
Università Degli Studi di Milano
Department of Computer Science

Ph.D. in Computer Science [INF/01]

Ph.D. Thesis:

Mobile Edge Computing
Network Optimization

Candidate:

Marco Premoli

Tutor:

Prof. Alberto Ceselli

Coordinator:

Prof. Paolo Boldi

XXX cycle

A.A. 2016/2017

ii

Abstract

Smart mobile devices are becoming more and more important in every aspects of hu-
man life, and mobile application are becoming more and more resources demanding
with a widening gap between the required resources and those available on mobile
devices. To bridge this gap, Mobile Edge Computing paradigm has been introduced
to bring IT applications, computational and storage resources to the periphery, or
edges, of the cellular mobile network. Several complementary technologies have been
presented to implement Mobile Edge Computing, all of them considering the deploy-
ment of virtualization facilities within mobile access and backhaul network.

In this thesis we face several optimization problems related to the planning
of a Mobile Edge Computing Network. In the first part of the thesis we present
the Mobile Edge Computing Network Design Problem (MNDP), that considers the
design of a full mobile access and backhaul network together with the location of the
virtualization facilities. Two variants of the problem are considered: either assuming
a static condition of the network or dynamic variations of traffic demands and the
human mobility that causes these variations. Matheuristics are proposed to solve
MNDP and best practices are drawn on real world data.

In the second part of the thesis, we face a tactical side of the optimal Mobile
Edge Computing network planning, that is the routing in time of access point traffic
to specific Mobile Edge Computing facilities on a fixed network structure. We present
exact Branch-and-Price algorithm to solve the problem, experimenting on real-world
dataset.

Finally, driven by the fact that the knowledge of mobile user mobility represents
a key data for the MNDP, in the third part of the thesis we face the problem of
estimating human mobility given very aggregated data, that is the network traffic
demand variations in time. We propose mathematical programming formulation and
column generation algorithm to solve this problem, experimenting on both real-world
and synthetic datasets.

iii

iv ABSTRACT

Contents

Abstract iii

List of Figures viii

List of Tables x

Acronyms xiii

Introduction 1

1 Edge Computing and User Mobility 7
1.1 Wireless Edge Computing Technologies Overview 8
1.2 MEC Network Topology . 11
1.3 Virtual Machine Mobility Technologies 12

2 Column Generation and Matheuristics 15
2.1 Dantzig-Wolfe Decomposition . 16
2.2 Matheuristics . 21

I Strategical MEC Network Planning 25

3 Optimization Algorithms for MEC Network Design 27
3.1 Introduction . 28
3.2 Network Design Formulation . 33
3.3 Static Planning Formulation . 36
3.4 s-MNDP Matheuristic . 39

3.4.1 Capacitated Vertex Covering Rounding 40
3.4.2 Clustering . 43

v

vi CONTENTS

3.4.3 Dynamic generation of paths 45
3.4.4 Hierarchical round and price 48
3.4.5 Local search . 49
3.4.6 Clustering Update Restart Strategy 51

3.5 Dynamic Planning Formulation . 53
3.5.1 Time Planning Horizon Discretization 53
3.5.2 Modelling User Mobility . 54
3.5.3 VM replication . 55
3.5.4 Bulk and Live VM Migration 56

3.6 l-MNDP Matheuristic . 57
3.7 Computational Results . 65

3.7.1 Synthetic Dataset . 65
3.7.2 s-MNDP Computational Results 68
3.7.3 l-MNDP Computational Results 74

3.8 Conclusions . 76

4 MNDP: Data Analytics and Best Practices 83
4.1 Real-World Dataset . 84

4.1.1 Estimation of Model Parameters 84
4.2 Experimental Setup . 87
4.3 Experimental Results . 92

4.3.1 s-MNDP Results . 92
4.3.2 Dynamic Planning Results . 99
4.3.3 Nearest MEC Facility Association 109
4.3.4 Bulk VM Migration Results 109

4.4 Conclusions . 112

II Tactical MEC Network Planning 115

5 Dynamic Mobile Edge Computing Facility Assignment 117
5.1 Introduction . 118
5.2 A data-driven MEC management optimization framework 119
5.3 MEC Mgmt Optimization Framework 121
5.4 Formulation . 124
5.5 Optimization Algorithm . 127

5.5.1 Initialization . 128
5.5.2 Pricing algorithms . 129
5.5.3 Rounding Heuristics . 131

CONTENTS vii

5.5.4 Variables fixing . 132
5.5.5 Branch-and-price . 134
5.5.6 Split assignment and periodic plans 135

5.6 Computational Evaluation . 137
5.6.1 Dataset . 137
5.6.2 Column Generation profiling 138
5.6.3 Exactly solving the DASP . 140

5.7 Practical Case Study . 144
5.7.1 Experimental setup . 146
5.7.2 Experimental evaluation . 149
5.7.3 Effect of periodic planning . 151

5.8 Conclusions . 152

Appendices 153
5.A Danztig-Wolfe Decomposition of DASP 154

5.A.1 Alternative DW Decomposition of DASP 155

III Predicting User Mobility 159

6 Predicting User Mobility With Network Data 161
6.1 Introduction . 162
6.2 Formulation . 166

6.2.1 Hierarchical bi-objective approach 169
6.3 Algorithms . 170
6.4 Experimental Analysis Methodology 178

6.4.1 Generative Models . 179
6.4.2 Benchmark Model . 181
6.4.3 Key Performance Measures . 183

6.5 Experimental Results . 185
6.5.1 Comparing Modeling Variants 187
6.5.2 Computational Viability . 189
6.5.3 Prediction Accuracy . 191
6.5.4 Benchmark comparison . 193
6.5.5 Demand matrix perturbation 195
6.5.6 Increasing Time-Frames . 198
6.5.7 Real-World Dataset . 200

6.6 Conclusions . 202

viii CONTENTS

Appendices 205
6.A Literature Review for Human Mobility Estimation 206
6.B UTPP - Prediction Accuracy Matching 210

7 Conclusions 213

Bibliography 217

List of Figures

1.1 Example of a simplified MEC Network. 12
1.2 Examples of VM Mobility Technologies 14

3.1 Static Planning Example . 29
3.2 Dynamic Planning Example - VM Orchestration Path 30
3.3 Dynamic Planning Example . 31
3.4 Overall Structure of s-MNDP Matheuristic 40
3.5 Cluster Representative Choice . 44
3.6 Distance Between Clusters . 44
3.7 Layer Structure of the Dynamic Programming Algorithm for AP-MEC

facility Association Path Variables rs,kp 47
3.8 Join Clusters . 52
3.9 Split Clusters Using Connectivity Measure 53
3.10 Overall Structure of l-MNDP Matheuristic 61
3.11 Layer Structure of the Dynamic Programming Algorithm for Synchro-

nization Path Variables qk
′,k′′,t
p . 64

4.1 Cumulative Distribution Function of traveled distances of user flights. 87
4.2 Histogram of no. of users covering same flight. 87
4.3 Structure of the s-MNDP for Real World Dataset 88
4.4 CCDF Number of Neighbors Given d̄ (% on total number of APs) . . 90
4.5 s-MNDP - Number of enabled MEC Facilities. 92
4.6 s-MNDP - Average usage of MEC Facilities (%). 93
4.7 s-MNDP - Ratio of users with violated SLA after migration. 94
4.8 s-MNDP - Real-World Dataset - CDF of access paths length 96
4.9 l-MNDP - Real World Dataset - Number of enabled MEC Facilities. . 101
4.10 l-MNDP - Real-World Dataset - MEC Facilities Percentage Usage. . 102
4.11 l-MNDP - Real-World Dataset - CDF of access paths length 103

ix

x LIST OF FIGURES

4.12 l-MNDP - Real World Dataset - Expected percentage of VMs to migrate.104
4.13 l-MNDP - Real World Dataset - Percentage of users with violated SLA.105
4.14 Clustering produced by AP-MEC Facility associations in L-M scenario

with 2.5-rack MEC Facilities. 106
4.15 SLA violation (% users) with nearest MEC Facility association . . . 110
4.16 MEC Facility overuse with nearest MEC Facility association 110
4.17 Bulk Migration post-processing results using 2.5-racks MEC Facilities. 113

5.1 APs dynamic assignment to MEC facilities 119
5.2 A data-driven MEC management optimization framework. 122
5.3 DASP - x and y variables . 125
5.4 DASP - Pricing Problem Structure 132
5.5 DASP Primal Bound BaP vs. CPLEX 144
5.6 Time-Clustering resulting from [1] . 148
5.7 DASP 1-Week Plan - Time Aggreg. Comparison 150
5.8 Mean Costs And Exceeded Capacity - CG Root vs. BaP 151

6.1 User Mobility Prediction Framework 165
6.2 User Path-Over-Time . 166
6.3 UTPP Variants of User Trajectories - Network Loads Link 169
6.4 Traveled Distance Probability Fitting 172
6.5 Time-Expanded Directed Graph G 173
6.6 Experimental Analysis Methodology 179
6.7 Fitting of Traveled Distance Probability 1st stage f-UTPP vs d-UTPP 188
6.8 ē - f-UTPP vs. d-UTPP . 188
6.9 PMEδ - f-UTPP vs. d-UTPP . 188
6.10 Benchmark Comparison Flow Conservation Variants 190
6.11 1st stage Computational Efficiency Ad-Hoc Single Instance 191
6.12 2nd stage Computational Efficiency Ad-Hoc Single Instance 191
6.13 d-UTPP PMEδ averaged . 193
6.14 d-UTPP PMEδ averaged with noise 193
6.15 d-UTPP - Benchmark Comparison Perturbed Data 197
6.16 1st stage Computational Efficiency PREGM Single Instance 199
6.17 2nd stage Computational Efficiency PREGM Single Instance 199
6.18 d-UTPP - Performance Indexes Long Time Horizon 200
6.19 Traveled distances statistics . 201
6.20 d-UTPP - Prediction Accuracy Real World Dataset 203
6.B.1UTPP - Example of Mobility Matching with Neighborhood 211

List of Tables

3.1 MNDP - Network Topology Notation Table 34
3.2 s-MNDP Notation Table . 39
3.3 MNDP - Dynamic Planning Notation Table 58
3.4 s-MNDP-noclust - Computational Results 78
3.5 s-MNDP-noclust - Init. with CPLEX - Computational Results 79
3.6 s-MNDP-2layers - Computational Results 80
3.7 s-MNDP - Clustered Network Computational Results 81
3.8 l-MNDP - Computational Results 82
3.9 s-MNDP-noclust – l-MNDP Comparison 82

4.1 Mobile Operator Dataset Schema . 85
4.2 Labelling of parametric scenarii . 91
4.3 Real World Scenario - s-MNDP Parameters Setting Summary 91
4.4 s-MNDP - Real World Dataset - Mean Daily Activity - Computational

Analysis . 98
4.5 Reference MEC Services Parameters. 100
4.6 Real World Scenario - l-MNDP Parameters Setting Summary 101
4.7 s-MNDP - Real World Dataset - Mean Work-Time Activity - Compu-

tational Analysis . 108
4.8 l-MNDP - Real World Dataset - Computational Analysis 108

5.1 DASP - Dataset Instances Summary 139
5.2 DASP Computational Results - CG Root vs. CPLEX Root 141
5.3 DASP Computational Results - CPLEX LP 142
5.4 DASP Computational Results - BaP vs. CPLEX 145
5.5 DASP Time-Slot Peak Exceeded Capacity Over Available Capacity . 150
5.6 DASP Switching Cost Gap - Acyclic vs. Cyclic 151

6.1 UTPP - Notation Table . 171

xi

xii LIST OF TABLES

6.2 UTPP Algorithms Notation Table . 175
6.3 UTPP - Performance Indexes Notation Table 186
6.4 f-UTPP vs. d-UTPP - Computational Efficiency 187
6.5 f-UTPP vs. d-UTPP - Prediction Accuracy PMEδ 189
6.6 d-UTPP - Computational Efficiency 192
6.7 d-UTPP - PMEδ . 194
6.8 d-UTPP - Benchmark performance indexes 195
6.9 d-UTPP - Computational Efficiency Perturbed Data 197
6.10 d-UTPP - Computational Efficiency Long Time Horizon 199
6.11 Long time horizon performance indexes 201
6.12 d-UTPP - Computational Efficiency Real World Dataset 202

Acronyms

AP Access Point.

b-MNDP Dynamic Planning Bulk VM Migration MNDP.

CDF Cumulative Distribution Function.

CG Column Generation.

CN Core Networks.

d-UTPP Demand Conservation Variant of the UTPP.

DASP Dynamic Assignment and Switching Problem.

DW Dantzig-Wolfe Decomposition.

EC Edge Computing.

ETSI European Telecommunications Standardization Institute.

f-UTPP Flow Conservation Variant of the UTPP.

ILP Integer Linear Programming.

IoT Internet-of-Things.

l-MNDP Dynamic Planning Live VM Migration MNDP.

LP Linear Programming.

MCC Mobile Cloud Computing.

MEC Mobile Edge Computing.

xiii

xiv Acronyms

MILP Mixed Integer Linear Programming.

MNDP MEC Network Design Problem.

POI Points of Interest.

QoE Quality of Experience.

r-MNDP Dynamic Planning VM Replication MNDP.

RMP Restricted Master Problem.

s-MNDP Static Planning MNDP.

SLA Service Level Agreement.

UE User Equipment.

UTPP User Trajectories Prediction Problem.

VMs Virtual Machines.

Introduction

Mobile devices have become ubiquitous in people’s everyday life, with a resulting
striking growth of mobile connectivity and global mobile data traffic over recent
years, and further expansion to be expected in the near future [2]. Mobile applications
become more and more resource-hungry, with a widening gap between the required
resources and those actually available on mobile devices.

In a first attempt to bridge this gap, cloud computing paradigm was proposed
to expand mobile device resources: the Mobile Cloud Computing (MCC) concept has
been introduced to allow User Equipment (UE) to offload computation and storage
to distant centralized clouds facilities, connecting through the Internet. While this
strategy allows to save battery consumption and enables a variety of applications,
it also produces an increase in the latency experienced by the user and hence a
worsening of her Quality of Experience (QoE).

The Edge Computing concept deals with such a phenomenon by moving cloud
services closer to users. It provides IT and cloud-computing capabilities in the edge
of network, in close proximity to mobile subscriber. In particular Mobile Edge Com-
puting (MEC) focuses on the inclusion of virtualization facilities within the cellular
access and backhaul network [3, 4] to which mobile users can connect to run cloud
services on Virtual Machines (VMs).

While MEC has attracted a lot of attention in recent years for its beneficial
prospects, it is still a rather immature technology and there are many challenges
that need to be addressed to reach a successful implementation [5]: algorithms for the
offloading decision from the UE to MEC facilities, standardization of communication
protocols, security issues, connection with legacy networks, management of users’
mobility, the optimal allocation of computing resources and the effective design of the
MEC network. Moreover, while the term MEC (or Multi-Access Edge Computing) is
used by industrial fora and standardization bodies, several complementary concepts
have been presented in parallel, differing on the low-level details but being similar

1

2 INTRODUCTION

in the general idea: the deployment of virtualization facilities close to the mobile
user.

While extensive research has been undertaken for the optimal planning of
telecommunication networks, the understanding of the particular features of MEC
networks is still very limited. On the other hand, these particular features make
general methods from the literature unsuitable.

In this thesis we face key methodological problems related to the planning
of a MEC Network. We consider a high-level representation, thus abstracting from
details on actual technologies. We employ (i) a mathematical programming approach,
devising new formulations and algorithms and (ii) a data analytics validation, testing
the suitability of our methods on real data.

The problems we face involve research on both modeling and algorithmic sides.
The planning of a MEC network is indeed rich of application details: our modeling
choices take into consideration the trade-off between the adherence to fine-grained
features and the corresponding complexity added to the resulting model. In Chapter
1 we give a brief introduction on Edge Computing paradigm, we present and motivate
our modelling choices for the MEC network planning, in particular for the MEC net-
work topology and the Virtual Machine Mobility Technologies. On the algorithmic
side we rely on decomposition techniques, dynamic variable generation and modern
paradigms known as Matheuristics: in Chapter 2 we present a brief introduction on
those concepts.

After these introductory chapters, we structure the main body of our work in
three parts.

Part I

Overview This part revolves around the strategical planning of a Mobile Edge
Computing network. We defined it formally as a combinatorial optimization prob-
lem, the MEC Network Design Problem (MNDP), that finds simultaneously: (i) an
optimal network design, including MEC facilities placement and (ii) an optimal as-
signment of Access Point (AP) to MEC facilities and routing of the traffic from and
to the MEC facilities. From a practical perspective, tactical assignment and routing
decisions (ii) are included only to improve the accuracy of strategical design deci-
sions (i); the objective is to minimize a linear combination of total network devices
activation costs.

3

Content In Chapter 3 we focus on the core combinatorial optimization problem
of the MNDP, keeping as main target that of devising effective algorithms.

We consider two variants of MNDP, namely static planning and dynamic plan-
ning. Static planning assumes that access points have constant traffic demand, while
dynamic planning considers a planning horizon to be split in time slots, in which each
access point can have different demand. We consider changes in demand to be given
by users moving through access points, and synchronization operations between data
in different facilities to be needed accordingly. That is, we explicitly include in our
model the orchestration of virtual machines among facilities. Due to the complexity
of the resulting formulations, methods from the literature are hard to adapt.

We propose matheuristics solution algorithms for both cases, relying on column
generation, rounding, aggregation, and calls to general purpose solvers for performing
local search.

In Chapter 4 we tackle the problem from an application point of view, per-
forming data analytics on real-world dataset provided by an industrial partner. We
draw best practices on different planning options, performing sensitivity analyses on
several model parameters and evaluating different orchestration and virtual machine
mobility policies.

State of the Art and Contributions We introduce for the first time at the state
of the art a comprehensive strategical framework for the MNDP. The characteristics
of MNDP lead to new complex combinatorial optimization problems:

• theoretically, it is strongly NP-Hard, generalizing the traditional uncapacitated
facility location problem and its capacitated and single-source variants;

• computationally, it lies on the cutting edge problems currently under investi-
gation in the facility location literature [6]: successful methods are known only
when at most two facility levels are considered [7], while in our models a third
location level must be included, and routing optimization and latency bounds
must be additionally taken into account.

• the dynamic planning variant considers multi-period (or dynamic) facility loca-
tion and the orchestration of VM hosting facilities; from the telecommunication
research point of view, adaptive VM orchestration problems have been studied,
either for an off-line or an on-line scheduling [8]; however, in these works, the
networks are always assumed to be given.

We show that our approach is efficient enough to deal with real-world network and we

4 INTRODUCTION

suggest the use of our algorithms as tools for a subsequent predictive analytics step:
in our analyses we differentiate between different traffic engineering and performance
goals for reference mobile cloud services, analyzing: (i) the use of network facilities
resources and (ii) the compliance with users’ SLA.

Preliminary results concerning our algorithmic approach were presented in
[9]. Main results concerning our analyses were presented in [10] and published in
[11].

Part II

Overview This part deals with the tactical side of the MEC network planning,
that is, the routing in time of AP traffic to specific MEC facilities on a fixed network
structure.

Mobile APs need to be assigned (i.e. their packets need to be routed) to one
or more MEC facilities, with a cost in terms of latency for the users they provide
connections to. Assignments can be changed over time, but a certain network cost
is required for data synchronization operations.

Content In Chapter 5 we present a data-driven MEC management optimization
framework for the assignment of APs to MEC facilities, combining: (i) preprocess-
ing and data-mining, (ii) an optimization core component, and (iii) validation by
simulation modules.

In the optimization core component, we formally define a new combinatorial
problem and we propose ad-hoc mathematical models and exact branch-and-price
algorithms that, although exact in nature, performs well also as a matheuristics when
combined with early stopping.

Moreover, we exploit the effectiveness of our algorithms in a data analytics
framework embedding clustering, optimization and simulation. We show the effec-
tiveness of such a framework using real network data.

State of the Art and Contributions Our data-driven framework is one of the
first examples of integration of data analytics for the autonomic management of
telecoms network infrastructure [12]. Few works considering such integrations have
been presented so far in the telecommunication research area [13, 14], none of which
is taking into consideration our application.

5

The problem of optimally assigning access points to MEC facilities over time
turns out to be a novel multi-period variant of a generalized assignment problem from
the combinatorial optimization literature: our techniques lie on the edge of recent
approaches for the multi-period extension of the Generalized Assignment Problem
[15, 16] and the multi-period location problems [17, 18, 19];

We provide initial insights for MEC resources management, evaluating our
framework with real-world datasets.

Results were presented in [20] and appeared as technical report [21], that is
now submitted for publication.

Part III

Overview In the final part of the thesis, we face a data prediction problem. Ac-
curate algorithms require accurate data, and one of the insights from Part I is that
knowledge of users mobility represents a key data for the optimal design of a MEC
network. These are however very hard to retrieve due to both availability and privacy
issues. In this part we face the problem of estimating user mobility patterns given
very aggregated data, still relying on mathematical programming approach.

Content In Chapter 6 we propose a user mobility prediction model, that requires
that only mobile access points demands in a time horizon are known, together with
the knowledge of some statistical features of mobility distributions: from these ag-
gregated data we try to rebuild fine-grained user trajectories.

We model such a problem as that of finding a suitable set of paths-over-time
on a time-dependent graph, belonging to the class of the well known flow over time
(or dynamic network flows) [22]. We propose extended mathematical programming
formulations and column generation algorithms.

We experiment on both real-world and synthetic datasets.

State of the Art and Contributions To the best of our knowledge, this represent
the first mathematical programming approach of such a problem, that is usually
modelled with probabilistic and stochastic processes requiring a considerable amount
of information [23].

Our approach proves to be efficient enough to tackle real world instances and
accurate enough to faithfully estimate mobility on the synthetic datasets for a specific

6 INTRODUCTION

scenario: the rush-hour time range in a urban-size region.

We found that estimate of users mobility can can be retrieved with adequate
accuracy by very aggregated data and simple (a-priori) statistical distributions on
human trajectory features, provided suitable mathematical models and combinatorial
algorithms are used.

Preliminary results were presented in [24].

Finally, in Chapter 7 we draw a few conclusions, and we trace future perspec-
tives.

Chapter 1

Edge Computing and User
Mobility

In this chapter we give a brief introduction on Mobile Edge Computing paradigm
and we present and motivate our modelling choices for the MEC network planning,
in particular for the MEC network topology and the Virtual Machine Mobility Tech-
nologies.

The Edge Computing (EC) paradigm [5, 25, 26, 27, 28], covers a wide range of
complementary technologies to provide computational/storage resources in proximity
to users, aiming to achieve several advantages:

• reducing latency for users improving their QoE;

• reducing data traffic in Core Networks (CN) decreasing the risk of congestion;

• exploiting location-aware information to provide ad-hoc services, either user-
oriented or operator-oriented.

All EC technologies share the same main idea: to provide virtualization facilities
throughout the network, from the edge to the edge of the CN. Virtual Machines
(VMs) operating in the virtualization facilities are used to offload computation from
mobile devices, such as User Equipment (UE) or sensors or Internet-of-Things (IoT)
components, or to perform virtualized network operation not related to a specific
device. These virtualization facilities can be used in a hierarchical fashion together
with centralized cloud facilities: exploiting these latter as last resources if the edge
facilities are not available, or to perform delay-tolerant applications.

EC includes both wired and wireless technologies: in the latter case, it is not

7

8 CHAPTER 1. EDGE COMPUTING AND USER MOBILITY

bound to a specific wireless link technology: wireless EC facilities can be accessed
via WiFi and deployed within a LAN, or accessed via the cellular Access Point
and deployed in the Radio Access Network or in the edge of the backhaul cellular
network.

EC is still in its infancy and many challenges must be addressed before its
implementation to achieve full operation:

• optimal placement of EC facilities;

• computation offloading decision (when to offload and how much of the compu-
tation to offload);

• allocation of resources within EC facilities when computation offloading is re-
quired;

• standardization of protocols to manage signalling and control operation over
the network;

• security and privacy of users data;

• interoperability of different EC technologies;

• mobility among facilities of application, VMs and users’ data, either to follow
users movements or to balance the load of the network;

• consistency of users’ data while using multiple EC technologies;

among others.

1.1 Wireless Edge Computing Technologies Overview

In the following we will present an overview of the wireless EC technologies that play
a role in the topics of the thesis.

Cloudlet An early wireless EC concept proposed in 2009 is cloudlet [29]. It is de-
fined as a trusted, resource-rich computer or cluster of computers well-connected to
the Internet and available for use by nearby mobile devices. A cloudlet represents a
container for virtual machines (VMs): connected users are associated with VMs sup-
porting low-latency application offloading use-cases. Cloudlet concept is expected to
be supported by 3-tier hierarchical network provisioning as presented in [30] and [31].
In this hierarchy the cloudlet is the primal resource for the enhancement of the mo-

1.1. WIRELESS EDGE COMPUTING TECHNOLOGIES OVERVIEW 9

bile device capabilities, while a remote cloud is used as last available resource, or for
delay-tolerant resource-intensive applications.

In its first presentation, a cloudlet was expected to be accessed via a single hop
WiFi connection. This can represent a disadvantage since mobile UEs have to switch
between WiFi and mobile cellular network while offloading services [32].

Benefits of cloudlet usage on users’ QoE are presented in [33, 34, 35] where
authors compare performances of different types of applications on different layers
of the 3-tier hierarchy. In [33] the authors show that application placement can
significantly impact performance and user experience: moving applications closer to
the users is strongly beneficial. The authors of [34] question, by quantitative experi-
mental results, benefits from consolidating computing resources in large data centers
when strict latency constraints are required. Considering multi-hop WiFi networks,
in [35] the authors show that the cloudlet-based approach always outperforms the
cloud-based one when no more than two wireless hops are used to transfer data,
and that up to a maximum of four hops the cloudlet-based approach is the best one
for most of the instances. A further survey on research on cloudlet based mobile
computing is available in [36].

Mobile Ad-Hoc Cloud In this case the computation is performed by the com-
bination of several nearby UEs which compose an ad-hoc network. In this case a
further issues has to be addressed: UEs has to be motivated to allow access to their
computational power, hence consuming battery and limiting performance for user
own applications. Further efforts on synchronization among UEs and on security
and privacy protection are necessary. Surveys on mobile ad-hoc cloud can be found
in [5, 37].

Fog Computing It is defined as “A horizontal, system-level architecture that dis-
tributes computing, storage, control and networking functions closer to the users
along a cloud-to-thing continuum” [38]. Differently from other EC paradigm, Fog
Computing involves dynamic pooling of resources and data sources of possibly mul-
tiple devices that reside in the so-called cloud-to-thing continuum, that is, anywhere
between the cloud and the end-point device. It is supposed to work over wireless and
wireline networks and also inside these networks, and to support multiple industries
application domains. Fog architecture aims to offer several advantages:

• security: additional security to ensure safe, trusted transactions;

• cognition: awareness of client-centric objectives to enable autonomy;

10 CHAPTER 1. EDGE COMPUTING AND USER MOBILITY

• agility: rapid innovation and affordable scaling under a common infrastructure;

• latency: real-time processing and cyber-physical system control;

• efficiency: dynamic pooling of local unused resources from participating end-
user devices.

Mobile Edge Computing In the case where EC is considered in the cellular
network, the term Mobile Edge Computing (MEC) is used. The MEC concept was
introduced by the European Telecommunications Standardization Institute (ETSI)
in [3, 4], that now uses the term Multi-Access Edge Computing, and it aims to provide
IT and cloud-computing capabilities within the mobile access and backhaul network,
in close proximity to mobile subscriber. The standardization focus of ETSI is on
the definition of an open environment to allow seamless integration of applications
across MEC platform, and in particular in the definition of an interface of the MEC
framework that actual implementations should expose. Its goal is to allow new
revenue streams by exposing the edge of Radio Access Network of Mobile Service
Provider to authorized third-parties for application hosting.

