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Highlights

• the classical problem of the breaking of a completely resonant maximal torus is consid-
ered;

• standard averaging methods are not enough when degeneracies occur;

• a new normal form construction is here proposed;

• the normal form algorithm provides high order approximation of degenerate periodic
orbits;

• continuation can be then obtained via Newton-Kantorovich scheme.
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On the continuation of degenerate periodic orbits

via normal form: full dimensional resonant tori

T. Penati∗1, M. Sansottera1, and V. Danesi1

1Department of Mathematics, University of Milan, via Saldini 50, 20133 — Milan, Italy.

February 7, 2018

Abstract

We reconsider the classical problem of the continuation of degenerate periodic orbits
in Hamiltonian systems. In particular we focus on periodic orbits that arise from the
breaking of a completely resonant maximal torus. We here propose a suitable normal form
construction that allows to identify and approximate the periodic orbits which survive to
the breaking of the resonant torus. Our algorithm allows to treat the continuation of
approximate orbits which are at leading order degenerate, hence not covered by classical
averaging methods. We discuss possible future extensions and applications to localized
periodic orbits in chains of weakly coupled oscillators.

Keywords: normal form construction, completely resonant tori, Hamiltonian perturbation
theory, periodic orbits.

1 Introduction

We consider a canonical system of differential equations with Hamiltonian

H(I, ϕ, ε) = H0(I) + εH1(I, ϕ) + ε2H2(I, ϕ) + . . . , (1)

where I ∈ U ⊂ Rn, ϕ ∈ Tn are action-angle variables and ε is a small perturbative parameter.
The unperturbed system, H0, is clearly integrable and the orbits, lying on invariant tori, are
generically quasi-periodic. Besides, if the unperturbed frequencies satisfy resonance relations,
one has periodic orbits on a dense set of resonant tori.

The KAM theorem ensures the persistence of a set of large measure of quasi-periodic
orbits, lying on nonresonant tori, for the perturbed system, if ε is small enough and a suitable
nondegeneracy condition for H0 is satisfied.

Instead, considering a resonant torus, when a perturbation is added such a torus is
generically destroyed and only a finite number of periodic orbits are expected to survive.
The location and stability of the continued periodic orbits are determined by a theorem of
Poincaré [35, 36], who approached the problem locally: with an averaging method, he was
able to select those isolated unperturbed solutions which, under a suitable nondegeneracy
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condition (nowadays called Poincaré nondegeneracy condition), can be continued by means
of an implicit function theorem. A modern approach has been developed in the seventies
by Weinstein [41] and Moser [28] using bifurcation techniques, turning the problem to the
investigation of critical points of a functional on a compact manifold. Actually, the number of
critical points can be estimated from below with geometrical methods, like Morse theory. The
drawback lies in the fact that the method is not at all constructive, thus it does not permit
the localization of the periodic orbits on the torus. In the same spirit, variational methods
which make use of the mountain pass theorem were developed some years later by Fadell and
Rabinowitz, under different hypotheses (see Chapter 1 in [4] for a simplified exposition of this
result). More recently, the problem of continuation of degenerate periodic orbits in nearly
integrable Hamiltonian systems using perturbation techniques has been studied in [25, 40].
On the other hand, from the early nineties great attention has been devoted to the general-
ization of Poincaré’s result to partially resonant tori, where the unperturbed torus is foliated
by quasi-periodic orbits, since the number of resonances is strictly less than n−1. In this case,
the starting point still consists in looking for nondegenerate critical points of the perturbation
averaged over the unperturbed quasi-periodic solution; however, the presence of more than a
single frequency requires the assumption of additional hypotheses, which allow to implement
suitable versions of the KAM scheme. Along this line, first results were due to Treshchev [39],
Cheng [6], Li and Yi [24]. Recently, these results have been successfully extended to multiscale
nearly integrable Hamiltonian systems, where the integrable part of the Hamiltonian H0(I, ε),
properly involves several time scales, see, e.g., [42,43]. All the quoted works deal with the case
where the unperturbed invariant torus is degenerate due to resonances among its frequencies.
Instead, we remark that the problems of existence of invariant tori of dimension less than the
number of degrees of freedom in weakly perturbed Hamiltonian system, i.e., the extension to
lower dimensional tori of the classical KAM theory, has been widely investigated by many
authors, see, e.g., [9,23,26,27,29,45–47] in a general abstract framework, and [5,7,8,14,17,38]
for more recent problems mainly emerging in Celestial Mechanics.

In this paper we follow the line traced by Poincaré and deal with those cases when the
nondegeneracy condition is not fulfilled. In particular, under a twist-like condition of the form
(4) (see, e.g., [3]) and analytic estimates of the perturbation (5), we develop an original normal
form scheme, inspired by a recent completely constructive proof of the classical Lyapunov
theorem on periodic orbits [13], which allows to investigate the continuation of degenerate
periodic orbits. Precisely, first we identify possible candidates for the continuation via normal
form, then we prove the existence of a unique solution by using the Newton-Kantorovich
method.

Remark 1.1 Let us anticipate a crucial difference with respect to the KAM normal form
algorithm: generically, our normal form procedure turns out to be divergent. Actually, a
moment’s thought suggests that looking for a convergent normal form which is valid for all
possible periodic orbits is too much to ask. The idea is that a suitably truncated normal form
allows to produce the approximated periodic orbits and the continuation can be performed via
contraction or with a further convergent normal form around a selected periodic orbit.

Remark 1.2 It is worth mentioning that the idea of performing a finite number of KAM-like
steps in order to remove some degeneracy in the continuation procedure is obviously not new,
see, e.g., [17,42,43] concerning the continuation of quasi-periodic orbits on resonant tori for
a class of multiscale nearly integrable Hamiltonian systems. In these works a finite number of

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

preliminary KAM steps are performed in order to push the perturbation to a sufficiently high
order in ε, before applying a standard convergent scheme.

The strength of the present perturbative algorithm is at least twofold. First, it provides
a way to construct approximate periodic solutions at any desired order in ε, thus going
beyond the average approximation mostly used in the literature. One of the few results which
represents an improvement with respect to the usual average method is the one claimed in [25],
where a criterion for the existence of periodic orbits on completely degenerate resonant tori is
proved. In that work the authors, by means of a standard Lindstedt expansion as the original
works of Poincaré, are able to push the perturbation scheme at second order in the small
parameter ε. However, the possibility to provide a criterion for the continuation, although
remarkable, is a consequence of the restriction to completely degenerate cases, like when
the Fourier expansion of H1 with respect to the angle variables does not include a certain
resonance class. In this way, all the partial degeneracies are excluded. Such a limitation is
overcome by the normal form that we propose: indeed, by being able to deal with any degree
of degeneracy, it results more general (also in terms of order of accuracy), thus including also
the above mentioned result.

The formal scheme itself has also a second relevant aspect. Since this approximation is
given by a recursive explicit algorithm, it can be much useful for numerical applications (see,
e.g., [11]) and it is independent of the possibility to conclude the proof with a contraction
theorem. Furthermore, our approach provides a constructive normal form that can be applied
to a sufficiently general class of models; for example, it includes nonlinear Hamiltonian lattices
with next-to-nearest neighbor interactions, such as

H =
∑

j∈J

y2
j

2
+
∑

j∈J
V (xj) + ε

r∑

l=1

∑

j∈J
W (xj+l − xj) ;

where V (x) is the potential of an anharmonic oscillator which allows for action variable
(at least locally, like the Morse potential), and W (x) represents a generic next-to-nearest
neighbour (possibly linear) interaction, with r the maximal range of the interaction. In this
class of nearly integrable Hamiltonian lattices, the possibility to generalize the formal scheme
to lower dimensional tori would represent a remarkable breakthrough in the investigation
of degenerate phase-shift multibreathers and vortexes in one and two dimensional lattices
(see, e.g., [1, 2, 21, 22, 30–33]). The extension to lower dimensional tori, that represents the
natural continuation of the present work, will be also useful in problems emerging in Celestial
Mechanics, where the persistence of nonresonant lower dimensional tori has been proved with
similar techniques, see, e.g., [14, 38].

In the present work we focus on resonant maximal tori in order to reduce the technical
difficulty to a minimum and concentrate on the novelty of the normal form scheme.

1.1 Outline of the algorithm and statement of the main results

Consider a completely resonant maximal torus of H0 with unperturbed frequencies

ω̂(I) =
∂H0

∂I
, such that ω̂(I) = ωk ,

where ω ∈ R and k ∈ Zn. This corresponds to a suitable choice of the actions I = I∗ with
non-vanishing components. From now on, without affecting the generality of the result, we
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will assume k1 = 1: this will simplify the interpretation of the new variables q̂, p̂ that we are
going to introduce in a while.

Expanding (1) in power series of the translated actions J = I − I∗, one has

H(0) = 〈ω̂, J〉+ f
(0,0)
4 (J) +

∑

l>2

f
(0,0)
2l (J)

+ f
(0,1)
0 (ϕ) + f

(0,1)
2 (J, ϕ)

+
∑

s>1

f
(0,s)
0 (ϕ) +

∑

s>1

f
(0,s)
2 (J, ϕ)+

+
∑

s>0

∑

l>1

f
(0,s)
2l (J, ϕ) ,

where f
(0,s)
2l is a homogeneous polynomial of degree l in J and it is a function of order O(εs).

Remark 1.3 The decision to tie the index 2l to terms of degree l in J is due to the future
extension of the work to lower dimensional tori. Indeed, in that case the transversal directions
will be described in cartesian variables, thus the actions will count for two in the total degree.
This is also in agreement with the notation adopted in [14].

Remark 1.4 The Hamiltonian (1) in most applications has only linear terms in the small
parameter ε, namely Hl≥2 ≡ 0. Nevertheless, we already consider the general case where the
perturbation is analytic in the small parameter. Indeed, as it will be clear from the normal
form procedure, starting from the first normalization step we immediately introduce the whole
series expansion in ε.

We define the (n− 1)-dimensional resonant module

Mω =
{
h ∈ Zn : 〈ω̂, h〉 = 0

}

and introduce the resonant variables p̂,q̂ in place of J, ϕ. In particular, the pair of conjugate
variables p̂1, q̂1 describes the periodic orbit, while the pairs p̂j , q̂j , j = 2, . . . , n, represent the
transverse directions. The canonical change of coordinates is built with an unimodular matrix
(see Lemma 2.10 in [12]) which shows that1 the new angles q̂j , j = 2, . . . , n, are the phase
differences with respect to the true angle of the periodic orbit, q̂1, and that p̂1 is given by
p̂1 = 〈k, J〉.

Introducing the convenient notations p̂ = (p1, p), q̂ = (q1, q) with p1 = p̂1, p = (p̂2, . . . , p̂n)
and correspondingly for q1 and q, the Hamiltonian can be written in the form

H(0) = ωp1 + f
(0,0)
4 (p1, p) +

∑

l>2

f
(0,0)
2l (p1, p)

+ f
(0,1)
0 (q1, q) + f

(0,1)
2 (p1, p, q1, q)

+
∑

s>1

f
(0,s)
0 (q1, q) +

∑

s>1

f
(0,s)
2 (p1, p, q1, q)

+
∑

s>0

∑

l>1

f
(0,s)
2l (p1, p, q1, q)

(2)

1This follows from the assumption k1 = 1. Indeed, in this case that the resonant vector defining the phase
differences q̂j = kjφ1 − φj are a basis for the resonant modulus Mω.
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where f
(0,s)
2l is a homogeneous polynomial of degree l in p̂ and it is a function of order O(εs).

Wince we aim to continue a generic unperturbed periodic orbit p1 = 0, q1 = q1(0) + ωt,
p = 0, q = q∗, we look for a normal form which is able to select those phase shifts, q∗, which
represent good candidates for continuation. The Hamiltonian is said to be in normal form up
to order r if the constant and linear terms in the actions are averaged (up to order r) with
respect to the fast angle, q1, and if, for a fixed but arbitrary q∗, the linear terms in the action,
evaluated at q = q∗, vanishes identically.

In order to give a precise statement we need to introduce the mathematical framework.
We consider the extended complex domains Dρ,σ = Gρ × Tnσ, defined as

Gρ =
{
p̂ ∈ Cn : max

1≤j≤n
|p̂j | < ρ

}
,

Tnσ =
{
q̂ ∈ Cn : Re q̂j ∈ T, max

1≤j≤n
| Im q̂j | < σ

}
,

and introduce the distinguished classes of functions P2l , with integers l, which can be written
as a Fourier-Taylor expansion

g(p̂, q̂) =
∑

i∈Nn
|i|=l

∑

k∈Zn

gi,k p̂
iei〈k, q̂〉 , (3)

with coefficients gi,k ∈ C. We also set P−2 = {0}.
For a generic analytic function g ∈ P2l, g : Dρ,σ → C, we define the weighted Fourier

norm
‖g‖ρ,σ =

∑

i∈Nn
|i|=l

∑

k∈Zn

|gi,k|ρle|k|σ .

