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Proteomics Analysis of Nucleolar SUMO-1
Target Proteins upon Proteasome Inhibition*s
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Many cellular processes are regulated by the coordination
of several post-translational modifications that allow a
very fine modulation of substrates. Recently it has been
reported that there is a relationship between sumoylation
and ubiquitination. Here we propose that the nucleolus is
the key organelle in which SUMO-1 conjugates accumu-
late in response to proteasome inhibition. We demon-
strated that, upon proteasome inhibition, the SUMO-1 nu-
clear dot localization is redirected to nucleolar structures.
To better understand this process we investigated, by
quantitative proteomics, the effect of proteasome activity
on endogenous nucleolar SUMO-1 targets. 193 potential
SUMO-1 substrates were identified, and interestingly in
several purified SUMO-1 conjugates ubiquitin chains were
found to be present, confirming the coordination of these
two modifications. 23 SUMO-1 targets were confirmed
by an in vitro sumoylation reaction performed on nuclear
substrates. They belong to protein families such as
small nuclear ribonucleoproteins, heterogeneous nu-
clear ribonucleoproteins, ribosomal proteins, histones,
RNA-binding proteins, and transcription factor regula-
tors. Among these, histone H1, histone H3, and p160
Myb-binding protein 1A were further characterized as
novel SUMO-1 substrates. The analysis of the nature of
the SUMO-1 targets identified in this study strongly indi-
cates that sumoylation, acting in coordination with the
ubiquitin-proteasome system, regulates the maintenance
of nucleolar integrity. Molecular & Cellular Proteomics
8:2243-2255, 20009.

Targeting of proteins by conjugation of Small Ubiquitin-like
MOdifier (SUMO)" is a key mechanism for regulating many
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cellular processes (1, 2), for example the activity of transcrip-
tion factors (3). Other regulated processes are DNA repair,
protein transport, protein-protein interaction, cell cycle pro-
gression, and RNA metabolism (4-6).

SUMO proteins are ubiquitously expressed throughout the
eukaryotic kingdom. Yeast, Caenorhabditis elegans, and Dro-
sophila melanogaster carry a single SUMO gene, whereas
plants and vertebrates have several SUMO genes (5). In par-
ticular, humans express four distinct SUMO family members:
SUMO-1, SUMO-2, SUMO-3, and SUMO-4 (7, 8). SUMO-1 is
an 11.6 kDa protein. It shares about 47% homology with
SUMO-2 and SUMO-3 that, on the contrary, differ from each
other only by three amino-terminal residues and form a dis-
tinct subfamily known as SUMO-2/-3 (9). Despite the low
sequence homology, SUMO-1 and SUMO-2/-3 share a similar
protein size, tertiary structure, and a carboxyl-terminal digly-
cine motif (10, 11). At the cellular level, different amounts of
free SUMO-1 and SUMO-2/-3 are present. The majority of
SUMO-1 in fact is conjugated to substrates, whereas the
conjugation of SUMO-2/-3 is strongly induced in response to
various stresses (10). Finally SUMO-1 and SUMO-2/-3 serve
distinct functions as they modify different target proteins (5).
Unlike SUMO-1, SUMO-2, and SUMO-3, which are ubiqui-
tously expressed (7), SUMO-4 isoform has yet to be charac-
terized. It seems to be expressed mainly in the kidney, lymph
nodes, and spleen, but its role still remains unclear because
its mature form has never been reported in vivo (7, 12).

Several SUMO targets are known; they are mostly nuclear
proteins presenting a consensus acceptor site: WKXE (in
which ¥ is an aliphatic branched amino acid and X is any
amino acid) (5). The mutation of this site abolishes sumoyla-
tion of substrates and is commonly used to understand the
biological implication of the substrate modification. Also
SUMO-2/-3 present a conserved lysine in this motif, and they
form polymeric SUMO chains (13, 14). SUMO-1, however,
lacks this consensus site and is not thought to form chains
even if recent studies demonstrate that SUMO-1 can be
linked to the end of a poly-SUMO-2/-3, terminating the chain
(11).

Recently two different extensions of the simple consensus
SUMO acceptor site have been identified. These motifs share
a negative charge next to the basic SUMO consensus site:

nLC, nano-LC; LTQ, linear trap quadrupole; PANTHER, Protein Anal-
ysis through Evolutionary Relationships.
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one involves a phosphorylated (p) Ser and a Pro residue
(WKXEXXpSP), and the other contains a negatively charged
amino acid close to the acceptor Lys residue (5). Although
many targets contain the above mentioned motifs, there are
examples of substrates that do not contain these acceptor
sites. The presence of a phosphorylated residue in the motif
indicates that regulatory mechanisms, which can enhance or
decrease the sumoylation of specific targets, may occur at the
level of the target itself (15). Indeed sumoylation often acts in
coordination with other post-translational modifications like
acetylation, methylation, and ubiquitination (16). As discussed
above, SUMO proteins are similar in three-dimensional struc-
tures. Although they do not display high sequence homology,
they share the same structure of ubiquitin and a common
conjugation mechanism. In fact like ubiquitination sumoyla-
tion also requires the formation of an isopeptide bond be-
tween the carboxyl-terminal Gly residue of the modifier pro-
tein and the e-amino group of a Lys residue in the acceptor
protein (5). The enzymatic cascade that mediates SUMO con-
jugation is similar to that of ubiquitin. The immature precursor
is first processed by a specific carboxyl-terminal hydrolase
that exposes the diglycine motif, and then mature SUMO
proteins are activated by an ATP-dependent heterodimer of
SUMO-activating enzyme subunit 1 (SAE1) and SAE2. The
above dimer transfers the activated SUMO protein to the
ubiquitin-conjugating enzyme 9 (Ubc9) through a transesteri-
fication reaction. Ubc9 usually acts together with an E3 ligat-
ing enzyme that catalyzes SUMO conjugation to the sub-
strate. In contrast to the ubiquitin pathway in which an E3
enzyme is essential for conjugation, SUMO modification just
requires Ubc9, which is able to bind directly to the SUMO
consensus sequence and substrates, aligning them for con-
jugation (5, 10, 11).