No constraints on deployment are defined by the standardization bodies, while
several proposals are presented in literature [5, 27], differentiating by: (i) the location
of the facilities that perform the computation (MEC facilities in the remainder); (ii)
the way that the system is managed and controlled and; (iii) the location of the
controller facilities. Two main ideas for the placement of MEC facilities have been
proposed:

• deploy only in mobile access points;

• hierarchical deployment over the access and backhaul mobile network, from the
edge of the CN to the access point.

In the same way, two main ideas for the control/signalling of the MEC network have
been presented:

• a fully centralized control: either performed in the highest level of MEC facil-
ities in the hierarchy or in a cluster of MEC facilities in access points;

• a distributed control.

1.2. MEC NETWORK TOPOLOGY 11

1.2 MEC Network Topology

In this thesis we consider a MEC Network topology that contains a hierarchical de-
ployment of MEC facilities from the edge of the CN to the access points, abstracting
from any particular implementation already in the literature.

Accordingly to ETSI [3, 4], the distribution of computing resources into mo-
bile access networks should be carefully designed to take into account infrastructure
properties. Mobile access networks could be any form of wireless access network
disposing of a backhauling wireline infrastructure through which MEC facilities can
be interconnected. Following the guidelines in [39, 40, 41, 42], a broadband access
and backhauling network, such as a cellular network, can be modeled as a two-level
hierarchical network: access points on the field are connected to aggregation
nodes, which are then connected to core nodes, as depicted in Figure 1.1. The
APs could be WiFi only, cellular only, or a mix of these common mobile access
technologies. MEC facilities can reasonably be placed at either field, aggregation or
core level, with connections between an AP and its MEC facility potentially crossing
twice each level. Placing a MEC facility at a location could mean turning on already
installed servers, and not only physically installing new machines. Similarly, chang-
ing AP to MEC facility assignments would in practice correspond to a re-routing of
virtual links over the transport network infrastructure, and not physically changing
the interconnection.

Various physical interconnection network topologies between APs, aggregation
nodes and core nodes are commonly adopted: tree, ring or mesh topologies, as well
as intermediate hybrid topologies. Moreover, with the emergence of 4G, there is a
trend to further mesh backhauling nodes. A variety of network protocol architec-
tures are typically adopted, from circuit-switched networks to carrier-grade packet-
switched networks. The common denominator of such architectures is the ability to
create a virtual topology of links directly interconnecting pairs of nodes at a same
level with a guaranteed tunnel capacity. Nowadays, with the convergence towards
packet-switching carrier-grade solutions at the expense of legacy circuit-switched
approaches, bit-rates for pseudo-cables links is set to giga-Ethernet granularities
(typically 1 or 10 Gbps).

In this framework, we believe to be appropriate modelling the MEC network
as a superposition of stars of virtual links for the interconnection of aggregation
nodes to APs and for the interconnection of core nodes to aggregation nodes, even
if nodes can have no physical direct connection. Under the same virtual link pro-
visioning trend, core nodes can be considered as interconnected to each other by a

12 CHAPTER 1. EDGE COMPUTING AND USER MOBILITY

Figure 1.1: Example of a simplified MEC Network.

full mesh topology of virtual links, as depicted in Figure 1.1. The choice between
single source or fractional assignment models is often crucial in network optimiza-
tion. In our application, single source assignment is more pertinent. As far as we
know, partitioning of traffic from one AP to multiple aggregation nodes, and from
one aggregation node to multiple core nodes is not the dominating current practice in
backhauling networks; still, such features would not change significantly the nature
of our models and algorithm described in the next two sections. It is worth noting
that the decisions of associating APs to aggregation nodes and placing aggregation
nodes can be fully compatible with the current trend of dynamically reprogramming
the cellular backhauling network [43]. Likewise, another customization could corre-
spond to the routing re-optimization for a given MEC facility placement. Moreover,
those decisions can also realistically embed association and placement functions in
cloud-based Evolved Packet Core architectures [44].

1.3 Virtual Machine Mobility Technologies

One of the features that the MEC has to address is the management of the mobility
of MEC applications, either to follow users movement or to balance the load of the

1.3. VIRTUAL MACHINE MOBILITY TECHNOLOGIES 13

network. In a general case, this means the management of VMs mobility among MEC
facilities. In this thesis we consider user-related VMs, which require to maintain the
data specific for the users, rather than virtual network functions. In particular we
consider three VM mobility technologies at the state of the art:

• VM bulk migration [45]: consists in migrating the whole VM stack including
disk and memory, stopping the VM for a long period to transfer it.

• VM live migration [46, 47, 48]: stops the VM only for a small amount of time
required to transfer the most recently used memory, not requiring an entire
one-shot disk transfer, but a permanent disk storage synchronization among
source and destination locations.

• VM replication [49]: consists in a permanent synchronization of both disk
storage and memory among source and destination locations, not requiring the
point transfer neither of the disk nor of the most recently used memory.

An example of these technologies is presented in Figure 1.2: in time T = 0 a
UE is connected to a VM in MEC facility A and in time T = 1 it moves to a region
served by MEC facility B. Following VM Bulk Migration (Figure 1.2a) no action
is required in time 0, and only when the UE moves to the region served by MEC
facility B the full VM stack, including disk and memory, is migrated among the
facilities. Following VM Live Migration (Figure 1.2b), in time 0 the disk of VM in
facility A is synchronized with the disk of the VM in facility B; when the UE moves
to MEC facility B at time 1, the sole migration of the memory is required and the
direction of disk synchronization is reversed from B to A. Finally, considering VM
replication (Figure 1.2c), in time 0 both the disk and the memory of VM in facility
A are synchronized with disk and memory of VM in facility B; when the UE moves
to facility B, no further migration is required and the direction of synchronizations
is reversed.

We assume VM orchestrations to be performed in a Cloud Stack platform in
a centralized way. Given that the main purpose of our models is the medium-term
planning of the mobile edge cloud network, the inclusion of VM orchestration has the
aim to provide a correct dimensioning of the network. At the same time, examples of
VM orchestrator are already implemented in Openstack platform [50, 51]. Therefore
an actual implementation of such a system is out of scope of this work.

14 CHAPTER 1. EDGE COMPUTING AND USER MOBILITY

(a) VM Bulk Migration

(b) VM Live Migration

(c) VM Replication

Figure 1.2: Examples of VM Mobility Technologies

Chapter 2

Column Generation and
Matheuristics

As outlined in the Introduction, in this thesis we deal with new strategical and tac-
tical MEC Network planning problems, presented in Chapters 3 and 5, that can be
modelled as NP-Hard combinatorial optimization problems. The numerical resolu-
tion of these problems yield several issues related to both their complexity and the
size of the instances to be optimized.

To tackle these problems we follow the recent trend of hybridizing mathe-
matical programming techniques with metaheuristics, obtaining so-called hybrid-
metaheuristics or matheuristics [52, 53]. In particular, we exploit the structure
of our problems, which are suited to be decomposed in different (and, in our case,
easy) subproblems. We formalize them with formulations resulting from decomposi-
tion techniques, that in our case have led to an increase of the set of variables. To
algorithmically tackle such formulations, we employ dynamic generation of variables
(also known as Column Generation (CG)) techniques. By combining metaheuristics
and Column Generation we obtain both good quality solutions in a reasonable time,
and quality guarantees on them. In the case of the tactical planning problem pre-
sented in Chapter 5 we could also embed them in a branch-and-bound framework,
thereby obtaining effective exact algorithms.

In this chapter we present a brief introduction on the concept of decomposition
and Column Generation, and a general outline on how we used them in the design
of our matheuristics.

15

16 CHAPTER 2. COLUMN GENERATION AND MATHEURISTICS

2.1 Dantzig-Wolfe Decomposition

The problems we face in this thesis share a similar structure: they are suited to
be decomposed in different subproblems. We exploit this characteristic to formal-
ize them with decomposed mathematical programming formulations. In particular,
these formulations consider elements from a set of combinatorial objects P , to each
of which a variable is associated. To give an example, P can encode the set of all
possible paths in a network. In principle, due to their flexibility, such formulations
can be the direct result of a modelling step. More often, however, they are results of
reformulation techniques such as Dantzig-Wolfe Decomposition (DW) [54].

To ease the exposition, we report an example inspired by [55], by considering
the Capacitated Shortest Path Problem (CSPP). Let G(N,A) be a directed graph,
having for every arc (i, j) ∈ A a non-negative cost of traversal ci,j and a traversal
time ti,j. We aim at finding the minimum cost path in G from a node s ∈ N to a
node t ∈ N , with a constraint on the total amount of traversal time T .

We can formulate the CSPP as an integer mathematical programming model:
let us introduce a binary variable xi,j for every arc in G, taking value 1 if the arc is
chosen for the solution path, 0 otherwise. The CSPP can be modeled as follows:

min
∑

(i,j)∈A

ci,jxi,j (2.1)

s.t.
∑

j∈N :(s,j)∈A

xs,j = 1 (2.2)

∑
j∈N :(i,j)∈A

xi,j −
∑

j∈N :(j,i)∈A

xj,i = 0 ∀i ∈ N \ {s, t} (2.3)

∑
j∈N :(j,t)∈A

xj,t = 1 (2.4)

∑
(i,j)∈A

ti,jxi,j ≤ T (2.5)

xi,j ∈ {0, 1} (2.6)

where (2.1) is the objective function for the minimum cost path; (2.2) states that one
unit of flow must exit the source s; (2.4) states that one unit of flow must enter the
target node t; (2.3) is the flow conservation constraints: for every intermediate node
in the path if a unit of flow enters then a unit of flow must exit; (2.5) is the resource

2.1. DANTZIG-WOLFE DECOMPOSITION 17

constraints on the total amount of time; finally (2.6) limits the value of variables
xi,j.

Formulation (2.1)–(2.6) represents a so-called natural model for the CSPP,
where natural has the meaning of directly mapping single elements of the original
graph to variables and constraints. In fact, in the CSPP case, one variable is in-
cluded for each arc of the graph. Natural formulations are known to produce often
poor bounds. To improve it a few options are discussed in the literature to obtain
extended formulations. One of them is to replace each variable with a set of vari-
ables, each encoding a particular resource usage level. This is the case, for instance,
of the approach discussed in [56]. Another possible approach is to perform a partial
convexification of the feasibility region by exploiting an inner-representation for a
subset of the constraints, thereby obtaining extended formulations with one variable
for each extreme point of the convexified region: it is the case of Dantwig-Wolfe
Decomposition.

We can observe that (2.5) is a complicating constraint: without it the problem
reduces to a shortest path problem. While in the general case shortest path problems
with additional constraints are NP-Hard, some particular cases show simple shortest
path structure, and are therefore polynomially solvable with textbook algorithms,
some others are still polynomially solvable although such a result is not trivial, some
others remain NP-Hard [57]. In this case the shortest path problem defined by (2.1)-
(2.4), (2.6) has non-negative arc costs ci,j and no additional constraints, and hence
can be solved to optimality in polynomial time. We can decompose CSPP following
DW principles relaxing constraint (2.5): each solution satisfying the remaining con-
straints (2.2)-(2.4), (2.6) encode a path in G connecting source s and target t. In
details, let us rewrite (2.1)–(2.6) as:

min
∑

(i,j)∈A

ci,jxi,j (2.7)

s.t.
∑

(i,j)∈A

ti,jxi,j ≤ T (2.8)

(xi,j) ∈ Ω = {(xi,j) | (2.2), (2.3), (2.4)} (2.9)

xi,j ∈ {0, 1} (2.10)

Ω represents the feasible region with respect to constraints (2.2)–(2.4); let use replace
Ω with its convex hull conv(Ω). The relaxation of the integrality conditions (2.10)
leads to a final bound of (2.7)–(2.9) that is not weaker than the Linear Programming
(LP) relaxation of the original problem (2.1)–(2.6).

18 CHAPTER 2. COLUMN GENERATION AND MATHEURISTICS

Let P be the set of extreme points of conv(Ω). P has a particular combinatorial
interpretation: it is the set of all paths connecting nodes s and t in graph G, and for
each path p ∈ P let x̂p,i,j ∈ {0, 1} be the coefficient encoding the path, that is, x̂p,i,j
equals 1 if the arc (i, j) ∈ A belongs to path p, 0 otherwise. Each element of Ω can
be represented as a linear combination of points in P and hence we can replace (2.9)
with the following:

xi,j =
∑
p∈P

x̂p,i,jλp (2.11)

with λp ≥ 0. Replacing every variable xi,j with its linear convex combination (2.11)
we obtain the following formulation of the CSPP:

min
∑
p∈P

∑
(i,j)∈A

ci,jx̂p,i,jλp (2.12)

s.t.
∑
p∈P

∑
(i,j)∈A

ti,jx̂p,i,jλp ≤ T (2.13)

∑
p∈P

λp = 1 (2.14)

λp ≥ 0 ∀p ∈ P (2.15)

where (2.12) is the objective function that aims to find the minimum cost path; (2.13)
states that the overall traversal time of a path can not exceed threshold T ; (2.14)
states that one path has to be chosen among the set of all paths P , and, finally,
(2.15) limits the value of variables λ.

Column Generation Let us refer to the formulation (2.12)–(2.15) as the Master
Problem (MP). The MP has to deal with the combinatorial size of set P : even solving
its continuous LP relaxation would be computationally impossible on networks of
realistic size. In order to solve this LP relaxation, however, we can exploit column
generation techniques (CG).

CG is an iterative process: the full set of points P and the corresponding
set of variables λp is replaced by a subset P̄ to form a Restricted Master Problem
(RMP); the LP relaxation of RMP is solved and dual information are used to search
for elements of P not included in P̄ , whose corresponding variables have negative
reduced costs. These are in turn candidates for improving the LP solution. This
search is called pricing. If such negative cost variables are found, they are added
to P̄ and the process iterates. Otherwise CG stops: since no negative reduced cost

2.1. DANTZIG-WOLFE DECOMPOSITION 19

variable can be found, the optimal solution of the RMP LP relaxation is optimal for
the LP relaxation of the MP as well.

In our CSPP, CG has therefore to find through pricing new negative reduced
cost variables λp, which represent a path p ∈ P from source s to target t. Exploiting
duality theory [58], given dual variable π corresponding to constraint (2.13) and dual
variable θ corresponding to constraint (2.14), the reduced cost of variable λp is given
by
∑

(i,j)∈A ci,jx̂p,i,j−π
∑

(i,j)∈A ti,jx̂p,i,j−θ. The corresponding pricing problem is, as
expected, a polynomial time complexity minimum cost shortest path problem.

At the end of CG process, a solution for the LP relaxation of the extended
formulation of the problem is given, with two further benefits: (i) the final RMP
solution is a valid lower bound for the original problem; it can never be worse than the
LP relaxation value of the original compact formulation and it is often much better;
(ii) the CG retrieves a set of promising combinatorial entities (i.e. the elements of P̄),
which can be used as a guide to build upper bounds, that are good feasible solutions.
These valuable outcomes can be used within a matheuristic framework to tackle the
original problem.

Quality of relaxation and pricing complexity In the presented reformulated
model (2.12)–(2.15) the corresponding pricing problem possesses the integrality prop-
erty. That is, an optimal solution for its LP relaxation always exists in which the
variables take integer values. When this condition is true, the final bound retrieved
by the CG is equal to that given by the LP relaxation of the original problem (2.1)–
(2.6). Even in this case CG might still be useful if the size of the original problem
is too large to be tackled by the available computational resources, while pricing
subproblems are easy to solve at optimality.

Indeed, keeping our running example, a better bound could be retrieved by
considering a different decomposition of the problem whose pricer does not posses
integrality property: in this case the exact resolution of the pricer may not by
straightforward, however the resulting final bound is usually tighter than the LP
relaxation of the original problem.

For example, we can decompose CSPP following DW principles relaxing flow

20 CHAPTER 2. COLUMN GENERATION AND MATHEURISTICS

conservation constraints (2.3). Let us rewrite (2.1)–(2.6) as:

min
∑

(i,j)∈A

ci,jxi,j (2.16)

s.t.
∑

j∈N :(i,j)∈A

xi,j −
∑

j∈N :(j,i)∈A

xj,i = 0 ∀i ∈ N \ {s, t} (2.17)

(xi,j) ∈ Ω̄ = {(xi,j) | (2.2), (2.4), (2.5)} (2.18)

xi,j ∈ {0, 1} (2.19)

Still, we replace Ω̄ with its convex hull conv(Ω̄), and we consider the set of the
extreme points P̄ of this latter. P̄ in this case has no particular combinatorial
interpretation; for every point p ∈ P̄ let x̂p,i,j ∈ {0, 1} be the coefficient encoding the
membership of arc (i, j) ∈ A to the element p. We can replace every point in Ω as a
convex combination of the extreme points in P̄ , replacing (2.18) with:

xi,j =
∑
p∈P̄

x̂p,i,jλp (2.20)

with λp ≥ 0. We can replace (2.18) with (2.20) and relax integrality conditions (2.19)
obtaining the following master problem:

min
∑
p∈P̄

∑
(i,j)∈A

ci,jx̂p,i,jλp (2.21)

s.t.
∑
p∈P̄

(
∑

j∈N :(i,j)∈A

x̂p,i,j −
∑

j∈N :(j,i)∈A

x̂p,j,i) = 0 ∀i ∈ N \ {s, t} (2.22)

∑
p∈P̄

λp = 1 (2.23)

λp ≥ 0 ∀p ∈ P̄ (2.24)

The pricing problem to find new elements in P̄ with negative reduced cost can be
modelled considering dual variables ρi related to constraints (2.22) and the dual
variable θ from constraint (2.23). The corresponding model is the following:

min− θ +
∑

(i,j)∈A

ci,jxi,j −
∑

i∈N\{s,t}

ρi
∑
j∈N

xi,j +
∑

i∈N\{s,t}

ρi
∑
j∈N

xj,i (2.25)

s.t. (2.2), (2.4), (2.5)

xi,j ∈ {0, 1}

2.2. MATHEURISTICS 21

This pricing problem does not possess the integrality property. Its exact resolu-
tion may require computationally demanding algorithms to run in every CG itera-
tion. However the final bound retrieved by this reformulation (2.21)–(2.24) is usually
tighter than the bound retrieved by the master model (2.12)–(2.15).

2.2 Matheuristics

A common approach to complex combinatorial optimization problem is to trade
quality guarantees for computing complexity. Indeed, practical problems often re-
quire to employ either heuristics or their generalization known as metaheuristic. The
concept of metaheuristics is mainly qualitative. In general metaheuristics are seen
as heuristics guiding other heuristics. The following tentative characterisation of
metaheuristic is given in [59]:

“ [...] We outline fundamental properties which characterize meta-
heuristics:
• Metaheuristics are strategies that “guide” the search process.
• The goal is to efficiently explore the search space in order to find

(near-)optimal solutions.
• Techniques which constitute metaheuristic algorithms range from

simple local search procedures to complex learning processes. Meta-
heuristic algorithms are approximate and usually non-deterministic.
• They may incorporate mechanisms to avoid getting trapped in con-

fined areas of the search space.
• The basic concepts of metaheuristics permit an abstract level de-

scription.
• Metaheuristics are not problem-specific.
• Metaheuristics may make use of domain-specific knowledge in the

form of heuristics that are controlled by the upper level strategy.
• More advanced metaheuristics use search experience (embodied in

some form of memory) to guide the search.
[...] ”

In short, metaheuristic refers to heuristic algorithm that are not specifically
expressed for a particular problem, but rather to a wide class of problems. The
main reason to use such algorithms is their ease of customization for a wide range of
problems to quickly get feasible solutions. On the other hand, they usually lack of
guarantee about the quality of the given solution.

22 CHAPTER 2. COLUMN GENERATION AND MATHEURISTICS

The modern approach to the design of metaheuristics is hybrid in nature [52,
53]: the rationale behind the hybridization of different techniques is to exploit the
complementary character of different optimization strategies.

Heuristic algorithms may include both components which are specializations
of metaheuristics, and others in which subproblems are formulated as Mathemati-
cal Programs and solved with generic techniques; these particular combinations are
indicated in the literature as matheuristics. Matheuristics can grant several bene-
fits. For instance, mathematical programming techniques can be used to easily model
and tackle heavily constrained subproblems, while traditional techniques can be more
suited to quickly improve them over a small search space. Furthermore, while meta-
heuristic focus on finding primal solutions, generally disregarding dual information,
the use of Mathematical Programming bounds in matheuristics can produce quality
guarantees, or at least estimates of quality, on the solutions produced. More in-
volved combinations are of course possible: dual information can be used to reduce
the search space, or even for guiding intensification.

Column Generation based Matheuristics The best use of matheuristics has
still to be understood: there is not a direct guidance on which algorithm to use given a
specific problem; the actual implementation of a problem-specific algorithm can be a
time-consuming task and a broad knowledge is required in algorithms, mathematics,
statistics and advanced programming. Moreover, changes in problem specification
could make the algorithm ineffective and the resulting software could be difficult to
maintain and tune.

Inspired by approaches like [60, 61], we managed to cope with these draw-
backs by embedding extended formulations and column generation in a matheuristic
framework.

In Chapters 3 and 5 we present two matheuristics which exploit CG in different
ways. In both cases we deal with a Mixed Integer Linear Programming (MILP)
problem and we want to restore integrality from the CG fractional solution.

In Chapter 3 CG is used together with a simple rounding in an interleaved pro-
cess, presented in Algorithm 1, which is in turn a component of a larger matheuristic.
We execute CG on our problem P and get a valid lower bound and valuable columns
x; in order to restore integrality on the fractional solution we round columns in an
iterative process; at each iteration a column x is chosen to be rounded and fixed
to a value x̄; the rounding is propagated to fix further variables that would lead to
infeasibility; CG is executed on the problem with fixed variables P (x, x̄) to generate

2.2. MATHEURISTICS 23

Algorithm 1 CG and Rounding Matheuristic Framework

solve CG of problem P (x) and get valid lower bound
repeat

round a subsets (even just one) fractional variables x and fix them to x̄
solve CG of problem P (x, x̄)

until feasible solution of P is found ∨ no more variable to fix
a valid lower bound is given by the first CG process
a valid upper bound is given at the end of the rounding iterations

new valuable columns; the process iterates until either a feasible solution for P is
found or no more variables can be fixed. There is no guarantee on the success of this
process, and a valid upper bound for the problem is given at the end of the rounding
iterations.

In Chapter 5 we devise a different matheuristic framework exploiting CG, the
structure of which is presented in Algorithm 2. Such a matheuristic is further em-
bedded as a component in an exact algorithm. While CG iterates, the fractional
solution of the LP relaxation of the RMP is fed to a secondary heuristic algorithm
that tries to build a feasible solution. At the end of CG, the last value or the RMP
LP relaxation is a valid lower bound for the problem, while the best solution found
by the secondary heuristic is a valid upper bound.

In general, more involved options may be conceived. For instance, Algorithm
2 can be nested in Algorithm 1, or the rounding of Algorithm 1 can be used as H
heuristic of Algorithm 2.

24 CHAPTER 2. COLUMN GENERATION AND MATHEURISTICS

Algorithm 2 CG based Matheuristic Framework

given heuristic H(σ)
repeat

solve LP of restricted master problem RMP, get solution σ and duals π
use H(σ) to build feasible solution
solve pricer subproblem SP(π) to get minimum reduced cost column c
if c < 0 then

add column to RMP
else

exit loop
end if

until terminal condition
best feasible solution found with H(σ) is valid upper bound for the problem
if SP(π) solved at optimality and no more negative reduced costs columns found
then

last solution of RMP is valid lower bound for the problem
end if

Part I

Strategical MEC Network
Planning

25

Chapter 3

Optimization Algorithms for MEC
Network Design

In this chapter we focus on the core combinatorial optimization problem of strategi-
cally planning a MEC network, taking into account both infrastructural properties
and expected network usage. Our main target is devising effective algorithms, which
are meant, in turn, to be used as tools for a subsequent predictive analytics step.

We here give a formal mathematical formulation of the MEC Network Design
Problem (MNDP). Our model finds simultaneously: (i) an optimal network design,
including MEC facilities placement and (ii) an optimal assignment of APs to MEC
facilities and routing of the traffic from and to the MEC facilities. The objective is
to minimize a linear combination of overall installation costs. From a practical per-
spective, tactical assignment and routing decisions (ii) are included only to improve
the accuracy of strategical design decisions (i); in fact more accurate data analytics
models are introduced in Chapter 4 to refine assignment and routing after a design
is fixed.

We propose two variants for the MNDP:

• Static Planning : network status is considered static in time; neither user mo-
bility nor virtual machine mobility are taken into account when planning MEC
facility placement, and associations of APs to MEC facility.

• Dynamic Planning : variations in the network load during the planning time
horizon are taken into account together with user mobility. Adaptive VMs
orchestration is included in a generalized way to consider three different tech-
nologies: VM bulk migrations, VM live migrations and VM replications.

27

28 MNDP Optimization Algorithms

Our problem turns out to be hard from both a theoretical and computational
point of view. We present mathematical programming based matheuristics for the
two variants of MNDP, combining column generation, iterative rounding, very large
scale neighborhood local search and problem reduction. We undertake an extensive
experimental campaign on benchmarks drawn from the literature. Our results indi-
cate that our algorithms are effective in producing optimized MEC networks with
limited computing resources.

Preliminary results were presented in [9].

3.1 Introduction

The MNDP is the joint problem of the design of a two-layer hierarchical network
together with the location of further virtualization facilities within this network. We
consider a solution to be feasible if: traffic demands of APs are satisfied by MEC
facilities, network limited resources are not exceeded, the resulting network follows a
set of topological rules and users’ Service Level Agreement (SLA) are respected.

We propose two variants of the MDNP: the Static Planning and the Dynamic
Planning variants.

Static Planning MNDP

In the Static Planning varian of the MNDP the network status is considered static
in time; neither user mobility nor virtual machine mobility are taken into account
when planning MEC facility placement, and assigning of APs to MEC facility. In
Figure 3.1 we present an example of its decision process:

Fig. 3.1a the network on which to design a MEC network is composed by four APs (A1
to A4) and by candidates location for aggregation nodes (dashed circles), core
nodes (dashed squares) and MEC facilities (light-colored clouds); dashed lines
represent feasible links connecting candidate locations; APs A2 and A3 have
associated fixed demand (identified by UEs U1 U2 and U3)

Fig. 3.1b a possible solution is given: candidates locations N1 and N2 are activated as
aggregation nodes (colored circles), C1 and C2 as core nodes (colored squares)
and K1 and K2 as MEC facilities (black clouds). Activated nodes are connected
by feasible links (black lines) reflecting topological rules defined in Chapter
1.2, while APs are assigned to MEC facilities (red dashed lines) to fulfil their

3.1. INTRODUCTION 29

Figure 3.1: Static Planning Example

demands. Users’ SLA is modelled with constraints on AP-MEC facilities as-
signment paths.

Dynamic Planning MNDP

In many realistic MEC scenario, AP demands change over time; therefore in the
Dynamic Plannign case of the MNDP, variations in the network load during the
planning time horizon are taken into account together with user mobility.

As users move during the planning horizon, they connect to different APs,
changing the network load distribution, with the necessity to re-plan the network to
re-balance the system. Moreover as they move they may distance themselves from
their VM, worsening their QoEs and violating their SLA.

We recur to time discretization, creating multi-period variants of our mod-
els in which the assignment of APs to MEC facilites can change over time, while
aggregation, core and MEC facility locations never change.

In order to re-balance the system and to enforce SLA we introduce adaptive
VMs orchestration in a generalized way to consider three different technologies: VM
bulk migrations, VM live migrations and VM replications.

