started 

with 98% A (5 min), which was then increased linearly to 50% (at 22 min). Next, mobile 

phase B was gradually increased to 95% (at 24 min) and remained constant for 5 min. 

The initial conditions were reached at 31 min, with an equilibration time that included the 

interval from 31–40 min. A triple-quadrupole TSQ Quantum MS (Thermo Fisher) 

equipped with an electrospray interface (ESI) set in the positive (ESI+) mode was used 

to detect all analytes, except isoxazolyl penicillins and amphenicols, which were 

detected in the negative (ESI-) mode. Acquisition parameters were optimised by direct 

continuous pump-syringe infusion of the standard analyte solutions at 1 μg mL-1. The 

flow rate was set at 20 µL min-1 flow rate, and the MS pump rate at 100 µL min-1. The 

following conditions were used: capillary voltage 3.5 kV; ion transfer capillary 

temperature 340 °C; nitrogen as the sheath and auxiliary gases at 30 and 10 arbitrary 

units, respectively; argon as the collision gas at 1.5 mTorr, and peak resolution 0.70 Da 

at full-width half-maximum (FWHM) (Chiesa et al., 2016). Three diagnostic product ions 

were chosen for each analyte and IS, as carried out in an our previous styudy about 

antibiotics in bovine urine (Chiesa et al., 2015). The acquisition was performed in 

multiple reaction-monitoring (MRM) mode. The selected diagnostic ions, one of which 

was chosen for the quantification, the collision energies and the relative intensities are 

reported in Table 1. Acquisition data were recorded and elaborated using Xcalibur™ 

software from Thermo Fisher. 
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Table 1. MS/MS conditions for the MRM acquisitions of investigated antibiotics.  

Analyte 
Precursor ion 

(m/z) 

Product ions CE 

(m/z) 
ESI 

amoxicillin 366 114(80)20, 134(21)31, 349(100)7 (+) 

ampicillin 350 106(100)18, 114(14)29, 160(14)14 (+) 

cloxacillin 436 160(48)13, 178(35)33, 277(100)14 (-) 

dicloxacillin 468 291(100)21, 327(63)16, 424(32)12 (-) 

benzylpenicillin 335 114(61)32, 160(92)12, 176(100)14 (+) 

oxolinic acid 262 160(5)35, 216(10)29, 244(100)18 (+) 

nalidixic acid 233 159(22)33, 187(69)26, 215(100)16 (+) 

cefalexin 348 158(63)5, 174(100)15, 191(23)6 (+) 

cefquinome 529 134(100)15, 324(43)15, 396(44)10 (+) 

ciprofloxacin 332 268(16)22, 288(100)17, 314(94)21 (+) 

enrofloxacin 360 245(49)26, 316(100)18, 342(29)21 (+) 

lomefloxacin 352 265(100)23, 288(16)19, 308(63)16 (+) 

marbofloxacin 363 72(83)23, 320(100)15, 345(18)21 (+) 

florfenicol 356 169(1)39, 185(35)21, 336(100)12 (-) 

florfenicol amine 248 130(24)23, 134(8)28, 230(100)11 (+) 

chloramphenicol 321 152(65)20, 194(35)16, 257(100)14 (-) 

flumequine 262 174(13)39, 202(54)32, 244(100)19 (+) 

chlortetracycline 479 154(39)27, 444(100)21, 462(69)16 (+) 

doxycycline 445 321(10)31, 410(10)24, 428(100)19 (+) 

oxytetracycline 461 337(26)29, 426(100)19, 443(52)12 (+) 

tetracycline 445 154(38)30, 410(100)19, 427(43)14 (+) 

lincomycin 407 126(100)16, 359(10)18, 389(5)28 (+) 

sulphathiazole 256 92(50)27, 108(45)25, 156(100)15 (+) 

sulphadimidine 279 108(32)26, 124(39)265, 186(100)18 (+) 

sulphadiazine 251 92(58)27, 108(62)23, 156(100)16 (+) 
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sulphadimethoxine 311 92(30)31, 108(34)28, 156(100)20 (+) 

trimethoprim 291 230(100)22, 261(75)24, 275(47)21 (+) 

erythromycin 735 116(32)36, 158(100)30, 576(37)19 (+) 

tylosin 817 156(12)42, 174(100)37, 772(38)29 (+) 

enrofloxacin-d5 (IS) 365 245(49)32, 321(100)27, 347(46)19 (+) 

Ions for quantification are in bold. The values in brackets represent the relative intensities (%). CE: 

collision energy, subscripted and expressed in volts. 

 

3.9.2.6. Method validation 

After the identification of samples in which we checked the absence of antibiotics, 

through a preliminary screening of pooled mussel or clam samples, the method was 

validated according to the Commission Decision 2002/657/EC criteria (European 

Community, 2002). 

For each analyte, the method performance was evaluated by the determination of 

retention time (RT), transition ion ratios, recovery, accuracy (trueness), precision 

(expressed as the intra- and inter-day repeatability), linearity, as well as the decision 

limit (CCα) and detection capability (CCβ), which were calculated as described in 

SANCO/2004/2726 revision 4 (European Union, 2008). 

Twenty blank samples were used to evaluate the specificity and to check for any 

interference (signals, peaks, ion traces) in the region of interest where the target 

analytes were expected to elute. The selectivity was also tested by verifying a signal-to-

noise ratio > 3 at the expected RT, and the ion abundance ratio associated with the 

different fragmentations. Validation was done by spiking the samples with all analytes at 

three concentration levels (C0, 2 x C0, 3 x C0, validation levels Table 2) that were 

previously chosen according to a minimum detectable experimental concentration (C0) 

in our conditions, considering that the maximum residue limits (MRLs) recommended by 

the Commission Regulation 37/2010 (European Union, 2010) for fish (but not for 

shellfish) range from 50200 µg kg-1. Each level had six replicates. The validation trials 

were repeated for three different days, resulting in three analytical series (matrix 

validation curves).  
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The instrumental linearity was also assessed through six-point calibration curves in the 

solvent containing a precise amount of IS (2 ng mL-1), starting from the minimum 

detectable concentration for each group up to 100 ng mL-1. 

The recovery was calculated using the data from the validation points of the three, 

analytical series, expressed as a percentage of the measured concentration relative to 

the spiked concentration. The precision (intra- and inter-day repeatability) was 

evaluated by calculating the relative standard deviation of the results obtained for six 

replicates of each analyte at the three concentration levels of the three, analytical 

series. Robustness was assessed using the approach of Youden (European Union, 

2002), which is a fractional factorial design, based on minor modification (±10%) of 

seven experimental conditions of eight samples spiked at the minimum detectable 

concentrations. 

Matrix effects was evaluated by Matuszewski, Constanzer and Chavez-Eng (2003) 

strategy, comparing the analytes of interest added post-extraction with pure solutions 

prepared in the mobile phase containing an equivalent amounts of the studied 

compounds.  

 

Table 2. Validation parameters for all antibiotics. 

Analyte 
CCα 

(ng g
−1

)* 

CCβ 

(ng g
−1

)* 

Validation levels 

(ng g
−1

)* 

Recovery (%) 

(n=18) 

Repeatability 

intra-day 

(CV; n=6) 

inter-day 

(CV; n=18) 

   1.00 86 14 20 

Amoxicillin 1.04 1.55 2.00 92 9 16 

   3.00 101 8 10 

   1.00 90 14 20 

Ampicillin 1.10 1.62 2.00 98 13 14 

   3.00 100 9 9 

   5.00 95 14 17 

Cloxacillin 5.05 5.56 10.00 97 11 13 

   15.00 98 9 10 

   5.00 93 13 18 

Dicloxacillin 5.10 5.68 10.00 97 12 17 

   15.00 99 11 11 
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   5.00 90 14 19 

Benzylpenicillin 5.32 5.89 10.00 92 13 17 

   15.00 93 13 14 

   1.00 88 14 20 

Oxolinic acid 1.11 1.64 2.00 87 14 18 

   3.00 92 12 13 

   1.00 92 13 17 

Nalidixic acid 1.17 1.70 2.00 95 11 15 

   3.00 95 9 11 

   5.00 102 14 20 

Cefalexin 5.53 5.80 10.00 97 13 20 

   15.00 101 13 18 

   5.00 103 14 20 

Cefquinome  5.75 5.93 10.00 91 11 15 

   15.00 109 9 9 

   1.00 95 14 16 

Ciprofloxacin 1.40 1.52 2.00 105 14 16 

   3.00 98 11 12 

   1.00 100 8 15 

Enrofloxacin 1.13 1.17 2.00 100 8 15 

   3.00 100 7 8 

   1.00 97 14 20 

Lomefloxacin  1.18 1.27 2.00 103 13 20 

   3.00 98 13 18 

   1.00 103 14 20 

Marbofloxacin 1.44 1.58 2.00 97 14 15 

   3.00 101 8 10 

   1.00 98 13 17 

Florfenicol 1.39 1.89 2.00 101 12 17 

   3.00 100 8 9 

   1.00 92 6 12 

Florfenicol amine 1.37 1.48 2.00 104 11 15 

   3.00 97 10 11 

   1.00 87 14 15 

Chloramphenicol 1.03 1.34 2.00 91 11 13 

   3.00 91 11 12 

   0.50 89 13 17 

Flumequine 0.54 0.83 1.00 89 11 15 
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   1.50 91 9 11 

   1.00 92 7 11 

Chlortetracycline  1.26 1.48 2.00 103 5 11 

   3.00 98 7 10 

   0.50 104 14 20 

Doxycycline 0.56 0.74 1.00 96 13 20 

   1.50 101 12 13 

   0.50 102 10 16 

Oxytetracycline 0.51 0.72 1.00 98 8 15 

   1.50 101 9 9 

   0.50 99 14 20 

Tetracycline  0.53 0.65 1.00 113 10 12 

   1.50 96 9 10 

   1.00 101 14 20 

Lincomycin 1.15 1.29 2.00 99 13 17 

   3.00 100 11 12 

   1.00 86 14 20 

Sulphathiazole  1.16 1.31 2.00 96 10 17 

   3.00 99 9 11 

   1.00 101 8 11 

Sulphadimidine 1.13 1.25 2.00 99 7 9 

   3.00 100 7 7 

   1.00 102 11 18 

Sulphadiazine 1.09 1.36 2.00 102 9 15 

   3.00 104 9 11 

   1.00 87 12 19 

Sulphadimethoxine 1.14 1.45 2.00 89 11 13 

   3.00 93 10 11 

   1.00 90 12 19 

Trimethoprim 1.11 1.39 2.00 91 9 15 

   3.00 91 7 12 

   5.00 89 14 18 

Erythromycin 5.23 5.54 10.00 87 10 11 

   15.00 92 9 10 

   1.00 91 12 19 

Tylosin 1.07 1.21 2.00 94 11 13 

   3.00 95 7 13 

*The concentrations were expressed in ng g 
-1

 wet weight. 
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3.9.3. Results and discussion 

3.9.3.1 Validation performances 

The selectivity of the method, assessed by injecting blank samples (20 mussel and 20 

clam samples), did not show any interference (signals, peaks, ion traces) in the region 

of interest, i.e. where the target analytes were expected to be eluted. The selectivity 

also showed a good compliance with the relative RTs for each analyte, which were 

found to be within 2.5% tolerance, when compared with the standards, with peaks 

having a signal-to-noise ratio > 3. Moreover, the three chosen transitions showed an ion 

ratio within the recommended tolerances (European Union, 2002), when compared with 

the standards. The mean recoveries for all analytes ranged between 86113%. The 

matrix validation curves also demonstrated a good fit for all analytes, with correlation 

coefficients > 0.99.  

The intra- and inter-day repeatability values, which were calculated using one-way 

analysis of variance and expressed as coefficients of variation, were below 14 and 20%, 

respectively. These values were lower than the variability of 22% indicated by 

Thompson (2000). The CCα ranged from 0.515.76 ng g-1 wet weight, and CCβ values 

from 0.655.93 ng g-1 wet weight (Table 2). Also, the method ruggedness was good in 

the considered matrices. A modest matrix effect was found, with values ranging from 

86115% for the various compounds in the mussel and clam samples. 

 

3.9.3.2 Investigation on clams and mussels from the food chain 

The developed and validated method was applied to the analyses of 50 mussel and 50 

clam pooled samples, both wild and farmed, collected from various FAO zones and 

locations within Italy. The samples were completely anonymous and randomly collected 

from the food chain. Four tetracyclines (49.45 ng g-1 tetracycline, 125.03 ng g-1 

oxytetracycline, 60.45 ng g-1 doxycycline and 77.48 ng g-1 chlortetracycline) were 

detected in one pool of farmed clams obtained from the Italian side of the North Adriatic 

Sea (Table 3). Figure 2 presents the chromatograms and the MS spectra of the four 

tetracyclines detected in this pool, as an example.  
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Figure 2. Chromatograms and MS spectra of the clams in which the four tetracyclines were found. 

 

In this instance, the oxytetracycline concentration was higher than the MRL of 100 ng g-

1 (European Union, 2010) set for fish. The finding of the four tetracyclines in this pool of 

farmed clams should be correlated with an intentional treatment. Tetracycline was also 

found, at low concentration (0.55 ng g-1) in a pool of farmed mussels from Atlantic 

Spain, depurated in a plant in North Italy. The quinolone, flumequine, was found in two 

other pools, one of mussels (3.59 ng g-1) and one of clams (0.84 ng g-1), from two 

different Italian farms in the North Adriatic Sea. In these instances, the detection of 

antibiotics concerned only farmed mussels or clams. As stated by Cabello (2006), the 

heavy prophylactic use of antibiotics in aquaculture is well known. 

Among the various antibiotics used in fish treatments, oxytetracycline is commonly 

prescribed against bacterial diseases for its wide antibacterial spectrum, its potency and 

its low cost. Doses usually administered by fish farmers are often higher than the 

recommended 50100 mg kg-1 fish day-1, for 710 d (Le Bris, Pouliquen, Debernardi, 

Buchet, & Pinault, 1995). 

In the European Union, the cultivation methods of shellfish, with some minor 

differences, provide the distribution of juvenile molluscs on structures located in the 

open sea (Baylon, 1990). The use of antibiotics in these conditions would predictably 

lead to a dilution of these drugs, minimising their effect. After a period of about 20 
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months, before they are sold, the shellfish must undergo a depuration (few hours to 

days) in filtered and daily renewed seawater or in natural sites that meet the 

requirements of the EC Regulation No 853/2004 regarding the microbiological 

characteristics, chemical pollution and biotoxins present in the water of the culture area 

(European Union, 2004). The detection of four positive samples out of 100 (just one of 

which was non-compliant), seemed to confirm the previous statement on the possibility 

of antibiotic dilution in the open sea and the efficacy of the depuration treatment. It is 

moreover conceivable an illicit use of antimicrobials in the depuration step, to diminish 

or nullify the bacterial load in shellfish. The presence of tetracycline in a pool of mussels 

grown in Atlantic Spain and depurated in a plant of North Italy, suggested illegal practice 

had occurred because the antimicrobial was only detected in the shellfish from Italy. 

Conversely, oxytetracycline and oxolinic acid are bioaccumulated by the blue mussels 

(Le Bris & Pouliquen, 2004) and this observation could provide an alternative 

explanation for the presence of tetracyclines in mussels. Moreover, the availability of 

oxytetracycline from sediment, the formation of complexes between this antibiotic and 

some mineral or organic components of the bivalves, and their low xenobiotic 

metabolism, as proved in the study of Le Bris et al. (1995) could explain the persistence 

of oxytetracycline in shellfish and consequently our results. The relatively stable 

oxytetracycline concentration in the clam Scrobicularia plana (up to 20 d) (Le Bris et 

al.,1995), supports the highest concentration of tetracyclines detected in one of our 

clam samples, particularly, considering they are grown “on land” between mud and 

sediments, a favourable environment for oxytetracycline accessibility, as above-

mentioned and that the depuration of shellfish lasts around 48 h, explaining the 

persistence of this antibiotic. Finally, because of the scarcity of positive samples, no 

argumentation could be made about the differences between species and marine layer. 

Low antibiotic concentrations were also reported in the study of Dodder et al. (2014), 

where they studied and found only few target antibiotics (lomefloxacin, enrofloxacin, 

sulfamethazine and erythromycin at the mean concentrations of  29, 1.3, 24 and 0.14 ng 

g-1 dry weight, respectively) but with a higher detection frequency from 17 to 94 % 

related to 68 mussel sampling stations of the coast of California collected from 

November 2009 and April 2010. Our results were reassuring if compared with the study 
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of Li et al. (2012), where all 22 target antibiotics of three classes, except tylosin were 

detected in the 190 molluscs samples of Bohai Sea of China. Their results, showed 

quinolones as the major compounds with concentrations of 0.71-1575.10 µg kg-1, which 

were up to two orders of magnitude higher than those of sulphonamides (0-76.75 µg kg-

1) and macrolides (0-36.21 µg kg-1). But in that study, they didn’t discriminate the 

different antibiotics among the different molluscs analysed. 

Finally, in the light of our results, we can say that the MRLs, are slightly exceeded only 

in one clam sample, as already elucidated above. However, considering the annual Per 

capita consumption of 0.33 Kg clams (European Commission, 2016), the daily 

consumption is 0.91 g; the result of the multiplication of this value by the sum of the 

concentrations of the four tetracyclines (312.41 ng g-1) found in the clam sample of 

North Adriatic Sea, is 0.29 µg day-1. This datum could represents a risk mainly 

associated with the increase of antibiotic resistance phenomenon. Instead, due to the 

lack of detections, we cannot estimate a potential risk for the environment.  

 

Table 3. List of the detected samples, their provenience and antibiotic concentration expressed in ng g
-1

 

wet weight. 