Hereafter, we use the shorthand notation ‖ · ‖α for ‖ · ‖α(ρ,σ) .
We state here our main result concerning the normal form.

Proposition 1.1 Consider a Hamiltonian H(0) expanded as in (2) that is analytic in a do-
main Dρ,σ. Let us assume that

(a) there exists a positive constant m such that for every v ∈ Rn one has

m

n∑

i=1

|vi| ≤
n∑

i=1

|
n∑

j=1

Cijvj | , where Cij =
∂2f

(0,0)
4

∂p̂i∂p̂j
; (4)

(b) the terms appearing in the expansion of the Hamiltonian satisfy

‖f (0,s)
2l ‖1 ≤

E

22l
εs , with E > 0. (5)

Then, for every positive integer r there is a positive ε∗r such that for 0 ≤ ε < ε∗r there exists
an analytic canonical transformation Φ(r) satisfying

D 1
4

(ρ,σ) ⊂ Φ(r)
(
D 1

2
(ρ,σ)

)
⊂ D 3

4
(ρ,σ) (6)
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such that the Hamiltonian H(r) = H(0) ◦ Φ(r) is in normal form up to order r, namely

H(r)(p1, p, q1, q; q
∗) = ωp1 + f

(r,0)
4 (p1, p) +

∑

l>2

f
(r,0)
2l (p1, p)

+

r∑

s=1

f
(r,s)
0 (q; q∗) +

r∑

s=1

f
(r,s)
2 (p1, p, q; q

∗)

+
∑

s>r

f
(r,s)
0 (q1, q; q

∗) +
∑

s>r

f
(r,s)
2 (p1, p, q1, q; q

∗)

+
∑

s>0

∑

l>1

f
(r,s)
2l (p1, p, q1, q; q

∗) ,

(7)

where q∗ is a fixed but arbitrary parameter and f
(r,s)
2l ∈ P2l is a function of order O(εs).

Moreover, for q = q∗ one has

r∑

s=1

f
(r,s)
2 (p1, p, q

∗; q∗) = 0 . (8)

The Hamilton equations associated to the truncated normal form, i.e., neglecting term of
order O(εr+1), once evaluated at (p̂ = 0, q = q∗), read

ṗ1 = 0 , q̇1 = ω , ṗ = −
r∑

s=1

∇qf (r,s)
0 , q̇ = 0 .

Hence, if
r∑

s=1

∇qf (r,s)
0

∣∣
q=q∗ = 0 , (9)

then p1 = 0, q1 = q1(0), p = 0, q = q∗ is the initial datum of a periodic orbit with frequency
ω for the truncated normal form. Considering the whole system given by H(r), the initial
datum provides an approximate periodic orbit with frequency ω, which turns out to be a
relative equilibrium of the truncated Hamiltonian. In order to provide a precise definition of
approximate periodic orbit we introduce the T -period map Υ : U(q∗, 0) ⊂ R2n−1 → V(q∗, 0) ⊂
R2n−1, a smooth function of the 2n−1 variables (q, p̂), parametrized by the initial phase q1(0)
and the small parameter ε, precisely

Υ(q(0), p̂(0); ε, q1(0)) =

(
F (q(0), p̂(0); ε, q1(0))
G(q(0), p̂(0); ε, q1(0))

)
=

(
q̂(T )− q̂(0)− ΛT

1
ε (p(T )− p(0))

)
, (10)

with Λ = (ω, 0) ∈ Rn. The map Υ represents the T -flow of the n − 1 actions p and of the n
angles q̂ for the Hamiltonian H(r).

Let us stress that p1 = 0, q1 = q1, p = 0, q = q∗ corresponds to a periodic orbit
for the truncated normal form, thus it is evident that Υ(q∗, 0; ε, q1(0)) is of order2 O(εr).
Thus, a true periodic orbit, close to the approximate one, is identified by an initial datum
(q∗p.o., p̂p.o.) ∈ U(0, q∗) such that

Υ(q∗p.o., p̂p.o.; ε, q1(0)) = 0 .

2The actions p have been rescaled by ε in Υ, hence only G is of order O(εr+1) while F is of order O(εr).
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In order to prove the existence of a unique solution q∗ = q∗p.o., p̂ = p̂p.o., q1 = q1(0), close
enough to the approximate one, we apply the Newton-Kantorovich algorithm. Therefore we
need to ensure that the Jacobian matrix (with respect to the initial datum)

M(ε) = Dp̂(0),q(0)Υ(q∗, 0; ε, q1(0)) (11)

is invertible and its eigenvalues are not too small with respect to εr.
We state here the main result concerning the continuation of the periodic orbits

Theorem 1.1 Consider the map Υ defined in (10) in a neighbourhood of the torus p̂ = 0
and let (q∗(ε), 0), with q∗(ε) satisfying (9), an approximate zero of Υ, namely

‖Υ(q∗(ε), 0; ε, q1(0))‖ ≤ C1ε
r ,

where C1 is a positive constant just depending on U . Assume that the matrix M(ε) defined
in (11) is invertible and its eigenvalues satisfy

|λ| ≥ εα , for λ ∈ spec(M(ε)) with 2α < r . (12)

Then, there exist C0 > 0 and ε∗ > 0 such that for any 0 ≤ ε < ε∗ there exists a unique
(q∗p.o.(ε), p̂p.o.(ε)) ∈ U which solves

Υ(q∗p.o., p̂p.o.; ε, q1(0)) = 0 ,
∥∥(q∗p.o., p̂p.o.)− (q∗, 0)

∥∥ ≤ C0ε
r−α . (13)

Before entering the technical part of the paper, let us add some more considerations. First,
as already remarked, the above Theorem generalizes an old and classical result by Poincaré,
whose idea was to average the perturbation H1 with respect to the flow of the unperturbed
periodic solution, where only the fast angle q1 rotates. The candidates q∗ for continuation
were the nondegenerate relative extrema on the torus Tn−1 of the averaged Hamiltonian
〈H1〉q1 , namely

∇q〈H1〉q1 = 0 , |D2
q〈H1〉q1 | 6= 0 .

The result of Poincaré actually corresponds to the construction of the first order normal form
together with a nondegeneracy assumption on the ε-independent version of (9), precisely

∇qf (1,1)
0 = 0 , |D2

qf
(1,1)
0 | 6= 0 . (14)

In such a case, due to the simplified form of Υ, the solution (p̂p.o., q
∗
p.o.) can be obtained

via implicit function theorem in a neighborhood of the approximate initial datum (0, q∗), q∗

being a solution of the first of (14), independent of ε. Hence, our high-order normal form
construction becomes a necessary way in order to deal with degenerate cases, where solutions

of (14) are not isolated and appear as d-parameter families, thus leading to |D2
qf

(1,1)
0 | = 0.

For instance, in the application presented in Section 4, the solutions of (14) show up as one
parameter families q∗(s). Actually, solving (9) (with r ≥ 2) in place of (14) allows to isolate
true candidates for the continuation. Let us also remark that our scheme provides a refined

averaged Hamiltonian which allows to treat the totally degenerate case, i.e., ∇qf (1,1)
0 ≡ 0. In

particular, the results presented in [25] by means of Lindstedt perturbation scheme can be
obtained as special cases.

The paper is organized as follows. In Section 2 we detail the normal form algorithm
together with the quantitative estimates. The proof of Theorem 1.1 is reported in Section 3.
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Section 4 provides a simplified version of Theorem 1.1, namely Theorem 4.1, for one parameter
families of solutions of (14), under the assumption that only the second normal form step is
enough to improve the accuracy of the approximate periodic orbit. Moreover, a pedagogical
example inspired by the problem of degenerate vortexes in a squared lattice dNLS model is
presented at the end of Section 4. Appendices A and B include the technicalities related to
the normal form estimates and the Newton-Kantorovich method, respectively.

Let us remark that, since one expects that two normalization steps allow to deal with one-
parameter families of potential periodic orbits (as in the example reported in Section 4), we
explicitly report in Appendix A all the quantitative estimates for the first two normalization
steps. This will allow to directly exploit these estimates in future applications.

2 Normal formal algorithm and analytical estimates

This Section is devoted to the formal algorithm that takes a Hamiltonian (2) and brings it
into normal form up to an arbitrary, but finite, order r. We include all the (often tedious)
formulæ that will be used in order to estimate the terms appearing in the normalization
process. We use the formalism of Lie series and Lie transforms (see, e.g., [16] and [12] for a
self-consistent introduction).

The transformation at step r is generated via composition of two Lie series of the form

exp(L
χ
(r)
2

) ◦ exp(L
χ
(r)
0

) ,

where
χ

(r)
0 = X

(r)
0 + 〈ζ(r), ϕ〉 , (15)

with ζ(r) ∈ Rn and X
(r)
0 ∈ P0, χ

(r)
2 ∈ P2 are of order O(εr). Here, as usual, we denote by

Lg· the Poisson bracket {·, g}. The functions χ
(r)
0 and χ

(r)
2 are unknowns to be determined so

that the transformed Hamiltonian is in normal form up to order r.
The relevant algebraic property of the P` classes of function is stated by the following

Lemma 2.1 Let f ∈ Ps1 and g ∈ Ps2, then {f, g} ∈ Ps1+s2−2.

The straightforward proof is left to the reader.
The starting Hamiltonian has the form

H(0) = ωp1 +
∑

s≥0

∑

l>1

f
(0,s)
2l

+
∑

s≥1

f
(0,s)
0 +

∑

s≥1

f
(0,s)
2 ,

(16)

where f
(0,s)
2l ∈ P2l and is of order O(εs).

We now describe the generic r-th normalization step, starting from the Hamiltonian in
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normal form up to order r − 1, H(r−1), namely

H(r−1) = ωp1 +
∑

s<r

f
(r−1,s)
0 +

∑

s<r

f
(r−1,s)
2

+ f
(r−1,r)
0 + f

(r−1,r)
2

+
∑

s>r

f
(r−1,s)
0 +

∑

s>r

f
(r−1,s)
2

+
∑

s≥0

∑

l>1

f
(r−1,s)
2l ,

(17)

where f
(r−1,s)
2l ∈ P2l is of order O(εs); f

(r−1,s)
0 and f

(r−1,s)
2 for 1 ≤ s < r are in normal form.

2.1 First stage of the normalization step

Our aim is to put the term f
(r−1,r)
0 in normal form and to keep fixed the harmonic frequencies

of the selected resonant torus. We determine the generating function χ
(r)
0 = X

(r)
0 + 〈ζ(r), q̂〉

by solving the homological equations

L
X

(r)
0

ωp1 + f
(r−1,r)
0 = 〈f (r−1,r)

0 〉q1 ,

L〈ζ(r),q̂〉f
(0,0)
4 +

〈
f

(r−1,r)
2

∣∣∣
q=q∗

〉
q1

= 0 .

Considering the Taylor-Fourier expansion

f
(r−1,r)
0 (q̂) =

∑

k

c
(r−1,r)
0,k exp(i〈k, q̂〉) ,

we readily get

X
(r)
0 (q̂) =

∑

k1 6=0

c
(r−1,r)
0,k

ik1ω
exp(i〈k, q̂〉) .

The translation vector, ζ(r), is determined by solving the linear system

∑

j

Cijζ
(r)
j =

∂

∂p̂i

〈
f

(r−1,r)
2

∣∣∣
q=q∗

〉
q1
. (18)

This translation, which involves the linear term in the actions f
(r−1,r)
2 , allows to keep fixed

the frequency ω and kills the small transversal frequencies in the angles q.
The transformed Hamiltonian is computed as

H(I;r−1) = exp
(
L
χ
(r)
0

)
H(r−1)

10
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and has a form similar to (17), precisely

H(I;r−1) = exp
(
L
χ
(r)
0

)
H(r−1) =

= ωp1 +
∑

s<r

f
(I;r−1,s)
0 +

∑

s<r

f
(I;r−1,s)
2

+ f
(I;r−1,r)
0 + f

(I;r−1,r)
2

+
∑

s>r

f
(I;r−1,s)
0 +

∑

s>r

f
(I;r−1,s)
2

+
∑

s≥0

∑

l>1

f
(I;r−1,s)
2l .

(19)

The functions f
(I;r−1,s)
2l are recursively defined as

f
(I;r−1,r)
0 =

〈
f

(r−1,r)
0

〉
q1
,

f
(I;r−1,r)
2 = f

(r−1,r)
2 −

〈
f

(r−1,r)
2 (q∗)

〉
q1

+ L
X

(r)
0

f
(0,0)
4 ,

f
(I;r−1,s)
2l =

bs/rc∑

j=0

1

j!
Lj
χ
(r)
0

f
(r−1,s−jr)
2l+2j , for l = 0, 1, s 6= r ,

or l ≥ 2, s ≥ 0 ,

(20)

with f
(I;r−1,s)
2l ∈ P2l.

