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Introduction

Gravity pushes matter in neutron stars up to densities at which long lasting unusual
degrees of freedom and exotic phases of matter appear: nuclear superfluids and strange
matter such as hyperons, different deconfined quarks states and possibly also colour
superconducting phases. Therefore neutron stars, and the still hypothetical quark stars
(Itoh, 1970), are probes of the high density and low temperature zone of the QCD phase
diagram, as shown in Fig (0.1).

The most common astronomical manifestation of neutron stars are radio pulsars, in-
termittent and precise radio signals from a point-like source in the sky. This phenomenon
is firmly interpreted as the beamed emission from a magnetized and rotating neutron star.
The precise timing of such rotation-powered neutron stars reveals a steady and extremely
slow increase of the pulse period, indicating that these objects loose angular momentum
and kinetic energy due to the emission mechanism. Even if pulsars are known to be very
stable clocks, many of them show sudden and random increases in their spin frequency,
dubbed glitches, that are instantaneous to the accuracy of the data.

Anderson and Itoh (1975) proposed a natural and elegant interpretation of the glitch
phenomenon, based on the intermittent motion of a myriad of quantized vortices! that
permeate the solid inner crust of the neutron star. Complex interaction of vortices with
the crystalline solid present in a neutron star’s crust can pin the vortex in place (or,
more generally, hinder the natural outward creep motion of vortices). Pinning freezes the
superfluid vorticity in its configuration, so that the superfluid cannot spin down together
with the observable component. As a consequence a superfluid current of neutrons develops
in the inner crust: in the frame of reference of the solid medium, the neutron fluid is seen
to flow in a definite direction. This current provides the extra angular momentum that
can eventually be released in a glitch.

While the exact nature of the trigger mechanism for glitches is still debated, with
crustquakes, vortex avalanches and fluid instabilities likely contenders (Haskell and Melatos,
2015), the multifluid framework for describing the hydrodynamics of superfluid neutrons

1 In this work some basic knowledge about the description of superfluids and condensates is assumed:
basic notions can be found in the seminal paper of Anderson on the flow of superfluid *He (Anderson,
1966). Some of his considerations, like the role of the quantum phase as a dynamical variable, and the
way they have evolved over the past half century are recounted by Varoquaux (2015). An introduction to
the theoretical description and properties of quantum fluids (more focused on gaseous atomic BEC) is
given by Barenghi and Parker (2016).
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Figure 0.1: The conjectured phase diagram of QCD [see e.g. Stephanov (2004) for a review].
At low temperatures (below 1MeV) and for intermediate densities hadronic matter develops
nuclear superfluidity comprising condensates of paired nucleons. At even higher densities colour-
superconducting and superfluid phase known as color-flavor-locked is expected. The non-color-
flavor-locked region is actually unknown but may comprise two-colour-superconducting phases,
pion and kaon condensates or crystalline phases, among other possibilities. Relativistic heavy-ion
collider experiments explore a region of the phase diagram that is complementary to the cold
region of neutron stars.

in NSs is quite established (Hall and Vinen, 1956; Mendell, 1991; Carter, 1989; Prix, 2004)
and enables us to model the glitch itself and the subsequent relaxation (Peralta et al.,
2006; Haskell et al., 2013; Howitt et al., 2016; Sourie et al., 2016). Moreover, as early
proposed by Datta and Alpar (1993), recent calculations have shown that combining
the measured average glitch activity of the Vela pulsar with state of the art nuclear
physics models of the effective mass of superfluid neutrons, can lead to constraints on the
mass of the star and on the equation of state of dense matter (Datta and Alpar, 1993;
Link et al., 1999; Andersson et al., 2012; Chamel, 2013; Ho et al., 2015; Delsate et al., 2016).

In this dissertation I discuss how observations of the mazimum glitch occurred in a
certain pulsar provides a test for the microscopic physics of neutron star interiors, in
particular the pinning forces (a parameter which effectively describes the strength of
the vortex-lattice interaction at the mesoscopic scale). Conversely, by fixing the input
parameters by taking estimates from recent literature, it is possible to estimate the mass of
a glitching pulsar. A proof of concept of this thesis is given by constructing a quantitative
model for pulsar rotational dynamics that can consistently encode state of the art models
of the pinning force between vortices and ions in the crust, as well as the stratified structure
of a neutron star. This point is far from being secondary as most studies on pulsar glitches
are based on body-averaged models or differential models that tacitly assume a cylindrical
symmetry, not consistent with the spherically layered structure.

The procedure used to estimate pulsar masses can be adapted to more refined dynami-
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cal modellization of pulsar rotation, in the hope that current and future observations of
glitching pulsars will help astrophysicists to pin down an accepted description of the glitch
mechanism itself and the related superfluid properties of dense matter.

The picture outlined indicates a particular aspect of the problem, common to many
astrophysical models which aim to be “realistic” or “consistent”: the microscopic properties
of matter determine the input needed to describe the global dynamics of the whole system
(in this case the superfluid neutron star). However, due to the presence of quantized vortex
lines, we have to face an additional difficulty: there is also an intermediate scale (the
so-called mesoscopic scale, in between the microscopic fermi-scale and the centimeter-scale)
which is defined by the coherence length of the superfluid. Therefore, the mesoscopic
scale ranges from the radius of a vortex core (for which the coherence length provides
an estimate) to the typical distance between two vortices [, defined as the Wigner-Seitz
radius of a two-dimensional array of density n, = 47 /(kP):
ot = lvz\/’Tmelo—?’ P cm.

27
In this equation P is the rotational period of the pulsar, measured in seconds, and k the
circulation of a single quantized vortex which permeates the neutron superfluid. Pulsar
magneto-rotational dynamics is typically modeled by means of an hydrodynamical ap-
proach, well defined only after an average over regions that encompass many inter-vortex
spacings [, is considered (Glampedakis et al., 2011).

2 _
ml, =n

After the introductory material, where some background concepts about neutron stars are
recalled, contents are divided into three main parts:

Chapter (2) A three-dimensional hydrodynamical simulation of a neutron star interior it
is not simple to take into account consistently for stratification, pinning forces and
entrainment. Therefore, we show how to implement these fundamental ingredients
within a simplified geometry (axially symmetric), as a first natural approximation to
the full problem. This part is based on a revised and extended version of the work
already published in (Antonelli and Pizzochero, 2017).

Chapter (3) We apply the new simplified (but consistent) model to estimate the maxi-
mum angular momentum which can be stored into the region of pinned vorticity.
Using state of the art pinning forces of vortex lines in the inner crust we can estimate
the theoretical maximum glitch for a pulsar of given mass: comparison with obser-
vational data provides a constraint on the pulsar mass, or in a more conservative
interpretation, a test for the microscopic inputs. This part consists of a personal
presentation of the work already published in (Antonelli and Pizzochero, 2017) and
(Pizzochero et al., 2017).

Chapter (4) After a brief review of some basic concepts of relativistic hydrodynamics,
the study of the angular momentum reservoir is extended to a general relativistic
context. We see that, even though curved spacetime can cause corrections to the
moments of inertia from 20% for low mass stars to 50% for high mass stars, the
maximum glitch sizes are affected by corrections of the order of ~ 10%, implying
that the Newtonian mass constraint are be raised by only few percents. A critical
and quantitative revision of the previous Newtonian model is then presented. This
part extends the results of Antonelli et al. (2017).
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Finally we draw some general conclusion on the work presented: the procedure used to
estimate the masses must be refined in order to account for a better dynamical modellization
of pulsar rotation: the major unknown is the behavior of vortices (in particular pinning)
at the mesoscopic scale. On the other hand, one can always assume microscopic inputs
and an hydrodynamical model: in this case the ability to reproduce a broad distribution
of pulsar masses that fall in the expected range of 1-2 My provides a quantitative test
for the model itself. The problems underlying the glitch phenomenon are then briefly
reviewed and the future directions (like the systematic use of dynamical simulations based
on more refined models) are summarized.
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Neutron stars: astrophysical
background

Neutron stars are classified as compact objects for their exceptional density, responsible
for many high-energy phenomena, like glitches, gamma ray bursts but also emission of
gravitational waves (by binaries, persistent mountains or oscillation modes of their surface).

The macroscopic characteristics of neutron stars immediately show how much these
objects are extreme: measured masses fall around ~ 1.5 Mg, but their radius is only
~ 107° times the Sun’s radius. This results in a very high central density which can
overcome (up tp ten times) that of nuclear matter at saturation!, making the inner core
of a neutron star the densest object “this side” of an event horizon.

The stabilization of these compact objects due to strong gravity. This allows for
long-timescale weak interactions in their interiors (like electron capture): along the path
toward thermodynamic equilibrium this generates neutron-rich matter which may have
net strangeness?. For these hands-off laboratories of extreme physics progress is made by
matching observational data to quantitative theory-based models.

Although pulsars (PSRs), so named because they are sources of periodic signals of
great timing stability, are assumed to comprise the most populous class of neutron stars
(NSs), these two terms are not equivalent: pulsars are thought [for very good and accepted
reasons, as reviewed e.g. by Glendenning (2000)] to be the astronomical manifestations
of neutron stars. On the other hand, a neutron star is a successful theoretical model by
which we can explain many astronomical phenomena. The current explanation for the
pulsar phenomenon is that of a rotating and magnetized neutron star emitting beamed
radiation, a cosmic lighthouse which can be observed from Earth only in the fortunate

I Nuclear matter is said to be at saturation when the minimum of the energy per nucleon is achieved:
this can be done for nuclei (where the nuclear force between nucleons saturates very quickly due to its
short range) as well as for a bulk of nearly symmetric nuclear matter. In the latter case, saturation is
reached for po ~ 2.8 x 101g/cm3. The corresponding baryon density is no = po/msn = 0.0167 fm3.

2 The s quark is the second-generation lightest one, after the u and the d: since the nuclear force
affects quarks in the same way (regardless of their flavor), replacing one u or d with s in a hadron should
not alter its mass (that is almost completely due to gluons) very much. Therefore, when usual nuclear
matter is compressed beyond a critical density, baryons can dissociate into quarks, yielding quark matter
and strange matter. There is however narrower meaning of the so-called “strange matter hypothesis™
quark matter could be more stable than nuclear matter (Witten, 1984), implying that the aforementioned
critical density is zero. Following this hypothesis, nuclei (droplets of nuclear matter) are only metastable
stares: given enough time, or an opportune external trigger, they would decay into strangelets (droplets
of strange matter).
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case that the rotating beam sweeps our line of sight. Not all the neutron stars that we
know are pulsars® (or are detected as pulsars): a famous example is the companion of
the Hulse-Taylor pulsar, which pulsation is unobserved. However, from careful study of
the orbital motion (thanks to the Doppler shift on timing of pulses from the main star)
we know that this invisible partner is required to be very compact, so that it must be a
neutron star. Clearly it is still possible that the Earth is not on the cone swept out by the
rotation of this claimed neutron star, so that we do not have any chance to observe it as a
pulsed source.

It is unlikely that all neutron stars can power such a beamed emission, as it seems
both by theoretical reasons and by the fact that we also observe compact objects at the
center of a supernova remnant that do not show any of the features of pulsars. Therefore,
while pulsars can be considered to be the most evident observational basis of neutron
stars, new discoveries tell us that neutron stars can come in many guises, populating the
so called neutron star zoo.

Given the fact that NSs are observed under such a variety of circumstances, our
current understanding of these objects is limited by small-number statistics and uncertain
systematics. Nonetheless observational breakthroughs are expected in the next decade
as a new generation of facilities (e.g. Advanced LIGO and Virgo for the detection of
gravitational waves and the SKA? for radio timing surveys) comes into operation and will
reach the design sensitivity.

This dissertation is about recent advances in models of pulsar glitches, sudden irreg-
ularities detected in the precise timing of radio pulsars. The main motivation is that,
within the current interpretation, glitches provide us the astronomical clue that rotating
and magnetized neutron stars can also develop extended internal regions that are superfluid.
Few glitches have been discovered also in classes other that radio pulsars, noteworthy
an anti-glitch in a magnetar, the extremely magnetized version of a pulsar (Archibald
et al., 2013). However, due to the fact that full explanation of this phenomenon is still
elusive, we will concentrate mainly on the most common realizations of glitches, that are
found in the timing of pulses coming from isolated objects, typically detected in the radio
band. Unfortunately no glitches have been so far detected in pulsars belonging to a binary
system, except for a unique and very small-amplitude event in the accretion-powered
pulsar SXP 1062, a high-mass X-ray binary system that consist of a Be star and a NS
(Serim et al., 2017).

The scientific knowledge about neutron stars is so vast that is impossible to summa-
rize, as it lies at the intersection of many fields that usually do not touch: nuclear and
sub-nuclear physics, plasma physics, strongly-correlated fermion systems and general
relativity, not to cite the technical advances that recently pushed astronomy into the new
era of multimessenger astronomy®. In this chapter, without any purpose of completeness,
the main properties of NSs are reviewed.

3 Astrophysical manifestations of neutron stars which are not PSRs are broadly classified by using the
acronyms HMXBs, LMXBs, AXPs, SGRs, XDINs and CCOs. A brief description of these phenomena will
be given in section (1.4).

4 The acronyms stand for “Laser Interferometer Gravitational-Wave Observatory” and “Square Kilome-
ter Array”. The latter is a large multi radio telescope project aimed to be built in Australia, New Zealand,
and South Africa. Its total collecting area of ~ 1km? will make it ~ 50 times more sensitive than any
other operating radio telescope.

5 Traditionally the telescope is a device that increases the sensitivity of human eye (and thus works
in the optical). Today we can consider “telescopes” also radio antennas, X-ray and v-ray cameras on
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1.1 Historical overview: compact stars

Neutron stars existed for a long time only in the form of theoretical speculation. The
discovery of the neutron (Chadwick, 1932b) prompted physicists to seriously take into
account for the possible existence of a dense stellar object comprised of neutrons®. The
theoretical concept of compact stars (white dwarfs and neutron stars) is quite recent since
quantum mechanics is mandatory. However the first observation of a degenerate object
dates back to the 1783, when Herschel discovered two companions of a main sequence star.
Today this triple system is known as 40 Eridani (or Keid) and the main sequence star is
visible to the naked eye. Only in 1910 it was discovered that 40 Eridani B was of spectral
type A (white) despite being a faint star. As reported in the famous book of Shapiro
and Teukolsky (1983), the same was found also for Sirius B few years later: the radius of
Sirius B (inferred from its luminosity) and its mass (derived from the binary dynamics),
suggested its density to be ~ 10° times higher than that of Sirius A. Confirmation arrived
in 1925 thanks to the measurement of the gravitational redshift of Sirius B. Today it is
known that like all white dwarfs” (WD), Sirius B’s low luminosity and high temperature
imply a radius that is slightly less than that of the Earth.

In 1926 Fowler used the newly-born theory of quantum mechanics to show that WDs
are supported primarily by electron degeneracy pressure [see Chandrasekhar (1984) and
references therein|. The Fermi gas model was then used by Stoner (1930) to calculate
the relationship among the mass, radius, and density of WDs, assuming them to be
homogeneous spheres. Important breakthrough came with a series of works between 1931
and 1935, where the young Chandrasekhar solved the hydrostatic equation together with
both non-relativistic and relativistic Fermi gas equation of state. The result was the
existence of a maximum mass of ~ 1.4 M, for stable WDs, the exact value depending
on composition of matter. However a rigorous derivation of the early Chandrasekhar
semiclassical mass limit is much more recent: starting from the relativistic many-particle
Schrodinger equation, Lieb and Yau (1987) have given a method to estimate a mass limit
that accounts also for the electrostatic interactions between the electrons and nuclei. A
further step in the understanding of WDs occurred when Mestel (1952) showed that the
energy radiated is the surviving heat from a prior period of nuclear burning; thus white
dwarfs were recognized to be the degenerate remnants of a main sequence star’s core, that
become exposed during the planetary nebula phase.

On the other hand, the early development of the neutron star theory is generally
attributed to Landau: according to Yakovlev et al. (2013) we know that during February
1931 in Copenhagen, Landau, Bohr and Rosenfeld discussed the possible existence of
extremely dense stars “similar to a giant nucleus”®. In particular Landau (1932) presented
a simple explanation of the Chandrasekhar limit and immediately applied his argument to

spacecrafts, and interferometers for gravitational waves: on August 17, 2017 astronomers were alerted
to the observation of a binary neutron star coalescence candidate (GW170817). It was detected by
LIGO and Virgo through gravitational waves less than two seconds before a short gamma-ray burst
(GRB170817A) had been reported by the Fermi Space Telescope. For the first time gravitational waves
and electromagnetic counterpart (over a wide region of the spectrum) from a single source have been
observed. On the other hand, the difficult field of neutrino astronomy is still in its infancy since the only
confirmed extraterrestrial sources so far are the Sun and supernova SN 1987A, plus ~ 30 neutrinos that
likely originated outside of the Solar System (detected by IceCube).

6 By 1932 it was not definitively established whether the newly discovered neutron was a new
fundamental particle or a proton and an electron bound together (as Rutherford originally suggested).

7 It seems that the term was coined in the ‘20s by the dutch-american astronomer Luyten that
discovered and cataloged an incredible amount of white dwarfs.

8The analogy is imperfect: nuclei are bound thanks to the attractive component of the nuclear force,
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NSs as he learned of the discovery of the neutron (Chadwick, 1932a). In the same years
Baade and Zwicky (1934) proposed that in supernova explosions ordinary stars are turned
into dense stars made of neutrons and argued that the release of the gravitational binding
energy of the NS powers the supernova:

“With all reserve we advance that supernovae represent the transition from ordinary stars
into neutron stars, which in their final states consist of extremely packed neutrons.”

The first correct model of a star formed by free degenerate neutrons in general relativity
(GR) was put forward by Tolman (1939) and Oppenheimer and Volkoff (1939), TOV in
short. Studying the hydrostatic equilibrium of a noninteracting and strongly degenerate
relativistic gas of neutrons (sustained only by degeneracy pressure), TOV estimated the
maximum mass for neutron stars, which was found to be nearly half the ~ 1.4M¢, limit
for white dwarfs. It was therefore thought that NSs could not originate from collapsing
WDs, their maximum mass being smaller; this resulted in a puzzling gap in the theory of
stellar evolution. This consideration, together with the small predicted radii (making NS
virtually undetectable) produced a stalemate in the NS theoretical modelling®.

Little happened till Cameron (1959) recognized that matter in a neutron star was too
compressed to neglect the strong interaction between nucleons: the models based on the
free fermion gas did not seem to be viable anymore. New refined models were computed,
resulting in a maximum mass higher than the Chandrasekhar limit for white dwarfs as
reported by Wheeler (1966) and shown in Fig (1.1).

However, there was still the problem of how to detect neutron stars. The first cooling
calculations predicted surface temperatures T' ~ 10% K for young neutron stars ~ 103 year
old [see e.g. the photon luminosities associated to the cooling times estimated by Chiu
and Salpeter (1964)]. Therefore the Stefan-Boltzmann law gives that the luminosity L of
a NS of radius R ~ 10km is comparable to that of the Sun'® L = 47 R?0T* ~ 1033 erg/s.
According to Wien’s displacement law, emission intensity is peaked at the wavelength
A = 0.289cmK/T ~ 3nm so that thermal emission of a neutron star was expected to be
mainly in the soft X-rays'': NSs were not expected to be seen with ground-based facilities
since X-rays cannot penetrate the atmosphere. The first X-ray detectors were launched on
rockets and balloons in the early Sixties but attempts failed to prove the relation between
NSs and newly discovered compact X-ray sources like Sco X-1 (Giacconi et al., 1962).
Now we know that Sco X-1 is an X-ray binary containing an accreting neutron star, as
anticipated by Shklovsky (1967), which argument was nearly ignored at that time:

“If the identification of the optical object similar to an old nova with the X-ray source
is correct, then the natural and very efficient supply of gas for such accretion is a
stream of gas, which flows from a secondary component of a close binary system
toward the primary component which is a neutron star.”

NS are bound because of strong gravity while the short-range repulsion between nucleons supports them.

9 As discussed by Haensel et al. (2007), Gamow and Landau proposed independently in 1937 that a
possible stellar energy source could be the slow contraction of the outer layers onto a dense neutron core.
However it was shown very soon that stars are powered by thermonuclear reactions, as suggested in the
‘20s by Eddington and others. This probably also contributed to the fading interest in neutron stars.

10The luminosity of the Sun is Lg = 3.839 x 1033 erg/s. We also recall that the mass of the Sun is
Mg = 1.989 x 1023 g. In the formula o is the Stefan-Boltzmann constant o = w2k%,/(60h3c?).

11 Actually the Magnificent Seven were discovered in the soft X-rays through their purely thermal
surface emission. All seven sources were discovered by the ROSAT satellite (see also Appendix (B)).
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Figure 1.1: Equilibrium configurations of compact stars for different early EOSs of the form
P(p), where p is the gravitational mass density (i.e. the total energy density including the rest
mass) and P the pressure. Properties have been evaluated under the idealizations of cold and
catalyzed matter (i.e. matter at the end point of thermonuclear evolution with T' < 10% ms) that
is non-magnetized (the magnetic field is much less than the quantum critical field of 4.4 x 10 G)
and non-rotating. Adapted from the review of Wheeler (1966). Left - The relativistic the
adiabatic index as a function of density. The curves are parametrized by the values of log,,(P/ 02),
where P and c are expressed in cgs units. Right - The total gravitational mass (M) versus radius
(the Schwarzschild coordinate of surface R) relation given by the TOV equations. Each curve
ends up in the left extremity into a spiral that converges to an unphysical configuration of finite
M and R but infinite central pressure. The two regions where the configuration is stable against
all modes small vibration are colored.
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Figure 1.2: The radio signals detected with the Interplanetary Scintillation Array of the Mullard
Radio Astronomy Observatory in 1967 that lead to the discovery of pulsars. Left - The pulsar
CP1919 (today known as B1919-+21 or J1921+2153) appeared on the chart record as barely
distinguishable from typical interference. Right - A subsequent high-speed chart recording (dated
28 November 1967) showed that the scruff was a series of periodic pulses.

Figure 1.3: X-ray image of the wind nebula around the Vela pulsar (PSR J0835-4510 or B0833-
45). Observations with the Chandra satellite led to the discovery of the Vela’s outer jet (that
extends in the direction of the proper motion of the pulsar). The Vela pulsar is also the brightest
persistent object in the gamma-ray sky. Adapted from Durant et al. (2013).

Breakthrough came when Pacini (1967) and Gold (1968) pointed out independently that
coherent emission is possible for spinning neutron stars that posses a strong dipolar
component of the magnetic field.

Pulsars were discovered in 1967 on chart-records (Fig (1.2)) obtained during a low-
frequency survey of extragalactic radio sources: little after the Pacini’s article, Jocelyn
Bell Burnell observed pulses that originated from a point-like location on the sky (Hewish
et al., 1968): the signal in Fig (1.2) was detected at 81.5 MHz (thus in the radio interval
of the spectrum), at periodic intervals of 1.337s and with the average on-state of the
pulse lasting ~ 0.3s. Later it became evident that pulsars were also recorded (but not
recognized) few years earlier with the Jodrell Bank telescope: most pulses seen by radio
astronomers are artificial interferences, however Bell noticed signals in her scintillation
surveys that appeared earlier by about 4 minutes every solar day (i.e. once per sidereal
day), thus coming from outside the solar system.

Several explanations were put forward, including that the signals might be generated by
another civilization. The short period of these radio emissions eliminated most astrophysical
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sources of radiation: accretion on black holes is unlikely to give precise intermittent signals,
vibrations of WDs were excluded because of the small period observed!2. Also the scenario
of a vibrating NS was dropped after it was realized that the period was steadily increasing
with time (on the contrary normal modes of vibration have definite frequencies).

The decisive piece of evidence for the rotating neutron star model were the discoveries
of two higher frequency pulsars; the 89 ms Vela pulsar (Large et al., 1968) and the pulsar
at the center of the Crab nebula'®. Both associated with supernova remnants (Figs (1.3)
and (1.4)), they rotate too fast to be binaries or radial pulsations analogous to those
in classical Cepheids. In particular the pulsation (or “spin”) period P of the Crab was
measured by Comella et al. (1969) and appeared to be very short!*, P = 33.08 ms: WDs
could not sustain such a rapid rotation as they would be dispersed by centrifugal forces'®.

Therefore all the possibilities among observed and hypothetical celestial objects were
dropped, except that of a rotating neutron star: in this sense this first detection of a
pulsar is widely accepted also to be the first observational confirmation of the existence of
neutron stars.

After exactly 50 years from the discovery of Bell and Hewish more than two thousand
NSs have been discovered, the vast majority of which are pulsars. Other classes are also
present with tens of members, including magnetars (NSs with strong magnetic field whose
emission is likely powered by the magnetic field decay), and thermal isolated neutron stars
(NS with a weak magnetic field and purely thermal spectrum). All these classes populate
different regions of the so-called P — P diagram, shown in the left panel of Fig (1.5).

Thanks to Chandra and XMM-Newton satellites several sub-classes of isolated neutron
stars were discovered during the last decades: Anomalous X-ray Pulsars (AXPs), Soft
Gamma Repeaters (SGRs), Rotating Radio Transients (RRATSs), X-ray Dim Isolated
Neutron stars (XDINSs, also known as the Magnificent Seven), and Central Compact
Objects (CCOs) like the famous Cassiopeia A (Fig (1.6)). One of the aims of on-going
astrophysical research is to unify all the astronomical classes of sources by considering
them as manifestations of neutron stars at different evolutionary stages. Hypothesis for a
unification picture have been proposed; for instance a refined modellization of magneto-
thermal evolution (in which spin evolution, cooling and magnetic field decay are intimately
linked) may establish the evolutionary links between these families, as show in the right
panel of Fig (1.5).

12 The period of gravity-modes should be of the order of the free-fall timescale ~ (G’p)’l/2 for an
object with typical density p.

13 The discovery of the Crab pulsar in the remnant of SN-1054 (observed by the chinese in 1054 A.D.
and distant 6500 light-years from Earth) also confirmed the link to supernovae. Early X-ray observations
aimed also to detect the activity of a possible remnant of this supernova. X-ray activity was measured
but not directly from the central NS that is hidden within the very luminous plerion nebula, powered by
pulsar wind: the decrease in rotational kinetic energy of the Crab 472 IcrabP_3P matches the measured
luminosity of the nebula Lcpap ~ 5 x 1038erg/s if the moment of inertia of the pulsar is of the order
Icrab ~ 10%% gem?, which is indeed the case for a typical NS.

14 According to the ATNF pulsar catalogue, the Crab pulsar (known also as B0531+21 or J0534+2200)
has a rotational period of P = 0.0333924123s and a spin down rate P =4.20972 x 1013 s/s.

15 A crude estimate of the maximum allowed angular velocity for neutron stars Qumaz (above which
the star sheds mass at the equator) is given by considering the angular velocity Qx of a particle in a
circular Keplerian orbit at the equator, i.e. Qx = (GM/R3)1/2. With an accuracy of 7% we have that
Qmaz &~ 0.67Qg, where the Keplerian angular velocity is calculated by considering M = M a2 and
R = Rmazx, the mass and radius of the most massive non-rotating relativistic configuration (Friedman,
1990). The Keplerian velocity for a NS with M = Mg and R = 108 cm turns out to be Qx ~ 10%rad/s
and the corresponding equatorial velocity is Qx R ~ 0.38 c. A WD with the same mass and R = 6 x 108 cm
gives Qi =~ 0.8rad/s and QxR ~ 0.02c.
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Figure 1.4: The Crab Nebula as seen by combining data from five different telescopes that span
nearly the entire breadth of the spectrum. X-ray image gives a clear view of the pulsar wind
nebula powered by the neutron star (white dot near the center). Jets moving away from the north
and south poles of the pulsar are clearly visible. Intense wind is flowing out in the equatorial
direction: the inner ring is a shock wave that marks the boundary between the surrounding
nebula and the flow from the pulsar. Energetic electrons and positrons move outward from this
ring to brighten the outer ring and produce extended X-ray glow. The same can be seen, less
clearly, in the ultraviolet. Adapted from Dubner et al. (2017).

Starting from the Seventies NS gained importance also as test-beds of gravitation'®.

Hulse and Taylor (1975) discovered PSR B1913+16 at Arecibo, the first binary system
consisting of two neutron stars (one seen as a pulsar) orbiting around their center of mass.
Thirty years of subsequent observations have enabled to measure numerous relativistic
phenomena: massive objects in short binary orbits emit gravitational waves, implying
that their orbit shrinks with time. This was indeed observed in precise agreement with
GR, thus providing the first indirect observation of gravitational waves [see e.g. Taylor
and Weisberg (1982)].

The only double pulsar, a NS-NS system where both components are detectable as
pulsars, known to date is PSR J0737-3039 (Burgay et al., 2003). The 2.5 hours orbital
period of J0737-3039'7 is the shortest yet known for such an object, only one-third that of
the Taylor-Hulse one. This enabled Kramer et al. (2006) to measure six post-Keplerian
parameters and to perform five different tests of general relativity, some of these with the
unprecedented precision of 0.05%.

As said, the rotation period of neutron stars is incredibly stable; in particular millisecond
pulsars (MSPs, that are thought to comprise the ~ 15% of the entire pulsar population)

16 Ty give a feeling of how much relativistic effects can be pronounced in compact binaries, it is worth
to mention that the pulsar’s periastron in PSR 1913416 advances every day by the same amount as
Mercury’s perihelion advances in a century.

17 It seems that the double pulsar evolved from a system where the older NS was spun up to its current
period of 23 ms by accretion from its binary companion. The companion imploded, leaving a 2.8 s pulsar
as remnant [see (Piran and Shaviv, 2005) for further discussion of this scenario].
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Figure 1.5: The P-P diagram plays a role similar to the Hertzsprung-Russell diagram for
classical stars; it encodes important information (like the pulsar age, magnetic field strength, and
spin-down power) about the pulsar population. Left - The famous diagram adapted from Lorimer
and Kramer (2004). The death-line corresponds to neutron stars with sufficiently low magnetic
field and high period that the curvature radiation near the polar surface is no longer capable
of generating particle cascades: neutron stars can thus exist in this part of the diagram, but a
re unlikely to be detected. Right - Evolutionary tracks in the diagram with mass for different
magnetic fields. Asterisks mark the real ages of 10%, 10, 10°, 5 x 10° yr, while dashed lines show
the tracks followed in absence of magnetic field decay. As a pulsar ages, it moves from left to the
right on the diagram. At, a certain point in its evolution, the pulsar can cross the line into the
graveyard. Adapted from Vigano et al. (2013).

Chandra X-Ray Observatory "
Energy color code:
Red: 0.5-1.5 keV
Green: 1.5-2.5 keV
Blue: 4.0-6.0 keV

Figure 1.6: X-ray image of the Cassiopeia nebula taken with the Chandra X-Ray Observatory
satellite, one of the most detailed image ever made of an exploded star. The CCO, known as
Cassiopeia A, is the white dot in the center indicated by the arrow. Unlike the Crab and the
Vela that are surrounded by pulsar wind nebulae, Cas-A is faint and shows no pulsed radiation.
The image is color coded for energy. The outer ring (blue) is ten light years in diameter and
marks the location of a shock wave generated by the supernova. A jet-like structure that extends
beyond the shock can be seen in the upper left. Adapted from chandra.harvard.edu.
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Figure 1.7: Two examples of the mass radius diagram for NSs, i.e. the recent version of Fig (1.1)
made with more realistic EOSs. Left - Green curves: self-bound quark stars. Orange lines: contours
of constant radiation radius Ro. = R(1 — 2GM/Rc?)~*/2. The region R < 2GM/c? is excluded
by the GR. constraint, R < 9GM/(4c?) by the finite pressure constraint and R < 2.9 GM/c?
is excluded by the causality limit (the sound speed at large densities in quark matter tends to
¢2 = 1/3 because of asymptotic freedom and, in general, is always less than ¢ in an interacting
gas). The lower green region is bounded by the realistic mass-shedding limit for J1748-2446ad.
Adapted from (Lattimer and Prakash, 2007). Right - The horizontal bands show the observational
constraint from the mass measurement of J1614-2230 and from similar measurements for two
other millisecond pulsar. Most EOS curves involving exotic matter do not intersect the J1614-2230
band and are therefore ruled out. Adapted from (Demorest et al., 2010).

provide us a stability comparable to that of the best atomic clocks (Hobbs et al., 2012):
since the level of intrinsic period irregularities is related to the spin-down rate and MSPs
have P values about five orders of magnitude less than normal pulsars, these objects
are perfect clocks and suitable tools for detecting the stochastic gravitational waves
background by using a Pulsar Timing Array'®. Moreover tiny perturbations to their
period resulting from relativistic effects in a binary orbit, can be detected. Many theories
other than GR are effectively ruled out or at least severely constrained by these results [see
Manchester (2015) for a review]. Backer et al. (1982) detected the first millisecond pulsar
PSR B1937+21. This object spins 642 times per second, a value that placed fundamental
constraints on the mass and radius of neutron stars, as shown in Fig (1.7).

Two hundred millisecond pulsars have been cataloged to date, but PSR B1937+21
remained the fastest-spinning known pulsar for 24 years, until PSR J1748-2446ad (which
spins at 716 Hz, implying an equatorial velocity of about < 0.25¢) was discovered (Hessels
et al., 2006).

If pulsar timing can be used to test general relativity and possibly to detect the
stochastic gravitational wave background, mass measurements of neutron stars can severely
constrain microscopic modellization of dense matter. Demorest et al. (2010) measured
the mass of the millisecond pulsar J1614-2230 to be 1.97 & 0.04 M by using Shapiro
delay, Fig. (1.8). This value is substantially higher than any previously measured neutron
star mass, namely the 1.67 Mg of PSR J19034-0327, and places strong constraints on the

18 The main target of the PTA experiment is the detection of the stochastic and isotropic gravitational
wave background. Such a signal induces low frequency noise in the pulse time-of-arrival (TOA) of a pulsar,
that is correlated between pulsars pairs on the basis of a theoretically derived function. The detection will
thus be achieved by searching for this particular signature in the correlation of the TOAs between pairs of
pulsars
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Figure 1.8: The Shapiro delay measurement for J1614-2230. For highly inclined (nearly edge-on)
binary systems containing a millisecond radio pulsar, Shapiro delay allows to infer the masses of
both the NS and its companion. Each panel shows timing residuals as a function of the pulsar
orbital phase. A - Excess delay not accounted for by the timing model, the solid line shows the
Shapiro delay functional form. The maximum delay of the time of arrival of the pulses corresponds
to the peak, occurring when the pulsar is hidden behind the companion (as can be seen in the
inserted top-down view of the binary system). B - Best-fit residuals obtained using an orbital
model that does not account for GR: significant deviation from a Gaussian distribution of zero
mean indicates that the Shapiro delay must be included to model the pulse arrival. C' - The
post-fit residuals for the fully relativistic timing model (including Shapiro delay). Adapted from
Demorest et al. (2010).

interior composition of neutron stars.

Another striking mass measurement was made by Antoniadis et al. (2013): phase-
resolved optical spectroscopy of its WD companion allowed to extract the orbital parameters
of the binary system and the mass of PSR J0348+0432 turned out to be 2.01 £ 0.04 M.
This confirmed (using a different technique) the existence of very massive NSs.

In this brief survey some important aspects were skipped: in particular the claimed
observation of fast cooling of Cassiopeia A that, together with pulsar glitches, is one of the
probes of nuclear superfluidity, theoretically anticipated by Migdal (1959). These concepts
will be recalled when needed. Much more information about the historical development
of the theoretical understanding and astronomical observations of neutron stars can be
found in Haensel et al. (2007), Glendenning (2000) and Yakovlev et al. (2013).

1.2 Neutron stars formation

Compact objects are the ashes of stellar cores after a lifetime of nuclear burning that can
last 10-10'2 yr, depending on mass and composition. During the main sequence part of
their lives, stars evolve trough a continuum of quasi-equilibrium phases, driven by the
competition between gravity and the pressure of matter. Compression induced by gravity
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Figure 1.9: Cartoon of the stellar evolution: the initial mass, composition and the possible
presence of a companion determine the fate of a star. NSs are formed in core-collapse supernovae
when a massive progenitor successfully sheds its stellar mantle during the explosion (O’Connor and
Ott, 2011). The mass values reported as thresholds for the various processes are only indicative
(different models provide different mass thresholds). It is expected that for M < 15Mg a NS
is formed, whereas stars with M > 50M, will die as BHs. Extremely massive stars may make
pair-instability SN (still hypothetical) without leaving any remnant. The idea of a mass threshold
that discriminates between BHs and NSs formation is currently debated: the outcome is though
to depend mainly on the compactness of the core before the collapse, a non monotonic function
of the stellar mass parameter, so that the scenario for stars with 15My < M < 50Mg is very
uncertain (Sukhbold et al., 2016).

acts as a natural feedback mechanism for heating matter, thus allowing to ignite new
thermonuclear reactions as the star chemically evolves. Thermal agitation provides the
energy for tunneling the Coulomb barrier and exothermic nuclear fusion is possible (up
to iron). This luminous part of a star’s life can be considered as a “suspended collapse™
the opacity of the gas increases with its density, creating temperature, composition and
pressure gradients, the latter balancing almost exactly gravity. The little amount of energy
that is lost by radiation through the stellar surface allows for further slow contraction'®.
This can last for millions of years, with a timescale that roughly scales with the inverse
square of mass (Glendenning, 2000): gravity propels small stars at a much lower rate than
large stars.

The detailed global picture of stellar population synthesis is still developing, however it

19 A nice example of the so-called Kelvin-Helmholtz contraction (in the absence of exothermic reactions)
is the cooling of Jupiter. It is estimated that Jupiter shrinks by two centimeters per year and radiates
more energy trough this mechanism than it receives from the Sun: the virial theorem tells us that every
year “one centimeter” is used to heat the interior, the other one is radiated through Jupiter’s surface.
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is possible to sketch a simplified cartoon of the main pathways that end with the creation
of a compact object (Fig (1.9)). Neutron stars are the end points of evolved stars whose
inert core’s mass is greater than the upper mass limit for WDs: they form in core-collapse
supernovae?’, the violent release of a fraction of the gravitational energy gained by the
collapsed solar mass core. The gravitational binding energy of a neutron star is about the
10% of its mass, making the release of this binding energy an order of magnitude greater
than the energy produced by nuclear fusion during the entire life of the star?'.

In massive stars?? successive steps of core contractions increase the internal temperature,
triggering the burning of carbon, neon, oxygen and silicon in a sequence that is increasingly
faster. Stratified shells of nuclear ashes are left behind, with iron and nickel (which have
the largest binding energy per nucleon) that deposit on an inert and nearly isothermal core
supported by degenerate and relativistic electrons. When this catalyzed core approaches
the Chandrasekhar limit, the core starts to contract and its temperature can increase till
~ 10% K; since electrons are relativistic, the pressure they provide increases less rapidly with
density than in the non-relativistic case and the core can implode. When the temperature
is about 3 x 10° K, the endothermic photo-disintegration of nuclei by thermal photons
further destabilize matter and the collapse proceeds almost as a free-fall: in particular
disintegration of *°Fe into He

%Fe + v — 13%He +4n (1.1)

adsorbs energy very efficiently. At higher temperatures, also helium nuclei get photo-
dissociated as well??

‘He + v — 2n + 2p. (1.2)

Another important reaction is the inverse -decay. Usually electron captures cannot take
place if electrons are not highly relativistic: the 1.3 MeV rest mass difference between the
neutron and the proton, well above the electron rest mass 0.5 MeV. In the collapsing core,
however, electrons are degenerate, so with the increasing density also their Fermi energy
rises. Therefore both nuclei and free protons continuously undergo inverse S-decay

(Z,A)+e” = (Z—-1,A)+ .

pt+e —=n+r..

20 Core-collapse SNe are cataloged as type-II, Ib (missing hydrogen features in the spectrum) and Ic
(missing also helium features). The more stripping happened to the star, the more is likely go from type-II
to Ib and then to Ic. For single stars the only way to strip is through winds; since massive stars have
stronger winds, a ~ 20 M star will make a type-II SN whereas a ~ 40M star will probably undergo
a Ib or Ic. For binaries this is more complicated because stripping can occur by mass transfer onto a
companion, a less mass dependent process compared to winds.

21 Tp a typical neutron star of mass M the binding energy is of the order ~ 0.1 Mc2, i.e. ~ 100 MeV
per nucleons. This should be compared with the nuclear binding energy of 9 MeV per nucleon in a Fe
nucleus, only the one percent of the ~ 1 GeV nucleon mass. The reason for why the weakest known force
can bind matter more than the strong force lies in their different ranges: the nuclear force is mediated
by massive bosons and has finite range but every particle in a star interacts gravitationally with all the
others (Glendenning, 2000).

22 A massive star is by definition a star that will undergo core-collapse. The actual limiting lower range
is 8 £ 1 M; beyond this mass core-collapse of the iron core is inevitable (Smartt, 2009).

23 The Q-values for these two endothermic processes are c¢?(13mpe + 4mp — mpe) ~ 124MeV and
c2 (2myp + 2myp — mpe) & 24MeV. Photo-dissociation is thus a very efficient way to trigger the free-fall
collapse of the core. The free fall timescales depends only on the density ~ 10° g/cm? and is of the order
of a millisecond.
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Figure 1.10: The main stages of evolution of a neutron star. In passing from the fifth to the
sixth stage the two possibilities of fast (Urca) and slow (modified Urca) cooling are taken into
account. Adapted from Lattimer and Prakash (2007).

Consequently the number of free neutrons grows; their degeneracy pressure can start to
partially balance gravity. The collapse eventually stops thanks to the short-range repulsive
component of the nuclear force, when a density comparable to that of an atomic nucleus
is reached; infalling matter rebounds on the stiffened core and a shock wave originates
somewhere in the outer part of the neutron rich core. However the shock wave is not
strong enough to blast away the outer layers?*: the shock loses energy by dissociating
heavy elements nearby the core, and stalls at a distance of few hundreds kilometers, as
shown in Fig (1.10). During these processes the central density increases up to the point
that a fraction of neutrons drips out the nuclei and forms a degenerate fermion gas. At
densities 10** g/cm?, the nuclei are almost completely dissolved into homogeneous nuclear
matter mostly composed by neutrons. If the mass of the progenitor core is not too large,
the pressure provided by the nucleons is finally enough to halt the collapse. This compact
inner core is a hot (T' ~ 10! K, equivalent to tens of MeV) and neutron rich proto-neutron
star, a very dynamical object with a radius of ~ 20km that evolves in few seconds. In
this early stage, the proto-neutron star is extremely opaque and bloated with energetic
neutrinos produced in the continued neutronization. At these energies, the cross-section of
the nuclei-neutrino interaction (that scales as the square of the mean neutrino energy) is
large enough to trap them, meaning that the mean free path of a neutrino is less than the
radius of the proto-neutron star. During this phase neutrinos can only escape by diffusion,
a relatively slow process if compared with the timescales of the collapse. They diffuse out
during the first tens of seconds (stages II and III in Fig (1.10)).

As matter gets enriched in neutrons, neutrinos are copiously produced and drain
energy from inside on the diffusion timescale: the initially opaque proto-neutron star,

24 Once the collapse of the core is triggered, a decompression wave travels outside the red giant at the
speed of sound, diffusing the outer layers. However this sonic signal is very slow compared to the free-fall
timescales of the imploding core and to the subsequent shock produced by the rebound.
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with a temperature of tens of MeV, looses its trapped neutrinos (deleptonization) over an
interval of some seconds and cools to about 1 MeV or less. The final chemical equilibrium
is then reached and the newly-born neutron star cools down to ~ 10°K within days.
During the subsequent weeks or months, the outer layers crystallize due to the repulsive
Coulomb forces between the neutron-rich ions. As the temperature decreases, the neutrino
emission processes can become less efficient, but they still govern the cooling during the
first 10* — 10° yr. Only when the inner temperature goes below ~ 10®K in mature neutron
stars, the photon emission from the surface becomes the main cause of cooling.

In some cases the proto-neutron star might not survive its early evolution, collapsing
instead into a black hole. The first scenario is that proto-neutron stars can accrete mass
fallen through the shock. If the maximum mass is exceeded, the star collapses and the
neutrino signal abruptly ceases. Alternatively, since the progenitor has enhanced maximum
sustainable mass (thanks to extra leptons and thermal energy) with respect to cold neutron
stars, black holes can be created just because of deleptonization, cooling or spin-down of
the proto-neutron star. Within this scenario, the proto-neutron star is born with a mass
greater than that of the cold neutron star that is going to generate, undergoing a collapse
to black hole that is delayed with respect to the first case by ~ 20s, a timescale settled
by the neutrino diffusion time. This second scenario could explain why in SN 1987A no
compact remnant has been observed, while the ~ 10s duration of the detected neutrino
signal confirmed at least the birth of a proto-neutron star (Burrows and Lattimer, 1987).
Of course, a supernova is not necessarily a spherically symmetric phenomenon: because of
this, neutron stars can acquire a high proper motion, as Vela (Fig (1.3)). A kicked pulsar
is another of the hypotheses why the neutron star of SN 1987A has not been observed.

Study of supernovae is an active and complex field of modern astrophysics and the
detailed mechanism that enhances the explosion is not well understood, as reviewed by
Woosley and Janka (2005). It seems that the pure rebound of infalling matter cannot
power the supernova and that neutrino transport is essential(Bethe and Wilson, 1985).
The free-falling material abruptly breaks as it meets the stalled shock, turning it into an
accretion shock where huge amount of heat is produced; thus a rarefied bubble region
develops in between the core and the accretion front. Here the neutrino pairs, which
have diffused from the core, can annihilate, powering the expanding bubbles which, in
turn, can transfer the gravitational binding energy gained by the core to the accretion
front. Symmetry also plays a fundamental role: 1D simulations (spherical symmetry)
create rarefied bubbles that are concentric shells, while 2D simulations (axisymmetric)
produce toroidal bubbles; in 3D simulations turbulence destroys any symmetry of the flow,
resulting in a delayed explosion with respect to the 2D case (Miiller, 2017).

1.3 Neutron star cooling

The theory of neutron star cooling was motivated by the first evidence of X-ray emission
from the surface of NSs in the Sixties (Chiu and Salpeter, 1964) and is reviewed by Page
et al. (2006) and Yakovlev et al. (2005).

Once formed, the newly born NS cools down during its neutrino-transparent era. The
core rapidly cools via neutrino emission, while the temperature of the thermally decoupled
crust remains nearly constant, at least for the first ~ 105 yr. A cooling wave slowly travels
from the core to the surface, bringing the NS interior to a nearly isothermal state (this
relaxation time can take ~ 10-100 yr, see stage V in Fig (1.10)); thanks to the high thermal
conductivity of degenerate matter, NSs older than some decades are though to have an
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almost uniform internal temperature, except within an envelope that acts as an insulating
blanket in between the hot interior and the colder surface.

The fast or slow rate of cooling in young as well as in mature NSs is intimately linked
to the reactions that produce neutrinos [the total neutrino emissivity is dominated by
processes that occur in the core (Yakovlev and Levenfish, 1995)], like the fast direct
Urca and the modified Urca [for a table of the relevant processes and their dependence
on temperature see e.g. Page et al. (2013)]. Where direct Urca is forbidden at low
temperatures, the modified Urca can still operate, as advantage is taken of a neighboring
nucleon in the medium to guarantee the momentum conservation: five degenerate particles
participate in this kind of reaction, making modified Urca a less efficient channel for
neutrino creation.