Sample 

provenience 

Tetracycline 

(ng g
-1

) 

Oxytetracycline 

(ng g
-1

) 

Doxycycline 

(ng g
-1

) 

Chlortetracycline 

(ng g
-1

) 

Flumequine 

(ng g
-1

) 

Clams 

North Adriatic 

Sea 

49.45 125.03 60.45 77.48  

Mussels 

Atlantic Spain 
0.55     

Mussels 

North Adriatic 

Sea 

    3.59 

Clams 

North Adriatic 

Sea 

    0.84 

 

3.9.4. Conclusions 
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In this study we developed, optimised and validated a multiclass HPLC-MS/MS method 

for analysis of 29 antibiotics, belonging to eight different chemical classes, in mussel 

and clam samples. The aim was to monitor the eventual presence of antibiotics in 

various FAO marine zones, with particular attention on Italian seas, considering that 

antibiotic occurrence is available in wastewater. The two different matrices, mussels 

and clams never compared before, were chosen to study antibiotic bioaccumulation in 

distinct marine layers, given that the first grow, primarily, on the surface and the second 

in shallow. Even if the method had detection limits well lower than the MRLs, useful to 

increase the proportion of quantified data and accurately monitor the presence of 

antibiotics due to the antibiotic resistance matter, only few detections had been 

registered, although, in one instance, the oxytetracycline content was higher than the 

MRL recommended for fish. 
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Abstract 

Perfluoroalkyl substances (PFASs) contain one or more carbon-bound hydrogens 

substituted by fluorine. Since the 1950s, these compounds have been used to 

manufacture fat- and water-resistant fabrics, paper and food containers, and to produce 

photographic films, firefighting foams, detergents and insecticides. The widespread use 

and global distribution of PFASs, have led to their accumulation in the environment. 

Food, particularly fish and other seafood, is considered the main route of human 

exposure to PFASs. Consequently, the European Food Safety Authority (EFSA) 

recommends that more data be collected, to build a database on the contamination 

levels of the individual PFASs in food, to evaluate a reliable chronic risk to the European 

consumers. This requires high-sensitivity analytical methods, to increase the number of 

quantifiable samples and, thereby, improve the credibility of exposure assessments. In 

this context, the aim of the present research is to develop and validate a sensitive and 

specific method based on high-performance liquid chromatography-high resolution 

mass spectrometry (HPLC-HRMS) analysis, to monitor the presence of 16 PFASs in 

Italian eels (Anguilla anguilla) from the Italian Lake Garda. The detection limits (CCα) 

and detection capability (CCβ) in the order of pg g-1, the recoveries between 80-101% 

and the other validation parameters fulfilled the requirements of Commission Decision 

657/2002/EC. The identification and quantification of PFASs, up to 11 in the same 

sample, showed a similar distribution among 90 eels. Perfluorooctane sulphonic acid 

(PFOS) and perfluorobutanoic acid (PFBA) were the analytes more frequently found in 

the eel samples (94 and 82%, respectively). 

Keywords Perfluoroalkyl substances; Eels; LC-HRMS; Food safety. 

 

Highlights 

Perfluoroalkyl substances (PFASs) accumulate in environment and in human through 

diet.  

One sensitive HPLC-HRMS method for PFASs in eels is reported. 

Eels from the Lake Garda in North Italy were analysed. 

Up to eleven PFASs were contemporaneously detected in several eel samples. 
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3.10.1. Introduction 

Perfluoroalkyl substances (PFASs) are molecules, in which one or more carbon-

hydrogen (C-H) bonds, are replaced by carbon-fluorine (C-F) bonds (Lau et al. 2004). 

Fluorine is a reactive element in its ionic form and very stable in a bound form. 

Therefore, perfluorocarbons are stable in the environment, even at > 150 °C, are non-

flammable, not subject to photolysis and not readily degraded by alkalis, strong acids or 

oxidising agents. These stability characteristics make them non-biodegradable and 

highly persistent in the environment (Lau, Butenhoff, & Rogers, 2004). Perfluoroalkyl 

acids have also a unique partitioning behaviour that reveals their hydrophobic and 

oleophobic nature when they are mixed with water and hydrocarbons, forming three 

immiscible phases. By attaching a charged moiety, such as carboxylic acid, sulphonic 

acid, or phosphate, to the perfluorinated chain, the molecule becomes more hydrophilic. 

All known, biologically produced, fluorinated organics contain only one fluorine atom. 

However, partially or fully fluorinated organic molecules are synthesised in the 

laboratory on a large-scale, for their many useful properties (Key, Howell, & Criddle, 

1997). 

PFASs are used in a lot of industrial and chemical sectors, as well as for packaging 

materials, fire-extinguishing fluids, textiles, carpets, paper, furniture, floor polishing 

agents, cleaning agents, varnish, polish, photograph paper, and insecticides (3M 

Company, 1999). The global utilisation and distribution of PFASs, has caused their 

accumulation in the environment and human body. Perfluorooctane sulphonic acid 

(PFOS) and perfluorooctanoic acid (PFOA) are the most common PFASs. Both cause 

adverse health effects and have shown immunotoxicity, hepatotoxicity, neurobehavioral 

toxicity, developmental toxicity, reproductive toxicity, lung toxicity, hormonal effects, 

weak genotoxic and carcinogenic potential (Eriksen, Raaschou-Nielsen, Sørensen, 

Roursgaard, Loft, & Møller, 2010; Pinkas, Slotkin, Brick-Turin, Van der Zee, & Yanai, 

2010). 

Food, particularly fish and other seafood, is considered the main exposure route to 

PFASs in the human population. However, scarce information is available in the 

literature about the detection of PFASs in eels. One research report focused on the 

detection of PFOS in the liver of three freshwater fish species (gibel carp, carp and eel), 
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in Belgium (Hoff et al. 2005). In another study, PFOS and PFOA residues were 

investigated in 51 wild eels, among other wild fish, in Germany (Schuetze, Heberer, 

Effkemann, & Juergensen 2010). Kwadijk et al. (2010) measured the distribution of 15 

PFASs among water, sediment and eels, in The Netherlands. Furthermore, PFOA and 

PFOS in the organs of 35 wild eels, from two Italian locations, were analysed by Giari et 

al. (2015).  

Food exposure can derive by accumulation from the environment or by contact with 

cookware or packaging materials containing PFASs (Trier, Granby, & 

Christensen,2011). The EFSA Panel on Contaminants in the Food Chain (CONTAM) 

set a tolerable daily intake (TDI) of 150 ng kg-1 body weight (b.w.) per day for PFOS and 

1500 ng kg-1 b.w. per day for PFOA (EFSA, 2008). However, the scarce data allowed 

only a limited exposure assessment. Therefore, CONTAM recommended increasing the 

database, through more studies about PFASs in food, by evaluating the contamination 

levels, which would improve the accuracy of the chronic dietary exposure risk to the 

European populations (EFSA, 2012). For this purpose, high-sensitivity analytical 

methods that increase the proportion of quantified data and accurately monitor PFASs 

in food, are required, thereby, improving the reliability of the exposure assessments. 

Regarding the analytical strategies present in literature, the extraction of perfluorinated 

compounds from biological samples is usually performed through an alkaline digestion 

with potassium hydroxide (KOH) (So et al., 2006) or the ion-pair extraction method 

(Hansen et al., 2001) based on ion pairing of the ionic PFASs with tetra-

nbutylammonium hydrogensulfate (TBA), followed by a liquid–solid extraction with 

methyl-tert-butylether (MTBE). For purification of the samples the HLB, WAX cartridges 

or Dispersive Envi-carb are used based on the different matrices (van Leeuwen and de 

Boer, 2007). Several methods based on liquid chromatography coupled with triple 

quadrupole mass spectrometry (MS), have been proposed in the literature for the 

analysis of PFASs, for several matrices. Also in the few studies on eels 

reported above, the analyses were performed by LC-MS/MS system. In particular, high-

resolution mass spectrometry (HRMS) represents a powerful tool for the determination 

of trace analysis of various compounds in complex matrices. The advantages of 

Orbitrap-MS, such as the high MS resolving power and mass accuracy down to 1 ppm, 
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combined with the rapid scan speed, results in high sensitivity, selectivity and 

specificity, providing new improvements for confirmatory analytical methods, in the 

challenge against emerging contaminants (Krauss et al.,2010).  

In this context, the present research aimed to develop and validate a sensitive and 

specific method based on high-performance liquid chromatography-high resolution 

mass spectrometry (HPLC-HRMS) analysis, to monitor the presence of 16 PFASs in 

Italian eels (Anguilla anguilla) from Lake Garda (Northern Italy). The choice of eel was 

due to the authors’ assumption of potential bioaccumulation of PFASs in this species, 

facilitated by their length and body composition and, also, because it is an edible matrix, 

intended for human consumption. Moreover, Lake Garda is a semi-enclosed 

environment, which has shown an increasing pollution level in recent years, in which the 

majority of plastic particles have been found (Imhof, Ivleva, Schmid, Niessner, & 

Laforsch, 2013). 

 

3.10.2. Materials and Methods 

3.10.2.1. Chemicals and reagents 

All solvents were of HPLC or analytical grade and were purchased from Fluka (Sigma-

Aldrich, St. Louis, MO, USA). Water was purified by a Milli-Q system (Millipore, Merck 

KGaA, Darmstadt, Germany). The extraction cartridges (Oasis HLB WAX 3 mL, 60 mg) 

were provided by Waters (Milford, MA, USA). Sixteen perfluorinated compounds 

including both perfluorinated sulphonates and perfluorinated carboxylates, were 

examined in this study: perfluorobutanoic acid (PFBA), perfluoropentanoic acid 

(PFPeA), perfluorohexanoic acid (PFHxA), perfluorobutane sulphonic acid (PFBS), 

perfluoroheptanoic acid (PFHpA), PFOA, perfluorohexane sulphonate (PFHxS), 

perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), PFOS, 

perfluorododecanoic acid (PFDoA), perfluoroundecanoic acid (PFUnDA), 

perfluorotridecanoic acid (PFTrDA), perfluorotetradecanoic acid (PFTeDA), 

perfluorohexadecanoic acid (PFHxDA), and perfluorooctadecanoic acid (PFODA) (see 

Table 1 for the formula pertaining to the individual compounds). All these compounds 

and the two 13C-labeled internal standards (ISs) perfluoro-[1,2,3,4,5-13C5]nonanoic acid 

(MPFNA) and perfluoro-[1,2,3,4-13C4]octanesulfonic acid (MPFOS) were purchased 
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from Fluka. Ammonium formate, sodium acetate, acetic acid (99.9%) and 25% 

ammonia solution, were purchased from Fluka. 

 

3.10.2.2. Sample collection 

Ninety farmed eel samples (average weight 909.2 ± 434.1 g; average length 74.5 ±10.0 

cm; average fat percentage 26.1 ± 5.4 %), were collected from Lake Garda (Northern 

Italy). The samples were immediately taken to the laboratory and eviscerated. As the 

high water content of many food samples previously showed to affect the extraction 

performance of PFASs, we lyophilised eel muscle tissues, according to other studies 

that used freeze-drying prior the sample clean-up (Vestergren et al., 2012). Then the 

samples were stored at 4°C until the analysis. 

 

3.10.2.3. Standard solutions 

Stock solutions (1 mg mL-1) of each standard, were prepared in methanol and kept at -

20°C. Working solutions, containing each of the studied analytes, at 10 and 100 ng mL-

1, were prepared daily. Each working solution was maintained at 4°C, during the method 

validation procedures. 

 

3.10.2.4. Sample extraction 

A 2-g aliquot of lyophilised eel sample, was spiked with the two ISs, to obtain a final 

concentration of 5 ng mL-1. Then, 10 mL acetonitrile was added for the protein 

precipitation and analytes extraction, before the sample was vortexed and sonicated for 

15 min. After centrifugation (2500×g, 4 °C for 10 min), the supernatant was transferred 

to a glass flask and rotary evaporated to dryness at 35°C. The extract was suspended 

in 10 mL water and solid-phase extraction (SPE) performed using Oasis WAX-SPE 

cartridges under vacuum, for further purification and extraction. The SPE cartridges 

were preconditioned with 3 mL of 0.5% ammonium hydroxide (NH4OH) in MeOH, 3 mL 

MeOH and 3 mL Milli-Q water. The sample was loaded, and, then, the cartridges were 

washed with 3 mL of 25 mM acetate buffer, pH 4.5, to remove interferences, as well as 

lipids or proteins and to improve adsorption of target anions to the cartridge, followed by 

2 mL MeOH. Finally, the compounds were eluted using 3 mL of 0.5% NH4OH in MeOH 
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and were collected in a 15-mL polypropylene tube. The eluate was rotary evaporated at 

35°C. The dried extract was reconstituted in 100 µL of 20 mM MeOH:ammonium 

formiate (10:90 v/v), and, then, transferred to an auto-sampler vial. The injection volume 

was 10 µL. The method was developed and optimised, taking into consideration the 

work of Taniyasu et al. (2005), about the different effect of pH of acetate buffer, the 

percentage of NH4OH in MeOH, and the influence of elution volume of NH4OH in 

MeOH, on recoveries of PFASs. Moreover, considering the ubiquity of PFASs in the 

environment of analytical laboratories, several precautions were taken, such as washing 

glassware with MeOH and the execution of at least 10 procedural blanks, on the 

analysis days, to subtract any background contamination. 

 

3.10.2.5. HPLC-HRMS analyses 

HPLC analysis was performed by an HPLC system (Thermo Fisher Scientific, San Jose, 

CA, USA), equipped with a Surveyor MS quaternary pump and degasser, a Surveyor 

AS autosampler and column oven, and a Rheodyne valve with a 20-μL loop. The 

analytes were chromatographically separated, using a Synergi Hydro-RP reverse-phase 

HPLC column (150 × 2.0 mm, i.d. 4 µm), with a C18 guard column (4 × 3.0 mm; 

Phenomenex, Torrance, CA, USA). Stainless-steel tubes and peeks were used, to 

minimise background PFAS contamination in the system. Moreover, since PFOA and 

PFOS were always present in the blank of the chromatographic system, a small 

Megabond WR C18 column (5 cm × 4.6 mm, i.d. 10 µm) was introduced between the 

pump and injector, to allow delaying the target analytes by 2 min compared to those 

already present in the system.  

The mobile phase used for the gradient, consisted of a binary mixture of solvents A (20 

mM aqueous ammonium formate) and B (MeOH). The elution started with 10% B, which 

increased to 40% in 4 min. Subsequently, mobile phase B was gradually increased to 

95% at the 12th min, which remained constant up to the 18th min. The initial conditions 

were reached in the 20th min, with an equilibration time of 7 min. The run was 

performed at 0.3 mL min-1.  

The detector, was a Thermo Q-Exactive Plus (Thermo Scientific, San Jose, CA, USA), 

equipped with a heated electrospray ionisation (HESI) source. Capillary and vaporiser 
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temperatures were set at 330 and 280°C, respectively, while the electrospray voltage 

was set at 3.50 kV, operating in negative mode. The sheath and auxiliary gas were set 

at 35 and 15 arbitrary units (AU). Xcalibur 3.0 software (Thermo Fisher Scientific, San 

Jose, CA, USA) was used to control the HPLC-HRMS system. The exact mass of the 

compounds was calculated, using Qual Browser in Xcalibur 3.0 software. Instrument 

calibration was done every analytical session, using LTQ Velos ESI negative ion 

calibration solution (Pierce Biotechnology Inc., Rockford, IL, USA).  

The full scan (FS) acquisition was combined with a data-independent acquisition (DIA) 

strategy, providing the MS2 spectra for a confirmatory response, based on an inclusion 

list. The FS resolution was 70,000 FWHM. On the basis of the compound list, a scan 

range of 200–950 m/z was chosen; the automatic gain control (AGC) was set at 1E6, 

and the maximum injection time was 200 ms. The DIA segment operated in negative 

mode at 35,000 FWHM. The AGC target was set to 5E4, with the maximum injection 

time of 100 ms. The precursor ions are filtered by the quadrupole, which operates at an 

isolation window of 2 m/z. Fragmentation of the precursors was optimised with a two-

step normalised collision energy (10 and 70 eV). The mass tolerance window was set to 

2 ppm. Detection of the analytes was based on the retention time (RT) of the target 

compounds, and on the calculated exact mass of the deprotonated molecular ions, and 

at least one specific and typical fragment (Table 1). The formula of the compounds, with 

the exact theoretical mass of the parents and the diagnostic transition, used to confirm 

the various PFASs, are reported in Table 1. The extracted parent ion chromatograms, 

acquired from FS analysis of each analyte in the matrix, are reported in Fig. 1. 

Acquisition data were recorded and elaborated using Xcalibur™ software (Thermo 

Fisher). 

 

3.10.2.6. Method validation 

After the identification of the “blank” eel samples, based on a preliminary screening, the 

validation was performed according to the criteria of the Commission Decision 

657/2002/EC (European Community, 2002). For each compound, the method 

performance was assessed, through both qualitative and quantitative parameters, 

providing molecular identification in terms of RT and transition ion ratios; evaluating 
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recovery, linearity, accuracy in terms of trueness, precision as intra- and inter-day 

repeatability; and through the analytical decision limit (CCα) and detection capability 

(CCβ), as indicated in SANCO/2004/2726-revision 4 (European Community, 2008). 

Twenty blank samples were analysed, to evaluate specificity and selectivity, check for 

any interference (signals, peaks, ion traces), verify the presence of analytes by a signal-

to-noise (S/N) ratio of >3 at the expected RT, and to confirm the ion abundance ratio for 

the different fragmentations. Validation was performed, by spiking the eel samples at 

three concentration levels in six replicates, repeated for three independent days, 

resulting in three analytical series (matrix validation curves). The three concentration 

levels (C0, 2C0, and 3C0) were previously chosen, according to the minimum 

concentration detectable with the instrumentation (C0) used, for each analyte (Table 2). 

The instrumental linearity was also evaluated, by drawing six-point calibration curves for 

the solvent containing a fixed amount of the ISs (5 ng mL−1) and the initial analyte 

concentration, corresponding to C0 up to 100 ng mL−1, for all analytes. The recovery, 

expressed as a percentage of the measured concentration with respect to the spiked 

concentration, was evaluated using the data from the validation points of the three 

analytical series. The precision, in terms of intra- and inter-day repeatability, was 

evaluated by calculating the relative standard deviation of the results obtained from the 

six replicates of each analyte, at the three concentration levels during the three 

analytical series. Robustness was evaluated, using the approach of Youden (European 

Community, 2002). The seven factors selected for the robustness study were: the 

volume of acetonitrile used for extraction and protein precipitation, the sonication time, 

the centrifugation time, the centrifugation temperature, the percentage and the volume 

of ammonium hydroxide (NH4OH) in MeOH using during the SPE purification and the 

temperature of the rotary evaporator.The matrix effect was assessed based on 

Matuszewski et al. (2003), by calculating the percentage ratio between the 

corresponding peak areas of the standards spiked after extraction and the peak areas 

of the neat standard solution.  