Despite the similarity between SUMO and ubiquitin, the
molecular consequences of these two modifications are dis-
tinct (17, 18). In some cases, such as IkBa modification,
SUMO plays an antagonistic role to ubiquitin, competing for
the same lysine (19). In other cases, as for NFkB essential
modulator/IkB kinase y, SUMO and ubiquitin are conjugated
in a sequential manner in response to a toxic stress; in further
cases SUMO may regulate protein localization, stabilizing
substrate, independently from ubiquitination as for Smad4
(20-22). Cross-regulation between SUMO and ubiquitin and
the possible interchange of modifiers remain unclear (23, 24).
Several recent studies indicate that there is a cross-talk be-
tween ubiquitinated and SUMO-modified proteins in coordi-
nation with proteasome activity (25-27).

To gain insights into the interconnection of the SUMO and
the ubiquitin-proteasome pathway, we investigated the effect
of proteasome inhibition on SUMO-conjugated proteins. We
analyzed the subcellular distribution of sumoylated proteins in
Hela cells upon MG132 treatment and identified SUMO-1
targets by mass spectrometric techniques. Moreover we
measured the effect of MG132 on target modification by

stable isotope labeling by amino acids in cell culture (SILAC),
and we demonstrated that, upon proteasome inhibition, the
amount of SUMO-1 species increases and accumulates in
nucleolar structures (28-30). This enrichment of SUMO-1 al-
lowed the detection of sumoylated targets at endogenous
levels, although usually the abundance of sumoylated pro-
teins is relatively low in the cell, and they are difficult to detect.
Based on these data, we focused our attention on the nucle-
olar compartment and identified nucleolar sumoylated pro-
teins that accumulate after proteasome inhibition. The analy-
sis of such proteins strongly indicates that sumoylation is
involved in the regulation of nucleolar dynamics.

EXPERIMENTAL PROCEDURES

Cell Culture—Hela cells were grown in Dulbecco’s modified Ea-
gle’s medium supplemented with 10% FCS and 100 units/ml penicil-
lin and streptomycin (Invitrogen). Stable isotope labeling was carried
out essentially as described previously (28) using ['2Cg,"*N,]arginine
(referred to as Arg0), ['°Cg,'“N,]lysine (referred to as Lys0),
['3Cs,"°N,Jarginine (referred to as Arg10), and ['3Cg,' N, ]lysine (re-
ferred to as Lys8) (Cambridge Isotope Laboratories, Cambridge, MA).
Arg0-labeled cells in experiments | and Il or Arg0, LysO-labeled cells
in experiment Il were treated with 10 um MG132 in DMSO overnight;
Arg10-labeled cells or Arg10, Lys8-labeled cells were treated with
DMSO as control. The labeled cells, for each experiment, were mixed
in a 1:1 ratio (3 X 107 cells each).

Immunofluorescence—Hela cells were grown on sterile 13-mm
coverslips and then treated with 10 um MG132 or DMSO overnight. A
time course was performed, treating HelLa cells with 10 um MG132 for
1, 6, and 12 h using DMSO as control. Comparison of SUMO-1
staining under several stresses was carried out using 0.2 um actino-
mycin D (Sigma-Aldrich) for 12 h, 10 ug/ml cycloheximide (Sigma-
Aldrich) for 12 h, 1 um Velcade (bortezomib) (Millennium Pharmaceu-
ticals, Cambridge, MA) for 12 h, 1 mm H,0O, (Sigma-Aldrich) for 1 h,
and 10 um MG132 for 12 h. Cells were fixed with PBS, 3.0%
paraformaldehyde for 15 min at room temperature and then perme-
abilized with 0.2% Triton X-100, 300 mm sucrose, 20 mm Hepes, pH
7.4, 50 mm NaCl, 3 mm MgCl, for 3 min at 4 °C. Hela cells were
incubated with the indicated antibodies in blocking buffer (0.2%
bovine serum albumin in PBS) for 1 h at 37 °C, rinsed with PBS,
incubated with purified Alexa Fluor 488-conjugated goat anti-mouse
immunoglobulin G antibodies, rinsed, and mounted with Immuno-
Fluore Mounting Medium (ICN Biomedicals, Costa Mesa, CA). The
nuclei were visualized by Hoechst 33258 (Sigma-Aldrich) staining for
3 min at room temperature, and then after several washes with PBS,
the nucleoli were stained with 0.66 mm pyronin Y (Sigma-Aldrich).
Fluorescence was visualized with an inverted fluorescence micro-
scope (DM IRBE; Leica, Wetzlar, Germany) and captured with a
TCS-NT argon/krypton confocal laser microscope (Leica).

Plasmids, His-SUMO-1 Protein, Antibodies, Purification of Nucleoli,
Immunoprecipitation, Protein Electrophoresis, and Immunoblotting—
The plasmid encoding His-SUMO-1 wild type was obtained by clon-
ing SUMO-1 cDNA, kindly donated from Ronald Hay as pGEX-
SUMO-1 construct (31), into pet28a vector. The plasmid encoding
Ubc9, obtained by cloning Ubc9 cDNA into pet23a vector, and the
plasmids encoding His-Aos1 in pet28a and Uba2 in pet11d were kind
gifts from Frauke Melchior (32).

His-SUMO-1 protein was purified by Ni?* beads (Qiagen, Valencia,
CA) according to the manufacturer’s procedure. Aos1-Uba2 complex
was purified as described previously (32). The following antibodies
were used: anti-SUMO-1 monoclonal antibody (21C7 from Zymed
Laboratories Inc.), anti-SUMO-1 polyclonal antibody (Santa Cruz Bio-
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technology, Santa Cruz, CA), anti-nucleophosmin monoclonal anti-
body was kindly provided by Emanuela Colombo (33), anti-ubiquitin
monoclonal antibody (Santa Cruz Biotechnology), anti-lamin
A/C monoclonal antibody (Santa Cruz Biotechnology), anti-a-tubu-
lin monoclonal antibody, anti-FLAG monoclonal antibody (both from
Sigma-Aldrich), and anti-histone H3 polyclonal antibody (Abcam,
Cambridge, MA).