In Figure 3.2 an example of the Dynamic Planning variant is presented:

Fig. 3.2a the network on which the MEC network has to be build is composed by two APs
(A2 and A3) and by candidates nodes for aggregation nodes (dashed circles),
core nodes (dashed squares) and MEC facilities (light-colored clouds). AP A2

has associated demand of an UE U1, that moves in a discretized time planning

30 MNDP Optimization Algorithms

Figure 3.2: Dynamic Planning Example - VM Orchestration Path

horizon to reach AP A3;

Fig. 3.2b a possible solution is presented: candidates location N1 and N2 are activated as
aggregation nodes, C1 and C2 as core nodes and K1 and K2 as MEC facilities;
APs are assigned to MEC facilities (A2 to K1 and A3 to K3, resp.; red dashed
lines). However, as UE U1 is moving in time, we need to take into account an
orchestration strategy for its VM among the facilities to which he will connect
to within the time horizon: in this case U1 is connected first to K1 and then
to K2, hence a VM orchestration path is established between the two facilities
(thick black arrow). On this path we pose constraints to model users’ SLA:
long orchestration paths lead to worsening in users perceived latency when VM
need to be synchronized. In this figure we assume the orchestration path to be
infeasible: a new solution need to be devised;

Fig. 3.2c a new possible solution is presented: MEC facilities are activated in core nodes
C1 and C2, rather than in aggregation nodes as in the previous solution. While
AP-MEC facilities assignment paths are longer, the VM orchestration paths is
now feasible with respect to users’ SLA constraints.

Moreover, in the Dynamic Planning variant we also allow AP-MEC facility
assignments to change in time, in order to rebalance the network load. Finding a
good solution for the Dynamic Planning variant of the MNDP is not trivial and
counterintuitive decision could be the most valuable. In Figure 3.3 a second example
of the Dynamic Planning variant is presented:

Fig. 3.3a a solution to the Dynamic Planning MDNP is presented: while APs A1 and A2

are assigned to MEC facility K1, APs A3 and A4 are assigned to K2. AP A2 has

3.1. INTRODUCTION 31

Figure 3.3: Dynamic Planning Example

an associated UE U1, while AP A3 has two connected UEs U2 and U3; this is a
starting point of our network;

Fig. 3.3b in a successive time, U2 and U3 moves to the AP A2 that is served by a different
MEC facility; at the same time U1 takes the contrary route to A3 and has to
change MEC facility too. We need two VM orchestration paths from K1 to K2,
synchronizing the VM of U1 from its former facility to its new facility, and from
K2 to K1, to synchronize the VMs of U2 and U3. This choice could overload the
link between aggregation node N2 and core node C2 that is loaded with all the
orchestration traffic: a better solution might exists;

Fig. 3.3c in this solution we choose to change the assignment of AP A2 from facility K1 to
facility K2 when U2 and U3 moves to this AP; this is a counterintuitive decision,
as we are assigning A2 to a farther facility; however, if this solution is feasible
with respect to the users SLA and facility capacity, it allows U2 and U3 to be
assigned to their former facility, hence without the need to orchestrate their
VMs among facilities. This solution requires to orchestrate only the VM of U1
from its former facility K1 to its new facility K2.

Literature Review

These problem characteristics lead to new complex combinatorial optimization prob-
lems. In fact, our models generalize both the Single-Source Capacitated Facility
Location (SSCFL) Problem and two-level facility location (2FL) models [7, 62, 63].
Indeed, we combine features of both SSCFL and 2FL: the problem of optimally
locating aggregation and core nodes can be seen as a 2FL, while the problem of op-
timally locating capacitated MEC facilities and assigning AP demands to them over

32 MNDP Optimization Algorithms

the network can be seen as a generalization of SSCFL.

Both SSCFLP and 2FL are NP-Hard; however, while state of the art methods
for SSCFL can successfully tackle large instances [64], optimizing 2FL is much more
involved: capacitated version of 2FL have been tackled both heuristically and with
exact algorithm in several variants arising from application needs. From the heuristic
point of view, authors of [6] presented a ILP based matheuristic for the 2FL with
single source constraints at both levels and dimensioning of the facilities to solve
instances with up to 200 customers and 50 potential sites of facilities; a similar
version of the problem but considering multiple capacity values for every facility
was faced by authors of [65] with a Lagrangean relaxation based heuristic to solve
instances with up to 400 customers and 100 facilities. Few exact algorithm have been
presented, dealing with small size networks: authors of [66] deal with a two-echelon
facility location problem in which each customer is served by an uncapacitated facility
in the first echelon and by a capacitated facility in the second echelon and present a
Lagrangean relaxation based branch-and-bound providing optimal solution for small
networks of 20 and 50 customers and less than 10 facilities. Even fewer works dealing
with more than two levels have been presented, providing approximation algorithm
for arbitrary k-level [7].

However our problem is even more general, considering that the MEC location
decisions build a third level, standing on top of the optimization of aggregation
and core locations, and that routing optimization and latency bounds have to be
considered.

In the dynamic planning case, multi-period (or dynamic) facility location prob-
lems tend to be large and thus more difficult to tackle, even for instances of moderate
size [63, 67]. Managing a dynamic planning is even more involved: since demand is
changing due to users moving between different APs, when a particular user switches
from APs connected to different MEC facilities, the VM hosting her services must be
orchestrated. Several adaptive VM orchestration problems have been studied, either
for an off-line or an on-line scheduling [8]; however, in these works, the networks are
always assumed to be given.

In the following, we first introduce the modeling of the network topological
rules presented in Chapter 1.2 (in Section 3.2) that represents the base of our models;
then we add routing aspects (in Section 3.3), thereby completing them for the Static
Planning variant, of which we present our matheuristic in Section 3.4. In Section
3.5 we discuss how this modelling extends to the Dynamic Planning variant, and

3.2. NETWORK DESIGN FORMULATION 33

its variant of matheuristic in Section 3.6. The experimental analysis is presented in
Section 3.7. Finally in Section 3.8 conclusions of the chapter are presented.

3.2 Network Design Formulation

Input (Problem Data). We assume that a set of suitable locations has been
identified for hosting network facilities as described in Chapter 1.2. Formally, let B
be the set of AP locations. Let I, J and K be the set of candidates sites where
aggregation, core nodes and MEC facility can be installed, respectively. We assume
that a MEC facility can be deployed only in a location where either an AP or an
aggregation node or a core node has been deployed: hence K ⊆ (B ∪ I ∪ J).

Since we assume a superposition of stars as network topology (as described in
Chapter 1.2), network physical links are established connecting AP to aggregation
nodes, aggregation nodes to core nodes, and pairs of core nodes: hence let E ⊆
(B × I) ∪ (I × J) ∪ (J × J) be the set of feasible links between nodes.

Let li, mj, ck be the fixed cost for activating an aggregation node in i ∈ I, a
core node in j ∈ J and a MEC facility in k ∈ K, respectively.

Output (Decision Variables). We introduce two sets of variables. The first set
corresponds to location binary variables: xi take value 1 if an aggregation node is
set in i ∈ I; yj take value 1 if a core node is set in j ∈ J ; zk take value 1 if a MEC
facility is set in k ∈ K. The second set corresponds to network topology binary
variables:

• ts,i take value 1 if an AP link is established between an AP s and an aggre-
gation node i;

• wi,j and wj,i simultaneously take value 1 if an aggregation link is established
between an aggregation node i and a core node j;

• om,n take value 1 if a core link is established between two core nodes m and
n.

In order to model already existing or forbidden links, the corresponding variables
can be fixed to value 1 and 0, respectively.

A complete notation table for the network design formulation can be found in
Table 3.1.

34 MNDP Optimization Algorithms

Sets

B set of Access Points locations
I set of aggregation nodes candidate locations
J set of core nodes candidate locations
K set of MEC facilities candidate locations

Data

li activation costs for aggregation node i ∈ I
mj activation costs for core node j ∈ J
ck activation costs respectively for MEC facility k ∈ K

Variables

xi ∈ B take value 1 if an aggregation node is set in i ∈ I
yj ∈ B take value 1 if a core node is set in j ∈ J
zk ∈ B take value 1 if a MEC facility is set in k ∈ K
ts,i ∈ B take value 1 if an AP link is established between AP s ∈ B and aggre-

gation node i ∈ I
wi,j ∈ B take value 1 if an aggregation link is established between aggregation

i ∈ I and core node j ∈ J
oj,j′ ∈ B take value 1 if a core link is established between a pair of core nodes

j, j′ ∈ J

Table 3.1: MNDP - Network Topology Notation Table

3.2. NETWORK DESIGN FORMULATION 35

Objective function. Since the main purpose of the MNDP is the MEC network
design, the model goal (3.1) is to minimize installation costs of all network facilities.
We do not include the links installation costs as we do not take into consideration
the cellular infrastructure dimensioning.

min
∑
i∈I

lixi +
∑
j∈J

mjyj +
∑
k∈K

ckzk (3.1)

Constraints. A complete MEC network topology results as a by-product of our
model, in terms of arrangement of links. As specified in Chapter 1.2 we model this
network as a superposition of stars: this has to be intended as a topological rule,
which constrains the resulting arrangement of links.

Each AP is connected to a single aggregation node, and each aggregation node
to a single core node (as depicted in Figure 1.1), while a full mesh is built among
cores. The following set of constraints enforce our topological rules to be respected:
each link (i, j) can be used only for one purpose (i.e. AP link, aggregation link or
core link) - (3.2), while (3.3) and (3.4) enforce that core nodes and MEC facility
nodes are also aggregation nodes: in particular this is possible only if a core node
j ∈ J (resp. MEC facility k ∈ K) is also a candidate facility for an aggregation
node i ∈ I, and hence only if it exists an aggregation node i ∈ I such that i = j
(resp. i = k);

ti,j + wi,j + oi,j ≤ 1 ∀(i, j) ∈ E | i 6= j (3.2)

xj ≥ yj ∀j ∈ J | ∃i ∈ I : i = j (3.3)

xk ≥ zk ∀k ∈ K | ∃i ∈ I : i = k (3.4)

if (i, j) is an AP link then j is an aggregation node - (3.5), and, similarly, each AP is
connected to either itself when chosen as aggregation, or a different node otherwise
- (3.6) and (3.7);

ts,i ≤ xi ∀(s, i) ∈ E | s ∈ B ∧ i ∈ I (3.5)

ti,i = xi ∀i ∈ I| ∃s ∈ B : s = i (3.6)∑
s∈B

| s6=i∧(s,i)∈E

ts,i = 1− xi ∀i ∈ I (3.7)

given an aggregation link (i, j): it must be symmetric - (3.8); i is an aggregation

36 MNDP Optimization Algorithms

node - (3.9); and either i or j is a core node - (3.10);

wi,j = wj,i ∀(i, j) ∈ E | i ∈ I ∧ j ∈ J (3.8)

wi,j ≤ xi ∀(i, j) ∈ E | i ∈ I ∧ j ∈ J (3.9)

wi,j ≤ yi + yj ∀(i, j) ∈ E | i 6= j ∧ (i ∈ J ∨ j ∈ J) (3.10)

given a core link (i, j): both i and j are core nodes - (3.11) and conversely if both i
and j are core nodes, (i, j) is a core link - (3.12). Moreover no loops are considered at
core links - (3.13). We remark that (3.11) can be disaggregated potentially improving
LP relaxation bound at the price of doubling their number.

2oi,j ≤ yi + yj ∀(i, j) ∈ E | i, j ∈ J ∧ i 6= j (3.11)

yi + yj − 1 ≤ oi,j ∀(i, j) ∈ E | i, j ∈ J ∧ i 6= j (3.12)

oj,j = 0 ∀j ∈ J (3.13)

each aggregation node has an adjacent aggregation link, thereby connecting to a core
node - (3.14), which can be the node itself - (3.15), at most one aggregation link can
be connected to non-core nodes (yi = 0), while an arbitrary number can be connected
to core ones (yi = 1) - (3.16).∑

j∈J :(i,j)∈E

wi,j ≥ xi ∀i ∈ I (3.14)

wi,j = yj ∀j ∈ J | ∃i ∈ I : i = j (3.15)∑
i∈I

| (j,i)∈E∧i 6=j

wj,i ≤ (1− yj) + |I| · yj ∀j ∈ J (3.16)

We remark that these set of constraints (3.2)–(3.16) are meant only as a subset
of the constraints of the full model. For instance, setting zk = 0 for each k ∈ K
always respects them; however setting at least one of them to one by assignment
constraints which are explained later in the Chapter.

3.3 Static Planning Formulation

Input (Problem Data). Each AP s ∈ B can connect to a MEC facility located
in k ∈ K by a set of paths S̄sk (see paths a, b, c and d in Fig. 1.1). Path p ∈ S̄sk
can traverse multiple sites and with j ∈ p we denote that site j, that can be either
an AP, an aggregation node or a core node, is traversed by path p.

3.3. STATIC PLANNING FORMULATION 37

For each AP s ∈ B, let ns and bs be the number of users connected to s and
their overall bandwidth consumption. We assume that servicing each user requires
the activation of one VM, and therefore ns represents also the number of VMs needed
for AP s.

Let C be the number of VMs that each MEC facility can host. Let di,j and ui,j
be the latency (latency or length are used interchangeably hereafter) and bandwidth
capacity of each link (i, j) ∈ E. Let U ∈ [0, 1] be the parameter representing the
maximum link utilization (percentage) in the network; indeed, as a common practice
in IP traffic engineering with non deterministic loads, links need to have a level of
over-provisioning so that they are robust against traffic fluctuations (due to failures,
traffic peaks, etc) and hence the risk of congestion, which is particularly important
for real-time and interactive services as those considered by MEC [3, 4].

Finally, we consider static and identical SLAs for all users, defined as the
maximum allowed latency a user may experience, assuming it to be represented
by three types of constraints: (i) maximum sum of link length in a path D̄; (ii)
maximum number of hops in a path H̄ that according to [35] affects the effectiveness
of MEC facilities; (iii) maximum distance allowed between nodes in the network to
establish a link d̄. We remark that with respect to this definition, and in particular
with constraint (iii), some pairs of core nodes although connected one another may
appear simultaneously in no feasible path.

Output (decision variables). To model routing decisions we introduce an addi-
tional set of binary variables: rs,kp take value 1 if users in AP s ∈ B are served by MEC
facility in k ∈ K, and the corresponding traffic is routed along path p ∈ S̄sk.

Constraints. Feasible paths are those that satisfy SLA latency requirements de-
fined previously. In order to enforce that only feasible paths are considered, we
replace each set S̄sk with the following set:

Ssk = {p ∈ S̄sk :
∑

(i,j)∈p

d(i,j) ≤ D̄ ∧ |p| ≤ H̄ ∧ d(i,j) ≤ d̄ ∀(i, j) ∈ p} (3.17)

where by |p| we denote the number of links forming path p.

Constraints (3.18) – (3.20) impose that each path from AP s ∈ B to MEC
facility k ∈ K, traversing either an aggregation node i ∈ I or a core node j ∈ J , can
be selected only if that network facility is installed in the corresponding site.

38 MNDP Optimization Algorithms

−
∑
k∈K

∑
p∈Ssk|i∈p

rs,kp ≥ −xi ∀s ∈ B, ∀i ∈ I (3.18)

−
∑
k∈K

∑
p∈Ssk|j∈p

rs,kp ≥ −yj ∀s ∈ B, ∀j ∈ J (3.19)

−
∑
p∈Ssk

rs,kp ≥ −zk ∀s ∈ B, ∀k ∈ K (3.20)

Constraint (3.21) sets to 1 the number of MEC facilities used by a single AP,
as AP-level load-splitting is typically not performed in backhauling networks. For
computational reason we relax the equality in (3.21) to a greater or equal inequality.
(3.22) enrich (3.20) by further imposing that active MEC facilities provide at most
C VMs. Constraints (3.23) ensure that capacity of link (i, j) is not exceeded.

∑
k∈K

∑
p∈Ss,k

rs,kp = 1 ∀s ∈ B (3.21)

−
∑
s∈B

∑
p∈Ss,k

nsr
s,k
p ≥ −Czk ∀k ∈ K (3.22)

−
∑
s∈B

∑
k∈K

∑
p∈Ss,k

|(i,j)∈p

bsr
s,k
p ≥ −ui,jU(wi,j + oi,j + ti,j) ∀(i, j) ∈ E (3.23)

Finally we introduce constraints (3.24)–(3.26), which are not required to ensure
the feasibility on the solution but are helpful during the resolution process. These
impose a lower bound on the number of facilities to activate, represented as the three
parameters Z, Y and X, which are related to the lower number of MEC facilities,
core nodes and aggregation nodes, respectively. Methods used to compute the actual
value for these parameter will be discussed in Section 3.7.1.

∑
k∈K

zk ≥ Z (3.24)∑
j∈J

yj ≥ Y (3.25)∑
i∈I

xi ≥ X (3.26)

3.4. S-MNDP MATHEURISTIC 39

Sets

Ssk set of feasible paths connecting AP s ∈ B and MEC facilities k ∈ K,
as defined in (3.17)

Data

ns number of users connected to AP s ∈ B
bs bandwidth consumption in AP s ∈ B
di,j length of link (i, j) ∈ E
ui,j bandwidth capacity of link (i, j) ∈ E
D̄ maximum sum of links’ length in a path
H̄ maximum number of hops in a path
d̄ maximum distance allowed between nodes to establish a link
U maximum percentage of usable capacity of a link
C VMs capacity of a MEC facility

Variables

rs,kp ∈ B take value 1 if AP s ∈ B is served by MEC facility in k ∈ K through
path p

Table 3.2: s-MNDP Notation Table

Overall, (3.1) – (3.26) represent the static planning variant of the MNDP, that
we will refer to as s-MNDP. The notation for the s-MNDP is summarized in Table
3.2.

3.4 s-MNDP Matheuristic

Our path-based formulation offers great modeling flexibility and present computa-
tional challenges at once. In particular, the number of feasible paths in set Ssk

grows very fast with the network size. In order to obtain good feasible solutions in
limited computing time, we designed an Integer Linear Programming (ILP) based
matheuristics, whose structure is presented in Figure 3.4.

Our algorithm consists in an iterative process based on six phases: (a) an initial
feasible solution of a simplified problem on the clustered network is retrieved; (b) in
order to reduce the cardinality of the network (i.e. the number of AP to consider)
a clustering is performed; (c) on the clustered reduced network the continuous re-

40 MNDP Optimization Algorithms

start
(a) Get first feasible
simplified solution

(b) Initial Clustering

(c) Dynamic genera-
tion of AP-MEC paths

(d) Hierarchical
Rounding and Pricing

(e) Local Search
(f) Termi-

nation
Condition

(g) Update Clustering

end

END

CONTINUE

Figure 3.4: Overall Structure of s-MNDP Matheuristic

laxation s-MNDP is optimized by column generation; (d) in order to get an integer
solution for our problem a hierarchical rounding and pricing process is executed; (e)
on this integer solution a local search refinement is executed. As the solution is given
on a clustered network, we want to change the clustering in order to find a possibly
better solution on the original network; in (f) we check if a termination condition
is satisfied: in (g) we update the clustering exploiting the information given by the
fractional solution of the continuous relaxation of the problem and we restart the
resolution process from step (c).

Hereafter we detail each step.

3.4.1 Capacitated Vertex Covering Rounding

A feasible solution for the s-MNDP is given by a simplified network in which a MEC
facility is always a core node (and hence an aggregation node) for all connected APs.

3.4. S-MNDP MATHEURISTIC 41

The routing paths are always represented by a single hop link between nodes: hence
link capacity constraints do not have to be considered as links are not shared among
different paths. The resolution process needs to find only MEC facilities locations,
without considering the location of cores and aggregation nodes and the selection of
paths. Moreover we only have to enforce that the sum of demands of APs assigned
to a MEC facility is less than its capacity C.

We model this heuristic with a mathematical programming approach as a Ca-
pacitated Vertex Covering (CVC) Problem. Let us introduce variable βs,k, with value
1 if AP s ∈ B is associated to MEC facility k ∈ K and let us use the already defined
variable zk with value 1 if MEC facility is set in node k ∈ K. We formulate our
problem as follows:

min
∑
k∈K

zk (3.27)

s.t.
∑
k∈K

βs,k = 1 ∀s ∈ B (3.28)

βs,k ≤ zk ∀s ∈ B, ∀k ∈ K (3.29)

βs,k = 0 ∀s ∈ B, ∀k ∈ K | 6 ∃(s, k) ∈ E (3.30)∑
s∈B

nsβs,k ≤ C ∀k ∈ K (3.31)

z ∈ {0, 1},β ∈ {0, 1} (3.32)

We minimize the number of activated MEC facilities (3.27); (3.28) impose that every
AP is assigned to a MEC facility; (3.29) link the assignment variables βs,k to MEC
facility activation variables zk; (3.30) impose that an AP is not assigned to a MEC
facility if a direct link does not exist in the network; finally (3.31) impose that the
sum of demands of APs assigned to a MEC facility does not exceed its capacity
C.

A feasible solution to our CVC is found with the following hierarchical rounding,
also presented in Algorithm 3: given the fractional solution S̃ of the continuous
relaxation of model (3.27) - (3.32), follow this steps:

(i) Sort fractional variables z̃k ∈ S̃ by descending value;

(ii) Following the ordering fix a single free variable z̃k to value 1;

(iii) Given the MEC facility k′ ∈ K of the currently fixed variable z̃′k, sort all
corresponding variables β̃s,k′ in descending order

42 MNDP Optimization Algorithms

Algorithm 3 CVC-round Heuristic for s-MNDP

S̃ = fractional solution of continuous relaxation of model (3.27) – (3.31)
As = False ∀s ∈ B {store if AP s has been assigned to a MEC facility}
Zs = sortDesc(z̃k ∈ S̃) {sort fractional zk by descending value}
for all z̃k ∈ Zs | z̃k > 0 do

fix z̃k to value 1
Ck = 0
V s = sortDesc(β̃s,k ∈ S̃) {sort fractional βsk of current k by descending value}
for all β̃sk ∈ V s | β̃sk > 0 ∧ Ck + ns < C do

fix β̃sk to value 1
Ck = Ck + ns {update current used capacity}
As = True

end for
end for
for all s ∈ B | As = False do

fix z̃s to value 1 {not assigned AP is elected as MEC facility}
fix β̃s,s to value 1

end for

(iv) Fix variable β̃s,k′ to value 1 following the ordering if enough residual MEC
facility capacity is available. Continue fixing until no more variables β̃s,k′ with
strictly positive fractional value can be fixed;

(v) Continue from step (ii) until no more variables z̃k with strictly positive frac-
tional value can be fixed;

(vi) If rounding process ends and some APs are not associated to a MEC facility,
these APs are elected as a new MEC facility and are assigned to themselves.

With respect to the last point, more sophisticated policies can be devised to deal
with non-assigned APs, however we preferred to keep this initial heuristic as simple
as possible and to focus on the main algorithm.

This algorithm always retrieves a feasible solution, given that the simplest one
is for APs to be assigned to themselves as MEC facilities, and hence to elect every
node in the network as a MEC facility. We will refer to this rounding heuristic
algorithm as CVC-round.

3.4. S-MNDP MATHEURISTIC 43

3.4.2 Clustering

To allow the use of the model with big size data instances, we propose an approach
that makes use of clustering to reduce instance size.

We cluster original APs of the network by selecting centers: we build a new
network where cluster representatives are elected as fixed aggregation nodes, and
APs belonging to a cluster are assigned to their cluster representative (i.e. a fixed
AP-aggregation node assignment is established). We limit the number of clusters to
consider, and therefore the size of the network, to the value d|B| ·αe, where α ∈ (0, 1)
is a parameter to set. To ensure feasibility we enforce that a cluster is composed
by APs whose sum of demands is less than the maximum MEC facility capacity C:
that is, given a subset of APs C ⊆ B, it can be a cluster if

∑
s∈C ns ≤ C. Moreover

the representative of a cluster is chosen among APs that reach all other APs in the
cluster with a feasible network link (i.e. their distance is less than d̄). If no AP in the
subset satisfies this condition, the subset can not represent a feasible cluster. The
actual representative is given by the AP that minimize the maximum distance with
all other APs in the cluster: that is, for the subset of APs C, the representative r̄
is given by: r̄ = arg minr∈C:dr,j≤d̄ ∀j∈C{maxj∈C dr,j}. For example, in Figure 3.5, APs
from a to h are taken into consideration to be aggregated in a cluster. To choose a
representative, APs a and g represent a feasible choice, given that all APs can be
reached with link of length less than d̄ (all nodes are inside the circles of radius d̄
centred in a and g); on the contrary, AP f is not a feasible representative, given that
it can not be connected with APs c, d and e with links of length less than d̄ (these
nodes are outside the circle of radius d̄ centred in f).

The distance between two clusters C1 and C2 is given by the maximum distance
between the representative of C1 and all APs in the other cluster C2. As an example,
in Figure 3.6, two clusters of APs C1 and C2 are shown, with representative r and
s, respectively: the distance between C1 and C2 is given by the maximum distance
between r (the representative of C1) and all APs in C2; in this example the farthest
AP from r is g, hence dC1,C2 = dr,g. On the contrary, the distance between C2 and
C1 is given by the maximum distance between s (the representative of C2) and all
APs in C1: in the example the farthest AP in C1 to s is c, hence, dC2,C1 = ds,c. In
general dC2,C1 could be different from dC1,C2 , that is the resulting distance matrix is
not symmetric.

Thanks to these precautions a solution to the restricted network is also feasible
for the original network.

To initialize the clustering we tested two approaches:

44 MNDP Optimization Algorithms

a

b

c

d

e

f

g

h

d̄

d̄

d̄

Figure 3.5: Cluster Representative Choice

a

b

c

d

r

e

f

g

h

s

dr,s

ds,r

C1

C2

Figure 3.6: Distance Between Clusters

• using a k-medoid clustering method, in particular the R implementation of the
Partitioning Around Medoid algorithm [68, 69], using the distances between
nodes as dissimilarity matrix and using a high number of cluster d|B| · αe;
compliance with constraints on sum of demands in each cluster is checked as a
post-processing step;

• using an initial feasible solution found with the rounding heuristic CVC-round
presented in Section 3.4.1.

3.4. S-MNDP MATHEURISTIC 45

3.4.3 Dynamic generation of paths

The number of feasible paths in S̄sk to consider can be significant and may be in-
tractable with the increase of the nodes in the network. Hence we consider the
dynamic generation of feasible paths and their related variables rskp with a column
generation approach [70].

s-MNDP model (3.1) – (3.23) represents the Master Problem (MP). We replace
each set Ssk by a small representative subset Ŝsk. In our case this subset is built by
the solutions produced by the initial heuristic algorithm CVC-round. We solve the
corresponding Restricted Master Problem (RMP); for each AP s ∈ B, we search if
any element in Ssk exists whose corresponding variable has negative reduced cost,
by solving a pricing problem: any such element found through pricing is added to
Ŝsk and the process is iterated. If no negative reduced cost element can be found,
instead, we stop: the solution obtained by restricting to Ŝsk is also optimal for the
full problem. Such a solution provides a valid lower bound to the s-MNDP. As
we are dealing with the continuous relaxation of s-MNDP, the provided solution is
fractional; however if an integer solution is provided, it is also the optimal solution
for the s-MNDP.

For each s ∈ B the problem of finding the element of Ssk corresponding to the
variable of minimum reduced cost can be formulated as follows. Let us introduce
new sets of variables that represent elements of the path: let l̄m,n take value 1 if link
(m,n) is used in the path; let b̄k take value 1 if MEC facility k is used (i.e. is the
endpoint of the path) and āj take value 1 if core facility j is used (i.e. if the path
passes through the node).

The costs to be minimized in the pricing objective function (3.33) are given
by the non-negative dual variables corresponding to master problem constraints: νi,s
from (3.18); µj,s from (3.19); γk,s from (3.20); ωs from (3.21); πk from (3.22); and
ρm,n from (3.23).

min
s∈B
−ωs +

∑
i∈I

l̄s,iνi,s +
∑
j∈J

ājµj,s +
∑
k∈K

b̄k(πkns + γk,s) +
∑

(m,n)∈E

l̄m,nρm,nbs (3.33)

Constraints (3.34) – (3.38) respectively ensure that: (3.34) - a flow of one unit
exit the source; (3.35) - the flow either exits from an intermediate node or remains in
the node that becomes the cloud facility, (3.36) - an intermediate node is a core node;
(3.37) - the flow can not enter the source; (3.38) - at least one core is selected.