 

3.10.3. Results and Discussion 

3.10.3.1. Development and optimisation of sample preparation 
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The method was developed and optimised, taking into consideration the work of 

Taniyasu et al. (2005), that reported useful comparisons about the different effect of pH 

of acetate buffer, the percentage of NH4OH in MeOH, and the influence of elution 

volume of NH4OH in MeOH on extraction and consequently on recoveries of PFASs. In 

particular, the samples considered in the work were water and biota pre-treated through 

an alkaline digestion before the WAX SPE. We chose acetonitrile for the pretreatment 

step because was useful not only for the extraction but also for protein precipitation to 

avoid interferences during analysis. As regard WAX purification, we decreased the 

volumes of the solutions and solvents used during the SPE, we used a higher 

percentage (0.5 % instead of 0.1%) of NH4OH in MeOH and we analysed only the final 

eluate because it was purified by any interference and contained all the analytes we 

were interested in. The choices and modifications made to the sample clean-up protocol 

have been fundamental to obtain satisfactory validation parameters, reported and 

discussed in the next paragraph. 

 

3.10.3.2. Validation performance 

 

The method showed high specificity, without interference signals close to the RT of the 

analytes. Consequently, a high S/N ratio in the presence of analytes, even at 

concentrations in the order of pg g-1, was demonstrated. Selectivity demonstrated a 

good compliance with the relative RTs for each analyte, which, in this instance, was 

within 2.5% tolerance, with an S/N ratio >3, when compared with the standard solution 

mix, both in FS and MS2 chromatograms. Moreover, diagnostic fragments showed an 

ion ratio within the recommended tolerances (European Community, 2002). The mean 

recoveries for all analytes ranged between 80 and 117%, indicating the efficiency of the 

extraction protocol. 

The matrix validation curves were linear over the working range, demonstrating a good 

fit for all analytes with an R2 > 0.99. Precision, in terms of intra- and inter-day 

repeatability (Thompson 2000), were calculated using one-way analysis of variance 

(ANOVA), expressed as coefficients of variation (CVs), and were below 19 and 21%, 

respectively. The detection limits (CCα) ranged from 535 pg g-1 and detection 
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capability (CCβ) from 839 pg g-1 (Table 2). These limits indicate the potentiality of the 

method to detect these emergent analytes that currently, do not have established 

maximum residue limits in edible matrices. Our detection limits resulted lower than the 

ones in the few literature studies regarding the detection of PFASs in eels. In the work 

of Hoof et al. (2005) about PFOS and other organohalogen pollutants in liver of three 

freshwater fish species of Belgium, the detection limits ranged from 0.1 to 1 ng g-1 wet 

weight; in the study of Schuetze et al. (2010) LODs were 0.019 and 0.27 μg kg−1 fresh 

weight for PFOS and PFOA, respectively; in the study of Kwadijk et al. (2010) about 

distribution of perfluorinated compounds in aquatic systems in The Netherlands, no 

information regarding the detection limits is reported.The Youden approach showed a 

good robustness. There was a modest matrix effect, with values ranging from 84 to 

109%, for the studied compounds. 

 

3.10.3.3. Application in eel samples 

The optimised and validated method, was then applied to the analysis of 90 lyophilised 

eel samples, farmed and collected from Lake Garda. The results showed the presence 

of several PFASs, up to 11 in the same eel. The average concentrations, standard 

deviations and the percentage of positivity, are reported in Table 3. The distribution of 

the various contaminants, in the order of ng g-1, was mostly similar in each sample, 

representing the low contamination level of the lake, without any relation to the weight, 

length or the percentage of animal fat. Usually organic molecules tend to transfer from 

abiotic to biotic compartments, with persistent lipophilic compounds concentrating in the 

adipose tissue, but this partitioning approach cannot be applied to the bioaccumulation 

of perfluorinated compounds (Houde et al., 2006), for their proteinophilic nature (Jones 

et al. 2003). PFOS was the analyte found more frequently but the average 

concentrations did not appear concerning, although they were slightly higher than the 

average muscle concentrations (0.89 ± 0.58 ng g−1wet weight) present in the eels from 

north Italian waters (Giari, Guerranti, Perra, Lanzoni, Fano, & Castaldelli, 2015) but 

considerably lower than those reported in eel liver (17 to 9031 ng g−1 wet weight) in 

Belgium (Hoff et al. 2005), in eel muscle tissue (37 to 83 ng g−1 wet weight) in Germany 

(Schuetze et al. 2010), and in eel tissue (7 to 58 ng g−1 wet weight) in The Netherlands 
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(Kwadijk, Korytár, & Koelmans 2010). PFOS was found to be the predominant 

compound in all eel samples of the Netherlands (Kwadijk et al., 2010), with 

concentrations ranging from 7 to 58 ng g-1 wet weight. In the same work PFHxS and 

PFDoA, were the PFASs detected at the next highest level, approximately 10 times 

lower than that of PFOS. These three PFASs were also the only compounds to be 

detected in all the samples.  

The PFOA concentrations were also remarkably lower than the previous above-

mentioned studies. In the current study, the highest concentrations found in the eel 

samples were associated with PFBA, with a wide standard deviation, which was 

observed for the sulphonate form (PFBS) in the sediment and water samples of The 

Netherlands that was attributed to various sources, given the presence of industries 

along the Rhine (Kwadijk et al. 2010). In this last work, although at some locations 

PFBS was not detected in the water samples, low levels of PFBS were detected in eel 

(0.1−2.3 ng g-1 of wet weight), despite the fact that PFBS is considered 

nonbioaccumulative (Conder et al., 2008): the absence of PFBS in our eel samples 

agrees with the statement of no bioaccumulation. Based on the literature and the 

findings of the Water Research Foundation project #4322 (Fulmer, 2016), conventional 

treatment at wastewater treatment plants and most drinking water treatment plants, is 

ineffective at removing short-chain PFASs, as well as PFBA from water. This could 

explain the higher level of PFBA in respect to other PFASs in our samples. In a study on 

distribution and sources of polyfluoroalkyl substances in the River Rhine watershed, the 

dominant concentration of PFBA likely originated from industrial point sources (Möller et 

al., 2010). In another work about the sources of polyfluoroalkyl compounds in the North 

Sea, Baltic Sea and Norwegian Sea, the Authors hypothesised that an additional water 

contamination source can be the contaminated sewage sludge applied to neighboring 

agricultural fields (Ahrens et al., 2010). It should be emphasised that this analyte was 

always present, even in the background contamination of the extractive procedure, but 

a maximum 4 ng g-1 was detected, in the analysis of a batch of 10 procedural blanks, 

during each analytical session.  

 

3.10.4.Conclusion 
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The HPLC-HRMS Orbitrap represents a powerful technical approach, for the analysis of 

emerging contaminants, due to its resolving power and scanning speeds that contribute 

to the high selectivity, specificity and sensitivity of the instrumentation. Moreover, the 

effectiveness of the extraction method, facilitated the instrumental analysis, by the lack 

of particular interferences, considering the complexity of the studied matrix: A. anguilla. 

Application of the validated method, to the analysis of 90 farmed eel samples collected 

from Lake Garda, showed a homogeneous situation of modest PFASs contamination 

compared to eels from other European countries, despite simultaneous detection of up 

to 11 compounds, in each sample. 
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Table 1 Main information of investigated PFASs (formula, parent, main product, polarity and retention 

time (RT)) 

Compound
a 

Formula Parent [m/z] 

Main 

product 

[m/z] 

Polarity 
RT 

(min) 

PFBA C4HF7O2 212.97920 168.98836 (-) 9.07 

PFPeA C5HF9O2 262.97601 218.98560 (-) 11.68 

PFBS C4F9HO3S 298.94299 98.95434 (-) 12.02 

PFHxA C6HF11O2 312.97281 268.98288 (-) 13.22 

PFHpA C7HF13O2 362.96962 318.97949 (-) 14.36 

PFHxS C6F13HO3S 398.93660 98.95437 (-) 14.39 

PFOA C8HF15O2 412.96643 368.97681 (-) 15.27 

PFNA C9HF17O2 462.96323 418.97385 (-) 16.03 

PFOS C8F17HO3S 498.93022 79.95598 (-) 16.00 

PFDA C10HF19O2 512.96004 468.97064 (-) 17.96 

PFUnDA C11HF21O2 562.95684 518.96729 (-) 18.48 

PFDoA C12HF23O2 612.95365 568.96387 (-) 18.98 

PFTrDA C13HF25O2 662.95046 618.96057 (-) 19.50 

PFTeDA C14HF27O2 712.94726 668.95823 (-) 20.06 

PFHxDA C16HF31O2 812.94088 768.95184 (-) 20.80 

PFODA C18HF35O2 912.93449 868.94513 (-) 21.81 

MPFNA [13]C5C4HF17O2 467.98001 422.98703 (-) 16.03 

MPFOS [13]C4C4F17HO3S 502.94364 79.95592 (-) 16.00 

 a
 Refer to text (materials and methods section) for full names of the abbreviated compounds 
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Table 2 Validation parameters
a
 of the investigated perfluoroalkyl substances (PFASs) 

PFAS
b 

C0, 2C0, 3C0 

(pg g
-1

)
c 

CCα  

(pg g
-1

)
 

CCβ  

(pg g
-1

) 

Recovery 

% 

CV% 

Intra-day 

CV%  

Inter-day 

PFBA 5, 10, 15 10 12 80 5 18 

PFPeA 10, 20, 30 12 15 117 12 12 

PFBS 10, 20, 30 12 15 105 10 14 

PFHxA 20, 40, 60 30 35 113 4 10 

PFHpA 5, 10, 15 10 12 115 4 8 

PFHxS 15, 30, 35 20 25 105 7 9 

PFOA 5, 10, 15 8 10 116 3 7 

PFNA 5, 10, 15 10 12 93 11 18 

PFOS 5, 10, 15 5 8 80 14 20 

PFDA 20, 40, 60 25 30 80 14 20 

PFUnDA 20, 40, 60 30 35 82 6 16 

PFDoA 20, 40, 60 35 39 88 7 12 

PFTrDA 15, 30, 35 20 25 89 6 10 

PFTeDA 5, 10, 15 10 13 93 17 20 

PFHxDA 5, 10, 15 8 10 87 19 20 

PFODA 5, 10, 15 10 12 85 19 21 

a 
According to Commission Decision 657/2002/CE (European Community 2002). 

b
 Refer to text (materials and methods section) for full names of the abbreviated compounds 

c
 Validation was performed, by spiking the eel samples at three concentration levels (C0, 2C0, 

3C0), in six replicates, repeated for three independent days, resulting in three analytical series 

(matrix validation curves) 

CCα: decision limit; CCβ: detection capability; CV: coefficient of variation 
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Table 3 Distribution of perfluoroalkyl substances in Italian eel samples from Garda lake (ng g
-1

) 

Compounds
a
 

Average 

(ng g-1) 

Standard 

deviation (±) 
Median % Positives 

PFBA 16.66 23.65 8.56 82 

PFPeA 0.01 0.02 0.00 7 

PFHpA 0.01 0.06 0.00 6 

PFOA 0.39 0.26 0.39 77 

PFNA 0.69 0.66 0.64 74 

PFOS 4.74 4.06 3.75 94 

PFDA 1.71 1.75 1.34 82 

PFUnDA 0.14 0.57 0.00 11 

PFDoA 1.11 2.13 0.04 51 

PFTrDA 0.40 0.77 0.00 42 

PFTeDA 0.94 3.40 0.00 23 

a
 Refer to text (materials and methods section) for full names of the abbreviated compounds 
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Fig. 1 Extracted parent ion chromatograms from full scan HPLC-HRMS analysis of each PFAS in the eel 

matrix, at the lowest validation level. 
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Abstract 

Reviewing the presence of contaminant residues is important both for food safety and 

monitoring of environmental pollution. Here, the occurrence of 6 polychlorinated 

biphenyls (PCBs), 15 organochlorine pesticides (OCPs), 7 polybrominated diphenyl 

ethers (PBDEs), 4 polycyclic aromatic hydrocarbons (PAHs) and 17 perfluoroalkyl 

substances (PFASs) was evaluated in mussels and clams. A liquid chromatography-

high resolution mass spectrometry (HPLC-HRMS) and an innovative QuEChERS 

extraction followed by gas chromatography-tandem mass spectrometry (GC-MS/MS) 

methods were developed, validated and applied. We demonstrate good linearity, 

repeatability and accuracy of these methods, confirming that these methods are suitable 

for the analyses of mollusc samples. The prevalence of PCBs, OCPs and PAHs was 

higher in mussels than clams. For PFASs, the contamination was higher in clams than 

in mussels. The samples were all compliant with the regulations and, for the compounds 

without limit, a risk assessment confirmed that the values were lower than the tolerable 

intake suggested by EFSA. 

 

Keywords: Mussels, Clams, POPs, PFASs, HPLC-HRMS, GC-MS/MS. 

 

Highlights 

One sensitive HPLC-HRMS method for PFASs in shellfish was developed and 

validated. 

Another method for POPs in shellfish using GC-MS/MS was optimised and validated. 

Innovative QuEChERS extraction was developed. 

Pools of mussels and clams from multiple FAO zones were analysed. 

Comparing mussels to clams, POPs were higher but PFASs lower in clams. 

 

Chemical compounds studied in this article 
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PCB 28 (PubChem: CID 23448); PCB 52 (PubChem CID: 37248); PCB 101 (PubChem: 

CID 37807); PCB 138 (PubChem: CID 37035); PCB 153 (PubChem: CID 37034); PCB 

180 (PubChem: CID 37036); PCB 209 (PubChem: CID 16318); PBDE 28 (PubChem: 

CID 12110098); PBDE 33 (PubChem: CID 39506); PBDE 47 (PubChem: CID 95170); 

PBDE 99 (PubChem: CID 36159); PBDE 100 (PubChem: CID 154083); PBDE 153 

(PubChem: CID 155166); PBDE 154 (PubChem: CID 15509898); α- HCH (PubChem: 

CID 727); Hexachlorobenzene (PubChem: CID 8370); β-BHC (PubChem: CID 727); 

Lindane (PubChem: CID 727); Heptachlor (PubChem: CID 3589); Aldrin (PubChem: 

CID 61103); Heptachlor epoxide (PubChem: CID 13930); Trans Chlordane (PubChem: 

CID 45356234); 4,4’- Dichlorodiphenyldichloroethylene (PubChem: CID 3035); 

Endosulfan I (PubChem: CID 6433227); Endosulfan II (PubChem: CID 12309466); 

Endosulfan sulfate (PubChem: CID 13940); Endrin (PubChem: CID 46174049); 

4,4’Dichlorodiphenyldichloroethane (PubChem: CID 6294); 2,4’-

Dichlorodiphenyltrichloroethane (PubChem: CID 13089); Chrysene (PubChem: CID 

9171); Benz(a)anthracene (PubChem: CID 5954); Benzo(b)fluoranthe (PubChem: CID 

9153); Benzo(a)pyrene (PubChem: CID 2336); Perfluoropentanoic acid (PubChem: CID 

75921); Perfluorohexanoic acid (PubChem: CID 67542); Perfluorobutane sulphonic acid 

(PubChem: CID 75922); Perfluoroheptanoic acid (PubChem: CID 67818); 

Perfluorooctanoic acid (PubChem: CID 9554); Perfluorohexane sulphonate (PubChem: 

CID  67734); Perfluorononanoic acid (PubChem: CID 67821); Perfluorodecanoic acid 

(PubChem: CID 9555); Perfluorooctane sulfonic acid (PubChem: CID 74483); 

Perfluorododecanoic acid (PubChem: CID 67545); Perfluoroundecanoic acid 

(PubChem: CID 77222); Sodium perfluoro-1-decanesulfonate (PubChem: CID 

2724181); Perfluorotridecanoic acid (PubChem: CID 3018355); Perfluorotetradecanoic 

acid (PubChem: CID 67822); Perfluorohexadecanoic acid (PubChem: CID  106027), 

Perfluorooctadecanoic acid (PubChem: CID 167547); 4-nonylphenol (PubChem: CID 

1752). 

 

3.11.1. Introduction 
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Marine ecosystems are subjected to continuous pollution events because of increasing 

anthropogenic activities and the releasing of various sources of contaminants (Van De 

Vijver et al., 2003). Bivalve molluscs are considered good environmental contamination 

indicators because their tissues accumulate contaminants with little metabolic 

transformations (Roesijadi, Young, Drum, & Gurtisen, 1984; Sericano, 1993). In fact, 

mussels and clams are filter-feeding organisms. Therefore, most of the contaminants 

are directly bioavailable and can accumulate across gills and by ingestion of particles 

(Kimbrough, Johnson, Lauenstein, Christensen, & Apeti, 2008). Mussels were often 

used as sentinel indicator species to monitor the environmental accumulation of various 

persistent organic pollutants (POPs), such as polycyclic aromatic hydrocarbons (PAHs), 

polychlorobiphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) (Webster et al., 

2008) and perfluoroalkyl substances (PFASs). Concerning PFASs, research attention 

has rapidly increased because of their worldwide spread in multiple environmental 

areas (Kannan, 2011). Global monitoring of PFAS contamination has identified 

perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA) as the 

predominant compounds, ubiquitously distributed in several animal tissues (Giesy & 

Kannan, 2001; Van de Vijver et al., 2003). The persistence in the environment of PFOS 

and PFOA was demonstrated, such as their capability to bioaccumulate in the trophic 

chain (Valsecchi, Rusconi, & Polesello, 2013) but, as emerging contaminants, no 

maximum residue levels (MRLs) have yet been set. Among other POPs, PCBs, PBDEs 

and PAHs are contaminants commonly found in sediments, waters and wildlife 

(Erickson, 1997; Safe, 2002). These three classes of compounds have similar 

physicochemical characteristics of lipophilicity and resistance to degradation (Xua, 

Wanga, & Caia, 2013). Their high bioaccumulation potential added to a variety of toxic 

effects on humans and animals makes the evaluation of their occurrence a pivotal task 

(Van den Berg et al., 2006; Robertson, & Hansen, 2001). PAHs, PCBs and PBDEs 

produced by anthropogenic activities can undergo long-range atmospheric transport 

and could be, therefore, found in the marine environments (Fernandez, & Grimalt, 2003; 

Teil, Blanchard, & Chevreuil, 2004; Chiesa, Labella, Panseri, Pavlovic, Bonacci, & Arioli, 

2016 a). PFASs have no MRLs, whereas PCBs and PAHs have maximum limits that are 

recommended by Commission Regulation No 1259/2011 (European Union, 2011) and 
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Commission Regulation No 1881/2006 (European Commission, 2006). Also, no MRLs 

have been established for PBDEs, but the European Commission recommended their 

monitoring in food, especially of animal origin (European Union, 2014). Organochlorine 

pesticides (OCPs) have a similar behavior to the other contaminants described. OCPs 

reach the marine environment from surface runoff and ground leachate but can also be 

found in stormwater and wastewater discharges (Clendening, Jury, & Ernst, 1990). 