2.2 Second stage of the normalization step

We now put f
(I;r−1,r)
2 in normal form, by averaging with respect to the fast angle q1. This

is necessary in order to avoid small oscillations of q around q∗. We determine the generating

function χ
(r)
2 by solving the homological equation

L
χ
(r)
2

ωp1 + f
(I;r−1,r)
2 =

〈
f

(I;r−1,r)
2

〉
q1
.

Considering again the Taylor-Fourier expansion

f
(I;r−1,r)
2 (p̂, q̂) =

∑

|l|=1
k

c
(I;r−1,r)
l,k p̂l exp(i〈k, q̂〉)

we get

χ
(r)
2 (p̂, q̂) =

∑

|l|=1
k1 6=0

c
(I;r−1,r)
l,k p̂l exp(i〈k, q̂〉)

ik1ω
.

The transformed Hamiltonian is computed as

H(r) = exp
(
L
χ
(r)
2

)
H(I;r−1)

11
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and is given the form (17), replacing the upper index r − 1 by r , with

f
(r,r)
2 = 〈f (I;r−1,r)

2 〉q1 ,

f
(r,jr)
2 =

1

(j − 1)!
Lj−1

χ
(r)
2

(
1

j
〈f (I;r−1,r)

2 〉q1 +
j − 1

j
f

(I;r−1,r)
2

)

+

bs/rc−2∑

j=0

1

j!
Lj
χ
(r)
2

f
(I;r−1,s−jr)
2 ,

f
(r,s)
2l =

bs/rc∑

j=0

1

j!
Lj
χ
(r)
2

f
(I;r−1,s−jr)
2l for l = 0, s ≥ 0 ,

or l = 1, s 6= jr ,

or l ≥ 2, s ≥ 0 .

(21)

2.3 Analytic estimates

In order to translate our formal algorithm into a recursive scheme of estimates on the norms
of the various functions, we need to introduce a sequence of restrictions of the domain so as
to apply Cauchy’s estimate. Having fixed d ∈ R, 0 < d ≤ 1/4, we consider a sequence δr≥1 of
positive real numbers satisfying

δr+1 ≤ δr ,
∑

r≥1

δr ≤
d

2
; (22)

thus the sequence δr has to satisfy the inequality δr < C/r for some r > r and C ∈ R.
Moreover, we introduce a further sequence dr≥0 of real numbers recursively defined as

d0 = 0 , dr = dr−1 + 2δr . (23)

In order to precisely state the iterative Lemma, we need to introduce the quantities Ξr,
parametrized by the index r, as

Ξr = max

(
1,

E

ωδ2
rρσ

+
eE

4mδrρ2
, 2 +

E

2eωδrρσ
,

E

4ωδ2
rρσ

)
. (24)

Following the approach described in [10], the number of terms generated recursively by for-

mulæ (20) and (21) is controlled by the two sequences {νr,s}r≥0 , s≥0 and {ν(I)
r,s}r≥1 , s≥0 of

integer numbers that are recursively defined as

ν0,s = 1 for s ≥ 0 ,

ν(I)
r,s =

bs/rc∑

j=0

νjr−1,rνr−1,s−jr for r ≥ 1 , s ≥ 0 ,

νr,s =

bs/rc∑

j=0

(3νr−1,r)
jν

(I)
r,s−jr for r ≥ 1 , s ≥ 0 .

(25)

Let us stress that when s < r, the above simplify as

ν(I)
r,s = νr−1,s , νr,s = ν(I)

r,s ,

12
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namely
νr,s = νr−1,s = . . . = νs,s .

Let us introduce the quantities b(I; r, s, 2l) and b(r, s, 2l) (r being a positive integer, while
s and l are non-negative ones) that will be useful to control the exponents of the Ξr in the
normalization procedure,

b(I; r, s, 2l) =





s if r = 1 ,

0 if r ≥ 2, s = 0 ,

3s−b s+r−1
r c−b s+r−2

r c−2 if r ≥ 2, 0 < s ≤ r, l = 0

3s−b s+r−1
r c−b s+r−2

r c−1 if r ≥ 2, r < s ≤ 2r, l = 0

3s−b s+r−1
r c−b s+r−2

r c−1 if r ≥ 2, 0 < s ≤ r, l = 1

3s−b s+r−1
r c−b s+r−2

r c in the other cases

and

b(r, s, 2l) =





0 if r > 0, s = 0

3s−b s+r−1
r c−w2l if r = 1, s > 0 ,

3s−b s+r−1
r c−b s+r−2

r c−2 if r ≥ 2, 0 < s ≤ r, l = 0

3s−b s+r−1
r c−b s+r−2

r c−1 if r ≥ 2, r < s ≤ 2r, l = 0

3s−b s+r−1
r c−b s+r−2

r c−1 if r ≥ 2, 0 < s ≤ r, l = 1

3s−b s+r−1
r c−b s+r−2

r c in the other cases

with w0 = 2, w2 = 1 and w2l = 0 for l ≥ 2.

We are now ready to state the main Lemma collecting the estimates for the generic r-th
normalization step of the normal form algorithm.

Lemma 2.2 Consider a Hamiltonian H(r−1) expanded as in (17). Let χ
(r)
0 = X

(r)
0 + 〈ζ(r), ϕ〉

and χ
(r)
2 be the generating functions used to put the Hamiltonian in normal form at order r,

then one has

‖X(r)
0 ‖1−dr−1 ≤

1

ω
νr−1,rΞ

3r−4
r Eεr ,

|ζ(r)| ≤ 1

4mρ
νr−1,rΞ

3r−3
r Eεr ,

‖χ(r)
2 ‖1−dr−1−δr ≤

1

ω
3νr−1,rΞ

3r−3
r

E

4
εr .

(26)

The terms appearing in the expansion of H(I;r−1) in (19) are bounded as

‖f (I;r−1,s)
2l ‖1−dr−1−δr ≤ ν(I)

r,sΞ
b(I;r,s,2l)
r

E

22l
εs .

The terms appearing in the expansion of H(r) in (21) are bounded as

‖f (r,s)
2l ‖1−dr ≤ νr,sΞb(r,s,2l)r

E

22l
εs .

The proof of Lemma 2.2 is deferred to Section A.4.1. Besides, some comments about the
statement of this Lemma are in order.
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Remark 2.1 The well-known problem of the accumulation of small divisors represents the
source of divergence in perturbation processes. In the present work we are considering a
completely resonant normal form, thus, if ω 6= 0, the divisors k1ω introduced in the solution
of the homological equations (see Sections 2.1 and 2.1) cannot become arbitrarily small. In
particular, we do not need any strong nonresonance condition on the frequencies. However,
the restrictions of the domains due to the Cauchy estimates for derivatives, introduce the small
denominators δr that actually accumulate to zero and are the responsible for the divergence
of the normal form.

Remark 2.2 A remarkable technical difference with respect to the analytical estimates of the
Kolmogorov theorem is the factor 3 (instead of 2) in the exponents of the Ξrr. This is due to
the different terms appearing in our resonant normal form. However, as we do not have any
nonresonance condition on the frequency vector ω, the problem of the optimality of the factor
appearing in the exponents is not crucial as in other related works, see, e.g., [15] concerning
the Schröder-Siegel problem. Given this, our impression is that the factor 3 can be hardly
improved.

2.4 Proof of Proposition 1.1

We give here a sketch of the proof of Proposition 1.1. The proof is based on standard
arguments in Lie series theory, that we recall here, referring to, e.g., [10, 14, 37], for more
details.

We give an estimate for the canonical transformation. We denote by (p̂(0), q̂(0)) the original
coordinates, and by (p̂(r), q̂(r)) the coordinates at step r. We also denote by φ(r) the canonical
transformation mapping (p̂(r), q̂(r)) to (p̂(r−1), q̂(r−1)), precisely

p̂(r−1) = exp(L
χ
(r)
0

)p̂(I,r−1) = p̂(I,r−1) +
∂χ

(r)
0

∂q̂(r−1)
,

p̂(I,r−1) = exp(L
χ
(r)
2

)p̂(r) = p̂(r) +
∑

s≥1

1

s!
Ls−1

χ
(r)
2

∂χ
(r)
2

∂q̂(r)
,

q̂(r−1) = exp(L
χ
(r)
2

)q̂(r) = q̂(r) −
∑

s≥1

1

s!
Ls−1

χ
(r)
2

∂χ
(r)
2

∂p̂(r)
.

Consider now a sequence of domains D(3d−dr)(ρ,σ), using Lemma 2.2 we get

∣∣∣p̂(r−1) − p̂(I,r−1)
∣∣∣ <

(
1

ωeδrσ
+

1

4mρ

)
Ξ3r
r

100r

20
Eεr ,

∣∣∣p̂(I,r−1) − p̂(r)
∣∣∣ < 1

4ωeδrσ
Ξ3r
r

100r

20
Eεr

∑

s≥1

(
1

ωδ2
rρσ

Ξ3r
r

100r

20
Eεr

)s−1

,

∣∣∣q̂(r−1) − q̂(r)
∣∣∣ < 1

4ωδrρ
Ξ3r
r

100r

20
Eεr

∑

s≥1

(
1

ωδ2
rρσ

Ξ3r
r

100r

20
Eεr

)s−1

.

(27)

Thus if ε is small enough (for a very rough estimate take ε < 1
100Ξ4

r
) the series (27) defining

the canonical transformation are absolutely convergent in the domain D(3d−dr−1−δr)(ρ,σ), hence
analytic. Furthermore, one has the estimates

|p̂(r−1) − p̂(r)| < δrρ , |q̂(r−1) − q̂(r)| < δrσ .
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A similar argument applies to the inverse of φ(r), which is defined as a composition of Lie

series generated by χ
(r)
2 and −χ(r)

0 , thus we get

D(3d−dr)(ρ,σ) ⊂ φ(r)(D(3d−dr−1−δr)(ρ,σ)) ⊂ D(3d−dr−1)(ρ,σ) .

Consider now the sequence of transformations Φ(r̄) = φ(1) ◦ . . . ◦ φ(r̄). For (p̂(r−1), q̂(r−1)) ∈
D(3d−dr−1)(ρ,σ) the transformation is clearly analytic and one has

|p̂(0) − p̂(r̄)| < ρ
r̄∑

j=1

δj , |q̂(0) − q̂(r̄)| < σ
r̄∑

j=1

δj .

Setting d = 1
4 and using (22), one has

∑
j≥1 δj ≤ d

2 = 1
8 , thus (6) immediately follows. Finally,

the estimates for the Hamiltonian in normal form had been already gathered in Lemma 2.2.
This concludes the proof of Proposition 1.1.

Remark 2.3 Since the non convergence of the normalization algorithm represents one of the
main points, let us stress that in view of the the definition of Ξr in (24) and of δr < C/r,
one immediately get Ξr > Cr, C being a suitable positive constant. Thus

∑
r>0 Ξ3r

r ε
r cannot

converge for any positive ε.

3 Proof of Theorem 1.1

In this Section we develop in a more detailed way the strategy used to get Theorem 1.1
from the normal form constructed. We have shown in the previous Section that, by means
of a canonical and near the identity change of coordinates, it is possible to give the original
Hamiltonian the form (7). We have already stressed in the Introduction the main feature of
our construction: if one considers the approximate equations of motion corresponding to the
normal form truncated at order O(εr), when evaluated on (q = q∗, p̂ = 0), they provide a
periodic orbit of frequency ω once q∗ fulfills the already mentioned equation (9). Generically,
for r ≥ 2, the value q∗ would depend continuously on ε, precisely q∗(ε) = q∗0 + q1(ε), with q∗0
solution of the ε-independent equation (14) and q1(ε) vanishing with ε.