Hela cells were separated into cytoplasmic, nuclear, nucleoplas-
mic, and nucleolar fractions using a previously published protocol
(84-36). Purified nucleoli were lysed in 4% SDS, 50 mm Tris, pH 8.0
and then diluted to reconstitute RIPA buffer (150 mm NaCl, 1%
Nonidet P-40, 0.5% deoxycholate, 0.1% SDS, 50 mm Tris, pH 8.0)
supplemented with 50 mm N-ethylmaleimide and protease inhibitor
mixture.

Nucleolar SUMO-1 target proteins were immunoprecipitated using
anti-SUMO-1 monoclonal antibody that was incubated with protein
G-Sepharose 4 Fast Flow beads (GE Healthcare/Amersham Bio-
sciences) for 1 h at 4 °C. The antibody was then linked to protein G by
3,3'-dithiobis(sulfosuccinimidylpropionate) cross-linker (Pierce) ac-
cording to the manufacturer’s instructions. Nucleolar lysates were
incubated with the antibody bound to protein G beads at 4 °C over-
night. After extensive washing with RIPA buffer, immunoprecipitates
were eluted in non-reducing Laemmli buffer and then in reducing
buffer. SUMO-1 proteins were separated by 10% SDS-PAGE, stained
with Coomassie Birilliant Blue (Bio-Rad), and excised in 24 slices for
LC-MS/MS analysis.

Concerning immunoblotting experiments, proteins separated by
SDS-PAGE were subsequently transferred onto nitrocellulose mem-
branes (GE Healthcare/Amersham Biosciences). These membranes
were incubated with specific antibodies as indicated.

For p160 Myb-binding protein 1A immunoprecipitation, NIH 3T3
cells were infected using a p160-FLAG retrovirus as described before
(87). Then NIH 3T3 cell nuclear extracts (38) were adjusted to IBB
buffer (10 mm Tris-HCI, pH 8, 0.2% Nonidet P-40, 150 mm NaCl) and
precleared with protein G-Sepharose beads for 1 h at 4 °C. The
clarified supernatants were incubated with M2 anti-FLAG affinity resin
(Sigma-Aldrich) overnight at 4 °C. The beads were rinsed several
times with IBB buffer, resuspended in Laemmli buffer, heated at
85 °C, and centrifuged at 10,000 X g.

In Vitro Reaction and Purification of His-SUMO-1 Target Proteins—
The in vitro reaction was performed on Hela extracts (38) as follows.
1.3 mg of Hela nuclear extract and 6 mg of HelLa cytosolic extract
were incubated with 100 ug of His-SUMO-1 previously bound to Ni#*
beads (Qiagen), 30 ug of Ubc9, 0.5 units/ml inorganic pyrophos-
phatase, and 10 mm ATP in sumoylation buffer (10 mm MgCl,, 0.1 mm
DTT, 50 mm Tris-HCI, pH 7.5) for 1 h at room temperature (39). The
reaction mixture was incubated in the absence of SUMO-1 as a
control. The sumoylation reactions were stopped by adding 10 mm
N-ethylmaleimide and 50 mm imidazole in sumoylation buffer. After
exhaustive washings, the His-SUMO-1-conjugated proteins were
eluted from beads with 500 mm imidazole in 50 mm Tris-HCI, 150 mm
NaCl. Proteins were separated by 10% SDS-PAGE, stained by silver
staining (40), and excised in 34 slices for LC-MS/MS analysis. For
histones, a mixture of calf thymus total histones (1 ug) or purified
histone H3 (1 ng) (Sigma-Aldrich) was incubated in the presence (or
absence as control) of His-SUMO-1 (1 ng), Ubc9 (10 ng), Aos1/Uba2
(150 ng), 0.5 units/ml inorganic pyrophosphatase, and 10 mm ATP in
sumoylation buffer for 1 h at room temperature.

Mass Spectrometry and Data Analysis—Mass Spectrometry anal-
ysis was performed using a hybrid quadrupole time-of-flight mass
spectrometer (APl QStar PULSAR, PE-Sciex, Toronto, Canada)
equipped with a nanoelectrospray ion source (Proxeon Biosystems,
Odense, Denmark). A total of 5 ul of trypsin-digested sample was
injected in a capillary chromatographic system Agilent 1100 Series

equipped with a Nano Pump, Iso Pump, and Degasser (Agilent, Santa
Clara, CA). Peptide mixtures were separated on a 10-cm fused silica
capillary (75-um inner diameter and 360-um outer diameter; Proxeon
Biosystems) filled with Reprosil-Pur C,5 3-um resin (Dr. Maisch
GmbH, Ammerbuch-Entringen, Germany) using a pressurized “pack-
ing bomb.” Peptides were eluted with a 60-min gradient from 92%
buffer A (2% acetonitrile, 0.2% formic acid in water) to 80% buffer B
(2% water, 0.2% formic acid in acetonitrile) at a constant flow rate of
200 nl/min. Analyses were performed in positive ion mode; the high
voltage potential was set at around 1.6-1.8 kV. Full-scan mass spec-
tra ranging from m/z 350 to 1350 Da were collected, and for each MS
spectrum, the two most intense doubly and triply charged ions peaks
in the mass range were selected for fragmentation. Tandem mass
spectra were extracted by Mascot.dll (version 1.6.0.21) through An-
alyst QS 1.1 (Applied Biosystems, Foster city, CA).