Although several pesticides (as DDT) are prohibited, they and their metabolites are still 

found in coastal waters, sediment and biota (Richardson, & Zheng, 1999). Monitoring 

guidelines for OCPs in fish are reported by the Food and Drug Administration (2011).  

Because of the very low limits reported by legislations (in the order of ng g -1) and 

considering the large number of compounds that have to be monitored, novel analytical 

protocols are necessary to allow the quantification of these compounds with high 

sensitivity, selectivity and specificity. Among the analytical techniques available, high-

pressure liquid chromatography coupled to high-resolution mass spectrometry (HPLC-

HRMS) and gas chromatography coupled with tandem mass spectrometry (GC-MS/MS) 

represent the best choice for the detection of ultra-trace levels of different compounds in 

heterogeneous matrices. In particular, the Orbitrap HRMS resolving power, combined 

with the fast scan speed, results in high accuracy (lower than 1 ppm), sensitivity and 

specificity, providing all the characteristics for confirmatory methods, while GC-MS/MS 

guarantees the high performances required for the analyses of lipophilic compound, 

such as PBDEs and PCBs, as reported by Chiesa et al. (2016 b). 

Based on the considerations discussed above, the aim of this study was to develop and 

validate two analytical methods, a HPLC-HRMS method for the analysis of PFASs and 

a GC-MS/MS method with an innovative Quick, Easy, Cheap, Effective, Rugged and 

Safe (QuEChERS) extraction, for the analysis of PCBs, PBDEs, PAHs and OCPs. 

Later, the occurrence of these five classes of POPs was evaluated in mussels and 

clams. The two mollusk species were selected because they are the most consumed in 

EU (European Commission, 2016) and live at different depths: the mussel habitat is 

epipelagic whereas the clam habitat is benthonic, therefore possibly representing 

different levels of contamination.  
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3.11.2. Material and methods 

3.11.2.1. Sampling 

Mussels and clams were collected at the wholesale fish market of Milan, the most 

important Italian fishery market. The sample collection, randomly made, was 

representative of the contamination levels of mollusks available to Italian consumers. 

Multiple species were selected: Mytillus Galloprovincialis, Mytillus Edulis and Mytillus 

Chilensis for mussels, and Venerupis philippinarum, Perna Canaliculus, Tapes 

decussatus, Tapes Semidecussatus, Meretrix Meretrix and Meretrix Iyrata for clams. All 

molluscs were collected from June 2016 until February 2017, and the sampling areas 

are shown in Fig. 1.  A total of 50 mussel and 39 clam samples were made: the soft 

tissue was separated from the shells and pools of about 50 individuals were prepared 

for each sample; after homogenization, the samples were stored at -20°C until 

analyses. 

 

3.11.2.2. Chemicals and reagents 

A mixed solution of PCB congeners (PCB 28; PCB 52; PCB 101; PCB 138; PCB 153 

and PCB 180), PCB 209 (internal standard [IS] for PCBs and PAHs), a mixed solution of 

PBDEs (PBDE 28; PBDE 33; PBDE 47; PBDE 99; PBDE 100; PBDE 153 and PBDE 

154) (numbered according to IUPAC) and fluoro-bromodiphenyl ether (FBDE), IS for 

flame retardants, were purchased from AccuStandard (New Haven, USA). A standard 

solution of 15 OCPs and their metabolites (α- HCH; Hexachlorobenzene; β-BHC; 

Lindane; Heptachlor; Aldrin; Heptachlor epoxide; Trans Chlordane; 4,4’- 

Dichlorodiphenyldichloroethylene [4,4’- DDE]; Endosulfan I; Endosulfan II, Endosulfan 

sulfate; Endrin, 4,4’Dichlorodiphenyldichloroethane [4,4’-DDD], 2,4’-

Dichlorodiphenyltrichloroethane  [2, 4’-DDT]) and a standard solution of four PAH 

congeners (Chrysene, Benz(a)anthracene, Benzo(b)fluoranthe and Benzo(a)pyrene) 

were purchased from Restek (Bellefonte, PA, USA). Seventeen acid and sulfonate 

perfluorinated compounds were examined in this study: perfluorobutanoic acid (PFBA), 

perfluoropentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), perfluorobutane 
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sulphonic acid (PFBS), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid 

(PFOA), perfluorohexane sulphonate (PFHxS), perfluorononanoic acid (PFNA), 

perfluorodecanoic acid (PFDA), perfluorooctane sulfonic acid (PFOS), 

perfluorododecanoic acid (PFDoA), perfluoroundecanoic acid (PFUnDA), Sodium 

perfluoro-1-decanesulfonate (PFDS), perfluorotridecanoic acid (PFTrDA), 

perfluorotetradecanoic acid (PFTeDA), perfluorohexadecanoic acid (PFHxDA) and 

perfluorooctadecanoic acid (PFODA). All of these compounds and the two 13C-labeled 

internal standards (ISs) MPFNA and MPFOS were purchased from Fluka 

(SigmaeAldrich, St. Louis, MO, USA), as well 4-nonylphenol (IS for OCs) and all GC 

and HPLC solvents. Water was purified by a Milli-Q system (Millipore, Merck KGaA, 

Darmstadt, Germany). For the extraction and clean-up of POPs, QuEChERS materials 

were obtained from Supelco (SigmaeAldrich, St.Louis, MO, USA); SupelTM QuE Citrate 

(EN) tubes, containing Sodium Citrate tribasic dihydrate and Sodium Citrate dibasic 

sesquihydrate. Magnesium Sulfate and Sodium Chloride were used for the extraction. 

SupelTM QuE-Sep tubes were used for the clean-up step. For the extraction of PFAs, the 

extraction cartridges (Oasis HLB WAX 3 mL, 60 mg) were provided by Waters (Milford, 

MA, USA). Ammonium formate, sodium acetate, acetic acid (99.9%) and 25% ammonia 

solution were purchased from Fluka. 

 

3.11.2.3. Standard solutions  

Stock solutions (1 mg mL-1) of each standard used for HPLC-HRMS analyses, were 

prepared in methanol and stored at -20°C. Working solutions at the concentrations of 10 

and 100 ng mL-1 were prepared during each analytical session and maintained at 4°C 

throughout the method validation. For GC-MS/MS analyses, working solutions were 

prepared daily in hexane from various stock solutions containing a mix of standards. 

The storage conditions of the solutions were the same as described for HPLC analyses. 

 

3.11.2.4. Extraction procedure  
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For the extraction of PFASs, 2 g of sample was spiked with the two internal standards at 

the concentration of 5 ng mL-1. After the addition of 10 mL of acetonitrile for the protein 

precipitation and analytes extraction, the sample was vortexed and sonicated for 15 

min. After centrifugation (2500×g, 4°C for 10 min), the supernatant was collected into a 

glass flask and evaporated in a rotary vacuum evaporator at 35°C. The extract was 

suspended in 10 mL of water and underwent the SPE extraction using the Oasis WAX 

Cartridges under vacuum, for further purification and extraction. The SPE cartridges 

were preconditioned with 3 mL of 0.5% ammonium hydroxide in methanol, 3 mL of 

methanol, and 3 mL of Milli-Q water. The sample was loaded, and then the cartridges 

were washed with 3 mL of 25 mM acetate buffer pH 4.5 to remove interferences, as well 

as lipid or proteins, and to increase the adsorption of target anions to the cartridge, 

followed by 2 mL of methanol. Finally, the compounds were eluted using 3 mL of 0.5% 

ammonium hydroxide in methanol and were collected in a 15 mL polypropylene tube. 

The eluate was dried in a rotary vacuum evaporator at 35°C. The dried extract was 

suspended in 100 µL of methanol:ammonium formate 20 mM (10:90 v/v), and then 

transferred to an auto-sampler vial. The injection volume was 10 µL. The method was 

developed and optimized taking into consideration the work of Taniyasu et al. (2005), 

considering the different effect of pH of acetate buffer, the percentage of ammonium 

hydroxide in methanol and the influence of elution volume of ammonium hydroxide in 

methanol on recoveries of PFASs.  

Moreover, taking into account the ubiquity of PFAS in the environment of analytical 

laboratories, several precautions were taken, such as washing glassware with 

methanol, the execution of at least 10 procedural blanks at days to subtract any 

background contamination. 

The extraction of PCBs, PBDEs, OCPs and PAHs was performed using the QuEChERS 

approach. A 5 g of sample was homogenized and transferred to a QuEChERS 

extraction tube, then the three ISs were added. Ten milliliters of a mixture of 

hexane/acetone (4:1 v/v) was added as extraction solvent; the tube was shaken for 1 

min using a vortex and centrifuged for 10 min at 2000×g at 4°C. Later, the supernatant 

was transferred to a QuEChERS clean up tube, shaken and centrifuged at the same 
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conditions described above.  The extract was transferred in a flask and evaporated 

under vacuum in a centrifugal evaporator at 35°C. The residue was dissolved in 1 mL of 

hexane and analysed by GC/MS-MS. 

 

3.11.2.5. HPLC-HRMS analyses 

The HPLC system (Thermo Fisher Scientific, San Jose, CA, USA), consisted of a 

Surveyor MS quaternary pump with a degasser, a Surveyor AS auto-sampler with a 

column oven and a Rheodyne valve with a 20-μL loop. A Synergi Hydro-RP reverse-

phase HPLC column (150 × 2.0 mm, 4 µm particle size), with a C18 guard column (4 × 

3.0 mm) (Phenomenex, Torrance, CA, USA) was used for the chromatographic 

separation. Stainless steel capillary tubes were used for minimising PFAS background 

contamination in the system. Moreover, since PFOA and PFOS were always present in 

the chromatographic system, we introduced a small Megabond WR C18 column (5 cm × 

4,6 mm, i.d. 10 µm) between pump and injector, allowing us to delay our analytes by 2 

min relative to those already present in the system.  

Solvents A (aqueous ammonium formate 20 mM) and B (MeOH) were the mobile 

phases used for the gradient. The elution started with 10% B, which increased to 40% 

at the 4th minute and more gradually to 95% at the 12th minute, then remaining 

constant up to the 18th minute. The initial conditions were reached at the 20th minute, 

with an equilibration time of 7 min. The flow was 0.3 mL min-1. The detector was a 

Thermo Q-Exactive Plus (Thermo Scientific, San Jose,CA, USA), equipped with a 

heated electrospray ionization (HESI) source. Capillary temperature and vaporizer 

temperature were set at 330°C and 280°C, while the electrospray voltage was set at 

3.50 kV operating in negative mode. The sheath and auxiliary gas were set at 35 and 15 

arbitrary units. S lens RF level of 60 instrument calibration was done for every analytical 

session with a direct infusion of an LTQ Velos ESI Negative Ion Calibration Solution 

(Pierce Biotechnology Inc., Rockford, IL, USA).  The full scan acquisition was combined 

with a DIA Independent Data Acquisition mode, providing the MS2 spectra for the 

confirmatory response, based on an inclusion list. The resolving power of FS was set at 
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70,000 FWHM. On the basis of our compound list, a scan range of m/z 200–950 was 

chosen; the automatic gain control (AGC) was set at 1×10-6 and the maximum injection 

time was 200 ms.  The DIA segment operated in negative mode at 35,000 FWHM. The 

AGC target was set to 5×10-4, with the maximum injection time of 100 ms. the 

quadrupole filtered the precursor ions with an isolation window of 2 m/z. Fragmentation 

of precursors was optimised as two-stepped normalized collision energy (NCE) (10 and 

70 eV). The mass tolerance window was set to 2 ppm. Detection of analytes was based 

on the retention time of target compounds, on calculated exact mass of the 

deprotonated molecular ions, and at least one specific and typical fragment. The 

formula of the compounds, with the exact theoretical mass of the parents and the 

diagnostic transition used to confirm the different PFASs are reported in Table 1. 

XcaliburTM 3.0 software (Thermo Fisher Scientific, San Jose, CA, USA) was used to 

control the HPLC-HRMS system, the exact mass of the compounds, record and 

elaborate data. 

 

3.11.2.6. GC-MS/MS analysis of contaminants 

The GC analysis was described in a previous study of ours (Chiesa, Labella, Panseri, 

Pavlovic, Bonacci, & Arioli, 2016 a). Briefly, GC-MS/MS in electronic impact (EI) mode 

was carried out by a GC Trace 1310 chromatograph coupled to a TSQ8000 triple 

quadrupole mass detector (Thermo Fisher Scientific, Palo Alto, CA, USA) using a fused-

silica capillary column RXi-XLB (30 m, 0.25 mm i.d., 0.25 mm film thickness, Restek, 

Bellefonte, PA, USA).  

Selected reaction monitoring mode (SRM) was used to detect two ot three transitions 

per analyte according to European Commission (2015). Compound identification was 

performed by comparing relative retention times of samples and standard solutions and 

mass fragmentations obtained for each compound. All fragments are reported in Table 

1. XcaliburTM and Trace FinderTM 3.0 (Thermo Fisher Scientific) were the software used 

as instrument control and data processing, respectively.  
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3.11.2.7. Validation parameters 

Validation was carried out following the European Commission (2015) SANTE/2015 

guideline. The selectivity of the method was evaluated by injecting extracted blank 

mollusc samples. The absence of interferences was proved by the lack of peaks with a 

signal-to-noise ratio higher than 3 at the retention times of the target compounds. 

Mollusk sample, previously analysed and checked for the absence of all POPs, were 

used as control samples during optimization and validation steps. For mollusc 

fortification, 5 g of the control sample was spiked in order to cover the concentration 

range from 0.5 to 100 ng g-1 (five calibration points: 0.5, 1, 10, 50 and 100 ng g-1) for 

PCBs and PAHs; from 0.5 to 50 ng g-1 (five calibration points: 0.5, 1, 10, 25, 50 ng g-1) 

for PBDEs and from 5 to 1000 ng g-1 for OCs (five calibration points: 5, 50, 100, 500 

and 1000 ng g-1). For PFASs, 2 g of control sample was spiked to cover the 

concentration range from LOQ to 10 ng g−1 (six calibration points LOQ, 0.05, 0.1, 3, 5, 

10 ng g−1), except for PFBA, PFOA and PFUdA (up to 50 ng g−1, six calibration points: 

LOQ, 0.05, 0.1, 5, 10, 50 ng g−1) in order to realize the matrix-matched calibration 

curves. For the limit of quantification (LOQ) of the methods, we used the lowest 

validated spiked level meeting the requirements of recovery within the range of 70–

120% and an RSD ≤ 20%, as defined by the European Commission (2015). Finally, the 

extraction methods were also evaluated for their repeatability, linearity and recovery. 

Recoveries were calculated by comparing the concentrations of the extracted 

compounds with those from the MMC calibration curves at LOQ for all compounds. The 

repeatability (evaluated as the coefficient of variation, CV%) was calculated by 

analysing six replicates at the same fortification level. 

 

3.11.3. Results and discussion 

 

3.11.3.1. Validation parameters 

The methods showed high specificity, without any interferences close to the retention 

time where the investigated compounds were expected to elute, and consequently 

showed a high S/N ratio in the presence of analytes, even at the lowest detectable 
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concentration. The mean recoveries ranged between 70 and 120%, indicating the 

efficiency of the extraction protocol. Matrix validation curves demonstrated a good 

linearity over the working range with a good fit (R2 > 0.985) for all compounds. 

Repeatability was calculated using one-way analysis of variance (ANOVA), the CV was 

lower or equal to 20 % for all POPs, satisfying the criteria required by European 

Commission (2015). 

Regarding the LOQs, our satisfactory results showed high method sensitivity for the 

selected contaminants both for LC-HRMS and GC-MS/MS analyses. In particular, the 

analytes detected with GC-MS/MS showed LOQs equal or lower than those reported by 

Pizzini et al. (2016), for example, benzo(b)fluoranthe has an LOQ of 0.5 ng g-1, which is 

lower than the 3.54 ng g-1 reported by Pizzini et al. (2016).  For PFASs, the LOQs were 

much lower than those reported by Nania et al. (2009) and Wille et al. (2011), which 

have for PFOS an LOQ of 6 ng g-1 and 0.1 ng g-1 respectively, compared to our LOQ of 

0.005 ng g-1. All of the validation parameters for GC-MS/MS and HPLC-HRMS are 

reported in Table 2. 

 

3.11.3.2. Mussel and clam sample POPs distribution 

Results on the prevalence and concentration of contaminants are reported in Table 3. 

PCBs were found with the highest prevalence in mussels, while they were not found in 

clams, as showed in Fig. 2. In particular, the most abundant congener was PCB 138, 

showing the highest concentration of 25.34 ng g-1.  The concentrations were all lower 

than the maximum levels of 75 ng g-1 required by the European Union (European 

Commission, 2011). Referring to the overview of the literature studies reported in Table 

4, the concentration of PCBs in mussel samples were in according to those found by 

Herceg-Romanic´ et al. (2014), which found PCB 138 as one of the most abundant 

congeners, but with a lower maximum concentration compared to our results (6.34 ng g-

1).  