Indeed NSs cooling is far from being linear and is realized via two main channels: by
neutrino emission from the entire stellar body and by transport of heat from the interior to
the surface, resulting in the thermal emission of photons. Therefore the long-term thermal
history of a NS is mainly determined by the neutrino luminosity and by the heat capacity
of the core, as well as by the composition (i.e. the thermal conductivity) of the outer
layers, which control the photon emission. The main open issues concern the presence of
hyperons, meson condensates, superfluidity and superconductivity which strongly affect
the neutrino production rate; possible use of cooling observations to constrain the internal
equation of state and superfluid properties is summarized by Lattimer and Prakash (2007).

Only when temperature reaches values of the order ~ 5 x 107 K, the neutrino emissiv-
ities start to be irrelevant and the photons radiated from the surface become the main
cooling channel of the so-called photon-cooling era. The overall time that NSs remain
visible is not yet know but some cooling scenario were proposed so far.

Standard cooling scenario - It’s a relatively slow cooling, in which the dominant neu-
trino processes are the neutron and proton branches (N =n and N = p) of the modified
Urca processes

N+n—->N+p+te+v, N+p+e—- N+n+v.

However, neutrino production can be boosted if the proton fraction is large, or in the
presence of exotic matter like hyperons, kaons or deconfined quarks, which would switch
on the direct Urca processes. In this scenario, the total emissivity is dominated by slow
processes in the core, such as modified Urca and the many realizations of bremsstrahlung?®.

Minimal cooling scenario - In this restrictive scenario all the possible fast neutrino emission
processes (from direct Urca involving baryons or exotic matter) are excluded a priori.
This basic assumption is justified since the enhanced neutrino emission processes are
quickly quenched by superfluidity or superconductivity. The neutrino emission and spe-
cific heat are indeed exponentially suppressed by superfluidity when 7' < A, where (3
is the inverse temperature and A is the pairing gap of the superfluid phase (roughly
the energy needed to break a Cooper pair). However in the early life of the neutron

25 Bremsstrahlung differs from modified Urca processes in that it results in the production of a v
pair which can have any flavor. The typical process has the form N; + N2 — N; + N2 + v + v, where
N1 and N3 are both nucleons, or p+e — p+ e+ v + v. The presence of strong magnetic field opens a
new channel, in which neutrino pairs can be produced by electrons e + ¢ — e + e + v + U (Aguilera et al.,
2008). Although bremsstrahlung reactions generally turn out to be less efficient than the modified Urca,
they still can make important contributions in the case that the Urca processes are suppressed by pairing.
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star, when the temperature 3~!' ~ A and matter undergoes a phase transition to a
superfluid state, the fluctuations in the number of Cooper pairs can enhance neutrino
cooling: as the young neutron star cools below the transition temperature, fluctuations
in the number of paired nucleons can lead to a burst of neutrino emission (Page et al., 2013).

Calculations of the detailed cooling scenarios have to be contrasted with the data of
neutron stars of known age and effective temperature which have not been reheated by
accretion®®. In a cooling simulation, the evolution of the temperature profile in the star is
followed, staring from some initial data after the early thermal relaxation. Thermal radia-
tion from isolated neutron stars, among which Crab and Vela, has indeed been observed
but the extraction of the thermal component from the measured spectra is complicated
and debated. For example, processes in the magnetosphere of young pulsars ~ 103 yr old
result in strong non-thermal emission that is likely to bury the thermal emission. On the
other hand, in older objects of age ~ 10 yr the radiation from hot polar spots can be
stronger than the thermal radiation from the colder rest of the stellar surface?”. Moreover
observations of cooling NSs are restricted to measuring the individual temperatures at
one point in time. As NSs may differ in their masses, envelope and magnetic fields, only
a measurement of the cooling rate of a young NS can determine its cooling trajectory,
making comparison between cooling simulations and astronomical data is not simple in
principle.

The cooling trajectory has been resolved, up to date, only for the neutron star in
Cassiopeia A (Fig (1.6)). This remnant is associated to the historical supernova SN 1680
and soft X-ray spectrum indicates a surface temperature of ~ 106 K; therefore the age of
Cas A is precisely determined, making it the youngest neutron star known in the Milky
Way. Analysis of nearly a decade of archival data reported that the surface temperature
of Cas A has rapidly decreased from 2.12 x 10° to 2.04 x 10 K (Andersson et al., 2010),
a cooling rate which is significantly larger (by a factor of ten) than expected from the
standard cooling scenario. Such a fast cooing must be a transitory event that can be
explained by invoking transition of internal layers to a superfluid state and the subsequent
enhanced neutrino cooling due to Cooper pair fluctuations; moreover the onset of this fast
cooling transient should be recent as, on the contrary, the star wold be so cold to be now
unobservable.

The numerical simulation of realistic cooling scenarios is also of great interest for
neutron star population unification, where the magnetic fields can strongly modify the
cooling curves: application of refined magneto-thermal 2D simulations have been recently
used by Vigano et al. (2013) to propose a unified interpretation of the neutron star zoo

(Fig (L5)).

26 1t is fundamental to properly take into account for effects of general relativity when interpreting
observational data and in simulations as well. Since the source is a very compact object, the observations
have to be corrected for redshift, by considering the apparent effective temperature, radius and luminosity,
as detected by a distant observer (Shapiro and Teukolsky, 1983), usually indicated by Teo, Reo and
Loo = 471R2 0TL (see also Fig (1.7)). The distance of the neutron star (necessary to estimate the
luminosity from the measured flux of photons) can be deduced either from the radio signal dispersion
measure (due to the interstellar medium) or from the distance of an associated supernova remnant.

27 In the presence of a strong magnetic field, the majority of electrons occupies the lowest Landau level,
implying an enhancement of the longitudinal thermal conductivity of the electron fluid. This effect can be
very pronounced near the magnetic pole, where the field is normal to the surface and more intense, so
that heat propagates preferentially along the field lines, making the polar cap region considerably hot.
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1.4 Pulsar phenomenology

Although pulsar physics is by now half a century old, and many aspects of their radiation
emission have been understood, there still remain many unsolved problems concerning the
very mechanism of generation of the coherent (i.e. non-thermal) radiation.

Once neutron stars are magnetized with fields of the order of B ~ 10'2 G, they become
radio emitters and can be detected at much lower frequencies trough the pulsed signal
from the rotating beacon. Folding hundreds of pulses allows to measure the period P of a
pulsar with an accuracy up to ten digits and long follow-ups allow to measure accurately
also the period derivative P. Such radio pulsars appear to emit short pulses with periods
between 1.4ms and 10s.

Despite the beamed emission mechanism is not well understood, radio observations are
of fundamental importance. From accurate timing of neutron stars we can infer the dipolar
component of the magnetic field, as recalled in App (B). Moreover, the pulse period
can be measured with accuracies that allow sensitive measurements of small quantities
such as gravitational perturbations from planetary-mass objects orbiting a pulsar. This
remarkable property also lead to the discovery of the first confirmed exoplanets (Wolszczan
and Frail, 1992).

The rapid rotation of the magnetosphere gives rise to strong electric fields, particle
acceleration and pulsed radiation across the whole EM spectrum, so that beamed radio
emission and thermal X-rays are not the only means by which a pulsar emits. The basic
model, namely the vacuum-dipole model, is reviewed in App (B). Despite its simplicity it
gives a first interpretation of the P-P diagram, as shown in the left panel of of Fig. (1.5).

1.4.1 Pulsar classes

Thanks to the conservation of angular momentum and of magnetic flux during the collapse,
neutron stars gain intense magnetic fields and high angular velocities. Things are however
not so simple: magnetic flux conservation during the collapse cannot explain the large
number of neutron stars with very high inferred magnetic fields. Therefore the magnetic
field is thought to be enhanced during the core-collapse, probably via dynamo mechanism.
As it stands the generation and evolution of the magnetic field in neutron stars is a very
open field of research.

Two attributes, rotation and a strong dipolar component of the magnetic field, are the
means by which NSs can be observed, thanks to the onset of beamed emission that powers
the magnetosphere. Observations of thermal emission from NSs is rare and difficult, in most
cases hidden by the complex and energetic phenomena that occur in the magnetosphere.
Recent observations, particularly in X-rays and ~-rays, have shown a great diversity
of neutron star types which can be broadly classified, according to the primary source
of energy that powers their electromagnetic and particle emission, into the following classes:

Rotation-powered pulsars have a period distribution centered around ~ 0.1s. These
objects are believed to be isolated neutron stars with a dipolar magnetic field of the order
~ 10'2 up to ~ 10 G. The rotational energy loss of the pulsar powers the radiation
via creation and acceleration of ete™ pairs in a strong magnetic field. Rotation-powered
pulsars make up the majority of the neutron stars detected and sometimes exhibit glitches.
Also the so-called recycled millisecond pulsars, no longer accreting, are clearly powered by
they rotational energy
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Figure 1.11: Left - Similarly to the Hertzsprung-Russell diagram for classical stars, the
population of pulsars can be plotted on the p-p diagram, where the quantities I Q0 and the
characteristic age 7 are over-plotted using the relations given in App (B). RPPs are represented
by black dots. Right - Schematic diagram of the NS zoo with respect to their periods and derived
surface magnetic field strengths. The magnetic field of accretion-powered NSs cannot be measured
from their spin down rate, but cyclotron lines seen in their spectra provides an alternative way to
estimate the surface field. Note that only LMXB have small periods, since in HMXB there is no
mass transfer (the interaction with the companion is mediated by the stellar wind of the massive
main sequence star). Adapted from Harding (2013).

Thermally-powered pulsars are neutron stars that do not show magnetic activity and
are sometimes called INSs. However thermal emission from their surface is observable
in soft X-rays. It is thus the fossil heat of the proto-neutron star that powers the main
feature of the observed spectrum. Of course all neutron stars are expected to have a
thermal component of the emission, but only for objects of this class the cooling is the
most important responsible of emission.

Accretion-powered are found in binary systems and globular clusters. Since the binary
companion transfers material onto the spinning neutron star, it is the gravitational poten-
tial energy that powers the bulk of the observed emission. The infalling matter can bury
the magnetic field, so that the dipolar component is expected to be weak for neutron stars
standards, implying that their surface magnetic field cannot be faithfully estimated by
using the dipole formula, Eq. (B.3). This class of binary objects can be seen as a part
of the greater astronomical class of X-ray binaries that are usually divided into many
subcategories, according to the mass of the companion star: the high mass X-ray binaries
(HMXB, the NS is a companion of a massive main sequence star and interacts with its
wind) and the low mass X-ray binaries (LMXB, mass transfer from the less massive donor
fills the Roche lobe). In particular the LMXBs are though to be the progenitors of the
rotation-powered millisecond pulsars (Papitto et al., 2014).

Magnetars (AXPs and SGRs), with typical periods centered in the range 1 — 10s,
are the strongest magnets in the present universe, as described in App (B).

Magnetars surface dipole field is inferred to be no higher than 10'3 G with the fallback
disk model (Chatterjee et al., 2000); (Alpar et al., 2013). However, the total surface field
including all multipoles needs to be of the order of 10'-10'® G to power the magnetar
bursts. The quiescent X-ray emission is powered by the ohmic decay of their large magnetic
fields but magnetic stresses can eventually crack the star’s crust, powering the bursting
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activity (Thompson and Duncan, 1996).

The paradigm that magnetar’s activity is associated with a high dipolar field has been
challenged by the discovery of few neutron stars that displayed SGR-like activity (burst
emission from SGRs was soon recognized to repeat, at variance to what was observed
in GRBs, setting the two phenomena apart) but with an inferred dipolar magnetic field
comparable with that of standard radio pulsars Turolla et al. (2015). This implies that
magnetars are not only spread in the high-dipolar field region of the P-P diagram, as
shown in (1.11) since these particular sources may be aged magnetars with a strong
toroidal field in their interior.

Astronomical manifestations of magnetars can come in different guises: burst active
X-ray pulsars, anomalous X-ray pulsars and soft gamma repeaters, that were identified as
magnetars (Thompson and Duncan, 1995). In particular, SGRs emitted also three giant
flares, extremely powerful events during which luminosities can reach up to 10*7 erg/s for
about one second. On the other hand, AXPs (dubbed “anomalous” because their high
X-ray luminosity cannot be easily explained in terms of accretion from a binary companion
or injection of rotational energy in the pulsar wind) were identified as X-ray pulsar in the
soft X-ray range (Mereghetti, 2008). Subsequent observations revealed some similarities
between AXPs and SGRs, including the unifying discovery that AXPs too emit short,
SGR-like bursts.

This dissertation focuses on the rotation-powered pulsars which have not been recy-
cled. In particular we are interested in those pulsars that have displayed large glitches,
approximately the 10% of the total radio pulsar population.

1.5 Timing irregularities

The pulsar rotation frequency v(t) = 1/P(t) can be measured at a given reference time ¢ by
means of pulsar timing techniques, namely the continuous recording of the time of arrival
(TOA) of each pulse at the telescope. Pulses can be detected at different frequencies of
the electromagnetic spectrum and constitute the fingerprint of the pulsar: the shape of
the pulse profile, the number of recorded cycles needed to reach its required stability and
its dependence on the photon energy and polarization are characteristic of each pulsar.
Although individual pulse shapes can vary considerably, averaging over many recorded
pulses yields a stable profile, with a high signal-to-noise ratio. This average profile is
then correlated with the template profile for that given pulsar, so that the phase offset
(which is related to the TOA via multiplication by the instantaneous pulse period) can be
determined. Since the period evolves very slowly, a spin-down model P(t) can be obtained
by fitting the single TOA with a Taylor expansion around the reference time, so that the
pulsar rotational dynamics can therefore be tracked (Lorimer and Kramer, 2004). The
pulsars that are regularly monitored are typically observed every few days or weeks.

The period derivative is small but positive for non-accreting pulsars, implying that
the angular velocity decreases steadily and in a predictable manner thanks to external
electromagnetic braking torque which is nearly constant during the observational survey.
Improved rotational parameters are obtained from the new TOAs by minimizing the
discrepancies between the predicted and observed phases.

However, the evolution is not so smooth and linear: timing irregularities are seen in
the pulse phase residuals after subtracting a polynomial fit (i.e. the spin down model valid
at the reference time).
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Figure 1.12: Four large glitches in the Crab pulsar (v ~ 33Hz and # ~ —3.7 x 107*° Hz/s).
Every glitch is shown by plotting the frequency residuals, of the order of 107 %Hz (top) and
frequency rate (bottom) against observation time. Day zero corresponds to the glitch epoch,
which is indicated in MJD (Espinoza et al., 2011).

1.5.1 Pulsar glitches

Occasionally the rotational frequency of a pulsar undergoes sudden jumps of amplitude
Av > 0, which are followed by a period of slow recovery that may last for days or months,
the so-called glitches. The signature of a glitch in the timing residuals is rather clear for
relative jumps bigger than Av/v > 10~7: when a glitch occurs, the model P(t) previously
obtained can no longer predict the TOAs, which have to be described by a different timing
solution and a jump (a discontinuity) in v and © at the epoch of the glitch needs to be
included, as sketched in Fig (1.12).

The first glitches were observed very soon after the discovery of pulsars, in the Vela
and in the Crab (these two objects are still the most studied). To date, there are 482
events in 168 objects recorded in the Jodrell Bank catalogue, including few glitches in
magnetars and millisecond pulsars and a single very small glitch?® of a pulsar in a binary
system (Serim et al., 2017).

Glitches with large amplitudes (Av ~ 1075 Hz) are sometimes observed as sudden
spin-ups of the Vela pulsar, accompanied by an increase in the spin-down rate of about
1%. The long subsequent recoveries (lasting from days to months) were interpreted as
manifestations of the existence of an internal component that is very loosely coupled to
what we can observe (i.e. the emission of the magnetosphere). Most of the times, the full
investigation of the recovery is prevented by a new glitch that occurs and dominates the
residuals.

As the interaction between normal fluids provided by viscosity would result in very
short coupling timescales, glitches are thus considered to be the probes for the existence of
superfluid phases of dense hadronic matter; indeed, superfluids can flow without friction
(up to a certain point) and are also theoretically expected in degenerate systems of
interacting particles, as recently reviewed by Haskell and Sedrakian (2017).

Glitches can vary significantly from one another, not only among different objects:
even single pulsars can show glitches that recover in a different manner. The variability of
these event affects not only the size and the frequency of the events (some pulsar glitch

28 This glitch has been discovered in the v & 10% s and v ~ 4 x 10~ 14 pulsar SXP 1062 and provides the
first confirmation of the existence and observability of this type of timing irregularities among accretion-
powered pulsars. Thanks to the unusually low value of v, this glitch has the largest value of the fractional
change of pulse frequency (Av/v =~ 1.4 x 1073) reported up to now.
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sporadically, other frequently), but also the post glitch response of the star: some glitches
appear as simple steps, while others display an increase in spin-down rate after the glitch
(which implies a change in the internal torques which does not relax over the inter-glitch
timescale), as shown in Fig (1.13).

In few cases several exponentially relaxing components in the post-glitch recovery have
been recognized, indicating that different layers of the star are involved in the process,
each with its own typical coupling timescale (see App (C)).

The basic phenomenological model for pulsar glitches, proposed by Baym et al. (1969)
and based on two interacting components [see also the description given by Shapiro and
Teukolsky (1983) or Egs (C.1) and (C.2)], tells us that the recovery can be fitted with a
function of two parameters, the relaxation timescale 7% and the healing parameter Q:

Qt) = Qre(t) + AQQ e + AQ(1 - Q), (1.3)

where the instantaneous spin up occurred at ¢ = 0, while Q,,.(¢) is the spin down model
valid before the glitch. Usually ,,.(t) = —|Q[t + Q for values of the spin down rate ||
and angular velocity €2 measured before the glitch. The interpretation of the parameter
78 is given in Eq (C.2), while a pictorial interpretation of the healing parameter Q is
sketched in Fig (1.13). In the Vela pulsar the glitches occur as sudden steps of permanent
offset, described by the healing parameter ) ~ 1, differently from what has been observed
in the Crab where @ is typically small (Crawford and Demiariski, 2003).

This early model for the recovery is however incomplete; in most of the large glitches
where there are enough observations, also a component of 2 of constant second time
derivative is observed throughout the inter-glitch data. The Vela pulsar provides the
clearest example: the offset in the second derivative of the rotation rate takes over after
the fast exponential relaxation. This particular behavior needs to be accounted for in the
correct way in order to estimate the braking index of the pulsar (Akbal et al., 2017).

Leaving aside AXPs, where glitches and anti-glitches can be accompanied by burst
activity (Archibald et al., 2013), glitches in RPPs show no evidence for electromagnetic
counterparts: some initial suggestions featured external mechanisms, such as plasma
explosions in the magnetosphere, but the lack of evident pulse profile changes associated
with these events was soon taken as the clue for an internal origin®®. It is therefore usually
assumed that glitches in RPPs have a different origin than those in magnetars, and are not
originated by effects involving the magnetic field, which is though to play no significant
role or adjustment during the glitch event. The scenario for AXPs is briefly discussed
in App (B), while a unified scenario for both usual glitches in RPPs and anti-glitches in
magnetars have been recently proposed by Haskell and Antonopoulou (2014) and Kantor
and Gusakov (2014).

While the post-glitch relaxation can be followed, the rise time cannot be properly
resolved, making it an instantaneous event to the accuracy of data; to date, the best
resolved event placed a limit of ~ 40s for the rise time of a glitch in the Vela pulsar
(Dodson et al., 2002). This implies the angular momentum is transferred to the crust in
less than a few hundred rotation periods (McCulloch et al., 1990); (Dodson et al., 2009).

In this dissertation it will be useful to divide glitching pulsars into two broad categories.
The first one corresponds to RPPs which have glitched only once and comprises more

29 In the following chapters we will always assume a constant external torque on the inter-glitch
timescale, an hypothesis that is justified only for RPPs: magnetars and HMXB have very variable external
torques. Magnetar and HMXB glitches may be due to external torque events with internal torque response,
a scenario that is not considered in the present work.
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Figure 1.13: Schematic diagram of a glitch, following the notation introduced in the seminal
work of Baym et al. (1969): the spin up phase is instantaneous to the accuracy of data so that
the glitch amplitude is found by considering the jump between a pre-glitch model and the fitted
relaxation. The healing parameter ) represents the fraction of the extrapolated jump that
recovers before the next glitch. In every model that does not allow for permanent changes in the
properties of the star, @ = 0 at infinity (typically another glitch is triggered before complete
recovery is approached). The three parameters AQ, 7% and @ in Eq. (1.3) allow to fit the post
glitch relaxation, but they vary from glitch to glitch, even of the same pulsar (eventually more
timescales can be fitted but the general idea is unchanged).

than the 60% of the known glitching pulsars. The second one is that of the frequent
glitchers, like Vela, Crab or the current record holder PSR J1740-3015 (which have been
seen glitching more than thirty times). Unfortunately very few pulsars have been seen
glitching more than a dozen times, making statistics in single objects quite poor. Of those
objects which are observed to glitch repeatedly, most do so at unpredictable dates, but
two (PSR J0537-6910 and Vela) are claimed to be quasi-periodic (Haskell and Melatos,
2015); (Melatos et al., 2008). The most studied neutron star is Vela (which frequency is
P~1 =~ 11.2Hz): since the first observed event in 1969, it has exhibited a quite regular
sequence of similar size glitches AQ/Q ~ 1076, about one every 2.8 years. There are
however no solid statistical studies of the glitching behavior of single pulsars, due to
intrinsic difficulties and to the paucity of data.

Activity parameter - A fundamental quantity for pulsars that have glitched several times

is the activity parameter
P

A= T ;AW (1.4)

where T,y is the duration of the observation survey during which the glitches of amplitude
Avt /v have been observed. In the above equation P = v~! is the benchmark period of
the pulsar: since Av < v, the exact value of the ever changing v is unimportant. Note
that Tops/ P is the total number of cycles observed, therefore the activity is the average
spin up due to the observed glitches in a rotational cycle.

An interesting observational correlation between the absolute activity v.A and the spin
down rate || has been observed (Lyne et al., 2000), (Espinoza et al., 2011); (Fuentes
et al., 2017); (Ashton et al., 2017). Moreover middle-aged pulsars with characteristic age
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Figure 1.14: The glitch with the largest Av/v ever detected in a RPP, discovered in the timing
of PSR B2334+61 (Yuan et al., 2010). The vertical dashed line marks the glitch epoch. Panel (a)
shows variations of rotational frequency Av relative to the pre-glitch solution, (b) an expanded
plot of Av where the mean post-glitch value has been subtracted from the post-glitch data, and
(c) variations of the frequency first derivative v. The plotted points represent fits of v and v to
5-10 adjacent TOAs, with Av being the difference between the fitted value of v and the value
from the pre-glitch solution (extrapolated after the glitch). Image taken from Yuan et al. (2010).

7 ~ 10* yr seem to glitch the most, while activity is smaller for significantly younger and
older pulsars (Shemar and Lyne, 1996), as can be seen also in Fig (3.14). This fact may
be linked to an evolution of the superfluid reservoir as the star cools (Ho et al., 2015).

The activity parameter can be linked to the moment of inertia of the region that stores
the angular momentum released in a glitch, as first proposed by Datta and Alpar (1993)
and later by Link et al. (1999). In particular, for a pulsar of total moment of inertia I,
the following constraint must hold:

2(I —Ines) A < Iesm 1,

where I,..s is the moment of inertia of the pinning region (Datta and Alpar, 1993) and
7 is the characteristic age of the pulsar, as defined in App (B). This inequality can be
used to infer an indirect constrain (after the EOS has been fixed and the pinning region
identified) on the pulsar mass by using observations of the glitch activity. In the following
chapters we will develop an alternative method to constrain the mass of a pulsar.

Glitch randomness - Glitch sizes are generally reported as a fractional increase of the pulsar
frequency and can span several magnitudes, ranging from AQ/Q ~ 10712 to AQ/Q ~ 1075,
The absolute increase in €2 spans seven decades across the total glitch population of all
detected pulsars, 3 x 10711 < AQ < 2 x 10~*rad/s (Espinoza et al., 2011), and up to four
decades in a single object.
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Due to this variety of possible values and the absence of a preferred timescale for the
waiting times, glitches are sometimes seen in analogy with earthquakes: the stochastic
nature of glitches is a strong clue for an instability for which the star prepares over
the waiting interval. Although the magnitudes of individual glitches seems to vary in
accordance with fat tailed PDF (Melatos et al., 2008), the maximum-sized glitches have
stable sizes, probably a direct manifestation of the presence of a well defined reservoir of
angular momentum. Conversely, also the claimed presence of a well defined minimum size
for a glitch is a remarkable property (Espinoza et al., 2014): recent analysis of the lower
end of the Crab’s size PDF, suggests the existence of a minimum size around Av/v ~ 1079,
well above the smallest resolvable event. (Espinoza et al., 2014) reviewed almost thirty
years of data for the Crab, finding that the number of events with Av < 0.05 uHz is
significantly less than expected from extrapolating downwards a power-law PDF. Whether
or not this implies a true limit in the small glitches of the Crab depends on the form of
the extrapolated PDF, which is at present quite uncertain because of the relatively small
number statistics. Moreover, the lower end of the distribution may be contaminated by a
different population of timing noise events (possibly of magnetospheric origin) and further
studies are required to rule out this possibility.

Much of this rich phenomenology still needs to be organized into a coherent picture
and our understanding of pulsar glitches, as well as their modelling, is still evolving. There
are two main mechanisms which have been examined in the literature.

Starquake model - The outer layers of a neutron star form a crystalline crust that can
support stress. This crust crystallizes after the early protoneutron stage, when the star is
almost rigidly rotating. During the subsequent spin down, the liquid core adjusts its shape
to the rotation rate, while the solid crust counteracts via elastic deformation: the shape of
the star is very near but not exactly equal to the shape of a rotating fluid in hydrostatic
equilibrium: because of the decreasing centrifugal force, the internal fluid tends to relax to
a slightly less oblate star shape, but this is hindered by the elastic feedback of the stressed
crust. This yield to a point where there will be a sudden relaxation of the stress, with the
consequent very slight change in stellar shape and moment of inertia. Therefore, glitches
can occur because the star suddenly reduces its momentum of inertia, which is done via a
crustal fracture, as first proposed by (Ruderman, 1969). The calculated accompanying
jump in angular velocity is close to that observed in small events, making it a viable model
for the Crab pulsar (Alpar et al., 1994; Alpar et al., 1996), but cannot explain the great
variety of giant Vela-like glitches, which are much more energetic events: the Vela quake
would be a cataclysmic event since this would correspond to a shifted of the crust by
about 10 meters. Apart from the difficulty seen in storing this huge amount of energy into
the elastic response of the crust, the main problem of the starquake model is the difficulty
in explaining frequent glitches: the majority of glitchers spin down too slowly and enough
stress cannot be built is the star relaxes completely in a quake, making quakes very rare
events (Smoluchowski, 1970).

Vortexr avalanche model - Since no such spin-up phenomena had ever been observed
in other astronomical objects, Cameron and Greenstein (1969) proposed that glitches had
to do with specific properties of neutron stars. They proposed that the first glitch in the
Vela was due to the onset of a fluid instability (due to the core rotating faster than the
crust) and assumed the viscous effects to be unimportant. The spin-down rate of Vela
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Figure 1.15: The quasi periodicity detected in the spin-down rate of PSR B1828-11 (a young
pulsar with period P = 405 ms), which is also a well studied free precession candidate (Ashton
et al., 2016). The average value of the spin down of this pulsar is approximatively v(t)/Hz =~ 2.46
-3.6 x 10713 (¢/s), corresponding to a rate of P &~ 5.9 x 107**. The observed variations of
Av /v ~ 0.7% have a periodicity of ~ 1.4yr. Some pulsars have pronounced periodic modulations
not only in their timing residuals, but also the shape of pulsations: B1828-11 is probably the
best example of this. As a result, this pulsar has been used as evidence for both precession and
periodic magnetospheric torque switching.

relaxed to the value it had before the glitch after one year; Baym et al. (1970) interpreted
this very long relaxation time as an evidence for neutron-star superfluidity.

To date, the most accepted scenario is based on the prediction that neutrons in the
interiors of cold NSs are in a superfluid state. Anderson and Itoh (1975) proposed a vortex
mediated exchange of angular momentum between a normal and a superfluid component.
In this case, the low cutoff in the PDF of glitch sizes observed by (Espinoza et al., 2014)
could be related to the vortex knock-on process (Warszawski and Melatos, 2012) and to
the threshold above which an avalanche of moving vortices can propagate (Haskell and
Melatos, 2016); (Haskell, 2016).

Starquakes can still have a role, being a possible trigger for the vortex avalanche, but
it is the avalanche itself that is responsible for the spin-up of the crust, not the moment
of inertia change during the quake. Both the spin-up of the crust and the post-glitch
relaxation are thus manifestations of superfluid vortex dynamics, while in the starquake
model of Baym et al. (1969), one of the first models involving superfluidity, the superfluid
is introduced only to explain the long recovery.

1.5.2 Timing noise

Pulsars are stable on an accuracy of one part in 100 or even better, apart from glitches
that represent sporadic discontinuities. Moreover, we know from radio pulsar timing that
the spin down of a pulsar differs from a purely polynomial spin down due to a phenomenon
called timing noise, a continuous low-frequency structure in the residual between the
best-fit timing model and the observed pulsations. The longterm monitoring (lasting
several years, up to 30) of some pulsars has indeed revealed little and slow modulations in
their rotational frequencies v, which appear as a wandering of the rotation rate around
the predictions of a simple polynomial slow-down model. Also the spin down rate v shows
periodicities (even more clearly), as shown in Fig (1.15). Moreover the little variations in
U are not only periodic in time but also bounded by well-defined low and high values. A
comprehensive review of timing noise is provided by Hobbs et al. (2010).
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While glitches are rapid and sporadic events with sudden changes in v and v, timing
noise appears as a slow and continuous process. This wide-spread phenomenon, first seen
in the Crab pulsar and later found in the timing of both normal and millisecond pulsars,
has nowadays been established as a general characteristic of pulsar rotation rates (Lorimer
and Kramer, 2004).

For long, timing noise was thought to be random and non-deterministic but some
examples of repeating patterns have been detected. Therefore, this was attributed to
a problem of free precession but the question is still open. Other possibilities are the
presence of unseen binary companions (in particular planets), clouds of particles that
induce fluctuations in the radiated beam, post-Newtonian orbital effects, free precession
of the star, or magnetospheric effects (Lyne et al., 2010). In particular, the tentative
explanation of timing noise in terms of free precession has to consistently include the effect
of the superfluid interior: the pinned superfluid vorticity induces gyroscopic precession
and secular or stochastic torques do not necessarily average to zero over many precession
cycles (Shaham, 1977).

The fact that these slow fluctuations are detected mainly in young3® pulsars, for which
the spin down rate is larger than for older pulsars, is interpreted as a clue that timing
noise arises from an irregular transfers of angular momentum between the crust and the
liquid interior due to superfluid turbulence (Melatos and Link, 2014).

Although it seems clear that timing noise is not an aberration due to our current
methods of collecting timing data, this phenomenon is still poorly understood to date.
One possibility is to find a way to rule out some of the explanations proposed so far. For
example, Bayesian analysis tools can be used to discriminate between competitive models
for the timing noise models of PSR B1828-11, as recently proposed by Ashton et al. (2016).

30 Here “young” refers to the dipole age 7 = v/(20), which may not be a good estimate for the pulsar
true age. The dominant contribution to timing noise for young pulsars with 7 < 10% yr can also be
explained as being caused by the recovery from previous glitches (Hobbs et al., 2010).






CHAPTER 2

Axially-symmetric model for pulsar
rotation

In this chapter a general class of models for pulsar rotation, based on the assumption
of axial symmetry, is described: despite many glitch models in literature are effectively
constructed under the hypothesis of cylindrical symmetry, the translational invariance
along the rotation axis is destroyed simply because the star is spherical and stratified. It
is thus important to account for the non-homogeneous structure due to the stratification
of matter, in particular in models where the superfluid can develop a differential rotation
rate. In this Chapter we work out the details in the simplest situation, where vortex lines
are straight and parallel to the rotation axis; in App (E), it is shown how this restrictive
scenario can be generalized.

The main result is a system of differential equations that set the mathematical frame-
work in which to test quantitatively the macroscopic consequences of the presence of a
stable array of vortices, a working hypothesis widely used in glitch models. Even without
solving the equations explicitly, we are able to draw some general quantitative conclusions.

2.1 Motivation

The detection of glitch events in many RPPs indicates that a large amount of angular
momentum is first stored and then exchanged between an internal component and the
observable crust: a neutron star has to be made of (at least) two components which can
interact via some type of mutual friction in order to allow exchange of angular momentum.
As aforementioned in the previous chapter, observations of long post glitch relaxations
indicate that one of these components is superfluid.

With this in mind, these recurring and random period instabilities are usually explained
as a manifestation of the internal superfluid vortex dynamics. Anderson and Itoh (1975)
posed the basis for this interpretation; large glitches are vortex avalanches, global events
in which an extended portion of previously pinned vorticity is suddenly expelled from the
superfluid bulk on a short timescale: the vortices, in their outward motion, transfer their
angular momentum to the crust. The nature of the avalanche trigger is still debated: it
could be a starquake (Ruderman, 1976; Ruderman et al., 1998), a local increase in the
temperature of the star (Link et al., 1993; Link, 2014), an hydrodynamical instability
(Glampedakis and Andersson, 2009) or a manifestation of a self-organized critical system
(Melatos et al., 2008).

33
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Since the pioneering two-component model of Baym et al. (1969), dynamical models
have evolved in order to incorporate effects of multifluid hydrodynamics, as superfluid
entrainment (Carter, 1989; Comer and Langlois, 1994) and dissipation (Andersson and
Comer, 2006). Although the hydrodynamical equations are known (Prix et al., 2002), the
majority of studies of glitches have been carried out in the approximation of a rigidly
rotating star and there has been little progress on making the pulsar glitch models
quantitative.

The currently accepted formalization of the multi-fluid problem in the interior of a
neutron star is based on the seminal works on the hydrodynamics of Helium-II of Hall
and Vinen (1956) and Bekarevich and Khalatnikov (1961); the governing equations are
nowadays quite clear and developed but lead to a computationally hard 3D problem [e.g.
Peralta et al. (2006) for hydrodynamical simulations in Couette geometry]. We therefore
reduce it to a simpler 1D model by making two widely used assumptions: axial symmetry
and straight vortices. This choice has, however, two drawbacks:

- Quoting Andersson et al. (2012), virtually every discussion of neutron star vortex
dynamics has made the assumption that the vortex array is straight. The assump-
tion of axial symmetry around the rotational axis of the pulsar is a widespread
working hypothesis that allows to reduce the dimensionality of the problem: we can
quantitatively test the consequences of this scenario with our model. Moreover, it
can be possible that some of the details of the hydrodynamical problem become
irrelevant at the global stellar scale.

- We can not study the nature of the trigger event, since it may be related to some
non-trivial effect arising in the full three-dimensional problem, like the onset of
turbulence. In our model, almost all the dynamical freedom of the superfluid is
frozen, as only laminar flows are allowed.

The main motivation to start from such a simplified scenario stems from the fact that
in literature we can only find rigid models with uniform entrainment [e.g. Sidery et al.
(2010)] or differential models without entrainment [e.g. Haskell et al. (2013)]. In particular,
vortex-creep models [since the seminal work of Alpar et al. (1984) and Alpar et al. (1984a)]
do not account for entrainment or stratification. Similarly, global models based on the
two-fluid formalism have either neglected entrainment Haskell et al. (2013) or have been
studied under the assumption of uniform entrainment and rigid rotation of the neutron
superfluid Prix et al. (2002); Sidery et al. (2010). The present model addresses these lacks
in the literature and provides a rigorous formulation of the previous work of Haskell et al.
(2013), extending it to the case of density-dependent superfluid entrainment.

2.2 Mesoscopic input

The two physical ingredients that currently challenge the description of pulsar glitches,
both at the mesoscopic scale of vortex lines as well as at the macroscopic stellar scale, are
entrainment and pinning. Another input is the EOS, which sets the stellar structure and
composition at the macroscopic scale. However, the choice of the EOS does not affect in a
fundamental way the dynamics the of superfluid vortices, which is the means by which
the angular momentum can be transported during the glitch.
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2.2.1 Entrainment

A key feature of superfluidity is the possibility for the normal and superfluid components
to flow independently. The formalization of this multi-fluid problem in the interior of
NSs is based on the seminal works on the hydrodynamics of He-II that extended the
early two-fluid models of Tisza and Landau (Hall and Vinen, 1956); (Bekarevich and
Khalatnikov, 1961). Later, with the aim to study *He-*He superfluid solutions, Andreev
and Bashkin developed a three-fluid framework where two superflows and a normal flow
exist simultaneously (Andreev and Bashkin, 1975). They found that entrainment (a non-
dissipative effect that couples the two species) can be described in the frame of reference
comoving with the normal flow as a density-matriz which relates the momentum of one
constituent to the kinematic velocities of both constituents [see also Chamel (2017) for
a nice introduction to the modern formalism with applications to the hydrodynamics of
NS interiors]. From the practical point of view, entrainment is described, in the core as
well as in the crust, in terms of effective masses, which definition depend on the frame of
reference used.

Entrainment in the inner crust - Dripped neutrons in NS crusts are analogous to electrons
in ordinary metals and their properties can be determined by the band theory of solids
(Chamel, 2006, 2012). Only neutrons in the conduction band can move throughout the
crust: the density of conduction neutrons can be much smaller than the density of unbound
(i.e. dripped) neutrons. This reduction of the number of neutrons that can be effectively
considered free (by an order of magnitude in some layers) is due to Bragg scattering. The
conclusion is that, even if dissipative effects were not taken into account, the crust still
resists the neutron current.

Bragg scattering is a non-local and non-dissipative effect: neutrons are scattered by
individual clusters and can then interfere constructively or destructively; in the latter
case neutrons cannot propagate, as if they were very massive Carter et al. (2005). Indeed
neutron diffraction due to scattering on a crystalline structure is a well known topic in
condensed matter physics. Scattering experiments with thermal neutrons are routinely
performed to explore the structure of materials: a neutron can be coherently scattered
if k > 7/d, where d is the typical lattice spacing and k the wavenumber of the neutron.
The main difference between electrons in metal and neutrons in neutron star crusts is that
neutrons are highly degenerate: neutrons have momenta up to kr and typically kr > 7/d
in all regions of the inner crust but the shallowest.

Entrainment in the outer core - The scenario is very different in the core, where neutrons
and protons can only be locally scattered by the surrounding nucleons Chamel and Haensel
(2006): in this case entrainment between the two baryon species is due to the strong
interaction. This mechanism results in a lower effective mass of neutrons in the core, a
behavior that be interpreted in terms of a back-flow of nucleons. This local effect also
exists in the crust but it is negligible when compared to Bragg scattering. Following the
suggestion of Vardanyan and Sedrakyan (1981) that the the Bashkin and Andreev idea
would be applicable in neutron stars, the first calculation of the strength of entrainment for
the neutron-proton superfluid mixture in the core was carried out by Alpar et al. (1984b)
in the framework of an extension of the Ginzburg-Landau theory for a superfluid mixture.

Entrainment challenges our understanding of pulsar glitches: the recent large values
found for entrainment in the crust indicate that such a phenomenon cannot be ignored
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in the physics of pulsar glitches. In particular Vela glitches have been thought to arise
from the superfluid in neutron-star crust (Alpar et al., 1984b; Datta and Alpar, 1993;
Link et al., 1999). However superfluid can be strongly entrained by the crust and this
results in a decreased mobility of the crustal superfluid that cannot carry enough angular
momentum to explain large glitches (Chamel, 2012, 2013; Andersson et al., 2012). In our
numerical examples we use the effective neutron masses calculated by Chamel and Haensel
(2006) and Chamel (2012) for the core and the crust respectively.

Hydrodynamics with entrainment - As said, the two-fluid model of Landau for superfluid
hydrodynamics at 0 < T < T, was generalized to a “three-fluid” one, i.e. a normal compo-
nent (excitations) and two components (irrotational) that describe the superfluid mixture.
This was done for finite temperature 7' < T, in the context of superfluid *He-3He solutions,
where T, is the critical temperature for the onset of the superfluid phase of >He. If 3He is
the dilute and *He the solvent, the effective mass of *He turns out to be 2.3 times greater
than its bare mass (Meierovic, 1984); a by result of the strong interaction between a 3He
atom with the surrounding “He (for the dilute, the *He-3He interaction can be neglected).
However the low miscibility of these two fluids makes this system hardly achievable in
experiments and the measurement of the effective mass is difficult.

Therefore, the mass current for each of the two species must be expressed as a
combination of the three velocities! v3, v4, vy (the first two are the gradients of the order
parameters, N stays for “normal”). At the hydrodynamical level (and for small relative
velocities) the mass currents in the frame of reference of the normal fluid turn out to be

T4 = paa(Va — VN) + paz(vz — V)

3 = p3a(Va — VN) + p33(vs — vN)

where the mass-density matrix is symmetric: p43 = p34 since they are second derivatives
of the energy of the mixture with respect to the relative velocities v — vy and vy — v .
Unfortunately, the discussions in the literature have been usually obscured by the confusion
between momentum and velocity: in order to adapt the original formalism to the NS core
the velocity of a constituent has to be reinterpreted as the momenta per particle divided
by the corresponding bare mass [see e.g. Chamel and Haensel (2006) for a very concise
but clear treatment].

In a neutron star core we have an analogous situation with the presence of the neutron
superfluid and the proton superconductor (and a normal component): the bare protons
(but also the neutrons) are dressed by a polarization cloud of nucleons comprised of both
species. Despite a precise hydrodynamical formalism has been developed [we will follow
the quite standard terminology described by Chamel and Haensel (2008) or Haskell and
Melatos (2015)], very little is known about realistic entrainment parameters €, and €, in
neutron stars, which are often used to construct the density-matrix. These parameters are
not independent but have to fulfill the relation p, e, = py €, which is quite natural: the
most present component (the one with higher density) is less entrained by the other. The

1 This terminology is not standard: in the original article of Andreev and Bashkin, the gradients of
the phase of the superfluid order parameter are referred to as “velocities”. This would be an appropriate
description of the neutron star interior if both protons and neutrons condensed into an 1Sy state; the
complications associated with the 3Py order parameter are typically not considered.

In this work we use a different terminology (geometrically motivated, as discussed in chapter (4)) and
consider the gradients of the phase as “momenta per particle”. As discussed by Glampedakis et al. (2011)
the definition of the entrainment matrix is a matter of personal choice and detailed comparison between
the two different approaches is provided by Andersson and Comer (2001a).
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relation between effective masses m’ and entrainment is given by €, = 1 — m}/m,,, where
m, is the bare mass of a free z-species particle (Carter et al., 2006).

The precise hydrodynamical formalism that is adopted in this works is detailed in
many references [see e.g. Glampedakis et al. (2011) or the review of Andersson and
Comer (2007)] and will be introduced when needed. We just stress that the difference
between the momenta per particle and the velocity is essential in the case of interacting
perfect multifluids (Rezzolla and Zanotti, 2013): the kinematic velocity of each species is
introduced by considering the two (conserved) number densities or particle currents j¢,
so that v¢ = ji /n,, while the momenta per particle p,; is introduced through the usual
conservation of energy and momentum (Prix, 2004).

2.2.2 Pinning

Vortex pinning arises in many areas, such as in superfluid He, terrestrial superconductivity,
ultracold atomic gases and classical hydrodynamics. The case of superfluid *He is instruc-
tive since the interaction between the vortex and the pinning site can be understood in
terms of ideal fluid dynamics: when a vortex filament terminates on a flat surface which
contains a pinning site in the form of a local protrusion, it gets captured if it approaches
to within a critical distance (Schwarz, 1988). Once a vortex is pinned, it requires a finite
background flow velocity with respect to the pinning center to free it.

Pining arises because, in the presence of an inhomogeneity or a lattice, not all the
configurations have the same energy: depending on situations, it may be more convenient
to confine the inhomogeneities into the core of a vortex. Within a perfect fluid approach,
pinning can be described as arising from the competition between pressure and kinetic
energy of the flow induced by the vortex. In the case of quantum vortices one also
has to consider that the confinement of normal matter into the vortex core changes the
condensation energy contribution, as pointed out in the first calculation of pinning energies
and forces in a NS crust made by Alpar (1977): the energy cost per particle of normal
matter in the vortex core is expected to scale as ~ A?/Er, where Er is the Fermi energy
of the dripped neutron fluid.

Pinning in terrestrial superconducting layers - Generally the pinning mechanism of
a “defect” that is blocked by a “pinning center” is based on the fact that the amount
of inhomogeneity is reduced when the defect is superimposed on it. Most often (and
more importantly for what we are going to discuss), pinning refers to the frozen positions
of magnetic vortices (defects in the order parameter) in the Shubnikov phase of hard
superconductors? (Campbell and Evetts, 1972). In this case the pinning centers are
provided by the disorder that is always present in the form of atomic defects, like vacancies
in doped cuprates or surfaces between crystallites.

Strong pinning is a desirable property for technological applications of superconductors
since it hinders fluz-creep, a thermally activated mechanism introduced in the seminal
paper of Anderson (1962). Creep of fluxtubes can induce a pseudo-resistance of the

2 The vortex-vortex interaction of hard superconductors in the Shubnikov phase is generally repulsive,
leading to the well-known phenomenon of the Abrikosov lattice. However, for materials with a low
Ginzburg-Landau parameter (e.g. Nb), also a sizeable short range attractive interaction is present. As
a consequence, the transition from the Meissner to the Shubnikov phase at the lower critical field is
first order and is accompanied by a discontinuity in the intervortex lattice spacing. In some samples an
intermediate mized-state phase is formed in which isolated Shubnikov domains are nucleated, surrounded
by the field-free Meissner state.
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superconducting sample and depresses both the critical current density and the upper
critical field®. On the other hand, when fluxtubes are strongly pinned and a current (of
superfluid electrons) is applied to the sample, the material can sustain dissipationless
currents (Huse et al., 1992).

An ideally hard superconductor is a type-II superconductor with infinite pinning force
(Bean, 1962). It is interesting to note that such an idealized material behaves in two
different ways when cooled below the transition to the Shubnikov phase:

Zero field cooled - We first cool the material so that it enters into its mixed-state
without any external magnetic field. Now the external field is switched on: we
observe complete shielding of the magnetic field, i.e. there are no fluxtubes. This is
the behavior of a perfect diamagnet, where skin-depth currents on the surface shield
the field.

Field cooled - We apply an external magnetic field first, then cool down the sample;
the initial total magnetic flux is frozen into the sample in the form of fluxtubes.

Therefore an ideally hard superconductor screens perfectly the change of the magnetic
field flux rather than the magnetic field itself. This is very different from the case of type-I
superconductors that behave always as a perfect diamagnet?.

The recent work of Thomann et al. (2017) provides an analytical and numerical study
of the effects of pinning on the dynamics of a vortex lattice in a type II superconductor in
the strong-pinning situation: the authors determine the force-vortex velocity (or current-
voltage) curve in the limit of zero temperature, finding that a finite background current
has to be applied in order to unpin the fluxtubes.

Pining in NS - Something analogous to the field cooling case happens in NSs; in this case
both the superfluid and the proton superconductor are cooled in the field regime since the
protoneutron star is magnetized and rapidly rotating [the angular momentum provides
the “external field” for superfluidity, see Eq (2.7): the angular velocity is analogous to
the magnetic field flux from the mathematical point of view]. Therefore, the superfluid
in a neutron star can be regarded as a hard superfluid and, in the limit of “ideally hard”,
any change in the vorticity flux (which is proportional to the large-scale angular velocity,
as in Eq (2.8)) is suppressed. This is indeed the early idea of Anderson and Itoh (1975):
pinning is particularly important in glitch modelling since it is the mechanism that allows
to build up the angular momentum reservoir. When vortices are blocked, the normal
component slows down due to radiation losses while the pinned superfluid maintains its
state of motion, storing the angular momentum which can then be released in a glitch
(Anderson et al., 1982).