Mass spectrometry analysis was also performed by LC-MS/MS
using an LTQ-Orbitrap mass spectrometer (ThermoScientific, Bre-
men, Germany). 5 ul of tryptic digest for each band were injected in
a capillary chromatographic system (EasyLC, Proxeon Biosystems).
Peptide separations occurred on a homemade column as described
above. A gradient of eluents A (distilled water with 2% (v/v) acetoni-
trile, 0.1% (v/v) formic acid) and B (acetonitrile, 2% (v/v) distilled water
with 0.1% (v/v) formic acid) was used to achieve separation from 8%
B (at 0 min, 0.2 ml/min flow rate) to 50% B (at 80 min, 0.2 ml/min flow
rate).The LC system was connected to the orbitrap equipped with a
nanoelectrospray ion source (Proxeon Biosystems). Full-scan mass
spectra were acquired in the LTQ-Orbitrap mass spectrometer in the
mass range m/z 350 to 1500 Da and with the resolution set to 60,000.
The “lock-mass” option was used for accurate mass measurements.
The four most intense doubly and triply charged ions were automat-
ically selected and fragmented in the ion trap. Target ions already
selected for the MS/MS were dynamically excluded for 60 s. All
MS/MS samples were analyzed using the Mascot search engine
(version 2.1.04; Matrix Science, London, UK) and X! Tandem (version
2007.01.01.1; The Global Proteome Machine Organization). X! Tan-
dem and Mascot were set up to search the IPI_human_20081019
database (total, 73,994 sequences). QStar data were searched with a
peptide mass tolerance of 100 ppm and 0.4 Da for precursor and
fragment ions, respectively. Searches were performed with trypsin
specificity, alkylation of cysteine by carbamidomethylation as a fixed
modification, and oxidation of methionine as a variable modification.
For LTQ-Orbitrap data mass tolerance was set to 5 ppm and 0.4 Da
for precursor and fragment ions, respectively. Scaffold (version Scaf-
fold_2_01_02, Proteome Software Inc., Portland, OR) was used to
validate MS/MS-based peptide and protein identifications. Protein
probabilities were assigned by the Protein Prophet algorithm (41).
Protein thresholds were set to 99.0% minimum and a two-peptide
minimum, whereas peptide thresholds were set to 95% minimum.
The false positive rate was estimated consulting the IPI_human/decoy
database (42). The estimated false positive rate was less then 4% in
accordance with the Scaffold criteria selected in this work.? MS-
Quant, an open source program (SourceForge, Inc.), was used to
extract quantitative information from the Mascot HTML database
search files and to manually validate the certainty in peptide identifi-
cation and peptide abundance ratio. Data analysis was also per-
formed with the MaxQuant software (44). Mass spectra were analyzed
by Mascot (version 2.2.2) against a concatenated forward and re-
versed version of the IPI human database (IPI.HUMAN.v3.52.decoy).
The initial mass tolerance in MS mode was set to 7 ppm, and MS/MS
mass tolerance was 0.5 Da. Cysteine carbamidomethylation was

2 Wilmarth, P. A., and Searle, B. C. (2006) Poster presented at the
Human Proteome Organisation (HUPO) 5th Annual World Congress,
Long Beach, CA (October 28—-November 1, 2006).
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FiG. 1. Subcellular distribution of SUMO-1 after DMSO or MG132 treatment and immunoprecipitation of nucleolar extract using
anti-SUMO-1. A, immunofluorescence analysis of HelLa cells cultured in the presence of DMSO as control (a-c) and with 10 um MG132
overnight (d-f). Double staining of DNA (blue; Hoechst staining) and SUMO-1 (green) is shown in the right panels (c and f), the middle panels
show DNA (b and e), and the left panels show SUMO-1 (a and d). In the control cells, SUMO-1 proteins are distributed throughout the
nucleoplasm (a) excluding the nucleoli (c). In the treated cells, SUMO-1 proteins localize inside the nucleoli (f). B, nucleolar localization of
SUMO-1 in Hela cells treated with DMSO (a-c) and with MG132 overnight (d-f). Shown are high magnification images of SUMO-1 staining
(green) (@ and d) and pyronin Y staining (red) (b and e) and the merged images of pyronin Y and SUMO-1 staining (c and f). Only in HeLa cells
treated with MG132 staining of SUMO-1 and pyronin Y overlaps, confirming that SUMO-1 species translocated into nucleolar structures after
proteasome inhibition. C, immunoprecipitation (/P), with anti-SUMO-1 antibody, of HeLa cells nucleolar extract treated with MG132 overnight
(right) and with DMSO (Jeft). As expected SUMO-1 proteins are enriched only after proteasome inhibition. D, anti-ubiquitin Western blot (WB)
of nucleolar extracts before and after MG132 treatment. The extracts were normalized with anti-nucleophosmin.

searched as a fixed modification, whereas N-acetyl protein and oxi-
dized methionine were searched as variable modifications. Labeled
arginine and lysine were also specified as variable modifications. The
resulting Mascot “.dat” files were loaded into the MaxQuant software
together with the raw data for further analysis. SILAC peptide and
protein quantification was performed automatically with MaxQuant
using default settings as parameters. Protein quantification was
based on extracted ion chromatograms of contained peptides. Pep-
tide assignments were statistically evaluated using a Bayesian model
on the basis of sequence length and Mascot score. Peptides and
proteins were accepted with a false discovery rate of less than 1%,
estimated on the basis of the number of accepted reverse hits. The
experiments were performed in biological triplicate (experiments |, Il
and lll).