The periodicity of an orbit for the full Hamiltonian (7) is given by

q̂(T )− q̂(0)− ΛT =

∫ T

0
∇p
[
f

(r,0)
4 +

r∑

s=1

f
(r,s)
2

]
ds+O(|p|2) +O(ε|p|) +O

(
εr+1

)
= 0 ,

p1(T )− p1(0) = O(ε|p|2) +O
(
εr+1

)
= 0 ,

p(T )− p(0) = −
∫ T

0

r∑

s=1

∇q
[
f

(r,s)
0 + f

(r,s)
2

]
ds+O(ε|p|2) +O

(
εr+1

)
= 0 ,

where the unknown is the initial datum (q̂ = q̂(0), p̂ = p̂(0)), namely the Cauchy problem.
Due to the conservation of the energy, we can eliminate the equation for p1, divide the n− 1
actions p by ε and look at q1(0) as a parameter (the phase along the orbit). The system of
2n− 1 equations in 2n− 1 unknowns (q(0), p1(0), p(0))

q̂(T )− q̂(0)− ΛT =

∫ T

0
∇p
[
f

(r,0)
4 +

r∑

s=1

f
(r,s)
2

]
ds+O(|p|2) +O(ε|p|) +O

(
εr+1

)
= 0 ,

p(T )− p(0)

ε
= −1

ε

∫ T

0

r∑

s=1

∇q
[
f

(r,s)
0 + f

(r,s)
2

]
ds+O(|p|2) +O(εr) = 0 ,
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takes the form (10). The approximate periodic solution

p̂(t) = 0 , q1(t) = ωt+ q1(0) , q(t) = q∗ ,

corresponds to (and actually represents) an approximate zero (q(0) = q∗, p̂(0) = 0) for the Υ
map. The proof of Theorem 1.1 then simply consists in the application of

Proposition 3.1 (Newton-Kantorovich method) Consider Υ ∈ C1 (U(x0)× U(0), V ).
Assume that there exist three constants C1,2,3 > 0 dependent, for ε small enough, on U(x0) ⊂
V only, and two parameters 0 ≤ 2α < β such that

‖Υ(x0, ε)‖ ≤ C1|ε|β ,
‖[Υ′(x0, ε)]

−1‖L(V ) ≤ C2|ε|−α ,∥∥Υ′(z, ε)−Υ′(x0, ε)
∥∥
L(V )

≤ C3 ‖z − x0‖ .
(28)

Then there exist positive C0 and ε∗ such that, for |ε| < ε∗, there exists a unique x∗(ε) ∈ U(x0)
which fulfills

Υ(x∗, ε) = 0 , ‖x∗ − x0‖ ≤ C0|ε|β−α .
Furthermore, Newton’s algorithm converges to x∗.

The proof of the Proposition is reported in Appendix B. We recall that ‖·‖L(V ) represents
the usual norm for a linear operator from V to V .

Since we are seeking for a true periodic solution close to the approximate one, we take
(q, p̂) in a small ball centered in (q∗, 0), that plays the role of x0 in Proposition 3.1. Thus both
the variables can be interpreted “locally” as cartesian variables in R2n−1. We have already
introduced M(ε) in (11), being the differential of the map Υ evaluated in (q, p̂) = (q∗, 0).
Extracting from M(ε) its leading order in ε, we get

M(ε) = M0 + M̃1(ε) , M0 := M(0) =

(
0 C0

B0 D0

)
,

where

B0;i,j = −
[
∂2f

(r,1)
0

∂qi∂qj

∣∣∣
q=q∗0

]
T

ε
, C0 = CT , (29)

and C is the twist matrix defined in (4). The first of (28) is satisfied with β = r. The
third of (28) is satisfied in view of the smoothness of the flow at time T w.r.t. the initial
datum (it keeps the same smoothness as its vector field). The core of the statement is then
the requirement on the invertibility of M(ε). If B0 is invertible, then the same holds true
for M0 (the twist being C0 invertible) which is the leading order of M ; hence M(ε) is also
invertible and the second of (28) is satisfied with α = 0, M0 being independent of ε. This
is actually Poincaré’s theorem. If instead B0 has a nontrivial Kernel, then the same holds
also for M0, typically with a greater dimension. The required invertibility of M(ε), asked by
Theorem 1.1, is necessarily due to the ε-corrections, which are responsible for the bifurcations
of the zero eigenvalues of the matrix M0. Hence, in order to fulfill the second of (28), we need
the smallest eigenvalues of M(ε) to bifurcate from zero as λj(ε) ∼ εα, with α < r

2 , which is
indeed (12). Finally, estimates (13) are of the same type as the one in Proposition 3.1, even
after back-transforming the solutions to the original canonical variables with Φ(r). Indeed, as
illustrated in the detailed proof of Proposition 1.1, the normalizing transformation Φ(r) is a
near the identity transformation.
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4 One parameter families.

Generically we expect that, apart from very pathological examples, two normal form steps
are enough to get a clear insight into the degeneracy. In particular, with a second order
approximation one can investigate whether one-parameter families q∗0(s), which are solutions
of (14), are destroyed or not. In the first case, the isolated solutions which survive to the
breaking of the family are natural candidates for continuation, once (12) has been verified.
In the second case, at least a third step of normalization is necessary, unless there are good
reasons to believe that the whole family survives, due to the effect of some hidden symmetry
of the model.

What we are going to develop in the first part of this Section is exactly the case when
the first of (29) admits one-parameter families of solutions on the torus Tn−1, which means
that dim (Ker(B0)) = 1. In this easier case (which represents the weakest degeneracy for B0),
under suitable conditions on the matrix M0, it is possible to apply some results of perturbation
theory of matrices to M(ε) (see [44], Chap. IV, par. 1.4) in order to replace assumption
(12) with a more accessible criterion. This allows to get a more applicable formulation of
Theorem 1.1, which will be used in the forthcoming application.

4.1 Some few facts on matrix perturbation theory

The degeneration we are considering here implies that 0 ∈ Spec(B0), with the geometric
multiplicity being equal to one (mg(0, B0) = 1). Let a1 be the (n − 1)-dimensional vector
generating Ker(B0). Let us introduce also f1 as the embedding of a1 into R2n−1, namely the
(2n− 1) vector

f1 =

(
a1

0

)
.

We have the following

Lemma 4.1 Assume that the kernel of M0 had dimension one and is generated by f1, namely
Ker(M0) = Span(f1) . If the orthogonality condition

〈
C−1

0 D>0 a1,

(
a1

0

)〉
= 0 , (30)

is fulfilled, then the algebraic multiplicity of the zero eigenvalue is greater than two (ma(0,M0) ≥
2).

Proof. In order to study the Ker(M0), we have to solve

(
O C0

B0 D0

)(
x
−y

)
=

(
C0y

B0x−D0y

)
=

(
0
0

)

which, due to the invertibility of C0, gives y = 0, and thus x ∈ Ker(B0). This provides the
first claim. The statement concerning the algebraic multiplicity can be derived investigating
the Kernel of the adjoint matrix M>0 . It is easy to see that

Ker(M>0 ) = Span (g) , g =

(
−C−1

0 D>0 a1

a1

)
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and to deduce that the assumption (30) is equivalent to 〈f1, g〉 = 0, where the right hand
vector in (30) is the n-dimensional vector built by complementing a1 with one 0. The last,
according to Lemma III, Chapter 1.16 of [44], is not compatible with ma(0,M0) = 1. Precisely,
we can observe that the orthogonality condition between the two vectors allows to find a
second generalized eigenvector f2 for Ker(M0), as a solution of M0f2 = f1. Indeed, the
Fredholm alternative theorem guarantees the existence of f2 under exactly the condition
〈f1, g〉 = 0.

�
In order to determine the asymptotic behavior of the eigenvalues λ(ε) ∈ spec(M(ε)), we

make use of the fact that dim(Ker(M0)) = 1 and we assume some minimal smoothness of
M(ε) with respect to ε, namely that the following expansion holds3

M(ε) = M0 + εM1 +O(ε2) =

(
εA1 C0 + εC1

B0 + εB1 D0 + εD1

)
+O(ε2) .

Then the following Lemma holds true (see [44], Chapter IV, § 1, for all the details)

Lemma 4.2 Let λ0 be an eigenvalue M0 with mg(λ0,M0) = 1 and ma(λ0,M0) = h ≥ 2 and
let f1, . . . , fh be the generalized eigenvectors relative to λ0, defined by the recursive scheme

M0f1 = λ0f1, M0f2 = λ0f2 + f1, . . . ,M0fh = λ0fh + fh−1.

Moreover, let g1, . . . , gh be the generalized eigenvectors for M>0 relative to λ0, such that

〈fj , gi〉 = δji, con j, i = 1, . . . , h

and define
γ = 〈M1f1, gh〉 .

If γ 6= 0, then the h solutions λj(ε) of the characteristic equation

det(M(ε)− λI) = 0

are given by

λj(ε) = λ0 − (εγ)
1/h
j +O(ε2/h) ,

where (εγ)
1/h
j are the h distinct roots of h

√
εγ.

4.2 The special case of ma(0,M0) = 2.

We are interested in the bifurcations of the zero eigenvalue (needed to bound the inverse
matrix M−1(ε)), thus in the previous Lemma 4.2 we can take λ0 = 0 and f1 as the eigenvector
generating Ker(M0). Moreover, since

(
A1 C1

B1 D1

)(
a1

0

)
=

(
A1a1

B1a1

)
,

3This is not an obvious fact, since the smoothness of M(ε) is related to the smoothness of q∗(ε), solution

of the trigonometric system of equations ∇q

[
f
(2,1)
0 + f

(2,2)
0

]
= 0.
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the value of γ does not depend on the whole matrix M1, but only on the blocks A1 and B1.
The problem is further simplified when ma(0,M0) = 2: in this case g2 coincides with g and γ
reduces to

γ = 〈M1f1, g2〉 =
〈(
A1a1 B1a1

)
,

(
−C−1

0 D>0 a1

a1

)〉
=
〈(
B1 −D0C

−1
0 A1

)
a1, a1

〉
.

Thus, under the easier condition

γ = 〈
(
B1 −D0C

−1
0 A1

)
a1, a1〉 6= 0 ,

Theorem 1.1 can be formulated as

Theorem 4.1 Consider Υ = (F,G) defined by (10) in a neighbourhood of the point (q∗, 0),
with q∗(ε) ∈ C1(U(0)) defined by (9) and r = 2. Let dim(Ker(B0)) = 1, a1 being its generator.
Assume also that ma(0,M0) = 2 and that

〈
(
B1 −D0C

−1
0 A1

)
a1, a1〉 6= 0 . (31)

Then, there exist positive constants C0 and ε∗ such that, for |ε| < ε∗ there exists a point
(qp.o.(ε), p̂p.o.(ε)) ∈ U × Tn−1 which solves

Υ(qp.o., p̂p.o.; ε, q1(0)) = 0 , ‖(qp.o., p̂p.o.)− (q∗, 0)‖ ≤ C0ε
3/2 .

In order to verify condition (31), the block matrices A1 and B1 are needed; as a conse-
quence, the first order corrections to the generic Cauchy problem, q̂(1)(t) and p̂(1)(t) have to
be derived. With a standard approach, as the one performed in [25], and after expanding in
ε both the period map Υ and the solution q∗(ε) = q0 +O(ε) one gets

εA1 = −T
2

2
C0Dq∇q̂f (2,1)

0 (q∗0) + TDq∇p̂f (2,1)
2 (q∗0)

εB1 = −TD3
qf

(2,1)
0 (q∗0)q∗1 −

T

ε
D2
qf

(2,2)
0 (q∗0)

+
T 2

2

[
D2
qpf

(2,1)
2 (q∗0)D2

qf
(2,1)
0 (q∗0)−D2

qf
(2,1)
0 (q∗0)D2

qpf
(2,1)
2 (q∗0)

]

+
T 3

6ε

[
D2
qf

(2,1)
0 (q∗0)C0D

2
qf

(2,1)
0 (q∗0)

]
.

Despite the formulation of Theorem 4.1 is simplified with respect to the abstract result stated
in Theorem 1.1, it is evident from the above formulas that it can be a hard task to verify
condition (31). However, if the original Hamiltonian is even in the angle variables, as often
happens in models of weakly interacting anharmonic oscillators, then condition (31) can be
further simplified if the solutions to be investigated are the in/out-of-phase solutions q∗ = 0, π,
as shown in the following example.

4.3 Example: square dNLS cell with nearest neighbour interaction

Let us consider the Hamiltonian system in real coordinates

H = H0 + εH1 =

4∑

j=1

(
x2
j + y2

j

2
+

(
x2
j + y2

j

2

)2

+ ε(xj+1xj + yj+1yj)

)
,
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with periodic boundary conditions, i.e., x5 = x1 and y5 = y1. Introducing the action-angle
variables (xj , yj) = (

√
2Ij cosϕj ,

√
2Ij sinϕj), the Hamiltonian reads

H =

4∑

j=1

(
Ij + I2

j + 2ε
√
Ij+1Ij cos(ϕj+1 − ϕj)

)
.

Let us now fix the fully resonant torus I∗ = (I∗, I∗, I∗, I∗) and make a Taylor expansion
around I∗, i.e., we set Ij = Jj + I∗ for j = 1, . . . , 4 . The unperturbed part, H0, reads

H0(J) = 4I∗ + 4(I∗)2 + (1 + 2I∗)(J1 + J2 + J3 + J4) + J2
1 + J2

2 + J2
3 + J2

4 ,

while the perturbation H1 takes the form

H1(J, ϕ) = 2I∗(cos(ϕ2 − ϕ1) + cos(ϕ3 − ϕ2) + cos(ϕ4 − ϕ3) + cos(ϕ4 − ϕ1))

+ (J1 + J2) cos(ϕ2 − ϕ1) + (J3 + J2) cos(ϕ3 − ϕ2)

+ (J4 + J3) cos(ϕ4 − ϕ3) + (J1 + J4) cos(ϕ4 − ϕ1) +O(|J |2) .