Typically in NSs pinning refers to the interaction of vortices with the crustal lattice
and pinning centers are the nuclei of the inner-crust. Strong pinning in NSs allows to
support higher neutron currents before the dissipative effects generated by the motion of
vortices enter the game (a mechanism dubbed vortex-creep, in analogy with the flux-creep

3 If the magnetic field is too high (at the point the distance between fluxtubes is of the same order of
the coherence length), superconductivity is destroyed. This is the upper critical field of type-II (dubbed
“hard”) superconductors.

4 The fact that soft superconductors always show the Meissner-Ochsenfeld effect tells us that the
diamagnetism in such materials is a property of thermodynamical equilibrium, i.e. it does not depend on
the story of the system. We have thus two extrema: soft superconductors which expel the magnetic field
and ideally hard superconductors that oppose changes of the magnetic flux.
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observed in superconductors); this implies that a bigger angular momentum reservoir can
be stored into the current of superfluid neutrons, allowing to explain the large glitches of
the Vela pulsar (Datta and Alpar, 1993).

From densities pg ~ 4 x 10! g/cm? (where neutrons begin to drip out of nuclei) to
pe ~ 0.5pg (where individual nuclei disappear) the neutron 'Sy superfluid coexists with
a lattice of neutron rich heavy nuclei. A convenient semiclassical approach to calculate
pinning energy per pinning site F, is to restrict the vortex-lattice system to only two
adjacent Wigner-Seitz cells of radius Ry s and, for a given density zone, to consider the
energy difference between two extreme (benchmark) configurations: the one with one of
the two nuclei confined into the vortex core and the symmetric one in which the vortex
core lies onto the interface between the two WS cells (Donati and Pizzochero, 2004).

For different densities, the difference between the free energy (or the internal energy
since we are at T = 0) of these two configurations determines which type of pinning is
favorable:

- Nuclear pinning: the vortex passes through one of the two nuclei; this turns out to be
the most energetically convenient situation for densities p < p..

- Interstitial pining: at lower densities, p 2 pq, it is more convenient for the vortex core
to avoid normal impurities (nuclei).

When estimating E'p it is fundamental to account for the condensation energy that depends
quadratically on the pairing gap A of superfluid dripped neutrons. Currently, the major
uncertainties about evaluation of A arise from polarization effects of nuclear matter that
strongly suppress the pairing gap. This uncertainty is non-rigorously cured by introducing
a suppression factor § ~ 1-3 which rescales the BCS pairing gap calculated without taking
into account polarization effects: Agcs — Apcs/B. The case § = 1 leads to stronger
pinning since the effective interaction with the medium is neglected; the choice § = 3
describes the case in which the effect of the polarization is maximum, leading to weaker
pinning forces.

Since the pinning energetics is determined by four main contributions (the kinetic
energy associated to the background flow induced by the vortex, the Fermi energy for free
neutrons, the energy of the nuclei and condensation energy) which have different density
dependencies, the rescaling of the pairing gap with 8 has also the effect of changing the
range of densities at which pinning is stronger.

Donati and Pizzochero (2006) found that pinning energies per site are in the in-
terval 0 < E, < 3.5MeV and are significant only in a restricted density range, for
0.07pp < p < 0.2pg. The rest of the crust presents either interstitial pinning or extremely
weak pinning: intuition for this is provided by the fact that distances between nuclei are
comparable to the coherence length & ~ 10 fm, implying that there is not a definite and
convenient position of the vortex with respect to the lattice.

Mesoscopic pinning forces - While the concept of pinning energy Ep is quite clear
(it is the energy difference between two benchmark configurations), it is less clear what
should be a pinning force: no detailed and accepted methodologies to calculate this quan-
tity exist in literature at present. Despite the name, we interpret it as a scalar quantity
which represents the threshold for unpinning, namely fp is the maximum modulus of the
forces acting on a unit length of vortex line forced to flow with the normal component.
Within this interpretation, the pinning force is analogous to static friction, which adjust
itself to the external force up to a maximum value where motion sets in.
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Figure 2.1: Snapshot of the average procedure used to estimate mesoscopic pinning forces per
unit length fp. The domain of the simulation is not arbitrary but is settled by physical properties
of the vortex: the coherence length £ gives an estimate of the core radius, whereas the vortex
tension sets the length L of the segment. For L — oo an infinite domain is necessary and the
average procedure gives zero pinning. Left - The vortex is immersed into the crust. Right - The
same procedure can in principle be used also for estimating the pinning to fluxtubes in the core.
Figures modeled after Seveso (2015).

The strength of pinning is thus described by a mesoscopic quantity fp(npg) that defines
the depinning threshold and sets the strength of thee lattice-vortex interaction at a given
density np in the crust: its value is the module of the maximum lift force on vortices that
the lattice can sustain per unit length of vortex line.

Pinning can be a collective phenomenon: the effects of lattice rigidity on the summation
of pinning forces is considered by Campbell and Evetts (1972) for type-II superconductors.
In neutron stars, however, we also have to deal with the rigidity of a single vortex line [see
e.g. Link and Epstein (1991)].

We briefly recall here the results of Seveso et al. (2016). The number of interactions
of a vortex (see Fig (2.1)) with a nucleus in the lattice are counted for every random
orientation of the vortex line: translations and rotations of the cylinder modify the number
of nuclei touched by the vortex core. Hence pinning arises because of energy fluctuations
due to the finite length L, which in turn is related to the finite tension of the vortex.
Three different regimes are found, whose occurrence depends on the interplay between
physical parameters such as &,(np) and the lattice spacing b(ng):

- Strong pinning forces are found where §,, < b and the microscopic vortex-nucleus
interaction is so strong to displace nuclei. Results in these strong pinning regions are
quite insensitive to the debated nature of microscopic pinning (nuclear or interstitial);
this is a drawback of the average procedure, but it is also physically reasonable.

- Weak pinning occurs where vortex-nucleus interaction is too weak to compete with
the elastic properties of the lattice: since nuclei cannot be displaced, the vortex
interacts with less nuclei than in the previous case.

- Regions in the crust where pinning is negligible correspond to a density interval such
that £(p) > b(p); the vortex core can always encompass a quite constant number of
nuclei, so no energetically preferred configurations arise.

As expected, the mesoscopic pinning force becomes weaker for longer (more rigid) vortices
and is generally much smaller than early estimates (based on vortices that are unrealistically
aligned with the crystal) by a factor 10 or more. Nevertheless the forces obtained still
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have maximum values of order fp ~ 10'® erg/cm?, still enough to explain large glitches.
The quantity fp turns out to depend very little on whether the microscopic force is
attractive or repulsive in a given region of the star, which compensates for the present
lack of consensus on the sign of the vortex-nucleus interaction as a function of density
(Wlazlowski et al., 2016).

2.3 Hydrodynamical model: straight lines

The microphysical input that describe the stellar structure are functions of the baryon
number density np: to study the rotational dynamics of the two components we need
the free neutron fraction y, (that is zero below the drip density), the normal fraction
Yp = 1 — yp, the dimensionless entrainment parameter €, = 1 —m* [where m* is the
dimensionless effective mass of neutrons in the frame of the crust, see Eq (2.5)], the pinning
force per unit length fp and the mobility n arising from the dissipative processes acting
on vortex lines (Alpar et al., 1984b; Alpar and Sauls, 1988; Bildsten and Epstein, 1989).
Given an EOS and the spherical stellar structure, all these profiles are functions of the
spherical radius 7.

2.3.1 Simplification of the full problem

Under the assumption of axial symmetry it is possible to project exactly the 3D hydrody-
namical problem to a cylindrical one. This symmetry can be consistently implemented
only in a restrictive scenario, that of a paraxial array of straight vortices which collectively
resist bending induced by the non homogeneous forces exerted in the different layers of
the star. In this way, however, we rule out a priori possible turbulent motion and forms of
the mutual friction between the two different from the one usually used (Andersson et al.,
2007): this is a limit of the model to be kept in mind. More precisely:

- No precession - We consider RPPs that spin around a definite axis, called the z-axis.

- FEquilibrium structure - The equilibrium structure is given by solving the TOV
equations by using a T = 0 barotropic EOS that provides the pressure P(ng),
the internal energy density £(np) and the neutron fraction y,(ng) = n,(ng)/np,
where n,, is the number density of non-bound neutrons. However, we need the
superfluid fraction xg. The pairing gap is highly unknown in the core, where it may
vanish or be so little that finite temperature destroys superfluidity. For simplicity
we take g = y, inside the superfluid domain (e.g. the inner crust and the outer
core). The radius at which the neutron drip starts, Rg, corresponds to a density of
pa ~ 4.3 x 10* g/cm3): thus 25 can be non-zero only for m,ng > pg.

- Rigid normal component - The solid crust, the charged component and the portion
of the neutron fluid that is outside the support of xg are frozen into the magnetic
field on very short timescales. This is justified as long as the normal component is
locked on timescales much shorter than the spin-up timescale of the glitch (Easson,
1979). This rigid component is dubbed p-component; using cylindrical coordinates
(x,p,2), its velocity is given by v, = zQ,é,. Following standard notation, the
complement to the p-component is called n-component.

- Inconsistency with GR - As a first step, we construct a Newtonian dynamics on
top of the relativistic TOV structure. This leads to a fundamental inconsistency:
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from the Newtonian point of view the inertia is represented by the mass m.,,, in
GR by the enthalpy per particle (€ + P)/np (as will be discussed in chapter (4)).
In the layers where P <« £ we may consider m,np ~ £/ ¢®. We extend this non-
rigorous identification, somewhat used in studies of the crust, to the whole star. We
thus define a quantity p, the mass density, which in principle (at least in a strict
Newtonian interpretation) should be p = m,ng, so that the partial mass density
of the n-component is p,, = m,n, = myy,np. In practice we leave p undefined
and, in the numerical estimates, we will use p = £/c?, a choice resembling the
interpretation of mass-energy density provided by the TOV equations. Of course
the energy Ecannot be split into the partial contribution from neutrons (since the
proton-neutron gas is highly interacting). However we will use p, = y,&/c? in the
numerical estimates as well. We call this spurious prescription quasi-Newtonian.
Full discussion of this approximation is possible only by introducing the appropriate
relativistic corrections, as done in chapter (4).

Straight lines - In order to project the 3D problem into a cylindrical one, we are
forced to consider straight and paraxial vortex lines that extend trough the superfluid
domain (identified by y,, > 0, or g > 0 if the actual superfluid fraction is provided
by the EOS). In this case, in order to reduce the dimensionality of the problem, the
momentum of the fluid is forced to have only azimuthal component, constant on
cylindrical shells.

In numerical estimates we consider an extreme scenario: the superfluid component
fills the spherical volume of radius R; and is threaded by straight vortices, each
carrying a quantum of circulation x = h/(2m,,), namely we take g = y,, everywhere
from the center to the drip point. The extreme scenario implements the hypothesis
that normal matter vortex cores pass continuously through the crust-core phase
transition, where no normal matter layer is expected (Zhou et al., 2004). This
possibility of continuous vortex lines was already suggested by Ruderman (1976) as
an alternative to the scenario of distinct vorticity in the crust and the core. However
only the latter assumption has been implemented in the subsequent literature until
the attempt to explain quasi-periodicity in the Vela glitches by Pizzochero (2011).
Recent studies on vortex lines that pass trough the A-phase and B-phase of superfluid
3He indicate a more complex behavior of vortices at the AB interface (Finne et al.,
2006).

Therefore we are far from describing the hydrodynamical problem of a NS interior. However
some of of these simplifications are tacitly assumed in the literature; for example, very
few models of glitching pulsars exist in full GR and the rotational dynamics is typically
Newtonian.
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Rq Figure 2.2: Sketch of the stellar struc-
ture (out of scale), with the geometri-
cal definitions used. In the cylindrical
% shell R. < x < R4 the vortex lines are
completely immersed in the inner crust.
The outer crust (the thin blue layer in
the figure) is part of the p-component.
. In principle vortices can stop at any
spherical radius and all the input quan-
2 tities of the model are automatically
; adjusted by following the integral pre-
scriptions detailed in the text.

Rotation axis - z
N

Cylindrical radius - x

It is useful to introduce the following integrations along a straight line -, placed at
distance 2 from the rotation axis °

o= [ o b= P d@= [0 e

x x

where p, = ynp. It is also useful to introduce a normalized weight g that describes the
distribution of moment of inertia of a cylindrical shell of radius z, defined as

Rq
()= [ deg@)f@@),  gla)=2maPb(a)/L,. (2.2)
0
The normalization factor
g [Ha pn(r)
I, = — s 2.
=3, drr —— (2.3)

reduces to the moment of inertia of the n-component if there is no entrainment. The
presence of the factor y,, automatically defines the region where superfluidity is present:
for this reason in all these and subsequent definitions we fix the limits of radial integration
to their extreme values, the interval [0, Ry4], without any loss of generality. Of course

e

I drrtp (2.4)

is the total Newtonian moment of inertia of the star.

5 Coordinates conventions - We use standard spherical coordinates (r, 6, ), where § = 0 denotes
the positive direction of the rotational axis and # = 7/2 is the equatorial plane. The coordinate ¢ is the
azimuthal angle. We also use cylindrical coordinates (z, ¢, z), defined as x = rsinf and z = rcosf. The
z-axis coincides with the rotational axis, whereas the inner-outer crust interface is the sphere of radius Ry,
namely (z, ¢, £2(z)) with z(z) = (B2 — 22)'/2. The volume element d3z in flat space is d% = dzdpdz z
or d’z = drdfdy sin 2. Within the relativistic slow-rotation formalism of the last chapter, the spherical
coordinates are Schwarzschild-like coordinates: in particular the coordinate r = (2 4 22)1/2 represents
the circumferential radius.
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2.3.2 Conservation of vorticity

In order to derive the dynamical equations we could start from the Euler equations for
multifluid hydrodynamics, as in Haskell et al. (2013). However this kind of procedure is
less transparent with respect to a direct construction of the equations of motion: in the
hydrodynamical equations the mutual friction force is already given, here we derive it
consistently with the assumed vortex dynamics. For this reason we prefer to present a
constructive derivation, similar to that early proposed in the seminal work by Alpar et al.
(1984). The effect of entrainment and of the non-homogeneous stellar structure have not
been considered previously in such kind of constructions.

Macroscopic Feynman-Onsager relation (Stokes’ theorem) - Following Prix et al. (2002),
the superfluid momentum per particle is a linear superposition of the local kinematic
velocities of the two components:

Prn=mp[(1=€)Vn + €Vp] = Ppp=mpm vy,. (2.5)

We use the general notation f;, to indicate that the quantity f, is seen in frame labeled
by y. For example, the macroscopic vorticity w,, when seen in the frame of the normal
component, is

wn:mfllepn = Wpp = wy — 20,6, (2.6)

At the mesoscopic scale, the momentum per (dripped) neutron p,, is related to the
configuration of vortex lines via the Bohr-Sommerfeld quantization rule (Prix, 2004); at
the macroscopic scale (i.e. for a large number of vortices) we can introduce a function
N (v) that is proportional to the flux of the macroscopic vorticity, namely

/pn dx = hAg(W) : (2.7)

The Bohr-Sommerfeld quantization requires N'(7) to be the number of vortex lines enclosed
by a generic closed path v (therefore A/ (y)ooZ is an index); the factor of 2 accounts for
Cooper pairing of neutrons. Since |[N(7)| 3> 1 at the macroscopic scale, we can safely
neglect the integer nature of N and consider

mgl/ V X pn = kN(0%) = m/ n,d’Y,  N(0%) €R, (2.8)
by b

L

where Y| is a surface normal to the vorticity field. Since A is interpreted as number of
vortex lines, n, is interpreted as the number of vortex lines per unit area of X .

A (non-preceding) neutron star has a definite total angular momentum of direction
Ji, imposed at birth. The macroscopic angular momentum can thus be considered as
an external field that defines a preferred direction: we can use it to define an auziliary
variable €2, which has the dimensions of an angular velocity. Consider the flux of the
macroscopic vorticity trough a surface ; normal to L

0 (1) = myBo] 7t [ Vxpa.
2L

This non-local definition of the average angular velocity as the flux of vorticity, explains in
a very natural and straightforward way the factor 2 between vorticity and angular velocity
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for rigid-body rotation. Since this definition of €, is not local, we do not have to expect
that €, coincides with the usual definition of angular velocity of a particle. Note however
that in general the notion of angular velocity always needs a prescribed direction to be
present, i.e. L.

Since the surface Xy, is orthogonal to a preferred direction, Xj, is uniquely identified
for every generic curve 9% which is the boundary of an oriented surface; therefore the
alternative definition Q,(9%) = k |X1| ! N(0X) is completely equivalent.

On the other hand, the modulus of the vorticity xn, = m,!|V x p,| = w, is an
intrinsic quantity since no preferred direction has to be imposed; n, is the density of
vortices per unit area of a surface normal to the vorticity lines.

Macroscopic Feynman-Onsager relation (straight vortices) - We now specialize the above
expressions to the particular case under study. Since N () does not change if v is trans-
lated along the z-axis, the azimuthal component of the momentum, p¥(z), is a function of
the cylindrical radius only. Therefore the circulation of Eq (2.7) around a ring of radius «
reads

opie) = 5 [ dyynao). (29

It is convenient to introduce a columnar angular velocity Q,(z) that automatically satisfies
the usual single-component Feynman relation

I

Q(z) = P2 Q(z) = "N @)

My, T 21 22 (2.10)

From Eq (2.5), it immediately follows that Q,, = m* Q,,,. More explicitly, Q,,(z, z) = Qyp(x)/(1—€,(r))
namely the velocity field of the neutrons in not columnar. Stokes’ theorem applied to Eq
(2.9) implies that the density of vortex lines n, = 2h~1|V X p,| is related to Q, via

KNy (x) = wp, = 20y (2) + 0, () . (2.11)

This equation is not general but a consequence of the axial symmetry assumed in our
model.

The definition in Eq (2.10) tells us that the dynamics of ,(x,t) is indeed equivalent
to the dynamics of N (z,t): loosely speaking 2, is the angular velocity of an abstract
“vortex-component” or, better, it just counts the amount of vortex lines inside the radius .
The variable €2, can thus vary in time only if we let vortices to move trough the boundary
of the cylindrical region of radius z.

Let v be the local average velocity of vortex lines. Since vortices cannot end into the
bulk, we impose the conservation of the number of intersections of vortex lines with the
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equatorial plane®

i@t (2.12)

1
Oy + ;ax(x nyvi) =0 = 0;Q, = — (29, + 20,,)
This is the equation that regulates the mutual friction torque between the superfluid and
normal components: if vortex lines are perfectly pinned (i.e. v = 0), €, cannot change
and angular momentum transport is impossible: the two “v” and “p” components are
completely decoupled.

2.3.3 Total angular momentum balance

The evolution of a non-magnetized and isolated neutron star is driven by the secular spin-
down. The total angular momentum is radiated via some mechanism (see the appendix
(B)), which is modeled by an external braking torque:

[ x5 )5 2) 4 1)5(2)] = Tt (2.13)

where p, = z,p for y = n,p. Under the no precession hypothesis the analysis is trivial
and we can always write Toy = —I|Q|€. for some positive number |, |. By ignoring
the difference in the mass per baryon of two components, the local property yne, = ypep
(Carter et al., 2006) allows to write the second equation of the dynamical model as

zpatfzp(twr/d% (o /%) 22 0y Q1) = —[ Q| T (2.14)

Note that this equation is very different from that proposed by Link (2014), where an
extra torque due to a third component (which is supposed to be almost always completely
decoupled) is introduced. Such an additional term is de facto an impulsive external torque
that is introduced to generate a glitch. On the other hand, in our model the angular
momentum is always strictly conserved if the electromagnetic emission is switched off: a
glitch can thus be triggered by a temporal discontinuity, or rapid change, in v7.

2.3.4 Relation between vortex velocity and lag

Equations (2.12) and (2.14) provide a close set of partial differential equations for €2, and
Q,, only after some reasonable dependence of the local velocity v7 from the dynamical

6 Consider the curl of Euler equation for a barotropic fluid with conservative forces. In this case the
barotropic term in the associated vorticity equation vanishes and we are left with V x (D¢v) = 0, that
can be written as

W' = €%V, v, O w' + € ey Va (wl v™) =0,

meaning that the vorticity is frozen into the fluid (Kelvin’s theorem). Consider the above equation but let
v* be a generic velocity, say vi. Because of the cross product we can restrict ourselves to consider only
those vi that have no components parallel to w;. In our case w® = kn, 6% and we obtain a simpler form of
the vorticity transport,

atnv + V. (nUVL) - az (nvvi) =0.

For both straight and curved vortices, the local velocity of a vortex segment is defined to be normal to
the vortex line. This is quite intuitive since if the particles that comprise the vortex’s core flow along the
core itself, the vortex does not move. The transport velocity v, is thus assumed to be orthogonal to the
vorticity and the last term in the above equation can be dropped.
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variables €, and 2, is given: we need to find out a plausible form of the mutual friction.
As we are going to see, this is the most difficult point and some arbitrary choices are
unavoidable.

In complete generality we can introduce a functional B, defined as

v = x B[Qy, Qp, x] (Qu(x) —Qp) . (2.15)

The explicit form of B depends on the details of vortex dynamics. We study the standard
case proposed by Epstein and Baym (1992), based on earlier works on the motion of
vortices in liquid *He and superconductors [see e.g. Noziéres and Vinen (1966)]: in the
frame of the crust a vortex line experiences a viscous drag force per unit length fp and a
Magnus force f); that are locally expressed as

fp(x) = —n(r)vip(x), (2.16)
(%) = pu(r) KE X [Vip(X) — Vip(x)] (2.17)

The parameter 7 is sometimes referred to as mobility in studies of vortex dynamics in
type-II superconductors: in this case the Magnus force is replaced by the Lorentz force on
a vortex (Thomann et al., 2017).

As discussed in Andersson et al. (2006), the presence of entrainment does not modify
the form of the Magnus force, providing that the unit vector & is directed along V X py.
In the present case of straight vortices we have that # = &, which is not along V x vy
unless €, = 0.

The Kelvin’s circulation theorem for ideal and barotropic fluids implies that free
vortices in a background flow are transported with the fluid, thus behaving like massless
particles. However in a superfluid, the presence of normal matter into the vortex core
can be taken into account by introducing an effective mass per unit length (Baym and
Chandler, 1983). We will ignore this correction: since there is no inertia, the equation of
motion for straight and rigid vortices is postulated” to be

[ [mty (o) + o (w5, (0) = 07y 2] =0

/ fu+fp=0 =
Va /dz [n(vf () — 2) — KkppvL(z)] = 0.

Replacing the variable €2, in favor of 2, and using the definitions given in Eq (2.1), the
solution of this system is

vi, = B2 Qyp B(z) = Cm (2.18)
vp, = B¥rQ,, Bf(x) = _al)blz) . (2.19)

d(x)? + a(x)?

where the z-dependence is understood. Coherently with the general notation used here,
the lag €, has been defined as

Qup(z,t) = Qy(z,t) — Qp(t) = (1 — en)lenp(:c, z,t). (2.20)

7 It is this assumed non-local form of the equation of motion for vortex lines that provides a definition
of our concept of rigidity: the sum of all the local forces along a rigid line must vanish. It is worth to
note that, given this definition of infinite tension, the vortex dynamical equations turn out to be formally
equivalent to the equations of motion for a single tensionless vortex, as discussed in (Haskell and Melatos,
2016).
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In this simple example the functional B is only dependent on the cylindrical radius z,
namely it is just a function B[, Q,, 2] = B*(z). Equations (2.18) and (2.19) imply that,
in the frame of reference of the crust, the velocity of vortex lines at radius x forms an
angle tan d(x)/a(x) with respect to €,. The fastest expulsion of vortex lines occurs when
n is such that d(z) = a(x). Of course the present analysis, that generalizes the early
local approach of Epstein and Baym (1992) in the presence of entrainment and for a
non-uniform star, can very easily made local when the rigidity assumption is dropped, as
discussed in App (D).

A final remark is due: the non-linear effect of pinning has not already been introduced,
so that the present analysis (provided that the parameter 1 is known) is valid far from the
unpinning transition. The equations (2.18) and (2.19) can be interpreted as the asymptotic
(average) velocity of vortex lines when the lag €, is well below a certain threshold.

2.3.5 Effective pinning

When a pinning force per unit length fp(x) acts on a segment of vortex line at x, the
general equation of motion for rigid vortices becomes

/ £as (%) + £ (x) + £p(x) = 0.

x

The vectorial quantity fp(x) is unfortunately unknown and probably not even well defined,
even if there are attempts to model it at the mesoscopic scale as the gradient od a spherical
pinning potential (Warszawski and Melatos, 2012; Haskell and Melatos, 2016). As it
stands, the general and complete form of the functional B resulting from the solution of
the above equation is precluded, due to the uncertain nature of the pinning term. We thus
have to follow another route, based on the physical intuition rather than on a well-defined
mathematical formalization.

The threshold effect of pinning is expected to introduce explicit and non-smooth
dependence of B on the dynamical variables €2, and €2,,. We have to face to two
alternatives:

Creep-like prescription - Pinning can be modeled by considering that only a fraction
Y of (unpinned) vortex lines is free to move. This is equivalent to say that the
functional B can be approximated by

B, Q1] ~ Y[y, 2] B(z). (2.21)

The factor Y € [0, 1] modulates the mutual friction and can be equally interpreted as
a parameter that slows the expulsion of vortex lines or as the fraction of (unpinned)
vortex lines that are free to move under the combined action of fj; and fp. By
considering a large population of vortices around the radius z, we can also interpret
Y as a probability for unpinning (Jahan-Miri, 2006). The simplest way to encode
pinning at the macroscopic scale is thus to construct Y in such a way that

Y[Qupoa] 20 if  [Qup(2)] < fy () (2.22)
Y[Qupoa] @1 if [Qup(2)] = fy (@), (2.23)

for some function fy (x) that must be chosen or estimated with an argument external
to the model. Since fy (z) has cylindrical symmetry, it cannot be a fundamental
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input of the model, unless a local spherical model for slack (i.e. tensionless) vortex
lines is considered, as discussed in the next chapter.

This is indeed the prescription used in vortex-creep models, where the effect of the
velocity lag between the two components is to modulate the typical velocity of free
vortices: finite temperature, quantum effects® and finite vortex tension take part in
smoothing the step-like form of Y. As an explicit example, the original non-entrained
model of Alpar et al. (1984) in the regime 0 < Q,, < fy is realized by

~ an - fY
Y[Qyp] ~ exp < afy ) )
where « is a dimensionless temperature that tunes the local rigidity of the pinning
and fy is an opportune critical lag estimated from pinning energies. Within this
model, Alpar et al. (1989) showed that the vortex-lattice interaction can also lead to
strong linear drag, a particular realization of thermal creep which can be linearized
under certain conditions in the crust. Also the more recent and detailed treatment
of thermally-activated creep proposed by Link (2014) uses a similar parametrization
of the mutual friction force (however the inclusion of entrainment and spherical
stratification in this kind of cylindrical is non-rigorous).

Drag prescription - Pinning can be modeled as very strong drag, at the point that
the vortex is carried into corotation with the crust. An infinite drag is dissipationless
since B* goes to zero for n — 0o. To model pinning we can drop fp and consider
instead a local functional n[r,vr,] in Eq (2.16), where vr, = |vp,|. In this case,
depending on the form of 7, the solution of the equation of motion can be difficult
to study, even in its non-local form fp + f; = 0. The solution of the equations in
their non-local form is even more tricky. In a local hydrodynamical model with no
particular symmetries, we could attempt to solve the vortex dynamics by considering
a generic mobility n such that

nlr,vLn] =~ n(r) if  vpn > fy(r)
nlr,vpn] > Kkpn(r) if v, < fp(r),

where f;, sets the strength of the local pinning mechanism and n(r) is the local drag
parameter of Eq (2.16) which arises far from the pinned state. The two regimes
defined by vr, < f,(r) (quasi-conservative regime) and vr,, 2 fy(r) (dissipative
regime) are discussed in the appendix (D).

As long as vortices are meant to be rigid we will not consider here the second possibility
which seems more suitable for tensionless vortex lines. We thus use Eq (2.22) in which
the threshold fy (z) is provided by the prescription proposed by Pizzochero (2011): the
Magnus force and the unknown pinning force fp are integrated to obtain an estimate of
their total values on a vortex.

The quantity fp(p) studied in Seveso et al. (2016) is not interpreted as the modulus

of fp. Rather, it represents the maximum value that the pinning force can sustain
before letting the vortex free to move, much like the static friction force: we thus set
fy(z) = Qf (v) in Eq (2.22), where

1

/{/ pn xS, = . fr = Qp(x) = Rz b(@) /% fp. (2.24)

x

8 Quantum tunneling sets a lower limit to the creep rate at low temperatures (Link et al., 1993).
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In principle there is no fundamental reason for saying that fy (x) = Qg (z); this point
could be taken as a further defining property of the ideally rigid vortices. From the
phenomenological point of view this prescription has been tested in the hydrodynamical
simulations of Haskell et al. (2013) and Seveso (2015). However we will provide a check of
the interpretation fp = |far|maz by studying also an alternative scenario of completely
loose vortex lines in the next chapter.

Improving the friction term - Vortices in an hydrodynamical model only serve to construct
a particular form of the mutual friction torque in terms of the dynamical variables (in
our global model we shifted this problem on B which regulates the coupling between the
components). A glitch can then be triggered by perturbing B or, more specifically, by
suddenly increasing the Y fraction in some interval of z; this would mimic the sudden
artificial unpinning of many vortices. At the mesoscopic scale however things are much
different and more complex, as simulations of the vortex unpinning mechanism suggest
(Link and Epstein, 1991; Link, 2009). Moreover a compete model should account for the
possible auto-regulation of the unpinning process at the mesoscopic and macroscopic scale.

Other contributions to the vortex dynamics (that could have a significant impact
on mutual friction) arise from the finite tension force of vortices originating from the
quantized superflow around the core, as well as their mutual interaction (Haskell and
Melatos, 2016; Wlazlowski et al., 2016): dropping the straight vortex description, the sum
of all the local forces acting on a vortex (including tension on a bent line and eventually a
mean-field force induced by the vortex-lattice) should vanish on a segment of vortex line.

Self-interaction forces that further complicate the picture are present for lines with a
small curvature radius, as it is clearly recognizable within the vortex-line filament model
of Schwarz (Barenghi et al., 2001).

Moreover the radiation of phonons during the pinning and unpinning of a vortex
line and proximity effect when two lines are close are important at a microscopic scale
Warszawski and Melatos (2012): these precesses may provide the physics needed to
explain the claimed self-organized criticality of glitching pulsars Melatos et al. (2008).
All these aspects are mesoscopic, and to date none of them can be modeled as by means
of fundamental quantum mechanics: this may not a big problem since we still have
to understand how to include the physics of the mesoscopic scale into hydrodynamical
formulations. Further work is therefore needed to understand how these issues impact
on the form of the macroscopic mutual friction. Better understanding of the effective
modellization of the motion of vortices can come from the study of laboratory type-II
superconductivity (Geller et al., 1998; Mints and Papiashvili, 2005).

2.3.6 Dynamical equations of the model

With the aid of the definition given in Eq (2.2) we can rewrite the Eqs (2.12) and (2.14)
in a more compact form as

IP QP =-1I IQoo| - Iv <QMF> (2.25)
Iv Qv = IU QMF (226)

where the cylindrical average is that of in Eq (2.2) and the mutual friction torque I,Qp
has been introduced:

Qe = —B (29, + 20, + 20:2,,) 0y - (2:27)
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It is also interesting to write the above equations as a system for a differential variable,
0Qp = Qup — (Qyp) = 69, and two rigid variables, (€2,,) and §:

IO, + 1,(Qu) = —I|Qu| (2.28)
Ip <va> =1I |Qoo‘ +1 <QMF> (2.29)
0p = 01 . (2.30)

Clearly, the rigid part of the system is consistent with the general form expected for
two-components glitch models in absence of precession, see App (C).

Steady state - Provided that the braking torque itself is not evolving, the value of Q|
coincides with the absolute value of the observed spin-down rate, averaged over a long
period of time (even if in this period the pulsar glitched several times). By requiring that
the star spins down as a whole, we obtain a very restrictive definition of steady state:
Qp =, everywhere, namely

B (20 + 2y +20:Qp) Dy = 0] - = Q) ~ 5675 (2.31)
where the implicit solution of the equation depends on the properties of the function
B (r) = B[Qg5, x], which (in this case) depends on z only.

It is possible to relax this notion of steady state by inserting €, = —|Q| into Eq
(2.28); we obtain a less restrictive realization of the steady state,

» oy e L
(B(2Qp +2Qup + 20:Qup)Qp ) = [Qoc| = <va(””)>”29,,<800>’

(2.32)
where the approximations involved are sketched in the next section (this can also be
checked a posteriori by inserting the numerical profiles). In this case 6€2,, can have its
own dynamics, provided the constraint in Eq (2.32) is fulfilled.

We can adapt a simple reasoning proposed by Greenstein (1975) to calculate the energy
dissipated at the steady state in presence of entrainment. In our case the dissipated kinetic
energy & = 9, (pnv? + ppv3), which at the order O(Q,,) can be written as

Er = —pr?Q|Quo| + (22 pn/m*) (52,2, — |QOQ|Q$;’,) < 0.

Integrating this local contribution over the whole star we obtain
—/d%ék = I |Quo| + 1| Qo0 | (252) -

The first term is the spin-down luminosity [the power radiated via the braking mechanism
(Alpar and Baykal, 2006)]; the second term can be evaluated using Eq (2.32) and gives
an estimate of the total rate of heat generated by friction: since it is second order in
the small spin-down rate, the kinetic energy of a RPP is lost mostly by the radiation
mechanism, while the internal torque provides only a very small correction. However
the heat generated in the bulk by the mutual friction can still play an important role in
more refined hydrodynamical models, where the coupled thermo-rotational evolution is
considered. Also the energy released in a neutron star interior during the glitch event
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produces extra heat, part of which diffuses trough the outer layers and may result in a
thermal afterglow from the surface. However, simple estimates indicate that the detection
of the thermal afterglow in pulsars is unlikely because their non-thermal radiation is much
more intense.

Reduction to a rigid model - The standard rigid model defined by Eqgs (C.1) and (C.2)
can be a reasonable approximation of the Eqgs. (2.26) and (2.25) when the Egs (2.29)
and (2.28) decouple from Eq (2.30). Clearly, this possibility depends on the particular
form of Qs r. We restrict our attention to a finite time interval during which the friction
functional B does not vary. Eventually the friction term can be approximated with an
effective function of x only, B ~ BZ;(x). With this assumption, the decoupling of the rigid
equations is obtained by dropping the term x0,0€2,, and taking in Qarp only the terms
that are up to first order in the deviations from the cylindrical average:

(Qrr) = 2(Bi) (Qup) Qp .- (2.33)

In this way the dynamics of 2, and (€,,) does not depend on 0€2,,. Now, if we identify
Q, with Q, and Q; with Q, + (Q,,), the Egs (2.29) and (2.28) are equivalent to Egs (C.1)

and (C.2). It also follows that the relaxation time 7% and the coupling time 7 can be
estimated as /
1 I,/1
R c P
= — = — 2.34
T e, T 2EY, .

The relaxation time given here should be intended as the characteristic timescale of a
body-averaged model in a particular dynamical phase described by (B8%). This also gives
a microphysical interpretation of the phenomenological parameter 7%, that can be fitted
from observations.

2.4 Numerical estimates

The dynamical equation that have been derived depend on various inputs that van be
found by using the integration prescriptions: in this section we briefly discuss the inputs
that we use.

As already mentioned, for a given central mass density and given EOS, the stellar
structure is fixed by solving the TOV equations, , reviewed in App (A). However, since
we are dealing with Newtonian moments of inertia, we do not implement the general
relativistic conversion between the baryon number density np and the energy density
p =&/t EOS - We use the SLy EOS proposed in Douchin and Haensel (2001) as a
unified description of the whole star (except for the outer crust that is almost irrelevant
in glitch models). The EOS provides the relation P(p) and the fraction of non-bound
neutrons y,(p) (shown in Fig. (2.3)). This equation of state predicts a first order phase
transition where nuclear clusters dissolve into homogeneous matter at baryon density
n ~ 0.76 fm =3, corresponding to p. ~ 1.3 x 1014 g/cm3. To value of R; marks the onset of
neutron drip (a second-order phase transition) at the mass density pg = 4.3 x 10! g/cm?
(Haensel et al., 2007).

At the crust-core interface, matter strongly stiffens due to the disappearance of nuclei:
a two-phase nucleon system changes into a single-phase one, and repulsive nucleon-nucleon
interaction is no longer countered by softening effects resulting from the presence of the
lattice-gas phase coexistence. For the SLy EOS, the crust-core transition turns out to



2.4. Numerical estimates 53

T
0.8
£ 07
0.6
05 GM1 ——- ]|
SLy —
0.4 | | | | ‘
0 0.5 1 15 2 25 3
plpo

Figure 2.3: The fraction y, = n,/ngp as a function of p used in our examples: the blue solid
line is the fraction provided by the Sly EOS, obtained by joining the data in Table 1 and Table 4
of Douchin and Haensel (2001). Here we show also the superfluid fraction consistent with the
GM1 EOS in the core (dashed line). Below the drip point we have y, = 0 since no free neutrons
are present. In the inner-crust y,, is the fraction of superfluid nucleons in the neutron gas outside
nuclei: this quantity has a sharp dip at the crust-core interface since nuclei dissolve and all the
neutrons contribute to the superfluid liquid.
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Figure 2.4: The effective neutron mass m” in the crust (solid line), obtained by interpolating
the values reported by Chamel (2012), and in the core [from Chamel and Haensel (2006), dashed
line]. The crust-core interface corresponds to p. & 0.47 pg. The original entrainment profile has
been interpolated.

be a very weak first-order phase transition, with relative density jump predicted by the
Maxwell construction of about one percent.

For comparison we also use the stiffer GM1 equation of state of Glendenning and
Moszkowski (1991) in the core (i.e. for p > p.), while keeping the SLy to describe the
crust. The corresponding y,, fraction is shown in Fig (2.3).

Entrainment - We use the effective neutron mass m;, given in Chamel and Haensel
(2006) and in Chamel (2012) for the crust and the core respectively, see Fig. (2.4). It
is evident from the figure that m* depends strongly on density in the inner crust. The
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Figure 2.5: The pinning force profile per unit length f, used to calculate €7, in units of
10" dyne/cm. We constrain the pinning force profile to be zero outside the density range
pd < p < pc. The original profile has been interpolated.

entrainment parameters that we use in this work are obtained from the effective masses as
€n =1 —m’/m, and €, = yne,/(1 — y,). At the transition between crust and core the
effective mass is settled to unity.

Pinning force - In order to estimate the critical profile in Eq (2.24), we need the
pinning threshold f, resulting from the vortex-lattice interaction in the inner crust. Seveso
et al. (2016) have proposed a numerical simulations to evaluate f,(ng) at different densities
np in the inner crust, which accounts for finite single vortex tension and random orienta-
tion with respect to the lattice. We use the pinning profile corresponding to in-medium
suppressed pairing gap [the case 8 = 3 and L = 5000 of Seveso et al. (2016), see table 3
therein|, as shown in Fig (2.5).

Pinning to flurtubes - Theoretical estimates based on the proton coherence length suggest
that the protons in the core could form a type-II superconductor (Baym et al., 1970); hence
the vortex motion could also be impeded by the interaction with the magnetic fluxtubes.
The current estimates, based on aligned vortex-fluxtube configurations, suggest strong
pinning in the core comparable to crustal pinning (Ruderman et al., 1998). However,
following the phenomenological study of Haskell et al. (2013), this extra pinning interaction
should be small except for magnetars. We are currently studying this issue along the
same lines of Seveso et al. (2016) and the first findings have been reported in Seveso
(2015): much like crustal pinning is weaker once non-aligned configurations are taken into
account, preliminary results indicate a similar reduction for pinning in the core too, with
only ultra-strong magnetic fields which are likely to provide considerable vortex-fluxtube
interaction.

Core pinning is a very open and debated point that has deep impact on the dynamics
of the superfluid vortices in the core (Sidery and Alpar, 2009). Here we force fp to be
zero outside the crust; our general model, however, allows different prescriptions to be
tested. Note that even pinning forces in the crust are very poorly known, since at the
moment the only detailed and density-dependent estimate of the mesoscopic vortex-lattice
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Figure 2.6: Example of viscous drag parameter n(p): in the core (p > 0.47po) the dominant
dissipative channel is provided by the electron scattering off magnetized vortex lines. In this case
1(p) is given by Eq (2.35). In the crust (pq < p < pc) we consider two dissipative mechanisms:
the excitation of phonons in the crustal lattice (purple dashed line) or the excitation of Kelvin
waves in the vortex cores (red dotted line).

interaction at the mesoscopic scale is that of Seveso and coworkers.

Drag parameter - The drag parameter 7 is probably the less studied microphysical
input that we need: any realistic treatment of the drag exerted on vortices implies the
study of many dissipative channels (both at the mesoscopic and quantum scale), including
the excitation of quasiparticles in the vortex core. Eventually we can take into account
only the dominant ones in each region of the star. Andersson et al. (2006) proposed an
estimate of the drag on vortex lines due to the electron scattering off vortex lines:

62 3 1/6
Mes & 6.1 % 1075 ke, y1/6 p7/6 —L— (Cm> , (2.35)

V1—¢p, g

where y, =1 — yn, € = Yn€n/y, (Chamel and Haensel, 2006). According to this picture,
the mobility coefficient 7, is calculated by considering that the vortices in the core are
magnetized due to the entrainment effect between the neutron superfluid and the proton
superconductor [see also Alpar et al. (1984b)]. Electrons can thus be scattered by the
magnetized vortex, imparting a drag on the normal matter which fills the vortex core. For
this reason the above estimate is valid only for p > p., while 7.5 = 0 in the crust since no
dripped protons are present.

On the other hand, for p < p. the vortices excite phonons® in the crustal lattice during
their unpinned motion (Jones, 1990; Epstein and Baym, 1992).

9 Following Jones (1990), the mobility coefficient due to the excitation of lattice phonons is given by

E2 2
Mo = 0.053 = P~ 0.16 fp3,
&3 Mg ppécs

where a is the lattice spacing, £ ~ 5 — 100 fm is the coherence length of the superfluid, M; is the mass of
the ions, Ej, the pinning energy per nucleus and cs ~ 10° cm/s is the local speed of sound in the inner
crust. Assuming a bcc lattice and neglecting the mass contribution of the electrons, i.e. pp = 2M;/a3. In
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Table 2.1: Some stellar structure parameters are given for three different masses. Neutron drip
starts at r = Rq, where pg ~ 1.53 x 1072 po. Similarly R, is the core radius and corresponds to
pe = 0.47 po. The upper panel refers to the SLy EOS. In the lower panel we use the GM1 EOS,
together with its consistent y,(p) in the core. In the crust nothing changes with respect to the
SLy case.

M Rq R, 1/10% I, I,
(Mo)  (m)  (R)  (gem®) (1) (L)
1.1 11.41 0.936 0.86 0.928 12.9
1.4 11.43 0.953 1.09 0.941 16.1
1.9 10.92 0.974 1.35 0.958 22.9
1.1 13.08 0.926 1.14 0.901 9.2
1.4 13.28 0.945 1.51 0.913 10.5
1.9 13.24 0.966 2.04 0.916 10.9

This effect is the likely dissipation channel when the relative velocity between the
vortex line and the lattice is small (|vy, — v,| < 102 cm s™1). When the velocity of vortex
lines relative to the lattice nuclei is much higher, other dissipative processes come into the
play, like the creation of Kelvin waves in the vortex cores (Jones, 1992).

At present only rough estimates of the drag parameter in the crust can be found in the
literature. For this reason, we decide to take as a title of example a fiducial constant value
for the phonon-drag parameter in the inner crust, namely 7,5 ~ 102 g s~'em™!. The drag
associated to excitation of Kelvin waves is roughly seven orders of magnitude greater than
the phonon-drag, thus we consider 7, ~ 10° g s~tem~!. This choice is made on the basis
of the inferred phenomenological parameters presented in Haskell et al. (2013), see Table 1
therein. Figure (2.6) shows the two full drag profiles as a function of the density; in both
cases the mechanism that dominates dissipation in the core is still given by Eq (2.35).

The fact that for different vortex velocities we have to interpolate between the phonon-
drag and a kelvon-drag is a direct manifestation of the fact that the power dissipated per
unit length by a vortex is not in general of the form n(vy —v,)?2.

2.4.1 Estimate of the cylindrical profiles

We use the physical input described in the previous section to construct the profiles B*,
7, and g. To study how the input of our model are sensitive to a change of the EOS in
the core, we use SLy and the much stiffer GM1. For both cases (SLy for the whole star
or GM1 in the core plus SLy in the crust), the structural parameters are summarized in
Table (2.1). We present the results for the SLy case only, since the profiles obtained
using GM1 in the core are qualitatively similar. Since the radius = can rescaled at will
in our dynamical equations, the actual value of R, is irrelevant in our model and it is
thus rescaled to unity in the plots: this allows to compare stars with different mass-radius
relations.

Moment of inertia density - In Fig (2.7) we plot the weight g(x), the fundamental

principle, we can directly use the values of E}, calculated by Donati and Pizzochero (2006), or estimate
the parameter E), according to the prescription of Alpar et al. (1984), namely E;, ~ fpaf&, so that the
second (approximate) equality follows. All these quantities are not constant in the inner crust and the
above formula is only an order of magnitude estimate for 7,5, which depends on the local velocity of
sound (and therefore on the EOS).
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Figure 2.7: The dimensionless weight g(z) for three neutron stars with mass 1.1, 1.4 and 1.9
M using the SLy EOS. The analytical formula is given in Eq (2.2). Here, in order to compare
stars with different masses, g is normalized on the interval [0, 1], since the actual value of the
radius is unimportant in the set of Eqs (2.25) and (2.26). In the insert we focus on the outermost
cylindrical shell: the arrows indicate the surfaces © = R..
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Figure 2.8: The profile By, () for three neutron stars with mass 1.1, 1.4 and 1.9 Mg, using
n(p) = npn(p) + nes(p) for SLy. Note that we started from a discontinuous 7 at p = p. but the
integration over the vortex length provides a smooth profile.
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Figure 2.9: The dimensionless profile Bj,(x) for three neutron stars with mass 1.1, 1.4 and 1.9
Mg, using n(p) = ko (p) + nes(p) with the SLy EOS. For vortex lines near the rotation axis the
electron scattering dominates and there is nearly no difference with respect to By, ().
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Figure 2.10: Critical lag profile Q) () for three neutron stars with mass 1.1, 1.4 and 1.9 Mg
and the SLy EOS. The critical lag calculated without taking into account the entrainment effect
is lower by one order of magnitude in the crust (Seveso et al., 2012).
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Figure 2.11: The angular momentum reservoir g {l;;, of a cylindrical is plotted for three neutron
stars with mass 1.1, 1.4 and 1.9 My using the SLy EOS. The area enclosed by each curve
represents the average critical lag (€2y;), listed in Table (2.2). The insert sows the outermost
cylindrical shell and the arrows indicate the surfaces x = R.. According to the Rayleigh’s criterion,
if the actual lag is near the critical lag, the region where 9;(g Qvp) < 0 may be unstable, slightly
reducing the total angular momentum reservoir.

quantity used to project the non-uniform spherical stricture it onto a cylindrical 1D model.
The behavior of g near the origin is ruled by the factor 22, while the drop after the
maximum depends both on the decreasing density and on the spherical shape of the star.
It is worth to note that the mass of the star does not have a deep impact on the overall
shape of the normalized profile g, thanks to the fact that in our model the actual value of
the cylindrical radius is unimportant. For massive stars, g weights more the outermost
cylindrical layers. The cylindrical shells that are completely immersed into the crust
(z > R.) contribute very little to the total moment of inertia of the v-component, see the
insert of Fig (2.7).