46 MNDP Optimization Algorithms

∑
i∈I|i 6=s

l̄s,i = 1 (3.34)

∑
(m,k)∈E

l̄m,k = b̄k +
∑

(k,m)∈E

l̄k,m ∀k ∈ K | k 6= s (3.35)

∑
(k,j)∈E

l̄k,j +
∑

(j,k)∈E

l̄j,k − 1 ≤ āj ∀j ∈ J | j 6= s (3.36)

∑
j∈(I∪J∪K)|j 6=s

l̄j,s = 0 (3.37)

∑
j∈J

āj ≥ 1 (3.38)

Finally constraints (3.39) – (3.41) ensure the feasibility of the paths, respec-
tively in the maximum sum of links length of the path, the maximum number of
hops and the maximum length of the single link.

∑
(m,n)∈E

dm,nl̄m,n ≤ D̄ (3.39)

∑
(m,n)∈E

l̄m,n ≤ H̄ (3.40)

l̄m,n = 0 ∀(m,n) ∈ E | dm,n ≥ d̄ (3.41)

Pricing problem (3.33) – (3.41) represents a resource constrained shortest path
problem. While in general this class of problem is NP-Hard, in this case it can be
conveniently solved with a dynamic programming approach, given that it can be
mapped to a layered graph with a number of layers limited to the value of H̄.

We build a directed layered graph G(N,A) with a layer for each number of
hops in the path. Let L =

{
1, ..., H̄

}
be the set of layers; each layer reflects the

hierarchy of nodes in network topology: hence the first layer represents the APs,
the second layer the aggregation nodes, layers from the third to the (H̄ − 1)-th
represent core nodes, while the last layer H̄ represents the MEC facility. Our graph
is directed and layered, there is no possibility for cycles and all paths are elementary.
We exploit such a layered structure assigning to each node i in layer l ∈ L of graph
G states of the dynamic programming execution, while arcs in the graph represents

3.4. S-MNDP MATHEURISTIC 47

B

−ωs

I J

...

J K
ρs,ibs + νi,s ρi,jbs + µj,s

ρj,kbs
+πkns+γk,s

ρj,kbs + πkns + γk,s

Figure 3.7: Layer Structure of the Dynamic Programming Algorithm for AP-MEC
facility Association Path Variables rs,kp .

state transitions. Different states, associated with the same node (i, l), correspond to
different feasible paths p reaching i at layer l. They differ by: the subset of nodes S
traversed by the current path, and the length of the current path d. Hence each state
can be represented by a label ((i, l), S, d). Moreover to every label a cost is associated,
c((i, l), S, d), corresponding to the cost of the path. Arcs in the graph, representing
state transition, reflect feasible hops in the network topology: from first layer (APs)
arcs connect to the second layer only (aggregation nodes); from the second layer arcs
connect to the third layer only (core nodes); from all core nodes layers (from the third
to the (H̄ − 1)-th) arcs connect to both the succeeding layer and the last layer H̄, of
the MEC facility. Moreover, each arc has an associated cost, given by the network
link costs and the device activation costs defined in pricing objective function (3.33).
The layer structure of the dynamic programming algorithm is sketched in Figure 3.7.

The main steps of our algorithm are the following:

Initialization The label for the source s ∈ B is initialized with a cost equal
to the corresponding dual variable ωs and the following values:

c((s, 1), {s}, 0) = −ωs (3.42)

Propagation Labels in the second layer, corresponding to aggregation nodes,
are connected to labels in the first layer if and only if a feasible network link connects
their nodes, that is a link between label ((i, 2), {s, i}, ds,i) of the second layer and
label (s, {s}, 1, 0) of the first layer exits if and only if ds,i < d̄. Label costs are
initialized with the following value:

c((i, 2), {s, i}, ds,i) = c((s, 1), {s}, 0) + ρs,ibs + νi,s ∀i ∈ I \ {s} | ds,i < d̄ (3.43)

Labels in layers corresponding to core nodes, that is from the third to the (H̄−1)-th

48 MNDP Optimization Algorithms

layer, are extended according to the following rule:

c((j, l + 1), S, d) = min
i∈S\{j}|di,j<d̄

{c((i, l), S \ {j}, d− di,j) + ρi,jbs}+ µj,s

∀j ∈ J,∀l ∈ {2..(H̄ − 2)} | d < D̄
(3.44)

Labels in the last layer, corresponding to MEC facility, are linked to every node of
every core node layers that can be connected through a feasible network link, and
are extended according to the following rule:

c((k + H̄), S, d) = min
j∈S\{k}| dj,k<d̄

{c((j, l), S \ {k} , d− dj,k) + ρj,kbs}+ πkns + γk,s

∀k ∈ K, ∀l ∈ {3..(H̄ − 1)} | d < D̄

(3.45)

Stopping The minimum cost path is given by:

min
k∈K

c((k, H̄), S, d) (3.46)

s.t. d < D̄ (3.47)

We remark that, from a strictly worst-case time complexity point of view,
exploiting the layered structure of G in the dynamic programming routines allows us
to obtain algorithms which run in O(|A|), where A is the set of arcs of G, and are
therefore more efficient than generic ones from the literature.

3.4.4 Hierarchical round and price

As the column generation process leads to a fractional solution s̄, to obtain an
integer feasible one, a hierarchical rounding on the variables is executed: (i) select the
location variable f̄ with higher fractional value in s̄ that was not already fixed, and fix
it to value one, (ii) propagate the rounding, by fixing to zero all variables that would
lead to infeasibility when set to one, (iii) resume column generation, to dynamically
generate new paths given the new fixed variables, (iv) if a new fractional solution
is found, repeat rounding from step (i); instead, if no feasible solution can be found
after fixing, reset f̄ to value zero, undo rounding propagation and resume column
generation; if a feasible solution is found, repeat rounding from step (i), otherwise
stop rounding with FAIL. (v) Stop with SUCCESS whenever f̄ has a fractional value
in s̄ that is lower than a small enough positive threshold ε.

3.4. S-MNDP MATHEURISTIC 49

Instead of choosing an arbitrary f̄ , we perform rounding according to the fol-
lowing hierarchy: (i) MEC facility location variables zk, (ii) core nodes location
variables yj, (iii) aggregation nodes location variables xi, (iv) paths variables rs,kp .
That is, each hierarchical level is explored only if no previous one contains a frac-
tional variable. Variables related to topological rules are never rounded explicitly.
At the end of the rounding process, in case of SUCCESS, a MILP problem remains
to fix them, involving a small number of variables, which can be easily optimized by
general purpose ILP solvers. Nevertheless, we often observed that network topology
variables take integer values directly after rounding: in these cases we skip this last
MILP optimization process. In case of FAIL, instead, the solution produced in step
(a) is considered. That is, in any case our static planning algorithm produces a
feasible solution, unless the instance itself admits no feasible one.

We remark that, according to this hierarchy, a FAIL status can only be triggered
in step (iv), when paths variables rs,kp are considered for rounding. In our instances,
where we consider sets of candidates nodes to be equal to the set of APs (i.e. B =
I = J = K), the rounding process never reach the FAIL status, given that is always
possible to assigning an AP to itself, elected as a MEC facility.

3.4.5 Local search

Given an integer feasible solution S̄, we tried to improve it with an ILP-based very
large scale neighborhood search strategy, exploring a κ-OPT neighborhood.

We propose a compact version of s-MNDP model which does not consider each
path but each possible link of the network. Let us introduce set H = {1, . . . , H̄}
representing the hierarchical level of the network. We replace variables rskp with

variables rs,hi,j ∈ {0, 1}, ∀(i, j) ∈ E,∀s ∈ B, ∀h ∈ H with value 1 if a path with
source in node s use link (i, j) at level h, 0 otherwise.

Links of a path connecting an AP to a MEC facility are represented in the
following way:

• a link between an AP to an aggregation node is modeled through variables ts,i
and is considered at hierarchical level zero

• a link between an aggregation node to a core node is modeled through variables
rh,1(i,j) at first hierarchical level

• a link between two cores is at second hierarchical level and modeled with vari-
ables rh,2(i,j)

50 MNDP Optimization Algorithms

• a link between a node (aggregation or core) and a MEC facility is at third
hierarchical level and modeled with variables rh,3(i,j)

The corresponding compact model is the following:

min (3.1)

s.t. (3.2)− (3.16)∑
i∈I |

(s,i)∈E

ts,i = 1 ∀s ∈ B (3.48)

ts,i ≤ xi ∀(s, i) ∈ E (3.49)

rs,hi,j ≤

yj if h ∈ {1, . . . , (H̄ − 1)}
yi if h ∈ {2, . . . , H̄}
zj if h = H̄

∀(i, j) ∈ E,∀s ∈ B, ∀h ∈ H (3.50)

∑
s∈B

ns
∑
i∈B |

(i,k)∈E

rs,H̄i,k ≤ Czk ∀k ∈ K (3.51)

∑
s∈B

bh
∑
h∈H

rs,hm,n ≤ um,nU(wm,n + om,n) ∀(m,n) ∈ E | m 6= n (3.52)

ts,i =
∑

(i,k)∈E

(rs,1i,k + rs,H̄i,k) ∀s ∈ B, ∀i ∈ I (3.53)

∑
i∈I |

(i,j)∈E

rs,hi,j ≤
∑

h′∈{h+1,H̄}

∑
k∈K |

(j,k)∈E

rs,h
′

j,k ∀h ∈ {1..(H̄ − 1)}, ∀s∈B∀j∈B (3.54)

rs,1m,n ≤ wm,n ∀(m,n) ∈ E,∀s ∈ B (3.55)

rs,hm,n ≤ om,n
∀(m,n)∈E
∀s∈B , ∀h ∈ {2..(H̄ − 1)} (3.56)∑

j∈I |
(s,j)∈E

ds,jts,j +
∑

(j,k)∈E

dj,k
∑
h∈H

rs,hj,k ≤ D̄ ∀s ∈ B (3.57)

Constraints (3.48), (3.49) enforce that each AP is connected to one and only one
aggregation node. Constraints (3.50) link variables rs,hi,j to location variables yi and
zi: (i) node j of the link (i, j) is a core from the first to the last but one hierarchical
level; (ii) node i of the link (i, j) is a core from the second to the last hierarchical
level; (iii) last hierarchical level activates a MEC facility at node j of the link (i, j).

3.4. S-MNDP MATHEURISTIC 51

Constraints (3.51), (3.52) require compliance respectively for the VMs capacity of a
MEC facility and for the bandwidth capacity of each link. Constraints (3.53)-(3.54)
model the flow conservation from an AP to a MEC facility: (i) in (3.53) a flow from
an AP to an aggregation node must either generate a flow from and aggregation to
a core or to elect the aggregation node to a MEC facility; (ii) (3.54) impose that a
flow from a hierarchical level goes either to its successive level or to the last level, i.e.
to the MEC facility. Constraints (3.55), (3.56) link flow variables rs,h(i,j) to topology

variables wi,j, oi,j. Finally constraints (3.57) requires compliance with the maximum
length of a path.

We devised the following local search strategy:

• we allow the solution to use only the paths created by the column generation
process and the successive hierarchical rounding and pricing; that is, we fix rs,hi,j
to value 0 if no path created in the pricing process for the AP s uses the link
(i, j) for hierarchy h;

• we add to the model the soft-fixing constraint (3.58), presented in [71] where
is called k-OPT neighborhood :∑

k∈K|z̄k=1

(1− zk) +
∑

k∈K|z̄k=0

zk ≤ dκ ·
∑
k∈K

z̄ke (3.58)

where parameters z̃k represent the values of the variables zk in S̄, and parameter
κ represents the fraction of zk variables whose values are allowed to flip with
respect to the current solution.

• we solve this restricted model with a general purpose ILP Solver, setting a limit
τ on the execution time.

We run only one iteration of this local search strategy.

3.4.6 Clustering Update Restart Strategy

At the end of the resolution process of the s-MNDP with the restricted network
resulting from the initial clustering, as a restart strategy we update the clustering
using the fractional solution given by the column generation as a guide:

• when the AP h is associated with MEC facility k through path p at integrality
(i.e. rs,kp = 1), the two clusters represented by h and k are joined, a new
representative is found and their demands are summed; for example in Figure

52 MNDP Optimization Algorithms

Figure 3.8: Join Clusters

3.8 clusters C1 is associated to cluster C2 at integrality: they can be joined in
a new cluster C3 and a new representative has to be chosen.

• if AP h is associated fractionally through multiple paths, the cluster that it
represents is split in multiple clusters ignoring the information given by the
fractional variables, but rather trying to improve a measure of connectivity on
the restricted network.

With connectivity we mean the measure of the number of pairs of APs that
can be reached in a single hop in the restricted network. In order to update the
clustering using the connectivity measure, we follow the following steps: (i) compute
for all nodes of the original network the individual connectivity, that is the number
of APs they can reach within the actual restricted network (ii) sort all nodes by
descending connectivity (iii) first N sorted nodes become a cluster composed by a
single element (i.e. N separated singleton clusters), where N is the difference between
the maximum number of clusters d|B| ·αe and the current number of clusters. These
nodes can be separated from the cluster to which they belong only if they’re not
the only eligible representative of the cluster and if their connectivity is greater than
zero.

For example, in Figure 3.9 cluster C1 is assigned fractionally to both cluster
C2 and C3 and has to be split: C1 is composed by four APs (from A to D) for
each of which the connectivity is measured. B and D can reach both clusters C2

and C3, hence their connectivity is equal to value 2; node C can only reach cluster
C2, hence its connectivity is equal to value 1; node A can not reach any cluster,
so its connectivity is equal to 0. Nodes are sorted by descending connectivity, and
for each node in this order we check if it can be released forming a new singleton
cluster without exceed the maximum number of clusters d|B| · αe (in this example
equal to 5) and if they’re not the only eligible representative of their former cluster.
In this example B and D, having higher connectivity, are released first without

3.5. DYNAMIC PLANNING FORMULATION 53

Figure 3.9: Split Clusters Using Connectivity Measure

violating these two conditions; on the contrary, C can not be released because we
have reached the maximum number of clusters. At the end of the splitting process
we have 5 clusters: C2, C3, the singletons B and D and the cluster C4 composed by
nodes A and C.

3.5 Dynamic Planning Formulation

In the second variant of the MNDP, we consider the dynamic status of the network.
As users move during the planning horizon, they connect to different APs, changing
the network load distribution, with the necessity to re-plan the network to re-balance
the system. Moreover as they move they may distance themselves from their VM,
worsening their QoEs and violating their SLA. In order to re-balance the system and
to enforce SLA we introduce VMs mobility in our model.

3.5.1 Time Planning Horizon Discretization

We partition the planning horizon in periods called time-frames, identified by set
T . To consider the changing in the network load distribution, let nts and bts be
the (average) number of users connected to AP s ∈ B and their overall bandwidth

54 MNDP Optimization Algorithms

consumption during time-frame t ∈ T . We consider the user mobility during the
overall given horizon without making assumptions on the users positions in a specific
point in time, yet we assume that in a single time-frame a user can connect to a
single AP; in particular, let fs′s′′ be the number of users moving from AP s′ ∈ B
to AP s′′ ∈ B during time horizon T . We allow routing decisions to be changed
dynamically, i.e. we allow an AP s ∈ B to be assigned to different MEC facilities
k ∈ K in different time-frames t ∈ T , replacing the variable rs,kp with a set of variables
rs,k,tp for each t ∈ T . Due to the features of our application location decisions, instead,
are kept fixed. Constraints (3.18) – (3.23) of s-MDNP are extended as the following
dynamic planning variant:

−
∑
k∈K

∑
p∈Ssk|i∈p

rs,k,tp ≥ −xi ∀s ∈ B, ∀i ∈ I,∀t ∈ T (3.59)

−
∑
k∈K

∑
p∈Ssk|j∈p

rs,k,tp ≥ −yj ∀s ∈ B, ∀j ∈ J,∀t ∈ T (3.60)

−
∑
p∈Ssk

rs,k,tp ≥ −zk ∀s ∈ B, ∀k ∈ K, ∀t ∈ T (3.61)

∑
k∈K

∑
p∈Ss,k

rs,k,tp ≥ 1 ∀s ∈ B, ∀t ∈ T (3.62)

−
∑
s∈B

∑
p∈Ss,k

ntsr
s,k,t
p ≥ −Cyk ∀k ∈ K, ∀t ∈ T (3.63)

−
∑
s∈B

∑
k∈K

∑
p∈Ss,k

|(i,j)∈p

btsr
s,k,t
p ≥ −ui,jU(wi,j + oi,j + ti,j) ∀(i, j) ∈ E,∀t ∈ T (3.64)

These are composed by single instances of location variables and |T | copies of each
path variable and constraints (3.18) – (3.23) of s-MNDP. However, the instances
of location variables are not independent one another, being linked by constraints
(3.59), (3.60) and (3.61).

3.5.2 Modelling User Mobility

To include in dynamic planning model the user mobility, let variables gk
′k′′

s′s′′ ∈ Z+

represent the amount of users connecting through the planning horizon to APs s′ ∈ B
and s′′ ∈ B served by MEC facilities in sites k′ ∈ K and k′′ ∈ K, respectively. Let

3.5. DYNAMIC PLANNING FORMULATION 55

also binary variables vsk take value 1 if AP s ∈ B is assigned to a MEC facility
in k ∈ K in at least one time-frame. Following constraints are needed to enforce
coherence among these additional variables:

−
∑
p∈Ssk

rs,k,tp ≥ −vsk ∀s ∈ B, ∀k ∈ K, ∀t ∈ T (3.65)

gk
′k′′

s′s′′ ≥ (vs′k′ + vs′′k′′ − 1)fs′s′′ ∀s′, s′′ ∈ B, ∀k′, k′′ ∈ K (3.66)

We remind that fs′s′′ models the number of users moving from the region covered
by AP s′ to the region covered by AP s′′: every MEC facilities to which this pair
of APs connect during the planning horizon must be synchronized. If an AP s is
connected to MEC facility k in any time-slot, constraints (3.65) enforce vsk to take
value 1. Constraints (3.66) have no effect unless connections occur both from s′ to k′

and from s′′ to k′′ independently from the time-slot. In the first case, it is feasible to
set gk

′,k′′

s′,s′′ to value 0; otherwise constraints (3.66) enforce gk
′,k′′

s′,s′′ to take the value fs′,s′′
counting the number of users moving from the region covered by AP s′ to the region
covered by AP s′′. That is, constraints (3.65) and (3.66) allow to link the number of
users moving from s′ to s′′ (which is assumed to be known as input) to the number
of users whose VMs need to be synchronized between MEC facilities k′ and k′′ which
are instead a result of the decision process described by our models.

In the following we define the set of constraints modelling the three VM mobility
technologies presented in Chapter 1.3.

3.5.3 VM replication

We model the VM replication option including explicitly in our model the routing
and congestion assessment arising from MEC facility to MEC facility synchronization
traffic. Let Q̄k′k′′ be the set of paths connecting MEC facility facilities installed in
k′, k′′ ∈ K, through which to route the synchronization traffic of copies of a VM
deployed in the two MEC facilities. We refer to these as synchronization paths. Let
D̄Q and L̄Q be the counterpart of D̄ and H̄ for synchronization paths, and let:

Qk′k′′ = {p ∈ Q̄k′k′′ :
∑

(i,j)∈p

d(i,j) ≤ D̄Q ∧ |p| ≤ H̄Q ∧ d(i,j) ≤ d̄ ∀(i, j) ∈ p} (3.67)

represent the set of feasible synchronization paths between k′ and k′′. Then, let
continuous variables qk

′k′′t
p ∈ R+ represent the amount of synchronization traffic

56 MNDP Optimization Algorithms

between MEC facility facilities in k′ ∈ K and k′′ ∈ K routed along path p ∈ Qk′k′′

during time-frame t ∈ T . A path p ∈ Qk′k′′ can traverse multiple sites and with
j ∈ p we denote that site j is traversed by path p. The following constraints enforce
coherence among these additional variables:

∑
p∈Qk′k′′

qk
′k′′t
p ≥

∑
s′,s′′∈B
|s′ 6=s′′

Φ(gk
′,k′′

s′,s′′) ∀k′, k′′ ∈ K|k′ 6= k′′,∀t ∈ T (3.68)

−
∑

p∈Qk′k′′

|i∈p

qk
′k′′t
p ≥ −xi

∑
s′,s′′∈B

Φ(fs′,s′′) ∀i ∈ I,∀k′, k′′ ∈ K, ∀t ∈ T (3.69)

−
∑

p∈Qk′k′′

|j∈p

qk
′k′′t
p ≥ −yj

∑
s′,s′′∈B

Φ(fs′,s′′) ∀j ∈ J,∀k′, k′′ ∈ K, ∀t ∈ T (3.70)

and link utilization constraints (3.64) become:

−
∑

(s,k)∈
B×K

∑
p∈Ss,k

|(i,j)∈p

btsr
s,k,t
p −

∑
k′,k′′∈K
|k′ 6=k′′

∑
p∈Qk′k′′

|(i,j)∈p

qk
′,k′′,t
p ≥ −ui,jU(wi,j + oi,j + ti,j)

∀(i,j)∈E
∀t∈T (3.71)

Function Φ : Z+ → R maps the number of moving users gk
′,k′′

s′,s′′ to the amount
of synchronization traffic they induce among MEC facilities. A possible implemen-
tation of function Φ will be presented in Section 3.7.1. The dynamic planning VM
replication variant of the MNDP, to which we will refer to with r-MNDP, is therefore
obtained by applying (3.1)-(3.16), (3.59)-(3.63), (3.65)-(3.66), (3.68)-(3.71).

3.5.4 Bulk and Live VM Migration

The dynamic association of users to a nearer MEC facility allows an improvement
in their QoE, with a possible worsening of the status of the network. Hence the
expected number of user migrations given by variables gk

′k′′

s′s′′ has to be limited by the
number of migrations that the network infrastructure can handle in an amount of
time such that the migration ends before the user moves further, which we will refer
to as useful migrations. Given the parameters:

3.6. L-MNDP MATHEURISTIC 57

• Tw: the temporal window during which the migration of the VM is useful. This
values is strictly related to the user’s sojourn time in an area Ts, and usually
Tw � Ts;

• V : the size of the VM file to migrate;

the number of migrations that a link can manage is given by:

(1− U) · ui,j · Tw
V

(3.72)

We therefore limit the number of VMs migrations that a single link can handle,
with the following constraints:

−
∑

(k′,k′′)
∈K×K

∑
p∈Qk′,k′′ |

(i,j)∈p

Φ−1
(
qk
′,k′′,t
p

)
≥ −(1− U) · ui,j · Tw

V
∀(i, j) ∈ E,∀t ∈ T (3.73)

where Φ−1 is the inverse of function Φ found in (3.68), retrieving the number of
migration routed through link (i, j).

Dynamic planning Bulk VM Migration variant of the MNDP, to which we will
refer to with b-MNDP, is therefore obtained by the set of equations (3.1)-(3.16),
(3.59)-(3.66), (3.68)-(3.70) and (3.73),

Dynamic planning Live VM Migration variant of the MNDP, to which we will
refer to with l-MNDP, is obtained by the set of equations (3.1)-(3.16), (3.59)-(3.63),
(3.65)-(3.66), (3.68)-(3.71) and (3.73). This latter case can be seen as the union
of the VM replication and the Bulk Migration, given that it considers both the
synchronization traffic (in constraints (3.71)) and the limit on the number of VMs
migrations (in constraints (3.73)).

A Notation table for the dynamic planning variants of the MNDP is presented
in Table 3.3.

3.6 l-MNDP Matheuristic

We propose a matheuristic algorithm for the Dynamic Planning Live VM Migration
variant of the MNDP (l-MNDP) presented previously in Section 3.5.4, that includes

58 MNDP Optimization Algorithms

Sets

T set of time-frames, partitioning of planning horizon
Qk′k′′ set of paths connecting two MEC facilities k′, k′′ ∈ K

Data

nts number of users connected to AP s ∈ B in time-frame t ∈ T
bts bandwidth consumption in AP s ∈ B in time-frame t ∈ T
fs′,s′′ number of users moving from AP s′ ∈ B to AP s′′ ∈ B
D̄Q maximum sum of links’ length in a path q ∈ Qk′k′′

H̄Q maximum number of hops in a path q ∈ Qk′k′′

Tw temporal window during which the migration of the VM is useful
V size of the VM file to migrate

Φ : Z+ → R+ function mapping number of users to synchronization traffic

Variables

rs,k,tp ∈ B take value 1 if AP s ∈ B is served by MEC facility in k ∈ K
through path p in time-frame t ∈ T

vs,k ∈ B take value 1 if AP s is served by MEC facility k in any time-frame
qk
′,k′′,t
p ∈ R+ amount of synchronization traffic between MEC facilities k′, k′′ ∈

K through path p in time-frame t

gk
′,k′′

s′,s′′ ∈ Z+ Number of users connecting to APs s′ and s′′ served by MEC fa-
cilities k′ and k′′, resp., through the planning horizon

Table 3.3: MNDP - Dynamic Planning Notation Table

3.6. L-MNDP MATHEURISTIC 59

all the constraints of two other VM mobility technology variants, i.e. the VM Repli-
cation and the Bulk VM Migration.

Optimizing the l-MNDP is even more involved than the optimization of s-
MNDP. First, a copy of each association path rs,k,tp needs to be considered for each

time-frame t. Second, the set of sync-paths variables qk
′,k′′,t
p may grow combinatorially

as well. Third, the number of variables gk
′,k′′

s′,s′′ used in constraints (3.66) and (3.68)
is polynomial, but too large to be explicitly considered in practice: by considering
them, we were not able to run our algorithm.

In order to deal with the latter issue, we relax constraints (3.66) and (3.68)
with the following constraints:

∑
q∈Qk′,k′′

qk
′,k′′t
p ≥

∑
s′∈B
s′′∈B

Φ(fs′,s′′) · (vs′k′ + vs′′k′′ − 1) ∀k′, k′′ ∈ K|k′ 6= k′′,∀t ∈ T
(3.74)

When integrality conditions are enforced, (3.74) are equivalent to (3.66), (3.68).
Unfortunately, this is not always true when the continuous relaxations are consid-
ered during rounding; we therefore strengthened them with the following inequali-
ties:

vs′,k′ + vs′′,k′′ ≤ 1 ∀s′,s′′∈B
k′,k′′∈K |

fs′,s′′>0

∃ p∈Ss,k

∃ p∈Ss′,k′

6∃ p∈Qk′,k′′

∀t ∈ T (3.75)

vs′,k′ −
∑

k′′∈K |
∃p∈Ss′′,k′′

∃p∈Qk′,k′′

vs′′,k′′ ≤ 0 ∀s′,s′′∈B
∀k′∈K |

fs′,s′′>0 ∧
∃p∈Ss′,k′ (3.76)

∑
t∈T

∑
p∈Ss,k

rs,k,tp ≥ vsk ∀s ∈ B, ∀k ∈ K (3.77)

where (3.75) forbid the simultaneous choice of AP-MEC facility associations that
does not allow to establish a feasible synchronization path, (3.76) states that, for
each pair of APs with expected users migration, at least a pair of AP-MEC facility
associations having a feasible synchronization path has to be activated, and (3.77)
ensure that AP-MEC facility association variable vs,k is activated only if a related
path variable rs,k,tp is activated in any time-frame t.