We introduce4 the resonant angles q̂ = (q1, q) and their conjugate actions p̂ = (p1, p)




q1 = ϕ1

q2 = ϕ2 − ϕ1

q3 = ϕ3 − ϕ2

q4 = ϕ4 − ϕ3

,





p1 = J1 + J2 + J3 + J4

p2 = J2 + J3 + J4

p3 = J3 + J4

p4 = J4

.

Thus, ignoring the constant terms, we can rewrite H as

H = ωp1 +
(

(p1 − p2)2 + (p2 − p3)2 + (p3 − p4)2 + p2
4

)
+

+ ε
[(

2I∗ cos(q2) + 2I∗ cos(q3) + 2I∗ cos(q4) + 2I∗ cos(q2 + q3 + q4)
)

+ (p1 − p3) cos(q2) + (p2 − p4) cos(q3) + p3 cos(q4)

+ (p1 − p2 + p4) cos(q2 + q3 + q4)
]

+O(ε|p̂|2)

= ωp1 + f
(0,0)
4 (p1, p2, p3, p4) + f

(0,1)
0 (q2, q3, q4)

+ f
(0,1)
2 (p1, p2, p3, p4, q2, q3, q4) +O(ε|p̂|2) ,

where ω = 1 + 2I∗.

Remark 4.1 With the usual canonical complex coordinates ψj = 1√
2
(xj + iyj), the Hamilto-

nian reveals to be a dNLS model, with periodic boundary conditions

H =
4∑

j=1

[
|ψj |2 + |ψj |4 + ε

(
ψj+1ψj + c.c.

)]
, ψ5 = ψ1 . (32)

In agreement with this, we observe that the Hamiltonian does not depend on the fast angle
q1. This is due to the effect of the Gauge symmetry of the model, as visible in the complex

form (32). As a consequence, f
(0,1)
0 (q2, q3, q4) is already in normal form and the first stage

only consists in the translation of the actions, which allows to keep fixed ω.

4In this case, we have preferred the angles to be the relative phase differences among consecutive angles,
rather than the phase differences with respect to the first angle ϕ1.
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Since f
(0,1)
2 is automatically averaged w.r.t. q1, the homological equation defining ζ(1) is

equivalent to the following linear system

〈∇p̂f (0,0)
4 , ζ(1)〉 = f

(0,1)
2

∣∣∣
q=q∗

,

whose solution is given by




ζ
(1)
1 = ε[cos(q∗2) + cos(q∗3) + cos(q∗4) + cos(q∗2 + q∗3 + q∗4)]

ζ
(1)
2 = ε

[
cos(q∗2)

2
+ cos(q∗3) + cos(q∗4) +

cos(q∗2 + q∗3 + q∗4)

2

]

ζ
(1)
3 = ε

[
cos(q∗3)

2
+ cos(q∗4) +

cos(q∗2 + q∗3 + q∗4)

2

]

ζ
(1)
4 = ε

[
cos(q∗4)

2
+

cos(q∗2 + q∗3 + q∗4)

2

]

.

Since the normal form preserves the symmetry, the newly generated term f
(I;0,1)
2 is again

independent of q1 and no further average is required. The values q∗, which define the approx-
imate periodic orbit at leading order, are given by the solutions of the trigonometric system
(depending only on sines, due to the parity of the Hamiltonian)





− 2I∗ sin(q2)− 2I∗ sin(q2 + q3 + q4) = 0

− 2I∗ sin(q3)− 2I∗ sin(q2 + q3 + q4) = 0

− 2I∗ sin(q4)− 2I∗ sin(q2 + q3 + q4) = 0

.

Such solutions are given by the two isolated configurations (0, 0, 0), (π, π, π), and the three
one-parameter families Q1 = (ϑ, ϑ, π − ϑ), Q2 = (ϑ, π − ϑ, ϑ), Q3 = (ϑ, π − ϑ, π − ϑ), with
θ ∈ S1, which all intersect in the two opposite configurations ±(π2 ,

π
2 ,

π
2 ). Since the twist

condition (4) is verified, we only need (14) in order to apply the implicit function theorem
(which reduces to the classical result of Poincaré). Factoring out −2I∗, the nondegeneracy
condition reads
∣∣∣∣∣∣




cos(q∗2) + cos(q∗2 + q∗3 + q∗4) cos(q∗2 + q∗3 + q∗4) cos(q∗2 + q∗3 + q∗4)
cos(q∗2 + q∗3 + q∗4) cos(q∗3) + cos(q∗2 + q∗3 + q∗4) cos(q∗2 + q∗3 + q∗4)
cos(q∗2 + q∗3 + q∗4) cos(q∗2 + q∗3 + q∗4) cos(q∗4) + cos(q∗2 + q∗3 + q∗4)



∣∣∣∣∣∣
6= 0.

If we evaluate the determinant in the two isolated configurations, we get det(B0) = ±4T 6= 0,
hence the corresponding solutions can be continued for small enough ε. In the three families
we obviously get a degeneration, since the tangent direction to each family represents a Kernel
direction, hence det

(
B0

∣∣
Qj

)
= 0. Furthermore in the intersections ±(π2 ,

π
2 ,

π
2 ) the matrices

are identically zero. For all these families a second normalization step is thus needed.
The first stage of the second normalization step deals with

f
(1,2)
0 = f

(I;0,2)
0 = L〈ζ(1),q̂〉f

(0,1)
2 +

1

2
L2
〈ζ(1),q̂〉f

(0,0)
4 ,

which is already averaged over q1, due to the preservation of the symmetry. The same holds

also for the linear term in the action variables f
(1,2)
2 , given by

f
(1,2)
2 = f

(I;0,2)
2 = L〈ζ(1),q̂〉f

(0,1)
4 .
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Hence, the homological equation providing the new translation ζ(2) reads

L〈ζ(2),q̂〉f
(0,0)
4 + L〈ζ(1),q̂〉f

(0,1)
4

∣∣∣
q=q∗

= 0 .

The new linear term in the action

f
(I;1,2)
2 = L〈ζ(1),q̂〉f

(0,1)
4 + L〈ζ(2),q̂〉f

(0,0)
4 ,

is again already averaged over q1, hence the second step is concluded, and the transformed
Hamiltonian reads

H(2) = ωp1 + f
(2,0)
4 (p̂)

+ f
(2,1)
0 (q) + f

(2,1)
2 (p̂, q)

+ f
(2,2)
0 (q) + f

(2,2)
2 (p̂, q)

+O(ε|p̂|2) +O
(
ε3
)
.

The approximate periodic orbits correspond to the q∗ for which

∇q
[
f

(2,1)
0 (q) + f

(2,2)
0 (q)

]
= ∇qf (2,1)

0 (q) +∇q
〈
∇p̂f (0,1)

2 (q), ζ(1)
〉

= 0 ,

where in the correction due to f
(2,2)
0 , only the term L〈ζ(1),q̂〉f

(0,1)
2 really matters, having a

nontrivial dependence on the slow angles q. By exploiting the explicit expression for ζ1

previously derived, and replacing q∗ with q in it, we explicitly get the system





−8 (sin(q2) + sin(q2 + q3 + q4)) + ε

[
2 sin(2q2) + sin(q2 − q3) + 2 sin(q2 + q3)

+ 2 sin(2q2 + 2q3 + 2q4) + 2 sin(2q2 + q3 + q4)

+ sin(q2 + q3 + 2q4)

]
= 0

−8 (sin(q3) + sin(q2 + q3 + q4)) + ε

[
2 sin(2q3) + sin(q3 − q2) + 2 sin(q2 + q3)

+ sin(q3 − q4) + 2 sin(q3 + q4)

+ 2 sin(2q2 + 2q3 + 2q4) + sin(2q2 + q3 + q4)

+ sin(q2 + q3 + 2q4)

]
= 0

−8 (sin(q4) + sin(q2 + q3 + q4)) + ε

[
2 sin(2q4) + sin(q4 − q3) + 2 sin(q3 + q4)

+ 2 sin(2q2 + 2q3 + 2q4) + sin(2q2 + q3 + q4)

+ 2 sin(q2 + q3 + 2q4)

]
= 0

,

depending on the effective small parameter ε̃ = ε
I∗ . The above system has the structure

F (q, ε) = F0(q) + εF1(q) = 0 , (33)

where F : T3 ×U(0)→ R3. Moreover, we have already found at first normalization step that

F (Qj(θ), 0) = F0(Qj(θ)) = 0 .

22



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Suppose that there exists a solution q(ε) = (q2(ε), q3(ε), q4(ε)) which is at least continuous in
the small parameter, i.e. C0(U(0),T3). Hence, by continuity, we must have

lim
ε→0

F (q2(ε), q3(ε), q4(ε), ε) = F0(q2(0), q3(0), q4(0)) = 0 ,

which means that q(0) ∈ Qj . Let us introduce the matrices B̃0,j(ϑ) =
∂F0(Qj(ϑ))

∂q and observe
that the tangent directions to the three families

∂ϑQ1 =




1
1
−1


 , ∂ϑQ2 =




1
−1
1


 and ∂ϑQ3 =




1
−1
−1




represent the Kernel directions of B̃0,j , for j = 1, 2, 3, respectively. A standard proposition
of bifurcation theory provides a necessary condition for the existence of a solution Qj(θ, ε)
which is a continuation of Qj(θ).

Proposition 4.1 Necessary condition for the existence of a solution q(ε) = Qj(ϑ, ε) of (33)
is that

F1(Qj(ϑ, 0)) ∈ Range(B̃0,j(ϑ)) .

If B̃0,j(ϑ) is symmetric, the above condition simplifies

F1(Qj(ϑ, 0)) ⊥ Ker(B̃0,j(ϑ)). (34)

Let us apply the above Proposition to show that the families Q1 and Q3 break down. Precisely,
all their points, except for those corresponding to θ = {0, π/2, π}, do not represent true
candidates for the continuation. We compute 〈F1(Qj(ϑ, 0)), ∂θQj〉 for j = 1, 3

〈F1(Q1(ϑ)), ∂ϑQ1〉 = 8 sin(2ϑ) = 〈F1(Q3(ϑ)), ∂ϑQ3〉 ,

which shows that the necessary condition is generically violated for the two families Q1,3,
apart from the in/out-of-phase configurations (0, 0, π), (π, π, 0), (0, π, π), (π, 0, 0) and the
symmetric vortex configurations ±

(
π
2 ,

π
2 ,

π
2

)
, the last being also points of Q2(θ).

A way to conclude that the above mentioned in/out-of-phase configurations can be con-
tinued to periodic solutions is to apply Theorem 4.1. Indeed, the main and first fact to notice
is that if q∗0 = 0, π then D0 = 0, since it depends only on sines; then by Lemma 4.1 we get
ma(0,M0) ≥ 2. Moreover, a direct computation shows that the algebraic multiplicity of the
zero eigenvalue of M0 is exactly two, so that we can apply Theorem 4.1. In order to verify the
main condition (31), since D0 = 0, we can restrict to compute only B1. In the configurations
(0, 0, π) and (π, π, 0), we get

B1 =



−2 −1 −1
−1 −2 −1
−1 −1 −2


T +




16 (I∗)2 0 16 (I∗)2

0 32 (I∗)2 32 (I∗)2

16 (I∗)2 32 (I∗)2 48 (I∗)2


 T 3

6
,

while, in (0, π, π) and (π, 0, 0), we have

B1 =



−2 −1 −1
−1 −2 −1
−1 −1 −2


T +




48 (I∗)2 32 (I∗)2 16 (I∗)2

32 (I∗)2 32 (I∗)2 0

16 (I∗)2 0 16 (I∗)2


 T 3

6
.
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Anyway, we immediately obtain in all the four cases

γ =
〈
〈B1, a1〉, a1

〉
= −4T 6= 0 ,

with a1 = ∂ϑQ1 for the first matrix B1, and a1 = ∂ϑQ3 for the second one.

Remark 4.2 We stress that, for the in/out-of-phase configurations, the true and approximate
angles coincide, namely qp.o. = q∗. This is due to the parity of the Hamiltonian in the angles
and to the Gauge symmetry; the first implies that the remainder, whatever is its order in ε,
only depends on the cosines, hence its p-field vanishes at any combination of 0 and π. The
second implies that it does never depend on q1, p1 being an exact constant of motion; in other
words, the field depends only on slow angles q. In this case, Theorem 4.1 could be simplified.

It remains to investigate the second family Q2, which satisfies the necessary condition (34)
because it represents a solution for (33), namely F (Q2(θ)) ≡ 0 .

We explicitly constructed the normal form up to order three by using MathematicaTMand
checked that this family still persists. This led us to conjecture that it represents a true
solution of the problem. Indeed, using the complex coordinates as in (32), we can reformulate
the continuation of periodic orbits on the completely resonant torus I = (I∗, I∗, I∗, I∗) by
using the usual ansatz

ψj = e−iωtφj ,

which provides the stationary equation for the amplitudes φj

λφj = 2φj |φj |2 + ε(Lφ)j , λ = ω − 1 , (Lφ)j = φj+1 + φj−1 .