Drag parameters - Figures (2.8) and (2.9) show the B* profile calculated with elec-
tron scattering in the core and either phononic or kelvonic drag in the crust. We label
the total dimensionless drag B” in these two cases as By, and By,. The dominant con-
tribution from electron scattering in the core makes these two profiles quite similar for
z < 0.6 Ry. Note that switching from phononic drag to kelvonic drag in the crust is rel-
evant also for vortex lines that are not completely immersed in the crust (0.8 Ry < z < R.).

Critical lag - The critical lag Qf given by Eq (2.24) is shown in Fig. (2.10) for the SLy
EOS. When GM1 is used in the core the result is qualitatively similar: the critical lag
profiles, even in presence of entrainment still have the typical peak of the snowplow model.
This peak gets closer to the cylindrical shell x = R; as we increase the mass of the star.
When GM1 is used in the core, the main difference with respect to the SLy case is the
higher value of the central plateau between 0.2 < z/Rq < 0.8.

Cylindrical angular momentum reservoir - In Fig. (2.11) we show the product 925
the area enclosed by each curve is the mean critical lag (7)), listed in Table (2.2). It is

worth noting that the main contribution comes from regions with z > 0.6 R4, which do
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not contain the possibly exotic inner core: in this scenario of rigid vortices the cylindrical
angular momentum reservoir is spread across the inner crust and the outer core of the
neutron star.

2.4.2 Global quantities: spin-up timescale and angular momentum
reservoir

Some of the results developed in the previous section can be used to make quantitative
estimates even without solving explicitly the dynamical equations (2.26) and (2.25).

Spin-up timescale - Firstly we estimate of the spin-up timescale, assuming that the
effective dissipation channel is the excitation of kelvons: the fastest possible time variation
is obtained if all vortex lines unpin, so that Y ~ 1 everywhere. Within the rigid approxi-
mation of Eq (2.34), the relaxation and coupling timescales of a pulsar of period P during
the spin up can be defined as

R P C P Ip R

- =— P 2.
Tko An <B]:§U> Tko An <B]:§U> T < Tkov ( 36)

in complete analogy with Eq (2.34). The parameter Tlfu can be interpreted as the expo-
nential timescale of the rise time for an extreme glitch where all the vortices suddenly
unpin. This is reliable as long as a change in the value of the friction functional occurs
on timescales greater than T,ﬁ), as discussed in App (C). Similarly we can calculate Tﬁl,
the same quantity but using B;’h. We list these values (in units of the pulsar period P)
in Table (2.2). The listed spin-up timescales are referred to the extreme situation where
all the vortex lines are unpinned (Y = 1 everywhere): for the Vela pulsar, using a period

P ~ 0.09s, all the listed spin-up kelvonic timescales 7% are less than a minute or so.

Therefore 7/ is comparable to the present observational “blind window” of about 40s
(Dodson et al., 2002). The first seconds of a glitch event thus provide an indirect insight
into the dynamics of superfluid vortices inside a pulsar and give a clue of the dominant

dissipation mechanism in the crust.

Angular momentum reservoir - From Eq (2.28), the conservation!? of total angular
momentum before and after the glitch reads

L,

IQ, + 1,(Q7F) = 1(Q, + AQy) + LJ(Q’;Z‘”> = AQ, = i

(e — Qo).

The angular momentum reservoir is maximal when the whole star is just subcritical. We
can therefore define a mazimum glitch amplitude AQuy,, by taking (Q57¢) = (Qf) and
<Q€g“> = 0. Note that we do not require the postglitch lag to be everywhere null, but
only that it averages to zero at some instant after the vortex avalanche has been triggered.
We thus obtain

I,
I

This kind of maximal glitch is probably never realized dynamically (we have to start from
an initial lag that is everywhere nearly subcritical and admit the possibility of overshoot
which depends on the less studied repinning process). Moreover, in an generic glitch the
postglich lag is not null in the average but just less than the average preglitch lag. However

A = (0 (). (2.37)
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Figure 2.12: Simulation of a maximum glitch of the Vela, obtained by artificial unpinning of the
whole reservoir (M = 1.4 Mg, SLy EOS). Ve used the prescription provided by Eq (2.21). The
(very uncertain) drag parameter in absence of pinning has been fixed to B® = 1072, as suggested
by Haskell et al. (2013); therefore, the spin-up occurs on the very fast timescale of ~ 1, and
differs from the timescales given in Tab (2.2). Once the event is triggered the possibility to obtain
an overshoot depends on the details of the repinning prescription. However the height of the
corotation points is completely fixed by angular momentum conservation. These points always
fall inside the first minute, the observational black window (shaded region), thus providing an
upper limit to the observed glitch amplitudes (the white region). The glitch amplitude at the
instantaneous corotation is exactly the AQmax defined in the text.

the quantity AQn.x sets an upper limit to the observed glitch amplitudes. Clearly A ax
is not really the maximum value of the frequency jump since an overshoot may be present,
as shown in Fig (2.12).

The short spin-up timescales that we find imposing Y = 1 suggest that for a large
glitch the overshoot is realized on timescales of few seconds for Vela, depending on mass.
Therefore, the actual measurement of the amplitude A€ is likely to occur after the
realization of instantaneous corotation (see Fig (2.12)): AQax is just a theoretical upper
limit for the observed glitch amplitude.

Some values of Ay, are listed in Table (2.2): a mass of 1.4 M, is enough to reproduce
the largest observed glitch of the Vela (Av ~ 3 x 107° Hz) when the SLy EOS is used
(My e < 1.8 Mg, for the GM1 EOS). The identification of the Vela as an intermediate-mass
neutron star has also been proposed on the basis of its surface cooling [see e.g. the review
of Yakovlev et al. (2005) and references therein)].

2.5 Turbulence and the importance of stratification

A central feature of the quantitative example (but not of the model) described in the
previous section concerns the nature of superfluid vortices extending across the crust-core
interface: this extreme scenario of straight lines that pass trough the core would be of great
interest if change in the symmetry of the order parameter doesn’t decouple the S-wave
from the P-wave superfluids. This is at variance with most of the existing literature, in
which the neutron superfluids in the core and the crust of the NS are assumed to be

10 Electromagnetic angular momentum loss occurs on much longer timescales.
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Table 2.2: Timescales and maximal glitches as a function of stellar mass are calculated using
the SLy EOS (upper panel) and the GM1 EOS in the core (lower panel). The phonon and kelvon
relaxation time are obtained using Eq (2.36) and are given in units of the pulsar period P. For
the GM1, the phonon relaxation timescales Tﬁ are systematically too long to explain the fast
(unresolved) spin-up of Vela glitches which occur in less than a minute or so.

M o s R 4 (e AQumas
(Mg) (P) (P) (P) (P) (10~*rad/s) (10~*rad/s)
1.1 62.1 807 13.2 171 4.17 3.87
1.4 29.2 478 12.1 193 2.51 2.37
1.9 9.0 207 7.2 165 0.92 0.89
1.1 445 4450 13.9 139 6.99 6.30
1.4 261 2871 17.1 188 4.37 3.92
1.9 136 1632 26.3 315 2.04 1.87

separated, with the core P-wave superfluid strongly coupled to the normal component and
only the S-wave crust superfluid accumulating angular momentum for the glitch.
However the extreme scenario that has been studied numerically in the previous section
is still a possibility, at least in the absence of a normal matter layer at the core-crust inter-
face which separates the two superfluid domains. In this section we critically analyze this
extreme scenario, proposed e.g. by Ruderman and Sutherland (1974) and Pizzochero (2011).

Arguments for a core-crust reservoir - The strong entrainment found in the crust challenges
the standard picture based on a reservoir confined into the crust: the crust is not enough
to explain large glitches (even though this conclusion is not universally accepted due to
uncertainty on the entrainment parameters and on the EOS). It is therefore natural to
seek for a larger superfluid domain which extends into the core (Ho et al., 2015). Moreover,
consistent microscopic calculations of the neutron pairing gap so far do not show any
shell of normal matter that could physically separate the two superfluids and disconnect
the respective vortices (Zhou et al., 2004). This has also implications on the internal
temperature distribution: the absence of normal neutrons requires the temperature in the
outer core to be lower than the critical temperature for P-wave superfluidity (otherwise
superfluidity in the crust would be destroyed).

Microscopic calculations of neutron pairing gaps in the triplet channel (i.e. P-wave)
give TY > 5 x 108K for densities n > 0.08fm™3 (Taranto et al., 2016); on the other
hand, simulations of cooling constrained by observations of Cas A (Ho et al., 2015) predict
isothermal outer cores with temperatures always smaller than 2.2 x 108 K< T.F for all the
pulsars considered (for Vela, the estimated temperature is T = 1.2 x 103 K): if the crust
contains a superfluid region, the outer core is expected to be in a superfluid state as well.
Hence our choice of a single superfluid component in the numerical estimates that extend
through the core is thus, at the moment, consistent with our understanding of neutron
star interiors.

Unfortunately, the constraints on superfluid properties in NS cores obtained from
observations of fast cooling in the central compact object in Cas A (Heinke and Ho, 2010;
Elshamouty et al., 2013) are still not conclusive, since different physical scenarios are able
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to explain the observations (Taranto et al., 2016); moreover, even the presence of the fast
cooling itself is questioned, although not firmly excluded (Posselt et al., 2013).

Turbulent superfluid core - We saw that the crust and the core are both expected
to be in a superfluid state and that no normal matter in between is expected: at least
in principles vortices can pass trough the rust-core transition. We now question the
assumption that vortex lines are straight on the global stellar scale.

Turbulence is a well known phenomenon in He-II, where it gives rise to a complex
tangle of vortex lines (Barenghi et al., 2001), a phenomenon also known as quantum
turbulence (Tsubota et al., 2013). Tangling of vortices is likely to develop in some regime
also in NSs, but its relevance for glitch models is still unclear. In the case of neutron stars
this tangle must have a preferential direction (imposed by large scale rotation): hence
polarized turbulence is expected (Andersson et al., 2007), as well as intermittence between
laminar regimes (rectilinear vortex array) and turbulent ones (Peralta et al., 2006).

We thus try to clarify why turbulence should be expected in our model with extended
vortices that pass trough different layers of stratified matter. A first insight is provided by
a classical fluid, where the Taylor columns (that in homogeneous systems are a by effect
of the Coriolis force) become unstable in presence of stratification (Hollerbach, 2009).

Following a criterion for the onset of turbulence based on the estimate of a single
vortex tension, originally devised for Helium-II, the core is susceptible to become turbulent.
For simplicity we assume that there is no entrainment and that vortices pass trough the
core-crust interface, like in the extreme scenario. Since vortex pinning in the core is
neglected, each vortex can be considered a string with both ends held fixed by pinning
forces in the crust. Hence the only forces acting on a vortex segment immersed into the
core are the Magnus f); and the tension fr forces, which are given by

frr = pn"i/% X Vnp fM ~ PpKT an (238)
2
. N Pn K dp,
fr = n Pn (R ~ In{— 2.39
T = KVnpn (R-V)R fr~ 7 n(ﬁn) (2.39)

where d,, = n, /2 and &, are the average neutron vortex separation and coherence length,
respectively; the factor v, = (k/47)In(d, /&) is a kinematic viscosity and L is the local
vortex curvature radius'!. The sum of these forces on the core must vanish (Link, 2014).
Assume first, for our pinned and straight line, that Q,,, ~ 10~*rad/s for z ~ R,;/2, which
is a typical value for the critical lag well inside cylindrical the region defined by = < R, see
e.g. the critical profiles calculated by Seveso et al. (2012) which do not include entrainment.
The typical inter-vortex separation d,, and the neutron coherence length can be written as
(Mendell, 1991)

P
A =\ % 13 3 1073 (P/10ms) /2 e (2.40)
v

€~ 169231/ A (MeV) ™ Hm (2.41)

n

where we have neglected the entrainment in the core and pi4 is the density expressed in
10*g/cm? units. By taking the benchmarks values typical of the core of a NS, A,, = 1 MeV,

11 For a curve ~(s) parametrized by the arc length s we have v/ - 4"/ = 0, so that its extrinsic curvature
is just K = |y"(s)|. In our case v/(s) = &, i.e. K = |- V&|. In the plane it is easy to see that K = L1,
where L is the radius of the osculating circle. For a straight vortex L — oo.
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Yn = 0.95, p14 = 2.8 and P = Py, ~ 100ms, we obtain &, ~ 22fm and d,, ~ 4 x 10'°fm,
namely In(d,, /&,) ~ 20.

Since the sum of the forces must vanish we impose fa; ~ fr, which implies L ~ 107> cm,
an extremely small radius of curvature.

The inverse reasoning gives that L ~ R and fu; ~ fr only if Q,, ~ 10713, namely for
corotating superfluid and normal components. We can conclude that, since the tension of
a single line is much smaller than the hydrodynamical force in the core acting on it when
pinned, the core is susceptible to become turbulent.

However, in the extreme scenario, a huge amount of vortex lines is organized into a
paraxial configuration: the combined effect of many vortex lines in this particular geometry
may resist bending. Indeed, the previous argument is strictly valid only for a single vortex
and does not include the possible presence of a restoring elastic force of the vortex array
(Baym and Chandler, 1983).

Deformations of the vortex array on scales much larger than its lattice constant are
described in terms of shears and compressions of a 2D crystal and have their own continuum
elastic theory (Williams and Fetter, 1977; Sonin, 1987, 2014). The macroscopic shear
modulus of the vortex lattice is estimated as p ~ k€, p,, while force density associated
to a displacement u turns out to scale as F, ~ puu/R? ~ usL~!. The curvature radius
L can be easily estimated as L = (R? 4+ u?)/(2u) ~ R%/u, where R is the length of the
segment that has been displaced in the middle by u, holding the two ends fixed. The elastic
force density F, has to be compared with the Magnus force density F,, ~ p,RQ2,Qy,),
the mutual friction force in the quasi-conservative regime discussed in App (D): the
requirements F, ~ F,, and u ~ R (i.e. R ~ L) imply an extremely small lag.

Finally, an hydrodynamical argument is provided by the HVBK equations '? with
mutual friction and vortex tension, valid when bent vortices are far apart so that no
reconnections can take place. The mutual friction force given in Eq (D.8) in the case of a
bent vortex array, takes the form

Fur = pnBe(Wn X Vip — T) + pp By oy X (Wy X Vip — T), (2.42)

where p, T = —p, Vp wpn X (V X Wy) = pp vy wy - Vo, is the tension of the vortex array.
We thus have to compare T with the term w,, X v,;, namely we have to find the value of
L such that

IT| = |wn X Vbl = v L7 = QR

We thus obtain a result very similar in all the three cases presented: these are also the
major obstructions for the explanation of long period oscillations of the pulsar period in
terms of Tkachenko waves'?, proposed by Ruderman (1970).

12 To avoid confusion we recall that, consistently with Appendix (D), the Hall-Vinen-Bekarevich-
Khalatnikov equation of motion for the superfluid component is (Barenghi and Jones, 1988; Barenghi
et al., 2001)

Dyvp+ .. = T+p,'Fuyrp,

where entrainment is zero and v, refers to the superfluid velocity (it is actually a model for a single
superfluid at T' > 0, not for a superfluid mixture at 7' = 0). Unfortunately the HVBK equations are
sometimes presented with sign misprints in the friction of tension terms.

13 Tkachenko waves are very well known collective oscillation modes of the vortex array in laboratory
superfluids: Coddington et al. (2003) directly imaged Tkachenko waves in waves in a vortex lattice in a
dilute-gas Bose-Einstein condensate; see Sonin (2014) for a short review. Ruderman (1970) associated the
observed ~ 4 months oscillations of the Crab pulsar’s period with Tkachenko waves. If the wavelength of
the mode to is comparable with the pulsar radius and the wave vector is perpendicular to the vortices,
then these oscillations result in a modulation of the observed period on the timescale of months. (Fetter,
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Taylor-Proudman theorem - The possibility of dynamical phases in which the existence of
an array of vortices is possible is not completely ruled out: Ruderman and Sutherland
(1974) claimed that the early argument of Greenstein (1970) for the onset of turbulence in
neutron stars did not account for the stabilizing effect of rotation, a caveat also reported by
Andersson et al. (2007). The main argument of Ruderman is that the increased effective
tension of a bundle of vortices as compared to a single vortex resists bending: the array
of vortex lines could remain parallel to the rotation axis, providing a realization of the
Taylor-Proudman theorem to axisymmetric and spinnig-down frictionless fluids. This
idea is widely (sometimes tacitly) used in most of the mesoscopic and hydrodynamical
studies of superlfuid neutron stars. As it stands, all the work on the topic of turbulence in
neutron stars is at the moment exploratory and there is far from a consensus as to which
regimes will lead to turbulence and how this will develop. For this reason, but also for its
convenience, the working assumption of a straight array of vortices is still commonly used.
Indeed, this practice allowed us to implement stratification in a consistent model and then
to test in the aftermath the validity of the hypothesis.

2.6 Possible generalizations

We developed a dynamical model that takes into account the layered structure of the star,
the differential rotation of the superfluid and the presence of density-dependent entrain-
ment, consistently with the working hypotheses presented at the beginning of the chapter.
In our treatment we pointed out that all the complex behavior of the rearrangement of the
vortex configuration is hidden into the functional B, introduced in Eq (2.15). The model
is defined by the dynamical equations, Eqs (2.26) and (2.25): they describe the exchange
of angular momentum between two effective components, characterized by the moments
of inertia I,, and I, whose angular velocities are Q,(z,t) and the observable €2,(¢). Both
I, and I, = I — I,, account for the entrainment corrections exactly.

In the previous section, we pointed out that the theoretically expected absence of a
normal matter layer at the crust-core interface suggests that the quantized vortices can
continuously pass from the S-wave region to the P-wave region, even though this is not
guaranteed: vortices in *He actually provide an example of a much rich behavior (Finne
et al., 2006).

In particular, given the assumption that vortex lines continuously extend from the
inner crust into the core, we still cannot deduce that the two superfluids rotate at the same
rate providing a realization of the Taylor-Proudman theorem: a mechanism of the kind
proposed by Greenstein (1970) can still operate to decouple the core from superfluid in the
crust. The mechanism of Greenstein is suppressed if vortices cannot bend and wind around
the rotation axis, so that columnar rotation is realized only for vortices (or, better, bundles
of vortices) that are extremely rigid at the hydrodynamical scale, a debated possibility.

1970) pointed out a difficulty associated with the three-dimensional nature of the pulsar and the neglected
effects of mutual friction between the vortices and the normal component in the original Ruderman’s
calculation. The interest to interpretation of pulsar oscillations in the terms of vortex array oscillations
declined to some extent, but recently Noronha and Sedrakian (2008) reopened the issue (also this model
however does not account for stratification). A formalism that extends the hydrodynamical model of
Baym and Chandler (1983), valid for a T' = 0 superfluid (i.e. a superfluid comprised of a single inviscid
component), is presented in Haskell (2011). In this preliminary study however the vortex array is immersed
into a comoving background, so that the existence of a vortex array is possible.
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Indeed, the *He argument proposed in the previous section points in the direction of
vortex lines that are tensionless and can thus bend on very short lengthscales without
considerable energy cost.

Three-component model - Fortunately our model can be very easily generalized to a
1D model with three components, where there are two sets of vortex lines and two auxil-
iary variables Q¢! (z, t) and QS ¢(x,t) for the crust and the core respectively. In this
case, the core superfluid interacts with the normal component trough the dissipation
mechanism mediated by the electron scattering, given in Eq (2.35), and can possibly be
pinned to fluxtubes.

Within this picture, the vortex-rigidity hypothesis is relaxed to some extent: since there
are two geometrically distinct superfluid domains with columnar rotation, the straight
vortex bundles in the core do not have to match the (possibly) pinned vortices in the crust,
so that it is easier for them to remain straight.

The derivation of the corresponding dynamical equations is trivial since the mathe-
matical framework is unchanged with respect to what discussed in the present chapter. A
detailed numerical study of the coupling timescales between the normal component and
the two superfluids, following the general multi-component formalism presented in App
(E), can be of interest: this would provide a more detailed and consistent study of the
early estimate of core-crust coupling proposed by Alpar et al. (1984b).

Axially-symmetric 2D model - Alternatively, it is possible to drop the assumption of
straight vortices and consider a single variable 2, (x, z,t): this description can be rigor-
ously implemented under the hypothesis of tensionless vortices'*. The angular momentum
balance takes the usual form

L,Q,t) + /dLJ Qy(z,2,t) = —I|Qs],

where dI, = 27 23 (p,,/m*) dx dz and I, = I — I,; the parameter I, is still given by Eq
(2.3): eventually the inner core can be excluded by the superfluid domain in the case the
pairing gap vanishes at high densities. For tensionless vortices the term QO v F Introduced
in Eq (2.26) is purely local, so that

Qy(z, 2,t) = —=B[Qup, r] (2Q, + 20,,) Qyyp -
The general functional B reduces to a local function of the lag and of the spherical radius
and, as long as some tension-mediated interaction between superfluid layers is introduced,
does not involve derivatives of the dynamical variables. The simplest possibility is to
consider
B[Qup, 1] = Y[Qup(z,2) — Q7 (r)] B*(7)

where Q77 (r) and B*(r) are the obvious local analogues of 277 (x) and B*(z), see e.g. Eq
(3.15). An explicit example of this kind of construction is provided in the next chapter.

From the macroscopic point of view, a finite tension of vortex bundles, or the well
known phenomenon of effective superfluid viscosity mediated by the tangling of vortices
at the mesoscopic scale (Barenghi et al., 2001), will introduce derivatives along the z-axis
which couple vertically the different superfluid layers.

14 Since in this case of tensionless vortices (dubbed “slack” in the next chapter) we do not have
to perform any integration along the z-axis, it is sufficient to consider a single superfluid component.
Distinction between the S-wave and P-wave superfluids is indeed implicit into the assumed coupling with
the normal component provided by B.



CHAPTER 3

Constraints on pulsar masses

The central issue of this chapter is a general method that can be used to constrain the
mass of glitching pulsars, using observations of the largest glitch recorded.

As usual in astrophysics, extrapolation of this information is an indirect process, which
result depend on a bunch of input parameters (like the EOS) provided by the current
literature.

The proposed methodology is quite different from other studies which concentrate on
pulsar activity. In order to give an explicit example we describe the general method by
using a unified (and very simplified) model for the replenish of the angular momentum
reservoir. This provides a quantitative test for global models of rotating neutron stars, as
well as microphysical inputs present in literature, in particular pinning forces.

3.1 Maximum glitch amplitude: Newtonian framework

In the previous chapter we discussed a Newtonian model for pulsar glitches that is consistent
with the stratified structure of the neutron star, the presence of non-uniform entrainment
and pinning.

We considered a rigidly rotating component (labeled by p) and a superfluid component
(labeled by n) that can rotate non-uniformly with angular velocity £, = 2, + £, but still
around a common and constant rotation axis. Using standard cylindrical coordinates, the
angular velocity lag between the components is a function ,,,(z, z) that can vary in time
but does not depend upon the coordinate ¢, as can be shown by considering the continuity
equation for the n-component for a fixed spherical background density, i.e. V- (p,v,) =0.
Entrainment is introduced according to the Newtonian formalism of Prix (2004), where the
momenta per baryon p,, and p, are linear combinations of both velocities: in particular,
their azimuthal components are given by [see Eq (2.5)]

Prp =Mn T (Qp + (1 — €,)np) (3.1)
Ppe = Mp @ (p + €8np)

the other components being zero (this allows for the cylindrical reduction). Here m,,
and m,, are the mass per baryon of the two fluids and the dimensionless entrainment
parameters €, and €, obey the constrain my,nye, = mpnye,, where n,, and n, are the
baryon number densities of the two-fluid (the total baryon density is ng = n, +n,). Since
the superfluid is composed entirely of neutrons, we can consider m, to be the neutron

67
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bare mass. Things are more subtle for the normal component, which is a neutral mixture
of protons, leptons (in particular electrons), thermal excitations of the neutron superfluid
and crustal neutrons that are not in the conduction band (Carter et al., 2006). The
B-equilibrium for a three-component star (electrons, protons and neutrons) tells us that
m,, should be at least the sum of the proton bare mass and of the electron bare mass [see
also the discussion in Sourie et al. (2016)]. Further contributions from the non-superlfuid
neutrons are expected to rise the value of m,, even closer to m,,. In general, by using the
definition of the entrainment parameters, the total momentum density 7 can be expressed
in terms of the velocities v, and v, as the sum of the two conserved currents p,,v,, and
PpVp, 1.e.

T = NpPpn + NpPp = MpNp Ve, + MpNpVy . (3.3)

The azimuthal component, once m,, = m,, has been assumed, is
T = NpPrnep + Np Ppp = M Z(NBQp + npllyp) . (3.4)

The angular momentum reservoir of the system can be easily found by considering the
total angular momentum L written as the volume integral of the angular momentum
density x m,:

L= /x% d*c = 1Q, + AL[Qp), (3.5)

where I is given in Eq (2.4) and
AL[Q,,] = /d?’x (rsind)?p, Qg (3.6)

is the angular momentum reservoir due to the lag ,,. The mazimum glitch amplitude
(see Fig (2.12)) corresponding to a given lag €, is

A0 Qy] = T AL[Q] = 2 (0). (3.7)

To make contact with the terminology used in the previous chapter, we introduced the
average lag
1 ) 8T 4

(Qunp) =1, AL[Q,p], with I, = 3 /drr Pn - (3.8)
It is thus possible to define the moment of inertia I,, relative to the superfluid reservoir!
as the normalization factor of the distribution AL defined in Eq (3.6): this definition is
coherent with the interpretation of angular velocity as vorticity flux, given in Eq (2.8). Not
surprisingly, the glitch amplitude in Eq (3.7) does not explicitly depend on entrainment:
it is a direct consequence of Eq (3.3). However the lag €, is a dynamical variable of
the model and its evolution is affected by entrainment. We want to maximize A€, in
order to obtain a theoretical upper bound to the observed glitch amplitudes, extending
the reasoning already presented in the previous chapter. This is done by considering the
critical lag for unpinning €27%, when all the vortices are pinned, even if perfect pinning is
probably never realized in real neutron stars.

I This is not the standard approach commonly used to define the quantity I,, in body averaged models
with entrainment, see e.g. Sourie et al. (2016).
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The upper limit AQ,,.« on the glitch amplitude is thus obtained by artificially emptying
the whole reservoir of pinned superfluid, namely

AQmax = AQp[Q%;] . (39)

Estimates of Q7 are based on the still poorly known physics of vortices in the crust, as
well as in the core of neutron stars, as pointed out in the last section of the previous
chapter. Therefore we construct the critical lag in two different physical scenarios; when
vortex lines have an overall rigidity so that they collectively organize into a stable array of
paraxial vortex lines (Ruderman and Sutherland, 1974), and when vortices are slack (i.e.
tensionless) at the hydrodynamic scale, so that any macroscopic portion of superfluid can

flow quite independently from the others.

3.1.1 Rigid vortices

While the general treatment with bent vortices is given in App (E), here we restrict
ourselves to the straight lines case. The angular momentum reservoir of Eq (3.6) in terms
of ) is

AL[Q,,/m*] = 27 /dx 2 [ dz (pn/m*) Qup, (3.10)
Yo

implying that Eq (3.9) reads
1
AQupax = 7” Qo) - (3.11)
Here the moment of inertia I, is the normalization factor of the distribution in Eq (3.10):
of curse it is consistent with Eq (2.3).
Again, let us test the prescription proposed by Pizzochero (2011) and used in Eq (2.24)
for straight lines, i.e. the magnitude of the local mesoscopic Magnus force

Ifar] = K pr & Qyp/m* (3.12)

integrated along +,(z) must equal the pinning force fp integrated along the same curve.
The critical lag is thus given by

/\fM\:/ fr = Q?f;(x):i- (3.13)

. . k[ pn/m*

Proper generalization to the case of bent vortices is provided by Eq (E.1). Since the
integral factor in the denominator of (7, is the same that appears in Eq (3.10), we obtain

2

Rq
AQmax = %/0' d’f”)"?’ fP(T)v (314)

where Ry is the radius corresponding to the interface between the inner and the outer-crust
(drip-radius). In the Appendix (E) we discuss in detail why, in this case of rigid lines, it is
important to use ,, instead of Q.
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Figure 3.1: The critical lag for unpinning €27, in the case of macroscopically slack vortices given
by Eq (3.15). The vertical scale is the relevant part of rotation axis that intersects the inner
crust (distances along the axis are measured in units of Rq4) while the horizontal coordinate is
0/m. The critical lag diverges for § = 0, a feature that is not captured by the color map. Left
- We considered the SLy EOS and a pulsar of mass 1 My. Right - The same but for a much
more massive star of 2 M ; qualitatively the plot is the same but the crust really shrinks and the
possibility to store angular momentum is reduced.

3.1.2 Slack vortices

Within our main hypothesis of zero meridional circulation, the maximum glitch AQyax is
exactly independent on entrainment in two different physical situations: for vortex lines
in a paraxial array and for completely slack vortices that only feel the local pinning and
the mesoscopic Magnus force. In this latter case we assume a local unpinning condition
given by

| = fp(r) = Q) = folr) m(r)

P gsin@rpy(r) (3.15)

An example of critical lag €25 is shown in Fig (3.1).

We remark that a completely slack vortex at the microscopic scale would bend even over
lengths of the Wigner-Seitz radius in the crust, making unrealistic the analysis of vortex
pinning carried out by Seveso et al. (2016) that incorporates the presence of non-zero
single-vortex tension to estimate the mesoscopic pinning force per unit length of vortex line.
Moreover, differently from the previous case, this scenario of vortices that are tensionless
at the macroscopic scale can lead to the development of superfluid turbulence: if vortices
pass through the crust-core interface, the non-pinned section of the vortex immersed into
the core can wrap around the rotation axis as described by Greenstein (1970) and vorticity
can develop toroidal components.

Under the assumption of slack vortex lines there is no real advantage in preferring (2,
instead of ,,: the same line of reasoning can be followed by using directly Eq (3.7) and
recalling that Q) = QFF /m*. Moreover any local phenomenological unpinning condition
can be used in place of Eq (3.15). For example it could be interesting to replace it with
the form for the mutual friction proposed by (Gorter and Mellink, 1949) for isotropic
turbulence, see also (Barenghi et al., 2001). However isotropic turbulence is unlikely to be
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relevant for neutron stars (Andersson et al., 2007), thus we stick ourselves to the more
usual choice of Magnus-like mutual friction. Eventually it is always possible to refine
the present treatment, in particular Eq (3.15), with a suitable unpinning condition when
a better understanding of polarized turbulence in neutron stars will be achieved. By
using Eq (3.11) we end up with the same result given in Eq (3.14): the maximum glitch
amplitude depends only on the mass of the star and on the pinning force profile.

In both cases of slack and rigid vortices, the critical angular velocity lag diverges as
~ 1/x near the rotation axis. This is however not a flaw of the model: firstly we do not
expect the reservoir to be completely filled in real neutron stars, secondly this kind of
divergence is cured by the fact that near the rotation axis the moment of inertia density

on a meridional slice of the star (the 2-z plane) goes to zero as ~ 3.

3.2 Upper limit on pulsar masses

The maximum glitch amplitude AQax of Eq (3.14), valid for both straight and slack
vortices, can depend only on the mass of the star and pinning forces. After the pinning
profile has been fixed, this provides a way to constrain the mass of a pulsar for which
one may expect to have measured the largest glitch: here we apply this method to all the
observed large glitchers.

The procedure is shown in Fig (3.2), where we plot the function AQax (M) together
with the largest observed glitch AQ for a selection of pulsars, listed in Tab (3.2). For
comparison we use three unified equations of state: SLy Douchin and Haensel (2001),
Bsk20 and Bsk21 Goriely et al. (2010), see also Fantina et al. (2013) for a comparative
study. The curve AQu,.x (M) displays yet the main property of our model for the reservoir,
namely an inverse relation between the NS mass and the maximum allowed glitch: as
expected, larger glitches require smaller masses.

The curves for the three unified EOSs are quite similar, but stiffer EOSs can significantly
move the curve upward and yield weak upper limits for the masses; e.g. the very stiff
GM1 EOS gives for the Vela an upper limit of 1.8M, (Antonelli and Pizzochero, 2017).
Since the pinning forces have estimated errors of order +10% arising from the statistical
uncertainty associated to the counting procedure used by Seveso et al. (2016), we also
expect a certain shift of the curves. In general, the rescaling of the pinning force by an
overall factor is equivalent to multiply the curves by the same factor. The results are
thus intimately related to the microphysics used, which are non-tuned and independently
calculated data available in the literature for the EOS, pinning and entrainment. Different
microphysical input can change the numerical values obtained here for the masses, but
will maintain the general inverse relation.

By looking at Fig (3.2), it can be seen that masses between ~ 1.1 Mg and ~ 2.2 Mg
can account for maximum glitches spanning one order of magnitude: the maximum glitch
amplitude relative to the maximum mass allowed by the EOS sets the threshold used to
define the large glitchers: out method allows to constrain the mass of all pulsars with
AQ > 5 x 1075 rad/s, as shown in Fig (3.3).

We indicate with M, the absolute upper limit to the mass of a pulsar, defined by
AQmax(Mans) = AQ. Future observations of even larger glitch amplitudes can only lower
this upper limit to the mass, leading to stronger constraints. Note also that the possible
presence of turbulence in the crust could reduce the maximum glitch amplitude, thus
lowering the curves of Fig (3.2) and leading to stronger constraints (eventually we could
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Figure 3.2: The estimated maximum glitch AQmax, given by equation (3.14), is plotted as a
function of the stellar mass: SLy (yellow), Bsk20 (blue) and Bsk21 (red). The horizontal lines,
labeled by pulsar names, indicate the largest glitch amplitude A2 recorded in the corresponding
pulsar. The mass values Maps are given by the intersection of the horizontal lines and the curves
AQmax(M). The upper limit for the mass defines a forbidden region, shown here for the case of
Bsk21 (shaded). The curves are terminated by the maximum mass allowed by each EOS (crosses):
this determines the minimum A€ that can be constrained by the corresponding EOS, namely
~5x 107 rad/s.

find that we are using unrealistic low pinning forces): it seems reasonable to expect that
the increase in the vortex length density due to the development of complex vortex tangles
weakens the collectively enhanced pinning of the vortex array.

At present, out of ~ 130 objects that have displayed at least one glitch, there are 51
observed large glitchers for which a mass limit can be obtained, listed in Tab (3.2); the
remaining pulsars with smaller observed maximum glitch are not constrained, since any
mass can account for these small events. In some case, this could be due to observational
selection effects arising from the short time of observation or from the very slow evolution
due to small spin-down. Some of these objects may be constrained in the future.

Most of these 51 objects are single glitchers, pulsars that so far have displayed a
unique large event that is considerably greater than all the other recorded glitches. Hence,
the typical timescale between large glitches (as well as the glitch activities) are as yet
undetermined in these objects, until new observations will improve the statistics. Among
these 51 neutron stars, there are 17 large glitchers that have displayed at least a couple
of large events of similar magnitude: they are listed in table (3.1). For these pulsars,
we further determine a speculative lower limit for the mass by using also their observed
average timing behaviour.

3.3 Constraints imposed by the reservoir dynamics

It is possible to try to lower the upper bound of the mass by using extra information
from the observed timing properties. Starting from corotation, forward integration in
time of the assumed dynamical equations [e.g. Eqs (2.25) and (2.26)] allows to follow the
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Figure 3.3: Scatter plot of the largest glitch recorded in a pulsar and its spin down rate.
Here the whole glitchers population is considered. The shaded area indicates the region below
0.5 x 10™*rad/s. The 17 objects for which we can give a mass constrain are indicated in red, the
remaining 34 large but single glitchers are indicated with blue marks. Note that the lower right
corner is not populated but it is difficult to say whether or not this is due to an observational
bias.

evolution of the lag €,,(z, z,t) and of the associated quantity AQax(t): since the time
evolution starts from the corotation point at ¢ = 0 (see Fig (2.12)), the prescription used
to obtain AQax(t) can be sketched as

(Qup(2,2,0) =0  —  Qp(z,2,8) —  AQuax(t) = I AL[Q,,], (3.16)

where the first step represents the forward simulation of the dynamical equations, while
the second step represents the definition given in Eq (3.9). The quantity AQuax(t) sets a
theoretical upper limit for the glitch amplitude at time ¢, given that a large glitch occurred
at t = 0. More precisely, AQax(t) gives the amplitude of a mazimal glitch?, triggered at
time ¢ after the emptying of the reservoir because of an initial large event. We immediately
have to face three difficulties:

- The general form of the natural set of dynamical equations is known (see the appendix
(C)) but not the details of the mutual friction, which encodes the unknown vortex
dynamics, i.e. drag, pinning, tension, interaction between vortices and so on. Within
the creep scenario modified by pinning, we may assume some prescription similar
to the one provided by Eq (2.21). The dynamical equations are therefore always
assumed at a certain level®. Therefore we have to choose the form of mutual friction
in the dynamical equations.

2 The maximal glitch of (3.9) is the maximum glitch that can be triggered at that time with that
particular reservoir. The maximum glitch of Eq (3.14) is of course a maximal glitch, but triggered when
the reservoir is completely filled.

3 As discussed in the previous chapter, the best we can do is to make working hypotheses and then
construct a consistent dynamical model. Despite this, we still have to make quite arbitrary simplifications
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- The initial condition (,,(x,2,0)) = 0 is unknown (only the average is given).
However the instantaneous relaxation timescales far from steady state are all quite
small in our model: since we want to integrate forward in time for the typical inter
glitch waiting time there is no problem in assuming €,,(z, z,0)) = 0. Eventual
transients due to this unnatural initial condition are rapidly smoothed out and
the system evolves towards the steady state, as preliminary numerical simulations
indicate. Clearly this problem does not exist if the assumed dynamical equations
are based on a body-averaged rigid model.

- Imagine we now want to make comparison with the observational data: we choose a
pulsar spinning at §2, with observed mean spin down rate €2 and showing a sequence
of Ng; glitches {AQ;, ti}i:l,“.Ngl- We integrate the dynamical equations in time as

described, setting ,(0) = Q and |Qu| = |Q| but we do not know when the observed
pulsar actually empties its reservoir of angular momentum (maybe never). In
principle there is no systematic argument for saying that the star reaches corotation
during the largest observed event: we have to assume this (note that this assumption
is not needed when we calculate the mass upper bounds, conversely M,y could be
interpreted as a punctual estimate of the mass rather than an upper bound).

The first two points are unavoidable difficulties that can be addressed only by the systematic
study of many and different forms of the mutual friction, as well as for different inputs
(like the EOS): here we restrict our attention to variations of the EOS and of the total
mass, while entrainment and pinning are fixed. More refined dynamical models may need
more inputs.

The third point is probably the most interesting, since it rises fundamental questions
concerning the nature of glitches and their trigger. Clearly, a sequence of maximal glitches
would result in a correlation between the glitch amplitudes and the waiting time between
them. This ceases to be a scenario that has something to do with reality if there are no
pulsars in which reservoir effects are important. If this the case, the sequence of glitch
amplitudes and waiting times shows no correlations between events, which is probably
true for small glitches (that comprise the major part of the whole sample among the pulsar
population).

Within the hypothesis that maximal glitches are (at least in some objects) possible and
that are not dragon-king events, we have to conclude that the observations of small glitches
pollute the observed glitch series in a pulsar: since there is no need to wait for the reservoir
to replenish significantly to trigger them. Statistical studies cannot be reliably done at
the moment due to the paucity of collected glitches in single objects: some outstanding
candidates, like J0537-6910 or the Vela could be studied by searching for correlation
between large events only, differently from what is typically done without discriminating
events according to their impact on the underlying superfluid reservoir. This work goes
beyond the scope of this chapter, so we just give some hints that are useful to clarify the
method proposed in the next section. The present discussion can also be considered a
personal note to the work already published (Pizzochero et al., 2017).

The analogue of seismicity for glitches - In geology the concept of stationary seismicity
is often used: this concept underlies an homogeneity in time, which implies that the
statistical properties of the random process (a sequence of earthquakes) does not depend

when we have to model the mutual friction term; better comprehension of the dynamical phases of many
vortices in a pinning landscape will probably provide useful hints to construct realistic friction functionals.
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on the window of observation. In particular, the mean rate must be practically constant
in time. It is however quite obvious that an aftershock sequence is not stationary, but ob-
servational evidence (at least for earthquakes) shows that seismicity can be well described
by a stationary process (e.g. example the world-wide seismicity in a decade). The idea of
pulsar activity A, fits well this concept. For some pulsars the observational window is so
limited and the number of glitches detected so small that it may be unsafe to conclude
that the observed value of A, correspond to the (stable) value that would be extrapolated
by looking at a longer sequence of glitches. For simplicity we assume? that the value of A,
extracted from the available datasets correspond to a stationary sequence of glitches where
aftershocks and more quiet periods of activity are both present many times, intertwined
in such a way to produce an overall stationary spin up rate (eventually also many very
small and undetected glitches may be included, as their contribution to the cumulated
glitch amplitude is negligible).

Waiting times between glitches are not well-defined - The waiting time §t; = t;41 — t;
between two glitches of amplitudes AQ; and A, is a highly discontinuous function of
the glitch amplitudes: it immediately jumps to a different value when AQ; (or AQ;41)
approaches zero: t; — 0t; + 6t;—1 (or dt; — 6t; + dt;+1). This may not be a serious flaw
if glitches have a definite character, i.e. there exist a minimum glitch event that can be
triggered (Espinoza et al., 2014). Minimum size of a glitch is actually claimed for the
Crab pulsar, but its size is so small that its effect on the superfluid reservoir can be safely
considered to be zero (cf. this lower limit with the maximum glitch amplitude recorded in
the Crab). For the same reason, also the mean waiting time makes little sense: the more
our continued timing observation is sensitive with respect to small glitches, the more the
mean waiting time decreases.

A better quantity would be the mean waiting time between events of similar size. A
rough estimator for such an observable can be defined as follows: starting from the glitch
AQ; at time t;, we have to consider the date ¢; of the event such that for the first time
the condition Zé:z +1 AQ; > AQ; is realized. Of course an average of the quantity ¢; — ¢,
does not really provide the mean waiting time between glitches of similar sizes, which is
expected to be longer: it is however a useful lower limit.

Current statistical studies of pulsar glitch sequences - In the case that even large glitches
empty negligibly the reservoir, a completely random sequence of rare events (i.e. Poissonian)
is expected. However, J0537-6910 and Vela have been proven to be exceptional objects:
systematic study of glitches in individual pulsars seem to indicate that the distribution of
waiting times is Poissonian while the distribution of glitch amplitudes is a power law (even
though the value of the exponent is not universal across the pulsar population), but Vela
and J0537-6910 showed evidence for quasi-periodicity (Melatos et al., 2008). It is worth
to note that the aforementioned intrinsic problem in the definition of the waiting time
has been ignored in this kind of statistical studies. As an example, consider the results of
Melatos et al. (2008) about the quasi periodicity in J0537-6910: subsequent re-analysis of

4 This point is not of fundamental importance for what we are going to show: the general set of ideas
behind our model remains valid, even in if future observations will significantly change the inferred values
of Ag used in this thesis. This is because our model uses A, as an external input, the tuning of the
model depends only on the microphysical input from literature. Of course more reliable estimates of the
stationary activity for a large set of pulsars are desirable, also for reasons that go beyond the scope of the
present description.
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archival data® doubled the number of glitches found in this object (Ho et al., 2015). We
have to expect this to be the rule for all the known glitchers.

Definition of a timescale associated to the glitch’s amplitude - Consider the proposed
generalization of waiting time, which now depends also on the glitch amplitude:

Ngi Ngi
Aty =6ti+ > ;0 AQ— > A |,
j=i+1 k=i+1

where 6 is the usual Heaviside step function. In the present treatment we focus on the
largest observed glitch, so we fix i = m and AQuax = AQ,,. The expected timescale
between events of a given intensity (say ASQ,, for definiteness) can be roughly extrapolated
by considering pulsars of (stationary) absolute activity A,:

Nq],
1 [
A, = AQ; 3.17
Tobs z:zl ( )

where Tpps ~ tn,, —t1 is the temporal duration of the observation®. Actually A, is fitted
from data, rather than found by using the above definition, as shown in Fig (3.15). We
can thus define a fictitious number N, of glitches of amplitude A€, and an associated
timescale At,, as

Ng;

1 T A x
N,, > A, = At,, ~ =25 ~ ax
=1

N,, = A,

Note that this makes sense with the proposed definition of At;: this timescale represents
the mean waiting time between glitches of a fictitious object that is observed to have the
same activity 4, but can only trigger glitches of size AQ,,.

To the best of the author’s knowledge, the argument behind the definition of At; as
estimator of the waiting time between similar glitches of amplitude ASQ; is original” (even
though still quite heuristic); an improved formalization of these ideas is required for a
precise and systematic statistical study.

We now proceed to describe how the timescale between large events can be used to
refine the estimates M,ps, as anticipated in Antonelli and Pizzochero (2017) and detailed
in Pizzochero et al. (2017).

3.3.1 Unified scenario

In the following we present a more speculative set of ideas. To keep the description as
simple as possible we stick to the extreme scenario discussed in the the previous chapter:

5 The new glitches are all small events that were initially not recognized, thus ignored.

6 The approximation Tps ~ Ing, — 11 is true only for the Vela, J0537-6910 and few other pulsars that
glitched many times. If the total observation consists of many disjoint temporal intervals of duration Tj,
each containing several glitches, we have to consider T, = Zl T;. The activity is thus computed as the
weighted arithmetic mean of the activities A% fitted during each interval, namely A, = T, o_bi > T AL

7 Additional ideas can also be found in the recent work of Akbal et al. (2017): correlations between
large events only has been proposed for studying the interglitch dynamics of Vela within the vortex-creep
scenario.
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Figure 3.4: The critical lag profile Q7 (red solid curve) for a NS with mass 1.4 My using
the Bsk21 EOS and the extreme scenario of straight vortices that pass through the core. The
horizontal line indicates the increasing nominal lag w* =t |Q\7 the shaded area below it is bounded
by the function Qup(z,w™) of Eq (3.19). The distance from the rotational axis of the star is
expressed in units of the neutron drip radius R4, which delimits the superfluid. The range of
observational lags used in the present study is also indicated (lighter shading) corresponding to
the values listed in the last two columns of table (3.1).

in particular we are interested in the form of the critical profile; it is equivalently possible
to adapt the model in order to consider the case of rigid vortices that extend only in the
crust, or the case of slack vortices discussed in the last section of the previous chapter.