60 MNDP Optimization Algorithms

An initial solution is not easily available for the l-MNDP, as opposed to the
s-MNDP; hence, the initial restricted master problem does not contain any path
variables, either rs,k,tp or qk

′,k′′,t
p , and two dummy variables have to be added to

the model. To enforce feasibility to constraint constraints (3.74) a dummy variable
has to be added to its left hand side (LHS) with a big-M coefficient (for example∑

s′∈B
s′′∈B

Φ(fs′,s′′)). To enforce feasibility to constraints (3.62), a dummy variable has

to be added to its LHS with coefficient 1. Both dummy variables have to be added
to the objective function (3.1) with a high penalty.

The relaxed l-MNDP model including constraints (3.1) – (3.16), (3.59) – (3.63),
(3.65), (3.69) – (3.71) and (3.73) – (3.77) is therefore used in the l-MNDP matheuris-
tic, whose structure is depicted in Fig. 3.10. Steps (a) and (b) of Fig. 3.10 are
analogous to steps (c) and (d) of Fig. 3.4, but we perform the dynamic generation
of both feasible associations paths rs,k,tp and synchronization paths qk

′,k′′,t
p . In both

cases we formulated the pricing problem as a constrained shortest path problem, and
we designed ad-hoc dynamic programming algorithms to solve it. At the end of the
column generation, a fractional solution is available, and we resort to the hierarchical
rounding to obtain an integer one. The order of rounding is the same as that used
for s-MNDP. In fact, new continuous variables qk

′,k′′t
p do not need to be rounded;

the new binary variables vs,k are not rounded explicitly but are fixed by rounding
propagation: when a zk variable is fixed to zero, related vs,k variables are fixed to
zero as well; when an association path variable rs,k,tp is fixed to one, the related vs,k
variable is fixed to one as well.

At the end of the rounding process, we check the compliance with the relaxed
constraints on synchronization traffic (3.66) and (3.68) (Fig. 3.10-(c)). Given the AP-
MEC facility associations, defined by variables vs,k with value 1, the computation
of the related amount of user migration and hence the amount of synchronization
traffic to route is straight. If the synchronization paths created until this step are
enough to route this amount of synchronization traffic, a feasible solution is found
and the optimization process ends successfully.

If not, further synchronization paths need to be created (Fig. 3.10-(d)): we
fix MEC facilities locations variables zk and AP-MEC facility association variables
vs,k, and the related amount of synchronization traffic is replaced in the right hand
sides of constraints (3.74). All other variables (rs,k,tp , yj and xi) are unfixed and
a new process of dynamic generation of path variables is executed (Fig. 3.10-(e)):
differently from the previous step, we look only for AP-MEC facility association
paths related to variables vs,k whose value was fixed to one. At the end of the
iterative hierarchical rounding and column generation process (Fig. 3.10-(f)), if an

3.6. L-MNDP MATHEURISTIC 61

start

(a) Dynamic Gen-
eration of Paths

(b) Hierarchical Rounding

(c) Comply
sync-traffic?

(d) Fix active MEC
facilities and AP-MEC

facility associations

(e) Dynamic Gen-
eration of Paths

(f) Hierarchical Rounding

end

No

Yes

1st stage: Relaxed
Synch. Constraints

2nd stage: Generate
Sync-Paths

Figure 3.10: Overall Structure of l-MNDP Matheuristic

62 MNDP Optimization Algorithms

integer solution is found, then it is also feasible for the original problem; if not, our
algorithm stops in a FAIL status. No very large scale local search is performed.

Dynamic generation of paths The pricing problem of dynamic generation of
paths variables described for the s-MNDP matheuristic in Section 3.4 is now executed
for each pair AP-time frame (s, t), together with the following dual variables: νtis
from (3.59); µtjs from (3.60); γtk,s from (3.61); ωtt from (3.62); πtk from (3.63); ρtmn
from (3.71); ξtsk from (3.65); φsk from (3.77). The objective function (3.33) changes
to:

min
s∈B,t∈T

− ωs +
∑
i∈I

l̄s,iν
t
i,s +

∑
j∈J

ājµ
t
j,s

+
∑
k∈K

b̄k(nhπ
t
k + γtk,s + φs,k + ξts,k)+

+
∑

(m,n)∈E

l̄m,nρ
t
m,nbs

(3.78)

while all constraints remain unchanged.

Moreover a dynamic generation of sync-path variables qk
′,k′′,t
p is required. A

pricing for each triplet of initial MEC facility, final MEC facility and time-frame
(k′, k′′, t) is optimized. The initial model does not contain any sync-path variable
and hence a dummy variable have to be added to the constraints (3.74) with a high
penalty in objective function (3.1).

We consider that, given the MEC Network defined in Section 1.3, a synchro-
nization path can traverse only core nodes, while the MEC facilities can be either
core nodes or aggregation nodes. Hence to model synchronization paths we introduce
the following pricing variables: l̄m,n ∈ {0, 1} ∀(m,n) ∈ E has value 1 if link (m,n) is
in used in the synchronization path; āj ∈ {0, 1} ∀j ∈ N has value 1 if core facility j
is in used in the synchronization path. Given duals: ηtj,k′,k′′ from constraints (3.70);
ρtm,n from constraints (3.71); θtk′,k′ from constraints (3.74); and χti,j from constraints
(3.73) the corresponding pricing model is defined as follows:

3.6. L-MNDP MATHEURISTIC 63

min
k′,k′′∈K|k′ 6=k′′

t∈T

− θtk′,k′′ +
∑

(m,n)∈E

l̄m,n(ρtm,n + χtm,n) +
∑
j∈J

ājη
t
j,k′,k′′ (3.79)

s.t.
∑

(n,k′)∈E|n6=k′
l̄k′,n =

∑
(n,k′′)∈E|n6=k′′

l̄n,k′′ = 1 (3.80)

∑
(m,j)∈E

l̄m,j =
∑

(j,m)∈E

l̄j,m ∀j ∈ J | j 6= k′ ∧ j 6= k′′

(3.81)∑
(m,n)∈E

l̄m,n ≤ H̄Q (3.82)

∑
(m,n)∈E

dm,nl̄m,n ≤ D̄Q (3.83)

∑
(n,k′)∈E

l̄n,k′ =
∑

(k′′,n)∈E

l̄k′′,n = 0 (3.84)

l̄m,n ≤ am ∀(m,n) ∈ E | m 6= k′

(3.85)

l̄m,n ≤ an ∀(m,n) ∈ E | n 6= k′′

(3.86)

Pricing model (3.79) – (3.86) corresponds to a resource constrained shortest
path problem: (3.79) defines the objective function to minimize; (3.80) enforce that
a flow of one unit exit the source MEC facility k′ and enter the target MEC facility k′′,
respectively; (3.81) enforce flow conservation in consecutive links; (3.82) and (3.83)
enforce the limit on the number of hops and the total length of the synchronization
path, respectively; (3.84) forbids that units of flows enters the source MEC facility
k′ and exits the target MEC facility k′′; finally (3.85) and (3.86) links variables lmn
to variables aj activating core nodes.

We solve this pricing problem with a dynamic programming approach, in the
same fashion we solved the pricing model for the AP-MEC facility assignment path.
We build a directed layered graph G(N,A) with a layer for each possible hop HQ.
Let L =

{
1, ..., H̄Q

}
be the set of layers; the first and the last layer represent the

initial and final MEC facility to connect with the synchronization path, while layers
between the second and the (HQ − 1)-th represent core nodes in between MEC
facilities to connect. G is directed and layered, there is no possibility for cycles and
all paths are elementary. We assign to each node i in layer l ∈ L of graph G states

64 MNDP Optimization Algorithms

k’

−θtk′,k′′

J

j’

ρt
j′,j′′+χ

t
j′,j′

+ηt
j′′,k′,k′′. . .

J

j” k”

ρt
k′,j′′+χ

t
k′,j′

+ηt
j′,k′,k′′ ρtj′′,k′′ + χtj′′,k′′

ρtj′,k′′ + χtj′,k′′

Figure 3.11: Layer Structure of the Dynamic Programming Algorithm for Synchro-
nization Path Variables qk

′,k′′,t
p .

of the dynamic programming execution, while arcs in G represents state transitions.
Different states, associated with the same node (i, l) correspond to different feasible
synchronization paths p reaching i at layer l. They differ by: the subset of nodes S
traversed by the current path and the length of the path d. States can be represented
by a label ((i, l), S, d); to every label a cost is associated c((i, l), S, d). Arcs in the
graph, representing state transition, reflect feasible hops of a synchronization path
in the network topology: from first layer (initial MEC facility) arcs connect to the
second layer only (core nodes); from the second layer to the (HQ − 1)-th nodes are
connected both to the next layer and to the last layer HQ (the final MEC facility).
Moreover, each arc has an associated cost, given by the network link costs and the
device activation costs defined in the objective function of the pricer (3.79). The
layer structure of the dynamic programming algorithm is sketched in Figure 3.11.

The main steps of our algorithm are the following:

Initialization The first layer is composed by a single node, that is the initial
MEC facility k′, its label is ((k′, 1), {k′}, 0) and its cost is initialized with the dual
variable value −θtk′,k′′ .

Propagation Nodes in intermediate layers from the second to the (HQ−1)-th
are connected only the nodes in the previous layer if and only if a feasible network
links exists between the nodes they represent, that is a state with label ((i, l), S, d) is
connected to a state in previous layer with label ((j, l−1), S, d) if and only if di,j ≤ d̄
Costs of these labels are extended according to the following rules:

c((j, l + 1), S, d) = min
i∈S\{j}|di,j<d̄

{c((i, l), S \ {j}, d− di,j) + ρti,j + χti,j}+ ηtj,k′,k′′

∀j ∈ J,∀l ∈ {2..(H̄Q − 2)} | d < D̄Q ∧ j 6= k′ 6= k′′

(3.87)

3.7. COMPUTATIONAL RESULTS 65

Last layer is composed by a single node, that is the target MEC facility k′′ and
its connected to every other nodes in the graph that can be reached by a feasible
network link, and its cost is computed according to the following rule:

c((k′′, H̄Q), S, d) = min
l∈{1..(H̄Q−1)}
i∈S\{k′′}|di,j<d̄

{c((i, l), S \ {k′′}, d− di,k′′) + ρti,k′′ + χti,k′′}| d < D̄Q

(3.88)

Stopping The minimum cost path is given by:

min
S

c((k′′, H̄Q), S, d)

s.t. d < D̄Q

3.7 Computational Results

We implemented our algorithms in C++, using IBM ILOG CPLEX 12.6 [72] to solve
MILP problems and their continuous relaxations. Our experiments ran on an Intel i7
4GHz workstation equipped with 32 GB of RAM. In order to test our algorithms we
considered a synthetic datasets, drawn starting from the capacitated p-median test
problems in [73]. The choice of the p-median is driven by the similarities with our
problem: both are single source facility location problems, with a set of candidates
locations equal to a subset of the clients, these latter having a demand to be satisfied.
The parameter p of the number of facilities to open is just not considered in our
problem, where a limit on the number of facilities to install is given by the fixed
costs associated to the activation of a MEC facility in the objective function.

3.7.1 Synthetic Dataset

The synthetic dataset of the capacitated p-median test problem in [73] consists of
20 instances: 10 instances with 50 nodes and 10 instances with 100 nodes. Every
problem instance contains the following data:

• a pair of coordinates for each node, that we used to compute distance param-
eters di,j as euclidean distances;

• a demand for each node that we considered as VM demand parameter ni;

66 MNDP Optimization Algorithms

• a single capacity value for facilities, that is our parameter C.

As first missing parameter we set ui,j to value 10000, that for sake of interpretability
corresponds to a link with 1Gbps bandwidth. To be consistent with this value, we
multiplied by 100 both the demand values ni found in the p-median instance and the
MEC capacity C.

Bandwidth demands bi are computed as a percentage of the VM demand, gen-
erated as a uniform distributed random value between 95% and 105%, independently
for every node. There is no connection between this computation and real correla-
tion between number of users and bandwidth demand: we will perform extensive
evaluation of real-world scenario in Chapter 4 using real number of users and the
corresponding bandwidth demand. Parameter U , which has to be seen as a percent-
age, is set to 0.3: after preliminary analysis, higher values of U lead to loose link
capacity constraints and low variability in the results. Further parametric analy-
sis on the value of U in performed in Chapter 4. Following [74] and [75], we fix
li = 0.01, mj = 0.1, and ck = 1. These costs can be seen as percentage costs, and
the network costs can be estimated as about 10% of the overall MEC facility costs as
suggested in [74]. Coefficients D̄ and D̄Q are computed respectively as the 75% and
85% of the radius of the considered area; to compute this latter, in turn, we consider
the diameter of the considered area as the maximum distance between the nodes.
d̄ is set to be the 50% of D̄. The number of hops H̄ and H̄Q are set to four and
three, respectively: accordingly to [35], a wireless EC facilities approach outperforms
a cloud-based approach when up to a maximum of four hops are considered. We set
parameters of constraints (3.24)–(3.26), representing a lower bound on the number
of facilities to activate, as follows:

• the minimum number of MEC facilities is computed as the minimum number
of facilities needed to satisfy all VMs demands: Z = d

∑
s ns/Ce;

• to set the minimum number of aggregation nodes X we solve a vertex covering

3.7. COMPUTATIONAL RESULTS 67

problem through the following MIP

min X =
∑
i∈I

xi (3.89)

s.t.
∑
i∈I

ts,i ≥ 1 ∀s ∈ B (3.90)

ts,i ≤ xi ∀s ∈ B, ∀i ∈ I (3.91)

ts,i = 0 ∀s ∈ B, ∀i ∈ I : ds,i > d̄ (3.92)

ts,i ∈ {0, 1} ∀s ∈ B, ∀i ∈ I (3.93)

xi ∈ {0, 1} ∀s ∈ B (3.94)

• the minimum number of cores Y is finally set equal to the minimum number
of aggregation nodes X;

After preliminary tests, including these constraints helped in strengthening the lower
bound of the CG process, and lowering the execution time for the CG process; with
respect to the final solution value their inclusion has not shown either particular
worsening or improvement.

Rounding step threshold parameter ε is set to 10−3. For the local search step,
time limit parameter τ is set to 300 seconds and κ parameter is set to 30%.

For what concerns dynamic planning parameters, two time-frames are consid-
ered. The first time frame is composed by data directly taken from the dataset, and
used also in the static planning scenario, while data for the second time frame are
computed with the following process:

(i) the overall number of active users is set as a random fraction of the users in
the first time frame, that in turn is computed as the sum of demand values∑

i∈B ni,1; this percentage is generated uniformly in the range [97%, 103%];

(ii) user mobility is modelled through a B ×B matrix: a cell (i, j) of the mobility
matrix represents the amount of users moving from AP i to AP j in between the
two time frames. A synthetic user mobility matrix is generated by computing
for every cell of the matrix a value drawn from an exponential distribution with
parameter λ = 0.1;

(iii) the mobility matrix is normalized twice: first normalization imposes that the
percentage of users that don’t move (i.e. the diagonal of the mobility matrix)
is near the 20% of the total mobility, matching real world mobility that we
present in Chapter 4.1, and the second normalization forces the overall number
of users in the system to be the value computed at stage (i);

68 MNDP Optimization Algorithms

(iv) a data binning process is successively executed on user mobility, setting to 0
all values below the 50th percentile; that is, we only consider high mobility;

(v) the VM demands in the second time frame ni,2 are given by the sum of the VM
demands in first time frame and the mobility matrix.

Bandwidth demands bi,2 of the second time frame are computed as in the static
planning scenario. For simplicity, function Φ(x) is set as a linear function that
consider the synchronization traffic to be the 30% of the average traffic generated by
users:

Φ(x) = x ·
∑

i∈I
∑

t∈T n
t
i∑

i∈I
∑

t∈T b
t
i

· 0.3 (3.95)

The values of parameters D̄ and D̄Q are set for each instance independently.
These parameters represent a percentage of the radius of the considered area, which
in turn is computed as half of the maximum distance between nodes: starting from
a percentage of 70% for both parameters, both values are increased by one percent-
age points until a feasible solution for the first phase of l-MNDP matheuristic is
found.

VM file size (parameter G) and users’ sojourn time (parameter Tw) used in
constraints (3.73) were set respectively to 1GB and 5 hours.

Extensive analyses and motivation on the setting of these last two parameters
are discussed for real world instances in Chapter 4, together with the parametric
analysis of parameters D̄ , U and C.

3.7.2 s-MNDP Computational Results

In order to assess computational viability and effectiveness of the s-MNDP Matheuris-
tic, we present three execution variants:

(i) s-MNDP-noclust: we execute the s-MNDP Matheuristic considering the
complete set of nodes B, that is without clustering the network;

(ii) s-MNDP-2layers: we execute the s-MNDP Matheuristic considering the com-
plete set of nodes |B| but forcing each of them to be aggregation nodes, that
is fixing all variables xi to value 1 and generating only paths that consider a
fixed assignment of an AP to itself as an aggregation node; in this way we want
to assess the usefulness of considering a three layers (aggregation nodes, core
nodes and MEC facilities) hierarchical network instead of a two layers (core
nodes and MEC facilities) network;

3.7. COMPUTATIONAL RESULTS 69

(iii) s-MNDP: we execute the complete s-MNDP Matheuristic described in Section
3.4, including the initial clustering and the clustering update; we consider two
initializations strategies, and two values for the α parameter.

s-MNDP-noclust

Initialized with CVC-round As first analysis we run the s-MNDP-noclust vari-
ant, that is s-MNDP without the clustering step (step (a) in Figure 3.4): we directly
consider the complete network executing steps (b)–(e) only once. We initialize the
restricted master problem with the solution given by our CVC-round.

In Table 3.4 we include details for every instance of our dataset (row-wise). For
every instance we include the total time required by the execution of the algorithm in
seconds (column ‘total time’) and we report several information for every stage of the
matheuristic, respectively the column generation (‘CG’), the hierarchical rounding
and pricing process (‘R&P’) and the local search. For the column generation process
we report the final lower bound (‘LB’), the number of iterations (‘no. iter’), the
sum of the times spent in every master LP execution in seconds (‘mast. time’) and
the sum of the times spent in every pricing subproblem execution in seconds (‘pric.
time’). For the hierarchical rounding and pricing we report: the number of CG
iterations executed throughout the process (‘no. iter.’); the sum of the times spent
in every master LP (‘mast. time’) and in every pricing (‘pric. time’); the time spent
in final MIP execution in seconds (‘MIP time’), to round the remaining free variables;
and, finally, its final feasible integer solution value (‘MIP sol.’). For the local search
process we report the time spent by the generic MIP solver in seconds (‘time’) (we
remind that we fix a maximum execution time of τ = 300 seconds), the final feasible
integer solution (‘sol.’) and percentage gap between the final solution and the lower
bound found at the end of the CG (‘gap’): this latter is computed as (z∗ − lb)/lb
where z∗ is the final solution value and lb is the lower bound value. At last we report
the number of activated MEC facilities (‘|K|’), core nodes (‘|J |’) and aggregations
nodes (‘|I|’) of the final solution.

We first notice that computing time grows quickly as the size of the instance
increases.

The CG has good convergence behaviour and no significant differences can be
noticed in the number of iterations required to complete CG execution moving from
50 nodes to 100 nodes. The time spent for the execution of the master LPs is slightly
higher than the time required for the pricing subproblems. In just one instance over

70 MNDP Optimization Algorithms

twenty the iterations needed to complete the computation are significantly higher
and in this case the time required for the pricing subproblems computation is much
higher than the time spent for the master LPs.

The hierarchical rounding and pricing process shows a higher variance in the
number of iterations required to complete execution and in the final execution times.
The time spent for the pricing subproblems is always higher than the time spent in
the master LPs. While these latter are easier to solve as the rounding process goes
on fixing more variables, master resolution process does not simplify. The final MIP
execution to fix the last remaining free variables is always solved in few seconds. For
instances with 100 nodes, the majority of the execution time in fact is spent in this
rounding and pricing step.

The local search process, the execution of which we limit to a maximum of 300
seconds, on average improves the feasible solution found by the rounding and pricing
process of about 14%.

The gap of the solution given by the local search and the lower bound found
though column generation is on average about 25% for the 50 nodes cardinality
instances and 8% for the 100 nodes cardinality instances. Since we set the facility
activation costs so that a MEC facility has cost 1, a core nodes has cost 0.1 and
an aggregation node has cost 0.01, by looking at the difference in absolute value
between the final solution and the column generation lower bound we can measure
how many MEC facilities can be saved in the most optimistic scenario. In seven
cases, the solutions difference is less than 1 and hence our solutions are proved to use
a globally minimum number of MEC facilities. In nine cases the difference is between
1 and 2, and hence no solution exists that reduce the number of MEC facilities by
more than one unit. In the remaining four cases the difference is between 2 and 3,
and hence optimality guarantees as less strong.

Initialized with CPLEX We run the s-MNDP-noclust variant initializing the
restricted master problem with the solution of the simplified version of the problem
(3.27)–(3.32) solved to optimality with the ILP generic solver of CPLEX instead of
our CVC-round. We present the corresponding results in Table 3.5.

For every instance we include: the total time required by the execution of our
algorithm in seconds (column ‘total time’); the execution time in seconds required by
CPLEX to solve (3.27)–(3.32) to optimality (‘CPX init. time’); for the CG process
we provide its final lower bound (‘LB’), the number of CG iterations (‘no iter.’) and
the total time in seconds (‘total time’); for the rounding and pricing process we pro-

3.7. COMPUTATIONAL RESULTS 71

vide the number of CG iterations (‘no iter.’), the total time in seconds (‘total time’)
and the final feasible solution (‘MIP sol.’); for the local search step we provide its ex-
ecution time (‘time’), the final best solution value (‘sol’), the percentage gap between
the final solution and the lower bound of the CG, and the corresponding number of
MEC facilities, core nodes and aggregation nodes (‘|K|’, ‘|J |’ and ‘|I|’).

Finally, we provide the percentage gap between the final solution values and
final execution times given by this scenario and those given by the s-MNDP-noclust,
which is initialized with our CVC heuristic (in Table 3.4), respectively in column ‘∆pb’
and ‘∆t’. Given s1 the solution (resp. time) provided by this scenario and with s2 the
solution (resp. time) given in Table 3.4, the gap is computed as (s1−s2)/s2: hence, a
positive gap is related to a higher final solution value (resp. execution time) for this
scenario, while a negative gap is related to a lower value given by this scenario.

With respect to these percentage gaps we can notice that: the initialization
with an optimality solution retrieves a better final solution 9 times over 20 and a
worse solution 7 times over 20. However in 3 cases it allows to save a MEC facility
activation, that represent the most expensive contribution to the final solution value.
However, the initialization with an optimality solution leads to a longer execution
time, with an average increase of about 20%. This increase is not related to the
initial ILP run of CPLEX, which requires at maximum few seconds, while it seems
to lie in a longer execution required by the rounding process.

We can state that an optimal initial solution of the simplified version of the
s-MNDP can lead to improvements in the s-MNDP final solution with limited draw-
backs in terms of higher execution times. However for bigger size networks, the
initialization with an ILP execution of CPLEX may require substantial time.

s-MNDP-2layers

In Table 3.6 we include details of the s-MNDP-2layers. In this variant we fix every
AP to be also an aggregation node, that is we fix the corresponding variables xi and
ti,i to value 1, and we force all generated paths to use the AP itself as aggregation
node. The cost contribution of the aggregation nodes is not removed from the objec-
tive function. Similarly to the case of the s-MNDP-noclust variant, we also do not
consider clustering step (step (a) in Figure 3.4), directly considering the complete
network executing steps (b)–(e) only once without further changes. Given that the
aggregation nodes are the least expensive facilities, we trade a possibly (not much)
higher final cost for a lower execution time. The rationale is to evaluate the usefulness

72 MNDP Optimization Algorithms

given from considering a complete three-layer hierarchical network (as in s-MNDP-
noclust variant) with respect to an easier two-layer network simply obtained through
preprocessing.

The format is the same of Table 3.4, with two more columns: column ∆pb

reports the percentage gap between the final solution found by this variant with the
final solution found by the s-MNDP-noclust variant (presented in Table 3.4); column
∆db contains the percentage gap between the final solution found by this variant and
the lower bound found by the CG in the s-MNDP-noclust variant (still presented in
Table 3.4). Both gaps are computed as (z∗ − x)/x where z∗ is the solution found by
this variant and x is the solution (resp. lower bound of the CG) found by s-MNDP-
noclust. The measure of ∆db represents the optimality gap given by s-MNDP-2layers
with respect to the original problem, while the value presented in column ‘gap’ is
the optimality gap with respect to this simplified variant of the problem.

Restricting the model to a two-layer network decreases the required execution
time on average of almost a factor 7 for the 50 nodes instances and 3 for the 100 nodes
instances. In particular the pricing subproblems require few seconds overall, both for
the column generation and for the rounding and pricing process, while considering a
three-layer network the pricing execution is the most time-consuming process.

The lower execution times come at the price of a worsening of the final solu-
tion of about 11% for the 50 nodes instances and 12% for the 100 nodes instances,
with respect to s-MNDP-noclust solutions. However, if we focus on the number of
activated MEC facilities (column ‘|K|’), s-MNDP-2layers solutions activate the same
number of MEC facilities of the s-MNDP-noclust solutions in fourteen cases, saving
2 MEC facilities in one case, 1 MEC facility in four cases, and activating one ex-
tra MEC facility in just one case. If we consider only MEC facilities costs and core
nodes costs, s-MNDP-2layers retrieves a solution that is worse than s-MNDP-noclust
solution on average of about 4%, but that is better in four cases.

s-MNDP Clustering Effects

As third analysis we consider the effects of the use of clustering of the complete s-
MNDP matheuristic with respect to the use of the complete network (as in s-MNDP-
noclust variant). In Table 3.7 we include details of the s-MNDP Matheuristic for
every instance of out dataset (row-wise), considering:

• two different values for parameter α, that identifies the maximum number of
clusters to consider (row-wise): in particular for the 50 nodes instances we

3.7. COMPUTATIONAL RESULTS 73

consider at maximum half of the original nodes as clusters, while for the 100
nodes instances we consider both one third and half of the original nodes.

• two different initialization methods, that is the Partitioning Around Medoids
algorithm (‘PAM Init.’ columns) and the heuristic algorithm CVC-round (‘CVC
Init.’ columns).

For every instance we limit the number of clustering update iterations to fifteen.

For each initialization variant we report the solution given by the heuristic
algorithm CVC-round (‘CVC sol.’), the required execution time in seconds (‘time’),
the iteration in which the best solution was found (‘best sol. iter.’), the value of
the first solution found (‘first sol.’), the value of the best solution found (‘best sol.’),
the percentage difference between the first solution and the best solution (‘∆s first
sol.’), the percentage difference between the best solution and the solution given by
CVC-round (‘∆s CVC sol.’) and, finally, the percentage difference between the best
solution found by the clustered network and the best solution known, either found
by s-MNDP-noclust or s-MNDP-2layers (‘∆s best sol.’). These gaps are computed
as (z∗ − x)/x where z∗ is the solution found by the clustering process while x is
either the first solution, or the CVC-round solution or the best known solution for
the instance.

We can notice that the choice of the initial solution is crucial: the best solu-
tion retrieved by the variant initialized with the PAM Algorithm is worse than the
solution given by the rounding heuristic in all cases but one, and it is worse than the
best known solution on average of about 64%. On the contrary, by initializing the
clustering with the rounding heuristic, s-MNDP retrieves a solution that on average
is worse than the s-MNDP-noclust solution of about 16% and that can never be
worse than the initial simplified solution. Actually in this last case the clustering
variant improves the heuristic solution on average by about 9%, which means that
it can be used as a means to improve an initial simplified solution.

Clustering allows to save execution times: on average the required time for
the variant initialized with the rounding heuristic is twelve times lower than its s-
MNDP-noclust variant counterpart; however the execution times was slightly higher
in four cases for the 100 nodes instances clustered with half of the original nodes
(i.e. α = 1/2).