RESULTS

Endogenous SUMO-1 Conjugates Accumulate in Nucleolar
Structures upon Proteasome Inhibition—To examine the link
between SUMO-1 and the proteasome pathway, the effect of
the proteasome inhibitor MG132 on the subcellular localiza-
tion of SUMO-1 was analyzed. Immunofluorescence was per-
formed on Hela cells treated with 10 um MG132 overnight or
DMSO as control. In the control cells, SUMO-1-positive stain-
ing was seen as dots dispersed throughout the nucleus;

whereas after MG132 treatment, the staining accumulated in
well defined structures (Fig. 1A) in agreement with previous
studies (25, 26). To verify the nature of such structures, a
double staining of SUMO-1 and pyronin Y, a nucleolus-spe-
cific marker, was performed. As evident from Fig. 1B, in
treated cells SUMO-1 appears to accumulate into nucleoli.
The dynamic behavior of SUMO-1 structures during protea-
some inhibition was followed in HelLa cells at different times.
As shown in Fig. 2, during the treatment with MG132,
SUMO-1 structures increased in size and number. These new
structures appear to be highly dynamic: as the treatment
progressed, larger portions of SUMO-1 structures had the
propensity to fuse with each other moving into the nucleolar
compartment. These events resemble the fission and fusion
processes of the promyelocytic leukemia bodies during chro-
matin organization (45). The changes of SUMO-1 structures in
HelLa cells were also observed upon several stress condi-
tions. The immunofluorescence analysis in supplemental Fig.
1 reveals that cycloheximide (26), actinomycin D (45), and
oxidative stress (46) had no effect on the nucleolar accumu-
lation of SUMO-1 particles. Conversely the behavior of

2246 Molecular & Cellular Proteomics 8.10
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FiG. 2. Subcellular distribution of
SUMO-1 after DMSO and MG132
treatment at different time points.
Shown is immunofluorescence analysis
of Hela cells cultured in the presence of
DMSO as control (a, e, and i) and with 10
uM MG132 for 1 h (b, f,and /), 6 h (c, g,
and m), and 12 h (d, h, and n). Double
staining of DNA (blue; Hoechst staining)
and SUMO-1 (green) is shown in the
lower panels (i-n), the middle panels
show DNA (e-h), and the upper panels
show SUMO-1 (a and d). As expected, in
the control cells, SUMO-1 proteins are
distributed throughout the nucleoplasm
(@) excluding the nucleoli (). In treated
cells, SUMO-1 proteins localize first in
more defined dots (b and /); after 6 h,
more and bigger dots localized around
the nucleoli are detected (c and m) and
are finally found inside nucleolar struc-
tures (12 h) (d and n).

DNA SUMO-1

Merge

SUMO-1 structures after Velcade treatment, a potent and
selective proteasome inhibitor (47), was the same as that
observed upon MG132 treatment, confirming the specificity of
the stimulus.

This observation was confirmed by biochemical analysis of
purified nucleoli. Immunoprecipitation with anti-SUMO-1 an-
tibody was used to enrich the sumoylated proteins. The West-
ern blot analysis of treated and untreated samples shows that
SUMO-1 conjugated proteins accumulated in nucleolar ex-
tract in treated cells (Fig. 1C). A Western blot with anti-ubig-
uitin was performed on the same nucleolar extracts (Fig. 1D)
to show that, after treatment with MG132, the level of ubig-
uitinated protein increased, confirming the effectiveness of
the inhibition.

Proteomics Analysis of Nucleolar Sumoylated Proteins—To
study the effect of proteasome inhibition on endogenous
SUMO-1 targets, a quantitative proteomics analysis (SILAC)
on Hela nucleolar sumoylated proteins was performed. Two
different SILAC experiments were performed: one using the
isotopes Arg0 and Arg10 (the two biological replicates are
named SILAC | and SILAC Il) and the other using Arg0, Lys0
and Arg10, Lys8 (SILAC Ill). In all experiments, cells grown
with the light isotopes were treated with MG132, whereas the
other cell population, grown with the heavy isotopes, was
treated with DMSO (Fig. 3). The two Hela populations from
each SILAC experiment were mixed in a 1:1 ratio, and nucleoli
were isolated. To verify the purity of the nucleolar fraction,
equal amounts of proteins from cytoplasmic, nuclear, nucle-
oplasmic, and nucleolar fractions were immunolabeled with
specific antibodies against a-tubulin, lamin A/C, and nucleo-
phosmin. The presence of the signal of nucleophosmin and
the absence of lamin A/C and «-tubulin signals in the nucle-
olar fraction attest the quality of the purification (supplemental
Fig. S2). To purify SUMO-1-specific targets, nucleoli were

Hela Hela
light i_s_otopes heavy is_qtopes
MG132 DNSO
| 1:1 Mix

Nucleoli purification

L4

IP anti SUMO-1 of nucleolar lysate

l

Tryptic digestion of gel bands and Identification by nLC-MS/MS

v

Quantitative analysis by MSQuant / MaxQuant

Fic. 3. Quantitative proteomics strategy to identify nucleolar
SUMO-1 targets. Arg0- or Arg0 and LysO-labeled Hela cells were
treated with MG132 overnight, and Arg10- or Arg10 and Lys8-labeled
HelLa cells were treated with DMSO as control. Labeled cells were
mixed in a 1:1 ratio, and the nucleoli were purified. SUMO-1 target
proteins were immunoprecipitated (/P) and separated by SDS-PAGE,
and the gel lane was cut into slices. Proteins were in-gel digested with
trypsin, identified by mass spectrometry, and quantified by MSQuant
and Max Quant.

lysed and immunoprecipitated with anti-SUMO-1 antibody
(Fig. 4). 10 mm N-ethylmaleimide was added in the lysis buffer
to inhibit SUMO proteases that remove SUMO from target
proteins, and 0.5% SDS, a strong ionic detergent, was used
for the immunoprecipitation to break up protein complexes
and enhance the specificity of the purification. Moreover a
cross-linker carrying a disulfide bridge, 3,3’-dithiobis(sulfos-
uccinimidylpropionate), was used to link SUMO-1 antibody to
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IP IP
A anti SUMO-1 B anti SUMO-1
P P P
lucleoli not reducing ducing not reducing
lysate elution elution elution