PAHs were detected both in mussels and clams, with the highest prevalence in 

mussels. This could be because the discharges of maritime transport of petroleum 
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products (oil spills) are mainly composed of PAHs and are viscous fluid mixtures having 

a density lower than water, so PAHs tend to remain on the water surface (Gonzalez-

Doncel, Gonzalez, Fernandez-Torija, Navas, & Tarazona, 2008; Fingas, 2016). The 

most frequent compound detected was Benzo(a)pyrene, with a maximum concentration 

of 7.05 ng g-1. Also for these contaminants, all of the samples were compliant to 

Regulation No 1259/2011 (European Commission, 2011). As also reported by Pizzini et 

al. (2016), the PAHs concentration is higher in mussels than in clams, but in our study, 

the difference was greater, maybe due to the reasons described above. In fact, the level 

of PAHs in mussels was 13.95 ng g-1, while this value was 4.35 ng g-1 in clams 

(approximately three times lower than in mussels). 

Concerning OCPs, only DDT metabolites were found. In particular, 4,4’-DDE was 

detected only once in mussels, and was never detected in clam samples; 4,4’-DDD was 

found both in mussels and clams with a low prevalence of 10 and 8 %, respectively and 

a highest concentration of 16.34 ng g-1. The concentration of DDTs found in our mussel 

samples was higher compared to the results of Herceg-Romanic´ et al. (2014), who 

found a highest concentration of 2.61 ng g-1.    

PBDEs were found only in four mussel samples and one clam sample at the LOQ. 

Despite low prevalence, the concentrations found are higher than reported by Hu et al. 

(2010), which detected PBDEs at concentrations ranging from 25.4 to 58.9 pg g-1. 

Regarding PFASs, up to 11 compounds (both acid and sulfonate forms) were detected 

in almost all clam samples, showing an evident higher contamination in terms of 

frequency and concentration than in mussels. The most contaminated clam pool was 

fished in the FAO area 37.2, confirming the pollution of this area, as reported by 

Vianello et al. (2013). The most abundant compound in clams was PFOA, with 97% of 

positivity and the highest concentration of 31.03 ng g-1. Of the tested compounds, PFBA 

was present at the highest concentration (both for mussels and clams). This is because, 

as discussed by Water Research Foundation project #4322 (Fulmer, 2016), 

conventional treatment at wastewater treatment plants and most drinking water 

treatment plants are ineffective at removing this shorter chain PFAS. It should be 

emphasized that this analyte was always present even in the background contamination 



311 
 

of the extractive procedure at a maximum concentration of 4 ng g-1, evaluated through 

the analysis of a batch of 10 procedural blanks during each analytical session. The 

evidence of a major contamination in clams (Fig. 2) is present also in the study of Nania 

et al. (2009). This could be explained by the fact that clams can absorb both from 

seawater and sediments, as reported by Berger et al. 2004 and Nakata et al., 2006. 

PFOA prevalence was found to be higher than PFOS, which is in line with the results of 

Nakata et al., 2006. In clams, the PFOA concentrations were also higher than those of 

PFOS, as reported in the last study about sea sediments. However, in mussels, this 

trend is reversed, even if the concentrations of PFOA and PFOS were quite similar.  

 

3.11.3.3. Risk assessment 

Considering the absence of maximum limits for PFASs, a risk assessment was carried 

out on the basis of our results referring to the established tolerable daily intake [TDI] for 

PFOA and PFOS (1.5 µg Kg-1 b.w. per day and 150 ng Kg-1 b.w. per day, respectively 

(EFSA, 2008)). Considering a person of 70 Kg, the threshold dose is 105 µg per day for 

PFOA and 10.5 µg per day for PFOS; on the basis of data reported by EUMOFA 

(European Commission, 2016), the annual per capita consumption is 1.27 Kg for 

mussels and 0.33 Kg for clams. Considering these tolerable intakes and, with a 

conservative approach, the highest concentration of PFOA and PFOS found in our 

samples were 0.55 and 3.64 ng g-1 (in mussel) and 31.03 and 7.20 ng g-1 (in calm) 

respectively. These concentrations could result in a daily intake of 1.91 ng of PFOA and 

12.66 ng of PFOS in mussels and 27.93 ng of PFOA and 6.48 ng of PFOS in clams. 

These intake values are well below the suggested TDI. Thus, in this case, the 

consumption of mollusks does not represent a risk for consumers. This consideration 

could also be extent by taking into account the other contaminants, which have MRLs. 

In fact, all of the concentrations found were well below the limits provided by the 

legislations, confirming that all samples were compliant. 

 

3.11.4. Conclusions 
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Due to anthropogenic activities, various contaminants could be present in the 

environment, increasing the pollution of marine ecosystems. Bivalve molluscs have 

been used as contamination indicators of the marine ecosystem. For this purpose, we 

used mussels and clams, belonging to diverse areas, to evaluate the occurrence of 

PCBs, PFASs, OCPs, PAHs and PBDEs, related to the different habitats of the two 

mollusc species. Mussel cultures are generally suspended to hard substrates placed at 

2 to 5 m in the seawater, while clams usually live buried in the sand or the muddy 

seabed in brackish waters (Nania et al., 2009). Considering the different chemical-

physical properties of the selected contaminants, two sensitive, specific and robust 

analytical methods, based on LC-HRMS and GC-MS/MS, were developed and validated 

for the analysis of mussel and clam samples. The results showed a greater 

contamination of PCBs, OCPs and PAHs in mussels than clams, whereas this trend 

was reversed for PFASs. These data could be accounted for by the different 

contamination sources, different chemical-physical properties of the selected classes, 

and different distribution in the marine layers. 
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Table 1. Retention time (tr), precursors, main products, polarity and collision energies of the compounds  

analysed by LC-HRMS and GC-MS/MS. 

Compound 

LC-HRMS 

Formula tr 
(min) 

Precursor 

(m/z) 

Main 
product 

(m/z) 

Polarity 

PFBA C4HF7O2 9.07 212.97920 168.98836 (-) 

PFPeA C5HF9O2 11.68 262.97601 218.98560 (-) 

PFBS C4F9HO3S 12.02 298.94299 98.95434 (-) 

PFHxA C6HF11O2 13.22 312.97281 268.98288 (-) 

PFHpA C7HF13O2 14.36 362.96962 318.97949 (-) 

PFHxS C6F13HO3S 14.39 398.93660 98.95437 (-) 

PFOA C8HF15O2 15.27 412.96643 368.97681 (-) 

PFNA C9HF17O2 16.03 462.96323 418.97385 (-) 

PFOS C8F17HO3S 16.00 498.93022 79.95598 (-) 

PFDA C10HF19O2 17.96 512.96004 468.97064 (-) 

PFUdA C11HF21O2 18.48 562.95684 518.96729 (-) 

PFDS C10F21HO3S 17.35 598.92383 79.55599 (-) 

PFDoA C12HF23O2 18.98 612.95365 568.96387 (-) 

PFTrDA C13HF25O2 19.50 662.95046 618.96057 (-) 

PFTeDA C14HF27O2 20.06 712.94726 668.95823 (-) 

PFHxDA C16HF31O2 20.80 812.94088 768.95184 (-) 

PFODA C18HF35O2 21.81 912.93449 868.94513 (-) 

MPFNA [13]C5C4HF17O2 16.03 467.98001 422.98703 (-) 

MPFOS [13]C4C4F17HO3S 16.00 502.94364 79.95592 (-) 

Compound 

GC-MS/MS 

tr 
(min) 

Precursor 

(m/z) 

Product 
Ions 
(m/z) 

Collision 

Energy (V) 

PCBs     

PCB 28 18.76 256  186 * 20 

  
258 186 25 

     PCB 52 20.25 292 222* 25 

  
292 257 10 
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     PCB 101 24.46 324 254 25 

  
326 256* 25 

  
328 256 25 

     PCB 138 28.99 360 290* 25 

  
360 325 10 

     PCB 153 30.25 360 290* 20 

  
360 325 30 

     PCB 180 34.06 394 324* 25 

  
394 359 10 

  
396 324 25 

 PBDEs 
    PBDE 28 27.95 246 139 10 

  
248 139* 10 

  
408 248 10 

     PBDE 33 28.05 246 139 30 

  
248 139* 30 

  
406 246 10 

     PBDE 47 34.34 326 217 30 

  
328 219 30 

  
484 326* 30 

     PBDE 99 38.17 410 297 30 

  
406 297 30 

  
564 404* 20 

     PBDE 100 39.05 410 297 30 

  
406 297 30 

  
564 404* 10 

     PBDE 153 40.88 484 377 25 

  
642 482* 10 

     PBDE 154 41.76 484 324 30 

  
486 326 30 

  
644 484* 20 

 OCPs 
    α HCH  15.27 181 145* 10 

  
181 146 10 

  
219 183 10 
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Hexachlorobenzene 15.45 284 249* 20 

  
286 214 30 

  
286 251 20 

     β BHC 16.69 181 145* 10 

  
183 148 10 

  
219 183 10 

     Lindane (γ HCH) 16.44 181 145* 10 

  
183 145 10 

  
219 183 10 

     Heptachlor 19.27 272 237* 10 

  
274 237 10 

  
274 239 10 

     Aldrin 20.84 261 191* 30 

  
263 193 30 

  
265 193 30 

     Heptachlor epoxide 22.77 353 263* 10 

  
353 282 10 

  
355 265 10 

     Trans chlordane 23.96 373 264 20 

  
373 266* 20 

  
375 266 20 

     Endosulfan I 24.64 373 266* 20 

  
375 266 20 

  
377 268 20 

     pp' DDE 25.96 246 176* 30 

  
248 176 30 

  
328 248 20 

     Endrin 27.06 245 173 30 

  
263 193* 30 

  
281 245 10 

     Endosulfan II 27.65 195 159* 10 

  
241 206 10 

     pp DDD 28.18 235 165* 20 

  
237 165 20 
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 op DDT 28.27 235 165* 20 

  
237 165 20 

     Endosulfan sulfate 29.88 272 237* 10 

  
274 237 10 

  
274 239 10 

 PAHs     

Chrysene 37.37 228 202 20 

  228 226 30 

  226 224
* 

30 
 
Benz(a)anthracene 37.18 226 224 30 

  228 202 20 

  228 226 30 

  226 223
* 

30 
 
Benzo(b)fluoranthe 41.61 250 248 30 

  252 250 30 

  250 224
* 

30 
 
Benzo(a)pyrene 42.57 252 250 30 

  253 227 20 

  253 251 30 

  252 226
* 

30 

*= quantifier ion 
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Table 2. Validation parameters of the investigated POPs. 

Compounds by GC-MS/MS LOQ 

(ng g
-1

) 

CV 

% 

Recovery 

% 

PCB 28 0.5 11 85 

PCB 52 0.5 9 87 

PCB 101 0.5 9 83 

PCB 138 0.5 12 97 

PCB 153 0.5 12 85 

PCB 180 0.5 10 88 

PBDE 28 0.5 2 93 

PBDE 33 0.5 3 79 

PBDE 47 0.5 9 94 

PBDE 99 0.5 7 81 

PBDE 100 0.5 11 80 

PBDE 153 0.5 7 70 

PBDE 154 0.5 9 84 

α HCH  5 18 119 

β BHC 5 20 120 

Hexachlorbenzene 5 16 100 

Lindane 5 20 116 

Heptachlor 5 20 120 

Aldrin 5 12 89 

Heptachlor epoxide 5 10 93 

Trans chlordane 5 12 94 

Endosulfan I 5 12 95 

Endosulfan II 5 10 84 

pp' DDE 5 16 90 
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Endosulfan Sulfate 5 14 75 

Endrin 5 10 120 

op DDT 5 20 120 

pp DDD 5 3 102 

Chrysene 0.5 3 82 

Antracene 0.5 6 75 

Benzofluoranthene 0.5 3 75 

Benzopyrene 0.5 2 77 

Compounds by HPLC-HRMS LOQ 

(pg g
-1

) 

CV 

% 

Recovery 

% 

PFBA
 

5 
 

7 82 

PFPeA 10 10 114 

PFBS 10 11 102 

PFHxA 20 6 110 

PFHpA 5 5 112 

PFHxS 15 9 103 

PFOA 5 5 113 

PFNA 5 10 95 

PFOS 5 12 83 

PFDA 20 13 84 

PFUdA 20 6 85 

PFDS 20 8 83 

PFDoA 20 8 89 

PFTrDA 15 8 87 

PFTeDA 5 15 91 

PFHxDA 5 18 85 

PFODA 5 18 84 
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Table 3 Prevalence and concentration ranges of the selected contaminants. 

Compounds 
Prevalence 

(%) 
Concentration range 

(ng g
-1

) 
 

 Mussels Clams Mussels Clams  

Σ PCBs 58 n.d. n.d. - 49.02 n.d. 

Σ PAHs 36 28 n.d. - 13.95 n.d. – 4.35 

Σ DDTs 12 8 n.d. - 16.34 
n.d. - 14.96 

 

Σ PBDEs 8 2 
 

n.d. - 0.5 
 

 
n.d. - 0.5 

 

Σ PFAs 70 100 
 

n.d. - 91.80 
 

 
n.d. - 120.75 

 

n.d. = not detected 
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Table 4. Literature data on POPs distribution in mollusks. 

 

  

Reference 
Compounds 
investigated 

Analytical 
technique 

Concentration range in ng g
-1 

 (average values) 
     

   
Mussels Clams 

Choi et al. (2016) 18 PCBs GC-ECD 70.6-159 
a
 69.3-109 

a
 

 
DDTs 

 

 
38.6-102

 a
 40.3-49.3 

a
 

 
α- , β- , γ- and δ-HCH 

 
9.00-13.5 

a
 6.25-17.8 

a
 

     
Pizzini et al. (2016) 127 PCBs GC-MS < LOD - 4.57 

b
 < LOD - 3.68 

b
 

 
16 PAHs 

 
< LOD - 7.03 

b
 2.32 - 5.67 

b
 

     
Dodder et al. (2014) 2 PFASs LC-MS/MS < LOD - 29 

c
 not investigated 

 
11 PBDEs GC-MS/MS < LOD - 68 

c
 not investigated 

     Herceg-Romanic´ et al. 
(2014) 17 PCBs GC-ECD 1.12 - 23.86 

b
 not investigated 

 
α- , β- and γ-HCH 

 
0.40 - 1.61 

b
 not investigated 

 

Hexachlorobenzene 
(HCB) 

 
0.01 - 0.12  

b
 not investigated 

 
DDTs 

 
0.15 - 2.61  

b
 not investigated 

     
Wille et al. (2011) 14 OCPs LC-MS/MS < LOD - 28 

c
 not investigated 

 
10 PFASs LC-ToF < LOD - 4 

c
 not investigated 

     
Nania et al. (2009) 2 PFASs LC-MS/MS < 1.5 – 3 

b
 < 2 – 16 

b
 

a = expressed as lipid 
weight     

b = expressed as wet weight     

c = expressed as dry weight     
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Fig. 1. Map of sample collection sites. 

 

Fig. 2. Mean values of the Σ PCBs, Σ PBDEs, Σ PAHs, Σ PFASs and Σ DDTs in mussels and clams. 
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Highlights 

•Estradiol presence in sea urchin body fluids was confirmed by LC–MS. 

•We administered physiological E2 doses to sea urchins for short and long-term 

periods. 

•Despite increased E2 level no effect was observed on the reproductive parameters. 

•Estrogens are not involved in the regulation of sea urchin reproductive cycle. 

•Evidences of class-specific hormonal mechanisms warns against Phylum 

generalization. 

 

Abstract 

Estradiol (E2) is a well-known hormone in vertebrates whereas in invertebrates its 

unambiguous presence was verified only in some species. Weather this presence is 

also associated to similarly conserved roles in animal phylogeny is similarly uncertain. 

Due to their phylogenetic position, echinoderms represent ideal experimental models to 

provide evolutionary insights into estrogen appearance and function. Therefore, in this 

research, we investigated if E2 is truly present and has a role in the reproductive biology 

of the sea urchin Paracentrotus lividus. Presence of 17b estradiol in body fluids was 

confirmed by liquid chromatography–mass spectrometry. By immunological methods 

(RIA) we evaluated the physiological circulating E2 levels of adult specimens and, on 

the basis of these, we directly administered E2 to study its metabolism and its putative 

effects on gonad development at physiological doses. Although different E2 tested 

concentrations, a correspondent dose-dependent increase of hormone levels was not 

found in both body fluids and gonads, suggesting the presence of potent 

homeostatic/detoxification mechanisms. These latter do not involve enzymes such as 

aromatase-like, sulfotransferase-like and acyltransferaselike, whose activities were not 

affected by E2 administration. Despite the increase of endogenous E2, the treatment 

did not induce significant variations in none of the considered reproductive parameters. 

Overall, this research (1) provides definitive evidence of E2 presence in sea urchin 

tissues and (2) demonstrate that, differently from vertebrates and starfish, E2 does not 

play a key role in sea urchins reproductive processes. Intra-phylum differences suggest 
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the existence of class-specific hormonal mechanisms and highlight the risk of Phylum 

generalization. 

 

Keywords: Estradiol, Sea urchin, Reproductive cycle, Hormone metabolism 

 

3.12.1. Introduction 

Estrogens are involved in many physiological processes of vertebrates, having an 

essential role in their reproduction, metabolism, development and behavior [18]. As for 

all sex steroids, they were originally considered vertebrate-specific hormones but in the 

last decades this perspective partially changed. Indeed estrogen- like compounds have 

been found in almost all invertebrate groups [17]. Nevertheless, only in a limited number 

of cases the unambiguous presence of estrogens (mainly 17b estradiol, E2) was clearly 

demonstrated by direct methods (e.g. gas chromatography– mass spectrometry), 

including mollusks (for a review see [29]), tunicates [5] and echinoderms [47]. Besides 

their presence, it is still under debate also whether estrogens are endogenously 

synthesized and have a conserved physiological role in animal phylogeny [21,29,30]. As 

basal deuterostomes, echinoderms occupy a key-phylogenetic position [4,40], which 

can provide a relevant perspective on evolutionary insights related to estrogen 

appearance and function in metazoans [7]. In echinoderms, estrogen-like compounds 

has been detected in different tissues, including gonads, but mainly by means of indirect 

methods [1,2,13,19,48] and only in asteroids (i.e. starfish) their presence was confirmed 

by GS–MS analyzes [47]. The biosynthesis of estrogens in echinoderms has been – 

and is still-similarly under debate [12,21]. A P450 aromatase-like activity was measured 

in sea urchin digestive tube, suggesting this tissue might be the main putative 

biosynthesis site of estrogens [1,19]. Nevertheless, the molecular structure of this 

putative estrogen biosynthetic enzyme is likely to be different from the vertebrate 

aromatase (Cyp 19) since an homologous gene was not found in the completely 

sequenced sea urchin genome [33]. This is in agreement with Markov et al. [21] who 

proposed an independent evolution of steroidogenic enzymes in vertebrates and 

invertebrates, which may have led to a functional evolutionary convergence in 

structurally different proteins. Even so, echinoderm P450 aromatase-like activity was 
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affected by triphenyltin (TPT), a well-known inhibitor of vertebrate aromatase [19]. 