The percentage difference between the best solution and the first solution found
is a measure of effectiveness for our clustering update strategy. For the variant
initialized with CVC-round, in fifteen cases over thirty the best solution was the
initial solution and hence the clustering update strategy was ineffective, while in

74 MNDP Optimization Algorithms

nine cases the best solution was given by the first clustering updating. Considering
only the strictly positive improvements, the average improvement was of about 8%,
but focused in the 50 nodes instances. For the solely 100 nodes instances the average
improvement was on average about 3%.

For what concerns the choice of the α parameter (i.e. the choice of the maximum
number of clusters to consider), we can notice that there are no striking differences
in the quality of the best solution found: for the 100 nodes instances, in the variant
initialized with CVC-round, using one third of the nodes retrieves a solution worse
than the best solution on average of about 11% while using one half of the nodes, i.e. a
bigger clustered network, retrieves a solution that is worse than the best solution on
average of about 12%. The main difference lies in the required execution times: using
one half of the original nodes requires on average thirty times more computation time
than using one third of nodes.

3.7.3 l-MNDP Computational Results

We present computational results analysis of the l-MNDP Matheuristic and, succes-
sively, we compare solutions given by the l-MNDP model with those given by the
s-MNDP-noclust, considering a measure of users’ SLA violation. We present results
of the l-MNDP Matheuristic for instances with 50 nodes, as we were not able to find
solutions for the instances with 100 nodes.

In Table 3.8 we report details of the l-MNDP Matheuristic for the ten instances
with 50 nodes of our dataset (row-wise). The first three columns identify the instance:
in particular we report the number of nodes (‘|B|’), the maximum length of an AP-
MEC facility path and the maximum length of a synchronization path (columns ‘D̄’
and ‘D̄Q’, respectively), defined as percentage of the radius of the considered area.
Then we report the required execution time in seconds (column ‘total time’) and
several information regarding the first and the second stage of our Matheuristic. For
the first stage we report the lower bound given by the column generation (column
‘LB CG’), the number of column generation iterations of column generation (column
‘no. iter.’), the lower bound at the end of the hierarchical rounding and pricing pro-
cess (column ‘LB R&P’), the time in seconds required by all master LPs executions
(column ’master time’), the time in seconds required by the pricing subproblems
separately for the AP-MEC facility assignment path variables (column ‘pricing time
rsktp ’) and for the synchronization path variables (column ‘pricing time qk

′k′′t
p ’); finally

we report the final solution of the first stage (column ‘sol.’). For the second stage
we report the time in seconds required by the master LPs and the two pricing sub-

3.7. COMPUTATIONAL RESULTS 75

problems, together with the final feasible solution (column ‘sol.’) and the number of
activated MEC facility, core nodes and aggregation nodes (columns ‘|K|’, ‘|J |’ and
‘|I|’).

We were not able to find a feasible solution to the third instance, that we label
with NF (i.e. not found).

We can notice that the execution time rises from the few minutes required for
the s-MNDP variant to a maximum of ten hours. In particular we can notice that
the majority of time is spent in the first phase of the algorithm, and in particular in
the pricing subproblems for the AP-MEC facility assignment path variables and, to
a lesser extent, for the master LPs. The pricing subproblems for the synchronization
path variables, on the contrary, requires negligible time, as well as the overall second
stage. The number of CG iteration required in the first stage is similar to the number
of iteration required by the s-MNDP Matheuristic CG, and hence the complexity lies
in the rounding and pricing process.

The gap of the final solution with the CG lower bound of the first stage is on
average very large. A possible explanation is highlighted by the following experiment.

Static Planning vs Dynamic Planning

In Table 3.9 we report the solution of the s-MNDP-noclust variant for the ten in-
stances with 50 nodes using the same parameter D̄ that we use for the l-MNDP
variant, in order for a fair comparison of the resulting solutions. The format of the
table is the same of the previously presented Table 3.4, with an additional column
representing the number of users experiencing a violation of their SLA (column ‘%
violated SLA’).

In order to compare Dynamic Planning Variant with Static Planning Variant
from the users perspective, we introduce a further fitness measure, that is the percent-
age of users with violated SLA after migration. We remark that l-MNDP guarantees
by design 0% of users with violated SLA, while, on the contrary, s-MNDP does not
give any a-priori guarantee. In order to compute the users migrations from a solu-
tion given by the Static Planning s-MNDP Matheuristic, a post-processing phase is
needed. Given a solution S̄ resulting from s-MNDP, we know by the parameter fs′,s′′
that users migrate in the planning horizon between APs s′ and s′′; at the same time,
we know, by values of variables rs,kp in S̄, which are those MEC facilities k′ and k′′

servicing s′ and s′′, respectively. If it is possible to construct, after the optimization

76 MNDP Optimization Algorithms

process, a feasible synchronization path between k′ and k′′ respecting constraints
(3.67), then we say that the SLA of those fs′,s′′ users are respected; otherwise we say
that they are violated. Indeed, if a feasible synchronization path cannot be estab-
lished, a user may perceive a latency during migrations that exceeds his SLA.

We can notice that the s-MNDP always leads to impressive savings in the
execution time: few seconds are required with this relaxed instances instead of several
hours of computation. Moreover also the final cost is always better than the cost
given by the l-MNDP variant, and is very close to the CG lower bound. l-MNDP
solutions requires at maximum two extra MEC facilities to be enabled with respect
to the s-MNDP solution, but many extra core nodes and aggregation nodes that are
used for the synchronizations path to be established.

However considering the Dynamic Planning version is crucial to comply with
migrating users’ SLA: in s-MNDP solutions, on average, about the 40% of users
experience violation of their SLA. For the fourth instance no user has violated SLA,
but this outcome is likely to be fortuitous.

Finally, if we compare the lower bounds of the CG and of the rounding process
of the s-MNDP and those given by the first stage of the l-MNDP in Table 3.8, we
can notice little difference in values while we could expect a substantial difference
given that l-MNDP is more constrained. Hence we can assume that the high gap of
the final feasible solution of l-MNDP with respect to its CG lower bound is given by
the weakness of the latter.

The introduction of strengthening inequalities might be pertinent in applica-
tions requiring accurate quality estimates.

3.8 Conclusions

In this chapter a new strategic network design NP-Hard problem, the MEC Network
Design Problem (MNDP), has been presented. We formally defined the problem, in-
cluding two planning model variations: (i) considering a static status of the network,
unaware of variations during the planning horizon, and (ii) considering a dynamic
network, including load variations and mobility of users and virtual machines, en-
coding three different virtual machine mobility technologies.

We provide link-path mixed integer linear programming formulations including
a polynomial number of variables to represent location and design decisions, and
an exponential number of them to encode routing ones. In order to achieve high

3.8. CONCLUSIONS 77

quality solutions in reasonable time, we provide mathematical programming based
matheuristics for the two variants of MNDP, combining column generation, iterative
rounding, very large scale neighborhood local search and problem reduction.

We experimented on a dataset of twenty small size instances involving 50 and
100 APs adapted from the facility location literature, and drawing insights to use
our approach as a tool for a predictive analysis.

In case it is crucial to comply with users’ SLA also considering users’ migra-
tion, the l-MNDP variant guarantees such a compliance and has to be used. As a
drawback, l-MNDP can be used only for small size networks to retrieve solution in
reasonable time, and it retrieves higher costs solution than the s-MNDP case. On
the contrary, if SLA can be defined as static with respect to users’ actual location in
time, s-MNDP variant can be used.

In case s-MNDP variant is used, we identified two discriminants for its use: the
size of the network and the availability of time. s-MNDP can tackle in reasonable
time instances with up to 100 nodes; best results in terms of minimum cost solution
are given by the s-MNDP-noclust variant which requires up to few hours of execution
times. To save execution time, the s-MNDP-2layers variant can be used, requiring up
to few minutes of execution: the worsening in terms of solution value is reasonable
(up to 11%) but focusing on the solely MEC facility and core node locations the
worsening is further limited (up to 4%).

For bigger size networks, the most appealing option seems to be the complete
s-MNDP variant, which includes the clustering of the initial network. In this case is
crucial the choice of the initial clustering: if a good heuristic solution is provided,
the s-MNDP can be used to improve it. If a good initial solution is not available,
the clustered network should be has big as possible with respect to the original size
to have good final solution. The time required by s-MNDP is comparable to the
time required by s-MNDP-2layers with a network of the same size of the clustered
network.

As to future work from the algorithmic point of view: with respect to the
static planning variant, it could be interesting to improve the restart strategy for
the clustering approach to improve the effectiveness of the corresponding algorithm
variant; with respect to the dynamic planning variant, a different approach to restore
integrality on the fractional solution to replace the rounding process could be devised
to improve the final solution value and the lower bound.

78
M
N
D
P
O
p
tim

ization
A
lgorith

m
s

CG R&P local search

|B| inst.
ID

total
time

LB
no.
iter.

mast.
time

pric.
time

no.
iter.

mast.
time

pric.
time

MIP
time

MIP
sol.

time sol. gap |K| |J | |I|

50

1 152 5.388 66 6 10 117 3 19 0 6.60 114 6.60 22.49% 6 5 10
2 279 5.536 53 30 9 482 31 78 1 7.94 126 6.62 19.58% 6 5 12
3 170 6.233 62 13 12 314 10 57 0 7.74 78 6.75 8.29% 6 6 15
4 417 8.509 69 18 11 422 20 64 0 10.03 300 9.91 16.46% 9 8 11
5 179 5.389 43 10 9 319 23 41 0 8.91 95 7.52 39.54% 7 4 12
6 364 5.474 55 10 10 237 8 34 0 8.78 300 7.75 41.58% 7 6 15
7 405 5.391 42 10 11 331 33 50 1 8.05 300 6.61 22.61% 6 5 11
8 86 5.716 39 13 7 230 20 29 0 8.63 16 6.62 15.82% 6 5 12
9 440 5.375 53 17 7 307 52 54 0 8.04 300 6.60 22.79% 6 5 10
10 389 6.858 57 15 7 353 14 51 1 11.38 300 9.73 41.88% 9 6 13

100

11 4366 9.393 66 175 156 1040 1621 2011 5 12.03 301 10.61 12.96% 10 5 11
12 4001 9.393 180 256 347 1080 690 2389 1 11.72 300 10.61 12.96% 10 5 11
13 2228 9.490 78 123 153 629 480 1161 1 12.83 300 9.61 1.26% 9 5 11
14 2553 9.390 33 118 82 721 626 1411 1 12.94 300 9.51 1.28% 9 4 11
15 4161 9.490 42 118 75 1762 516 3127 1 13.13 300 10.51 10.75% 10 4 11
16 5376 9.391 85 238 171 1322 1990 2662 1 11.81 300 9.62 2.44% 9 5 12
17 7032 9.398 55 194 134 1498 2039 2815 2 12.00 300 11.73 24.81% 11 6 13
18 4857 9.500 20 99 46 1192 1709 2681 1 13.06 300 10.72 12.84% 10 6 12
19 3157 10.400 23 58 48 1292 288 2444 1 11.92 300 10.63 2.21% 10 5 13
20 1351 10.400 14 13 28 521 57 944 0 11.94 301 10.62 2.12% 10 5 12

Table 3.4: s-MNDP-noclust - Computational Results

3.8.
C
O
N
C
L
U
S
IO

N
S

79

CG R&P local search w.r.t. Table 3.4

|B| inst.
ID

total
time

CPX
init.
time

LB
no.
iter.

total
time

no.
iter.

total
time

MIP
sol.

time sol. gap |K| |J | |I| ∆pb ∆t

50

1 154 0 5.388 66 16 117 139 6.60 114 6.60 22.50% 6 5 10 0.00% 1.32%
2 389 0 5.536 54 39 462 591 8.03 233 6.61 19.41% 6 5 11 -0.15% 39.43%
3 211 0 6.233 59 25 267 381 7.75 127 6.75 8.29% 6 6 15 0.00% 24.12%
4 432 0 8.509 69 29 422 506 10.03 300 9.91 16.47% 9 8 11 0.00% 3.60%
5 318 0 5.388 47 19 378 383 8.82 221 7.6 41.06% 7 5 10 1.06% 77.65%
6 363 0 5.474 53 20 244 279 9.09 300 7.74 41.40% 7 6 14 -0.13% -0.27%
7 391 0 5.391 36 21 354 414 7.81 300 6.63 22.98% 6 5 13 0.30% -3.46%
8 154 0 5.716 34 20 211 279 8.05 96 6.63 15.99% 6 5 13 0.15% 79.07%
9 445 0 5.375 53 24 307 413 8.13 300 6.52 21.31% 6 4 12 -1.21% 1.14%
10 393 0 6.858 59 22 361 418 11.96 300 8.85 29.05% 8 7 15 -9.04% 1.03%

100

11 5543 2 9.393 67 331 2017 4672 12.25 300 10.73 14.23% 10 6 13 1.13% 26.96%
12 3584 0 9.394 73 603 1258 4159 10.73 300 10.61 12.95% 10 5 11 0.00% -10.42%
13 2292 1 9.490 75 276 788 2270 9.59 300 9.59 1.05% 9 5 9 -0.21% 2.87%
14 5468 0 9.390 43 200 1600 2758 11.04 300 9.6 2.24% 9 5 10 0.95% 114.18%
15 3462 3 9.491 79 193 1423 5405 11.84 300 9.77 2.94% 9 6 17 -7.04% -16.80%
16 10120 1 9.391 79 409 1537 5974 10.7 300 9.72 3.51% 9 6 12 1.04% 88.24%
17 6961 4 9.398 45 328 1217 6352 12.36 301 10.73 14.17% 10 6 13 -8.53% -1.01%
18 3142 0 9.500 20 145 1166 5582 12.14 300 10.73 12.95% 10 6 13 0.09% -35.31%
19 3492 2 10.400 42 106 1400 4024 12.96 300 10.62 2.12% 10 5 12 -0.09% 10.61%
20 1363 2 10.400 13 41 486 1522 11.81 300 10.52 1.15% 10 4 12 -0.94% 0.89%

Table 3.5: s-MNDP-noclust - Init. with CPLEX - Computational Results

80
M
N
D
P
O
p
tim

ization
A
lgorith

m
s

CG R&P local search w.r.t. Table 3.4

|B| inst.
ID

total
time

LB
no.
iter.

mast.
time

pric.
time

no.
iter.

mast.
time

pric.
time

MIP
time

MIP
sol.

time sol. gap |K| |J | ∆pb ∆db

50

1 10 6.15 51 2 0 134 2 2 0 7.8 3 7.3 18.78% 6 8 10.61% 35.49%
2 61 6.31 48 8 1 275 14 2 0 8 33 7.6 20.41% 6 11 14.80% 37.28%
3 43 7.11 44 5 0 205 8 1 1 10.4 26 8.8 23.84% 7 13 30.37% 41.18%
4 118 9.25 51 5 0 271 10 4 0 11.9 96 10.1 9.15% 8 16 1.92% 18.70%
5 19 6.16 38 4 0 158 2 2 1 8.1 7 6.9 12.09% 5 14 -8.24% 28.04%
6 15 6.52 45 3 0 158 2 1 1 9.4 5 8.1 24.29% 6 16 4.52% 47.97%
7 141 6.18 43 5 0 185 9 1 1 8.2 121 7.6 23.06% 6 11 14.98% 40.98%
8 34 6.59 47 5 0 149 6 0 1 9.1 20 8.3 26.04% 6 18 25.38% 45.21%
9 37 5.98 43 7 1 184 8 3 1 8.1 14 7.3 22.07% 6 8 10.61% 35.81%
10 146 7.68 40 5 0 137 6 0 0 10.7 133 10.5 36.75% 9 10 7.91% 53.11%

100

11 879 10.50 101 182 1 632 349 8 2 12.6 300 12 14.31% 10 10 13.10% 27.75%
12 924 10.48 171 273 1 823 304 22 2 12.5 300 11.2 6.85% 9 12 5.56% 19.24%
13 852 10.46 79 175 1 799 331 11 1 12.2 300 11.1 6.09% 9 11 15.50% 16.97%
14 773 10.47 108 210 5 660 216 12 1 12.1 301 11 5.08% 9 10 15.67% 17.15%
15 847 10.48 103 228 3 733 277 8 5 12.8 300 12.1 15.50% 10 11 15.13% 27.50%
16 1051 10.49 169 289 4 772 406 16 2 12.3 300 11.1 5.84% 9 11 15.38% 18.20%
17 989 10.50 100 243 0 491 392 8 1 13 301 12.4 18.11% 10 14 5.71% 31.94%
18 898 10.52 101 235 2 588 312 9 2 12.4 300 12.2 16.02% 10 12 13.81% 28.42%
19 881 11.47 113 200 3 985 326 16 1 12.3 300 12.2 6.37% 10 12 14.77% 17.31%
20 638 11.48 117 126 2 686 169 10 1 13.4 301 12.1 5.44% 10 11 13.94% 16.35%

Table 3.6: s-MNDP-2layers - Computational Results

3.8.
C
O
N
C
L
U
S
IO

N
S

81

PAM Init. CVC Init.

|B| α
inst.
ID

CVC
sol.

time
best
sol.
iter.

first
sol.

best
sol.

∆s

first
sol.

∆s

CVC
sol.

∆s

best
sol.

time
best
sol.
iter.

first
sol.

best
sol.

∆s

first
sol.

∆s

CVC
sol.

∆s

best
sol.

50 1
2

1 8.88 10 6 10.05 9.15 -8.96% 3.04% 38.64% 7 1 8.88 6.95 -21.73% -21.73% 5.30%
2 9.99 13 3 11.25 11.25 0.00% 12.61% 70.20% 34 1 9.99 7.95 -20.42% -20.42% 20.27%
3 11.1 9 6 12.25 10.15 -17.14% -8.56% 50.37% 19 4 10 9.25 -7.50% -16.67% 37.04%
4 11.1 21 7 13.15 12.25 -6.84% 10.36% 23.61% 25 1 11.1 10.25 -7.66% -7.66% 3.43%
5 9.99 12 9 11.25 10.25 -8.89% 2.60% 48.55% 32 9 9.89 9.15 -7.48% -8.41% 32.61%
6 12.21 6 1 14.35 14.25 -0.70% 16.71% 84.11% 5 12 12.21 10.25 -16.05% -16.05% 32.43%
7 9.99 11 4 12.15 11.15 -8.23% 11.61% 68.68% 53 1 9.89 9.05 -8.49% -9.41% 36.91%
8 9.99 9 0 11.25 11.25 0.00% 12.61% 69.94% 26 0 9.79 9.79 0.00% -2.00% 47.89%
9 7.77 16 9 10.15 8.05 -20.69% 3.60% 23.47% 53 0 7.67 7.67 0.00% -1.29% 17.64%
10 9.99 9 7 12.25 12.25 0.00% 22.62% 38.42% 17 0 9.99 9.99 0.00% 0.00% 12.88%

100

1
3

11 13.32 44 1 20.33 20.23 -0.49% 51.88% 90.67% 200 1 11.82 11.13 -5.84% -16.44% 4.90%
12 11.1 47 7 17.33 16.33 -5.77% 47.12% 53.91% 90 0 12.72 12.72 0.00% 14.59% 19.89%
13 12.21 51 1 16.13 16.13 0.00% 32.10% 68.20% 294 0 10.81 10.81 0.00% -11.47% 12.72%
14 12.21 38 0 19.13 19.13 0.00% 56.67% 101.16% 203 0 10.71 10.71 0.00% -12.29% 12.62%
15 13.32 47 5 21.13 20.13 -4.73% 51.13% 106.04% 237 1 11.03 11.03 0.00% -17.19% 12.90%
16 11.1 39 12 21.33 19.33 -9.38% 74.14% 100.94% 1758 1 10.23 10.23 0.00% -7.84% 6.34%
17 13.32 54 0 21.03 21.03 0.00% 57.88% 95.99% 188 0 11.92 11.92 0.00% -10.51% 11.09%
18 13.32 35 3 19.33 18.33 -5.17% 37.61% 70.99% 151 2 12.23 12.23 0.00% -8.18% 14.09%
19 13.32 52 0 21.13 21.13 0.00% 58.63% 98.96% 118 10 12.13 11.23 -7.42% -15.69% 5.74%
20 12.21 47 0 22.13 22.13 0.00% 81.24% 110.36% 62 1 12.03 12.03 0.00% -1.47% 14.35%

1
2

11 13.32 652 5 15.6 13.7 -12.18% 2.85% 29.12% 2680 1 11.82 11.5 -2.71% -13.66% 8.39%
12 11.1 545 14 13 12.7 -2.31% 14.41% 19.70% 2180 10 12.72 12.4 -2.52% 11.71% 16.87%
13 12.21 499 2 15.5 15.5 0.00% 26.95% 61.63% 3770 13 10.81 10.6 -1.94% -13.19% 10.53%
14 12.21 1334 0 14.7 14.7 0.00% 20.39% 54.57% 3624 0 10.7 10.7 0.00% -12.37% 12.51%
15 13.32 389 13 14.7 14.4 -2.04% 8.11% 47.39% 3674 2 10.9 10.8 -0.92% -18.92% 10.54%
16 11.1 421 1 17.5 17.5 0.00% 57.66% 81.91% 3807 8 10.9 10.7 -1.83% -3.60% 11.23%
17 13.32 582 10 16.9 14.7 -13.02% 10.36% 37.00% 3747 0 11.92 11.92 0.00% -10.51% 11.09%
18 13.32 485 0 14.9 14.9 0.00% 11.86% 38.99% 4272 1 12.4 12.4 0.00% -6.91% 15.67%
19 13.32 1109 4 16.5 16.5 0.00% 23.87% 55.37% 4177 14 11.5 11.4 -0.87% -14.41% 7.34%
20 12.21 345 9 19.5 17.7 -9.23% 44.96% 68.25% 1665 1 12.21 12.21 0.00% 0.00% 16.06%

Table 3.7: s-MNDP - Clustered Network Computational Results

82
M
N
D
P
O
p
tim

ization
A
lgorith

m
s

First Stage Second Stage

|B| inst.
ID

D̄ D̄Q total
time

LB
CG

no.
iter.

LB
R&P

mast.
time

pric.
time
rsktp

pric.
time
qk
′k′′t

p

sol.
mast.
time

pric.
time
rsktp

pric.
time
qk
′k′′t

p

sol. |K| |J | |I|

50

1 0.8 0.9 656 5.395 119 5.650 115 377 80 6.15 11 6 1 6.39 5 12 19
2 0.8 0.9 11398 5.265 64 7.390 5855 5212 111 7.59 8 27 3 8.23 7 11 13
3 0.9 1 20102 5.266 66 8.630 5561 14073 173 NF - - - NF - - -
4 0.9 1 4088 5.257 27 5.360 1743 2198 41 5.46 9 20 2 6.11 5 10 11
5 0.9 1 2777 5.265 60 6.390 1133 1386 72 6.69 12 17 1 7.21 6 11 11
6 0.8 0.9 3801 5.385 93 6.740 2963 543 54 7.14 10 8 0 7.37 6 12 17
7 0.9 1 37148 5.258 24 6.433 18612 17908 170 6.79 19 51 0 7.33 6 12 13
8 0.8 0.9 21414 5.262 93 7.490 8796 12231 224 7.79 8 23 1 8.33 7 12 13
9 0.8 0.9 2882 5.271 64 6.390 1120 1625 49 6.49 12 14 1 7.66 6 15 16
10 0.8 0.9 1163 5.292 111 6.510 671 346 43 6.71 18 5 3 7.34 6 12 14

Table 3.8: l-MNDP - Computational Results

CG R&P local search

|B| inst.
ID

total
time

LB
no.
iter.

mast.
time

pric.
time

LB
no.
iter.

mast.
time

pric.
time

MIP
time

MIP
sol.

gap time sol. |K| |J | |I|
%
violated
SLA

50

1 1 5.35 3 0 0 5.350 11 0 0 0 5.35 0% 0 5.35 5 3 5 62.38%
2 6 5.25 12 1 0 5.350 49 0 2 0 5.35 0% 2 5.35 5 3 5 75.21%
3 7 5.25 5 1 0 5.350 94 1 2 0 5.35 0% 1 5.35 5 3 5 7.01%
4 7 5.25 3 0 0 5.350 109 0 6 0 5.35 0% 0 5.25 5 2 5 0.00%
5 11 5.25 13 0 1 6.732 121 1 5 1 7.37 0% 3 5.25 5 2 5 41.32%
6 20 5.35 19 1 0 6.470 349 5 10 0 6.47 0% 3 5.36 5 3 6 82.55%
7 24 5.25 12 1 1 5.350 252 6 7 0 5.35 0% 9 5.25 5 2 5 9.83%
8 16 5.25 19 1 1 6.057 226 4 7 1 6.36 0% 2 5.35 5 3 5 53.90%
9 2 5.25 6 0 0 5.250 11 0 1 0 5.25 0% 1 5.25 5 2 5 25.71%
10 63 5.25 22 4 0 6.470 271 17 9 0 6.47 0% 32 5.47 5 4 7 59.70%

Table 3.9: s-MNDP-noclust – l-MNDP Comparison

Chapter 4

MEC Network Design
Optimization: Data Analytics and
Best Practices

In this Chapter we tackle the full MNDP problem from the application point of
view. That is, we discuss and motivate the application details, and we perform
data analytics on real 4G cellular network data-sets from the Île-de-France region,
provided by Orange Mobile. Optimization algorithms presented in Chapter 3 are
used as tools for these analyses. We draw best practices, comparing static and
dynamic models, performing sensitivity analyses on several model parameters and
evaluating different virtual machine orchestration and mobility policies.

We bring novel and original insights on the planning of MEC Networks. By
performing extensive simulations, we show the trade-off that can be achieved by
means of the two design cases and the impact of user mobility on the MEC network:
as few as 13 to 26 MEC Facilities can be planned for 180 thousands of users while
requiring tight delay guarantees. We show that there is a sensible gain in the number
of users with respected SLA, up to 20%, by including user and VM mobility in the
network planning. We do also qualify the eligibility of two different VM mobility
strategies, namely VM Bulk and Live Migrations, for two reference MEC services
differing in the level of required latency and memory characteristics: augmented-
reality and remote desktop. We report empirical distributions of the dataset features
in order to allow the reproducibility of our results.

Main results were presented in [10] and published in [11].

83

84 MNDP: Data Analytics & Best Practices

4.1 Real-World Dataset

In order to ground simulations of our MEC Network Design Problem on real data,
we used a dataset collected by Orange Mobile in Île-de-France region, in the frame
of the ABCD project [76]. The dataset comes from network management tickets,
containing UE data exchange information aggregated in 6 minutes periods. User
session is assigned to the cell identifier of the last used antenna. Data are recorded on
a per-user basis and cover a large metropolitan area network, including urban, peri-
urban and rural areas. We had access to data of a single 24-hour period, originated
by 606 LTE 4G APs in an area of 931 km2, with a density of about 0.65 APs per km2.
The number of users served by the considered APs is ∼ 180 thousands, generating
an overall daily traffic of 11TB.

In Table 4.1 we present a partial schema of the dataset from which the data
were retrieved: a record in the dataset contains the amount of bytes and packets
exchanged by a user with an access point in a six-minute period; bytes are classified
by the operator depending by the type of application to which they belong. We took
into consideration only information coming from 4G data exchange; moreover, for
every period we summed demands of all users and of all different application types,
as single-user and single-service demands are not used in our model. No further
manipulation were needed to retrieve the data.

The only available information about the network topology is the location of
the access points, in terms of latitude and longitude: no information about the back-
hauling network were available to us, as well as no information about link capacity
were available.

With respect to MDNP model presented in Chapter 3, in the following we
present the estimation of its parameters starting from this real-world dataset.

4.1.1 Estimation of Model Parameters

The number of users connected to every APs s ∈ B (coefficient ns) and the corre-
sponding demand in terms of bandwidth (bs) are drawn by direct queries from the
dataset: given all six-minutes time-slots of the chosen planning horizon and an AP,
the number of users connected is retrieved counting the number of unique users in
all records associated to the AP in the time-slots, while the corresponding demand
is given by the sum of demands of all applications in all records associated to the
AP in the time-slot.