25- : —

16.5-

WB anti SUMO-1

FiG. 4. Purification of nucleolar SUMO-1 proteins. Arg0-labeled
Hela cells were treated with MG132, and Arg10-labeled Hela cells
were treated with DMSO as control. Equal amounts of Hela cells
were mixed. SUMO-1 target proteins were immunoprecipitated (/P)
from nucleolar lysate using anti-SUMO-1 antibody cross-linked to
protein G-Sepharose beads. Immunoprecipitated proteins were
eluted in non-reducing Laemmli buffer and then in reducing buffer. A,
Western blot (WB) analysis shows that most of the SUMO-1 targets
are eluted in non-reducing conditions. B, SDS-PAGE of purified
SUMO-1 proteins. The gel lane was excised in 24 slices, and proteins
were in-gel digested with trypsin. C, subcellular localization of the
identified proteins.

protein G. The advantage of this step is the possibility to elute
specific proteins and immunoglobulins in differential ways
using non-reducing and reducing denaturing conditions (Fig.
3A). As expected, SUMO-1 targets were enriched after immu-
noprecipitation only in non-reducing conditions, indicating the
validity of the purification strategy.

Eluted proteins were then separated by SDS-PAGE (Fig.
4B), and the top part of the Coomassie gel lane, which con-
tains the majority of the SUMO conjugates, was cut in several
slices. Proteins were in-gel digested by trypsin. The resulting
peptide mixtures were analyzed by nLC-MS/MS, and only the
proteins identified in at least in two of three biological repli-
cates (193 proteins) were selected. A complete list of all
identified proteins is available in supplemental Table S1. Be-
cause the SILAC technique can quantify changes as small as

10%, we chose 0.8 as a conservative cutoff ratio of heavy and
light peptides, obtained by using MSQuant and MaxQuant
softwares. The presence of structural proteins, potential con-
taminants of the mixture, such as Plectin 1, with an Arg10/
Arg0 or Lys8/Lys0 ratio equal to 1 attested the validity of the
quantitative analysis and excluded the implication of these
proteins in the SUMO-ubiquitin pathway. In Table | are listed
the proteins identified by at least two arginine- or lysine-
containing peptides and enriched at least 0.8-fold in the heavy
arginine or lysine form. An average of the three independently
measured ratios is shown with S.D. For most potential sumoy-
lated proteins the heavy and light peptide ratio is 0.6-0.7 with
an average S.D. of 0.06 indicating that two-peptide pairs lead
to reasonably accurate quantification and attesting the good
reproducibility of the experiment. Moreover the potential
SUMO-1 targets are listed with their subcellular localization
obtained consulting the ExXPASy Proteomics Server and nu-
cleolar database (NOPdb; Ref. 36). Several potential SUMO-1
targets are nucleolar proteins, whereas the others are en-
riched in nucleoli after proteasome inhibition (Fig. 4C). Inter-
estingly we found the ubiquitin peptide containing Lys-48
modified by the Gly-Gly moiety characteristic of polyubiquitin
chain formation (supplemental Fig. S3). Ubiquitin peptides of
these chains notably increase (heavy/light ratio of 0.2) in high
molecular weight bands, demonstrating the accumulation of
polyubiquitinated proteins after proteasome inhibition (Table
l). Gene Ontology analysis of biological process was per-
formed with the on-line software PANTHER using the data
reported in Table I. As shown in Fig. 5, sumoylated targets
were significantly enriched in proteins involved in ribosome
biogenesis, RNA splicing and metabolism, and chromatin
remodeling.

Confirming SUMO-1 Target Proteins—To validate the in vivo
identified SUMO-1 targets, we performed an in vitro sumoyla-
tion reaction. In particular, we used Hel.a nuclear extract as the
source of SUMO-1 targets, Hela cytosolic extract as the source
of sumoylation enzymes, and an excess of His-SUMO-1, Ubc9,
inorganic pyrophosphatase, and ATP as the components of the
sumoylation buffer. As a control, the reaction mixture was incu-
bated in the absence of SUMO-1. His-SUMO-1-tagged proteins
were affinity purified on Ni#* beads. 10% of the eluted sumoy-
lated targets were separated by SDS-PAGE and immunoblotted
using anti-SUMO-1 antibody. As shown in Fig. 6A, the in vitro
reaction sharply increased the level of sumoylated proteins.
The remaining part of the purified His-SUMO-1 targets was
separated by SDS-PAGE. Comparing the elution with the con-
trol, the recovery of SUMO target proteins was highly specific
(Fig. 6B). The top part of the silver-stained gel lane, which
contains the majority of the SUMO-1 conjugates, was cut in
several slices, and proteins were in-gel digested with trypsin.
The peptide mixtures were analyzed by nLC-MS/MS, identi-
fied by database search with the Mascot search engine, and
validated by Scaffold software. In Table |, in vitro identified
SUMO-1 targets are labeled by Footnote a. A complete list of
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Subcellular
localization
Nucleoli
Nucleus
Cytoplasm
Nucleus
Nucleoli
Nucleus
Nucleoli
Nucleus

SUMO prediction
sites

ASBMB

~~
o~
—

,
0.06 VKAD 0.93

0.03 None
0.01 None
0.13 None
0.11 LKLE 0.91
0.08 VKLE 0.93
0.05 IKEE 0.94
0.15 GKGE 0.67

Average S.D.
0.60
0.78
0.05
0.41
0.38
0.52
0.61
0.59

0.61
0.76
0.04
0.5

0.3

0.46
0.64
0.48

H/L ratio
0.54
0.76
0.06
0.32
0.45
0.57
0.57
0.69

mass peptides coverage gyperiment | Experiment Il Experiment il
0.66
0.81

TABLE l—continued
%
17.9
57.3
7.6
2.8

2
13
3

1

Da
16,434
11,360
76,661
47,873
68,002
27,366

53

65
355 267,290

393 242,370

score
136
473
44

Protein Protein Matched Protein
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Protein name

P

arginine/serine-rich 7

2 In vitro identified SUMO-1 targets.

® Known SUMO-1 targets.

subunit 3
Isoform 1 of Pescadillo homolog 1?