Echinoderm tissues can also efficiently metabolize exogenously administered 

estrogens. In sea urchins, estrogens were rapidly converted to estrogen-conjugated: 

aqueous-soluble, mainly estrogen-sulfates, and lipophilic compounds [6,12]. In the 

mussel Mytilus galloprovincialis estradiol is mainly transformed to esterified-estrogens 

[15], indeed esterification renders steroids to an apolar form, which is retained in the 

lipid matrices of the body and therefore may act as a long-term hormone storage. 

Accumulation of these compounds indicates that they are major estrogen metabolites 

also in sea urchins, although their biological significance has still to be elucidated. 

Besides their presence, synthesis and metabolism, the involvement of estrogen-like 

compounds in the regulation of echinoderm reproduction was suggested by several 

authors since their physiological levels varied according to the reproductive cycle and in 

a sex-specific manner [1,2,13,46,48,51]. Additionally, in the last decades a number of 

experiments of direct hormone administration have been performed both in vivo and in 

vitro on asteroid and echinoid species, in order to elucidate the physiological 

significance of estrogens in these invertebrates (see Table 1). In most studies, E2 

treatment apparently resulted in appreciable physiological effects on different 

parameters, although a clear and positive influence on ovary/oocyte maturation and 

development could be inferred only for asteroids, similarly to what described for 

vertebrates and other invertebrates. Conversely, different and non-conclusive results 

were reported for sea urchins, moving from absence of effects [39,42] to positive 

regulation of ovarian growth [49]. The specific mechanism of action of E2 in 

echinoderms is also unknown as, similarly to the biosynthetic enzymes, no classic 

estrogen receptor (ER) gene was found in the sea urchin genome [33] and nothing is 

known for starfish. Despite these discrepancies within the same Phylum and the so-far 

presented ‘‘still open questions”, in the literature echinoderm reproduction is usually 

reported as estrogen-sensitive, a fact that may lead to dangerous generalizations. 

Additionally, the increasing use of echinoderms in research addressed to endocrine 

disruption assessment [37,38] necessarily require a better understanding of their 

baseline endocrinology to really understand their potential susceptibility to these 

environmental contaminants. On the basis of this, the aim of this work was to (1) 
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confirm the presence of estrogens (17b estradiol and estrone) in the sea urchins 

Paracentrotus lividus by direct methods (i.e. chromatography coupled to mass 

spectrometry) and provide a validation of the routinely used (and more practical) 

immunological analyses (Radioimmunoassays, RIA); (2) verify the putative involvement 

of E2 in sea urchin reproduction by assessing the effects of E2 administration at 

physiological doses. This was done by looking at (a) estradiol biosynthesis and 

metabolism and (b) gonad development; particular attention was paid to the 

experimental design (doses, reproductive cycle resetting, triggering environmental cues, 

feeding rates) in order to reduce the individual variability, possible source of 

misinterpreted results, and synchronously activate sea urchin gametogenesis. 

 

3.12.2. Materials and methods 

3.12.2.1. Animal sampling and maintenance 

For GS–MS confirmation of estrogen presence, 15 adult specimens of P. lividus, were 

maintained in laboratory conditions (artificial sea water) and fed with an artificial diet for 

about one month. Body (coelomic) fluids were collected, immediately frozen in liquid 

nitrogen and stored at 40 °C until chromatographic analyzes. For evaluation of 

physiological circulating E2 levels by RIA, 102 adult specimens of P. lividus were 

monthly collected for a whole year in the Protected Marine Area ‘‘Isola di Bergeggi” 

(44°14’N; 8°26’E; Tyrrhenian Sea). After their arrival to the laboratory, animals were 

immediately sacrificed; body fluids (coelomic fluids) were collected with a syringe, 

frozen in liquid nitrogen and stored at 80 °C until RIA analyzes. One gonad was 

processed for sex and reproductive stage evaluation. For the experiment of direct E2 

administration, 146 P. lividus adult specimens (diameter about 45 mm) were collected in 

the same location on July 2009, immediately transported to the laboratory and 

distributed in 50 L aquaria filled with artificial sea water (Instant Ocean; salinity about 

37‰w/v) and provided with internal circulation system. Sea urchin health conditions as 

well as all physical and chemical water parameters were daily (temperature and salinity) 

or weekly (pH, KH, GH, NO2, NO3) monitored throughout the experimental period and 

promptly adjusted if necessary. Additionally, at the end of the experimental period (12 
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weeks), 10 more specimens were collected from the same field population. These 

animals represented the ‘‘environmental controls” (T2env). 

 

Table 1. Summary of the main experiments of E2 administration in echinoderms found in the literature. 

Species 
Exp. 

approach 
E2 administr. 
type and freq. 

Exp. 
period 

Effects References 

Starfish 

Asterina pectinifera in vitro a; daily 3 d 
↑ Oocyte diameter and ↑ % of 
oocyte in advanced reprod 
stage 

[41]  

Asterias rubens in vivo b; daily 16 d 
↑ Oocyte diameter; ↑ GI ♀; ↑ 
MI ♀; ↑ E1 levels 

[28]  

Asterias rubens 
in vitro/in 
vivo 

a & b; 1st & 
7th day 

8 d 
↑ Lipid content in pyloric 
caeca 

[43]  

Luidia clathrata in vivo 
b; every 
2 days 

16 d 
↑ Activity of metabolic 
enzymes (G-6-PDH and 6-
PGDH) 

[50]  

Sclerasterias mollis in vivo b; daily 16 d 
↑ Oocyte area, ↑ ovarian 
protein, ↑ E1 level 

[3]  

Sea urchin 

Dendraster excentricus and 
Strongylocentrotus 
purpuratus 

in vitro a 
4 h & 
24 h 

Synthesis of novel protein in 
non-gravid females 

[10]  

Pseudocentrotus 
depressus 

in vivo c; daily 1 m No effects [42]  

Lytechinus variegatus in vivo c; daily 36 d ↑ GI ♀; ↑ protein percentage [49]  

Strongylocentrotus. 
purpuratus 

in vivo b; 1/week 8 w 

↓Embryo sensitivity to E2; ↑ 
embryo sensitivity to TBT 
and DDD; ↑ SpSHR2 
transcript in the eggs 

[27]  

S. nudus in vivo c 48 h ↑ Protein synthesis [44]  

S. intermedius in vivo c 48 h 
↑ Ovarian protein synthesis; 
no effect before spawning 

[45]  

P. lividus in vivo b; 2/week 
2 w & 
12 w 

No effect [39]  

a = culture medium; b = injection; c = diet; m = month; w = week; d = day; h = hours; ↓ = decrease; 
↑ = increase; GI = Gonad Index; MI = Maturity Index; E1 = estrone; G-6-PDH = glucose-6-phosphate 
dehydrogenase; 6-PGDH = 6-phosphogluconate dehydrogenase; TBT and DDD = endocrine disrupting 
compounds, tributyltin and dichlorodiphenyldichloroethane, respectively; SpSHR2 = orphan steroid 
receptor. 

3.12.2.2. Liquid chromatography–mass spectrometry 

3.12.2.2.1. Sample extraction 

40 ml of coelomic fluid (pool of 5 different individuals kept at −40 °C) were spiked with 

the internal standard estradiol-d2 to the final concentration of 10 ng ml−1 and centrifuged 

http://www.sciencedirect.com/science/article/pii/S0039128X15002226#b0195
http://www.sciencedirect.com/science/article/pii/S0039128X15002226#b0140
http://www.sciencedirect.com/science/article/pii/S0039128X15002226#b0205
http://www.sciencedirect.com/science/article/pii/S0039128X15002226#b0240
http://www.sciencedirect.com/science/article/pii/S0039128X15002226#b0015
http://www.sciencedirect.com/science/article/pii/S0039128X15002226#b0050
http://www.sciencedirect.com/science/article/pii/S0039128X15002226#b0200
http://www.sciencedirect.com/science/article/pii/S0039128X15002226#b0235
http://www.sciencedirect.com/science/article/pii/S0039128X15002226#b0135
http://www.sciencedirect.com/science/article/pii/S0039128X15002226#b0210
http://www.sciencedirect.com/science/article/pii/S0039128X15002226#b0215
http://www.sciencedirect.com/science/article/pii/S0039128X15002226#b0185
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before purification by Affinimip SPE catridges, previously equilibrated with 3 ml 

acetonitrile and 3 ml ultrapure water (flow rate 2 drops per second). 

The sample was loaded by gravity and then washed with 3 ml ultrapure water and 3 ml 

of 60/40 ultrapure water/acetonitrile (flow rate 1 drop per second). Finally, the sample 

was eluted with 3 ml of methanol (flow rate 1 drop per second). The elution fraction was 

evaporated until dryness under nitrogen before derivatization with 100 μl of dansyl 

chloride (1 mg ml−1 in acetone) and 100 μl of 0.1 M sodium bicarbonate in water, heated 

at 60 °C for 3 min. The derivatized extract was reconstituted in 1 ml of methanol:water 

(70:30 v/v) and transferred in an auto-sampler vial. The injection volume was 10 μl. 

3.12.2.2.2. LC–MS/MS analyzes 

LC analysis was carried out with an HPLC system (Thermo Fisher Scientific, San Jose, 

CA, USA). Chromatographic separation of the four estrogens (estradiol, estrone, estriol 

and 17α-ethinylestradiol) and the internal standard estradiol-d2 (Sigma-Aldrich, St. 

Louis, MO, USA) was achieved using a Synergi Hydro RP reverse-phase HPLC column 

(150 × 2.0 mm, 4 μm internal diameter), with a C18 (4 × 3.0 mm) guard column 

(Phenomenex, Torrance, CA, USA), which was kept at 30 °C. The mobile phase 

consisted of methanol (solvent A) and 0.1% aqueous formic acid (solvent B). The 

gradient program began at 70% A for 1 min, changing to 95% A in 9 min, which was 

then held for 2 min. Then, it returned to 70% A in 2 min and equilibrated for another 

6 min. The flow rate was 300 μl min−1 and the overall run time was 20 min. The mass 

spectrometer was a triple-quadrupole TSQ Quantum MS (Thermo Fisher, San Jose, 

CA, USA) equipped with an electrospray interface (ESI) set in the positive (ESI+) mode. 

3.12.2.3. E2 administration: experimental design 

The experimental design of E2 direct administration experiment is summarized in Fig. 1, 

where further experimental details are reported. Estradiol administration was preceded 

by six weeks of starvation to reset and synchronize the reproductive cycle among the 

animals [35]. Feeding re-started 10 days before the first E2 administration to partially 

restore the animals after starvation stress. Animals were individually fed in excess with 

fresh carrots (3/week) or pellets of artificial diet (4/week; Wenger Manufacturing, Inc., 

http://www.sciencedirect.com/science/article/pii/S0039128X15002226#f0005
http://www.sciencedirect.com/science/article/pii/S0039128X15002226#b0175
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patent n° 085115204). A mean “daily feeding rate” (DFR) was calculated at the end of 

the overall experimental period (12 weeks) for each tank: DFR = (n° pieces of eaten 

carrots or pellets/n° pieces of carrots or pellets provided in the aquarium) × 100. During 

starvation, temperature was set at 15 ± 1 °C and photoperiod at 15 h:9 h (dark:light; 

winter conditions). When feeding re-started the parameters were gradually increased to 

20 °C and 10 h:14 h (dark:light; summer conditions), and remained fixed for the whole 

administration period. Indeed, changes in water temperature and daylight length 

(winter → summer) are fundamental cues to stimulate the onset of echinoid 

gametogenesis [31]. 

 

Fig. 1. Schematic representation of the experimental design, including the numbers of animals sacrificed 

at each time point. 

Evaluation of circulating E2 level in field specimens allowed to calculate the E2 doses 

subsequently administered via injection in body fluids. A short-term (T1: 2 weeks) and a 

long-term (T2: 12 weeks) E2 treatment were planned and three different E2 

concentrations plus one control solution were tested (see below). In the long-term 

experiment, each concentration was tested in duplicates (tank A and B) and a further 

control aquarium (CTL+: not injected sea urchins) was set up in order to check any 

long-term stress due to the experimental manipulation (injections). Ten animals were 

put in each aquarium/tank, except for the CTL+ aquarium (6 specimens). Animals were 

homogeneously distributed for size and weight among the aquaria. At each time point 

(T0, T1, T2) a specific number of specimens was sacrificed (Fig. 1). Body fluids were 

collected with a syringe from each animal, frozen in liquid nitrogen and stored at −80 °C 

for the subsequent E2 analyzes. Sea urchins were dissected and the five gonads were 

removed and weighted for Gonad Index (GI) calculation [GI = (gonad fresh weight/total 

sea urchin fresh weight) × 100]. Then, one gonad was used for reproductive stage 

evaluation, whereas the remaining ones were collected, frozen in liquid nitrogen and 
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stored at −80 °C for E2 analyzes and lipid concentration measurement. Digestive tube 

was also collected, frozen and stored at −80 °C for enzymatic assays. Regardless of the 

time point (T1 and T2), animals were sacrificed 4 days after the last E2 injection. 

Additionally, T2env specimens were processed for GI calculation and reproductive stage 

evaluation, as previously described. 

3.12.2.3.1. Solution preparation 

All chemicals were of reagent grade. A 17β-estradiol (Sigma, St. Louis, MO, USA) 

solution (2 mg ml−1) in acetone (Merck, Darmstadt, Germany) was prepared and diluted 

(10−4) in autoclaved and filtered ASW, in order to reach the highest tested concentration 

(200 ng ml−1). The other concentrations were obtain by further dilutions (1:10) in ASW. 

Maximum acetone concentration was 0.01% v/v, therefore control solution consisted of 

0.01% v/v acetone in autoclaved and filtered ASW. Fresh solutions were prepared each 

time. 

3.12.2.3.2. Estradiol administration 

Hormone administration occurred twice a week via intra-coelomic injection at the level 

of the peristomial membrane. Discontinuous injections were favoured to daily 

administration to reduce sources of mortality and stress for the animals. Three different 

E2 concentrations were tested: 2, 20, 200 ng ml−1. 5 pg ml−1 was considered as 

“physiological” E2 level (see Section 3, Table 2) and selected as theoretical 

concentration to be reached in the fluids of the lowest dose treated group. The nominal 

concentration of the lowest dose was then calculated as follow: 5 pg ml−1 × 40 ml∗/0.1 ml 

(individual injected volume) = 2 ng ml−1 (*mean fluid volume of the sea urchins). The 

medium and the highest tested dose were selected 10 and 100-fold more concentrated 

(20 and 200 ng ml−1, respectively), in order to reach high but still rather close to the 

physiological E2 range. 
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Table 2. E2 levels measured by RIA in body fluids of field adult specimens (P. lividus) which had been 

monthly collected over a whole year. 

 
Total Males Females 

Males Females 

NG G NG G 

N 99 46 53 19 27 23 30 

Median 4.8 4.6 4.8 4.2 5.2 7.5 4.4∗ 

Mean 22.3 9.1 33.7 7.4 10.2 60.0 13.6 

25% percentile 3.5 3.3 3.8 3.1 3.5 3.9 3.6 

75% percentile 11.3 7.4 19.9 8.2 7.2 140 5.7 

Min <2.0 <2.0 <2.0 <2.0 <2.0 3.0 <2.0 

Max 292 131 292 35 131 292 151 

Descriptive statistics (number of samples, mean, median, percentiles and min/max values) are reported 

separately for the sexes alone or the sexes and the reproductive condition i.e. NG = non gametogenic 

reproductive stages (Spent, Recovery), G = gametogenic reproductive stages (Growing, Premature, 

Mature). Three of the 102 collected animals were sex-undeterminate and therefore they were excluded 

from the analyzes. The overall median E2 level (males + females) was 4.8 pg ml
−1

. G females display 

significantly lower (*P = 0.015, Mann–Whitney test) E2 concentrations that NG females. 

3.12.2.4. Reproductive stage evaluation 

Reproductive stages were determined by histological analyzes (paraffin embedding), as 

described in Barbaglio et al. [1]. All solvents and reagents were of analytic grade 

(Merck, Darmstadt, Germany). Five stages were considered: non-gametogenic stages 

as Spent (immediately after spawning) and Recovery (phagocytosis and nutrient 

accumulation phase), progressive stages of gametogenesis as Growing, Premature and 

Mature. 

3.12.2.5. Lipid content 

The lipid fraction of gonads was analyzed in 38 T2 animals (nine-ten specimens for each 

experimental group, excluded CTL+) as described in Sugni et al. [39]. Briefly, after 

lyophilisation, known amounts of dry samples were placed in cellulose thimbles 

(25 × 100 mm, Whatman, England) and then extracted using a Soxhlet apparatus (Falc 

Instruments, Lurano, Italy) for 12 h using 100 ml of n-hexane. Each extract was 

concentrated in a rotary evaporator to a volume of 1 ml, then transferred to a small vial, 

after which solvent evaporation was completed under gentle nitrogen stream until 

constant weight. The final weight was used to determine the dry-weight-lipid fraction 

(g lipid g−1 d.w.) expressed as percentage. 
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3.12.2.6. Hormone levels by RIA 

Radioimmunoassay kits for 17β-estradiol were obtained from Beckman Coulter 

(Marseilles, France). Solvents and reagents were of analytic grade (Merck, Darmstadt, 

Germany). Analysis of E2 levels was performed on coelomic fluids of all the specimens 

(146) and on gonads of 46 T2 individuals (10/experimental group plus 6 CTL+ sea 

urchins). Analyzes were performed as described in other works [2]. Efficiency of the 

extraction procedure was 80 ± 3%. Detection limits were of 30 pg g−1 w.w. in gonads 

and 2 pg ml−1 in coelomic fluids. 