If we further assume that the continued solutions have the same amplitude at all the sites,
|φj | = a, and the phase-shifts belong to the second family Q2

φj = aeiϕj , ϕ = (ϕ1, ϕ1 + θ, ϕ1 + π, ϕ1 + θ + π) ,

then we realize that for any θ ∈ S1 one has

Leiϕ(θ) = 0 .

Hence the stationary equation becomes

λ = 2a2 = 2I∗ ,

which implies that a two-dimensional resonant torus, embedded in the original unperturbed
four dimensional torus, survives for any given ε.

Remark 4.3 The above formulation would provide a much simpler proof for the existence of
the in/out-of-phase periodic orbits for ε 6= 0, by restricting to study the real φ configurations
solving the stationary equations [18, 19]. However, the role of this example in the present
paper is to show how the formal algorithm works and what kind of insights can lead to in
investigating the breaking of completely resonant tori.
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5 Conclusions

Motivated by the aim of investigating the continuation of periodic orbits on a completely
resonant torus with respect to a small parameter, we have built up an original normal form
algorithm for a classical Hamiltonian model of the form (1). This method naturally extends
the averaging procedure of Poincaré, which applies only to nondegenerate approximated so-
lutions. Hence, it allows to deal with all those cases when the extrema of the averaged
Hamiltonian are not isolated, like the one-parameter families explored in Section 4. The
present formulation of the result deals with the case of a maximal torus, hence it is more
suitable for applications for few-bodies problems, e.g., in Celestial Mechanics. In this field,
the normal form construction proposed here, which provides a highly accurate approximate
dynamics, could be effectively implemented with the aid of an algebraic manipulator (see,
e.g., [11]). Besides, the use of numerical tools could also include the analysis of the spectrum
of M(ε), which can be approximated at leading order by the Floquet exponents of the ap-
proximate periodic orbits. Hence, hypothesis (12) can be verified numerically, by tracking the
dependence of the approximate Floquet spectrum on ε in a neighbourhood of the origin.

The normal form algorithm here developed, if suitably extended to completely resonant
low-dimensional tori, could also allow to deal with degenerate scenarios which emerge studying
discrete solitons in 1D nonlocal discrete nonlinear Schroedinger lattices (like zigzag dNLS,
see [32]): in these models, one parameter families of solutions of the averaged Hamiltonian
appear when in the model long range interactions (like next-to-nearest neighbourhood) are
added. More naturally, one parameter families of approximate solutions, like the ones observed
in the application developed in Section 4, appear in the investigation of vortexes in 2D square
lattices [30]. In these problems, the only approach which has been till now explored and
applied is based on bifurcation methods [30,33] suitably combined with a perturbation scheme.
Hence, a different and completely constructive approach would be desirable, especially in
terms of possible applications to the above mentioned lattice models with the help of a
manipulator. This further and not trivial extension will be worked out in a future publication.

A Technicalities: normal form construction

The appendix is devoted to technical details and proofs related to the normal form construc-
tion which have been moved here in order to avoid the overloading of the text.

A.1 Estimates for the νr,s sequence

Lemma A.1 The sequence {νr,s}r≥0 , s≥0 defined in (25) is bounded by the exponential growth

νr,s ≤ νs,s ≤
100s

20
for r ≥ 0 , s ≥ 0 .
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Proof. We start with the elimination of ν
(I)
r,s in the definition of νr,s

νr,s =

bs/rc∑

j=0

(3νr−1,r)
j

bs/rc−j∑

i=0

(νr−1,r)
iνr−1,s−(i+j)r

=

bs/rc∑

j=0

(3νr−1,r)
j

bs/rc∑

i=j

(νr−1,r)
i−jνr−1,s−ir

=

bs/rc∑

i=0

(νr−1,r)
iνr−1,s−ir

i∑

j=0

3j =

bs/rc∑

i=0

3i+1 − 1

2
(νr−1,r)

iνr−1,s−ir ,

where in the second equality we have exploited ν
(I)
r,0 = 1. Thus we can rewrite the sequence as

νr,s =

bs/rc∑

j=0

θjν
j
r−1,rνr−1,s−jr , θj =

3j+1 − 1

2
.

It is immediate to notice that νr,s ≤ νs,s for s ≥ r, hence

ν0,s ≤ ν1,s ≤ . . . ≤ νs,s = νs+1,s = . . . .

Moreover
θ0 = 1 , θ1 = 4 , θj+1 ≤ 5θj for j ≥ 0 . (35)

and observing that νr,r = θ0νr−1,r + θ1νr−1,r , we get

νr,r = 5νr−1,r for r ≥ 1 . (36)

From the definition of {νr,s}, we can derive the following: for r ≥ 2 and s > 2r we have

νr,s = νr−1,s + νr−1,r

bs/rc−1∑

j=0

θj+1ν
j
r−1,rνr−1,s−r−jr

≤ νr−1,s + 5νr−1,r

bs/rc−1∑

j=0

θjν
j
r−1,rνr−1,s−r−jr

≤ νr−1,s + 5νr−1,rνr,s−r ≤ νr−1,s + νr,rνs−r,s−r ,

where (35) and (36) have been used; for r = 1 we have

ν1,s = ν0,s + ν0,1

s−1∑

j=0

θj+1ν
j
0,1ν0,s−1−j

≤ (1 + θ1)ν0,s−1 + 5
s−1∑

j=1

θjν
j
0,1ν0,s−1−j

≤ 5ν1,s−1 ≤ 5νs−2,s−1 = νs−1,s−1 ,
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where (35) has been used, together with ν0,s = 1, for s ≥ 0. Due to the above properties, we
can estimate {νr,s}r≥0 , s≥0 by means of its diagonal terms νr,r. Indeed, ν1,1 = 5 and for s > 2

νr,r = 5νr−1,r ≤ 5νr−2,r + 5νr−1,r−1ν1,1 ≤ . . .

≤ 5ν1,r + 5 (ν2,2νr−2,r−2 + . . .+ νr−1,r−1ν1,1) ≤ 5
r−1∑

j=1

νj,jνr−j,r−j .

From this last upper bound, it is possible to verify

νr,r ≤ 52r−1λr for r ≥ 1 ,

with {λr}r≥1 being the Catalan sequence, which satisfies λr ≤ 4r−1, thus

νr,s ≤ νs,s ≤
100s

20
for r ≥ 0 , s ≥ 0 .

�

A.2 Estimates for multiple Poisson brackets

Some Cauchy estimates on the derivatives in the restricted domains will be useful.

Lemma A.2 Let d ∈ R such that 0 < d < 1 and g ∈ P2l be an analytic function with bounded
norm ‖g‖1. Then one has

∥∥∥∥
∂g

∂p̂j

∥∥∥∥
1−d
≤ ‖g‖1

dρ
,

∥∥∥∥
∂g

∂q̂j

∥∥∥∥
1−d
≤ ‖g‖1

edσ
,

Proof. Given g as in (3), one has

∥∥∥∥
∂g

∂p̂j

∥∥∥∥
1−d
≤
∑

i∈Nn
|i|=l

∑

k∈Zn

ij
ρ
|gi,k|(1− d)l−1ρle|k|(1−d)σ

≤ 1

dρ

∑

i∈Nn
|i|=l

∑

k∈Zn

|gi,k|ρle|k|σ =
‖g‖1
dρ

,

where we have used the elementary inequality m(λ − x)m−1 ≤ λm/x, for 0 < x < λ and
m ≥ 1.

Similarly, ∥∥∥∥
∂g

∂q̂j

∥∥∥∥
1−d
≤
∑

i∈Nn
|i|=l

∑

k∈Zn

|kj | |gi,k|(1− d)lρle|k|(1−d)σ

≤ 1

edσ

∑

i∈Nn
|i|=l

∑

k∈Zn

|gi,k|ρle|k|σ =
‖g‖1
edσ

,

in view of the elementary inequality xαe−δx ≤ (α/(eδ))α, for positive α, x and δ.
�
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Lemma A.3 Let d ∈ R such that 0 < d < 1. Let the generating functions χ
(r)
0 and χ

(r)
2 be

as in (15). Then one has

∥∥∥∥∥
∂χ

(r)
0

∂q̂j

∥∥∥∥∥
1−d
≤
∥∥X(r)

0

∥∥
1

edσ
+ |ζ(r)| , (37)

∥∥∥∥∥
∂χ

(r)
2

∂q̂j

∥∥∥∥∥
1−d
≤
∥∥χ(r)

2

∥∥
1

edσ
, (38)

∥∥∥∥∥
∂χ

(r)
2

∂p̂j

∥∥∥∥∥
1−d
≤
∥∥χ(r)

2

∥∥
1

dρ
; (39)

moreover, for j ≥ 1,

∥∥∥∥L
j

χ
(r)
0

f

∥∥∥∥
1−d−d′

≤ j!

e

(
‖X(r)

0 ‖1−d′
d2ρσ

+
e|ζ(r)|
dρ

)j
‖f‖1−d′ , (40)

∥∥∥∥L
j

χ
(r)
2

f

∥∥∥∥
1−d−d′

≤ j!

e

(
‖χ(r)

2 ‖1−d′
d2ρσ

)j
‖f‖1−d′ , (41)

Proof. The proofs of (37)–(39) are just minor modifications of Lemma A.2, thus they are
left to the reader.

Coming to (40), let δ = d/j with j ≥ 1. Proceeding iteratively we get

∥∥∥∥L
j

χ
(r)
0

f

∥∥∥∥
1−d−d′

≤
(
‖X(r)

0 ‖1−d′
jδ2eρσ

+
|ζ(r)|
δρ

)∥∥∥∥L
j−1

χ
(r)
0

f

∥∥∥∥
1−d′−(j−1)δ

≤ . . .

≤ j!

e

(
‖X(r)

0 ‖1−d′
d2ρσ

+
e|ζ(r)|
dρ

)j
‖f‖1−d′ ,

where we have used the trivial inequality jj ≤ j! ej−1, holding true for j ≥ 1 . Finally, the
proof of (41) is the same, mutatis mutandis.

�

A.3 Estimates for the generating functions

Lemma A.4 Let d ∈ R such that 0 < d < 1. The generating function X
(r)
0 and the vector

ζ(r) are bounded by

‖X(r)
0 ‖1−d ≤

‖f (r−1,r)
0 ‖1−d

ω
, |ζ(r)| ≤ ‖f

(r−1,r)
2 ‖1−d
mρ

. (42)

The generating function χ
(r)
2 is instead bounded by

‖χ(r)
2 ‖1−d ≤

1

ω

(
2‖f (r−1,r)

2 ‖1−d +
2

eδrρσ

‖f (r−1,r)
0 ‖1−d

ω
‖f (0,0)

4 ‖1
)

. (43)
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Proof. The estimate for X
(r)
0 is trivial. The estimate for χ

(r)
2 , that is controlled by f

(I;r−1,r)
2 ,

is a little bit tricky. Indeed, one has to explicitly exploit the fact that

f
(I;r−1,r)
2 = f

(r−1,r)
2 − 〈f (r−1,r)

2 (q∗)〉q1 + L
X

(r)
0

f
(0,0)
4 ,

together with the trivial estimate

‖f − 〈f(q∗)〉q1‖1−d ≤ 2‖f‖1−d .
As C satisfies (4), there exists a solution ζ(r) of (18) which satisfies

∥∥∥∇p̂
〈
f

(r−1,r)
2

∣∣
q=q∗

〉
q1

∥∥∥
1−dr−1

=
∣∣∣
∑

j

Cijζ
(r)
j

∣∣∣ ≥ m|ζ(r)| .

Moreover, by the definition of the norm one has

∥∥∥∇p̂
〈
f

(r−1,r)
2

∣∣
q=q∗

〉
q1

∥∥∥
1−dr−1

=

∥∥∥
〈
f

(r−1,r)
2

∣∣
q=q∗

〉
q1

∥∥∥
1−dr−1

ρ
≤

∥∥∥f (r−1,r)
2

∥∥∥
1−dr−1

ρ
.

Combining the latter inequalities one gets (42).
�

A.4 Estimates for the first and second normalization step

The following two Lemmas collect the estimates concerning the first two steps of the normal
form algorithm previously described. We decide to explicitly report the results concerning the
normal form at order one and two with the purpose of making transparent the structure of the
estimates of the different terms appearing in the normalized Hamiltonian. Furthermore, the
first two steps are needed so as to verify the inductive proof for the forthcoming Lemma 2.2.

Lemma A.5 Consider a Hamiltonian H(0) expanded as in (16). Let χ
(1)
0 and χ

(1)
2 be the

generating functions used to put the Hamiltonian in normal form at order one, then one has

‖X(1)
0 ‖1 ≤

1

ω
ν0,1Eε ,

|ζ(1)| ≤ 1

4mρ
ν0,1Eε ,

‖χ(1)
2 ‖1−δ1 ≤

1

ω
3ν0,1Ξ1

E

4
ε .