Instead of solving the dynamics of Eq (3.16), with the particular rotational parameters
for each pulsar, we rely on the simplified scenario sketched in Fig (3.4): starting from
corotation at ¢ = 0, we can measure time in terms of a nominal lag defined as w* =t \Q|,
in this way we can treat all pulsars within a unified model, regardless of their specific
spin-down Q. The increasing w* determines the lag built up between the two components
in an interval w* since corotation. Therefore for a pulsar of spin down rate €, the lag
evolves as

Qup(z,t) = min [Qg’;(m), t|Q|] =  Qup(r,w") =min [Qf)’;(x), w’] (3.19)
and the corresponding maximal glitch amplitude, according to Eq (3.16), is

Ly

AQpax(w*) = T

(min [QF), w*]) . (3.20)
An example of the critical lag profile in a NS is shown in Fig (3.4): it has been calculated
according to the extreme scenario presented in the previous chapter. It should be now
clear that for each pulsar we measure time in terms of the nominal lag w*: this allows
for a definition of a unified timescale for pulsars with very different spin down rates. The
curves defined by Eq (3.20) are shown in Fig (3.5) for different masses and two EOSs.
On top of this, we plot the single glitches A); of some pulsars® versus waiting times to

the previous glitch §¢; 1 multiplied by the absolute value of the spin-down rate |Q\ The

8 Among which Vela, J0537-6910 and J1341-6220 that seems to have a bimodal behavior. According
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Figure 3.5: Upper panel - The lines AQmax(M,w™) defined in Eq (3.20) are shown as a function
of the nominal lag w* for different masses M relative to the SLy equation of state. For comparison
we superimpose the single glitches A€, of four different pulsars; the nominal lag of each glitch is
given by |Q|5t¢,1, with §t;—1 the waiting time since the previous event and \Q| the spin down
rate measured in the corresponding pulsar. Lower panel - the same but using the GM1 equation
of state.

largest glitch of J0537-6910 is also the first one, so we plotted it at the end of the w* axis,
where AQax(w*) saturates at the value given by Eq (3.14).

It is interesting to note that, even if the fundamental problem concerning the wait-
ing times is ignored in Fig (3.5), it is always the largest glitch that touches the curve
corresponding to the model with smaller mass, even if the data are scattered.

For each glitch we used the nominal lag corresponding to the time since the previous
event, without taking into account the amplitude of this event, even if it is unlikely that
small glitches are maximal. Therefore, this only serves as a clue of the fact that the largest
glitch recorded in a pulsar can constrain its mass: at this level no conclusions can be taken
on the actual (possibly time-correlated) occurrence of large glitches in pulsars. A remark
on the unified model - We stress that when we simulate the full dynamical equations Eqs
(2.25) and (2.26), starting from perfect corotation at ¢ = 0, the lag of the in the extreme
scenario evolves in a fashion very similar to the lag sketched in Fig (3.4): the nominal
lag w* grows from zero until it locally approaches Qf,;,(:v), where sub-critical vortex creep
shapes the actual lag 2, around the unpinning threshold. It is thus possible to recast

to Haskell and Melatos (2015), J0537-6910 is the only pulsar showing a correlation between the glitch
amplitude and the waiting time to the next glitch: this suggests that the amplitudes are random, but set
the time it takes to reach the threshold again (as in the crust quake model). However, also this analysis
has made without considering the problem concerning the waiting times between events of very different
size.
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the dynamical evolution of the lag €2,,(z,t) into the form
Qup(z,t) ~ min[ Q7 (v), w*(t)].

However this only serves to define w*(t), a function of time that can be easily extrapolated
from €,,(x,t) once the actual evolution is known from the forward integration in time of
the dynamical equations®.

On the other hand, the unified model assumes w*(t) = |Qq |t for every pulsar: this
choice is convenient since it is possible treat different pulsars within a unified prescription;
in this way there is no need to solve the dynamical equations with the specific rotational
parameters Q,(0) = Q and |Q.| = [Q]| for every different object. However there are no
rigorous arguments for doing this, except for the fact that the slow dynamics of €, toward
the steady state is driven by |Qoo| This unified prescription based on a linear relation
between the actual time and the nominal lag w* was already used (in a different context
and with a different idealization of the lag dynamics) in some previous works that use
the same form of the critical profile, but without entrainment (Pizzochero, 2011; Seveso
et al., 2012; Haskell et al., 2013). Effect of entrainment - To make explicit the possible

5
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Figure 3.6: Left - Comparison between the maximal glitch amplitudes AQmax(M,w™) given by
Eq (3.20) when entrainment effect is taken into account and when €, = 0 everywhere. The EOS
used is GM1 and the different curves refer to the different mass values (in units of M) listed in
the key. The region where large glitches are expected is shaded: it extends circa to the value of
the largest glitch recorded in J0205-6449. The w™ scale on the horizontal axis spans the range
3 x 107°% = 0.3rad/s. Right - the same but using the SLy equation of state.

drawbacks of the dynamics defined by Eq (3.20), we switch off entrainment imposing
m*(r) = 1 everywhere and calculate the curves AQpax (M, w*) by Eq (3.20) for different
masses M: these curves are considerably steeper than their “entrained” counterparts, as
shown in Fig (3.6). This is not surprising since the strong crustal entrainment sensibly
raises the peak of the critical lag, so that the final plateau at the value A€, is reached
for smaller values of w*. The flaw of this unified scenario is evident: entrainment should
modify as well the relation between time and nominal lag w*(¢). This is an artificial effect
due to the assumed form of w*(t) = |Q|t. Nonetheless this artificial result is still physically
reasonable: it is more difficult for strongly entrained superfluid neutrons to lag behind

9 Once the evolution of €, is known, w*(t) ~ Qup(Tm,t) where z,, is the cylindrical radius
corresponding to the peak of wer.
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Figure 3.7: Glitch amplitude as a function of the nominal lag since corotation: the function
AQmax(M,w") is plotted as a function of w* (dotted curves) for different values of the mass
(indicated for each line). The EOS used is Bsk21. We also show the location of a sample of pulsars
(red dots), used to estimate Mact: each pulsar is characterized by its maximum observed glitch
AQ and the associated waiting lag wj.;, as listed in table (3.1). The observational uncertainties
on these quantities, also listed in Tab (3.1), are reported as error bars or shaded regions.

the crust. Clearly a true comparative study of entrained and non-entrained dynamics can
only be made by solving consistently the assumed set of dynamical equations.

3.3.2 Bracketed mass estimates

To proceed, let us make the strong additional assumption that the largest observed glitch
in a pulsar depletes the whole reservoir. This approximation is generally made for all
glitches in the Vela pulsar (Dodson et al., 2007) and in J0537-6910 which shows a preferred
size for the events and is quasi-periodic (Melatos et al., 2008). However also the remarkable
regularity in systems like J1420-6048 or J1803-2137 is a strong indication of a superfluid
reservoir that is fully spent and replenished quasi-periodically, as can be seen in (3.15).
Here we (tentatively) extend this claim to all the large glitchers, but only for their largest
glitch; small glitches in these objects occur randomly (since are just irregularities in the
local vortex creep rate, not extended vortex avalanches) and without any correlation with
the previous glitch.

Within the unified model and assuming the extreme scenario, we calculate the function
AQmax(M,w*) for different EOSs; as already noted in Fig (3.6), this expression depends
on entrainment.

In Fig (3.7) we plot the curve AQu (M, w*) as a function of the nominal lag for
different values of the mass in the range 0.9 — 2.2 M and for the Bsk21 EOS; the
other EOSs produce qualitatively similar results. For large enough w*, the curves reach
their maximum value AQu.(M) [already shown in Fig (3.2)] which is independent on
entrainment.

For each pulsar, we consider the waiting time ¢, between the largest observed glitch
and the one preceding it. The corresponding nominal lag is thus wy,, = tpe |Q|. Each
pulsar is then characterized by two measured quantities, the amplitude A and the

nominal lag w5,.. These two values allow to locate the pulsar in the plane of Fig (3.7),
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thus determining a corresponding mass My, defined by AQmax(Mopre, w;m) = AQ. The
value for My, is a lower limit'? on the mass of the pulsar: unless the glitch preceding
the largest one has emptied the entire reservoir (thus ensuring initial corotation, which in
general is not the case), the angular momentum accumulated since the previous glitch
is larger than ALpy.; therefore a mass larger than Mp,. is enough to reproduce AQ. As
already noted, this constraint on the mass in principle depends on entrainment, unlike the
upper limit M,ps.

Summarizing, the angular momentum transferred during the maximum glitch is ex-
pected lie between two extrema: the minimum amount that can have been built up since
the previous glitch, and the maximum that the pinning force can sustain. We thus esti-
mate the mass of a pulsar by bracketing it between the corresponding values My and M,p,.

Using the activity parameter - The same procedure can be used to fit a mass value
M, that can reproduce the pulsar absolute activity A,, the average rate of spin-up
due to all glitches. If the angular momentum is released in a succession of glitches of
fixed maximum size A2 the mean waiting time between glitches that reproduces the
activity is At,,, which has been defined in Eq (3.18). The corresponding nominal lag is
Wi, = At,,|Q; as before, it is possible to invert the relation AQuay(Maet, w?.,) = AQ to
obtain the corresponding estimate of the mass M.

This is shown in Fig (3.7), where the observational values AQ and w},, are indicated
for a sample of pulsars, together with their reported observational errors.

3.3.3 Results

The glitch data used in the analysis are given in table (3.1) and the results for the mass
estimates are shown in Fig (3.8) for the Bsk21 EOS; the other EOSs produce similar
results. The input used in numerical estimates are briefly described below.

Microphysical inputs - We start by considering the maximum amount of angular momen-
tum that can be stored in the superfluid for a given model of the pinning force fp(np). In
our calculations we use the results of ref. Seveso et al. (2016) for fp(np) in the NS crust;
in particular we use the pinning forces corresponding to in-medium suppressed pairing
gap (the case § = 3 and L = 5000); incidentally, this crustal gap is similar to the SFB
model for S-wave neutron superfluidity used by Ho et al. (2015).

Stellar structure - The radial density profile p = p(r), is found by integrating the
TOV equations with an EOS for the composition and pressure of dense matter as a
function of the baryon density'!. We study three unified EOSs: SLy4 Douchin and

10 Under the strong assumption that the largest glitch observed in a pulsar is a maximal glitch, it is
possible to write AL*[M*, tpre] = I*ASQ, where M* is the true mass of the pulsar and AL*[M*,t] is
the true evolution of the reservoir of angular momentum (time is measured since the glitch previous to
the biggest one). Both AL* and M* are unknown, however the initial hypothesis tells us that we know
the value of the function AQY . = AL*/I* at least in a single point, i.e. when ¢ = ¢pre. We consider
AQmax[M, t] such that AQmax[M, 0] = 0, calculated from a specific model by using Eq (3.16). Since in
general AQY . [M*,0] > 0, we have AQ}  [M*,t] > AQuax[M,t] for all t > 0 and M < M*: this is
guaranteed by the monotonicity of AQmax[M,t] in both the time and mass arguments and by the fact that
AQmax[Mgps, 00] = AQ with M,ps > M*. Therefore, to ensure the equality AQ% . [M*,t] = AQmax[M, ],
we have to choose M < M*: the value of M that realizes AQ} . [M*, tpre] = AQmax[M, tpre] is the Mpre
defined in the text.

11 One of the projects of the NewCompstar COST action was to create a database of EOSs and
related data (e.g. consistent compositional information) for use in astrophysical simulations: the web
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Haensel (2001), Bsk20 and the stiffer Bsk21 Goriely et al. (2010), with maximum allowed
masses of 2.05 Mg, 2.16 Mg and 2.27 M, respectively, and hence all compatible with the
observation of Demorest et al. (2010). These EOSs (which does not contain hyperons)
describe in a unified way both the crust and the core of the star, and they are compatible
with all the constraints on nuclear matter properties around saturation obtained from
experiments; moreover, they give NS radii that are consistent with present observational
limits Lattimer and Steiner (2014), see also Fantina et al. (2013).

Ezxtreme scenario - As already done in the previous chapter, we consider the extreme
scenario: the total pinning force is derived by integration of f, along the straight vortex
lines. While vortices can probably pass trough the core, we already described in the
previous chapter the argument for which it is unlikely that vortices remain straight in
the core. We thus consider also the possibility of rigid vortices that are confined into the
crust, a scenario that is still described by the dynamical Egs (2.25) and (2.26).

Results - Although there are quantitative differences between EOSs, several qualita-
tive features are evident for all models. Firstly, for most pulsars we find tight constraints
for the mass of the star. One exception is J0537-6910, which only has an upper limit on
the mass, as the maximum glitch was also the first observed glitch.

More interesting, we note that a quite tight range of masses (approximately between
1.1 and 2 M) can explain a spread of an order of magnitude in glitch sizes: this difference
is only due to the different structure between very compact and less compact structures.
In particular, the results for M, (the lower bound on the mass) and M,e (the mass
estimate constrained by the activity) still show the inverse relation between mass and
maximum glitch size, noted previously for the maximum reservoir only. These mass values
correspond to a partially filled reservoir and are determined using additional independent
observational quantities (i.e. ¢pre and Ag), so that they could have been scattered randomly.
Their consistency with the maximum curve provides a little!? clue for the validity of the
unified scenario; if this is the case, it indicates that mass can be an important ingredient
to understand the different behavior of glitching pulsars (in addition to age, temperature
and rotational parameters).

As already observed, the mass values found here correspond to present, state of the art
microphysical input: future theoretical advances may rescale the masses but maintain the
qualitative general relation. Direct mass measurements of glitching pulsars are necessary
to verify the mass-amplitude relation, but a single observation would already allow to
calibrate the curve and give a fundamental constraint on the pinning force.

3.3.4 Discussion of the results

The framework proposed suggests a unified scenario for pulsars exhibiting large glitches,
with the NS mass playing a key role; this is indeed a minimal scenario in which the

site compose.obspm. fr offers a collection of EOS tables, not only for cold beta-equilibrated neutron stars.
Most of the currently available general purpose EOS models for use in simulations of core-collapse or NS
merger are given in tabular form. The equations used here are listed as “cold neutron star EOS”, namely
barotropic EOSs for catalyzed nuclear matter at 7" = 0.

12 Tt is worth to note that the angular momentum reservoir is replenished quite fast, so that for most
of the typical inter glitch timescales it is near saturation: in other words the curves AQ¢(w*, M) are not
very steep in the region highlighted in Fig (3.6), implying that the small bracketed mass values are a
drawback of the simplified dynamics and (possibly) of the methodology used to estimate Mpre.
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Figure 3.8: Mass estimates for 17 large glitchers with the Bsk21 equation of state. The red solid
curve gives Ma,ps as a function of the maximum observed glitch AQ; as in figure 2, the shaded
region indicates the forbidden region and the cross corresponds to the maximum mass (2.27 Mg)
allowed by the Bsk21 EOS. For each pulsar listed in table (3.1) and characterized by its observed
AQ, the mass interval [Mpre, Mabs] is indicated by blue vertical bars, while the estimate for Macy
is shown as a blue circle. The lower bound Mp,e is undetermined for J0537-6910.
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Figure 3.9: Mass estimates for the 17 large glitchers of Fig (3.3). The extreme scenario (vortex
lines that are straight into the crust and core) has been used. The interval [Mpre, Mabs] is
highlighted with different shadings. The red circles indicate the values of M,ct. The mass values
are given with their corresponding errors, red error bars for M, and lighter shading for the
interval [Mpre, Mabs]; they are obtained from standard error propagation of the uncertainties
associated to the observed glitch parameters, reported in table (3.1). In several cases, the error is
smaller than the symbol used and thence not reported. As explained in the text, J0537-6910 has
no lower bound Mp... Due to its small largest glitch, J1413-6141 is not constrained by the soft
Sly EOS: any mass is compatible with its maximum event.
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Figure 3.10: Mass estimates for the 17 large glitchers, calculated by restricting the superfluid
domain to the crust (straight vortices fill the S-wave superfluid domain, while the totality of the
core is assumed to be part of the normal component). Explanation of symbols is given in the
caption of Fig (3.9). In the majority of cases Mact is below the range of observed masses (e.g. for
Vela we have Mac, =~ 0.8 Mg).

importance of the mass for glitch models can be tested: no complications deriving from
internal temperature (hence the pulsar age) or the particular value of the rotational
parameters enters the game.

The values of the upper limit M,s are quite robust, while M,.; can be refined with
the aid of hydrodynamical simulations in place of our simplified model. As it stands, the
small mass intervals presented in Fig (3.9) are due to the fact that the dynamical reservoir
is replenished very fast in the unified scenario, so that the observed pulsars fall in the
region where the curve AQu.x(M,w™*) is nearly flat. The estimates of M, are thus less
reliable than M,s; moreover, it is difficult to interpret M,.; as a punctual estimate of the
stellar mass'?.

The complete range of derived masses for the three EOSs is displayed in Figs (3.9) and
(3.10) for two different cases: straight vortices that pass trough the core and crust-confined
vortices (note that the upper limit M, is the same in both cases). The reported errors
result only from observational indeterminacies in the glitch data, listed in Tab (3.1). With
the exception of two objects, these observational errors are very small, implying that the
actual uncertainty in the mass estimates are completely related to the uncertainty in the
assumed microscopic inputs.

We note that, in general, the mass value M, is higher than the lower mass estimate
Mpyre; in the quasi-periodic Vela pulsar (as well as in several others that are not usually
regarded as quasi-periodic) its value is quite close to Mpe: this may suggest that the
reservoir of angular momentum is nearly depleted during each large glitch, even though
it is impossible to draw some robust conclusion on the particular glitch behavior of a
pulsar from our numerical estimates. It has however been suggested by Haskell (2016)
that pulsars of low mass may have a narrower distribution of glitch sizes, centered around
larger events: the present analysis seem to provide an extra clue that this is likely to be

13 The mass Mact is more likely to be a refinement of the upper limit M, .
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the case.

While things work very well for the so-called extreme scenario (Fig (3.9)), in the case
of superfluidity restricted into the crust we again find the well known result that the crust
is not enough: M, is in general very low, around 0.8 M in most cases, and M, is
systematically even lower.

A word of caution is due: we proposed the extreme scenario in order to overcome the
difficulty posed by strong crustal entrainment, finding a large enough angular momentum
reservoir. According to the recent work of Watanabe and Pethick (2017), the effects of
band structure on the neutron superfluid density are modest when pairing is properly
taken into account'*. Moreover, the uncertainties in the EOS provide enough flexibility
for the construction of models that predict a large crustal thickness (Piekarewicz et al.,
2014), implying both large crustal moment of inertia and a wider domain of integration
for pinning forces in Eq (3.14). Moreover, calculations of strong entrainment assume a
bece lattice that may not be valid: in some regions of the crust the interstitial neutrons
give rise to an attractive interaction between nuclei that can make the bcc lattice unstable
(Kobyakov and Pethick, 2014).

The extent to which pulsar-timing observations can be reconciled with the standard
glitch theory and strong entrainment is also explored by Chamel (2016) by considering
the lack of knowledge of the dense-matter EOS: even if crustal entrainment is ignored, the
standard vortex-mediated glitch scenario has been challenged by the observation of a huge
glitch in PSR 2334+6 (Yuan et al., 2010) from which the constraint I.,..s:/I > 9.4% was
inferred (Chamel, 2016).

Therefore, while some observations suggest that the neutron superfluid in the core of a
NS contributes to glitches, glitch models based on the superfluid in the inner crust are
still tenable: our model can provide a test for the newly calculated microscopic inputs and
numerical estimates can be easily carried out by considering crustal superfluidity only.

Moreover we stress that the only robust mass constraint is that provided by the
upper limit M,ps: it is entrainment independent and does not depend on the unknown
extension of the superfluid domain in the core. However the general idea seems promising
and can be tested with refined dynamical models and newly calculated microphysical inputs.

Broad distribution of pulsar masses - Our model predicts a broad distribution of masses,
centered around 1.4Ms. We note that populations studies also recover a broad distri-
bution, that however depends on the evolutionary path of the system, with masses in
NS-NS binaries tightly distributed around 1.4M and masses in WD-NS binaries much
more broadly distributed around higher values (Ozel and Freire, 2016); the inferred mass
distributions for these different categories'® of neutron stars is shown in Fig (3.11), see
also (Kiziltan et al., 2013).

Future radio and gravitational waves observations are likely to probe the mass distribu-
tion in more detail, and may allow to investigate the evolutionary history of systems with
glitching pulsars. This possibility is of wide interest as the mass distribution of the NS

14 Hint on this open point is likely to come from cold atomic gases in optical lattices, which are a
useful system for investigating experimentally the suppression of band structure effects by pairing: both
the strengths of the periodic potential and of the pairing interaction can be varied in such systems.

15 Certain sub-populations (as those in double neutron stars and in binaries with high mass companions)
are thought to have experienced little or no accretion over their lifetimes. On the contrary, NSs in low-mass
X-ray binaries and millisecond pulsars (typically in close orbits around WDs) undergo extended accretion
periods that can increase neutron star mass from its birth value.
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Figure 3.11: Empirical distribution of NS masses. Left - The most recent measurement of
neutron star masses, grouped in subclasses: double neutron stars (magenta), recycled pulsars
(yellow), bursters (purple), and slow pulsars (blue). Right - The mass distributions for the
different populations of neutron stars, inferred using a Bayesian techniques to measure the most
likely values of the mean dispersion for these systems. Figures adapted from (Ozel and Freire,
2016).
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Figure 3.12: Cumulative frequency for the set of measured masses and for the 51 M,ns. We
indicate the results for the three EOSs used, using the usual color code. The green dotted line is
the cumulative frequency of NS masses that belong to a double system comprised of two neutron
stars, the gray dotted curve refers to the NS that have a DW companion: this curve defines
a shaded region: our estimated masses seem to fit well the distribution of this subclass. The
black solid line is the cumulative frequency obtained by considering all the measured masses,
irrespectively of the subclass of the object.
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Figure 3.13: Smoothed normalized histogram of four datasets: the distribution of the all pulsar
masses, taken irrespectively of their origin (i.e. joining all the sets relative to different subclasses),
and the three distributions relative to the EOSs used. The shaded region is delimited by a curve
that is the distribution corresponding to the black curve of Fig (3.12). Right - We consider the
51 values of Maubs. Left - The 17 values of Mac produce a distribution that is very superimposed
to the empirical distribution. While this is certainly very interesting, it is still not a proof of the
goodness of Mact. In both cases the accordance is remarkable and deserves to be deepen.

population can also give information about the core-collapse, the EOS, and the accretion
history of each neutron star.

In Fig (3.12) we show the cumulative frequency for the dataset comprised of the 51
masses M,y fitted for the large glitchers.

Comparison with other models - The present approach is alternative to the methodology
described by Ho et al. (2015), that relies on the mean behaviour over many decades of pulsar
evolution (i.e. the activity) coupled to indirect estimates of the NS internal temperature.
While our maximum angular momentum reservoir is determined by the profile of the
pinning force, their reservoir is fixed by both the density and the temperature dependencies
of the neutrons pairing gaps in the singlet channel alone.

A comparison of our results with the masses estimated by Ho and collaborators is
possible, since the two studies have 2 EOSs and 8 pulsars in common. Even considering
errors and although we both interpret the Vela as a middle-mass object, our results are
completely at variance with those of Ho et al. (2015): their estimates and ordering of
masses bear no resemblance to ours, the mass values are much more dependent on the
EOS used as input. They find a mass distributions that is poor in low-mass objects (all
their estimated masses are larger than 1.6Mg, for the Bsk21 EOS). The difference is due
to the additional complication introduced by using an angular momentum reservoir that
depends on thermal properties as well as to the very different methodologies adopted in
the two studies.

3.4 Observational data

The glitch parameters and their observational uncertainties were extracted from the
database maintained by the Jodrell Bank Observatory, http://www.jb.man.ac.uk/
pulsar/glitches.html; they are reported in Tab (3.1), where we list the relevant data
used in our method for the 17 non-single glitchers: spin down rate 2, absolute activity
A, maximum observed glitch A2, nominal lags w,.; and wy,.. The observational errors
on the glitch parameters are also considered but no errors are listed when they do not
affect the mass estimates. Moreover, the errors in the mass estimates are calculated by


http://www.jb.man.ac.uk/pulsar/glitches.html
http://www.jb.man.ac.uk/pulsar/glitches.html
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J-name 19 Aq AQ Wiet Whre
10~*rad/(yrs) 107*rad/(yrs) 107%*rad/s 107*rad/s 107% rad/s
J0205+-6449 88.97 0.63 £ 0.11 3.63 £ 0.38 508 £ 125 88 £ 20
J0537-6910 394.97 3.41 £ 0.06 2.65 £ 0.25 307 £ 34 -
J0631+1036 2.51 0.04 = 0.01 0.72 41 + 11 2.91 £ 0.03
J0835-4510 31.07 0.50 + 0.01 2.17 134 £ 2 101
J1048-5832 12.49 0.22 = 0.03 1.55 86 + 11 28.1 £ 0.4
J1105-6107 7.86 0.12 £ 0.03 0.97 £ 0.01 62 £ 10 21.3 £ 3.23
J1341-6220 13.43 0.22 + 0.02 1.00 59 £ 4 125 £ 1.3
J1413-6141 8.10 0.13 + 0.02 0.53 32+3 25.8 £ 0.9
J1420-6048 35.47 0.47 + 0.03 1.86 £ 0.01 138 £ 9 112 £ 9
J1709-4429 17.56 0.25 + 0.05 1.76 £ 0.02 121 £ 14 59 £ 4
J1730-3350 8.65 0.11 £ 0.02 1.44 107 £ 16 97.2 £ 0.7
J1801-2451 16.25 0.28 £ 0.03 1.89 106 £ 8 62.5 £ 0.5
J1803-2137 14.91 0.29 + 0.03 2.25 116 £ 10 95.8 £ 0.1
J1826-1334 14.49 0.20 + 0.04 2.22 159 £ 24 19.0 £ 0.1
J1932-+2220 5.47 0.25 £ 0.05 1.94 42+ 7 50 £ 1
J2021+3651 17.63 0.31 = 0.06 1.57 89 + 17 24.9
J2229+6114 58.23 0.30 £ 0.05 1.49 + 0.01 282 £ 45 74.5 £ 0.5

Table 3.1: Observational parameters for the 17 pulsars considered that are both large and
non-single glitchers. The definition of the quantities is given in the previous sections. We do not
report any error when it is so small that the resulting mass estimate is unaffected.

standard error propagation and reflect only the observational uncertainties (the theoretical
microphysical inputs are considered “exact”).

The properties relative to the sample of the 51 large glitchers (The Crab pulsar is
added at the end of the table for comparison purposes) are reported in Tab (3.2). The
threshold AQ > 5 x 107° rad/s that discriminates between large glitchers and the rest of
the pulsar population is settled by the pinning forces used: with weaker pinning forces or
newly detected large glitches, other pulsars will join the sample in Tab (3.2).

As an explicit example, consider J0729-1448: this pulsar seems a perfect candidate for
our study, but it is categorized as a single glitcher: N,, is very close to 1, a fact that is
reflected into the huge uncertainty of the fitted value of G = A,/|€2|, as can be checked
also in Fig (3.15). Following this line of reasoning, only 17 non-single large glitchers with
definite activity and with (at least) two glitches of the comparable size remain.

For completeness we also present, in Fig (3.14), a summary of the properties of the
known sample of RPPs that have been observed to glitch.

The whole glitching RPPs population is organized as follows: we consider the three
base quantities used in our model, namely |Q|, A, and AQax, which are used to calculate
Mps and M. These three quantities are obtained directly from observations: possible
correlations between them can be manifestations of a common physical property of the
sample. We also consider two derived quantities, the characteristic age 7 = P/ (2P), that
indirectly accounts for the pulsar period (or for the angular velocity €2). The angular
velocity has not been used in the unified scenario but we know that the steady state
lag, in the absence of strong pinning, depends on both 2 ad \Q| In principle it is thus
interesting to consider also this quantity, via 7. Finally we consider w} ., the nominal lag
corresponding to the timescale between maximal glitches: this quantity is derived by using
all the three basic quantities |Q\7 A, and AQpax; therefore possible correlations between
this quantity and the others are artificial.
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Figure 3.14: Cross correlations between some phenomenological quantities of the RPPs that
have been observed to glitch and for which it is possible to define the activity parameter. The
considered variables are: the characteristic age 7 = Q/(2|2]), the maximum glitch AQuax, the
nominal lag w}.;, the activity A, and the spin down rate |Q| As explained in the text, for every
pulsar in the sample we normalized the relative quantities to the values of Vela, so that Vela is
always represented by the point of coordinates (0,0), indicated by the dashed lines. Some evident
correlations are artificial, namely the ones envisaged between T and |Q| or between w,., and
AQmax (simply because T and w;,.; are derived quantities). It is however interesting to note that
at the moment (due to the paucity of data and selection effects) there are no evident correlations
in the sample of the large glitchers, except from the clear (and well known) relation between A,
and €.

The dataset presented in of Fig (3.14) is organized as follows: firstly we consider
the quantities 7, AQY._, w*V AV and |QV| relative to the Vela pulsar. For ev-
ery pulsar for which we can fit A,, we plot the quantities Age=log;,(7/7"), Max
glitch=log o (AQumax/AQY. ), Max lag=log;(w}.;/wY,), Activity=log,,(A./AY) and
Spin-down=log,,(|2|/|2V])). In this way we can see how the population of the known
glitching RPPs is scattered with respect to the coordinate (0,0), which represents the
Vela pulsar. On the diagonal of Fig (3.14) we draw histograms, showing the rough phe-
nomenological distribution of the corresponding quantity. The other non-diagonal inserts
are scatter plots. We can note some cross correlations between the five phenomenological
quantities that have been used. Some evident correlations are artificial, namely the ones
envisaged between 7 and |Q| or between w?,, and AQuax (simply because 7 and w,, are
derived quantities). It is however interesting to note that at the moment (maybe due

to the paucity of data and to selection effects) there are no evident correlations in the
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sample, except from the clear and already known correlation between A, and || (Fuentes
et al., 2017). This fundamental property of the sample is translated into the (weaker and
partially artificial) correlation between AQp.x and w? ;.

Moreover, there is a remarkable clustering of the scattered data around Vela in the
T-AQmax panel (7 and AQ . are independent measured quantities), a clue that the
pulsars that display large glitches are really “Vela-like” pulsars, with similar characteristic
age and maximum glitch amplitude.

A systematic statistical analysis will be possible in a future, if new-generation radio
telescopes will lead to an interesting increase of the glitch dataset in RPPs. The direction
to follow from the observational side is quite clear: we need more sources that are observed
to glitch several times more than many single glitchers.
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Figure 3.15: The cumulated glitch activity (red line) for the 17 pulsars considered as a function
of time: its vertical width indicates the absolute uncertainty on the measured amplitude, the
horizontal width refers to the uncertainty on the glitch date. The blue line is a least square fit
(the uncertainty on the slope is indicated as an angle).
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Table 3.2: Observational values for the 51 large glitchers considered, see also Fig (3.3). We
report the rotational parameters 2 and |Q|, the dipole characteristic age 7, the number of glitches
Ngi, the largest jump size AQmax and the corresponding fraction of large glitches N, /Ng;. Here
G = A./|9), so that the nominal lag corresponding to the largest glitch can be equivalently
written as wies = AQmax/G.

J-Name Age (dipole) Q \Q\ G AQax Nw/Ngi Ny
10% yr rad/s  107%rad/(s yr) % 10~ %rad/s

J0205+-6449 5.4 95.61 88.97 0.72 £ 0.10 3.63 £ 0.38 0.40
J0358+5413 560 40.18 0.36 17.98 + 6.03 1.75 0.17 6
J0537-6910 4.9 389.72 394.97 0.86 + 0.01 2.65 + 0.25 0.42 23
J0631+1036 44 21.83 2.51 1.81 £+ 0.36 0.72 0.10 15
J0729-1448 35 24.97 3.55 3.27T +£ 2.34 1.67 £ 0.00 0.20 5
J0835-4510 11 70.34 31.07 1.62 £+ 0.02 2.17 0.59 19
J1016-5857 21 58.51 13.90 * 1.12 0.92 2
J1023-5746 4.6 56.37 61.23 * 2.01 * 1
J1048-5832 20 50.81 12.49 1.81 +£ 0.23 1.55 0.48 6
J1052-5954 140 34.79 1.21 * 2.35 * 1
J1105-6107 63 99.43 7.86 1.56 + 0.26 0.97 0.46 5
J1112-6103 33 96.72 14.78 * 1.77 £ 0.02 0.83 2
J1119-6127 1.6 15.40 47.90 0.17 + 0.06 0.83 £ 0.12 0.35 3
J1301-6305 11 34.05 15.53 * 1.58 £ 0.01 0.79 2
J1341-6220 12 32.50 13.43 1.71 £ 0.11 1.00 0.24 23
J1357-6429 7.3 37.83 25.88 * 0.92 0.86 2
J1412-6145 51 19.93 1.97 * 1.45 * 1
J1413-6141 14 22.00 8.10 1.66 + 0.13 0.53 0.34 7
J1413-6205 63 57.25 4.56 * 0.99 * 1
J1420-6048 13 92.16 35.47 1.35 +£ 0.08 1.86 £ 0.01 0.67 5
J1531-5610 97 74.62 3.84 * 1.97 £ 0.01 * 1
J1539-5626 800 25.82 0.16 * 0.72 * 1
J1614-5048 74 27.12 18.28 * 1.75 £+ 0.02 0.98 2
J1617-5055 8.1 90.59 55.70 * 0.54 + 0.00 * 1
J1702-4310 17 26.12 7.67 * 1.26 £ 0.03 * 1
J1709-4429 17 61.32 17.56 1.46 £ 0.15 1.76 £+ 0.02 0.77 4
J1718-3718 33 1.86 0.28 * 0.62 * 1
J1730-3350 26 45.05 8.65 1.35 £ 0.20 1.44 0.88 3
J1740+1000 110 40.78 1.79 * 1.19 0.50 2
J1757-2421 290 26.84 0.47 * 2.09 * 1
J1801-2451 15 50.30 16.25 1.78 +£ 0.14 1.89 0.54 5
J1803-2137 16 47.01 14.91 1.95 £+ 0.16 2.25 0.67 5
J1806-2125 63 13.04 1.04 * 2.06 * 1
J1809-1917 51 75.93 7.39 * 1.23 * 1
J1813-1246 43 130.70 15.07 * 1.52 * 1
J1826-1334 21 61.91 14.49 1.39 + 0.21 2.22 0.55 6
J1833-0827 150 73.67 2.50 1.69 + 0.89 1.37 0.33 3
J1837-0604 34 65.25 9.66 * 0.91 £ 0.00 0.51 2
J1838-0453 52 16.50 1.58 * 1.63 £ 0.06 0.50 2
J1838-0537 4.9 43.12 44.06 * 2.37 * 1
J1838-0655 23 89.13 19.65 * 1.38 £ 0.06 * 1
J1846-0258 0.73 19.24 132.13 * 1.19 £ 0.06 0.50 2
J1856+0113 20 23.49 5.78 * 2.72 0.67 2
J1856-+0245 21 77.66 18.81 * 2.08 £ 0.00 * 1
J1907+0602 19 58.92 15.14 * 2.75 0.50 2
J1921-+0812 620 29.83 0.24 * 1.08 * 1
J1932+4-2220 40 43.49 5.47 4.68 £ 0.74 1.94 0.71 3
J1952-+3252 110 158.94 7.42 3.18 £ 0.76 2.38 0.17 6
J2021+3651 17 60.57 17.63 1.76 + 0.33 1.57 0.72 3
J2229+6114 10 121.71 58.23 0.53 + 0.08 1.49 £ 0.00 0.40 6
J2337+6151 41 12.68 1.56 * 2.60 * 1
J0534-+2200 1.2 189.91 765.75 0.0030 £+ 0.0004  0.406 £ 0.002 0.10

o
= &

J1833-1034 4.9 101.53 104.59 0.0043 £ 0.0004 0.00761 0.51




CHAPTER 4:

Relativistic corrections to pulsar glitch
amplitudes

In this chapter we investigate the general relativistic corrections to pulsar glitch amplitudes.
Numerical estimates will be carried out within the slow rotation approximation of Hartle
(1967): the slow rotation approximation allows for a simple calculation of the maximum
amount of angular momentum that can be stored into the pinned superfluid, consistently
with the stratified structure of the star and the presence of a background axially symmetric
curved spacetime. We thus provide a relativistic generalization of the Newtonian model
described in the previous chapters.

It is found that the effect of general relativity on the maximum glitch amplitude,
at least in the pinning paradigm that we consider here, is quite small. Therefore the
Newtonian upper bounds on the mass presented in the previous chapter only differ by
few percent with respect to the same upper bounds calculated within the relativistic
framework.

The present analysis can also serve as a basis to construct more sophisticated models
of angular momentum reservoir in a relativistic context. The relevant concepts of two-fluid
hydrodynamics are briefly reviewed and a generalization of the famous Feynman-Onsager
relation (when both entrainment coupling between the fluids and strong gravity are present)
is derived.

In the following we use the “mostly plus’ convention, i.e. the metric signature is
(=,+,+,+). Except for the final results that have to be numerically evaluated (where th
constants G and ¢ are explicit), geometrized units are used in the calculations.

4.1 The perfect fluid in general relativity

A concise introduction to relativistic hydrodynamics is given by Gourgoulhon (2006), while
modern extended treatment (including astrophysical applications and numerical schemes)
is presented in the book of Rezzolla and Zanotti (2013). A particularly NS-oriented review
of relativistic hydrodynamics is that of Andersson and Comer (2007). Applications to
relativistic rotating stars and a clear general introduction to the perfect fluid in GR can
be found in the book of Friedman and Stergioulas (2013), while the notes of Gourgoulhon
(2010) are more focused on the theoretical foundations and provide a detailed discussion
of the spacetime and flow symmetries.
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4.1.1 Observers in general relativity

An observer in general relativity is a worldline, namely the set of events recorded by
a test (massive) particle. This particle can be freely-falling (like the Earth) or use its
internal energy (like a rocket) or interaction with fields and matter (like us, sustained
on the surface of Earth by Coulomb forces) to deviate from the geodesics motion. An
observer can carry a frame, a set of four basis elements of the tangent space that are locally
defined at each point on the observer’s worldline. A family of observers thus provide a
frame field, a collection of frames that span the tangent bundle: this provides the so-called
“tetrad formalism”, an alternative to the more usual “chart approach”. Following standard
terminology, points belonging to the spacetime manifold will be sometimes referred to as
events. In the chart of coordinates® {z*}, the worldline is a timelike curve £ parametrized
as z*(A). Given a particular event A € £, the events that are simultaneous to A (i.e.
that are considered to be simultaneous to A by the given observer) is the set of points
belonging to a hypersurface passing trough A and orthogonal to L.

A particular choice of the parameterization defines the proper time 7, the length along
the curve cdr = \/—g,, OnzH0xx¥ dX. Note that in this definition d is not the exterior
derivative operation but simply indicates an infinitesimal increment. The four-velocity
u = utd, of the particle is the unique unit tangent vector to £ oriented toward the
future, u* = daz#(7)/dr: the 4-velocity is indeed always normalized as u,u* = —1 and
unique, thanks to the fact that proper time has been chosen among all the possible
parameterizations. This 4-velocity w is a tensor defined by using only £ and the absolute
structure of spacetime provided by g: it is therefore intrinsic to the particle under
consideration. This is in contrast with the usual notion of relative velocity, namely
is not defined in relation to some observer. Also the 4-acceleration a, which natural
components are given by a* = v’V ,u*, is an intrinsic property of the particle as well.
The normalization of u implies that g(u,a) = 0, a property that can be realized only if a
is spacelike, i.e. g(a,a) > 0.

If we want to introduce the relative velocity we have to consider two observers (i.e. two
point masses) that share the same tangent space at some point: we thus introduce the
worldline £’ with 4-velocity u’ and proper time 7’ that intersects £ at a certain event, say
A. After some elapsed proper time dr since A, the observer relative to £ will touch the
event B. The second observer will see this to happen after the time d7’ has elapsed, at
event B’. Exactly as in special relativity, the Lorentz factor W is defined as dr’ = Wdr.
We just have to understand how to express W it in terms of v and u’. Both observers
start at A and after a little bit they are separated by the displacement B’B

wdr =u' dr' + B'B.

However B is an event that is simultaneous to B’ for the observer £/, therefore g(B’'B,u’) = 0.
We thus multiply the above equation by uit and obtain

W = —d ,ut (4.1)

1 The so-called natural basis relative to the coordinates {z”} is, as usual, indicated by {3}, i.e. a
set of four vector fields of coordinates &%, where p can be regarded as the “name” of the vector d,,. The
natural co-basis is {dz"}, a set of four one-forms of coordinates &, where u is the “name” of the form
dx*. The exterior derivative df of a scalar field f is notoriously a one-form, namely the gradient of f. Use
of the symbol d for the exterior derivative justifies the use of the symbol dz* for the co-basis elements,
namely df =V, f dz#, where V, f are four numbers which represent the components of df with respect
to the basis {dz*}.
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The velocity U of £ as seen by £’, when they meet at A, is naturally defined as

B'B
The square of the above equation (remember that g(U,u’) = 0 due to simultaneity

definition) gives that W is identical to the well-known expression from special relativity
W= (1-U,u") 2. (4.2)

The velocity U* generalizes the usual concept of relative velocity of the particle in B with
respect to the particle in B’. Note that now U* is not normalized to —1.

Finally it is useful to introduce the projector? L onto the 3-dimensional vector space
orthogonal to u, which can be considered as the local rest space of the observer:

J_ag = JaB T UaUp - (4.3)

It is simple to see that 1 (u) = 0. Let L’ be the projector onto the space orthogonal to u’,
then J_'%uﬂ = WU, and J_’aﬁuo‘u'@ =U?%/(1-U>?).

4.1.2 Basic thermodynamics

In order to discuss the hydrodynamics of the perfect fluid in general relativity (fluids for
which viscous effects and heat fluxes are zero, and the pressure is isotropic), it may be
useful to briefly review some basic thermodynamics. This is more authoritatively done
in many textbooks, including the classic books of Misner et al. (1973) and Shapiro and
Teukolsky (1983); however this section will allow to set some notation.

The laws of thermodynamics provide information about the changes in the thermody-
namic properties of the system as they evolve in quasi-equilibrium, along a sequence of
states where the thermodynamic variables are related trough an equation of state. The
EOS plays a fundamental role in hydrodynamics because it provides a closure relation in
the set of dynamical equations and, at the same time, represent the realistic input in the
description of a given physical system (Rezzolla and Zanotti, 2013).

Given a fluid element, there will be a number of thermodynamic quantities defined at
a certain event and measured in the element’s rest frame. Not all of the thermodynamic
quantities are independent, e.g. the state of a single-component fluid can be expressed in
terms of only two independent parameters, usually the density and temperature.

For a simple and single-species system the first and second laws of thermodynamics
can be combined? to give

dE = TdS — PdV + pdN, (4.4)

where the internal energy E, entropy S, volume V', and particle number N are the extensive
variables related by the equation of state E = E(S,V, N). The energy must scale together
with all the other quantities, implying that kE = E(kS, kV,kN) for a constant k: the local
thermodynamic state (modulo entrainment that we do not consider here) is a function

2 The operator | is idempotent (J_ffJ_g = 1%) and self-adjoint (simply because it is real and
symmetric), therefore it is an orthogonal projection.

3 As pointed out by (Andersson and Comer, 2007), the first law is a statement about heat and work,
and says nothing about the entropy, which enters through the second law.
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of the extensive variables per unit volume (or per particle). This scaling is based on the
hypothesis that surface effects are negligible for the volume V. Total differentiation gives

dkE + kdE = Td(kS) — Pd(kV) + pd(kN)
= (TS — PV + uN)dk + k(T dS — PdV + pdN)

which implies the Euler relation E = T'S— PV +uN. The equation of state E = E(S,V, N)
is valid in small (but macroscopic) patches across which the changes in the gravitational
field are negligible*. It is thus sufficient to determine the properties of matter in special
relativity; the thermodynamic variables of the fluid are defined in the set of frames
locally comoving with the fluid. From the geometrical point of view the thermodynamic
quantities are scalar fields by construction. The reason for this construction stems from
the equivalence principle: the first and second laws of thermodynamics are local statements
made by an observer (see the next section) that is at rest with respect to the fluid element
under consideration. The Euler relation divided by V' (the proper volume of a little portion
of fluid) reads

E/V = &(n,s) = p(n,s)n + T(n,s)s — P(n,s). (4.5)

We now denote with X a generic extensive variable, while x = X/V is its value per unit
volume and & = X/N is its value per particle (that is proportional the specific quantity);
differentiation gives

de = d(X/V) = d(nZ) = dni + ndi = d;nx + ndz. (4.6)

When we want to describe a stationary star in equilibrium, n is the conserved baryon
number density: dN = 0 implies dV/V = —dn/n and from the above equation it follows
that

dE = dE)V — £(dV/V)

=—-P—4pu—+T— + 8; (use dS/V =ds —sdn/n and dN =0)

Consider now the standard definition of enthalpy, H = F + PV = TS + uN, the
thermodynamic potential which is minimized when the system reaches chemical equilibrium
at constant pressure. Following the aforementioned “tilde notation”, the enthalpy per
baryon is

;_E+PV _E+P
= N =
4 We adapt an argument by Glendenning (2000): consider g,(R) = (1 — 2M/R)~" and g,(0) = 1,
therefore the metric changes over the distance R by a typical factor
glﬁR - g'r'r(R) - gr'r(o)
grr (grr(R) + grr (0))/2
The estimate has been made for a high-mass neutron star of 2 Mo ~ 3km and R =~ 10km. The average

Wigner-Seitz radius ry g scales as r:évs ~ R3/A which, for typical values A ~ 10%7 and R ~ 108 cm, gives
rws ~ 1fm. Therefore

d€ = hdn + Tnds  (for dN =0),

=2M/(R— M)~ 1.

grr(r +rws) — grr(r) grr (1) T™Ws —19
~ TWS ~Y ——— ~ 10 .
(grr(r +rws) + grr(r))/2 grr(7) R
the relative change of the metric over many Wigner-Seitz cells is negligible. Friedman (1992) gives an
interesting and complementary argument but based on the scaling of the Ricci scalar.
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where the relation between the differentials dx and df has been used. The rest mass
density mc?n is included in the mass-energy density £ and so in g and h. Moreover, in the
zero temperature limit, the enthalpy per baryon coincides with the chemical potergcial5,
h = p as should be evident by confronting Eq (4.5) for T' = 0 and the definition of h.

Sometimes the specific quantities, in particular the specific energy, are also used.
Consider Eq (4.4) with dN = 0 and divide it by N. Since N is constant, this operation
commutes with differentiation and the fundamental relation is

5 0E

d€ = Tds — Pdv = P=mn?os. (4.7)

Following the notation in Eq (4.6), 9 = n~! is the mean volume per baryon.

4.1.3 Dynamical equations

The world-line of a fluid element defines a 4-velocity u®* = dX*(Ag, 7)/dT, where Ag is
some event that can be used as a label: this is the so-called Lagrangian formulation of
hydrodynamics. For our scope the Eulerian formulation more suitable: the fluid motion is
described by a tensor field u that at every event of coordinates z” associates a vector of
coordinates u*(z") which belongs to the tangent space at that event. General relativity is
ruled by the Einstein equations that are conveniently written as

1 &G
Rapg — §R9a,8 +Agap = A Tap s

where the 87 factor is needed to ensure the correct Newtonian limit. Since the energy-
momentum tensor (also sometimes called stress-energy) 77 has dimension of an energy
per unit volume and the metric is dimensionless, the Ricci tensor R,g, scalar R and A have
the dimension of the inverse of an area (and so the Einstein tensor Go3 = Rap — %R Jap)-
This is in accordance to the fact that Einstein equations are second order equations for
the metric g. The Bianchi identity® V, GF* = 0 implies V,T"” = 0. This is sometimes
regarded to as the equation of motion of matter. However things are not so simple: if the
fluid is comprised of a single component, the conservation of the energy-momentum is
equivalent to the three usual Euler equations plus the energy equation. However if we
have to deal with a multifluid we need more than four equations.