40 S ribosomal protein S14
G-protein-signaling modulator 2
Nucleoprotein TPR

Histone H4°
Isoform 1 of splicing factor,

MC

QOUNS2 COP9 signalosome complex

Swiss-Prot
accession
number
P62263
IP100453473 P62805

IPI
accession

number
IP100024279 Q9H583 HEAT repeat-containing protein 1

IPI00328379 Q5T1N8
IPI00003768 B2RDF2
IPI00742682 P12270
IPI00003377 Q16629

IP100026271
IPI00025721

the 100 identified proteins is available as supplemental Table
S2. 23 of the identified proteins overlapped with the in vivo
identified targets and belong to protein families as small nu-
clear ribonucleoproteins, hnRNPs, ribosomal proteins, DNA/
RNA-binding proteins, and elongation factors. Moreover 22
SUMO-1 targets identified in this study, labeled by Footnote b
(Table 1), have been found previously in other SUMO-1 target
protein screens supporting the validity of our strategy (48-51).
Examples of known SUMO-1 target proteins are heterogene-
ous nuclear ribonucleoproteins such as hnRNPs K and M and
the DEAD box family of RNA helicases, such as Ddx5, an
interactor of transcription factors, that in its sumoylated form
favors the recruitment of co-repressor thus repressing tran-
scription (52, 53). Other known SUMO-1 targets, also identi-
fied in this study, are DNA topoisomerase Il, SWI/SNF protein,
and histone H4 (54-56).

The presence of a sumoylation consensus motif was deter-
mined in the 78 putative SUMO-1 target proteins using
SUMOPIot as shown in Table I. A total of 330 consensus
sumoylation motif were found in 70 of 78 (90% of total)
identified proteins. Considering the frequency of SUMO-1
sites in the Swiss-Prot database (57), the p value was esti-
mated to be 6.13e—10 by the equation of hypergeometric
distribution (58) indicating that proteins listed in Table | are
indeed enriched in the sumoylation consensus motif, thus
supporting the validity of the strategy adopted to identify
endogenous SUMO-1 target proteins.

Identification of Novel SUMO-1 Target Proteins—To assess
the sumoylation of novel SUMO-1 targets, we performed in
vitro sumoylation reactions. It is known that several histones
are sumoylated in yeast, but there is no evidence of this
modification in mammals except for histone H4 (58, 59). An
enriched fraction of histones was incubated in the presence of
His-SUMO-1, Ubc9, Aos1/Uba2, inorganic pyrophosphatase,
and ATP for 1 h at room temperature. The same reaction
buffer devoid of His-SUMO-1 was used as control. Moreover
the mixture was incubated without histones as a further con-
trol. Proteins were separated by SDS-PAGE and analyzed by
Western blot with anti-SUMO-1 antibody. As shown in Fig.
7A, there is an evident band at 45 kDa appearing only after the
reaction with SUMO-1. The corresponding band was in-gel
digested and identified by LC-MS/MS as SUMO-1 and his-
tone H1 (supplemental Table S3). This is in accordance with
the molecular mass of the complex. Moreover purified histone
H3 was also incubated in the presence (or absence as control)
of the reaction buffer described above for 1 h at 37 °C, and
the mixture was incubated without histone H3 as control of
the reaction. Proteins were size-separated by SDS-PAGE and
blotted to membranes, and sumoylated histone H3 was de-
tected by anti-histone H3 antibody. As shown in Fig. 7B, there
is an evident band at about 35 kDa due to histone H3 bound
to one molecule of SUMO-1 that is not present in the control.
The analysis of the Western blot with anti-SUMO-1 confirmed
the transfer of the SUMO-1 moiety from Ubc9 to the sub-
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Fic. 5. Biological process analysis. Analysis was performed with the on-line software PANTHER using the data set reported in Table |. The
p value was set at >0.05. The Bonferroni correction for multiple testings was used. Only categories with significant differences are shown.
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Fic. 6. Purification of in vitro His-SUMO-1 target proteins. An in
vitro reaction of HelLa nuclear extract was performed with His-
SUMO-1, which was previously bound to Ni?* beads. The reaction
mixture was obtained by incubating Ubc9, inorganic pyrophos-
phatase, and ATP in sumoylation buffer with and in the absence of
SUMO-1 as control. A, anti-SUMO-1 Western blot (WB) of purified
His-SUMO-1-conjugated proteins shows an enrichment of conju-
gated species. B, SDS-PAGE of purified His-SUMO-1 proteins
stained by silver shows a very specific signal in the reaction mixture
compared with the control (ctrl). The gel was excised in 34 slices for
nLC-MS/MS analysis.

strate. The presence of sumoylated histone H3 was also
confirmed by LC-MS/MS analysis of the band described
above (supplemental Table S3).

Another novel SUMO-1 substrate, identified for the first
time in this study, is the p160 Myb-binding protein 1A. p160 is
mainly a nucleolar protein and, as reported in recent studies,
may regulate ribosome biogenesis and Myb-dependent tran-
scription (37, 60). To analyze the endogenous sumoylation of
p160, NIH 3T3 cells were infected with p160-FLAG. Immuno-
precipitation with anti-FLAG antibody and immunoblotting
with anti-SUMO-1 indicated that p160 is indeed sumoylated
(Fig. 7C).