The terms appearing in the expansion of H(I;0), i.e. in (19) with r = 1, are bounded as

‖f (I;0,1)
0 ‖1−δ1 ≤ Eε ,

‖f (I;0,s)
2l ‖1−δ1 ≤ ν

(I)
1,sΞ

s
1

E

2l
εs .

The terms appearing in the expansion of H(1), i.e. in (21) with r = 1, are bounded as

‖f (1,s)
0 ‖1−d1 ≤ ν1,sΞ

2s−2
1 Eεs ,

‖f (1,s)
2 ‖1−d1 ≤ ν1,sΞ

2s−1
1

E

22
εs ,

‖f (1,s)
2l ‖1−d1 ≤ ν1,sΞ

2s
1

E

22l
εs .

(44)
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Proof. Using Lemma A.4, we immediately get the bounds
∥∥∥X(1)

0

∥∥∥
1
≤ 1

ω

∥∥∥f (0,1)
0

∥∥∥
1
≤ 1

ω
Eε , |ζ(1)| ≤ 1

mρ

∥∥∥f (0,1)
2

∥∥∥
1
≤ Eε

4mρ
,

thus, from (37) with r = 1 we get
∥∥∥∥∥
∂χ

(1)
0

∂q̂j

∥∥∥∥∥
1−δ1

≤ Eε

ωeδ1σ
+

Eε

4mρ
≤
(

1

ωeδ1σ
+

1

4mρ

)
Eε .

The terms f
(I;0,s)
2l appearing in the expansion of the Hamiltonian H(I;0) are bounded as

follows. For l = 0 and s = 1 one has

‖f (I;0,1)
0 ‖1−δ1 ≤ ‖f

(0,1)
0 ‖1−δ1 ≤ Eε , (45)

while for the remaining terms one has

‖f (I;0,s)
2l ‖1−δ1 ≤

s∑

j=0

1

j!
‖Lj

χ
(1)
0

f
(0,s−j)
2l+2j ‖1−δ1

≤
s∑

j=0

1

e

(
‖X(1)

0 ‖1−d
δ2

1ρσ
+
e|ζ(1)|
δ1ρ

)j
‖f (0,s−j)

2l+2j ‖1

≤
s∑

j=0

1

e

(
1

ωδ2
1ρσ

+
e

4mδ1ρ2

)j
Ejεj

E

22l+2j
εs−j

≤ Eεs

22l

s∑

j=0

1

e

(
E

ωδ2
1ρσ

+
eE

4mδ1ρ2

)j

< (s+ 1)Ξs1
E

22l
εs = ν

(I)
1,sΞ

s
1

E

22l
εs,

where we used the definition of the constant Ξ1 and Lemma A.3.
Coming to the second stage of the normalization step, the generating function χ

(1)
2 is

bounded, as in (43), by

‖χ(1)
2 ‖1−δ1 ≤

1

ω

(
2‖f (0,1)

2 ‖1 +
2

eδ1ρσ

‖f (0,1)
0 ‖1−δ1
ω

‖f (0,0)
4 ‖1

)

≤ 1

ω

(
2
E

4
ε+

2

eδ1ρσ

Eε

ω

E

24

)

≤ 1

ω

(
2 +

E

2ωeδ1ρσ

)
E

4
ε

<
1

ω
3ν0,1Ξ1

E

4
ε .

The terms f
(1,s)
2l appearing in the expansion of the Hamiltonian H(1) are bounded as

follows. The term f
(1,1)
0 is unchanged, while for l = 0 and s = 2 one has

‖f (1,2)
0 ‖1−d1 ≤ ‖f

(I;0,2)
0 ‖1−δ1 +

1

e

1

δ2
1ρσ
‖χ(1)

2 ‖1−δ1‖f
(I;0,1)
0 ‖1−δ1

≤ ν(I)
1,2Ξ2

1Eε
2 +

1

e

1

δ2
1ρσ

1

ω
3ν0,1Ξ1

E

4
εEε

≤ ν1,2Ξ2
1Eε

2 .
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For l = 0 and s ≥ 3, using (45) for the estimate of the last term in the sum, one has

‖f (1,s)
0 ‖1−d1 ≤

s−2∑

j=0

1

e

(
1

δ2
1ρσ

)j
‖χ(1)

2 ‖j1−δ1‖f
(I;0,s−j)
0 ‖1−δ1

+
1

e

(
1

δ2
1ρσ

)s−1

‖χ(1)
2 ‖s−1

1−δ1‖f
(I;0,1)
0 ‖1−δ1

≤
s−2∑

j=0

1

e

(
1

δ2
1ρσ

)j 1

ωj
(3ν0,1)jΞj1

Ej

4j
εjν

(I)
1,s−jΞ

s−j
1 Eεs−j

+
1

e

(
1

δ2
1ρσ

)s−1 1

ωs−1
(3ν0,1)s−1Ξs−1

1

Es−1

4s−1
εs−1Eε

≤ ν1,sΞ
2s−2
1 Eεs .

The term f
(1,1)
2 is unchanged, while for l = 1 and s ≥ 2 one has

‖f (1,s)
2 ‖1−d1 ≤

s−2∑

j=0

1

e

(
1

δ2
1ρσ

)j
‖χ(1)

2 ‖j1−δ1‖f
(I;0,s−j)
2 ‖1−δ1

+
1

e

(
1

δ2
1ρσ

)s−1

‖χ(1)
2 ‖s−1

1−δ1‖f
(I;0,1)
2 ‖1−δ1+

≤
s−2∑

j=0

1

e

(
1

δ2
1ρσ

)j 1

ωj
(3ν0,1)jΞj1

Ej

4j
εjν

(I)
1,s−jΞ

s−j
1

E

4
εs−j

+
1

e

(
1

δ2
1ρσ

)s−1 1

ωs−1
(3ν0,1)s−1Ξs−1

1

Es−1

4s−1
εs−1ν

(I)
1,1Ξ1

E

4
ε

≤ ν1,sΞ
2s−1
1

E

22
εs .

Finally, for l ≥ 2 and s ≥ 1 one has

‖f (1,s)
2l ‖1−d1 ≤

s∑

j=0

1

e

(
1

δ2
1ρσ

)j
‖χ(1)

2 ‖j1−δ1‖f
(I;0,s−j)
2l ‖1−δ1

≤
s∑

j=0

1

e

(
1

δ2
1ρσ

)j 1

ωj
(3ν0,1)jΞj1

Ej

4j
εjν

(I)
1,s−jΞ

(s−j)
1

E

22l
εs−j

≤ ν1,sΞ
2s
1

E

22l
εs .

This concludes the proof of the Lemma.
�

Lemma A.6 Consider a Hamiltonian H(1) expanded as in (17). Let χ
(2)
0 and χ

(2)
2 be the

generating functions used to put the Hamiltonian in normal form at order two, then one has

‖X(2)
0 ‖1−d1 ≤

1

ω
ν1,2Ξ2

2Eε
2 ,

|ζ(2)| ≤ 1

4mρ
ν1,2Ξ3

2Eε
2 ,

‖χ(2)
2 ‖1−d1−δ2 ≤

1

ω
3ν1,2Ξ3

2

E

4
ε2 .
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The terms appearing in the expansion of H(I;1), i.e. in (19) with r = 2, are bounded as

‖f (I;1,s)
0 ‖1−d1−δ2 ≤ ν

(I)
2,sΞ

2s−2
2 Eεs , for 1 ≤ s ≤ 2 ,

‖f (I;1,s)
0 ‖1−d1−δ2 ≤ ν

(I)
2,sΞ

2s−1
2 Eεs , for 2 < s ≤ 4 ,

‖f (I;1,s)
2 ‖1−d1−δ2 ≤ ν

(I)
2,sΞ

2s−1
2

E

2
εs , for 1 ≤ s ≤ 2 ,

‖f (I;1,s)
2l ‖1−d1−δ2 ≤ ν

(I)
2,sΞ

2s
2

E

22l
εs , for the remaining cases .

The terms appearing in the expansion of H(2), i.e. in (21) with r = 2, are bounded as

‖f (2,s)
0 ‖1−d2 ≤ ν2,sΞ

2s−2
2 Eεs , for 1 ≤ s ≤ 2 ,

‖f (2,s)
0 ‖1−d2 ≤ ν2,sΞ

2s−1
2 Eεs , for 2 < s ≤ 4 ,

‖f (2,s)
2 ‖1−d2 ≤ ν2,sΞ

2s−1
2

E

2
εs , for 1 ≤ s ≤ 2 ,

‖f (2,s)
2l ‖1−d2 ≤ ν2,sΞ

2s
2

E

22l
εs , for the remaining cases .

Proof. Using Lemma A.4 and the estimates in Lemma A.5, we immediately get

∥∥∥X(2)
0

∥∥∥
1−d1

≤ 1

ω
ν1,2Ξ2

2Eε
2 , |ζ(2)| ≤ 1

mρ
ν1,2Ξ3

2

E

4
ε2 ,

thus, from (37) we get

∥∥∥∥∥
∂χ

(2)
0

∂q̂j

∥∥∥∥∥
1−d1−δ2

≤ 1

ωeδ2σ
ν1,2Ξ2

2Eε
2 +

1

4mρ
ν1,2Ξ3

2Eε
2 ≤

(
1

ωeδ2σ
+

1

4mρ

)
ν1,2Ξ3

2Eε
2 ,

The terms f
(I;1,s)
2l appearing in the expansion of the Hamiltonian H(I;1) are bounded as

follows. For s = 1 all the terms are unchanged, thus there is nothing to do. Furthermore,

notice that f
(I;1,2)
0 is trivially bounded with the norm of f

(1,2)
0 . The term f

(I;1,2)
2 requires more

care, indeed

f
(I;1,2)
2 = f

(1,2)
2 − 〈f (1,2)

2 (q∗)〉q1 + L
X

(2)
0

f
(0,0)
4 .

Thus only the generating function X
(2)
0 plays a role and we get the following estimate

‖f (I;1,2)
2 ‖1−d1−δ2 ≤ 2ν1,2Ξ3

2

E

4
ε2 +

1

ωeδ2ρσ
ν1,2Ξ2

2Eε
2E

4
≤ 3ν1,2Ξ3

2

E

4
ε2 < ν

(I)
2,2Ξ3

2

E

2
ε2 .

For l = 0 and s = 3 one has

‖f (I;1,3)
0 ‖1−d1−δ2 ≤ ‖f

(1,3)
0 ‖1−d1−δ2 + ‖L

χ
(2)
0

f
(1,1)
2 ‖1−d1−δ2 ≤ ν

(I)
2,3Ξ4

2Eε
3

Similarly, for l = 0 and s = 4 one has

‖f (I;1,4)
0 ‖1−d1−δ2 ≤ ‖f

(1,4)
0 ‖1−d1−δ2 + ‖L

χ
(2)
0

f
(1,2)
2 ‖1−d1−δ2 + ‖L2

χ
(2)
0

f
(1,0)
4 ‖1−d1−δ2 ≤ ν

(I)
2,4Ξ7

2Eε
4 .
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For the remaining terms one has

‖f (I;1,s)
2l ‖1−d1−δ2 ≤

bs/2c∑

j=0

1

j!
‖Lj

χ
(2)
0

f
(1,s−2j)
2l+2j ‖1−d1−δ2

≤
bs/2c∑

j=0

1

e

(
‖X(2)

0 ‖1−d1
δ2

2ρσ
+
e|ζ(2)|
δ2ρ

)j
‖f (1,s−2j)

2l+2j ‖1−d1

≤
bs/2c∑

j=0

1

e

(
1

ωδ2
2ρσ

+
e

4mδ2ρ2

)j 1

ωj
νj1,2Ξ3j

2 E
jε2jν1,s−2jΞ

2(s−2j)
2

E

22l+2j
εs−2j

≤ ν(I)
2,sΞ

2s
2

E

22l
εs .

Coming to the second stage of the normalization step, the generating function χ
(2)
2 is

bounded by

‖χ(2)
2 ‖1−d1−δ2 ≤

1

ω
‖f (I;1,2)

2 ‖1−d1−δ2 ≤
1

ω
3ν1,2Ξ3

2

E

4
ε2 .

The terms f
(2,s)
2l appearing in the expansion of the Hamiltonian H(2) are bounded as follows.

For s = 1 all the terms are unchanged, thus there is nothing to do. Furthermore, both f
(2,2)
0

and f
(2,2)
2 are trivially bounded with the norm of f

(I,1,2)
0 and f

(I,1,2)
2 , respectively. Similarly to

the first stage of the the normalization step, the terms f
(2,3)
0 and f

(2,4)
0 are bounded as follows

‖f (2,3)
0 ‖1−d2 ≤ ν2,3Ξ5

2Eε
3 , ‖f (2,4)

0 ‖1−d2 ≤ ν2,4Ξ7
2Eε

4 .