An important case of energy-momentum tensor is that of a perfect fluid. A non-viscous
isotropic fluid flowing along the velocity field u is described by an energy-momentum
tensor of the form

T = EuuP + P LY = hud® + g*P P, (4.8)

where the tensor field 1,3 = g + uaug projects onto the three-space at rest with respect
to the fluid element, in complete analogy with the projector of Eq (4.3). Following the
notation introduced in Eq (4.6), h = n h is the enthalpy density. The fact that we used the
energy density and the pressure measured by a comoving observer makes sense, as can be

5 From Eq (4.4) with constant N, the chemical potential is u = £ + P/n — T3 = h — TS3.

6 Since A is a constant, the invariance of the metric with respect to covariant derivatives V4 guv =0
assures that the presence of gA does not modify the fact that the Bianchi identity implies the vanishing of
the divergence of the energy-momentum tensor. Moreover on the stellar scale the cosmological constant
can be dropped.
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checked by noting that T),, utu” = &£ [for the derivation of the energy-momentum tensor
and its 3+1 decomposition see e.g. (Rezzolla and Zanotti, 2013) or (Gourgoulhon, 2010)].
The particle current of the fluid is defined like in special relativity, n* = nu”. In
this way, the general-relativistic conservation of rest mass (i.e. of particle number), the
conservation of energy and momentum are given by the hyperbolic system of equations

VoI = Vi(nhu?) +uPVa(nhu®)+ VPP =0 (4.9)

Van® = Vyn+nVau® =0, (4.10)
where V,, = u®V,, is a derivative along the fluid worldline. Equations (4.9) and (4.10)
provide a total of five equations for six unknowns: the three components of the four-velocity
(the fourth one is obtained through the normalization), the number density n and two
thermodynamic quantities, say, the pressure P and the enthalpy per baryon h. An equation
of state relating the pressure to other thermodynamic quantities is the sixth equation
necessary to close the system. The conservation equations (4.9) and (4.10) can be written

in a form that resembles the conservation of energy (energy equation) and momentum
(Euler equation). Projection along u of V,T%? = 0 gives

ug Vo T = V, € + AV, u® = 0,
while projection orthogonal to u gives the three Euler equations
ha” + 1"PVgP =0, (4.11)
where ¥ = V, u” is the 4-acceleration. The fact u,V,u* = 0 has been used in the

derivation. The Euler equation is written in such a way to recall its non-relativistic
counterpart: here the enthalpy h plays the role of inertia.

4.1.4 Zero temperature limit and Kelvin’s theorem

It is interesting to study the zero temperature limit of the Euler equation. For T'= 0 we
have d€ = pdn and p = h which imply”

n~tdP = dh = n'V,P =V,h.

By using this result, the zero temperature relation h = ny and the fact that V,, v = —u?V,, (nug),
it is simple to rewrite the Euler equation (4.11) as

pa, + 15Vgpu =0 = WP Vg (pue) — uPVa (pug) =0

that has clear interpretation in terms of differential forms (Friedman and Stergioulas, 2013):
we define the 1-form p,dz* and its exterior derivative, the 2-form dp, in components:

Pv = Egup u? (dp)aﬁ = aapﬂ - aﬁpa- (4.12)

7 By using the language of differential forms, n, P, u = h are 0-forms. Therefore dP = VP da®
and du = Vaopdx®. The wedge product is usually understood for O-forms but it is possible to write
dP = n Ady as well as d€ = p A dn. Here the covariant derivative V, can be replaced by the partial
derivative 8, since the two notions coincide for exterior calculus (and, moreover, we only have to take
derivatives of scalar functions).



4.1. The perfect fluid in general relativity 99

More formally, the form p = h A g(u) is sometimes called momentum per particle while
dp = dh A g(u) 4+ h A dg(u) is known as vorticity®: as the external differentiation of a scalar
provides a generalization of the notion of gradient, external differentiation of a 1-form
provides the generalization of the curl. These definitions are always valid, independently
from the fact that here we restricted the argument to the perfect fluid at zero temperature.

Suppose now that the field u* is a solution of the relativistic Euler equations, it follows
that the fluid’s 4-velocity is an eigenvector of the vorticity with eigenvalue zero, namely
the equation of motion is

W Vg pa — u'Vaps = 0 = (dp)yu” = 0.

This is a rather strong statement: the Euler equation is equivalent to the fact that
vorticity is conserved along fluid worldlines, as it can be shown by using the language
of differential forms. We need to use the Cartan’s formula, which states that the Lie
derivative? £, of a generic differential form ¢ along v can always be expressed in terms
of the exterior derivative d as £L,0 = vdo + d(vo). In the case o is a O-form (a scalar
field) we have d(vo) = 0 and L,0 = v" 9,0. Consider the Lie derivative along u of p:
Lyp = udp+ d(up) = —du. In the second equality the Euler equation udp = 0 and
up = u?p = —p have been used. Note that L£,p + du = 0 is just another way to interpret
the Euler equation. Subsequent differentiation gives dL,p = —ddh = 0. A general and
important result is that the Lie derivative and the exterior derivative commute, thus
L, dp = 0: the vorticity dp is Lie-dragged along w. This is indeed the Kelvin’s theorem for
the perfect fluid in general relativity.

A final note: we derived the Kelvin’s theorem in the zero temperature limit, while at
the classical level it is only required for the fluid to be perfect (i.e. in the Euler equations
there are only conservative forces) and barotropic. However a perfect fluid at 7= 0 is
indeed barotropic, therefore the important point in the relativistic case is that it is possible
to define the momentum p via the thermodynamical relation dP = ndh. More general
conditions under which the isobaric surfaces and the surfaces of constant A coincide are
provided by the Carter-Lichnerowicz equation of motion (Rezzolla and Zanotti, 2013;
Friedman and Stergioulas, 2013). A slight generalization of the Carter-Lichnerowicz equa-
tion of motion for a multiconstituent perfect fluid and its relation with the non-relativistic
Crocco equation (that is an alternative to the Newtonian Euler equation) is discussed by
Gourgoulhon (2010).

Relativistic vorticity inside a rigidly rotating NS - We know that a classical and rigidly
rotating body is filled with a constant vorticity field parallel to the rotation axis. We
try to give a picture of the analogous case but in GR: we consider a rigidly rotating NS
described by the metric (4.29), in the approximation of slow rotation: the structure is
therefore given by solving the TOV equations, reviewed in App (A), from which we can
calculate the specific enthalpy profile h(r). The usual concept of vorticity is that of a
vectorial field, but now we have to consider the 2-form dp: to draw the vorticity lines we
have to restrict our attention to a 3D spacelike subspace. Vortex lines are therefore found

8 This notion of vorticity must not be confused with the so-called kinematic vorticity, which does
not contain the enthalpy contribution. It may sound strange that in relativity the vorticity contains the
enthalpy, since in a non-relativistic context the vorticity is just V X v. However in the Newtonian limit
h &~ mc? is a constant since £ is dominated by the rest-mass and £ > P.

9 In this brief survey, did not properly introduced the three notions of derivative: exterior, covariant
and the Lie derivative £, with respect to a vector field v. However their definitions are standard.
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Figure 4.1: Configurations of macroscopic vorticity lines for a rigidly rotating star with realistic
structure provided by the SLy (dashed lines) and Bsk21 (red lines, solid) EOSs. We make
comparison between a 1 Mg and a 1.8 Mg stars: the relativistic vorticity lines are bent (even
for rigidly rotating stars) due to the presence of stratification and curved spacetime, see also Eq
(4.35). The vorticity lines are plotted starting from evenly spaced positions on the equatorial
plane or graphical reasons: this does not reflect another property of the vorticity field: n, is in
principle not constant on the equatorial plane, even for rigidly rotating stars.

by employing the 341 decomposition on the vector w# = %ewagdpo‘ﬁu,,, where € is the
usual volume form (it is a tensor, not just the completely antisymmetric symbol). Quite
long calculations in the Schwarzschild chart provide the explicit form of w”: in Fig (4.1)
we plot its field lines in the (r, ) plane, where r is the circumferential radius.

4.1.5 Feynman-Onsager relation

The formulation of vorticity in terms of differential forms is general and valid in both flat
and curved spacetime, as well as in the three-dimensional space of standard vector-analysis.
According to the Landau picture of superfluidity, the superfluid flow is potential: its
velocity v is curl-free: V x v .= 0. Onsager in 1949 and Feynman in 1955 found that
this statement must be generalized: V x v = 0, except for singular lines around which
the phase of the order parameter winds by an integer multiple of 2. The discovery of
superfluid *He-A generalized further the rule: the order parameter can be more complex
than the usual U(1) phase. Despite also nuclear superconductivity provides a realiza-
tion of an exotic superfluid with a complicated order parameter-field, the attention is
most of the times restricted to the crustal superfluid, where the Cooper pairs are in the
singlet state, so that they behave as a spin-0 boson. In this case the usual Feynman quan-
tization rule, which is valid for the He-II, is assumed also for the neutron S-wave superfluid.

Topological argument - The Feynman-Onsager quantization provides a constraint on
the analytical properties of p at the mesoscopic scale (i.e. this description breaks down at
the scale of the coherence length): the form p is postulated to be exact, namely there is a
potential ® : D — C such that p = d®. This automatically implies zero vorticity, since
dp = dd® = 0. The fundamental point is the topology of the codomain C'. Irrotational
flow of the type p = d® exists for classical fluids as well and typically C' = R. However,
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for a quantum fluid like He-II or the S-wave superfluid neutrons, ¢ is usually interpreted
as the phase of the complex order parameter: in this case C = S'. This allows to define
the winding number of a closed path v C D: it is the number of turns performed in
S! when v is completely run once and mapped via ®. Imagine now that v can shrink
to a single point x, € D in which ® is continuous; in this case the image of v in S! is
a small oscillation around the value ®(z(): no winding. To obtain a non zero winding
number of v we have to break this (purely topological) continuity argument; we thus need
an unavoidable singularity of ®: only if v shrinks around some singular point zq, the
image ®(y) does not necessarily fall into a neighborhood of ®(x(), making winding possible.

Stokes’ theorem - We can integrate the momentum 1-form over a spacelike curve 7.
We expect, thanks to the Stokes’ theorem, that the circulation of p should be zero. How-
ever D may be not be simply-connected due to the singularities of ®: if v cannot shrink
to a non-singular point without leaving D, there is no surface ¥ C D such that 03 = .
More precisely, it is only guaranteed that there is a surface ¥ such that v € 0%, namely
3 has additional boundaries (due to holes) in order to avoid the singularities. For such
an oriented Y, the Stokes’ theorem applies, provided the fact that the integration of p is
carried out along all the boundaries that comprise 0¥ with the correct orientation: in this
case we always obtain zero. On the other hand, if we consider only the initial closed curve
v, the result must depend on the total winding number of ~. It should be clear that this
winding number counts the number of oriented holes in ¥, namely

h
/p:—w, N, €Z. (4.13)
v Ny

In the above expression N, represents the sum of the winding numbers of v around each
topological defect present in D, n; is the mass of the “bosonic molecule” that undergoes
quantization in units of the single-particle mass m. For example, when the baryon density
ng is used, we have n, = 4 in the case of He-II, ny = 6, for 3He and n;, = 2 for neutron and
proton superfluids. The Feynman-Onsager quantization thus consists of two statements:
that the potential of p is a phase that takes values in [0, 27] and that curves with winding
number equal to 1 give a contribution to the total circulation of h/ny.

In the case the gauge field A,, is also present and the single particles have charge ¢ (i.e.
q = —e for the electron fluid), the canonical momentum 1-form given in Eq (4.12) takes
the form

DPp = (ﬁuu + qAH) . (4.14)

Constants make sense since gA is an energy, like h, while u is dimensionless (to obtain a
genuine momenta a factor ¢ should be introduced at the denominator of the rhs). The
circulation is:

~ 1239 MeV f
/ (huy + qA,)da" = kmeN, = ﬁj\/} (4.15)
v b
where k = h/(n,m) is the so-called quantum of circulation (we reintroduced the ¢ factors,
so that the rhs and the lhs are both energies times a length) and the numerical value is
hc. In the non-relativistic limit we do not have to care about the temporal components
(7 is spacelike) and h = mc?, u’ = v'/c. The above expression gives

/(mvi +clqgA)dst = kmN, . (4.16)
.
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For ¢ — 0 we see that the flux of vorticity (w = dv) is measured in units of kK = h/my,
for m — 0 we have that the flux of magnetic field (B = dA) is is measured in units of
Oy = he/qp, where g, = gmp/m is the charge of the boson molecule.

4.2 Relativistic perfect multifluids

We briefly review the two-fluid description of degenerate neutron stars, where a single
normal fluid coexists with the superfluid neutrons. We will consider only the simplest
case of this framework, that is, the one in which the fluids are not conducting, there are
no dissipative forces between them and the temperature is zero. This limited two-species
scenario is a starting point to study cold superfluid neutron stars, a scenario that has been
developed in close analogy with a single-species superfluid at 7" > 0, where the normal
part represents the thermal excitations.

The modern covariant formulation for many interacting fluids has been developed
thanks to the variational formulation of relativistic hydrodynamics championed by Carter
(1989) and collaborators, where the clear distinction between transport currents and
momenta allows for a simple implementation of the entrainment effect. Application of this
formalism to the hydrodynamics of neutron stars is discussed by Langlois et al. (1998).
Since the historical development of the subject can be quite hard to follow, it is worth to
mention the more recent reviews of Andersson and Comer (2007) and Chamel and Haensel
(2008), as well as Rezzolla and Zanotti (2013). A concise review of the formalism with
application to the glitch problem is also present in Sourie et al. (2016).

As in chapter (2), the two fluids are loosely denoted by “neutrons”, flowing with
4-velocity uf, and “protons”, flowing with uf. Both 4-velocities are normalized to —1. The
respective 4-currents and scalar number densities are related to the velocities in the usual
way,

nh = nyul nhy = nyuj .

A fundamental quantity is the Lorentz factor relative to the frames carried by the two
fluids: if we define the Lorentz factor to be

I'=—ulupq , (4.17)

the equation (4.1) immediately gives that the relative velocity of the superfluid with
respect to the normal component is
-1
Ub, = T uly —uly.
Clearly this provides, via Eq (4.2), a natural definition of A, the speed of neutrons as seen
in the frame of the protons

A? = Ul Uppy = 1—-1/T2, (4.18)

We called this quantity A instead of the more evocative name Uy, since this terminology
is quite standard, see for example the discussion, in the Newtonian limit, given by (Prix
et al., 2002) where A = |v,, — v,|. The quantity A is essential since it provides the correct
generalization of the velocity lag between the normal component and the superfluid. It is
important as well that this velocity lag is actually computed in the frame of the protons:
all the microscopic physics, like the pinning of vortices, is local and is more transparent if
described in the frame of the crust.



4.2. Relativistic perfect multifluids 103

4.2.1 Master function approach

The variational approach allows to derive the hydrodynamic equations of any relativistic
mixture of interacting fluids. However following the development of these ideas on the
original literature can be difficult: the review of Andersson and Comer (2007) is thus an
helpful reference.

The formalism relies on the Hilbert action where the Lagrangian of matter A is a
invariant function of scalars built from the currents. For a single fluid A(n*), also known
as master function (Andersson and Comer, 2007), can be constructed by using the scalar
n*n,. The complete action for matter and gravity is (Misner et al., 1973) takes the form

4

[ dta V@G [A0) + 15l 09.9%)

As first reviewed by Carter (1989), the ordinary non-conducting perfect fluid models can
be comprehended to a large extent as resulting directly from the existence of a variational
formulation pioneered by Taub, which proposed an action integral for the perfect fluid
where the pressure turns out to be the on-shell value of the Lagrangian density A.

Variations of A are carried out by considering how the density changes when fluid
worldlines are displaced by a generic displacement field (hence this method was dubbed
“convective”). One of the simplest examples of this methodology is probably provided
by Carter and Langlois (1995), where the authors derive the relativistic generalization
of Landau’s two constituent superfluid theory in Lagrangian terms. In this paper, the
authors also clearly discuss the different variational approaches (based on different choices
of the fundamental variables) that have been proposed for the relativistic fluids in terms
of the Legendre transform.

Cowling approximation - In the following we will drop the gravitational part of the
full action: in many astrophysical situations of interest, like stellar oscillations, the test-
fluid approximation is enough to get an accurate description of the underlying dynamics.
Within this approximation the self-gravity is neglected in comparison to the background
gravitational field. In the case of the oscillations of relativistic stars the fluid is auto-
gravitating but the spacetime can still be considered fixed, in the sense that the star is
only perturbed with respect to the hydrostatic equilibrium. In stellar pulsation theory
this approximation is known as Cowling approximation. We will thus neglect the effects
of a dynamical spacetime: even though during glitches the pulsar rotates differentially
and at different rates, we will keep the metric fixed. However we still have to understand
how to construct the master function A.

Perfect fluid - A first insight on how should be A is given by considering the perfect
fluid at zero temperature: in this case d€ = pdnp, where np is the total baryon den-
sity and u = (P 4+ £)/np is the enthalpy per baryon. The general idea is to promote
thermodynamically conjugate variables to dynamically conjugate ones by rewriting the
first law as —d€ = p, dn”. This is easy to prove with the aid of the definition p, = puq
and of the fact that dn = —u,dn®. The energy density £ defines the Lagrangian density
A(n*) = —&(n) and p, can be regarded as the canonical momentum per particle.

Interacting perfect fluids - Similarly, for two interacting fluids we impose that

—d€ = py dn;, +phdn, . (4.19)
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Once we allow for a non-zero lag A between the components, the system cannot be strictly
described by an usual barotropic EOS &£(np,n,): with the currents nf and nf; we can
construct three independent scalar fields: n,, n, and nin,,. In place of the last one
(that is —T") we can choose A. Therefore the internal energy density takes the form
E(np, nn, A?). Since the EOS can now depend on A, the first law must be generalized as

A€ = iy dng + a dA?,

where p, are the effective chemical potentials of the two-fluid and x € {n,p} is just a
label. The presence of the scalar function « gives rise to a non-dissipative interaction
between the fluids called entrainment. Since

,Ufrdn"c = —HzUz dﬂg

and

2dI’ 2 nkn U U
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it is straightforward to find
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Finally, comparison with (4.19) gives

pna//ffn = (]- - En)una + (En/r)upa (420)
Ppa/tp = (1 — €p)upa + (€p/T)tna - (4.21)

Coherently with Sourie et al. (2016) and many others, the dimensionless entrainment
parameters €, and €, are defined as

2«

€ (4.22)

T2 pg
which implies Yy, pin€n = Yplip€p. The same relation hods in the non-relativistic formulation
where the chemical potentials u, are replaced by the mass per baryon m,: in the Newtonian
limit the relativistic chemical potential ji,, approaches ¢>m,. Thanks to the above relation
between the entrainment parameters, the energy-momentum tensor of the system is
(Langlois et al., 1998)

T = n, pPu + nppg uy + W gof (4.23)

and turns out to be symmetric, as it has to be. Since complete derivation of the energy mo-
mentum cannot be recalled here, we have to make comparison with the energy-momentum
tensor of the perfect fluid to understand the meaning of the scalar function ¥: the system
reduces to a single perfect fluid if the lag is zero and the two species are in chemical
equilibrium. More precisely when A = 0 the fluids can be in f-equilibrium (u, = p* and
n, =n’). In this case u® = u® and T’ = 1 imply that p,o = p* us. The energy-momentum
tensor becomes

Tag=npp" uPu® + U g = Tgﬂuo‘u'g =npp* — V. (4.24)
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From the general property of the single fluid 7¢# uqug = £, now we have
E(ny,ny, A=0) = npp* — ¥*,

the expression in Eq (4.24) is the usual energy-momentum of a single perfect fluid with
pressure P = U* and enthalpy density np pu* = £(ny,n),, A =0)+ P.

4.3 Axisymmetric spacetime

We reviewed the theoretical basis that are needed to construct idealized two-fluid models
of superfluid (non-magnetized) neutron stars. Now we have to discuss how the geometry
of spacetime can be conveniently simplified, in order to avoid complex numerical solution
of the full Einstein equations: we will fix some symmetries of spacetime (generated by the
Killing vectors) and extend them to be also symmetries of the matter.

In depth discussion of axisymmetric spacetime around neutron stars can be found in
Friedman and Stergioulas (2013) and references therein. Here we just need a few notions:
out analysis is greatly simplified by some strong initial assumptions (that are however
standard in the context of isolated and rotating relativistic stars). The neutron star
spacetime is asymptotically flat, stationary and axisymmetric; in particular it is a circular
spacetime, meaning that there are no meridional macroscopic currents in the fluid. This
can be formalized as:

- There exist a Killing field ¢* which is timelike at spatial infinity: it is the generator
of time translations. Although in realistic stellar models, t* is everywhere timelike,
within a horizon or in an ergosphere of an exceptionally compact rotating star, t* will
be spacelike (the ergosphere is by definition the region in which an asymptotically
timelike Killing vector becomes spacelike). This is not our case.

- There exists a Killing field ¢* that vanishes on a timelike 2-surface (the axis of
rotation), is spacelike everywhere, and whose orbits are closed curves. It is the
generator of rotations around the axis.

- Asymptotic flatness means the scalar products at spatial infinity tend to t#¢, — —1,
@Hp,, — oo if not on the spatial infinity of the rotation axis, @#¢, — 0. In particular
the first condition tells us that at spatial infinity ¢* is the 4-velocity of a distant
observer.

Carter showed that there is no loss of generality in considering the two Killing vectors as
commuting. This condition implies that a coordinate system {z*} exists where t*0, = 0;
and ¢"9,, = 0, (now it is evident that they commute); ¢ and ¢ are just names for two out
of the four coordinates {z#}. The nonzero components of the metric involving ¢ and ¢ can
be written as invariant combinations of the Killing vectors: since t# = §}" and p" = o8
(or, better ¢, = g, and ¢, = g,,) it follows that there are three metric functions that
have an invariant meaning;:

- The metric function gy = t#¢,, is a interpreted as time dilatation with respect to the
aforementioned observer at spatial infinity (more precise interpretation requires the
introduction of the ZAMO observer, see the next section).

- The function g,, = ¢* ¢, is the square of the circumferential radius: consider one
of the closed orbits of ¢*, namely a spacelike curve C defined by a slice t = ¢y of
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the subspace relative to the two Killing vectors. The proper circumference of C is
fc V—9dy = §¢ \/Gpp, Where d¢ depends on the parametrization used for C, usually

dp = 2m.
- The scalar g,y = "t is conveniently rewritten as g,y = —wge,. Clearly, also
w = —t"¢, /" is a scalar field and it is related to the phenomenon known as

dragging of inertial frames. The aforementioned properties of asymptotic flatness
give that w — 0 at spatial infinity.

The geometry of the orthogonal 2-surfaces is usually described by the introduction of a
conformal factor A, implying that the metric can be written as

9 = (91 — w?gpe)dt® + gpp(dp — wdt)? + A(daf + da3) ,

where w = —g4,/gpp. Here 21 and zo are two orthogonal coordinates that parametrize
the conformally flat subspace. Coordinates of this kind are thus called quasi-isotropic
coordinates. In the exterior vacuum, it is possible to reduce the number of metric
functions gu, gee, w, A, to three, but as long as one is interested in describing the whole
spacetime (including the source-region of nonzero pressure), all the metric functions are
required. Sometimes spherical-like coordinates 7, 6 are used in place of x; and x5 and
in the above equation dz? + dz3 is replaced by dr? + rd6?, while Jpp is parametrized as
9o = 1sin(0)B(r, 0) for some function B, in order to resemble usual spherical coordinates.
However (t,r,0, ¢), despite the name, are not the usual Schwarzschild coordinates used e.g.
in the TOV equations: in the non-rotating limit these coordinates reduce to the so-called
isotropic spherical coordinates.

On top of this we want a spinning fluid: the flow is circular if the 4-velocity u of the
fluid is toroidal, namely ul®*t? " = 0. This immediately implies that u* = utt" 4+ u®pH.
One of these two parameters is fixed by normalization (u’?gy + 2u'u® gy, +u¥?g,, = —1),
the other can be fixed by introducing the angular velocity of the fluid Q = u® /ul.

In the slow rotation formalism a different form of the metric is used, requiring
900 = G/ sin’(0), which corresponds to the choice of the usual Schwarzschild coor-
dinates in the vacuum region. We use Schwarzschild-like coordinates (t,r, 6, ¢) for the
global chart, such that the Killing vector associated with stationarity is d; and the circular
Killing vector is d,. Following Hartle and Sharp (1967), the metric can be written in
terms of four functions ®, A, Z and w as

g= _e2d>(r,0) dt2 + eQA(r,H) er + 7“2 eQE(r,O) d02+
+sin? 072 2200 [do — w(r,0)di]* . (4.25)
The coordinates 6 and ¢ represent, respectively, the polar and azimuthal angles with

respect to the rotational axis of the star!®. We can specify the fluid velocity: coherently
with the coordinates and the metric used we have

u = u" (0, +Q0,) ut = e /102, (4.26)
where, for convenience, we defined v = r sinfe=~®(2 — w). The fluid covelocity is

(u) e® +Tsin965wvdt+rsin9650d
u) = — .
g V1—0? V1 -2 7

10 Tt is the the set of points where 9(0p,0p) = sin? 0 r2 e2E("9) vanishes, i.e. @ = 0 or .

(4.27)
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The fluid 4-acceleration has a more complex expression and involves derivatives of the
metric functions. For vanishing ) we obtain the usual acceleration of the static fluid
in the Schwarzschild geometry (2 can be taken equal to zero in this limit): the only
non-vanishing components are'!

a” = e*9,0 + 0(0?%) a? = e E=r 29,0+ 0(0%) = 0(0?). (4.28)

As expected, the first correction to the centrifugal terms scales with 2, so that at the
order O(f2) matter can be considered to be in spherical hydrostatic equilibrium.

The study of rotating neutron stars is significantly simplified within the approximation
of slow rotation, introduced by Hartle (1967): for a star with mass M and radius R spinning
with an angular velocity €, the slow-rotation condition can be written as R3Q?/GM < 1,
which implies the slightly less stringent condition QR < ¢ (Andersson and Comer, 2001b).
For a typical (like the Vela) pulsar with standard mass M ~ 1.4 Mg and R ~ 10km,
spinning at Q ~ 70rad/s, this approximation works well. The slow-rotation framework
is less safe for millisecond pulsars, but so far only two MSPs have been seen glitching
[J1824-2452A (Cognard and Backer, 2004) and J0613-0200 (McKee et al., 2016)] and none
of them is in our sample of pulsars, due to the small amplitude of their glitches.

At the first order in €2 the metric in Eq (4.25) reduces to (Hartle, 1967)

g= (w2 sin?6r? — €2q>> dt? + M dr? + r? do*+
+sin?0 12 dp? — w sin®0 72 (dedt + dtdp). (4.29)

The metric functions w, A, ® that appear here depend only on 7 and are not the same of
Eq (4.25): they are the slow-rotation limit of the metric functions of the previous section
(2 goes to zero, so the number of functions is reduced by one). Oblateness appears when
second-order corrections in (2 are taken into account: more generally, when time is reversed
the velocity of the fluid is reversed as well (i.e. @ — —€Q) and the metric in Eq (4.25) does
not change if w — —w while ®, = and A are unchanged. This assures that these functions
can be expanded in powers of Q2.

In order to implement the slow rotation approximation, we thus work at the first
order in €, within the two-fluid formalism. Also €, and w are considered small; in
particular, the quasi-corotation condition €2,, < €1, can be assumed for the present
case of pinning-induced lag. Relaxation of this quasi-corotation assumption is studied by
Andersson and Comer (2001b).

4.3.1 Tetrads (frame fields)

Frame fields correspond to a set of ideal observers immersed in the spacetime; the integral
curves of the timelike field are the worldlines of the observers.

We introduced the metric of axially symmetric spacetime, e.g. Eq (4.25), on the base
of the existence of a global chart of coordinates. It is also useful to introduce the tetrad
formalism: the spacetime is filled with a infinite set of observers that carry a tetrad, i.e. a
set of four orthonormal vectors e, = €40, for a = 0,1,2,3 that span the local tangent
space (Misner et al., 1973). If the tetrad is orthonormal, the vector ey is the absolute

11 For a spherical metric in Schwarzschild coordinates such that grr = ezA(T), the metric func-
tion m(r) is used in place of A(r), namely A(r) = —% In (1 —2Gm/rc?). The radial acceleration is
a” = rc?/(rc? — 2Gm) 0,® , coherently with the TOV equations. The TOV can be conveniently derived

by considering the equilibrium from the general form of the Euler equation.
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4-velocity of the observer carrying that tetrad: g(eo, eo) = efeg, = —1. An orthonormal
tetrad provides a “square root” of the metric tensor: since g(eq,e,) = 1 for a = 1,2,3 and
g(ea,ep) = 0 for a # b, we can write g(eq, ep) = 14p, where 7 is a symbol (not a tensor)
that indicates the Minkowski metric. Using the fact dz*(e,) = e¥, it follows that the
metric is decomposed into its square root

b . —
Guveh ey = Nab =  GJap = € €37ap Where: effeq = L.

We introduced the new set of numbers e, defined as the matrix-inverse of e; more

precisely e® = ejjdz! for a = 0,1,2,3 is a set of four differential forms uniquely defined by
eq(e?) = 8°. This implies that

n b

dat = elle, = g=gueie, e"e = Nap e? €’
Hence the set of forms {e”} provides a local basis of covectors such that the metric tensor
is that of special relativity. The Latin indexes can be transformed according to the usual
Lorentz transformations, namely A pe® = e’.

We can now use this technology on the metric (4.25): since we are constricting a
tetrad relative to a specific set of observers, instead of the generic symbol e, we use the

specific names z,. For the specific metric considered here, it is easy to find out that

g= —0,0 + 21 + 2252 + 2323 and g—l = —2020 + 2121 + 2229 + 2323 are realized for
ZO:eq>dt Zo=€7¢(3t+w8¢)
Zl = 6A dr 2 = G_A ar
2 = 1 = (4.30)
z° =re>db 2 =1"te =0,
23 = sinfre® (dep — wdt) 23 = (sin&r)*l ¢—E a,

The overall signs have been chosen in order to satisfy the defining property e, (e?) = 6%, the
fact 20 is future-directed'? and the right-handedness of the spatial triad. Since w?gy, — 0
and g+ — —1 at spatial infinity by general principles, we have that z}} — ¢#: the temporal
coordinate t corresponds to the time as measured by the observer at spatial infinity. It
is also possible to show that the four acceleration of this set of observers is V. zg has
components only along 0, and Oy: this kind of observer is flying around the star at fixed r
and 6 with zero angular momentum!3 (ZAMO or “zero angular momentum observer”).

12 Spacetime can be foliated by considering surfaces of constant ¢. The gradient of ¢ (namely dt)
identifies the direction orthogonal to these surfaces. The vector field g~1(dt) that is dual to dt may be
used to define the 4-velocity of a set of observers, the so-called FEulerian observers. However it is not
guaranteed that this vector field is normalized to —1. In other words we want to normalize g~1(dt) in
order to define the field eg of the Eulerian observers. This can be done by introducing the lapse function a:
from ozzg’l(dt7 dt) = —1 we can find the proper normalization. This construction immediately gives that
a? = —1/g*, and we only have to decide an overall sign. Consider eg = —ag~1!(dt) and o = 1/4/—gt* > 0.
In the specific case of Eq (4.25) we have gt = —e 2% and o = €?®, so that it turns out eg = zo: the
ZAMOs coincide with the Eulerian observers. Finally note that 20 = drzamo = adt, implying that the
function a can be equivalently given in a form of Lorentz factor with respect to the observer at spatial
infinity, oo = —tyef.

13 The invariance of the fluid under the symmetry group generated by a Killing vector k amounts to
the vanishing of the Lie derivative £y of all the tensor fields associated with matter (Gourgoulhon, 2010,
2006). In particular Lip = 0, where p is given in Eq (4.12). Again the Cartan formula allows to show that
p(k) = k*p, a conserved quantity along fluid lines, i.e. Vyp(k) = 0. In our case k = 9 gives Vuhus =0
(the relativistic Bernoulli theorem) while k = 9; gives Vuiu% = 0 (the conservation of angular momentum
per baryon). This allows to interpret ug as the angular momentum of a test particle that, depending on
its motion, may be conserved or not. Consider 2oy, = guv2§ = —e‘chL: the fact that zo, = 0 tells us that
this fluid of non-freely-falling test particles has zero angular momentum.
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It can also be interesting to construct also the set {c,}, the tetrad field carried by the
fluid (that defines the corotating observers). We already know the timelike future-oriented
unit vector, i.e. ¢g = u: it is the 4-velocity of the fluid, given explicitly in Eq (4.26). The
Lorentz factor of a fluid particle relative to the ZAMO is

W = —g(20,c0) = (1 — 0?72, (4.31)

namely the ZAMOs see fluid particles flowing in their laboratories with velocity v. The
corotating observer is thus obtained by boosting the ZAMO with velocity v,

(o W) (2)=(2) (432

The other two elements of the corotating tetrad can be taken equal to the corresponding
ones of the ZAMO.

4.4 Relativistic Feynman-Onsager relation

The canonical momentum per particle of a perfect fluid at 7' = 0 is the 1-form p = pg(u)
given in Eq (4.12) where g(u) is the fluid covelocity. The momentum can thus be naturally
integrated over 1-dimensional manifolds embedded in the spacetime: here we study the
circulation of the form p.

At the mesoscopic scale the superfluid flow is irrotational, dp = 0, thus the superfluid
can rotate only if its domain is not simply connected. The topological defects correspond
to world sheets into the domain whose intersection with the three-space defines a vortex
line (Prix, 2000). Integration of p, given by Eq (4.12) along a closed path C inside the
superfluid domain is assumed to obey Eq (4.13), in this case:

/g(U) = % (4.33)
C

where the factor of 2 accounts for Cooper pairing, and h is the Planck constant. This
formula can be easily made more explicit within the assumption of circular spacetime.
A natural choice is to consider C to be an orbit of J,, defined by ¢t = tg,r = rg, 8 = 6p.
Given the metric in Eq (4.25), the azimuthal component of the canonical momentum p,,
is the angular momentum per baryon [see Eq (4.27)]

Dy = pWeErsinfv = pWe ®(e5rsin )20,

The angular velocity does not need to be a constant, but can be a generic function (r, 6),
at least as long as we consider A/ just a macroscopic function (otherwise pathological
choices of Q(r, ) could not guarantee the possibility to relate A/ to a reasonable vortex
configuration).

The momentum restricted on the curve C is pl¢ = p, (70, 60)dep, so that the integral in
Eq (4.33) is trivial and gives

Pe(ro,00)/mn = &N (10, 00)

2w
The bare neutron mass m, has been introduced in order to obtain the quantum of
circulation kK = h/(2m,,). The Feynman-Onsager relation is finally given by
Q ke® N(r,0)
VI—02 2w (eErsind)2(u/my)

(4.34)
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This relation simplifies within the slow-rotation approximation: we just have to keep at
most the linear terms in € in order to find

re®™) N (r,0)
27 (rsin@)2(u(r)/mny)

where € is the angular velocity measured by a distant ZAMO. Note that the Feynman-
Onsager relation depends explicitly on general relativistic frame-dragging.

In the Newtonian limit the specific enthalpy is a constant and the usual non-relativistic
Feynman-Onsager relation is recovered

Q—w(r) = + 0(9%), (4.35)

Q(r,0) = M

27 (rsin 6)2
In this limit, when vortices are parallel to the z-axis, A is a function of only 7 sin § and the
angular velocity €2 is columnar. This ceases to be true even at the level of the slow-rotation
approximation due to the presence of the metric functions (w and ®) and of the stratified
enthalpy p. In the above relations, it is also possible to use the fact that the quantity
= ,u(r)ei’(’")/mn is constant throughout the star'4, so that it can be thought as a factor
that rescales k.

For our two components system, Eq (4.33) is still valid once the four-momentum per
baryon p is replaced with p,. This implies that the Feynman-Onsager relation for the
two-fluid system with entrainment is obtained by replacing Q with €, in Eq (4.34). For
the slow-rotation limit we can use Eq (4.35) and obtain

- K e2®MN(r,0)

Qup(r,0) = —Q(r) + +0(02), (4.36)

27 i, (7 8in 6)2

where fi, = pn(r)e®™/m,, and Q,(r) = Q, — w(r). It is straightforward to rewrite
this equation in terms of €2, via Eq (4.50) and thus see that entrainment modifies the
expression for the physical velocity lag Q,,(r,6) in a trivial way.

4.5 Maximum glitch amplitudes: slow-rotation framework

We now generalize the result given in Eq (3.14) by constructing a model of angular
momentum reservoir in general relativity. The model is static: there is no need to discuss
the dynamical equations of the problem that regulate how angular momentum is transferred
between the two fluids. Because of this we can only discuss the mass upper bounds.

The stellar structure and composition, as well as the spacetime metric, are treated
as fixed. These are not severe limitations, since our aim is just to provide an upper
limit on the glitch amplitudes. However, much of the formalism and some intermediate
results reported in this section can be used as a basis for constructing dynamical models
of superfluid glitching pulsars (i.e. a slow-rotation relativistic version of the equations for
pulsar rotation proposed in the previous chapters). An example of dynamical model for
pulsar glitches with two rigid components (but in full general relativity) is discussed in
Sourie et al. (2016), where the authors study the effect of GR on the characteristic rise
time of large glitches.

14 This can be seen as a consequence of the vorticity equation for the perfect fluid or via the standard
argument given by Glendenning (2000).
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4.5.1 The two-fluid model within the slow-rotation approximation

The results presented in the previous sections are valid for both rigid-body rotation as well
as for differential rotation '°. In the following, even if we have two distinct components,
we shall compute the moments of inertia assuming that the superfluid is corotating with
the rest of star: therefore we will take the case of a cold and uniformly rotating star as
a reference case and mention additional assumptions where necessary. In this reference
case the velocity u, given in Eq (4.26), is interpreted as the angular velocity of the two
components, flowing with velocities u, and u,, at corotation. In this case the matter
can be modeled as a perfect fluid: observations of pulsar glitches are consistent with
departures from a perfect fluid equilibrium (due to the presence of a solid crust) of order
1075 (Friedman, 1992). We are thus forced to consider small departures from equilibrium.

Given the metric in Eq (4.25), the 3-velocities v, and v, of the fluids measured by the
local ZAMO are given by Eq (4.26), namely

ve =1 sinf =P (Q, — w) (4.37)

where z € {n,p} is a component label. We impose rigid-body rotation of the p-component
and a quasi-corotation motion of the n-component, namely Q,,(r,60) = Q, + Q,,(r,0) and
[r Qpp(r,0)] < 7Qp, < ¢ for r < Ry and 6 € [0, 7]. The corresponding 4-velocities in the
global chart are

Uy = Wye™® (0 + Q,0,) (4.38)

where we defined, in analogy with Eq (4.31), the Lorentz factors

€T

W, = (1-02) "% (4.39)

The Komar mass'6 can be used to compute the total angular momentum as (Friedman

and Stergioulas, 2013)

L= [ (Tus = 572000 ) @ 5 v (4.40)

15 In general relativity a motion is said to be rigid if the shear tensor
O = Viqug Lo L — Voul 1, /3

vanishes. In our case o, vanishes if 2 is constant. See Rezzolla and Zanotti (2013) for construction of
the shear tensor and Gourgoulhon (2006) for interpretation of the notion of rigidity via Killing vectors.

16 Firstly, the existence of the Killing field t* allows to define the corresponding Eulerian observers.
Secondly, t# allows also to foliate spacetime (pick up a chart y*) with surfaces of constant f(y*), where the
scalar f(y*) is a solution of Ly f =tV f =1, i.e. f is Lie-dragged along the orbits of ¢t* at the constant
rate 1. The 3-surface f(y*) = o identifies the subspace of all points labeled by the numerical constant
to. At this level the coordinates are completely generic but we can perform a change of coordinates
{y°,y*} — {f,x'}; f is usually called t, i.e. ¢ is a function that satisfies t*V,¢ = 1. This is trivially
satisfied if the Killing field can be identified with 8;. The covelocity g(egp) of the Eulerian observers is
proportional to the normal dt and their 4-acceleration a = V¢,eq is tangent to the 3-surfaces of constant
to, namely dt(a) = 0.

Given this construction, the general form od the Komar mass M}, relative to a generic Killing vector k
can be written as (Gourgoulhon, 2010)

M, = A/ (2Tapedh? — T el k,) det(gley)/? da' da’da® |
to
where A = 1 if k is the Killing vector associated to eg and A = —1/2 if k is a spacelike Killing

vector. In our case ey = 29, the ZAMO velocity, k = 9y, A = —1/2, det(glt,)'/? = sin 672 ere?® and
dzldz?dz® = drdfde.
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We want to study L in the case where T*" is the energy-momentum tensor of the system
of Eq (4.23) and
dV = M= g%

is the volume form of the three-surface of constant time given by considering the square root
of the determinant —det(g|; = const) [just drop the terms containing dt in Eq (4.25)]. By
using the energy-momentum defined in Eq (4.23) and remembering that W,, = —g(us, 20)
and g(0,,20) = 0, it is easy to find the expression

L= —/ng z(’[f AME gy
— / (Wh D i, + Wy P 1) eA2E By

where p,, are the azimuthal component of the momenta defined in Eqs (4.20) and (4.21):
there is a clear analogy with the non-relativistic relations of Eqgs (3.3), (3.4) and (3.5).
In particular, we would like to split the azimuthal component of the total canonical
momentum density!”

To = Wapnenn + Wyppeny

as done in Eq (3.4), in order to single out the superfluid reservoir contribution hidden
in L. Due to the Lorentz factors W, and T, the relation between the momenta and the
velocities in the above equation is non-linear, and it is not possible to separate 7, into
terms that depend only on Q,, and €2, respectively.

To overcome this complication we now start to use the slow-rotation approximation:
only terms that are at most linear in €2, are considered and the metric is the one in Eq
(4.29). The various quantities of interest are, at the lowest order in €,

W, =1+ 0(2) (4.41)
uf = e *Q, + 0(2)) (4.42)
Upp = € P2%(Qy — w) + O(Qg) (4.43)
2a
= 02 4.44
Co nzuz+0( ) (4.44)
L= W, W,(1—-uv,v,) =1+0(97,) (4.45)
Up — 0
A=-"""P — 12720 02 4.4
Tp——. ze np + O(82) (4.46)

where the Lorentz factor I', the lag A and the entrainment parameters ¢, are defined in
Eqgs (4.17), (4.18) and (4.22) respectively. The above approximations, when used in Eqs
(4.20) and (4.21), give the expressions

Pnyp = Hn ZC2 67¢(Qp + (1 - en)an) y (447)
Dpp = Hp a? e_q)(Qp + €pnp) (4.48)
where Qp = €, — w can be considered the angular velocity of the protons as seen

by the ZAMO. Leaving aside the fact that now the canonical momentum p,, is an

17 Note that, differently from the Newtonian case of Eq (3.3), the total canonical momentum density
in GR turns out to be entrainment dependent. Explicit dependence on entrainment, however, appears
only at order O(QPQ%IJ).
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angular momentum instead of a linear momentum, the above equations are the relativistic
generalization of Eqs (3.1) and (3.2): the mass per baryon m,, is replaced by the enthalpy
per baryon u,, while the only effect of curved spacetime is the presence of the factor
/—gtt = e~ ®. Therefore, the total angular momentum in the slow-rotation approximation
is

L = /d?’m NP 2 [(pn 1+ pp 1)L + i gy Q)] - (4.49)

This formula was derived by taking only the linear terms of an expansion in €2, and by
assuming that €2, is of the same order of €2,: for its validity, there is no need to invoke
the smallness of the lag expressed by the additional quasi-corotation condition (that is
however important in order to justify our use of a barotropic equation).

Finally, we can introduce the auxiliary angular velocity Q, = Q, + €, (this exact
equality is indeed a definition for €,,) by imposing that

gaoug = pna/unv

where u,, is the 4-velocity associated with the fictitious v-component. More precisely, u,, is
defined in terms of €, in the same way as done for u,, and u,, see Eqs (4.37) and (4.38).
In general, the relation between (2,,, €, and €Q,, imposed above is complicated by the
presence of the Lorentz factors W, in u, and I' in p,,. However, in the slow rotation case,
expansion of Eq (4.20) and of g(u,) in powers of Q, reads

Qup = (1= €2)np + O(22) . (4.50)

Within the slow-rotation approximation the definition of €2, is the same as that given by
Eq (2.10) in the Newtonian framework.

4.5.2 Relativistic corrections to the moments of inertia

By considering successive corrections in €2, Hartle (1967) derived a methodology to calculate
the metric in Eq (4.29) for a rigidly rotating star. Once the metric functions are known,
the moment of inertia for a slowly and rigidly rotating star is given by

sr (R Q(r)
I 4 A ()~ (r) ) 451
3.2 /0 dr re h(r) Q (4.51)

Here h(r) = £(r) + P(r) is the enthalpy density profile inside the star, Q(r) = Q — w(r)
encodes the rotational frame-dragging and the ratio 2/ does not depend on the angular
velocity €2 and is smaller than one.

In the slow-rotation approximation at the lowest order, the background neutron star
structure is a solution of the TOV equations. Given an EOS and a central density (i.e.
the stellar mass), the density h(r) and the metric functions ®(r) and A(r) can obtained
through the standard TOV equations, while €(r) follows from the integration of an
additional equation. We do not review the method here, since it can be found in many
previous articles or books, see e.g. Glendenning (2000) and references therein. Following
this prescription, one can thus find the radial profiles, in particular £(r) = p(r)c?, P(r),
np(r), yn(r); also the profiles f,(r) and €,(r) follows by obvious reparametrization from
anu given microscopic expression for f,(np) and €,(ng).

Although previous studies have already introduced partial moments of inertia within
the slow-rotation [as done e.g. by Newton et al. (2015)], we further discuss this issue in
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the present context [a complementary approach and discussion can also be found in Sourie
et al. (2016)]. In order to clarify the assumptions needed to proceed, we have to come
back to the total angular momentum of Eq (4.49):

- The thermodynamic Euler relation for a two-fluid system tells us that (Langlois
et al., 1998)

E = iy + pipny — V. (4.52)

but we need the enthalpy density of a single (possibly barotropic) fluid h, that is
the quantity plays the role of inertia in Eq (4.51). We thus impose ¥ = P, even if a
velocity lag A is present [see also the discussion around Eq (4.24)].

- We next remark that, by looking at Eq (4.49), one needs to know how to calculate
N fy, and npp,. We thus impose chemical equilibrium (g, = g, = p*), so that the
above Euler relation reduces to the enthalpy density of a simple barotropic fluid
€+ P = p*np, where pu* plays the role of a mean effective inertial mass per baryon
(Friedman and Stergioulas, 2013). In the limit of no differential rotation (¥ = P)
and of chemical equilibrium, we have n, u, = y,npu* = y,h where y, = n,/np is
the superfluid fraction.

Under these two additional assumptions, the total angular momentum in Eq (4.49) can be
written as

L =1Q,+ AL[Q,;], (4.53)
where I is given in Eq (4.51) and

AL[Q,,] = /dgx APy, ha? Qpp - (4.54)

We remark that in the decomposition performed in Eq (4.53) of the total angular momentum
in a global component plus the contribution of the neutron reservoir represented by the
lag, only the global part contains the effect of frame-dragging: the reservoir AL[Q,,,] has
no factor Q(r)/Q (cf. also Eqs (4.47) and (4.48)).