4.1. REAL-WORLD DATASET 85

Field Name Format Unit Description

Period Integer Period number indicating the 6 minutes period in the 24 hours
timeslot of the file

IdAgent String Agent Identifier (anonymized)
AccessType Integer Radio Access Type for MOBILE configuration (0 = 4G, 1 =

3G, 2 = 2G)
nByte Integer Bytes Total amount of data for downlink OR uplink

Byte App Integer Bytes Amount of data for an application category
Pack App Integer Number of packets for an application category
LocInfo String User Location Information (encoding longitude and latitude of

AP)
Timestamp String Timestamp Format ‘YYYY-MM-DD hh:mm:ss’ (extended in-

formation of period)

Table 4.1: Mobile Operator Dataset Schema

Following [74] and [75] we set the activation costs of aggregation node (li) to
value 0.01, those of core nodes (mj) to value 0.1, and those of MEC facilities (ck) to
value 1.0, which can be seen as percentages. That is, we give maximum priority to
the minimization of MEC facility costs, assuming to be the most relevant, and, as
suggested in [74], we estimate the network costs to be as about 10% of the overall
cloud data center costs.

With respect to the operator physical topology, we had access only to the
position of the APs, while the underlying backhauling physical topology were not
available to us, as well as the actual link capacity. However, the knowledge of real
world information about these parameter is not critical for our experiments, given
that our model aims exactly in designing a new MEC network from scratch, and
provides a complete MEC network topology as a by-product. We recall that the
topological rules with which we model a MEC network are described in Chapter
1.2 and encoded in set of constraints (3.2) – (3.16). Therefor, as values for the
distances between two nodes (di,j) we take the euclidean distances between each pair
of APs i, j ∈ B.

In the same way, network link capacities that we could have found in the
dataset are designed for the current 4G mobile paradigm, and they are not suited
for our application. Hence, we assume a fixed bandwidth capacities ui,j of each link
(i, j) ∈ E of 10Gbps in both hierarchical levels, that represents a plausible value
in the current convergence towards packet-switching carrier-grade solutions, where
bit-rates for pseudo-cables links is set to giga-Ethernet granularities (typically 1 or
10 Gbps).

86 MNDP: Data Analytics & Best Practices

We limit the paths to four hops (H̄ = 4), accordingly to [35], where wireless
EC facilities approach are shown to outperform cloud-based approach when up to a
maximum of four hops are considered.

Instead of choosing a particular setting for the capacity of MEC facility C,
the maximum link capacity usage U and the maximum length of a AP-MEC facility
path D̄, we perform a parametric analysis on them. Moreover, we set the maximum
link length d̄, that is required for the feasibility of the assignment paths of AP to
MEC facilities defined in (3.17), by observing the position of the APs and their
distances.

These analysis are presented in following Sections 4.2 and 4.3.

User Mobility Patterns Individual user mobility patterns cannot be obtained
for confidentiality reasons. Furthermore, allowing migrations even when an AP is
visited infrequently would have a strong negative impact on the overall network load,
without significantly improving user experience. Trying to cope with this issue we
perform binning on data: for each user we consider his two more frequently visited
APs during the planning horizon. We restrict to consider possible migrations only
between these two locations representing, for instance, home and work places of users,
which, following [77, 78], dominate human mobility. Technically, this data is obtained
by creating groups of users and obfuscating individual identifiers. Other options may
be considered, in absence of such data, to estimate mostly visited places [79].

Summarizing, for each pair of APs s′ and s′′ let fs′,s′′ be the number of users
having s′ and s′′ as the most frequently visited APs; this parameter is general and
can be used with any number of frequently visited locations other than two, without
changes. In order to further characterize such user mobility patterns, and to allow
third parties to reproduce adequately our findings, we report in Fig. 4.1 the cumu-
lative distribution function of the distances traveled by users while migrating. We
observe that about 20% of users do not move at all during the day and that almost
all users move less than the radius of the considered region (i.e. 15km). Moreover, in
Fig. 4.2, we present an histogram reporting on the x axis ranges for number of users.
For each range [x′, x′′] on the x axis, a bar represents the number of pairs of APs s′

and s′′ having fs′,s′′ ∈ [x′, x′′]. We can conclude that: (i) the majority of paths are
covered by a small number of users, and (ii) about 72% of the possible pairs of APs
never appear as most frequent for any user. That is, the mobility is concentrated
along a few frequently chosen paths, matching our intuition.

4.2. EXPERIMENTAL SETUP 87

Figure 4.1: Cumulative Distribution
Function of traveled distances of user
flights.

Figure 4.2: Histogram of no. of users
covering same flight.

4.2 Experimental Setup

As reported in Chapter 3, we found adaptations of heuristics from the literature to
be unable to produce accurate results; this was one of the main motivations to build
our models. Still, our path-based formulations offer great modeling flexibility and
present computational challenges at once. In particular, the number of feasible paths
in sets Ssk (set of AP-MEC facility paths) and Qk′k′′ (set of synchronization paths
between MEC facilities) grows very fast with the network size. In order to obtain
good feasible solutions in limited computing time, we implemented two ILP-based
heuristics presented in Chapter 3 and whose flowcharts are presented in Figures 3.4
and 3.10, respectively for s-MNDP and l-MNDP variants.

In order to run our algorithm with the large size network given by the Real
World Dataset, we have to further reduce to size of the network in a pre-processing
step that is added at the beginning of both s-MNDP and l-MNDP variant:

1. we fix the location of aggregation nodes, and the assignment of APs to them,
creating clusters of APs of limited size and minimum worst-case latency through
the following heuristic: (i) fix a number F of aggregation nodes to be installed;
(ii) fix a maximum number G of APs connected to each aggregation node; (iii)
run a Partitioning Around Medoids algorithm [68, 69] on the set of APs to
choose F baricentric ones; (iv) use such a solution as initialization for a G-
capacitated F -center alternating heuristic. This alternating heuristic, in turn,

88 MNDP: Data Analytics & Best Practices

start

(a) G-capacitated F -center alternating
heuristic: fix activated aggregation devices

(b) Dynamic generation of AP-MEC Fa-
cility paths: get a fractional solution

(c) Hierarchical rounding: get first feasible solution

(d) Local Search Refinement: improve solution

end

Figure 4.3: Structure of the s-MNDP for Real World Dataset

works as follows: (i) fix the locations of aggregation nodes, and solve an ILP for
assigning the APs to aggregation nodes, forming clusters where at most G APs
are connected, and minimizing the maximum distance between an AP and the
center of its cluster; (ii) choose as new center for each cluster the AP minimiz-
ing the maximum distance between all other APs in the cluster; then iterate
from (i), until no more changes in the solution are observed.

2. we fix the xi variables in our models according to the G-capacitated F -center
solution obtained as above, we fix J = K = {i ∈ I : xi = 1}, and we remove
from each Ssk set all paths in which the AP s is not assigned to the aggregation
device of its cluster. After preliminary experiments, we fixed F = 50, G =
1.3 · (|B|/F).

The s-MNDP Matheuristic for the real-world dataset is slightly modified, and
its structure is presented in Figure 4.3: the clustering step is not executed, as well
as the clustering update iteration, and its replaced by the G-capacitated F -center
alternating heuristic to reduce the network size. The l-MNDP Matheuristic does not
change, the G-capacitated F -center alternating heuristic is added as first step.

As for the computational results assessments presented in Chapter 3.7, we
implemented our algorithms in C++, using IBM ILOG CPLEX 12.6 [72] to solve

4.2. EXPERIMENTAL SETUP 89

both LP and MILP problems. Our experiments ran on an Intel i7 4GHz workstation
equipped with 32 GB of RAM.

We experimented on the real-world dataset considering three MEC facility size
cases: tiny MEC facility of C = 1.5 racks, car parking MEC Facilities of C = 2 racks
and C = 2.5 racks, and a 2-4 DC-room MEC facility with C = 40 racks. Using
values from [80], we assume one rack to host up to 2500 VMs. The case with a single
rack proved to be infeasible for our instances.

Considering bottleneck-free back-hauling networks (U ≤ 1), where latency is
approximately directly proportional to the euclidean distances among nodes, we con-
sider three latency bounds D̄: ‘loose’, ‘mid-level’, and ‘strict’bounds, corresponding
respectively to roughly the urban area radius (that is, half of the maximum distance
between a pair of APs, 15 km), 4/5 of it, and 2/3 of it. These three levels of MEC
facility access latency are chosen to correspond to three reference MEC services:
delay-tolerant storage box services for the loose case, delay-sensitive remote desktop
services for the mid-level case, and delay-critical augmented-reality support services
for the strict case. We express these bounds as relative numbers, since there is no
available public information on absolute MEC facility network latency requirements,
despite partial valuable information can be found at [34, 81]. At last, we have to
define the value for maximum length of a single link (parameter d̄), that is needed for
the definition of a feasible AP-MEC facility assignment path (defined in Chapter 3 by
the equation (3.33)). We consider four different values: the three latency bounds D̄
(the radius (15km), 4/5 of the radius (12km) and 2/3 of the radius (10km), resp.),
and a stricter value of 1/2 of the radius (7.5km). It is not trivial to forecast the
behavior of our multi layer model just looking to the single link maximum length:
counting all possible feasible paths in the network is computationally impossible on
networks of realistic size.

In Figure 4.4 we present the Complementary Cumulative Distribution Function
(CCDF) of the percentage of APs that an AP can be connected to with a single link,
for each possible value of d̄. We called this number ‘One-Hop Neighbors’. We can
notice that: if we consider a link with a length equal to the radius of the area (15km)
all APs are connected to at least 40% of all other APs with a single link; considering
4/5 and 2/3 of the radius, almost half of the APs can reach each at least half of all
other APs; finally considering 1/2 of the radius (7.5km), at maximum a node can
reach less than 40% of all other nodes. After preliminary tests, we choose to set d̄
to the stricter value of 7.5km, as higher values would lead to trivial solutions (in
two hops all nodes would be connected), while lower values would lead no feasible
solution.

90 MNDP: Data Analytics & Best Practices

Figure 4.4: CCDF Number of Neighbors Given d̄ (% on total number of APs)

As already described, the maximum link utilization (percentage) U needs to be
kept as low as possible in order to better master the congestion risk and guarantee
the QoE for real-time and interactive services. We evaluate three levels for the
maximum link utilization bounds: ‘loose’, ‘mid-level’, and ‘strict’, corresponding to
the 10%, 20% and 30%, respectively, of the link capacity. The stricter they are, the
better interactive service support is expected to be, such as for remote desktop and
augmented reality. Storage box (TCP-based) services are fault tolerant, given the
bulk transfer nature of its data.

In the following, we report extensive results for the s-MNDP, then we investigate
the parametric scenarii for the l-MNDP variant, finally comparing the approaches in
terms of virtual resource migration volume with VM bulk migration. In the plots,
we label every parametric scenario with a pair of letters representing respectively
the maximum link utilization percentage level U and the MEC facility access latency
level D̄, as in Table 4.2. Moreover, a summary of the parameter setting for the
s-MNDP algorithm is presented in Table 4.3.

4.2. EXPERIMENTAL SETUP 91

MEC Facility Access Delay Bound
Strict Mid-Level Loose

M
ax

im
u
m

L
in

k
U

ti
li
za

ti
on

B
ou

n
d

Strict S-S S-M S-L

Mid-Level M-S M-M M-L

Loose L-S L-M L-L

Related Reference
MEC Services

Augmented
Reality Supp.

Remote
Desktop

Storage Box

Table 4.2: Labelling of parametric scenarii

Parameter Value Origin

|B| 50 Set after preliminary analysis
ni - Query on Operator Dataset
bi - Query on Operator Dataset
di,j - Euclidean Distance given coordinates of APs

from Operator Dataset
ui,j 10Gbps Assumed to giga-Ethernet granularities
d̄ 7.5km Set after preliminary analysis
H̄ 4 Assumed accordingly to [35]
C [3750, 5000, 100000] Parametric Analysis
D̄ [15km,12km,10km] Parametric Analysis
U [0.1, 0.2, 0.3] Parametric Analysis

Table 4.3: Real World Scenario - s-MNDP Parameters Setting Summary

92 MNDP: Data Analytics & Best Practices

Figure 4.5: s-MNDP - Number of enabled MEC Facilities.

4.3 Experimental Results

4.3.1 s-MNDP Results

For the s-MNDP variant we consider the full day average behavior, by averaging
the traffic and number of users at each AP over the full day. Combining in every
possible way capacity, delay and link utilization bound settings, we get 3 · 3 · 3 = 27
scenarii.

Number Of Installed MEC Facilities As first fitness measure we consider the
number of installed MEC Facilities, as reported in Figure 4.5. We can observe
that:

• w.r.t. MEC Facility capacity C, trivially the lowest rack capacity leads to
the largest number of installed MEC Facilities (i.e. between 15 and 20 over 50
nodes), with no relevant changes by strengthening delay and utilization bound.
The difference in number of facilities between the 2-rack and 40-rack cases does
not justify the huge capacity gap: this effect is due to the delay constraints
requiring a minimum level of geo-distribution. Overall, intermediate size fa-
cilities (2 racks) appear as the most appealing option: smaller ones require
to install on average one MEC Facility every two aggregation nodes, which
appears as too much, and larger ones do not reduce the number of required

4.3. EXPERIMENTAL RESULTS 93

Figure 4.6: s-MNDP - Average usage of MEC Facilities (%).

facilities significantly, leading to resource and space waste.

• w.r.t maximum link utilization, the number of required MEC Facilities rapidly
grows while moving from mid-level to strict bound, except for the 1.5-rack
case, likely due to the lower aggregation of traffic on a more distributed MEC
network.

• w.r.t. MEC Facility access latency, we cannot see clear trends. On average, the
solutions show little sensitivity on the value of D̄, suggesting that, if a decision
maker decides to resort to static models unaware of users and VMs mobility,
a location planning could be pursued without specifically taking into account
different services.

MEC Facilities Usage As second fitness measure, we consider the average usage
of the enabled MEC Facilities, whose percentage values are reported in Fig. 4.6. Such
a value is trivially related to the number of enabled MEC Facilities. We can however
observe that:

• tiny MEC Facilities have always a high average usage, with a slight usage
decrease just in the case with strict link utilization, having a higher number of
enable MEC Facilities;

• 2-rack MEC Facilities show a behavior similar to tiny ones on mid-level and

94 MNDP: Data Analytics & Best Practices

Figure 4.7: s-MNDP - Ratio of users with violated SLA after migration.

loose link utilization (scenarii M-* and L-*); on the other hand, strict con-
straints on link utilization (scenarii S-*) lead to a remarkable decrease of the
usage;

• as expected, very big MEC Facilities always show little average usage, inde-
pendently of other parameters choice;

• the setting of MEC Facility access latency bounds has very little impact on the
average MEC Facility usage.

Users With Violated SLA As third fitness measure, we consider the percentage
of users whose SLAs are violated after their migration. In details, given a solution
S̄ resulting from s-MNDP, we know by the parameter fs′,s′′ that users migrate in
the planning horizon between APs s′ and s′′; at the same time, we know, by values
of variables rs,kp in S̄, which are those MEC Facilities k′ and k′′ servicing s′ and s′′,
respectively. If it is possible to construct, after the optimization process, a feasible
synchronization path between k′ and k′′ respecting constraints (3.67), then we say
that the SLA of those fs′,s′′ users are respected; otherwise we say that they are
violated. Indeed, if a feasible synchronization path cannot be established, a user
may perceive a latency during migrations that exceeds his SLA. Our results are
presented in Fig. 4.7, where we notice that:

• enabling a high number of MEC Facilities leads to low percentage of users with

4.3. EXPERIMENTAL RESULTS 95

violated SLA: this is the case when the constraint on maximum link utilization
is strict. For the scenario S-L we have no unsatisfied user for neither the 2-rack
nor the 40-rack case;

• conversely, enabling a low number of MEC Facilities, the percentage of unsat-
isfied users increases up to 25%.

We argue the reason of this behavior to be the following: when the number of enabled
MEC Facilities is high, it is possible to create a higher number of feasible synchro-
nization paths by taking advantage of the higher number of direct links between core
nodes. Indeed, the lack of control on the number of unsatisfied users in s-MNDP
models is the main motivation to consider dynamic planning ones, which instead
allow to explicitly enforce SLA to be never violated.

MEC Facility Access Path Lengths As fourth fitness measure, we consider the
cumulative distribution function of the MEC Facility access path length, as reported
in Figure 4.8. We can notice that:

• w.r.t. MEC Facility capacity C, no clear trend is found; however we can notice
that usually tiny MEC Facilities need longer paths, while high capacity MEC
Facilities need shorter ones: this may be due to the fact that by providing very
high capacity, each AP can connect to the nearest MEC Facility, while with
lower capacity the nearest MEC Facility may be congested, and therefore a
farther one has to be used.

• w.r.t. access delay bound, trivially, with looser access delay bounds the average
path length increases; however, the distribution of path lengths does not show
striking differences.

• mid-level and loose bounds on the maximum link utilization yield very similar
path length distributions. Instead, for strict bounds, more paths are short
ones: very few aggregation nodes can route traffic on the same links to the
MEC Facilities; this requires to activate many facilities, that in turn allow to
assign aggregation nodes to near MEC Facilities.

As a general remark, we note that a small percentage of paths have length equal to
the threshold D̄, and this is a sign that our final solutions still have room to improve
MEC Facility access latency for many users.

Computational Efficiency Finally, on the computational efficiency side, all s-
MNDP instances had a running time of few minutes, with an average time of 360

96 MNDP: Data Analytics & Best Practices

(a) S-S (b) S-M

(c) S-L (d) M-S

(e) M-M (f) M-L

(g) L-S (h) L-M

(i) L-L

Figure 4.8: s-MNDP - Cumulative Distribution Function of access paths length

4.3. EXPERIMENTAL RESULTS 97

sec., a minimum of 56 sec. and a maximum of 821 sec., with no evident differences
depending on parameters. In Table 4.4 we include details for every scenario of our
dataset (row-wise), identified by the values of parameters C, U and D̄. For every
instance we include the total time required by the execution of the algorithm in
seconds (column ‘total time’) and we report several information for every stage of the
matheuristic, respectively the column generation (‘CG’), the hierarchical rounding
and pricing process (‘R&P’) and the local search. For the column generation process
we report the final lower bound (‘LB’), the number of iterations (‘no. iter’), the time
spent in every master LP execution in seconds (‘master time’) and the time spent in
every pricing subproblem execution in seconds (‘pricing time’). For the hierarchical
rounding and pricing we report the same information given for the column generation
together with the feasible integer solution given by the final MIP execution, used to
round the remaining free variables (‘MIP sol.’). For the local search process we report
the time spent by the generic MIP solver in seconds (‘time’) (we remark that we fix
a maximum execution time of 300 seconds) and the final feasible integer solution
(‘sol.’) together with the number of activated MEC facilities (‘|K|’) and of core
nodes (‘|J |’) of the final solution. We remark that the number of aggregation nodes
is fixed in the pre-processing step of the G-capacitated F -centers heuristic to the
value of 50. Finally, we report the percentage of users with violated SLA over the
total number of users (‘% violated SLA’), also reported in Figure 4.7.

In order to measure the effectiveness of our algorithm, we can look at the gap
between the final solution found and the lower bound of the column generation, on
which the rounding is executed. Given z∗ the final solution and with z the lower
bound given by the column generation, we compute the percentage gap as (z∗−z)/z.
A high gap given with respect to the continuous relaxation of a problem usually lead
to a poor effectiveness of a rounding process. We can notice that:

• w.r.t. MEC facility capacity C, with the 40-rack case the gap is very high, that
is the final solution is in the worst case five times the CG lower bound; with
loose maximum link utilization the gap improves but it is at best 22%. With
1.5-rack and 2-rack the gap is influenced more by the maximum link utilization;

• w.r.t the maximum link utilization, in the case of a strict constraint (U = 0.1)
the gap is high for every MEC facility capacity; while in the case of mid-level
constraint (U = 0.2) the gap is reasonable for the 1.5-rack and 2-rack cases,
while it is high for the 40-rack case;

No clear trend rises from the comparison of different Access Delay Bounds (D̄).

98
M
N
D
P
:
D
ata

A
n
aly

tics
&

B
est

P
ractices

CG R&P local search

C U
D̄
(103)

total
time

LB
no.
iter.

mast.
time

pric.
time

LB
no.
iter.

mast.
time

pric.
time

MIP
sol.

time sol. |K| |J |
%
violated
SLA

3750

0.1
10 128 14.900 23 18 0 16.393 165 59 1 27.4 32 20.4 19 9 5.29%
12 180 14.800 22 21 0 15.276 200 90 1 29.2 44 20 19 5 6.96%
15 435 14.700 38 44 0 15.174 311 250 3 30.4 59 20.9 20 4 3.43%

0.2
10 146 10.924 49 27 1 13.685 150 45 0 27.9 27 22.2 21 7 14.37%
12 190 10.800 29 36 1 12.124 176 97 0 25.5 35 19.1 18 6 14.63%
15 763 10.701 91 153 3 11.327 275 422 2 26.1 97 18 17 5 17.59%

0.3
10 372 10.908 59 25 0 11.973 145 29 0 15.9 11 12.3 11 8 10.82%
12 430 10.800 28 27 0 11.402 254 59 2 17.4 35 12.3 11 8 17.80%
15 568 10.700 44 42 0 11.173 244 149 3 17.2 58 12 11 5 23.05%

5000

0.1
10 146 10.924 49 27 1 13.685 150 45 0 27.9 27 22.2 21 7 2.50%
12 190 10.800 29 36 1 12.124 176 97 0 25.5 35 19.1 18 6 5.25%
15 763 10.701 91 153 3 11.327 275 422 2 26.1 97 18 17 5 0%

0.2
10 372 10.908 59 25 0 11.973 145 29 0 15.9 11 12.3 11 8 8.81%
12 430 10.800 28 27 0 11.402 254 59 2 17.4 35 12.3 11 8 21.91%
15 568 10.700 44 42 0 11.173 244 149 3 17.2 58 12 11 5 16.96%

0.3
10 361 10.906 45 21 0 11.544 134 22 2 13.6 10 11.7 10 12 12.29%
12 390 10.800 26 23 2 11.326 211 43 0 13.5 14 12 11 5 22.49%
15 461 10.700 41 39 0 12.100 263 89 3 14.2 19 12 11 5 25.19%

105

0.1
10 103 5.165 76 33 0 7.730 133 37 2 21.7 17 20.3 19 8 4.01%
12 242 4.012 121 74 1 4.613 155 53 0 20.4 97 19 18 5 2.11%
15 396 2.829 205 218 3 3.956 138 110 0 18.9 33 17.9 17 4 0%

0.2
10 64 5.128 95 29 0 5.504 149 12 0 10.5 12 10.3 9 8 5.74%
12 114 4.000 111 41 1 4.209 203 20 3 10.2 24 9.4 8 9 7.44%
15 649 2.819 379 251 2 3.039 187 35 4 8.9 300 7.1 6 6 0%

0.3
10 56 5.125 125 34 0 5.424 172 11 2 6.5 2 6.3 5 8 10.92%
12 472 4.000 104 51 0 4.204 211 14 1 6.1 300 6.1 5 6 11.02%
15 821 2.817 356 301 10 3.000 165 22 4 4.9 300 4.9 4 4 6.99%

Table 4.4: s-MNDP - Real World Dataset - Mean Daily Activity - Computational Analysis

4.3. EXPERIMENTAL RESULTS 99

4.3.2 Dynamic Planning Results

In a second round of experiments, we tested the behavior of the Dynamic Planning
models (see Chapter 3.5) in the case of two time-frames: from 7 am to 8 pm, and
from 8 pm to 7 am. These approximately represent working and resting hours.
We compared through simulations the Bulk and Live VM Migration cases. As VM
replication mobility technology can be seen as a special case of VM Live Migration
with infinitesimal amount of memory to transfer, we have not considered experiments
using this technology; however results on VM Live Migration are valid also for VM
replication scenario. Moreover we included in our tests also an s-MNDP model
as reference, using data from the working-hours time-frame only (i.e. from 7am to
8pm). This may be seen as a ‘worst case’ planning option, since it is considering the
bottleneck time-frame only; we remark that still no guarantee is obtained on SLA
satisfaction, even resorting to such a conservative static option.

We restrict the simulations to the six most interesting scenarii, looking at the
s-MNDP results. That is, we discard the 1.5-rack scenarii and the loose MEC Facility
access latency bound scenarii: the first proved to yield infeasible instances when the
demand of the sole working-hours is considered; the second provided less interesting
insights in previous analysis.

We set the width of the time window suitable to perform VM orchestration
Tw to 5 hours, which is less than a half of our time-frames. For the storage syn-
chronization path maximum length, we set D̄Q = 12.75 km (4/5 of the urban area
radius), i.e. we consider the synchronization as a service that requires a mid-level
latency bound. The size of the disk for augmented-reality support VMs, requiring
strict latency bounds, is 20GB, reasonably lower than the one for remote desktop
VMs, that is 60GB, requiring mid-level latency bounds. Conversely, the size of the
memory is higher for augmented-reality (8GB) than for remote desktop (4GB). To
preserve tractability we defined the mapping function Φ of (3.68) as the following
linear function that considers the synchronization traffic generated by any user as a
percentage φ of the average traffic generated by all users:

Φ(x) = x ·
∑

i∈I
∑

t∈T n
t
i∑

i∈I
∑

t∈T b
t
i

· φ

The percentage φ is characterized by the type of MEC service: considering remote
desktop VMs, only part of the disk is expected to be modified upon user actions; so
φ is set to 70%. Instead, for augmented-reality support VMs disks are expected to
be smaller and consequently only small volume need to be synchronized; so φ is set

100 MNDP: Data Analytics & Best Practices

MEC Service Properties

Access
Delay
Bound

Memory
Size
(GB)

Disk
Size
(GB)

φ∗

Reference
MEC
Services

Augmented
Reality
Support

Strict 8 20 30%

Remote
Desktop

Mid-
Level 4 60 70%

∗percentage of users’ traffic that induce synchronization traffic

Table 4.5: Reference MEC Services Parameters.

to 30%. A summary of the parametrization of the Reference MEC services used in
our experiments can be found in Table 4.5. Moreover, a summary of the parameter
setting for the dynamic planning scenario is presented in Table 4.6.

Dynamic Planning with Live Migration.

At first, we experimented on l-MNDP variant with VM Live Migration policy, with
our l-MNDP Matheuristic. Our algorithms could find feasible solutions for 9 over
12 of these instances. In the results provided hereafter, the missing solutions are
marked with the notation NF, meaning Not Found. In fact, as our heuristic builds
the solution by rounding one variable at a time with a two-stage process, at every
step there is a chance to perform a rounding that eventually leads to infeasibility. To
improve this behavior a diversification mechanism could be implemented. However,
since these missing results do not affect the overall understanding of our experiments,
we did not further investigate in that direction.

Number of Installed MEC Facilities As first fitness measure we consider the
number of enabled MEC Facilities, reported in Fig. 4.9. We note that, while in
the 2.5-rack case l-MNDP enables a slightly higher number of MEC Facilities w.r.t.
s-MNDP, the models behave similarly in the 40-rack case.

A fitness measure related to the number of activated MEC facilities, we consider

4.3. EXPERIMENTAL RESULTS 101

Parameter Value Origin

|T | 2 Assumed to have two time-slots: working hours (7 am to
8 pm) and resting hours

nts - Query on Operator Dataset
bts - Query on Operator Dataset
fs′,s′′ - Estimated from Operator Dataset
H̄Q 3 Assumed accordingly to [35]
D̄Q 12.75km Assumed to have VM orchestration as delay-sensitive

service
Tw 5 Largest meaningful value for our time-slots settings
V - Parametric Analysis (details in Table 4.5)

Table 4.6: Real World Scenario - l-MNDP Parameters Setting Summary

Figure 4.9: l-MNDP - Real World Dataset - Number of enabled MEC Facilities.