For the remaining terms one has

‖f (2,s)
2l ‖1−d2 ≤

[s/2]∑

j=0

1

e

(
1

δ2
2ρσ

)j 1

ωj
(3ν1,2)jΞ3j

2

Ej

22j
ε2jν

(I)
2,s−2jΞ

2s−4j
2

E

22l
εs−2j ≤ ν2,sΞ

2s
2

E

22l
εs .

This concludes the proof of the Lemma.
�

Lemma A.7 Let s = bs/rcr +m, then for 0 ≤ j ≤ bs/rc one has

3rj − 2j + b(r − 1, s− jr, 2l + 2j) ≤ b(I; r − 1, s, 2l) .
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Proof. The proof just requires a trivial computation, i.e.,

3rj − 2j + b(r − 1, s− jr, 2l + 2j) =

= 3rj − 2j + 3(s− jr)−
⌊
s− jr + r − 2

r − 1

⌋
−
⌊
s− jr + r − 3

r − 1

⌋

= 3s−
⌊
s− j + r − 2

r − 1

⌋
−
⌊
s− j + r − 3

r − 1

⌋

= 3s−
⌊bs/rcr +m− j + r − 2

r − 1

⌋
−
⌊bs/rcr +m− j + r − 3

r − 1

⌋

= 3s−
⌊
s

r

⌋
−
⌊bs/rc+m− j + r − 2

r − 1

⌋
−
⌊
s

r

⌋
−
⌊bs/rc+m− j + r − 3

r − 1

⌋

≤ 3s−
⌊
s+ r − 1

r

⌋
−
⌊
s+ r − 2

r

⌋

≤ b(I; r − 1, s, 2l)

�

A.4.1 Proof of lemma 2.2

We proceed by induction. For r = 1, 2 just use Lemmas A.5 and A.6, respectively.
For r > 2, the estimates (26) for the generating functions follow directly from Lemma A.4,

remarking that

b(r − 1, r, 2) = b(I; r − 1, r, 2) = 3r −
⌊

2r − 2

r − 1

⌋
−
⌊

2r − 3

r − 1

⌋
= 3r − 3 .

The terms f
(I;r−1,s)
2l appearing in the expansion of the Hamiltonian H(I;r−1) are bounded

as follows. For l = 0, 1 and s < r all the terms are unchanged, thus there is nothing to do.

The term f
(I;r−1,r)
0 is trivially bounded with the norm of f

(r−1,r)
0 . The term f

(I;r−1,r)
2 requires

more care5 since only the generating function X
(r)
0 plays a role and we get the following

estimate

‖f (I;r−1,r)
2 ‖1−dr−1−δr ≤ 3νr−1,rΞ

3r−3
r

E

4
εr .

For l = 0 and r < s ≤ 2r,

‖f (I;r−1,s)
0 ‖1−dr−1−δr ≤ ‖f

(r−1,s)
0 ‖1−dr−1−δr + ‖L

χ
(r)
0

f
(r−1,s−r)
2 ‖1−dr−1−δr

≤ νr−1,sΞ
b(r−1,s,0)
r Eεs

+
1

e

(
‖X(r)

0 ‖1−dr−1

δ2
rρσ

+
e|ζ(r)|
δrρ

)
νr−1,s−rΞb(r−1,s−r,2)

r

E

22
εs−r

≤ νr−1,sΞ
b(r−1,s,0)
r Eεs

+
1

e

(
E

ωδ2
rρσ

+
eE

4mδrρ

)
νr−1,rΞ

b(r−1,r,2)
r εrνr−1,s−rΞb(r−1,s−r,2)

r

E

22
εs−r

≤ Ξb(I;r−1,s,0)
r ν(I)

r,sEε
s ,

5See the proofs of Lemma A.6 and Lemma A.4.
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where we have used the trivial inequality

3r − 2 + b(r − 1, s− r, 2) ≤ b(I; r − 1, s, 0) .

For the remaining terms one has

‖f (I;r−1,s)
2l ‖1−dr−1−δr ≤

bs/rc∑

j=0

1

j!
‖Lj

χ
(r)
0

f
(r−1,s−jr)
2l+2j ‖1−dr−1−δr

≤
bs/rc∑

j=0

1

e

(
‖X(r)

0 ‖1−dr−1

δ2
rρσ

+
e|ζ(r)|
δrρ

)j
νr−1,s−jrΞb(r−1,s−jr,2l+2j)

r

E

22l+2j
εs−jr

≤
bs/rc∑

j=0

1

e

(
E

ωδ2
rρσ

+
eE

4mδrρ

)j
νjr−1,rΞ

b(r−1,r,2)j
r εrj

× νr−1,s−jrΞb(r−1,s−jr,2l+2j)
r

E

22l+2j
εs−jr

≤ ν(I)
r,sΞ

b(I;r−1,s,2l)
r

E

22l
εs ,

where we have used the trivial inequality

3rj − 2j + b(r − 1, s− jr, 2l + 2j) ≤ b(I; r − 1, s, 2l) .

Coming to the second stage of the normalization step, just notice that the bound for the

generating function χ
(r)
2 is similar to the one of χ

(r)
0 and in particular it has exactly the same

exponent for the coefficient Ξr. Thus all the estimates appearing in the expansion of the
Hamiltonian H(r) are nothing but a minor variazione, mutatis mutandis, with respect to the
first stage of the normalization step. This concludes the proof of the Lemma.

B Proof of Proposition 3.1

The Proposition is a direct consequence of the Contraction Principle applied to a suitable
closed ball centered in x0. Indeed, by following a standard procedure (see, i.e., [20]), let us
formulate the original problem as a fixed point problem, namely Υ(x, ε) = 0 if and only if
A(x, ε) = x , where

A(x, ε) = x− [Υ′(x0, ε)]
−1Υ(x, ε) .

We first of all show that A is a contraction of a sufficiently small ball centered in x0. We first
rewrite our assumptions in a more general form

‖Υ(x0, ε)‖ ≤ µ , ‖[Υ′(x0, ε)]
−1‖L(V ) ≤M ,

and we introduce the auxiliary quantities

η = Mµ = C1C2|ε|β−α , h = MC3η = C1C
2
2C3|ε|β−2α .

Notice that the condition β > 2α is necessary in order to have

lim
ε→0

h = 0 .
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The main ingredient is the continuity of Υ′, since Υ ∈ C1 locally around x0 (independently
from ε). From finite increment formula we get, for x, y ∈ B(x0, r) ⊂ U(x0)

‖A(x, ε)−A(y, ε)‖ ≤
(

sup
z∈B(x0,r)

∥∥A′(z, ε)
∥∥
L(V )

)
‖x− y‖ ;

thus, we aim at showing that, with a suitable choice of the radius r, we have

sup
z∈B(x0,r)

∥∥A′(z, ε)
∥∥
L(V )

< 1 .

Since
A′(z, ε) = I−

[
Υ′(x0, ε)

]−1
Υ′(z, ε) =

[
Υ′(x0, ε)

]−1[
Υ′(x0, ε)−Υ′(z, ε)

]

we get ∥∥A′(z, ε)
∥∥
L(V )

≤
∥∥∥
[
Υ′(x0, ε)

]−1
∥∥∥
L(V )

∥∥Υ′(x0, ε)−Υ′(z, ε)
∥∥
L(V )

≤

≤M
∥∥Υ′(x0, ε)−Υ′(z, ε)

∥∥
L(V )

.

From the continuity of Υ′ it follows that, provided ‖z − x0‖ is small enough, it is possible to
make Υ′(x0, ε)−Υ′(z, ε) arbitrary small. The Lipschitz-continuity estimate6 in the hypotheses
of the Proposition allows to explicitly deal with this issue. Indeed, from

∥∥Υ′(x0, ε)−Υ′(z, ε)
∥∥
L(V )

≤ C3 ‖z − x0‖ ,

we get

∥∥A′(z, ε)
∥∥
L(V )

≤MC3 ‖z − x0‖ ≤MC3r =: q , ∀z ∈ B(x0, r) ,

and also
sup

z∈B(x0,r)

∥∥A′(z, ε)
∥∥
L(V )

≤ q .

In order to show that Υ(B(x0, r)) ⊂ B(x0, r), namely that ‖z − x0‖ ≤ r implies ‖A(z, ε)− x0‖ ≤
r , we start splitting

‖A(z, ε)− x0‖ ≤ ‖A(z, ε)−A(x0, ε)‖+ ‖A(x0, ε)− x0‖ .

We will separately estimate the two r.h.t.. From the bound on A′(z, ε) we get

‖A(z, ε)−A(x0, ε)‖ ≤ sup
z∈B(x0,r)

∥∥A′(z, ε)
∥∥
L(V )
‖z − x0‖ ≤ qr .

on the other hand, by exploiting the initial definition of A(x, ε), one has

‖A(x0, ε)− x0‖ =
∥∥x0 − [Υ′(x0, ε)]

−1Υ(x0, ε)− x0

∥∥ =
∥∥[Υ′(x0, ε)]

−1Υ(x0, ε)
∥∥ ≤

≤
∥∥∥
[
Υ′(x0, ε)

]−1
∥∥∥
L(V )
‖Υ(x0, ε)‖ ≤Mµ .

Hence, in order to have Υ(B(x0, r)) ⊂ B(x0, r), it must happen

Mµ+ qr ≤ r .
6Actually Holder-continuity will be sufficient, modifying the conditions on α and β.
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Thus, two independent conditions have to be satisfied:

MC3r < 1 , η +MC3r
2 ≤ r .

The second is equivalent to
MC3r

2 − r + η ≤ 0 ,

which can be re-scaled to

r = ηρ , hρ2 − ρ+ 1 ≤ 0 .

The corresponding equation, under the condition h < 1
4 , has the two zeros

t± =
1

2h

(
1±
√

1− 4h
)
.

Moreover one has t− < 2 , since 1−4h <
√

1− 4h , and for h ∼ 0 we get t−(h) ∼ 1 . Collecting
the above information, the radius r has to fulfill

ηt− ≤ r ≤ t+η .

If we make the more restrictive choice

ηt− ≤ r ≤ 2η ,

then, from h < 1
4 , it follows that Υ is an 1

2 -contraction map

MC3r < 2MC3η = 2h <
1

2
.

In our case, h < 1
4 comes directly from being h(ε) infinitesimal w.r.t. ε; thus for ε small

enough the condition is satisfied. Moreover, from h(ε) ≈ 1, one deduces that the optimal
choice for the radius is

r(ε) = ηt− ≈ C1C2|ε|β−α .
�

Remark B.1 The above Proposition shows that x0 is a better approximation of the true
solution as α decreases, which means as the differential Υ′(x0, ε) is bounded independently on
ε ∥∥Υ′(x0, ε)

∥∥ ≥ C ⇒ α = 0 .

At the limiting case α = 0, it is possible to choose r = O(εβ).
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[24] Y. Li, Y. Yi. A quasi-periodic Poincaré’s theorem Mathematische Annalen, 326:649–690,
2003.

[25] E. Meletlidou, G. Stagika. On the continuation of degenerate periodic orbits in Hamil-
tonian systems. RCD, 11(1):131–138, 2006.

[26] V.K. Melnikov. On some cases of preservation of quasiperiodic motions under a small
perturbation of the Hamiltonian. Dokl. Akad. Nauk SSSR, 165:1245–1248, 1965. English
transl. in Soviet Math. Dokl., 6, 1965.

[27] V.K. Melnikov. On a family of quasiperiodic solutions of a Hamiltonian system Dokl.
Akad. Nauk SSSR, 181:546–549, 1968. English transl. in Soviet Math. Dokl. 9, 1968.

[28] J. Moser. Periodic orbits near an equilibrium and a theorem by Alan Weinstein. Comm.
Pure Appl. Math., 29(6):724–747, 1976.

[29] J. Moser. Convergent series expansions for quasi-periodic motions. Math. Ann, 169:136–
176, 1967.

[30] D.E. Pelinovsky, P.G. Kevrekidis, D.J. Frantzeskakis. Persistence and stability of discrete
vortices in nonlinear Schrödinger lattices. Phys. D, 212(1-2):20–53, 2005.

[31] D. Pelinovsky, A. Sakovich. Multi-site breathers in Klein-Gordon lattices: stability,
resonances and bifurcations. Nonlinearity, 25(12):3423–3451, 2012.

[32] T. Penati, V. Koukouloyannis, M. Sansottera, P.G. Kevrekidis, S. Paleari. On the nonex-
istence of degenerate phase-shift multibreathers in a zigzag Klein-Gordon model via dNLS
approximation. preprint, 2017.

39



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[33] T. Penati, M. Sansottera, S. Paleari, V. Koukouloyannis, P.G. Kevrekidis. On the nonex-
istence of degenerate phase-shift discrete solitons in a dNLS nonlocal lattice. Physica D,
2017. doi:10.1016/j.physd.2017.12.012
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