Again, we can introduce the partial moment of inertia I,, as the normalization factor
of the distribution defined by AL; momentarily reintroducing the ¢ factors, it turns out to

be
8

T 32

This allows to define the average lag (,,) (weighted with I,,) and thence write the
angular momentum of the reservoir as

Rg
I, / dr rie Ny, (E+ P) . (4.55)
0

ALQp] = () - (4.56)

We point out that, although we used the same symbol, the quantity I,, does not represent
the moment of inertia It°* of the entire n-component (that is not even a clearly defined
quantity in our simple approach) but only that of the reservoir associated with a given
lag, in the sense of Eq (4.56).

Obviously, this argument introduces the more subtle problem of justifying chemical
equilibrium. Andersson and Comer (2001b) showed that chemical equilibrium between
the two components in a neutron star implies corotation of them, and it is thus only
approximatively realized in our context where the fluids must rotate differentially in order
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to produce a glitch. On the other hand, Sourie et al. (2016) have shown the inverse
reasoning: starting from the hypothesis of corotation and assuming chemical equilibrium
at the center of the star, it is possible to infer chemical equilibrium throughout the entire
star. The additional condition of quasi-corotation is then necessary to ensure very small
departures from chemical equilibrium and from rigid rotation, and thus guarantee the
counsistency of Eq (4.55) with the rigid-body Hartle’s formalism.

Finally, from Eq (4.54) we can derive the moment of inertia of the auxiliary v-component,
although it will turn out to be less useful if dynamical equations are not discussed. This
is trivial in the slow rotation limit because of Eq (4.50): the moment of inertia associated
with the v-component is analogous to Eq (2.3)

gm [T n(E+P
I, = 377; dr ple= @A I8 T2) 1< 7+ ) . (4.57)
0 €n

A similar (but not equivalent) definition, is also present in the derivation carried out in
Newton et al. (2015): in order to account for entrainment in the crust, the authors simply
divide the integrand in Eq (4.51) (limited to the neutron component) by the dimensionless
effective neutron mass m? (r)/m, = 1 — e, (r).

4.5.3 Relativistic corrections to the maximum glitch amplitudes

We derived the relativistic generalization of Eq (3.5); the formula for the maximum glitch
amplitude is still given by Eqgs (3.9) and (3.7), but now one needs to consider the relativistic
definitions of I and AL, as given respectively in Eqgs (4.51) and (4.54).

Note that for this calculation it is not necessary to introduce explicitly the partial
moments of inertia.

Before moving to the numerical estimates of the maximum glitch amplitudes, we still
need to discuss the critical unpinning lag in a relativistic framework. We try to study
the robustness of the model against entrainment and against the unknown details of the
vortex line configuration by analyzing the two scenarios of rigid and slack vortex lines. In
both cases, we need the Magnus force per unit length of vortex; since our model is highly
symmetric, we just have to consider its modulus, given by (Langlois et al., 1998)

fM = KMpNnVrn , (458)
where v, is the speed of a segment of vortex line as seen in the local frame comoving
with the superfluid flow. When lines are pinned, they are forced to move with the normal
component and vy, = A. By using Eq (4.46), the local Magnus force is

far=kmpynnpe T Qn,, (4.59)
the slow-rotation analogue of Eq (4.58).
Rigid vortex lines - We try to adapt the Newtonian phenomenological treatment of
macroscopically rigid vortices to the relativistic context: not surprisingly, extending to GR

the global unpinning condition is tricky. Again, we assume a configuration of paraxial vor-
tex lines: in the plane defined by ¢ =const. and ¢ = const., the vortices are parametrized
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by Y, (2) = (20, 2), and the line element along the curve is'®

dye v 22 x?
dl=\/gap—7 d; dz = \/gz.dz = 7262/\ +5dz.

While in the Newtonian framework this corresponds to columnar bulk rotation (of the
v-component), such a configuration is no more consistent with columnar motion when a
strong gravitational field is present, as discussed in Appendix B: due to stratification and
spacetime curvature, the lag €2,, is in general a function of both the = and z coordinates,
as shown in Eq (4.36). Conversely, an actual columnar bulk rotation must correspond to a
configuration of bent vortices. On the other hand the actual configuration of vortices in a
steadily spinning-down neutron star is unknown (provided that such a stable configuration
exists).

To proceed, we somewhat ignore the result in Appendix B and we arbitrarily generalize
the critical lag of Eq (3.13) in order to obtain a critical lag that is only dependent on z:

f% dl fp

MpNp ,—P °
nxf% dl feiee

O (x) = (4.60)

Numerically, this critical lag does not differ significantly from those presented in Paper-I,
with a marked peak in the cylindrical region immersed in the inner crust. As already
stressed, the curves 7, in the above expression do not follow the actual vortex lines
configuration consistent with such a columnar lag; this could be in principle implemented,
even though this is likely to make no difference at the numerical level: we just want to
test the robustness of AQ,s against different unpinning prescriptions and its dependence
on entrainment, if any. The corresponding maximum glitch amplitude turns out to be

Ry z(x)
AQaps = 4—7T/ dxw2/ dz Yn h A2,
0 0

Ik 1—e€,
Mpnnc® g -t
— €n

x

and is entrainment dependent. We stress that this is not a drawback of our arbitrary
choice of straight curves v,: the dependence on entrainment cannot be canceled out: in
the relativistic framework, the integrals containing the rest-mass and the enthalpy do
not simplify, as they do in the Newtonian framework where h =~ ngm,,. Therefore any
non-local unpinning prescription will give rise to an explicit dependence on entrainment
parameters. It may be interesting, but not straightforward, to study the configuration
of rigid vortices ~, consistent with a columnar Qf (), by using the Feynman-Onsager
relation in axisymmetric spacetime.

Slack vortices - The case of slack vortex lines is even simpler: we do not need to
consider the stable (if exists) configuration of vortex lines. By taking Eq (4.59) and

18 In cylindrical coordinates the slow-rotation metric has components

2 22 CEQ zZT

ﬁ(EQA _1)

AL Zehg T
Jzx = € 9zz = € Jxz =
) 72 ) )
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Table 4.1: Some properties of the three EOSs used: Mmax is the maximum non-rotating
gravitational mass, while neqqe is the baryon density at the crust-core interface [see Fantina et al.
(2013) for a study of the global properties of non-rotating neutron stars constructed with the
same EOSs used here|. For comparison we also list the baryon density at which the pinning force
used in this work goes to zero.

EoS Nedge [fm—3] Mnax Ref.

SLy4 0.076--0.077 2.05 Mg (Douchin and Haensel, 2001)
BSk20 0.0854 2.16 Mg (Goriely et al., 2010)
BSk21 0.0809 9.98 M, (Goriely et al., 2010)

fp 0.0776 Seveso et al. (2016)

imposing the unpinning local condition, we find

fp(r)e®™
Krsindmpng(r)

QO (r,0) =

Then, Egs (3.9) and (4.54) give

w2 [Ra E(r)+ P(r)
AQ . = — S o B S 4.62
abs Ik Jy drre mynp(r)c? fr(r), (4.62)

in complete analogy with the Newtonian maximum glitch amplitude reported in Eq (3.14).
In the non-relativistic limit, P <« £ and p ~ m,, np imply that the fraction in the integral
is ~ 1. With the local unpinning prescription and no factor I" due to slow rotation, the
effects of entrainment on the maximum glitch cancel out in GR as well. The critical lag is
associated with a relative velocity A" = xe“bﬂ%, describing a laminar flow on concentric
spherical shells. In particular, by considering that the pinning forces estimated by Seveso
et al. (2016) display peaks of the order 10'® dyne/cm around m,np ~ 3 x 10*3 g/cm?, we
have

fp

AT —
RMMn Yn NB

< 107%¢.

For comparison, the slowest pulsar considered here is J0631+1036, whose angular ve-
locity of 21.8 rad/s corresponds to an equatorial velocity of order ~ 10~3¢. Thus, the
approximations of slow rotation and quasi-corotation are consistent with the pinning
paradigm.

4.6 Numerical results

We now present the numerical estimates of the partial moments of inertia and the maximum
amplitudes; then we estimate M,;s, the absolute upper bounds on pulsar masses.

The input used in the calculations is summarized in Table (4.1); we adopted three
unified barotropic EOSs (SLy4, BSk20 and BSk21), for which the superfluid fraction
yn(np) is provided together with P(np) and £(np), consistently for all regions of the
neutron star (SLy is not “unified” in the outer crust but this region is unimportant in the
present work).
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Figure 4.2: The three barotropic EOSs used: pressure P (dashed), total internal energy &(solid),
and enthalpy h = £ + P (dotted) densities versus the total baryon mass ng. Some details about
each EOS are reported in Table (4.1). The thin dotted black line is the rest-mass density ¢ m, np.
Some conversion factors can be useful: 10°g/ecm® = 0.6 fm™> = 8 x 10°® erg/fm® = 560 MeV /fm®.
While the crust-core interface occurs for densities < 0.1fm ™2, the central baryon density ni® is
corresponding to the maximum mass is out of scale, e.g. for the SLy we have n%* ~ 1.2fm™3 and
£7%% /c? 22 2.9 x 10*® g/cm®, which implies £2°°/(mnc?n®) ~ 1.4; for this maximal static mass
configuration the contribution of the central pressure to the central enthalpy is nearly the ~ 50%.

4.6.1 Relativistic moments of inertia

It is known that the moment of inertia given in Eq (4.51) can have a marked discrepancy
with respect to its non-relativistic counterpart. Although only the total moment of inertia
appears in the calculation of the maximum glitch, it is interesting to discuss the relativistic
corrections also to the partial ones, since they frequently appear in studies of pulsar
glitches [see e.g. Delsate et al. (2016)].

A word of caution regarding the Newtonian framework is necessary: since the back-
ground configuration is actually fixed by the integration of the TOV equations, it is not
clear what should be interpreted as “inertia” of the system in this spurious scenario. In a
strict Newtonian definition, the inertia corresponds to rest-mass (the rest-mass density
p = myunp); of course this is at odds with the relativistic definition of “mass density”
p = &/c? widely used in the context of the TOV equations. The mass density p is indeed
the energy density provided by the EOS and contains the contribution of the hadronic
nucleon-nucleon interaction. Numerically, however, m, ngc? and p start to differ by more
than 10%, only for densities above 10'5g/cm3, as can be seen in Fig (4.2).

Indeed, some studies existing in the literature take the more consistent choice of always
adopting the relativistic definition p = £/c? of density and use it in different prescriptions,
like the one discussed by Ravenhall and Pethick (1994). This was the approach of our
Newtonian model and we will adhere to it in the following: in the Newtonian framework,
we take p = £/c? and p, = y,p in Eqs (2.4), and (2.3). This prescription could be
considered a “quasi-Newtonian” limit, in the sense that h ~ £, namely £ > P, a standard
requirement to perform the limit; however the further step h~1, namely m,c*np ~ & is
ignored.
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The purely-Newtonian maximum glitch amplitude of Eq (3.14) is not affected by our
quasi-Newtonian alternative choice made here, as long as one works coherently by using the
same definition of the mass density p,, also in Magnus force too. This ambiguity is inherent
to the spurious nature of a Newtonian dynamics on top of a relativistic background and
disappears in the present GR framework.

Study of the extreme scenario - It is interesting to consider the most extreme scenario of
rigid vortices that fill the whole star: this is the case for which we expect the most evident
deviations from the quasi-Newtonian case. In Fig (4.3) we compare the moments of inertia
in the two frameworks (N and GR stand for “quasi-Newtonian” and “slow-rotation”) by
plotting I and I,, as a function of the gravitational mass M. For the moment of inertia I,
associated with the superfluid reservoir, we have indeed chosen the case of rigid vortices
that thread the entire star, so that both the crustal and core superfluid contribute to
the angular momentum reservoir. As expected from several existing studies with various
EOSs, the relativistic moment of inertia is larger than its Newtonian counterpart, with
discrepancies up to 50% for large stellar masses. This is even more dramatic for the
reservoir, where I,, always exceeds the total moment of inertia I, indicating that the
effect of /€ in the integrand of I is more severe than the diminishing effect of y,, in the
integrand of I,,. Although unusual this result is not a physical contradiction, and becomes
less and less severe as the superfluid reservoir is restricted to the outer layers only.

In Fig (4.4) we plot the ratios I,,/I and I,/I as a function of mass in the N and
GR cases for the three EOSs. When entrainment is switched-off, we have that I, = I,;;
therefore, comparison of the two quantities quantifies the global effect of the non-dissipative
coupling for a given vortex configuration; the differences are altogether quite small, no
more than some percent in the GR scenario. We can conclude that differences due to
entrainment, that are severe when only the crustal superfluid is accounted for, are greatly
diminished if a large reservoir is taken into the core.

Moreover, for masses larger than ~ 1.1 Mg we have I, > I,,, while smaller masses yield
I, < I,, in both the N and the GR cases: the entrainment parameters adopted here are
large and negative in the crust, but small and positive in the core. The crust contribution
dominates for light stars (which present a thick crust), while for more massive stars (with
thinner crusts) the core contribution prevails. This is quite different than the case of
crustal reservoir commonly discussed in the literature, where entrainment has always a
decreasing effect on the moment of inertia of the crustal superfluid (Andersson et al.,
2012); (Chamel, 2013).

4.6.2 Maximum glitch amplitudes

We now come back to the main goal of this chapter and we compare the maximum
glitch amplitudes for the quasi-Newtonian and slow-rotation frameworks. Once the input
has been fixed (EOS, pinning forces and entrainment coefficient), the maximum glitch
amplitude can depend only on the stellar mass.

In the following, we will discuss three cases:

Model N - This is the quasi-Newtonian framework adopted in Pizzochero et al. (2017)
in which inertia is given by p = £/c?: the maximum glitch amplitude as a function of
mass AQups(M) is calculated according to Eq (3.14). There is no dependence on the
entrainment parameters and it is not necessary to specify how vortices are arranged: both
the parallel and slack vortex configurations give the same result. Moreover, also the
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Figure 4.3: The moments of inertia I (solid lines) and I,, (dashed lines) are shown for the three
EOSs considered. The mass interval starts at 0.8 M. In this figure, I, is calculated for straight
vortices that thread the whole star. A comparison is made between the non-relativistic moments
of inertia (orange curves, labeled by N) and the relativistic ones calculated in the slow-rotation
approximation (dark blue curves, labeled by GR). The curves terminate at the maximum mass
allowed by each EOS, see Table (4.1).
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Figure 4.4: Moments of inertia of the superfluid reservoir in units of the total moment of inertia.
The mass range starts at 0.8 M. In this figure, I, /I and I, /I are calculated for straight vortices
that thread the whole star. We make comparison between two cases: when strong entrainment
is present (I,/I, solid lines) and when the entrainment profile is zero (in this case I, = I,
and we plot the ratio I,/I, dashed lines). In both cases we show the curves calculated in the
quasi-Newtonian framework (orange curves, labeled by N) and in the slow-rotation approximation
(blue curves, labeled by GR).
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Figure 4.5: The maximum amplitude AQ,ps relative to the SLy4 EOS is plotted as a function
of mass for the three models studied: the quasi-Newtonian case (model N, orange solid line), and
the two slow-rotation cases with rigid (model R, blue solid line) and slack (model L, blue dashed
line) vortices. For model R, the scenario adopted is that of straight rigid vortices that thread the
whole star, the extreme scenario discussed in the previous section.

extension of vortices inside the core is unimportant, as long as vortex lines extend at least
across the region where pinning is present. In this paper we assumed the scenario of only
crustal pinning and, as reported in Table (4.1): the region of non-zero pinning lies strictly
inside the inner crust. Therefore the Newtonian results for AQ,ps(M) are valid for both
cases of continuous vortex lines and only crustal reservoir.

Model R - This is the slow-rotation version of model N for the case of rigid vortices, where
the global unpinning condition is implemented. The function AQ,.,s(M) is calculated
from Eq (4.61). In this case the presence of entrainment affects AQups(M). The results
shown here refer to continuous vortices across the star interior. This model R is a test for
the dependence of the maximum glitch amplitudes on critical lags built from non-local
conditions, like Eq (4.60).

Model L - This is the slow-rotation version of model N for the case of slack vortices, where
the local unpinning condition is implemented: the function AQ,,s(M) is calculated from
Eq (4.62). This seems to be a natural generalization of its Newtonian counterpart, and all
the remarks made for model N are still valid.

An example of the typical result is shown in Fig (4.5): we fix the SLy4 EOS and plot
the function AQ,ps(M) for the three models. Both relativistic models give maximum
glitch amplitudes that are slightly larger than their Newtonian counterpart, with model L
closer to the non-relativistic case.

In Fig (4.6) we show the relative difference between the relativistic models R and L
and the quasi-Newtonian one. We plot the curves AQR /AQN —1 and AQL /AOQN —1,
where the superscript indicates the model used. In model R the relativistic corrections
increase with stellar mass, with values between 5% and 30% for all EOSs; conversely, for
model L the dependence on mass of the corrections is weak, with values between 3% and
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Figure 4.6: Relativistic corrections to the amplitudes AQaps(M) for the three EOSs:
AQR /AQN . — 1 (solid lines) and AQL . /AQN . — 1 (dashed lines), where the superscript

abs

indicates the model used (cf. Fig (4.5)).

5% for all the masses allowed by the EOSs.

4.6.3 Slow-rotation corrections to the upper bounds on pulsar masses

In the previous chapter it is shown how the upper limit on the stellar mass can be obtained
from the maximum recorded glitch, while further timing data of the maximum event can
be used to constrain the mass into a more definite range. Upper bounds are conveniently
obtained by considering static models while refined constraints must rely on some, less
rigorous and more uncertain, dynamical argument.

Here, we only study the upper bound on the mass, that is only dependent on the choice
of the pinning force and the EOS used to calculate the function AQ,,s(M) for models N
and L, while model R requires also the entrainment coefficients. As discussed previously,
however, even for model R the maximum glitch to vary at most by some percent when
entrainment is set to zero: entrainment can be safely neglected (this is not the case for
dynamical studies).

In Fig (4.7), where we plot the function M = M (AQ,ps) for the three EOSs; here, the
curves refer to model R, the one showing the largest relativistic corrections. Qualitatively
these curves are very similar in all the three models. The vertical dotted lines indicate the
maximum glitch recorded. For graphical reasons, only a small sample of large glitchers
are shown. The glitch amplitudes are extracted from the Jodrell Bank Glitch Catalog '°.
The largest mass M,;s that a pulsar can have is found by requiring AQups(Maps) to be
equal to its maximum observed glitch. Future observations of a larger event would only
lower the existing upper limit on its mass.

Instead of listing the mass upper bounds corresponding to the 51 large glitchers known
to date (those with maximum recorded glitch larger than 5x 10~° rad/s) and their deviation
with respect to the quasi-Newtonian result, we prefer to plot in Fig (4.8) the discrepancy

19 Glitch data are available at www.jb.man.ac.uk/pulsar/glitches.html, see also Espinoza et al.
(2011).


www.jb.man.ac.uk/pulsar/glitches.html

4.7. Conclusions 123

2.4 -

SLy
Bsk21l ——

2.2 Bsk20

2.0

----]2021+3651
-- J0537-6910

1.8

---J0835-4510 (Vela)

1.6

---J0205+6449
1

M (MSun)

1.4

10631+{036 -=--=-=--=--=fopflfleue-.

REETEVLINY, - RRRI—" A AR—

1.0

0.5

=
<}

1.5 2.0 2.5 3.0 3.5 4.0
Maximum glitch amplitude (1e-4 rad/s)

Figure 4.7: Graphical representation of the upper mass limit for a glitching pulsar. In the figure
we plot the inverse of the function AQabs(M) for the three EOSs; the scenario considered here is
that of model R (straight rigid vortices that thread the whole star). We also report the maximum
observed glitch for some of the pulsars studied in Pizzochero et al. (2017). For each pulsar, the
value of the upper limit Maps on the mass is found by considering the intersection of the gray
dashed lines representing the maximum observed event with one of the three curves. Taking the
Vela as an example, the range of M,ps arising from the three EOSs considered here is highlighted
with a shaded band. Consider BSk21: its mean slope is AQ.,, ~ 2.9 x 10" *rad/s/Mg: this can
be used to estimate how much the highlighted band changes if a bigger glitch is detected.

between the relativistic and non-relativistic values of M, as a function of the maximum
glitch amplitude. The relativistic corrections to M,;s are always positive and small, less
than 5% for all masses allowed by the EOSs (for model L the discrepancies are smaller
than 1%). This is shown by considering the curves MR /MY —1 and ML /MY —1,
where the superscript indicates the model used (Fig (4.8)).

The conclusion is that the quasi-Newtonian upper bounds on masses presented in
Pizzochero et al. (2017) are quite robust: in the scenario of slack vortex lines, they are only
determined by the pinning force profile and the EOS adopted, while they are independent
on entrainment and on the extension of vortices in the core, and are nearly unaffected by
general relativistic corrections.

4.7 Conclusions

We extended the Newtonian results of the previous chapter. The underlying model is
unchanged; however in GR we are forced to put more attention into the analysis of the
total angular momentum: the contribution of the differentially rotating superfluid has to
be selected carefully.

The slow-rotation corrections to the maximum glitch amplitudes depend only slightly
on the vortex scenario adopted (slack or rigid). In principle the rigid case has explicit
dependence on entrainment input: we tested numerically that entrainment can be safely
neglected for our scope. Altogether, the upper bounds on masses are increased by less
than 1% in the model L when GR effects are accounted for.

Conversely, their dependence on the EOS can be further explored: alternative stellar
structures (e.g. exotic interiors) would correspond to different mass constraints. In turn,
these could be tested in the future against observations, as more data about glitching
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Figure 4.8: Relativistic corrections to the mass upper bound M,ps as a function of the maximum
observed glitch for the three EOSs (identified by different colors). We plot the quantities
ME /MY, — 1 (solid lines) and MY /MXN, — 1 (dashed lines), where the superscript indicates
the model used (cf. Fig (4.5)).

pulsars (possibly in binary systems) accumulate.

Mass upper bounds - At present we are far from giving secure upper and lower con-
straints on pulsar masses: we only demonstrated the robustness of the upper bounds.
More precisely, by robustness we mean that:

For fixed EOS, the function AQ,ps(M) depends only on the function fp(ng).
Mass upper limits are not affected by entrainment effects or by superfluid
properties of the core-crust interface, both issues being still open at present.
This is true within the pinning scenario in which the reservoir of angular
momentum depends only on the static structure of the star. In this chapter

we showed that these conclusions are valid for a slowly rotating neutron star
in GR.

An overall rescaling fp(ng) — (1 + €)fp(np) implies AQups(M) — (1 + €)AQaps (M),
even for finite €. Imagine a change € ~ 10% in the pinning forces. The mass upper bounds
are affected by

€ AQabs ~ AQabs

- ~ M
14+eAQ, “3x 10~%rad/s =

and the upper bound on the mass of J0205+6449 is increased by dM,ps ~ 0.1 My. As
discussed in Antonelli and Pizzochero (2017), pinning forces in the crust are notoriously
difficult to estimate, but our model (or refinements of it) can provide a direct quantitative
test for newly calculated pinning profiles.

5Mabs =

The circularity hypothesis - Our analysis is made simple by the circularity hypothe-
sis, i.e. the macroscopic flow of both components is laminar. However the assumed absence
of macroscopic meridional circulation may be in contradiction with the fact that fluid
motion in a spinning up (or down) sphere is a combination of a toroidal flow and meridional
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circulation for all Reynolds numbers, as discussed with applications to neutron stars by
Peralta et al. (2006) and Van Eysden and Melatos (2013).

In the case of non-zero meridional circulation (i.e. the possible presence of macroscopic
toroidal vorticity), the system loses the fundamental invariance under the simultaneous
inversion ¢t — —t, ¢ — —¢ and the spacetime metric gains additional off-diagonal compo-
nents. This interesting for a detailed dynamical description of the internal hydrodynamic
problem, however it is not clear how this further complication would affect the values of
global quantities, like the upper bound on the maximum glitch amplitudes.

Possible refinements - From the point of view of the stellar structure, our model is
stationary: the presence of a differential velocity lag does not affects the background
structural properties of the star (like composition or the frame-dragging angular velocity
w). A general, more refined, formalism to treat slowly rotating superfluid neutron stars
can be found in Andersson and Comer (2001b), where the authors determine the effect
of the differential rotation of both components on the frame dragging w, as well as the
induced changes in the neutron and proton densities and the change in shape of the star.
These refinements probably worth further investigation and tests with realistic equations
of state.






Future directions

This work consists of an extension and re-interpretation of some already published results
(Antonelli and Pizzochero, 2017; Antonelli and Pizzochero, 2017; Pizzochero et al., 2017;
Antonelli et al., 2017).

In Antonelli and Pizzochero (2017), it has been shown for the first time how the
maximum glitch amplitude recorded in a given pulsar can constrain its mass when coupled
to state of the art calculations of the pinning force between superfluid vortices and ions in
the crust. In this work we proposed the method to calculate the theoretical (entrainment
independent) relation AQp,.x(M), presented in Fig (3.2). This relation is the one that
allows to estimate the upper limits on masses M. This upper bound is nearly unchanged
if relativistic corrections are taken into account (Antonelli et al., 2017).

The method to bracket the mass values by using observational data, which il the bulk
of chapter (3), has been proposed in Pizzochero et al. (2017). After studying all known
large glitchers, in particular those which have displayed at least two large events, we found
that the inverse relation between mass and maximum glitch amplitude is valid as well.
This happens since the mass lower limits M, are very similar to the mass upper bounds
M,ps: this may be a drawback of the “unified model” used: we saw that this model is
physically motivated but dynamically inconsistent, as also discussed in Antonelli and
Pizzochero (2017).

At present, any similar study based on more refined dynamical equations (in place
of the unified model) would be not definitive as well: the use of more refined dynamical
equations could still be problematic, due to the uncertainties on the mutual friction term®.
As it stands, the only way to proceed is to systematically test different prescriptions,
embedded into a hydrodynamical model that consistently accounts for the realistic stellar
structure.

Future work that aims to clarify these points, not only deserves a try but is fundamental
for future (more reliable) implementation of the constraints on pulsar masses. The hope is
that improved models for the NS superfluid properties and EOS-consistent calculations of
the pinning forces will lead to more reliable mass constraints, as will further observations

1 In this work the term “mutual friction” refers exclusively to the sum of terms on the hydrodynamical
equations which are responsible for the momentum transport between the superfluid and normal compo-
nents. In chapter (2) we derived the mutual friction term within an idealized and simplified scenario; in
general this term is expected to be a non-linear and complex functional of the fluid velocities. This may
still be not enough to achieve a complete description of glitches, as the trigger may have external nature
(i.e. not linked to an hydrodynamical instability).
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of glitching pulsars.

With this in mind, we stress that the only mass constraints that have some robust-
ness are provided by M,ps, as discussed at the end of chapter (4). However, as discussed
in chapter (3), it is interesting to note that our method provides a wide distribution of
masses that resembles the empirical distribution of measured neutron star masses. A
true breakthrough would come from an actual measurement of the mass of a glitching
pulsar, which may be possible in the future if a large glitcher is discovered in a binary
systems (otherwise we should ask ourselves why pulsars in binaries cannot exhibit Vela-like
glitches). A number of such measurements, combined with the methods illustrated above,
will allow to further constrain NS interior physics.

The problem of pulsar glitches has been faced from the perspective of two-fluid hy-
drodynamics. We have proposed macroscopic and deterministic models, despite glitches
are unpredictable events. The dynamical model, presented in chapter (2), allows to follow
the coupled response of both the normal and superfluid components due to an artificial
perturbation of the system. For a given hydrodynamical model, a glitch can be initiated
in many different ways, resembling the various possibilities proposed in literature, that we
briefly sketch:

Out of equilibrium initial configuration - It is possible to study the relaxation toward
steady state for an initial arbitrary chosen 2, and 2.

Starquake - Starting (for simplicity) from the steady-state condition, it is possible
to artificially reduce the total angular momentum of the rigid normal component,
ie. Iy = (1 =€), Q, = (14 ¢)Q,, for a small positive parameter e = AQ/Q,,.

Heat deposition - To initiate a glitch we could modify the creep rate in a certain
region, mimicking heat deposition in a zone of the star: this can be done in different
ways, e.g. acting on the unpinning threshold or modifying the fraction of pinned
vortices.

The study of numerical simulations based on the model proposed in Antonelli and Piz-
zochero (2017) has been partially discussed in Seveso (2015): our 1D model, in its simplicity,
shows a wide range of dynamical possibilities (exhibiting different recoveries and spin ups
depending on the prescribed mutual friction and on the initial condition) but we found
difficulties in handling the prescription for the repinning of vortex lines: a two-state model
may be interesting, where a critical (lower) lag for the repinning is also introduced.

In the present dissertation we focused on the more robust discussion of mass-constraints,
that have been carried out by means of simpler methods. The appropriate and specific
remarks concerning the mass upper bounds can be found at the end of every chapter
and will not be repeated here, leaving space for some additional comments and speculations.

Trigger - Our methodologies do not allow to study the intrinsic features of the trig-
ger. The slow building of stresses driven by the thermo-rotational evolution in the crust
(as well as in the vortex configuration) can play a role. The problem is to realize where
these stresses accumulate in a realistic and stratified model, a still elusive task (not to
account for the fact that the building of stresses is a complex phenomenon that depends on
the story of the system). Another possibility is that the trigger is an hydrodynamical effect:
studies in Couette geometry indicate that a fluid in a differentially rotating, spherical shell
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develops meridional circulation and exerts a time-dependent torque on the outer shell
(Peralta et al., 2006). This torque variability increases with the Reynolds number of the
problem. Since the spherical Couette flow is an idealized model of the superfluid outer
core of a neutron star (the outer sphere is the inner and outer crust), it is interesting to
test whether or not the incidence of glitches depends on the expected Reynolds number in
pulsars (Melatos and Peralta, 2007). This fact, together with the activity vs age correlation
(Lyne et al., 2000), is one the few observed regularities in glitch phenomenology (Fuentes
et al., 2017).

Awvalanche - We still have to understand if the vortex avalanche can be effectively sus-
tained: this is certainly the case if glitches are manifestations of the claimed self-organized
criticality. However models proposed to put forward this hypothesis [e.g. (Warszawski and
Melatos, 2008)] are unrealistic for several reasons: the models are discrete in time, have no
radial dependence of pinning strengths or creep rates, do not account for the moments of
inertia of the regions through which the vortices move and there is no-back reaction of the
spinning-up crust on the lag. Preliminary work seem to indicate that the vortex avalanche,
once triggered, is likely to propagate (Haskell and Melatos, 2016): unpinned vortices can
skip multiple pinning sites and come close enough to their neighbors to initiate a knock-on
reaction (Warszawski and Melatos, 2012).

Glitches as quenches - Another possibility to explain how a vortex avalanche is triggered
is the back-reaction of the frictional heating that accompanies the glitch. Following
the analogy with hard-superconductivity described in chapter (2), this heating further
increases the already present frictional coupling. This feedback process could lead to
a thermal runaway (Greenstein, 1979); (Greenstein, 1981). Such instability can spread
and grow if the heat generated is comparable to the heat initially deposed in the small
region relative to the seed of the avalanche. Hence, a pulsar glitch could be the superfluid
realization of what is known as quench, the abnormal termination of the superconducting
phase that occurs when part of the sample enters the resistive phase. At the best of the
author’s knowledge this hypothesis has never been tested, probably because the the gap
energy A is considered to be too high. However there is no need to destroy the whole
superfluid.

Heat deposition - A less violent scenario, in which a temperature perturbation causes an
increase in the vortex creep rate, has been studied by Link and Epstein (1996), following
the idea that the candidate mechanism which provides the initial temperature perturbation
is a starquake.

In all these scenarios the central point is the coupled thermo-rotational evolution of
RPPs: it is indeed known that the mutual friction between the normal and superfluid
component is temperature dependent, but generates heat as-well. Better understanding
of the glitch phenomenon can be achieved by considering a wider scenario in which the
rotation and thermal evolution are intimately connected, similarly to what recently pro-
posed for the magnetic field evolution among the pulsar population (Vigano et al., 2013):
physical differences among pulsars, such as mass, temperature and rotational parameters,
may lead to a switch between creep-like motion and avalanches, explaining the different
characteristics of glitching pulsars.

In the present work we discussed only the relation between the maximum observed
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glitch in a pulsar and the theoretically expected static? reservoir of pinned vorticity for a
cold star of given mass. At the same time we do not know whether or not the instantaneous
corotation condition used to define the mass-maximum glitch relation AQpax(M) can be
dynamically realized. This certainly depends on the elusive mutual friction functional and
on the uncertain physics of the repinning: to produce an overshoot the mutual friction
term needs to incorporate a chain reaction mechanism that lowers the repinning threshold
when a large amount of vortices are rapidly moving.

While general trends in the glitching behavior may be understood by means of sim-
plified dynamical models like cellular automata, we do not have to forget that true advance
will come if we will be able to contrast the phenomenology with the theoretical expectations:
the primary need in the current research on pulsar glitches is the systematic test of models
that can take into account in a clear manner the realistic properties of the star, such as
stratification. The model discussed in this dissertation is probably oversimplified but is
quantitative and consistent with the working hypothesis, as well as with some realistic
aspects of NSs. However the realistic macroscopic modellization of the pulsar rotational
dynamics is still in its infancy, due to the fact that nearly everything contributes to the
mutual friction: crustal pinning, vortex tension, entrainment, interaction between vortices
and fluxtubes, energy dissipation due to excitation of quasiparticles, turbulence. Better
understanding of the mutual friction term from the “plastic phase” of hot pulsars to the
“rigid phase” of colder ones could be the ultimate challenge of theoretical studies of glitches
in superfluid neutron stars.

2 The adjective static means that the reservoir is built only from energetic considerations (actually
the pinning forces are derived from an average procedure on the configurations of a static vortex line
immersed into an energy landscape): a nearly critical lag may never be realized dynamically.
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APPENDIX A.

Macroscopic structure of a neutron star

The main concept behind our current understanding of neutron star structure is, in a
sentence, that compressing matter liberates degrees of freedom, as sketched in Fig (0.1).
As one digs deeper into a neutron star, matter becomes more homogeneous and is better
approximated with a ground-state description (i.e. the fermion statistics dominates the
many-body density of states, implying that thermal corrections are small).

According to the cold catalyzed matter hypothesis, matter inside cold (non-accreting)
NSs is in a state of thermodynamic equilibrium with respect to all kinds of nuclear (i.e.
strong) and electroweak processes at T' = 0. Matter is therefore supposed to be in its
ground state. In the T = 0 limit!, the properties of a layer in the outer crust at some
pressure P are given by minimizing the enthalpy per nucleon h (or the Gibbs free energy
if T > 0), defined as h = (€ + P)/np, where np is the average baryon number density
and & is the average internal energy density.

In the zero temperature approximation the EOS is barotropic and is inferred by
determining the ground state composition for every fixed density np. While the EOS for
the outer crust has been calculated with a good accuracy, there are no widely accepted
models for the composition of the inner crust and of the core.

A.0.1 Onion structure of a neutron star

The primary composition of nuclear matter in a neutron star is constantly being debated,
in particular the inner core composition represents the main mystery of NS physics. A
physical condition for equilibrium is that the pressure always strictly increases when going
inside a NS, so the matter is stratified; properties can change continuously or abruptly if
the particular density and pressure for a phase transition are realized.

Starting from the outermost layer, a neutron star is generically subdivided into four
main regions: the outer crust, the inner crust, the outer core and the inner core. A complete
review of the properties of the crust of neutron stars is given by Chamel and Haensel (2008).

Outer crust - The outer crust of a neutron star is solid (the most energetically fa-
vorable geometry is that of a BCC lattice) and comprised of °® Fe ions and degenerate

1 As reviewed by Chamel and Haensel (2008), the temperature in the interior of a NS is not zero but
thermal effects are expected to mostly affect the surface layers of the star; this assumption is therefore
generally satisfied in the core of mature NSs but may be less accurate in the crust, especially if the star is
accreting.
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valence electrons, where only an extremely thin surface layer contains a non-degenerate
electron gas. Starting from p ~ 10%g/cm? the iron is fully ionized owing to the high
density and above ~ 107 g/cm?, the composition of the nuclei becomes more neutron rich
as a result of electron captures. To maintain S-equilibrium at higher densities, electron
captures by the protons inside nuclear clusters can occur, and ions get more neutron-rich.

Drip point - In order to determine the onset of neutron drip, we have to express the Gibbs
free energy per nucleon for nuclei coexisting with free neutrons and electrons. Neutrons
start to drip out of nuclei at some pressure P; whenever d€/dy, = 0, where y,, = n,,/np
is the free neutron fraction.

Nuclear clusters are found to be unstable around pg ~ 4 x 10*'g/cm? (corresponding
to ng = pa/mn, ~ 2.5 x 107% fm?), when it becomes energetically favorable for neutrons
to leak out of neutron-rich nuclei. The presence of a gas of non-bound neutrons marks
the beginning of the inner crust. Following the canonical work of Baym et al. (1971), the
neutron drip point needs to be self-consistently calculated by minimizing the total energy
density of the crust constituents (nuclei, relativistically degenerate electrons and possibly
free neutrons) by using a model for the mass-energy of a nucleus with arbitrary A and Z
(as in the semi-empirical mass formula) and a model for how the crystalline lattice changes
the total energy density; then the neutron drip point occurs when the Fermi energy of a
free neutron is comparable to its rest mass-energy, u, ~ m,c? (Chamel, 2006).

Inner crust and pasta phase - Below the neutron drip neutron-rich nuclei are still
arranged in a bee (probably polycrystalline) lattice, immersed in a gas of free neutrons in
a superfluid state and normal (i.e. non-superfluid) ultrarelativistic electrons. In addition
to the macroscopic liquid-drop model and the semiclassical Thomas-Fermi approximation,
the inner crust have been studied also with more elaborated calculations based on the
Hartree-Fock approximation with the Skyrme interaction in order to incorporate shell
effects, as reviewed by Watanabe and Maruyama (2011). Competition between surface
tension (of the nuclear clusters) and Coulomb interaction between protons possibly leads
to a more inhomogeneous configuration than that of a bcc lattice: exotic topologies of the
nuclear clusters emerge, as shown in Fig (A.1).

These so-called pasta structures can be regarded as a feature of the mixed phase during
the first-order liquid-gas phase transition; in the case of a single component system, the
EOS during the liquid-gas phase transition is obtained via the Maxwell construction, which
allows to calculate the phase coexistence region. In systems with multiple components more
complex transitions are possible: the pressure in the mixed phase is no longer constant
and the Maxwell construction cannot be applied®. To obtain the EOS, equilibrium of
partial pressures and chemical potentials (the Gibbs conditions), should be solved.

Searching for observational signatures of the pasta phase is of interest: large-scale
molecular dynamics simulations show long lived topological defects that could increase
electron scattering and reduce both the thermal and electrical conductivities of the pasta
layer (Horowitz et al., 2015), enhancing the dissipation of magnetic field, with observable
consequences on the spin-down behaviour (Pons et al., 2013). Outer and inner core - At
densities higher than the saturation density, the ground state of nuclear matter is very
uncertain, as it cannot be studied in laboratories and many-body techniques are not yet

2 In a NS the pressure continuously increases, i.e. there are no macroscopically thick layers of constant
pressure. If matter undergoes a first order phase transition, the density profile of the star would have a
discontinuity at the radial point corresponding to the constant pressure which realizes the transition.
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Figure A.1: Cartoon of the inner crust: at lower densities, a lattice of exotic nuclei is immersed
in a superfluid of neutrons and a relativistic electron gas. At higher densities the nuclei are
expected to deform and connect to form diverse topologies of nuclear clusters (pasta phases). The
pasta layer is sometimes referred to as the mantle. Ranges of density and thickness are reported,
and roughly represent the current theoretical uncertainties. Figure taken from Newton (2013).

so refined to allow completely reliable calculations.

The outer core starts at about a half of the saturation density pg, as reported in Fig
(A.1). Nuclei dissolve at the crust-core interface, outer core is mainly comprised of a
neutron fluid, with small percentage of protons, electrons and muons (this mixture is
sometimes dubbed extended nuclear matter). The S-equilibrium implies the equilibrium
with respect to the beta decay of neutrons and inverse processes (with production of
electrons or muons). All the components of this npeu-plasma strongly degenerate, with the
electrons and muons that form almost an ideal Fermi gases. On the contrary, the neutrons
and protons, which interact via nuclear forces, constitute a strongly interacting Fermi
liquid which can be in a superfluid state. The inner core, which typically starts around
2po, has a composition which is very model dependent; in light neutron stars it may even
not exist and the outer core extends till the center. New particles can appear as density is
high enough to guarantee the chemical equilibrium with more species. Several hypotheses
have been put forward, as hyperonization of matter, the appearance of BEC phases (pion
or kaon condensates) or a phase transition to a quark-gluon plasma comprised of up,
down and strange quarks in a thermal bath of gluons. The most common hypotheses are
summarized in Fig (A.2): ordinary neutron stars (with a core made of extended nuclear
matter), hyperon stars (with a inner core made of hyperons and an outer core made of
extended nuclear matter), hybrid stars (comprised of an inner core of QGP, eventual
hyperonic matter and a shell of extended nuclear matter).

A very different family is that of quark stars: they are entirely comprised of a QGP,
except for a thin external shell of ordinary matter. Differently from neutron stars, which
are kept together by gravity, quark stars are bounded by the strong force. This implies
that the mass-radius relation for this kind of stars has a qualitatively different shape, as
can be seen in Fig (1.7).
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Figure A.2: Sketch of the various theoretical compositions of a neutron (or quark) star. Stellar
parameters, like the thickness of the layers, strongly depend on the EOS in the neutron star
core. A currently debated problem is that of hyperons: if they appear, the subsequent soften the
EOS makes difficult to explain massive neutron stars (Baldo et al., 2003). While at moderate
densities p ~ po the matter inside a neutron star consists of nucleons and leptons (i.e. the
fermion species present are n, p, e, u plus escaping neutrinos), at higher densities several other
species of particles appear due to the fast rise of the baryon chemical potential for p approaching
10% g/cm® ~ 0.6 fm 3. Not all the phases reported here are present in Fig (0.1). Figure Adapted
from Weber et al. (2007).

A.1 Hydrostatic equilibrium

The interior macroscopic structure of a neutron star is governed by the exact general-
relativistic equation of hydrostatic equilibrium, the Tolman-Oppenheimer-Volkoff equation:
dP G (p+c2P)(m+4mrc 213 P)
dr r2 — 2¢2Grm '

Here m(r) is the enclosed mass, P(r) the pressure profile and p(r) the total mass-energy
density profile, namely p = ¢=2€ with £ the total internal energy per unit (proper) volume,
as discussed in chapter (4).

To find a solution, also an EOS relating P and p has to be provided, together with the
usual relation m’ = 47r2p, which is formally the same used to calculate the hydrostatic
equilibrium of classical stars. In the limit of ¢ — oo, the TOV equation becomes the
Newtonian equation for hydrostatic equilibrium V(P +p ®y) = 0, where &y (r) = —Gm/r
is the gravitational potential: in this case p = ngmp since the in the infinite ¢ limit the
only surviving contribution to ¢~2€ is that of the rest mass.

These equations allow to calculate the exact GR correction to the Newtonian gravita-
tional potential @y (r). Detailed derivation can be found in many books, as Glendenning
(2000) and Misner et al. (1973): the TOV are the specification of the full Einstein equations
under the assumption of static and isotropic of spacetime such as would be expected
in internal and external regions of static stars. The spherically symmetric metric g is
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independent of time and its most general form (using usual Schwarzschild coordinates) is
g = —c2e22dt? + 2 dr? + r2(df + sin® 0dp?) . (A1)

Call the circumferential radius® and the total gravitational mass of the star R and M
respectively; the Birkoff theorem tells us that, for » > R, the exterior vacuum solution is
that of a Schwarzschild black hole of mass M and event horizon radius Rg = 2¢2GM,
namely

2GM
22 = 72 — 1 _ z = 0> Rew c2oN(r), (A.2)

implying that m(r > R) = M is the mass of the star as measured from Kepler’s third law.
Clearly the above equation is valid only for the vacuum part of the solution, implying
that no physical horizon is present if R < Rg; for a typical NS for a neutron star we
have R =~ 0.2 Rg, which can equivalently be written terms of gravitational binding energy
M®y(R) =~ 0.2Mc%. To make contact with the quantities present in the metric of Eq.
(A.1), it is convenient to introduce an auxiliary variable ®* and write the full TOV system
of equations by using geometrized units:

m = % (1—e*) [ definition of the auxiliary variable m ]
I~ e [lim % m = 4mE(0)/3
% = —5% <1+§> [P'=—p®y]
djj = :;(1—1—4775})) (1—2:1)_1 [®y = Gm/r?]

This system has to be supplied with an EOS that gives the needed relation P(£), namely
P(r) = P(&(r)). The third equation is also sometimes written as

dd* = —(P+ &) taP, (A.3)

which can be used to prove an important relation between the chemical potential and ®
(Glendenning, 2000). Numerical integration is carried out from r = 0 to r = R, the radius
of the stellar surface which realizes P(R) = 0. The central value of the density &, = c?p.
is a free parameter and the boundary conditions of the system are readily expressed as

m(r=0) =0
E(r=0) =&
" (r=0) = 97,

where the exact value of ®* is unimportant®: after the integration of ®*(r), the metric
function ®(r) is found by matching ®* with the already known exterior solution ®(r > R).

3 The proper surface area of the star is f y/—det(2g) = 47 R; the integral is performed over a 2-surface
of constant ¢ and » = R. On the other hand, the proper distance between two points at constant ¢, ¢
and 0 and radii r and r + 0r is [ \/—det(g) = eMdr (this time the integration is carried over the radial
segment and A is evaluated at a point in [r, 7 + §7]).

4 The auxiliary variable ®* does not appear in the system, only ®*’ does. It is trivial to show that
®*'(r = 0) = 0. Conversely ®*’(r = 0) > 0 only if m(r = 0) > 0, which implies the existence of a physical
singularity in the origin.
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Explicitly this amounts to define

so that ®(r) < 0 always and the condition of asymptotic flatness is guaranteed®. The
TOV equation also implicitly contains the fact that a maximum sustainable mass exists, as
manifestation of the relativistic nature of the equation: pressure, being formally an energy
density, contributes indeed to the gravitational field; if a certain threshold is reached the
increasing pressure cannot contrast gravity as the increasing P makes the gradient of ®
steeper.

Pressure gradient - Suppose to have two stars, described in GR and Newtonian gravity
respectively, and that these two models have the same m(r), P(r) and p(r) at a certain
radius 7. In the GR model the proper radial distance is e*dr, and we have

dP (p+P)(m+4mr3P) _ pm
ehdr| 2 /T —2m/r r2

Hence going inside the star, the pressure rises faster in GR than in the Newtonian model:
GR predicts stronger gravitational forces (gravity is not a force but can be still seen as
something that builds up a pressure gradient) than Newtonian theory. Therefore gravita-
tional collapse is possible, meaning that there are stable Newtonian configurations that
are unstable in GR. In particular, the above equation tells us that no star in hydrostatic
equilibrium can have 2m(r) > r. The maximum sustainable mass turns out to be EOS
dependent: softer EOS gives lower maximum masses since the star must contract in a very
dramatic way to sustain pressure. The fact that the maximum mass is EOS dependent
is fruitfully exploited from the observational point of view: since neutron stars with
M =~ 2Mg, are observed, we can reject all the soft EOS that give smaller values for the
maximum mass, as shown in Fig (1.7).

Binding energy - Nucleus of mass Myz has a definite binding energy: it is the posi-
tive amount of energy BE which has to be pumped into the system in order to destroy it.
Complete destruction is achieved when the system is separated into its non-interacting
basic elements (namely we have to carry the constituents far from each others), implying
that

¢ Myz + BE = Nm,,c®> + Zmyc®> =  Myz < Nmy,, + Zm,, .