3.12.2.7. Enzymatic assays 

Enzymes involved both in E2 synthesis and metabolism were investigated. 

Androstenedione and 17β-estradiol were obtained from Sigma (Steinheim, Germany); 

[1β-3H]androstenedione (15–30 Ci/mmol) and [6,7-3H]estradiol (49.7 Ci/mmol; >97% 

purity) were purchased from Perkin-Elmer Life Sciences Inc. (Boston, MA, USA). PAPS 

(>99% purity) was purchased from Cal-Biochem, Darmstadt, Germany. All solvents and 

reagents were analytical grade (Merck, Darmstadt, Germany). 

3.12.2.7.1. Subcellular fractioning 

Digestive tubes of 4 T1 and 6 T2 individuals from each experimental group were 

homogenized in ice-cold 100 mmol l−1 potassium phosphate buffer pH 7.4 (150 mmol l−1 

KCl, 1 mmol l−1 ethylenediaminetetraacetic acid (EDTA), 1 mmol l−1 dithiothreitol (DTT) 

and 0.1 mmol l−1 phenylmethylsulfonylfluoride (PMSF)). Homogenates were centrifuged 

at 500×g for 15 min, the fatty layer removed and the supernatant centrifuged at 

12,000×g for 20 min. The 12,000×g supernatant was further centrifuged at 100,000×g 

for 60 min to obtain 2 fractions: cytosolic supernatant and microsomal pellet. 

Microsomal pellets were then resuspended in a small volume of microsomal buffer 

(100 mmol l−1 potassium phosphate buffer pH 7.4 containing 150 mmol l−1 KCl, 20% w/v 

glycerol, 1 mM EDTA, 1 mM DTT and 0.1 mmol l−1 PMSF). Protein concentrations were 

determined by the method of (Lowry et al. [20], using bovine serum albumin as a 

standard. Microsomes and cytosols were stored at −80 °C until enzymatic analyzes 

were performed. 
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3.12.2.7.2. Aromatase activity 

Briefly, microsomes (0.4 mg protein) were incubated at 25 °C for 3 h in a final volume of 

1 ml of 100 mmol l−1 Tris–HCl pH 7.6, 10 μmol l−1 [3H]androstenedione (1 μCi) and 

0.2 mmol l−1 NADPH. Assays blanks containing 100 μl of buffer instead of microsomes 

were used for every run. The reaction was stopped by placing the tube on ice and 

organic metabolites and the excess of substrate were immediately eliminated from the 

aqueous phase by extraction with methylene chloride (3 × 3 ml). The possible remaining 

tritiated steroids were further eliminated by the addition of a suspension of 2.5% (w/v) 

activated charcoal and 0.25% dextran in milli-Q water (4 ml). The solution was 

centrifuged (1500×g; 60 min) and two aliquots of the supernatant (1 ml) were counted 

for 3H-radioactivity in a scintillation counter. The lowest aromatase-like activity detected 

by the method was 0.001 pmol h−1 mg−1 protein. 

3.12.2.7.3. Palmitoyl-CoA: estradiol acyltransferase (ATAT) activity 

Palmitoyl-CoA: estradiol acyltransferase activity was determined in digestive tube 

microsomes, as described in Janer et al. [15]. Microsomal proteins (200 μg) were 

incubated in 0.1 mol l−1 sodium acetate buffer pH 6.0 with 2 μmol l−1 [3H]estradiol, 

100 μmol l−1 palmitoyl-CoA and 5 mmol l−1 MgCl2 in a final volume of 500 μl. The 

reaction was initiated by the addition of palmitoyl-CoA, and samples were incubated for 

60 min at 30 °C. Reaction was stopped by adding 2 ml of ethyl acetate, and extracted 

twice. The ethyl acetate fraction was evaporated to dryness, the dry residue redissolved 

in methanol, and injected into the HPLC system. HPLC analyzes were performed on a 

PerkinElmer Binary 250 LC pump system equipped with a 250 mm × 4 mm LiChrospher 

100 RP-18 (5 μm) reversed-phase column protected by a guard column LiChrospher 

100 RP-18 (5 μm). Separation of estradiol and its palmitoyl-ester was performed at 

1.2 ml min−1 with a mobile phase composed of (A) 56% water containing 0.1% acetic 

acid (pH 3), 13% acetonitrile, and 31% methanol, and (B) 60% acetonitrile and 40% 

methanol (all expressed as v/v). The run consisted of 9 min isocratic 100% A, 6 min of a 

linear gradient from 100% A to 100% B, and 25 min isocratic 100% B. Chromatographic 

peaks were monitored by on-line radioactivity detection with a Radioflow detector LB 

509, using Flo Scint 3 as scintillation cocktail. Metabolites were quantified by integrating 

the area under the radioactive peaks. Metabolites were analyzed by gas 
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chromatography–mass spectrometry (EI+) as trimethylsilyl derivatives, and the chemical 

structures were identified by comparison of the retention times and the mass spectra 

with authentic standards. The detection limit of the method was 

10 pmol h−1 mg−1 protein. 

3.12.2.7.4. Sulfotransferase (SULT) activity 

E2 sulfotransferase activity was determined in digestive tube cytosolic fractions, as 

described in Janer et al. [15]. All assays were carried out in duplicate, plus a control 

assay. Cytosolic protein (100 μg) were incubated in 50 mmol l−1 Tris–HCl buffer pH 7.4, 

containing 4 μmol l−1 MgCl2, 2 mmol l−1 Na2SO3, with 100 nmol l−1 [3H]estradiol in a final 

volume of 150 μl. The reaction was initiated by the addition of 10 μmol l−1 adenosine 3′-

phosphate 5′-phosphosulfate (PAPS), and incubated for 60 min at 30 °C. The reaction 

was stopped with 3 ml methylene chloride, after addition of 200 μl of ice-cold Tris–HCl 

buffer (50 mmol l−1, pH 8.7). The extraction of unconjugated estradiol was completed 

with 3 ml of methylene chloride, followed by 15 min centrifuge, and an aliquot of the 

aqueous phase, where sulphated estradiol remained, was quantified by liquid 3H 

scintillation counting. The limit of detection of the method was 0.8 pmol h−1 mg−1 protein. 

3.12.2.8. Statistical analysis 

All statistical analyzes were performed using the software SPSS 18.0. Kolmogorov–

Smirnov test was used to verify the normal distribution of the data. Whenever this was 

not obtained (P < 0.05) data were Log transformed (GI and E2 concentrations in fluids 

and in gonads) or analyzed by non parametric tests (Kruskall–Wallis or Mann–Whitney 

tests). No significant differences were observed between tank A and B for all the 

measured variables (t-Student test or Kruskall–Wallis test, p > 0.05), therefore data 

were pooled together. Correlation analysis (Pearson) was used to identify correlated 

variables. Generalised Linear Model (GLM) was used to analyze the effect of more 

factors (e.g. time, dose, sex, reproductive stage) on a dependent variable with Tukey’s 

post-hoc test. A p-value of less than 0.05 was considered statistically significant. Data 

below the detection limits were considered as half of the limit value. 

3.12.3. Results 
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3.12.3.1. LC–MS confirmation of estrogen presence 

The reconstructed LC–MS/MS chromatograms of the standard solution (concentration 

10 ng ml−1) and of the body fluid sample are showed in Figs. 2 and 3. The 

chromatogram of the latter showed the compliance with the relative retention times for 

estradiol, estrone and obviously for the internal standard. Moreover, the transitions from 

the analyte molecular peak were monitored with a signal-to-noise ratio greater than 3. 

All ion ratios of sample were within the recommended tolerances as required by the 

Commission Decision 2002/657/CE when compared with standards. The concentration 

of derivatized estrogens, extrapolated from calibration curves built from 5 concentration 

points, were 2.4 ± 0.3 pg ml−1 and of estrone (1.2 ± 0.1 pg ml−1) were. 

 
 

Fig. 2. LC–MS/MS chromatograms and related ion spectra of analytes and internal standard in the 

standard solution (concentration 10 ng ml
−1

). 
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Fig. 3. Reconstructed LC–MS/MS chromatograms and related ion spectra of the analytes detected in sea 

urchin body fluids sample. 

3.12.3.2. Circulating E2 levels in field specimens 

Free E2 levels in body fluids were measured in 102 field specimens (FS) by RIA. Data 

were tested for their normality by Kolmogorov–Smirnov test, resulting in a strong non-

Gaussian distribution. For this reason, medians rather than means were considered as 

more representative and 5 pg ml−1 was selected as reference physiological value for the 

following E2 administration experiment. 

Sex did not significantly influenced E2 levels (Mann–Whitney test, P = 0.13), although it 

apparently affected their variability (Table 2). Additionally, differently from males, female 

specimens in active gametogenic stages (Growing + Premature + Mature) showed 

significantly lower E2 levels than those in non-gametogenic ones (Spent + Recovery) 

(Table 2; Mann–Whitney test, P = 0.015). 
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3.12.3.3. Direct E2 administration experiments 

3.12.3.3.1. Animal health conditions and feeding rate 

No mortality was observed in the aquaria, except for the 200 ng ml−1 tank B, where all 

the animals suddenly died during the experimental period, possibly due to a bacterial 

infection. All the other specimens were healthy. No significant differences in feeding 

rates were observed between control and treated groups for both T1 and T2 sea urchins 

(Kruskal–Wallis test: P > 0.05). This allow to exclude that any possible difference in 

gonad development among experimental groups is due to a different food intake, as in 

sea urchins gonads are the main nutrient storage site and can be markedly influenced 

by the animal nutritional state [23]. 

3.12.3.3.2. Estradiol levels in body fluids and gonads 

E2 levels in fluids were measured in 128 animals (Fig. 4). All these data in logarithm 

were analyzed by GLM, considering time, dose, sex and reproductive stage as 

variability factors. E2 was significantly affected by time and dose (P < 0.001 for both), 

whereas sex and reproductive stage did not influence this parameter (P > 0.05). 

 
Fig. 4. Box-plot of free E2 levels in the fluids of the different experimental groups. Males and females 

pooled together. FS = field specimens monthly collected over a whole year before the administration 

experiments. T0 = time-zero specimens; T1_CTL, T1_2 ng, T1_20 ng, T1_200 ng = specimens analyzed 

after 2 weeks (T1) of injections with control, 2 ng ml
−1

, 20 ng ml
−1

, 200 ng ml
−1

 E2 solutions respectively; 
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T2_CTL, T2_2 ng, T2_20 ng, T2_200 ng = specimens analyzed after 12 weeks (T2) of injections with 

control, 2 ng ml
−1

, 20 ng ml
−1

, 200 ng ml
−1

 E2 solutions respectively; T2_CTL+ = specimens not injected. 

Circles and stars indicate values overcoming the III quartile of a distance higher than 1.5-fold and 3.0-fold 

the interquartile range, respectively. T1 2 ng vs T1 CTL and T1 20 ng = P < 0.05; T2 CTL vs T2 ng and 

T2 20 ng and T2 200 ng = P < 0.001 (Tukey post-hoc tests). 

More in detail, all the control groups (T0, T1 CTL, T2 CTL and T2 CTL+) showed overall 

E2 levels (min < 2 pg ml−1; max = 98 pg ml−1) within the variability range of those 

previously found in field sea urchins (FS; Table 2, Fig. 4), but respect to these latter a 

much lower data dispersion was observed. In T1 samples statistically significant 

differences were present considering treatment (P = 0.019, GLM with dose, sex, 

reproductive stage as variability factors), with a E2 peak at the 2 ng ml−1 group, which 

was higher than in control and 20 ng ml−1 groups (Tukey test, P = 0.043 and P = 0.034, 

respectively). Differently, in the long-term treated sea urchins (T2), all the injected 

specimens displayed significantly higher (about 30-fold) levels of circulating hormone 

when compared to controls (Tukey test, P < 0.001), but no difference was observed 

among the three treated groups (P > 0.99). In CTL+ and CTL similar E2 levels were 

observed (Tukey-test, P > 0.05). 

Gonad E2 levels were measured at the end of the experiment (T2) in 44 animals (Fig. 

5). Log E2 levels were significantly affected by dose and reproductive stage (GLM 

considering dose, sex and reproductive stage as variability factors, P < 0.001 and 

P = 0.005, respectively), but not by sex (P = 0.44). In detail, only the 2 ng ml−1 showed a 

significantly higher mean value compared to the control and the 20 ng ml−1 (Tukey test, 

P < 0.001 and P = 0.013, respectively) whereas CTL+ and CTL displayed similar 

hormone levels (Tukey test, P = 0.32). E2 levels were significantly lower in Recovery 

than in Premature stage (Tukey test, P = 0.007). 
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Fig. 5. Box-plot of the total (free + esterified) E2 levels in gonads measured at the end of experiment 

(T2 = 12 weeks). Males and females pooled together. CTL = specimens injected with control solutions; 

CTL+ = specimens not injected. Circles and stars indicate values overcoming the III quartile of a distance 

higher than 1.5-fold and 3.0-fold the interquartile range, respectively. T1 2 ng vs T1 CTL = P < 0.001; T1 

2 ng vs T1 20 ng = P < 0.05 (Tukey post-hoc tests). 

E2 in gonads were positively correlated with E2 in body fluids (both log-transformed; 

Pearson test, P < 0.001). 

3.12.3.3.3. Enzymatic activities in digestive tubes 

All the enzymatic activities (aromatase, ATAT and SULT) were measured in the 

digestive tube at the end of the experiment (T2) in 29 animals (Table 3). SULT activity 

was additionally determined in 16 T1 specimens. For each enzymatic activity CTL+ and 

CTL samples displayed similar mean values (Tukey-test, P > 0.31). 

Table 3. Activities of putative enzymes involved in E2 level homeostasis in control and E2-treated 

experimental groups and at different time-points (T1 and T2): aromatase-like (biosynthesis), 

sulfotransferase-like (SULT, metabolism), and palmitoyl-CoA: estradiol acyltransferase (ATAT, 

metabolism) measured in digestive tubes of control and treated sea urchins. 

  

http://www.sciencedirect.com/science/article/pii/S0039128X15002226#t0015


345 
 

  

Aromatase-like 

pmol h
−1

 mg
−1

 protein 

SULT-like 

pmol h
−1

 mg
−1

 protein 

ATAT-like 

pmol h
−1

 mg
−1

 protein 

T1 

CTL / 155.1 ± 13.4 / 

2 ng ml
−1

 / 119.1 ± 49.3 / 

20 ng ml
−1

 / 144.1 ± 24.7 / 

200 ng ml
−1

 / 147.3 ± 12.8 / 

T2 

CTL+ 0.26 ± 0.20 79.8 ± 32.9 190.1 ± 56.4 

CTL 0.25 ± 0.37 85.4 ± 28.7 240.6 ± 44.8 

2 ng ml
−1

 0.14 ± 0.13 90.2 ± 34.8 216.2 ± 34.2 

20 ng ml
−1

 0.25 ± 0.24 115.8 ± 15.6 195.6 ± 32.6 

200 ng ml
−1

 0.15 ± 0.19 104.9 ± 15.0 211.3 ± 18.4 

Values are mean ± SD (n = 4–6). No statistically significant difference was found between controls and 

treated groups for any of the considered enzyme. 

Considering aromatase, SULT and ATAT activity, GLM analysis did not show any 

significant effect of dose, sex and reproductive stage (P > 0.46), although SULT 

displayed significantly lower activity in T2 samples than T1 (GLM, P = 0.001). 

3.12.3.3.4. Gonad lipid content 

The lipid fraction of gonads was measured at the end of the experiment (T2) in 38 

animals. 

Box plot analysis of all data revealed the presence of two outliers; excluding these data, 

GLM showed a significant effect of sex on the lipid fraction (P = 0.012), whereas dose 

and reproductive stage did not affect gonad lipid content (P = 0.17 and P = 0.87, 

respectively). 

A significant regression was found between the lipid fraction and the Log E2 levels 

measured in gonads (R2 = 0.15; n = 33; P = 0.026) (Fig. 6). 
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Fig. 6. Negative correlation between the lipid content and the Log E2 levels measured in gonads: a 

significant regression was found between the two parameters (P = 0.026). Data are reported for males 

(black) and females (gray). 

3.12.3.3.5. Gonad Index 

GI was measured in 137 experimental animals (T0, T1 and T2) (Fig. 7). GI logarithms 

were analyzed by GLM: time and stage had a significant effect on GI (P < 0.001 and 

P = 0.003, respectively), whereas sex and dose did not (P = 0.45 and P = 0.17, 

respectively). A progressive increase of GI was observed during the experimental 

period, so much that T2 samples showed significantly higher GI values (T test, 

P = 0.004) than T2env animals. 

 

Fig. 7. Box-plot of the GI values in the different experimental groups. Circles indicate values overcoming 

the III quartile of a distance higher than 1.5-fold the interquartile range. GI progressively increase during 
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the experimental period (T1 samples are significantly lower than T2 samples, P < 0.01) and at the end of 

the experiment is significantly higher than the correspondent field samples (T2env; P < 0.01). 

In T2 animals, considering mean values of each tank, GI was strictly correlated to DFR 

(R2 = 0.889; n = 7; P = 0.007) excluding the value belonging to 20 ng ml−1 tank B group 

(GI = 8.9%; DFR = 77.5%) (Fig. 8). 

 
Fig. 8. Positive correlation between mean GI measured in each tank and their corresponding daily 

feeding rates (DFR) in T2 samples: the two parameter are significantly correlated (Pearson test, 

P = 0.007). 

3.12.3.3.6. Reproductive stages 

Reproductive stages were determined in 146 specimens (Fig. 9). After starvation (T0) 

almost all the specimens analyzed were in Recovery stage. Considering T1 control 

animals, some specimens in Growing stage were observed but the percentages of 

samples in Spent (30%) and Recovery (40%) stages were still high. At the end of the 

experiment, most of the control specimens (T2 CTL, CTL+ and T2env) were in active 

gametogenic stages (Growing, Premature and Mature) with only a small amount of 

samples in non-gametogenic stages (Spent and Recovery stages). 
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Fig. 9. Relative frequency of the reproductive stages (Non gametogenic = spent, recovery; 

gametogenic = growing, premature, mature) in the different experimental groups (males & females). 