DISCUSSION

As emerging from recent studies (61), SUMO-2/-3 modifi-
cation may regulate the ubiquitin-proteasome system. One
explanation is based on the discovery of novel ubiquitin li-
gases that mediate the targeting of sumoylated proteins to the
proteasome (27). In this study we demonstrated that a cross-
talk also exists between SUMO-1 and the ubiquitin-protea-
some system. In contrast to SUMO-2/-3 proteins and ubig-
uitin itself, SUMO-1 does not form polychains. Such a
peculiarity together with its endogenous low level in the cell
makes this modification more difficult to detect. As a conse-
quence, in several conditions, the effect of any stimulus, such
as the inhibition of the proteasome system, seems to affect
SUMO-1 much less than SUMO-2/3 (61). Interestingly we
observed that upon MG132 treatment there is a complete
redistribution of SUMO-1 targets from nuclear dots into nu-
cleolar structures. This process was highly specific with re-
spect to SUMO-1 behavior under several stress conditions
suggesting that SUMO-1 may play a major role in the nucle-
olar compartment that is linked to the inhibition of the protea-
some system. To better understand this biological event and
overcome the problem of the low detection of SUMO-1, we
focused our analysis on the nucleolus. Although a large frac-
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Fic. 7. Novel SUMO-1 target identification. A, histones mixture in vitro reaction. A mixture of calf thymus total histones was incubated in
the presence or absence (as control) of His-SUMO-1, Ubc9, Aos1/Uba2, inorganic pyrophosphatase, and ATP in sumoylation buffer. The
reaction mixture was analyzed by anti-SUMO-1 Western blot (WB) and SDS-PAGE. When SUMO-1 is added to the mixture, a new band of 45
kDa appears, and the amount of free SUMO-1 decreases indicating that SUMO-1 has been conjugated to one of the histones of the mixture.
The Coomassie-stained band possibly corresponding to sumoylated histone was cut, trypsin-digested, and analyzed by nLC-MS/MS. This
analysis identified histone H1.3 (supplemental Table S3) as the target of the sumoylation reaction. The identification of SUMO-1 protein
confirms that the histone is sumoylated because the molecular mass of the band corresponds to the mass of the histone H1 plus SUMO-1.
B, histone H3 in vitro reaction. Purified histone H3 was incubated in the presence or absence of SUMO-1 in the same reaction buffer described
above, and the mixture was incubated without histone H3 as a control of the reaction. Proteins were separated by SDS-PAGE. Sumoylated
histone H3 was detected by specific antibody as a band migrating at about 35 kDa, which was not present in the control. Western blot with
anti-SUMO-1 confirms the transfer of SUMO-1 to the substrate. The sumoylation of histone H3 was also confirmed by nLC-MS/MS analysis
of the band described above. * indicates a probable histone H3 dimer; ** indicates the complex Ubc9-SUMO-1. C, endogenous sumoylation
of p160. NIH 3T3 cells were infected with p160-FLAG retrovirus. Immunoprecipitation (/P) with anti-FLAG affinity resin and immunoblotting with

anti-SUMO-1 indicate that p160 is indeed sumoylated. Immunoprecipitation of not infected cells was used as control.

tion of SUMO-1 targets is supposed to reside in the nucleolus,
no characterization of these proteins has been performed until
now. In this work, we identified 193 SUMO-1 nucleolar targets
by a proteomics approach. In addition, by quantitative anal-
ysis, we found that 78 of these substrates change their level of
sumoylation in response to proteasome inhibition. These re-
sults confirm that there is a relationship between SUMO-1 and
the ubiquitin-proteasome system suggesting that SUMO-1,
together with ubiquitin, may ensure the integrity of nucleolar
organization, acting as a second level of quality control in the
regulation of ubiquitin-dependent proteolysis. To increase our
knowledge of SUMO-1 in this compartment, we performed an
analysis of the nature of the substrates influenced by protea-
some inhibition and found proteins involved in ribosome bio-
genesis, protein complex assembly, RNA splicing and metab-
olism, chromatin packaging and remodeling, and DNA
replication (Fig. 5). As already supposed in budding yeast (62),
we found clustering of SUMO modification among subunits of
multiprotein complexes indicating that this modification may
have a specific cooperative activity. For example, concerning
the regulation of ribosome biogenesis, we found several
sumoylated elongation factors, such as hnRNP proteins, RNA
helicases, and ribosomal subunits, suggesting that SUMO-1

modification may regulate the assembly of these macromo-
lecular complexes. In particular, these substrates changed
upon MG132 treatment, suggesting that SUMO-1 may target
unassembled ribosomal proteins to the ubiquitin-proteasome
system in analogy to what has been demonstrated in yeast
(63). This is supported by the observation that a significant
fraction of ribosomal proteins imported in the nucleolus is
degraded and not assembled into the ribosome subunits (64).
SUMO-1 could ensure the correct building of such large com-
plexes by inhibiting incorrect interactions between proteins.
The potential link between SUMO-1 and ubiquitin is further
supported by the observation that among identified SUMO-1
targets ubiquitin was present with a high confidence score
and high value of fold change after MG132 treatment in con-
cordance with previous studies that have shown the presence
of ubiquitin within nucleoli (65).

Another evidence of multisumoylated complexes comes
from the identification of SUMO-1 targets such as lamin A,
nucleophosmin, topoisomerase I, histone H1, p160 Myb-
binding protein, and several ribosomal subunits, which belong
to a macrocomplex containing CTCF (CCCTC-binding factor)
protein (54, 60, 66—-68). Some of these proteins are known to
be sumoylated, whereas in this work we demonstrated that
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p160 Myb-binding protein and Histones H1 and H3 are indeed
modified by SUMO-1. These findings suggest that SUMO-1
modification may regulate the organization of this complex,
participating in the transcription of rRNA genes, ribosome
maturation, assembly, and transport. Recently it has also
been demonstrated in Drosophila that ribosomal proteins in-
teract with histone H1 on condensed chromatin, supporting
the possibility that the association of ribosomal proteins on
chromatin may be part of their assembly/maturation process
(43).

In summary, we suggest that sumoylation may be one of
the key regulators linking these cellular processes and that
this post-translational modification plays an important and
specific role in the ubiquitin-proteasome system. Further in-
vestigations on the biochemistry and cell biology of SUMO-1
target proteins identified in this work should help to elucidate
further aspects of the inter-relationship of SUMO-1 target
proteins and proteasome activity.
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