The situation is analogous for a gravitating system: M < mpA, where A is the number of
baryons contained into the neutron star of gravitational mass M = 4 [ prdr. However,
differently from what can be done for nuclei, it is not possible to interpret p as the
gravitational mass distribution of the star: because of the Equivalence Principle, it is not
possible to define a gravitational stress-energy tensor (Misner et al., 1973).

Following the presentation of Glendenning (2000), the energy associated to gravitational
binding is thus always expressed as a non-local quantity (locally there is always a set of
observers for which the Christoffel symbols vanish). For this reason M is called gravitational
mass, while £(r) is just the thermodynamical local mass-energy. The total mass-energy of

5 Just consider that In(1 — 2M/R) < 0, ®*' > 0 and lim, 00 ®(r) = 07, as can be seen by Eq. (A.2).
Clearly lim, oo g¢¢(r) = —1 and the Minkowski metric is recovered at spatial infinity.
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Figure A.3: Binding energy BE relative to dispersed °® Fe versus gravitational mass M for the
three unified EOSs that will be used in our numerical estimates presented in the next chapters.
The curves are terminated at the maximum mass allowed by each EOS.

the star is

R
E = /EdV = 47T/ drr?er E(r) > M c?
0

where dV = /—det(3g) is the proper volume form of a 3-surface of constant t. The
inequality is guaranteed by the fact that e® > 1, as can be seen from the definition of the
function m(r): in particular e® = 1 at the center of the star and at spatial infinity. This
quantity F is however not suitable to define the gravitational binding energy of the star,
as it also contains the contribution of the microscopic internal energy.

We now want to compare M (which takes into account for rest mass), the internal
energy and the gravitational binding with respect to the rest mass of the NS constituents
dispersed at spatial infinity. Similarly to what already done for E, it is possible to define
the conserved® baryon number A as

R
A= /anV = 477/ dereAnB(r)
0

and the relative baryon mass M4 = mpA of the star. It is now possible to define a
quantity BE, such that M, = BE + Mc?. It is important to note that in this case the
binding energy BE arises thanks to the global spacetime curvature: the volume form dV
is not that of flat spacetime. The binding energy turns out to be positive (i.e. M4 > M
and BE/A ~ 100MeV) unless M is very low (M < 0.2 for most of the EOS). For these
very light stars no creation mechanism may exist: as discussed in the previous chapter, a
huge release of binding energy is required during the supernova explosion to eject most of
the progenitor star and suppress the probability of black hole formation. Other authors
define BE as the mass defect with respect to a dispersed configuration of a pressureless

6 The total baryon number A can be interpreted (via the Gauss’s theorem in curved spacetime) as the
total charge associated to the conserved baryon current, see e.g. Glendenning (2000).
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cloud of 6 Fe dust:
BE = pipe A — M¢?

where where A is the total number of nucleons and pg. is the chemical potential of a
nucleon in an iron nucleus, namely pr. = 930.4 MeV at zero pressure. According to this
definition BE represents an approximation of the binding energy of neutron star with
respect to the configuration of the inert core from which the neutron star was formed, as
a by-product of the core-collapse. The binding energy is plotted versus M in Fig (A.3).
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Magnetic fields in neutron stars

The magnetic properties of neutron stars are not yet fully understood. It is not even clear
how some of these objects can have extremely high magnetic fields: simple explanation
that relies on flux conservation during the collapse does not reproduce the statistics of the
magnetic field strengths across the pulsar and magnetar population. The leading theory
for the origin of neutron star magnetism is that dynamo action in the young star generates
a strong, dominantly toroidal field. Moreover the stable internal field configuration of a
rotating neutron star is still unknown and matter of debate, eve though there are strong
clues that it can be a complex mix of twisted toroidal and poloidal components.

Precise pulsar timing is possible because of the coherent (i.e. non-thermal) emission
from rotating and magnetized NSs, usually detected in the radio band. Although the de-
tails of the generating mechanism are still vague, the spin down of a NS can be understood
in terms of the energetics of a rotating dipole.

This is not the only important effect of magnetic fields in neutron stars. Even though
in this dissertation we did not take into consideration the effect of the internal magnetic
field, it is however possible that the glitch behaviour is influenced by the presence of strong
fields. For instance entrainment coupling in the core depends on the presence of proton
superconductivity. If so, magnetic flux tubes and induced magnetization of superfluid
vortices can modify (in a still not completely understood way) the internal hydrodynamics.
More importantly the magnetic field drives the long term evolution of a neutron star: the
most evident phenomenon, at least in RPPs, is the observed spin-down. More importantly,
the presence of magnetic fields at the same time modifies cooling (by means of anisotropic
heat transport and influencing neutrino emissivities) and powers the magnetosphere, thus
affecting both the thermal and non-thermal (magnetospheric) features of the observed
spectral.

Also all the complex and diverse phenomenology of magnetars is linked to dynamical
aspects of the magnetic field: in particular bursts (seen in AXPs and SGRs) and the three
giant flares seen in SGRs are though to be manifestations of magnetic reconnection, prob-
ably triggered by crustquakes [see e.g. Turolla et al. (2015) and Mereghetti (2008)]. This
scenario is supported by the discovery of quasi-periodic oscillations (QPOs) in the X-ray
flux following the giant flares from SGRs: connection of these oscillations with vibration

L As reviewed by Turolla et al. (2015), small (sub-km) hot spots are measured in certain sources, but
they are more likely produced by heat deposition from the currents concentrated in magnetic bundles
which emerge from the crust, rather than anisotropic internal heat transfer.

141
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modes in the solid crust induced by the starquake has triggered interest in the field of
astroseismology. Magnetic fields may also be responsible for continuous gravitational emis-
sion from isolated neutron stars that deviate from axial-symmetry since magnetic tension
can induce a mass quadrupole. Both QPOs and gravitational wave emission depend on
the properties of the solid crust of neutron stars, as reviewed by Chamel and Haensel (2008).

In this appendix some basic properties of magnetized neutron stars are very briefly
summarized. The many aspects of neutron stars magnetic fields, including the magnetars’
persistent X-ray emission and magnetic reconnection, are reviewed by Turolla et al. (2015).
The more fundamental issue of how physics in strong magnetic fields can be constrained
by magnetar’s observations can be found in the collection of Beskin et al. (2016).

B.0.1 Energetics of a rotating dipole

Classical electrodynamics predicts that a (slowly) time varying magnetic momentum m
looses energy as given by the non-relativistic limit of the Larmor formula?:

i = |2
3c3
which derivation is sketched in Jackson (1991) [compare also Eq (67.8) of Landau and
Lifshitz (1975) and Eq (10.5.2) of Shapiro and Teukolsky (1983)]. Assume that the dipole
is fixed in magnitude |m| = m and rotates around the direction €, with angular velocity
Q = 27/P, in such a way that m - &, = mcosa. If we identify the plane orthogonal to &,
with C, the rotating dipole is modeled as

Eem =

)

m(t) = m(&,cosa+ePsina) = m=-0meYsina,

which, if the dipole is not aligned with the rotation axis, implies that energy is lost as
Eop = % m2Q?* sin o

This is completely general, at least in the non-relativistic limit. Consider now a uniformly

magnetized sphere of radius R rotating around the z-axis in vacuum. The intensity m

of the magnetic dipole of the sphere can be parametrized in terms of the magnetic field

at the pole B, as m = R3Bp/2, as well as in terms of the magnetic field at the equator®

Beq = B,/2; the power radiated is

. RS(B, sina)? |,  2RS(Be, sina)?
Bem = T 63 0= T 9.3
6c 3c

2 Following Landau and Lifshitz (1975), the Pointing vector in the radiation zone for a plane wave
is §* = c|B|2ﬁ"”/47'r7 where 1’ points from the nearly point-like source to the far observer. In vacuum
the magnetic and electric fields are conveniently expressed with the aid of the vector potential A as:
B = ¢ '0;:A x 7 and E = B x 2. Consider a time-varying electric dipole d arising from the motion (inside
a region of diameter R small compared to the distance of the observer) of particles with charges ¢; and

velocities v;, thend = Y, g;Vv; is the first temporal derivative of the electric dipole moment. Non-relativistic

Ql, (B.1)

limit of the retarded potentials in the radiation zone gives A = (CR)_ld, which implies B = ¢ 2R 1d x A.
The energy flux (power per unit area) in the 7 direction is thus S*n; = c|B|? /471 = |d|? sin? /(473 R2),
where the angle « is defined via d -7 = cosa. The power radiated is the energy that leaves the boundary
of the source in a time unit, namely Eern = R2? f d?Q S'h;, where d?Q,, indicates that the measure
on the sphere is conveniently parametrized by using a as polar angle. Therefore the same formula
Eem = 2]d|2/(3¢3) is valid also for the power radiated by a time-varying electric dipole. The fact
fdQQa sin? a = 87/3 has been used in the last passage.

3 The quantities By and Beq are often generically referred to as “dipole field” and sometimes confused.
B) is the intensity of the magnetic field produced by a pure dipole at distance R along the magnetic axis,
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This is the classic result of the vacuum-dipole-model. When the effects of the magnetosphere
are taken into account in the force-free models (i.e. in the low-inertia limit of MHD), the
pulsar spin down luminosity is well approximated by (Spitkovsky, 2006)

. RS B2 Q4
E., = ﬁ(l—&—sin2 ).

The power in this case is larger than for the vacuum orthogonal rotator (o = 7/2) and it
is non-zero even in the aligned case (o« = 0). This substantial difference with respect to
the vacuum case comes from the proper inclusion of the rotationally induced electric field
in the magnetosphere. More generally the energy balance equation between radiation and
rotational energy losses reads

R° B2 Q3

Tjl = (i¥es

f@),  [es fla)= 3(1 +sin2q), Spitkovsky (2006)]  (B.2)
where differences in the radiation mechanism are included in the factor f(«). In literature,
the fiducial values Iy5 = 1, Rg = 1 and f(«) = 1 (vacuum orthogonal rotator) are commonly
used in order of magnitude estimates: thanks to the 3D simulations of Spitkovsky (2006) it
has been shown that E,., still scales with Q4, even for realistic models of the magnetosphere,
the complex effects are hidden into an overall factor f.

The luminosity E.,, must be equal to the observed decrease of rotational kinetic energy
IQ|Q] of the sphere, where I is the moment of inertia. It is thus possible to infer intensity
the effective magnetic field B = B,,f'/? at the surface as

3114 32 IPP 19 p—3 71/2 < 1/2
B = \/2R6Q3 = \/ 871-2R6 ~ 3.2 x 10 RG 145 (PP)/ G’ (B3)

where P is the spin down rate in units of s/s, P is the period in seconds, I 5 is the
moment of inertia in units of 10*> gecm? and Rg is the radius in units of 10km: we use
this prescription for B in our plots of the P-P diagram (Fig (B.1)).

It has been shown that neutron stars with large toroidal fields evolve into configura-
tions, where the angular momentum of the star is orthogonal to the magnetic axis so that
the relative orientation of the dipole and rotation axis is not completely random. Such
configurations, which provide sina &~ 1 in the dipolar rotator model, are also associated
with gravitational wave emission (Cutler, 2002), due to the fact that magnetic field lines
have an effective tension that can deform the star.

Gravitational waves luminosity - Intense magnetic fields can indeed sustain quadrupole
deformations on a rotating neutron star but also other possibilities have been proposed
4. Alternatively, proto-neutron stars typically born with high angular velocity, in a con-
figuration that is likely to be triaxial: cooling and crystallization of the crust may have

Beq is the intensity of the magnetic field on the magnetic equator (the angle between the equator defined
by rotation and the magnetic one is indeed «). Consider usual spherical coordinates around m = mé.:
by using &, = &, cosf — & sinf. The usual dipolar field B = [3(&, - m)&, — m]/r3 has components
B, = By, cos0 (R/r3), By = (Bp/2) sin@ (R/r3) and B, = 0. For § = 0 and 7 = R we have the magnetic
field at the pole (B = B, and By = 0). On the magnetic equator, § = 7/2 and r = R, the only non-zero
component is By = By /2.

4 Spherical bodies that vibrate radially do not radiate gravitational waves, in accordance with the
Birkhoff’s theorem. This is still true for an axially-symmetric neutron star. However, a rigidly rotating
star with non-axial deformations radiates gravitational waves. The possible mechanisms for gravitational
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frozen part of this initial asymmetry, so that the star’s equatorial plane is slightly elliptical.
Thus asymmetry may be due to elastic strains in the solid regions (the crust) or magnetic
strains. Another mechanism has been proposed by Bildsten (1998): building of mountains
proceeds via temperature and composition asymmetry in accreting stars. The viability of
this mechanism has been confirmed by Ushomirsky et al. (2000) but the key unknown is
the likely level of non-radial composition gradients in the crust of accreting neutron stars.
Connection between gravitational wave emission and astroseismology is briefly summarized
in the review of Chamel and Haensel (2008): the elastic properties of the crust play a
crucial role and can be constrained by searching for continuous gravitational waves emitted
by isolated and deformed neutron stars. Deformed neutron stars loose energy at a rate
given by (Shapiro and Teukolsky, 1983)

. 332G

Eow =~ 5?126296 , (B.4)
where € is a dimensionless parameter characterizing the deformation of the star® and I is
the moment of inertia relative to the actual axis of rotation. Similarly to what have been
done for the unknown magnetic field where we estimated the value of a characterizing
parameter like B, it is still possible to use pulsar timing data to constrain the parameter e:
since the power radiated away in gravitational waves can be at most equal to the observed
kinetic energy loss IQ|€2|, this implies that

e < 9x 1073,/ pl2p3e

Again P is the numerical value of the period in seconds. With this inequality we can also
put a crude upper limit to the size of the highest mountain, that is of the order ~ eR. For
instance, the mountains on the surface of the Crab pulsar are expected to be less than few
meters. For some millisecond pulsars the constraint is even more severe: for example in
the Black Widow pulsar (PSR 1957+20) mountains cannot exceed ~ 10~ 4cm.

B.0.2 Characteristic spin-down age

In a rigidly rotating pulsar the kinetic energy E,.o; = I 02/2 decreases my means of the

electromagnetic emission®: F,.,; = I must equate the spin down luminosity. Ignoring

GW emission,

_2B*R° 03
331 ’

where B = f/2B,,/2 is the effective surface field defined in Eq (B.3). Equation (B.5) can

be generalized by considering a braking torque that is proportional to 2". The parameter

Q= (B.5)

wave emission from individual neutron stars that have been proposed so far are fluid oscillations, free
precession (the most general motion of rigid bodies) and mountains. Mountains are actually large scale
deformations with respect to the non-rotating and non-magnetized, T' = 0 configuration with the same
mass and are therefore more similar to a bulge rather than to mountains on Earth. All these mechanisms
lie below the detectability threshold.

5 As described by Shapiro and Teukolsky (1983), € is the ellipticity of the equatorial plane, namely
€ =2(a —b)/(a+ b) where a is the maximum equatorial radius and b the minimum. If the star is rotating
around one of the principal axes of the inertia tensor, € is given by ¢ = (I1 — I2)/I, where I; and I3 are
the moments of inertia with respect to the principal axes orthogonal to the rotation axis.

6 In a pulsar which rotates differentially the kinetic energy is degraded also by friction. This contribution
is typically much less than the electromagnetic losses.
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n is called braking index: n = 3 for pure EM-emission or n = 5 for pure GW-emission.
We therefore consider the differential equation

Ero = —aQ"tl = O =—-pQ". (B.6)

Assuming the constancy of 3, we can use the currently observed values of the rotational
parameters to estimate this unknown parameter: consider 7 = Q=13 = —Q,/Q,; the
above equation is therefore written as

FQn!
- anl ’
o

which can be integrated starting from the birth of the star (the age of the pulsar is 7,):

o QO dt ™ Fdt 7 Q, \"!
o1 e = Tn = 1—(—=—. .
o O o Qo n—1 Q.
Assuming that the NS was born with a very high angular velocity in the millisecond
regime, 2. > Q,

Q:

gt Q,
TnNn—l_ (nfl)Qo. (B.7)

These results, like the inferred magnetic field and the characteristic dipole age 7 = 73 = P/ (2P)
can be used to add information in the P-P diagram, where we can draw lines of constant
magnetic field B, dipole age 7 and energy loss E,., Fig (B.1).

However, the best-determined ages are those for which dynamical information, such
as observed space velocities of the pulsar coupled with a known birthplace, is available.
The characteristic spin-down ages estimated from pulsar periods P and spin-down rates P
using 7 = P/ 2P are considered less reliable estimates of the true age: in the cases in which
both kinds of age estimates are available, they generally differ by factors of two or three.

The present analysis tells us that it is also possible (though difficult) to estimate the
braking index by measuring the second derivative of the angular velocity as

19)
= R
Among the radio pulsars currently known, only young pulsars have braking indexes
measured with accuracy, all less than 3 (for the Crab the measured value is ~ 2.5). Some
pulsars with positive second derivative ) show anomalous braking indexes up to ~ 100,
while many pulsars show negative values of 9) (e.g. n = —1.5 for J0537-6910), which can
be understood in terms of missed or unresolved glitches (Alpar and Baykal, 2006).

The inferred braking indexes can also be a consequence of an evolving magnetic field
(Ho, 2015): within the standard scenario for spin evolution of isolated neutron stars, young
pulsars slow down with a constant surface field (i.e. constant /), implying a braking index
n = 3 while the field is constant and n > 3 when the field decays. This is in contrast with
observed values n < 3 (e.g. for Vela n & 1.4): the magnetic field can be buried soon after
birth and slowly diffuses to the surface.

n

B.0.3 Neutron stars as the strongest known magnets

Dipolar fields inferred from the rotational parameters of pulsars are extremely high if
compared to the magnetic fields we are used to, as depicted in Fig (B.2).
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Figure B.1: The pulsars considered by Pizzochero et al. (2017) plus the 34 single glitchers
presented in Tab (3.2). Lines of constant spin down luminosity, B and 7 are plotted, assuming
Re = 1 and I45 = 1. Left - The usual P-P diagram. The large glitchers are indicated by red
squares (non-single) or blue circles (single). All the other known glitchers are plotted according
a color scale that represents the amplitude of their largest glitch. The rough estimate of the
death line indicated by Lorimer and Kramer (2004) and defined by IQQ ~ 10°° erg/s bounds
the shaded region [see (Chen and Ruderman, 1993) for discussion of the graveyard region|. The
case of J1718-1718 is indicative of important selection effects due to the limited observations,
namely in slow pulsars glitches are rare so that they appear as single glitchers or even quiet.
Right - The same plot but using 2 and Q. In this case, in order not to hide very weak glitchers,
the color scale has been replaced by uniform black dots. It is interesting to note that the large
glitchers are very clustered, with the remarkable exception of J0537-6910. The Crab is also a
good candidate but, since it displayed many glitches, the detection of a considerably bigger glitch
is is unlikely: this pulsar may have already shown its maximum possible glitch [since it is young
and is spinning down fast, is maximum reservoir is expected to be significantly lower that the
upper bound provided by Eq (3.14)]. )

~
~

In the cgs system the quantity ®; = hc/e ~ 4 x 1077 G cm? can be regarded as a
quantum of magnetic field flux (Lai, 2016). Here we used the charge of the electron but
it is still possible to use a generic charge as well, for example 2e if we want to study
superconductivity may be suitable [see Eq (4.15)]. Given a macroscopic typical magnetic

field strength B, it is thus possible to derive the length /5 that defines the radius of the

microscopic solenoid as
[2hc
w2 eB’

In the first equation [ is just a generic length, the radius of the area relative to the flux
®y. The function B(l) defines a relation between magnetic field strength and the length
scale of the problem, and is dubbed Aharonov-Bohm scaling: since we derived it by means
of dimensional considerations only, the true scaling is expected to deviate significantly
from B(l) at a certain (unknown) critical scale that can be easily estimated. Let’s try
to insert [ = A\, = h/(mec) ~ 2.4 x 107% cm, the non-reduced Compton length of the
electron, into the above equation. We get B(\.) ~ 2 x 10'2 G, a value that perfectly fits
typical surface magnetic fields observed in pulsars B ~ 10'2 G. Magnetars have much
higher magnetic fields, B ~ 10** — 10'® G. This means that the properties of matter at
low pressure in neutron star environments is drastically modified by strong magnetic

B(l) lp (B.8)



147

100 R~ T

g 10%0%T

10—

10"~ Magnetars
| Neutron stars

2
\

strong scale

3
>
T
3 3

§¥10%1

electro-weak scale

el 2
E [~ 2mc

g
\

... Grand QrJiﬁcatiQn scale}/

4~ Stongest fields n Main Sequence Stars

g
\

Magnetic field strength (T)

Magnetic field strength (G)

=

o)

1

II!E H

2 00—
o

@

~

)

B~10"T Sunspots
............. sl B e a B/EY 10%- 10°
4 | Magnetars: Emmes(-a . Range of planetary surface fields
B~ 10°T o | Pulsars =Y 107 — 3 fie
b b . ] . 10° |/~ Helospherc magneti field at 1 AU
B~1T et ) Sars; |13 B } 10°L 6 L& Large-scale galactic fields
: ST Ltz ~ 0= s
1060 — o g
i B~1nT Space \ || 7
: [ L [
,
0 10 20 30
10 10 10 10
4/

Figure B.2: Magnetic field strengths for different length scales: the ultimate field strength
Bp; ~ 10°® G is given by considering the Planck length Ip; = 1/hG/c® = 107% cm, well above
the expected deviation from the trivial Aharonov-Bohm scaling. Left - Scaling of magnetic field
strength B (normalized to Bp;) with respect to the typical length scale | (normalized to the
Planck length lp;). The diagonal shows the relation given in Eq (B.8). The dotted red lines
indicates the intersection of the electronic Compton length with the Aharonov-Bohm scaling
line: this defines a field strength Bg ~ 10° T above which QED corrections to Landau energy
levels are important. For higher fields, the black dashed curve indicates a possible deviation
of the Aharonov-Bohm scaling near the QED limit, where the corrections to the Landau levels
are of the same order of the rest mass of the electron (namely they ceases to be corrections).
This defines a limit imposed by QED for the B field (the horizontal line at ~ 10?® T) that
approximately coincides with the measured upper limit on the electron radius (vertical blue
dashed line). However the (shaded) relativistic domain have never been observed. Right - The
range of observed astrophysical magnetic field strengths, covering approximatively 21 orders of
magnitude. Magnetic field is given in SI units, T= 10* G. For comparison, observed magnetic
WDs exhibit polar field strengths in the wide range 103-10° G. Adapted from Beskin et al. (2016).

fields”. QED corrections to the trivial Aharonov-Bohm scaling appear when the energy
gap between consecutive Landau levels is the order of the electron mass, implying that the
B field is comparable to the value Bg ~ 10'® G. Remarkably this kind of fields are often
observed in neutron stars surroundings, where a number of QED processes are important,
like single-photon pair production v — e + e~. This process is forbidden at zero-field by
momentum conservation and is one of the dominant channels for pair cascade in pulsar
magnetospheres. This possibility to excite pairs is expected to make magnetized vacuum
birefringent for photons propagating through it, a fact that significantly affects the x-ray
polarization signals from magnetars as recently observed by Mignani et al. (2017) in RX
J1856-3754. This particular object is part of the group of neutron stars known as the
Magnificent Seven, radio-quiet isolated neutron star which have no stellar companions

7 The typical field that is expected to alter the atomic properties of matter is B(ag), where
ap = h?/(mee?) = 5.3 x 10~%m is the Bohr radius. Thus B(ag) = 2cm? e3/h% ~ 4.7 x 10° G, much less
than B(Ae). We defined ®g and B(l) in order to be consistent with Beskin et al. (2016). Alternatively, it is
possible to follow another, and more common, line of reasoning: the energy between two consecutive Landau
levels is hwe = heB/me, which implies the natural definition B(F) = Emc/(he), where E is a generic en-
ergy. The atomic magnetic field is thus given by choosing E = €2 /ag ~ 27 eV, namely B(e?/ao) = B(ao)/2-
By choosing E = mec?, a magnetic field of strength B(mec?) = m2c3/(he) ~ 4.4 x 1013 G can create
electron-position pairs (vacuum polarization). This field strength is dubbed Bg in the text; note that
Bg = 272B(e).
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and are not surrounded by progenitor supernova material.

Inclusion of higher order QED corrections would allow for fields of up to ~ 1032 G, deep
in the (shaded) relativistic domain of Fig (B.2) which have newer been observed: strongest
detected magnetar fields correspond only to the first order relativistic correction on the
lowest Landau level energy (shown in Fig (B.2)) that are of the order ~ m.c?B/(4w137Bg).



APPENDIX C

Rigid models

Most studies of pulsar glitches are based on body-averaged models with two rigid compo-
nents: an “observable component” strongly coupled to the magnetic field and an “internal
component”. Some examples of this kind of approach can be found in the early work of
Baym et al. (1969) or in the more recent studies of Andersson et al. (2012), Sidery et al.
(2010) and Sourie et al. (2016).

The observable component is, by definition, the component of the star that corotates
with the observed beamed radiation and it is typically assumed to consist of the solid
crust and everything strongly coupled to it by the large-scale magnetic field.

The internal component is the so-called superfluid component. This definition is
however vague enough: also the core is (at least partially) superfluid. Nevertheless the
core is most of the times assumed to be part of the observable component: mutual friction
arising from electron scattering couples the crust and the core superfluid in less than a
minute for a glitching pulsar like Vela (Alpar et al., 1984a; Alpar et al., 1984; Alpar and
Sauls, 1988; Andersson et al., 2006).

More generally the star can be comprised of many body-averaged components: distinc-
tion between such components is therefore made by considering the different processes
that couple them to the solid crust. Each component (call it z, no repeated indexes
summation convention is used for this component label) interacts with the others via a
mutual torque T}/ = —T37p, so that the component y induces a torque T}/ on z. To
resemble a form that is sometimes used in glitch modelling, we can also use the notation
TV e = IwQ%F Let also consider the possibility that the single components can radiate
(as sometimes assumed when entrainment is present), so they loose angular momentum at
a rate TS%t = —I,|Qc"t).

Assume now that we can observe the star for a long time and measure its spin down
rate: the most the observation is extended, the most we can push forward the claim that
we are indeed measuring' the steady-state spin down rate |QOO| Given the parameters I,
which represent the moments of inertia of the various components, the multi-component

L A long observation is needed to average the glitch-induced spin-ups with the post-glitch recoveries.
To really fit the value of |20 |, the moments of inertia I and the rates |Q2¢%¢| must be considered constant
during the observation timescale.
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dynamics with no precession is

LY, = ZTJZ\!/[QCF‘FT;M = 0, = ZQZJI\/J[CF - |Q§xt|
Y Y
ZIrQr = *I‘QOO| = er|Qgecmt| :I|Qoo|

lezl

The fundamental constraints on the spin down rate and on the total angular momentum
are indicated, together with the alternative notation in terms of Q47 ;. Note that, since
we are interested do describe the standard scenario that applies to RPPs, we forced the
rates to be negative but accreting neutron stars can have positive rates.

The basic phenomenological of this kind was proposed by Baym et al. (1969), where
the mutual friction is written in terms of the of the coupling timescale? Ty(’;c = 7",% as:
I,I, Q,—Q, N L O

T < = Qr = B

yr o _
T]VIF -

In the equations above we introduced also the relazation timescale Tsz =1 Tycz /1, > Ty%,

which has the disadvantage to be a non-symmetric matrix. However some of the entries of
R

7, can be estimated directly by observing the post-glitch relaxation (in the case of two
components 77 is the timescale of the theoretical exponential relaxation).

Models with more than two components are not very used, even though they provide
a variety of dynamical possibilities which could really fit the diverse phenomenology of
glitches and produce overshooting of the observable component, impossible to realize with
a rigid two-component model. The main problem is the identification of a third component
and its coupling with the superfluid in the crust: it seems reasonable to consider the
superfluid in the outer core, or the toroidal superfluid region corresponding to a region
of pinning with flux tubes (Giigercinoglu and Alpar, 2014). It is trivial to generalize
the differential model described in chapter (2) in order to rigorously build the integral
prescriptions needed to construct such a three-component model (in this case we have to
consider two sets of disjoint regions that are filled with straight vortex lines).

The simplest model for pulsar rotational dynamics is obtained by considering an
internal and an observable components with angular velocities 2, and €2;. Only the
observable component undergoes electromagnetic losses of angular momentum:

I,Qo + L = — 10| (C.1)

. Qz - Qo

2 The coupling timescale is actually the parameter used in the original article of Baym et al. (1969)
and in the book of (Shapiro and Teukolsky, 1983). The terminology used here is not standard and most
of the times the terms “coupling” and “relaxation” are used as synonyms. For a non-linear mutual friction
torque Ty, we can introduce the coupling timescale by considering the linearization of the general mutual
friction term in a particular dynamical phase: Tx% ~ IyII” [(‘:g&]_l

zy
timescales shorter than 7! and the variation of the mutual friction has to be evaluated at the given initial

lags that define the dynamical phase.

. The approximation is valid on
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Such a linear system provides exponential relaxation if perturbed away from the steady
state®. Values of the order I; ~ 10721 are typically found for the internal component,
provided that it consists of the superfluid within the crust, enough to explain large Vela
glitches (Link et al., 1999). As argued by Andersson et al. (2012) and Chamel (2013), the
fraction I;/I is significantly lowered by entrainment, leading to difficulties in explaining
large glitches. This result is however debated, as it seem that it is premature to reject
the longstanding hypothesis that the superfluid reservoir is confined into the crust only
(Piekarewicz et al., 2014); (Watanabe and Pethick, 2017).

The entrainment effect in the above simple system of equations is usually included by
introducing additional (linear) couplings between {2, and 2;. However, it has been shown
in chapter (2) that entrainment does not change the form of the rigid equations; it only
affects the values of I,, I; (leaving I unchanged) and 7, without any need to introduce new
terms, differently from what it is usually done in body averaged models [e.g. (Andersson
et al., 2012), (Haskell and Melatos, 2015)].

3 A simple calculation shows that, within the original starquake scenario (in which the glitch is
produced by artificially changing the moments of inertia at the steady state), the healing parameter @
of Eq (1.3) turns out to be @ ~ I;/I. On the other hand, a transient perturbation of the value of 7
(representing a sudden unpinning of vortices) implies @ = 0. In general the only way to produce a non-zero
value of @ is to allow for a permanent change in one or more of parameters in the dynamical equations.






APPENDIX D

Vortex mediated mutual friction

We review the derivation of the mutual friction force in the case of superfluid *He (Hall and
Vinen, 1956; Bekarevich and Khalatnikov, 1961), correcting an overall sign error present
in Andersson et al. (2006). This method will be applied to the standard case, where the
vortex line feels a drag force and the Magnus force. The analysis is purely local, meaning
that it is suitable only in an idealized scenario: the local motion of the line is uncorrelated
to the forces felt by other segments of the line. This implies that the matter should be
homogeneous at the mesoscopic scale of the vortex line and that the line itself is locally
straight. For this reason this type of force between the normal and superfluid component
is usually considered to be the standard form of vortex-induced mutual friction when an
organized array of vortices is present.

General relativistic generalization of the standard result presented here is given by
Andersson et al. (2016).

A superfluid vortex in 2D (i.e. a vortex in a superfluid film), or a straight vortex line
in a 3D domain, is sometimes described as a point massless particle. Motivation for this
relies into the fact that a free vortex line in a perfect fluid flows with the velocity field
without any inertial effect: its trajectory coincide with the path of a material element of
the fluid. This is not a prerogative of the quantum nature of the fluid (the same behavior
appears in the classical perfect fluid).

The Newton equations for a vortex of this kind are thus just equations for force balance.
It is also possible to assign an effective mass to the vortex, as discussed by Baym and
Chandler (1983). However the central point here is another: a vortex has an infinite
number of degrees of freedom that are inevitably frozen if we describe it as a point particle.
The next fundamental point is how to perform a meaningful average over a portion of fluid
that contains many vortices, in order to obtain the macroscopic form the hydrodynamical
equations with mutual friction. Both these points are addressed here in a somewhat trivial
way, that is nonetheless the standard way: firstly, the vortex is a point; secondly, the
macroscopic average is performed by considering a certain set of non-interacting points
(dubbed “bundle of vortices”) in a fixed and uniform background flow.

We start by considering the equation of motion for a straight segment of vortex line!

I More rigorously we should say that the treatment is valid for a vortex on a 2D film, where the
circulation k is a scalar (like the magnetic field in 3D spacetime) and the background uniform flow is
forced live in the same plane of the vortex’s induced flow: in this case the vortex is really a particle. In
modelling superfluid neutron stars, the present derivation is sometimes interpreted differently: vortices
are extended, but their local dynamics is assumed to be the 2D dynamics on a certain plane identified by
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with velocity v and circulation k: the forces considered here are not localized but
are averaged forces acting on a suitably small volume around a straight piece vortex
(mesoscopic forces); the Newton equation (with no inertia) reads

fu+fp=0

where fi, = m,n,e%k, and fi, are the Magnus and drag force respectively. It is useful
to work in the frame of the normal component; the notation vg, stands for vy —v;. Using
the fact that vy, = v}, —v

np» the system to solve is

€ijpi? (vfp - vﬁp) - Rvip =0 (D.1)

with R = n/(kpy,) that is usually referred to as “dimensionless drag parameter”. Instead
of assuming a specific direction for the vortex line (usually the z-axis), we follow here a
different method to solve the equation of motion. We define the matrices Ky, = eajb/%j
and R, = 04R; in vectorial notation the application defined by K is the usual cross
product, namely # x v = Kv and & x (& x v) = K?v. The force balance can be rewritten
as

(Kia — Ria) v}, = Kyvl, = v}, = (K—R); K. (D.2)

By using the fact that #;&; = 1, it is possible to show that (the properties K? = ~1+A®#A
and K3 = —K have to be used)

det (K — R) = —R(1 +R?)
(K-R)™7 =-1/R-K/(1+R?) - K?/(R+R?).

Therefore, the vortex velocity in Eq (D.2) can be written as

R 1 )
va_<1+R2K+1+R2K>vnp. (D.3)

In the limit of very weak drag (R < 1) we have vy, ~ —K?v,,: if # and v,, are
orthogonal this implies vz, =~ v,p, namely the vortex line is comoving with the superfluid
component as expected from the Kelvin’s theorem. On the other hand, in the limit of
extremely strong drag (R > 1) we have that vz, ~ RIK Vpp: the vortex tends to move
in a direction orthogonal to both # and v, but with infinitesimal velocity so that it can
be considered to be quasi comoving with the normal component.

Let’s define F;r to be the force exerted by the normal component on the superfluid
component (and —Fj;p the force exerted by the superfluid on the normal component);
therefore hydrodynamical equations have the form

pn Dyvy + ... = Fyp + “gravity” (D.4)
pp Divp + ... = —Fyp + “gravity, viscosity, Lorentz force...” (D.5)

and are eventually coupled to the Poisson and the induction equations (if there is entrain-
ment the Lorentz force is present also in the equation for the v-component). Since fp is the
force (per unit length) on a vortex due to the presence of the normal fluid we can conclude
that —Fjyp = —n,fp, where the length per unit volume n, accounts for the presence

/. The straight segment of vortex line is nothing but a point with associated &?, a sort of elementary
spin that interacts with an external field.
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of many vortices in every point of fluid at the macroscopic scale. The mutual friction is
thus obtained by inserting our solution for vy, into fp (or, equivalently, into minus the
Magnus force). From the hydrodynamical point of view, the acceleration imprinted onto a
superfluid particle is

Fuyur R? R .
Vinp + 71 TRE K

X (R X Vpp)| - (D.6)

KNy | ———= K X
Pn L1+ R?

This notation is particularly convenient when we have to deal with a straight array
of vortices that are homogeneously spaced. In this case n, = 2Q,/x. More generally
n? = wiw! and the density of vortex lines can be regarded as a measure of the vorticity
intensity (i.e. it is the number of vortex lines per unit area of a surface locally orthogonal
to the bundle). Given the above interpretation of n,, the vorticity is sometimes written as
i
n

w! = m;l eiabaapz = Ky’ = n, =2|V xpu|/h. (D.7)

This implies that the mutual friction can also be equivalently written as
Fur = Pn Bewy, % Vnp + Pn By, x (wn X vnp) . (DS)

where &, is just an alias for &, the unit vector that indicates the vorticity direction?, while
the dimensionless coefficients are defined as
R? R
Be = gz Bi= e (D-9)
This force contains two different parts: the term proportional to B, originates from the
Coriolis force and is conservative (it is formally not different from the magnetic part of
the Lorentz force), whereas the one proportional to B, is dissipative.

Let us consider the usual right-handed local cylindrical coordinates with axes (&, &, &,)
and assume &k = €, vy, = T{),,€,. In this basic scenario of a straight array of equally-
spaced vortices, we have kn, = 2(),; the mutual friction force and the mutual torque can
be written as

X X FMF = 2aninp [Bd (JZZéI - Z‘Qéz) - Bcl'Zétp} . (Dll)

The different possibilities in the regimes of strong and weak drag are summarized in Table
(D.1).

2 It is important to note that the present derivation ha simple analytics thanks to the fact that we
can identify the macroscopic unit vector @ (i.e. the local direction of a vortex bundle comprised of nearly
parallel vortices) with the direction of the microscopic direction &.
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R<1 R>1
Regime: dissipative quasi-conservative
B. <R ~1
By ~R ~RT
Vip ~ €, ~ R 12,8,
Fur ~ =220, QnpRE, ~ =220, Qnp€y

Table D.1: Summary of the various possibilities in the limits of strong and weak drag, assuming
Rk =@;, ny =20, /k and vpp = £Qnpé,. Perfect pinning corresponds to the extreme regime where
a neutron current p,vn, can be sustained without any dissipation. In this case vortices comove
with the normal component, v, = 0, and the force density exerted on the normal component is
directed radially outward: —Farr = 22050 Qnp€s.



APPENDIX E

Bent vortex lines

The first consistent model of pulsar dynamics with non rigid-body rotation of the superfluid
that accounts for the stratified structure, entrainment and pinning has been described in
chapter (2), under the hypothesis of rigid and straight vortex lines. The corresponding
maximum glitch amplitude is entrainment independent and vortex length independent
(if vortices are longer than the vertical section in which pinning is possible), namely the
integration along the z-axis is unimportant: the deep reason for this is that the cylindrical
surfaces that contain vortex lines coincide with the surfaces of constant x.

This model is built on two working assumptions: the background stellar structure is
that of non-rotating hydrostatic equilibrium and the configuration space of the vorticity
lines is very limited, namely it consists of a foliation of straight curves -, in the superfluid
domain (that can be a generic spherical shell). The motivation behind such a construction
is the possibility that an array of quantized lines behaves like a bundle which tension is
proportional to the square of the number of vortices, providing a realization of the Taylor-
Proudman theorem (Ruderman and Sutherland, 1974): single vortices could therefore
oscillate, bend and reconnect but the macroscopic vorticity mediated over many lines is
still columnar. Identification of these curves v, with the microscopic vorticity is very
problematic due to the argument given in Sec (2.5): vortices should have an infinite
collective rigidity to resist bending induced by the non-homogeneity of the forces applied
along its length.

As it stands, while the argument for the turbulent core seems robust and coherent
with the accepted formulation of the HVBK equations, it is less clear whether or not
vortices can remain collectively straight in the crust, where pinning could help a collective
organization of the vortex array.

Since the situation is quite unclear and still debated, we saw in chapter (2) that the
infinite rigidity assumption is nothing but a prescription used to project the 3D problem
into a cylindrical one by accounting for stratification. Depending on the details of the
mutual friction and on the extension of vortex lines it can also have something to do with
reality; moreover it provides a convenient way to model the superfluid dynamics in the
presence of a stratified background: it may be interesting to generalize this idea to the
case of non-tangled macroscopic vorticity. Before moving to construct the model with
bent lines there is the need for few more remarks.

Moment of inertia density - In the Newtonian model with straight lines we introduced the
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moment of inertia density

dI, z(x) Ry
I, g(x) = d;x) = 47T.’£3-/0 dz P:U I, = /0 d]v(l')

where p% (r) = pp(r)/m*(r) and dI,(z) it is the moment of inertia of to the thin cylindrical
surfaces of constant radius x that foliate the star.

Interpretation of the pinning forces - Just remember the physical interpretation of f,: it
is not a force but a threshold for the lift force on a little segment of vortex line (Seveso
et al., 2016). The procedure used to estimate this pinning force is an average over different
translations and orientations of the line with respect to the lattice principal axes: this
procedure is actually an average over an ensemble of mesoscopic segments of vortex
lines (isotropically distributed) more than over a single vortex line that stretches over
a macroscopic distance. A natural interpretation is that f, defines a threshold for the
collective pinning, namely the maximum strength of the hydrodynamical lift induced by
the macroscopic dissipationless current over a large ensemble of pinned vortex lines.

Bent vortices- An axially symmetric and rigid configuration of macroscopic vorticity
(where the curvature radius is of the same order of magnitude of the stellar radius, still a
non-turbulent scenario) is a one-parameter family of curves 7, () that foliate a meridional
slice of the star (no toroidal vorticity is considered). Each curve, e.g. v, (\), represents the
shape of a vortex bundle that intersects the equatorial plane at x = xy. This construction
reduces the dynamical problem in a significant manner, since it is now possible to use
just the density of vortex lines on the equatorial plane n,(x) = n,(z,z = 0). Vortex
creep modifies the density of vortices n,(x), while vortex lines continuously rearrange
their shape from 7, to v, t4, when moving from z to « + dz. In the dynamical model it
is useful to define m,, x 0, = py, see Eq (2.10): when vortices are perfectly pinned, €2,
is stationary!. Here we are more interested in its relation with the geometry of vortices.
We are going to drop the columnar symmetry of the vortex configuration, therefore this
quantity is now a function €, (z, 2).

E.0.1 Newtonian model: model with static curved vortices

Consider an axially symmetric velocity field v, = p,,/m,, namely
Vy(x) = vg(2, 2)ex (@) + vu(x, 2)eq(p) +v.(x, 2)e, .
The curl of this field gives
wy = —0.v,€, + (0.0, — 0yv.)e, + %Bm(wi)ez .

If we impose a fixed and spherical density background, the continuity equation (usually
written for the velocity v,,) can be written in terms of v, and reads

V-(pivy) =0 = 0Oy(zvy) + 0:.(xv,) = —z0v,:0, In p) |

I This is not true for Q, because entrainment couples the neutron superfluid to the charged constituents
of the p-component that undergo a steady and slow electromagnetic spin-down.
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that poses a strong additional constraint on v, and v,. This equation, together with the
boundary conditions (v, = 0 at the superfluid boundaries) limits the possible motion
that involves meridional circulation. For simplicity we consider v, = 0 everywhere in
the domain, such that w¢ = 0 (no toroidal vorticity, implying no meridional circulation)
and the continuity equation is trivially satisfied. In this case v, = wv,(z,2)e, and
Tw, = (—ey0,+e,0;) (rv,). It is convenient to introduce new coordinates: z, and

Figure E.1: Sketch of the stellar structure, with

z Surfaces of constant the geometrical definitions used and the vorticity
X(A) vO(x(A),z(N)) = x vO(x,0) surfaces: dA represents the area element in the x-
z plane, while vorticity surfaces are parametrized

by A and are labeled by their intersection with

the equatorial plane. In principle vorticity lines

could also have a component directed along &,

and a non zero winding number around the z-axis.
)‘f Creeping vortices moves from a vorticity surface
o to another one. Here vorticity extends trough

n

the core but, as usual, it can be confined into
any spherically symmetric domain, namely it is
equally possible to label the surfaces using their
| intersection with a spherical surface rather than
dxo X with their intersection with the equatorial radius.

the parameter along the vorticity lines A\. We use the notation z(x,,\) = )., and
2(x,\) = 2xg,: for fixed z,, A and ¢ identify a point on the vorticity surface that
intersect the equatorial plane at x = x,. This choice is convenient since the number of
intersections of vortex lines with the equatorial plane must be conserved, namely

o Oy (Toy t) + O, [To My (T0,t) VT (20, )] = 0,
where 1, (2,) = w.(2,,0)/k. When we use the non-orthogonal set of coordinates (z,, ¢, \),
we must consider that the volume form is d®x = dA dp, where
dA = dxdzx = dx,d\xyy, |Opg® Onz — Opgz Orz| .

The differential 27 dA represents the volume of a thin torus identified by the coordinates
A and z,, as shown in Fig (E.1). Clearly (A, z,) dp and dy = \/(0xz)? + (0r2)2d\ are

the azimuthal line element and the arc length along a vortex respectively. Therefore the

volume element can equivalently be written as dz® = dyd¥X |, where the infinitesimal area

element d¥; normal to the vorticity is given by

_ |Ozpz Oxz — Ozy2z Orx|
(Ox2)? + (Or2)?

Conservation of the number of vortex lines can be written in terms of the density of

vortices on the equatorial plane n,(x,) as

X Trz, ATo dep .

Ny (To) To dTo dp = 1y (T, s 2oz, ) dX L -
The macroscopic Feynman relation, Eq (2.8), is written as

|$;Io Z7/\ B 2,10$7A|

To
2T T V| (A 2,) = /2 wpdX | = 271'/0 Wi (g, Z2y) \/m Try dy
€ 3 3
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and turns out to be independent on A by construction. The volume of a bundle of vortex
lines that is enclosed in between of the two surfaces labeled by z, and x, + dz, is

db = dgodxo/ AN |2 2,2\ — Z,5,T 7| Trg, -
5.

To

We now generalize the prescription of Pizzochero (2011) and (Haskell et al., 2013) that
was used to find the critical lag profile of Eq (2.24). Instead of integrating along a single
vortex line we consider a bundle of vortex lines, namely

db[n, (fp—|fu)) =0 = / d x|z 5,23 — 22,2 5| (fp — [fm]) o = 0.
Yzo

Note that the factor n, d¥, is the number of vortices that pass through the area element
d¥ | : in this way f, is the average (local) unpinning threshold for the ensemble of vortices
in the bundle, coherently with the new interpretation of the pinning force given before. We
use the fact that the number of vortices is constant for every section of the bundle (namely
we can replace n, with the module of the vorticity on the equatorial plane rescaled by the
opportune bundle section) and obtain

0N 2o 1o (20) \JTA2 4 202 (fp — RPLUE) =0 = /dwfpwp:vf):o.
/Y P P

2o Yo
Note that we finally obtained the integrations along the single vortex line, thanks to the
inclusion of the n, factor inside the bundle integrations. It is now straightforward to

obtain? .
f’Ymo dv fp [ f 0 dy ppx x21
P

QF (20) =
(o) gk [, dvona! 5

(E.1)

2T gl 2
23 [, dvpraTt a3

When vortices are straight the vorticity surfaces are defined by xzx,, = =, and the above
equation reduces to Eq (3.13). In complete generality the angular momentum reservoir
can be written as

Ryg
AL[Q,,] = /dEld'y 22yl = /0 dzo Qup(z,) CHZ;T(%) ,

where

dl,(z, N
dh@o) _ 27 x? / dX pp @[T 2,2\ — 2,2, 2
Y

Ry
I, = dl,(z,) .
o , / (z0)

0

Finally the maximum glitch amplitude turns out to be

o [Ha
AQax = TW dx, xz Qf);)(xo)/ A\ pp & |T 5 20 — 22,2 2] (E.2)
0 v

To

2 The specific angular momentum can exit the integrals along 7g,: just remember that
Zovi (A, o) = 605 (0,20), namely (for every z,) the specific angular momentum is constant along
the vorticity surface that is parallel to vz,. Equivalently, Ty, v (Zrz,:2rz,) = %0z, V9 (L0zy > 202, ) OF
Zo Qf,;(:co) = Tiz, Qgrp(x/\xovzkxo) .
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