After 2 weeks of treatment (T1), no differences were observed between control and E2 

treated groups in the relative frequency of the reproductive stages: in both males and 

females active gametogenic stages were found in almost all the experimental groups 

although non gametogenic stages were usually present in high percentages both in 

control and treated specimens. Similarly, after 12 weeks of treatment (T2), no marked 

differences in the relative frequency of reproductive stages were observed both among 

the experimental groups and between controls and T2env animals. Although non-

gametogenic stages were still present, all the groups showed a higher percentage 

(>60%) of active gametogenic stages (Fig. 7). 

As reported in paragraphs 2.5 and 2.2, reproductive stages significantly affected GI and 

gonad E2 levels (GLM analysis). 

3.12.4. Discussion 

In the present work, we explored echinoid endocrinology trying to clarify some of the 

debated aspects of estrogen physiology in these invertebrates. We focused on verifying 
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estrogen presence in sea urchin tissues and its putative physiological role in 

reproduction, specifically evaluating its metabolism and effects on gonad growth and 

gamete maturation after an exogenous administration of physiological doses of E2. 

Indeed, in echinoderms, and particularly in echinoids, estrogen physiology and function 

is still far to be elucidated, representing a profound gap of knowledge in the evolutionary 

pathway leading to the well-established endocrine system of vertebrates. 

By means of direct methods i.e. LC–MS, we verified that estrogens, namely 17β 

estradiol and estrone, were present in sea urchin body fluids (coelomic fluids). Among 

the five echinoderm classes, this was done only for starfish [47], whereas for sea 

urchins, which belong to a different phylogenetic lineage, the Echinozoa, [25], this 

information is missing. Our LC–MS results provide evidence that in the fluids of the sea 

urchin P. lividus there are both 17β estradiol and estrone and their spectra are identical 

to the correspondent commercially available hormone. Furthermore, the E2 

concentration calculated from chromatographic data are well in agreement with those 

measured by RIA and therefore provide a sort of validation for the immunological 

method, which comparing to chromatographic methods has many practical advantages 

(e.g. simultaneous processing of a higher number of samples). 

In order to know the real physiological E2 levels we measured the concentrations of 

circulating hormone in field specimens of P. lividus collected during a whole year (Table 

2). This guaranteed to include all the possible physiological and seasonal hormonal 

conditions experienced by the animals during their annual reproductive cycle. As 

expected, E2 displayed a wide range of concentrations (from <2 to 292 pg ml−1; Fig. 2) 

and this variability was particularly high in females (Table 2). For this reason, the 

median values of about 5 pg ml−1 are more representative of the overall physiological 

situation. Although slightly lower, the sea urchin ranges are quite similar to the 

reference values of E2 human plasma concentration, which range from <10 pg ml−1 

(post-menopausal woman) to 350 pg ml−1 (pre-menopausal woman at ovulation), with a 

progressive increase during ovulatory follicle maturation [22]. Differently, in female sea 

urchins the hormone concentrations decreases in active gametogenic stages comparing 

to non-gametogenic ones (Table 2). Whether this result, together with the overall higher 
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mean levels observed in females, might suggest an E2 involvement in the control of 

oogenesis, had to be proven by a more “functional approach”. We therefore set up an 

experiment of direct E2 administration: if a high E2 level was the endogenous signal for 

maintaining gonads in resting condition we would have expected that, particularly in 

females, treated specimens remained in Spent–Recovery stage and did not start and 

accomplish gametogenesis. We administered three different E2 doses to obtain in body 

fluids final nominal hormone concentrations rather close to the physiological range. 

RIA analyzes confirmed the actual increase of E2 in body fluids following the hormonal 

injections in a time-dependent manner. After 2 weeks of treatment, circulating E2 levels 

showed a high variability among the groups (Fig. 4) and only the 2 ng ml−1 group 

displayed significantly higher concentrations than control. Despite a 10 and 100-fold 

higher injected dose, the other experimental groups displayed lower E2 levels (Fig. 4). 

These data suggested that, differently from 2 ng ml−1 (the more “physiological” dose), 

higher E2 doses activated potent homeostatic or detoxification mechanisms to eliminate 

hormone excess. This would indicate the presence of a critical threshold of E2 level 

controlling the activation of such pathways. Long-term treated specimens showed a 30-

fold increase of circulating E2 when compared to controls but no difference was 

observed between the E2 treatments. This further suggested the presence of protective 

mechanisms to maintain the E2 levels within a high but still “physiologically accepted” 

value (Fig. 4). However, after 12 weeks of treatment, mechanisms for E2 elimination 

were less effective than observed after the short-term treatment and even in the 

medium and high dose treated groups E2 concentrations considerably increased. The 

reduced metabolic efficiency might be due to long-term E2 addiction or to prolonged 

animal maintenance. A long-term reduced metabolism was also suggested by 

sulfotransferase analyzes reporting a significantly lower activity in T2 than T1 samples 

(Table 3). 

We also measured the overall E2 concentrations in gonads of long-term treated 

animals. A positive correlation between E2 in body fluids and in gonads was found 

(P < 0.001), suggesting that the injected hormone was likely distributed via coelomic 

fluids to all body compartments, including gonads [1,19]. Here, the E2 levels displayed a 
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significant increase only in the 2 ng ml−1 group compared to control and 20 ng ml−1 

groups, a “behavior” comparable to what observed in fluids of short-term treated 

animals (Fig. 4). Thus, homeostatic/detoxification mechanisms, responsive to high E2 

doses, were apparently present also in gonads and they were similarly activated when 

E2 overcame a critical dose. These mechanisms could be important to protect the 

gonad from excessively high/toxic E2 concentrations [8] and in this organ they would 

efficiently work even after long-term hormone administrations. Nevertheless, in the lack 

of molecular data, we do not know a priori if these homeostatic mechanisms truly rely 

on endogenous enzymes specifically designed for E2 metabolism or are general 

xenobiotic detoxification enzymes which efficiently work on a wide range of substrates 

(including estrogens). Whatever the real situation, these homeostatic mechanisms 

apparently did not involve the enzymes considered in this study. In vertebrates, the 

overall E2 concentration is normally influenced by those pathways regulating its 

biosynthesis (e.g. aromatase) or its metabolism, among which sulfation and 

esterification might be relevant [14,36]. In the mussel M. galloprovincialis a dose-

dependent increase of ATAT-like activity was actually observed following E2 exposure, 

thus indicating that the hormone excess was bound to fatty acids possibly to keep the 

endogenous level stable [15]. In the present study, no effect was observed on ATAT-like 

activity, suggesting that the esterification pathway is probably not a main homeostatic 

mechanism in P. lividus gonads and does not significantly contribute to restrain 

endogenous E2 levels. Similarly, also the aromatase-like and E2 sulfotransferase-like 

displayed comparable activity in all the experimental groups and were not influenced by 

the circulating E2 levels, which were probably controlled by other pathways. Possible 

alternative mechanisms include E2 conversion into estrone or other metabolites, the 

former being a well-documented process in echinoderms [11,12]. Indeed, in starfish an 

increase of estrone concentrations was reported after E2 treatment [3,28]. In the sea 

urchins Lytechinus variegates, studies on 17β-hydroxysteroid dehydrogenase-like 

activity indicated that the reaction equilibrium strongly favoured the production of E2 

[12]. Nevertheless the presence of high concentrations of E2 – as we observed – might 

alter this equilibrium, leading to estradiol to estrone conversion. Alternatively, 

conjugation of E2 to glucuronide moieties could be another possible homeostatic 
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pathway, producing more polar and more readily excreted E2-conjugated compounds 

[24]. Previous research showed that in echinoderms estradiol was rapidly transformed 

mainly into aqueous soluble and secondarily in lipophilic metabolites [12]. 

Despite the actual increase of E2 levels in body fluids and, partially, in gonads, the 

hormonal treatment did not induced marked variations in the considered reproductive 

parameters. 

The relative frequencies of both female and male reproductive stages (Fig. 9) were not 

significantly affected by E2, suggesting that the hormone was actually not involved in 

neither oogenesis nor spermatogenesis. The increased percentage of non-gametogenic 

stages (100%) in T1 females treated with the lowest dose (where a higher circulating E2 

concentration was actually measured, Fig. 4) may give the impression of the “expected” 

inhibitory effect. Nevertheless, this is not supported by results obtained in animals 

treated for a longer period (T2) and having even higher E2 levels (Fig. 4), where both 

controls and E2 treated females displayed similar percentages of non-gametogenic 

(spent–recovery) and gametogenic stages (growing–premature–mature). Similarly, the 

lack of mature stages in all the T2 treated females is difficult to correlate to a hormone 

inhibitory effect, as indicated by the similar presence of premature stages in controls 

and treated animals. Since the classification in premature and mature stage only rely on 

a different proportion of histologically detected mature eggs and do not imply different 

physiological processes (as between growing and premature, with the onset of 

vitellogenesis), it would be difficult to explain why the hormonal treatment prevent the 

animals to reach the premature stage but not the mature one. So, overall, on the basis 

of our results, E2 seemed neither to prevent oocyte maturation, as we initially 

hypothesized, nor to enhance oocytes growth, as reported for asteroids [13,46,51]. This 

lack of E2 “reproductive responsiveness” in P. lividus is further supported by recent [39] 

and ongoing hormone administration experiments (Mercurio and Sugni, unpublished 

data), independently from the specific experimental conditions (administration type, food 

type, photoperiod/temperature manipulation). In other echinoids E2 treatment led to 

partially different and even contrasting results, including absence of effect in juveniles of 

Pseudocentrotus depressus[42] to inhibition of oocyte growth in Lytechinus 
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variegatus[49] and stimulation of gamete development in Strongylocentrotus 

intermedius[45]. These differences could be related to different species-specific 

mechanisms or to different experimental designs, which could have been affected by 

different feeding rates (not evaluated in some cases) or an original individual variability, 

due to a lack of reproductive cycle synchronization in animals at the beginning of the 

experimental period. Our experiment was successfully designed in order to synchronize 

the reproductive conditions of the animals to a basal stage (Recovery) and, then, 

artificially activate gametogenesis processes by environmental parameter manipulation 

and proper feeding. If these signals are lacking (as it can be in laboratory conditions) 

gametogenesis may not be activated at all, independently from any hormonal 

administration, as we observed in a previous comparable experiment [39]. This further 

indicate that factors other than estradiol strongly control gametogenic onset. From the 

synchronic basal reproductive stage the experimental animals gradually reached active 

gametogenic stages within the end of the 12 week-treatment (Fig. 6), although still 

displaying a certain individual variability. The latter might be related to slightly different 

food intake due to intra-specific food competition that, although we tried to reduce by 

individual feeding procedures, we may have not completely eliminated. However, even 

if a certain level of differences in individual food intake it must be recalled that no 

statistically significant different was found among the overall DFR of the different 

experimental groups. 

The obtained results also allowed us to reject the hypothesis of a threshold oocyte size 

driving E2 effectiveness, as postulated for asteroids [28]: indeed no effects was 

observed on oocyte development despite all the gamete “sizes” were present in the 

control group within the end of the experiments (Fig. 7). 

Gonad growth was not affected by E2 administration as well, since control and treated 

groups displayed similar GI values. Differently, in the echinoid L. variegatus, E2 dietary 

administration apparently enhanced ovarian growth [49], but lack of information on the 

initial conditions and the very short-acclimatization period (<1 w) do not exclude this 

observation was due to an originally unbalanced animal distribution. Rather, in the 

present work GI was apparently more influenced by food availability as demonstrated by 
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its clear correlation with the calculated DFR (Fig. 6). This result is in agreement with the 

well-documented critical influence of food quantity and quality on sea urchins 

reproductive cycle regulation [23,34]. 

Overall, our present research indicate that, although present in the body fluids (as 

confirmed by LC–MS), estrogens are not involved in the regulation of P. lividus 

reproductive cycle. Slight discrepancies with other research on sea urchins [49] might 

be related to species-specific hormonal mechanisms or, more possible, to different 

experimental designs. The lack of clear physiological effects can lead to two different 

“explanations”: 

(1) Estradiol is not an active endogenous hormone is sea urchins. This would fit with the 

apparent absence of both molecularly recognizable biosynthetic enzymes (CYP19) [21] 

and classical nuclear estrogen receptors (ER) in sea urchin genome [9]. Its presence in 

the tissues might be simply due to an uptake from the environment or from the diet, as 

hypothesized for mollusks [29,30]. If in principle this is possible, it makes difficult to 

explain why field and lab-maintained animals, which feed on highly different food (algae 

vs artificial pellets) and live in different sea water (natural vs artificial) display quite 

similar physiological E2 concentrations. 

(2) Estradiol is an active endogenous hormone but its role is not the control of 

gametogenesis, as reported for vertebrates and asteroids. Other physiological process, 

which we have not considered in the present study, would be the target, as suggested 

also by other works [44,45]. This is not surprising as in vertebrates, besides 

reproduction, E2 is critically involved in many other physiological processes, as nervous 

system development, immunity, bone maintenance and lipid metabolism. In the present 

study, although no significant differences in gonad lipid content were found among the 

different experimental groups, a negative correlation between E2 measured in gonads 

and their lipid fraction was observed (Fig. 4). Whether this might be indicative of an E2-

induced lipid consumption and therefore an E2 controlled lipid metabolism has still to be 

clarified by further more specific research. 
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Whatever the specific function, this second hypothesis would explain E2 presence in the 

tissues and the presence of an aromatase-like activity [19], that, however, 

independently evolved from the vertebrate enzyme in terms of structure but acquired a 

similar function (evolutionary convergence; [21]. Nevertheless, in this scenario the E2 

mechanism of action would occur through a still unknown receptor. Interestingly, a novel 

estrogen receptor, GPR30 or GPER, which mediate different hormone effects was 

found [26] and underline the possible diversity of signal transducers even in the well-

known vertebrates. Weather sea urchin possess GPER-like receptor is an intriguing 

issues we are currently investigating. 

Differences with results obtained from starfish (Table 1) might be due to class-specific 

hormonal pathways, since the two taxa evolved separately quite early in echinoderm 

phylogeny [4,16,25]. In crinoids, the most basal echinoderms, estrogen-like compounds 

have been detected in whole body tissue homogenates and their levels are higher 

during vitellogenesis and drastically drop when complete maturation is achieved [2]. 

This is well in agreement with what happens in both vertebrates and starfish and may 

lead to the speculation that E2 physiology and sensitivity has been lost or independently 

evolved in the Echinozoa (echinoids and holoturoids) lineage, whereas the crinoids and 

the Asterozoa (asteroids and ophiuroids) would have maintained the vertebrate-like 

hormonal machinery. A support to this hypothesis is that crinoids and asteroids have a 

different gonad anatomy from sea urchins [32] and a slightly different oogenesis 

accomplishment. 

Further studies are certainly needed to verify these fascinating hypotheses including to 

enlarge the analyzes toward a higher number of representative echinoderm models 

(including holoturoids and ophiuroids). 

Overall, the present research contributes to a better knowledge of sea urchin 

endocrinology, and provide basic reliable information, which hopefully will help to shed 

light on the evolution of estrogen signaling system along the deuterostomian lineage. 

Furthermore, this work underline the risk of Phylum generalization (different echinoderm 

classes may present different situations) and necessarily induce a perspective revision 
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of the susceptibility of sea urchin reproduction to estrogen-mediated endocrine 

disruption: the toxicity of the so-called estrogen-mimicking environmental contaminant 

does not apparently occur via endocrine modulation. 
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3. CONCLUSIONS 

Although the intense control of illicit growth promoter administration (e.g corticosteroids, 

anabolic steroids and antibiotics) within the European Union, the number of detected 

positives in the last few years seems very limited. The determination of residues of 

drugs in matrices of animal origin is often very complex due to the difficulties observed 

during the analysis, often related to the rapid or unknown metabolism of some drugs; 

recoveries for certain drugs could be much lower than for others within the same group, 

sensitivity for some compounds can be much lower than the other within the same 

group; the double origins (pseudoendogenous and/or exogenous) of some molecule 

(boldenone, prednisolone, nandrolone) is still under debate. There are also a ot of 

measures taken by the manufacturer, distributor and/or illicit user of some drugs as well 

as the low individual doses in cocktail of different products of the same or different 

group having additional or synergic effects; administration of synthetic analogues of 

known growth promoters or use of products which are not completely regulated from the 

member states. All these strategies are often adopted to circumvent the controls. 

In addition, the problem of residues is related also to environmental contamination, both 

for residues of veterinary drugs and for new emergent contaminants, e.g. perfluoroalkyl 

substances (PFASs).  

In this research study we proposed and investigated new unconventional matrices 

compared, where possible, to the conventional ones, analysed by multiresidual and 

multiclass methods by LC-MS/MS or LC/HRMS, to better clarify some issues mentioned 

above and improve the control framework. The analytical and instrumental strategies 

adopted dealt with the optimisation of instrumental performances as well as of all the 

steps of pretreatment of the samples, in order to achieve good levels of sensitivity, 

specificity and robustness of the validated confirmatory methods, culminating in 

considerations of qualitative, quantitative and statistical nature after their application to 

real cases often organised in groups for different gender, age or geographic areas, 

according to our different experimental plans.  

Future perspectives of this study for analytical improvements could deal with the study 

of other veterinary drugs and new matrices taken from food chain animals or of animals 

purposely treated with known pharmacologically active principles, to identify residues 
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that are not found in the conventional matrices. In this regard, the potential of LC-HRMS 

could be exploited to investigate the fragmentation pathways of new molecules by 

focusing on the untarget analysis for the search of new markers useful for food 

surveillance at different stages of the food chain. Given the results achieved by the 

presented papers, some unconventional matrices could be considered for official 

controls giving a more complete view and allowing for adequate monitoring of residues 

in compliance with the withdrawal period, before the product comes to the consumer. 

Certainly, the field of food safety is constantly changing, from both a regulatory and an 

experimental point of view, so this type of research will always play a major role in 

public health and further studies are strongly recommended. 

 