102 MNDP: Data Analytics & Best Practices

Figure 4.10: l-MNDP - Real-World Dataset - MEC Facilities Percentage Usage.

the average usage of MEC Facilities (Figure 4.10). By enabling a higher number of
MEC Facilities, l-MNDP yields a lower average usage; large size MEC Facilities
provide a very low usage in any case. For 2.5-rack scenarii, the average usage is
around half of the total capacity. Instead, it is non-trivial to notice that in many
scenarii the decrease in percentage of use remains limited while moving from the static
to the dynamic planning, highlighting the fundamental role of our optimization.

MEC Facility Access Path Lengths As second fitness measure, we consider the
MEC facility access path lengths: in Figure 4.11 we consider the cumulative distri-
bution function of the MEC Facility access path lengths. We can note that:

• s-MNDP uses shorter paths than l-MNDP, showing once again how the latter is
more accurate in detecting that more resources are needed to produce solutions
fulfilling SLA;

• the paths used in 2.5-rack scenarii tend to be longer than those in 40-rack
scenarii, for both s-MNDP and l-MNDP, still matching the intuition that ex-
ploiting tight MEC Facility capacities requires the design of more involved
clusters, hence longer association paths;

4.3. EXPERIMENTAL RESULTS 103

(a) Augmented Reality S-S (b) Augmented Reality M-S

(c) Remote Desktop M-M (d) Augmented Reality L-S

Figure 4.11: l-MNDP - Cumulative Distribution Function of access paths length

• a very small percentage of paths uses the maximum delay D̄, showing that in
general the resource is not scarce and do not complicate the resolution of either
model.

Number of VM Migrations As third fitness measure we consider the expected
number of VM migrations generated by the different planning models; this can be
seen as a measure of expected incremental point traffic on the network. Such a value
can be computed from the values of variables gk

′k′′

s′s′′ that encode the number of users
moving from AP s′ to AP s′′ associated to MEC Facilities k′ and k′′, resp.. We remark
that in l-MNDP gk

′k′′

s′s′′ terms are explicitly included as variables in the models, while
in s-MNDP they can be computed in a post-processing phase, once optimization is
over. In order to obtain normalized fitness values, we compute the following upper
bound on the number of possible VM migrations:

γ =
|T | · (|T | − 1)

2

∑
s′∈B

fs′,s′ + |T |2 ·
∑

s′,s′′∈B|s′ 6=s′′
fs′,s′′

104 MNDP: Data Analytics & Best Practices

Figure 4.12: l-MNDP - Real World Dataset - Expected percentage of VMs to migrate.

which represents the number of migrations needed if all users are assigned to a differ-
ent MEC Facility in each time slot, and we measure fitness as (

∑
k′,k′′∈B,s′,s′′∈K g

k′k′′

s′s′′)/γ.
Our results are reported in Fig. 4.12 (as percentage points).

The fraction of migrated VMs for the l-MNDP is always higher than that for
the s-MNDP, without striking differences among scenarii. It is crucial to consider,
however, that only l-MNDP has an explicit control on the feasibility of these orches-
trations. Therefore, as third fitness measure we consider the percentage of users with
violated SLA after migration (Fig. 4.13). l-MNDP guarantees by design 0% of users
with violated SLA. On the contrary, s-MNDP, which does not give any a-priori guar-
antee, shows an experimental behavior similar to that presented in Fig. 4.7: tighter
constraints on link utilization lead to a higher number of enabled MEC Facilities,
increasing the possibility to create synchronization paths through a higher number
of direct links between core nodes, and hence yielding a low fraction of unsatisfied
users. A remarkable scenario is the L-S with 2.5-rack MEC Facilities: s-MNDP asks
to enable 11 MEC Facilities, requiring ∼18% of all possible VMs migrations, but
leaving ∼14% of users unsatisfied; l-MNDP asks to enable, during the working-hours
time-frame, 2 more MEC Facilities, requires ∼45% of all possible VMs migrations,
but without violating any SLA.

To give an insight on the reason for SLA violations in s-MNDP, we show in
Fig. 4.14 the clusters of APs associated to the same MEC Facility by: (a) s-MNDP
during working-hours time-frame; (c) l-MNDP during working-hours time-frame,

4.3. EXPERIMENTAL RESULTS 105

Figure 4.13: l-MNDP - Real World Dataset - Percentage of users with violated SLA.

and (d) l-MNDP during during night-time time-frame. MEC Facility locations are
identified by a triangle icon and clusters are identified by different numbers and
colors. First, we observe that s-MNDP spreads MEC Facilities more uniformly in
the region, while l-MNDP locates the MEC Facilities in a smaller sub-area near the
center of the territory, limiting the maximum distance between two MEC Facilities
to satisfy SLA latency bound. Second, we observe that clusters are not necessarily
compact; in fact, capacity restrictions may forbid an area to be associated to its
nearest MEC Facility. l-MNDP tends to create a more involved clustering structure,
especially during working-hours (Figures 4.14c and 4.14d): in these two figures major
changes are observed in clusters 4 (light blue) and 7 (purple) and 9 (pink), while the
remaining tend to keep the same structure over the two time frames.

Computational Efficiency On the computational efficiency side, while s-MNDP
instances have execution times in the scale of few minutes, l-MNDP instances have
execution times that ranges from few hours to several days. In particular, while
s-MNDP cases have an average execution time of 4 min., with a minimum of 74
sec. and a maximum of 17 min., l-MNDP cases have and average execution time of
∼ 22 hours, with a minimum of 75 min. and a maximum of about 6 days. Since
our model is designed for medium and long term planning, none of them appears
to be critical. In Tables 4.7 and 4.8 further computational assessment measures are
presented for the s-MNDP instances and for the l-MNDP instances, respectively.

106 MNDP: Data Analytics & Best Practices

(a) s-MNDP, working hours time (b) Nearest MEC Facility

(c) l-MNDP, working hours time (d) l-MNDP, resting hours time

Figure 4.14: Clustering produced by AP-MEC Facility associations in L-M scenario
with 2.5-rack MEC Facilities.

4.3. EXPERIMENTAL RESULTS 107

The structure of Table 4.7 is similar to the structure of the previously presented
Table 4.4: we report the computational solutions of s-MNDP instance identified by
the first three columns by MEC facility capacity C, the link maximum utilization
percentage U and the MEC Facility Access Delay Bound D̄.

In Table 4.8 we report details of the l-MNDP Matheuristic for all scenarii (row-
wise), identified by the MEC reference service (‘MEC Ref. Service’), the capacity
of MEC facilities (‘C’) and the maximum percentage link utilization (‘U ′). Then
we report the required execution time in seconds (column ‘total time’) and several
information regarding the first and the second stage of our Matheuristic. For the
first stage we report the lower bound given by the column generation (column ‘LB
CG’), the number of column generation iterations of column generation (column ‘no.
iter.’), the lower bound at the end of the hierarchical rounding and pricing process
(column ‘LB R&P’), the time in seconds required by all master LPs executions
(column ’master time’), the time in seconds required by the pricing subproblems
separately for the AP-MEC facility assignment path variables (column ‘pricing time
rsktp ’) and for the synchronization path variables (column ‘pricing time qk

′k′′t
p ’); finally

we report the final infeasible solution (column ‘sol.’). For the second stage we report
the time in seconds required by the master LPs and the two pricing subproblems,
together with the final feasible solution (column ‘sol.’) and the number of activated
MEC facility, core nodes and aggregation nodes (columns ‘|K|’, ‘|J |’ and ‘|I|’).

We were not able to find a feasible solution for three instances, all related to
the Remote Desktop MEC Reference Service, that we label with NF (i.e. not found).

108
M
N
D
P
:
D
ata

A
n
aly

tics
&

B
est

P
ractices

CG R&P local search

C U
D̄
(102)

total
time

LB
no.
iter.

master
time

pric.
time

LB
no.
iter.

master
time

pric.
time

MIP
sol.

time sol. |K| |J | |I|
%
violated
SLA

6500

0.1
105 133 10.90 25 23 0 12.401 167 72 0 26.3 18 22.4 21 9 50 2.71%
125 268 10.80 30 41 0 11.803 205 168 0 28.5 33 20 19 5 50 0.84%

0.2
105 99 10.90 23 20 0 13.334 172 49 2 19.4 17 14.1 13 6 50 8.49%
125 183 10.80 27 27 0 13.416 242 86 3 22.7 38 15 14 5 50 11.08%

0.3
105 364 10.90 22 17 0 11.445 186 36 1 13.6 6 12.2 11 7 50 14.06%
125 982 10.80 26 32 4 11.291 351 84 296 14.5 241 12.3 11 8 50 19.02%

105

0.1
105 153 5.077 87 48 0 7.483 159 64 0 23.3 16 21.4 20 9 50 3.06%
125 329 3.903 120 161 1 4.822 186 125 2 21.1 19 20 19 5 50 0.90%

0.2
105 109 5.018 132 36 2 6.400 204 36 1 15.4 23 14.1 13 6 50 3.75%
125 184 3.886 169 91 4 5.157 251 46 0 13 22 12.3 11 8 50 6.52%

0.3
105 74 5.018 139 38 1 5.784 134 12 1 8.2 7 7.3 6 8 50 5.66%
125 175 3.883 187 72 1 4.101 247 29 2 7.1 48 6.1 5 6 50 13.13%

Table 4.7: s-MNDP - Real World Dataset - Mean Work-Time Activity - Computational Analysis

First Stage Second Stage

MEC
Ref.
Service

C U total
time

LB
CG

no.
iter.

LB
R&P

master
time

pricing
time
rsktp

pricing
time
qk
′k′′t

p

sol.
master
time

pricing
time
rsktp

pricing
time
qk
′k′′t

p

sol. |K| |J | |I|

A.R.

6250
0.1 14116 11.031 66 27.300 10442 2049 799 28 59 2 72 30 26 35 50
0.2 38836 10.869 63 19.101 25355 11392 1523 20 31 6 28 22.1 18 36 50
0.3 17913 10.863 65 13.225 9939 6187 1266 15.1 32 4 10 16.7 13 32 50

105
0.1 18983 5.235 212 23.000 13536 3669 959 24.7 58 4 37 25.8 22 33 50
0.2 6838 5.194 214 14.700 4135 1553 728 15.4 42 3 10 16.4 13 29 50
0.3 4142 5.190 223 7.300 3112 479 359 7.8 18 3 1 8.4 6 19 50

R.D.

6250
0.1 90176 10.890 66 27.018 31214 54163 3383 28.5 76 8 42 NF - - -
0.2 524839 10.806 77 19.300 42693 473636 7105 21 67 75 22 21.7 18 32 50
0.3 79475 10.791 75 13.200 26754 49881 2034 15.5 21 13 6 16.1 13 26 50

105
0.1 95829 3.982 626 20.900 35940 56180 2685 21.6 30 12 36 NF - - -
0.2 50798 3.937 220 13.100 22383 25850 2020 14.4 28 14 8 15 12 25 50
0.3 20608 3.923 265 6.001 8225 10679 1396 7.1 18 2 0 NF - - -

Table 4.8: l-MNDP - Real World Dataset - Computational Analysis

4.3. EXPERIMENTAL RESULTS 109

4.3.3 Nearest MEC Facility Association

In order to further assess the need for considering the association between APs
and MEC Facilities directly within the planning model, we propose the following
experiment: given the network resulting by our model we disregard the association
of AP to MEC Facility, and instead we associate APs to the nearest MEC Facility in
terms of number of hops. For example, in Fig. 4.14b we can see the cluster of APs
associated to the nearest MEC Facility using the same network used in Fig. 4.14c
and 4.14d.

As a first comparison, in Fig. 4.15 we show the percentage of users with violated
SLA after a nearest MEC Facility association. As compared with our approach in Fig.
4.13, we remark that: (i) nearest MEC Facility association produces SLA violations
even with a network produced by the l-MNDP model, while our approach guarantees
no violations; (ii) for almost all static planning scenarii, violations are worse with
nearest MEC Facility than with our approach.

As a second comparison, we compute the MEC Facility overuse, i.e. the ex-
cess over VM capacity C. In Fig. 4.16 we present the overuse amount, noting that
with 40-rack MEC Facilities there is no overuse, and with tiny 2.5-rack MEC Fa-
cilities there is a high overuse for several instances of both s-MNDP and l-MNDP
approaches.

4.3.4 Bulk VM Migration Results

Our initial attempts to optimize Dynamic Planning models with VM Bulk migra-
tion produced no feasible solutions on any instance of the dataset. Indeed, bulk
migration policies clash with the ambition of producing ahead a careful service and
synchronization plan; in other terms, bulk migrations can be seen as the result of an
unexpected need of synchronization, a human-ordered point operation, rather than
a consolidated and automated operation.

Nevertheless, in order to analyze the impact of Bulk Migrations, we proceeded
as follows. We produced solutions of l-MNDP, and we computed the maximum size
of a VM file that the network could manage to transfer without violating user SLA.
Such a value is unfortunately not directly available after optimizing l-MNDP models;
on the contrary, the problem of finding it can be proved to be NP-Hard. Therefore,
we performed the following simplifying assumptions: (i) MEC Facilities located in
aggregation nodes are moved to the corresponding core nodes; (ii) synchronization

110 MNDP: Data Analytics & Best Practices

Figure 4.15: SLA violation (% users) with nearest MEC Facility
association

Figure 4.16: MEC Facility overuse with nearest MEC Facility asso-
ciation

4.3. EXPERIMENTAL RESULTS 111

paths are allowed for an arbitrary number of hops and arbitrary length - that is,
synchronization is performed among core nodes only, and only maximum single-
link length constraints and single-link latency bounds are kept. Assumption (i) is
particularly mild, as any MEC Facility placed at aggregation level would represent
a bottleneck of the whole network.

The problem of finding the largest file size Γ turns out to be a multicommodity-
flow problem modeled as follows:

max Γ (4.1)

s.t.
∑

k′,k′′∈K

fk
′,k′′

i,j ≤ (1− U)uTw ∀(i, j) ∈ EJ (4.2)

∑
j∈J

fk
′,k′′

i,j −
∑
j∈J

fk
′,k′′

j,i =

f̄k′k′′Γ if i = k′

0 if i 6= k′ ∧ i 6= k′′

−f̄k′k′′Γ if i = k′′

∀(k′,k′′)∈K
∀i∈J (4.3)

fk
′,k′′

i,j = 0 ∀(i,j)∈EJ |
d(i.j)≥d̄ (4.4)

fk
′,k′′

i,j ≥ 0 (4.5)

Let: EJ be the set of links between core nodes; f̄k′k′′ be the fixed number of VMs
to migrate between MEC Facilities k′ and k′′; and fk

′,k′′

i,j be non-negative continuous
variables representing the number of VMs to migrate from k′ to k′′ and whose migra-
tion path traverses link (i, j). Inequalities (4.4) and (4.2) model single-link length
and latency bounds, resp.. Inequalities (4.3) are flow conservation constraints. That
is, model (4.1)–(4.5) is a LP that can be optimized very efficiently.

For each 2.5-rack MEC Facilities case where we obtained a feasible solution in
the VM Live Migration model, we run this model with a parametric analysis on the
link length threshold d̄: starting from the value used in l-MNDP experiments, we
decreased it stepwise, until the problem became infeasible.

Our results are collected in Fig. 4.17. Three different features of each solution
are reported: (i) the optimal Γ value, i.e. the maximum VM file size that the network
can afford; (ii) the average number of hops of the generated synchronization paths;
and (iii) the average length of the generated synchronization paths. Each chart
contains a dashed black line, representing the required standard for synchronization
paths. These are 3 hops, maximum total length of 12Km and either a 28GB file
(8GB memory and 20GB disk) for the augmented reality service or a 64GB file

112 MNDP: Data Analytics & Best Practices

(4GB memory and 60GB disk) for remote desktop. That is, fully feasible solutions
would have values above the dashed line in the leftmost chart, and below it in the
central and rightmost ones: it is easy to check that in no case it was possible to
find one of them. Matching intuition, using high allowed link length values, one can
move very large VM files, at the price of generating highly infeasible synchronization
paths. We can further note that:

• for augmented reality reference service, using the total link length we can route
very big-size VMs (almost 3 times the desired size, see Fig. 4.17a), but with
highly infeasible paths (almost 3 times more hops than expected, see Fig. 4.17b,
and 5 times longer paths, see Fig. 4.17c). However a reasonable trade-off can
be reached using 75% of the maximum link length: in this case we can route
a 29GB VM file, with an average number of hops of 5 and an average path
length that is 50% above the threshold;

• for remote desktop reference service we were not able to route the expected VM
file size (see Fig. 4.17d): a maximum file size of 29GB can be routed, and still
with violations in terms of average number of hops and average paths length.
No improvement is achieved by lowering the allowed link length. Moreover
using less than 80% of the link length already leads to infeasibility.

Summarizing, Bulk Migration seems to be a feasible alternative to Live Migra-
tion on Augmented Reality reference services, where the size of synchronization files
is still limited; in fact solutions can be found, violating latency and maximum hop
constraints only slightly. On the contrary, on Remote Desktop reference services,
Bulk Migration does not appear as a viable option. In either case, matching Dy-
namic Planning models with VM Live Migration proves to be the most appealing
option.

4.4 Conclusions

We provided extensive prescriptive analysis on MEC network design for mobile access
metropolitan area networks. We compared the different planning options extensively
for scenarii built over real cellular network datasets, differentiating between different
traffic engineering and performance goals for reference MEC services, analyzing: (i)
the use of network facilities resources, i.e. number of enabled MEC Facilities, usage
of MEC Facility resources, migrated volume and (ii) the compliance with users’ SLA.
As conclusion we can state that:

4.4. CONCLUSIONS 113

(a) Augmented Reality VM file size (b) Augmented Reality average No. of hops

(c) Augmented Reality average paths lengths (d) Remote Desktop VM file size

(e) Remote Desktop average No. of hops (f) Remote Desktop average paths lengths

Figure 4.17: Bulk Migration post-processing results using 2.5-racks MEC Facilities.

114 MNDP: Data Analytics & Best Practices

• while we guarantee full compliance with users’ SLA considering users mobility
and dynamic variations of the network, their exclusion from the modeling leads
to the infringement of SLA for up to 20% of users;

• the increase of use of network resources given by the consideration of users
mobility is limited to at most 5 more enabled MEC Facilities for serving 600
APs, for the Paris metropolitan area network use-case (on real traffic logs);

• the simultaneous consideration of the design of the network, the association
between APs and MEC Facilities and the routing is needed to keep compliance
with the limited resource and users’ SLA: decoupling these design decisions
using trivial heuristics leads to SLA infringement for up to 27% of users and
in MEC Facility capacity over-use;

• comparing VM Live Migration and VM Bulk Migration technologies, the former
has proved eligible for the use both with delay-critical and delay-sensitive MEC
services, while the latter constantly violates limits on network resources and
seems to be a feasible alternative only when the size of VM files to synchronize
is small.

Part II

Tactical MEC Network Planning

115

Chapter 5

Dynamic Mobile Edge Computing
Facility Assignment

In this chapter we deal with the tactical side of the MEC network planning: given an
existing MEC network including virtualization facilities of limited capacity, and a set
of mobile APs whose data traffic demand changes over time, we aim at finding plans
for assigning APs traffic to MEC facilities so that the demand of each AP is satisfied
and MEC facility capacities are not exceeded, yielding high level of service to the
users. Since demands are dynamic we allow each AP to be assigned to different MEC
facilities at different points in time, accounting for suitable switching costs. We name
this problem as the Dynamic Assignment and Switching Problem (DASP).

We propose a general data-driven framework for our application including an
optimization core, a data pre-processing module and a validation module to test
plans accuracy. Our optimization core entails the combinatorial problem DASP,
which is a multi-period variant of the Generalized Assignment Problem: we design
a branch-and-price algorithm that, although exact in nature, performs well also as
a matheuristics when combined with early stopping. Extensive experiments on both
synthetic and real-world datasets demonstrate that our approach is both computa-
tionally effective and accurate when employed for prescriptive analytics.

Results were presented in [20] and appeared as technical report [21], that is
now submitted for publication.

117

118 MEC Facility Assignment

5.1 Introduction

In a MEC infrastructure, MEC facilities are connected to access network nodes to
deliver access to mobile application servers run as Virtual Machines (VMs). Various
innovative operations to deal with changing mobile access demands can be applied
and include AP to MEC facility dynamic assignment, VM capacity rescaling (addi-
tion or removal of computing power in terms of live memory or virtual processors)
and VM migration (a VM state is moved from one MEC facility to another one). An
orchestrator is in charge of implementing such decisions into the MEC virtualization
layer. Each orchestration action comes at a cost, often referred to as migration or
switching cost, as it requires synchronizing states across a geographical network un-
der stringent performance guarantees. The technology to perform MEC orchestration
operations is becoming mature [82, 83]. However, the MEC orchestrator intelligence
is still being developed, with as major goal to perform both reactive decisions to cope
with sudden, unpredicted, changes, and proactive decisions to anticipate expectable
network impairments.

We precisely address the MEC orchestration challenge from an algorithmic
perspective. Our aim is to propose algorithms to take robust decisions about AP-
MEC assignments and related traffic routing, while taking into consideration the
corresponding VM switching costs.

More in details, our dynamic routing application contains a combinatorial core:
APs have associated mobile traffic demand, that changes over time. Each MEC
facility has a certain capacity, limiting the overall amount of demand it can serve
simultaneously. APs must be assigned to MEC facilities; each assignment implies a
cost for each user connected to the AP in terms of latency for communicating with
the associated MEC server. Due to capacity limits it might be not always a good
decision to assign each AP to its MEC facility of minimum latency; furthermore, since
demand changes over time, an assignment pattern would hardly remain an efficient
one over the whole planning horizon. We therefore leave the option of changing
assignments over time, taking into account that each change implies a switching cost
for the network, for example in terms of signaling to move session data of active
users. An optimization problem therefore arises, that is to assign APs to MEC
facilities over time, respecting capacity constraints and minimizing a combination of
users (assignment) and network (switching) costs. An example of the application
is presented in Figure 5.1: a MEC network with two MEC facilities (K1 and K2) and
four APs (A to D) is considered in three consecutive time-slots (t=0, 1 and 2). At
time 0 APs A and B are assigned to MEC facility K1 while APs C and D are assigned

5.2. A DATA-DRIVENMECMANAGEMENTOPTIMIZATION FRAMEWORK119

Figure 5.1: APs dynamic assignment to MEC facilities

to K2. At time 1, users move from the region served by AP B to the region served by
AP C, hence increasing the load of the MEC facility K2, causing an overload of the
facility. As facilities do not move in our scenario, an orchestrator decides to change
the assignment of AP C to the underused facility K1 at time 2: a synchronization
between the two facilities may be necessary. The aim of our tactical model is to
provide a plan of assignments of APs to MEC facilities that tries to forecast the
change of load of time t = 1 and anticipate the change of assignment.

5.2 A data-driven MEC management optimiza-

tion framework

Our final aim is to conceive a data-driven MEC management optimization framework:
data analytics for network management is indeed a relevant subject to our research.
This represents an emerging field in computer networks, fostered by the expected
integration of analytics in the next generation of mobile networks [84]. In our frame-
work we employ clustering techniques to unlink from noisy raw measurement data.
In particular, we identify a limited number of typical configurations of the data traf-
fic demand across the APs, thus understanding suitable time discretization patterns.
As a matter of fact, the data traffic demand in mobile networks is characterized by
significant fluctuations in space and time, due to the diverse activities of subscribers
at different times and locations [85]. To accommodate such a variability, 5G sys-
tems will build on new networking paradigms such as Cloud Radio Access Networks
(C-RAN), Software Defined Networking (SDN) and Network Function Virtualiza-
tion (NFV) that allow the dynamic (re-)allocation of resources [12]. There is thus

120 MEC Facility Assignment

a need for analytics that mine traffic metadata, discover relevant knowledge about
the network status, and ultimately drive the resource management process [13, 14].
However, we currently miss substantial demonstrations of how data analytics can be
leveraged in mobile network architectures.

Our proposal is to equip the system with an optimization core, exploiting pre-
processed data as input, and producing solutions whose structure is explicitly en-
coded by mathematical programming models. Our setting requires to tackle a multi-
period extension of the famous Generalized Assignment Problem (GAP) [86]. We
point to [87] for a detailed review on the GAP and its extensions. Despite the large
body of research available on the GAP, we are not aware of many papers directly
dealing with its multi-period extensions. In [15] the authors face a single-source al-
location problem with a flexible model and an effective branch-and-price algorithm;
however, their model does not allow to handle limited capacity, which is a crucial
feature in our application. The multi-period allocation problem discussed in [16], in
which a dual ascent technique from [88] is adapted to a telecommunication networks
applications, is similarly missing the feature of handling limited capacities.

Although our problem does not require to decide the location of the facili-
ties, which is instead assumed to be optimized in the strategic planning presented
in Chapter 3 and given in input, one may expect features and computational chal-
lenges similar to those of multi-period location problems [89]. Recent approaches
on that field include [19]: the authors face a multi-period concentrator location and
dimensioning problem, providing MILP formulations and reduction techniques, and
solving to optimality in less than one hour of computation instances with up to 30
clients, 10 candidate location sites and 15 time periods, or 100 clients, 30 candidate
locations and 5 time periods. In [17] the authors introduce exact methods for a
capacitated multi-period facility location problem in which however, unlike our case,
the demand of each client can be fractionally served by multiple facilities. Large scale
instances with up to 200 facilities, three periods and an arbitrary number of clients
could be solved with their algorithms. We finally mention the recent contribution of
[18], where the authors propose MILP formulations and local search heuristics for an
uncapacitated p-median location problem involving two periods: in the first the lo-
cation of facilities is given, while in the second it can be changed at a price. Clients
are always assigned to the nearest facility. They provide good approximations to
instances with up to 400 facilities in a few minutes of computation.

Summarizing, from a telecommunication research point of view, a need for
the integration of data analytics for the autonomic management of telecoms network
infrastructure is emerging [12]; however few works have been presented so far [13, 14],

5.3. MEC MGMT OPTIMIZATION FRAMEWORK 121

none of which is taking into consideration our application. From a research operation
point of view, our techniques lies at the edge of recent approaches for the multi-period
extension of the GAP [15, 16] and the multi-period location problems [17, 18, 19].

Contribution summary and chapter outline Our research provides three types
of contributions. The first is architectural: we design a data-driven framework for
the dynamic selection of AP to facility assignment in MEC networks, which relies on
(i) historical data clustering analytics, (ii) dedicated optimization techniques, and
(iii) validation by simulation. The second is algorithmic: we introduce mathematical
programming formulations and ad-hoc exact solution methods for a relevant multi-
period extension of GAP. The third is use case-oriented: we evaluate our framework
with real-world datasets, which provides practical insights for MEC resource man-
agement. We devote a substantial part of this chapter to the technical insights of
our optimization core.

The chapter is structured as follows. We first detail our framework (Section
5.3). Then we focus on the optimization core component, introducing a compact
Mixed Integer Linear Programming (MILP) formulation for our problem, proving
a few structural properties and providing an extended counterpart by means of
Dantzig-Wolfe decomposition (Section 5.4); we also design column generation pro-
cedures with ad-hoc pricing algorithms, rounding heuristics, reduction techniques
and branching rules to be embedded in a whole exact solution method (Section 5.5).
We show first of all that our algorithms are effective from a computational point of
view (Section 5.6). We then demonstrate the effectiveness of our optimization tools
in practical scenarios, using real-world traffic demands collected by a major mobile
network operator in Milan, Italy (Section 5.7). We finally draw some conclusions
(Section 5.8).

5.3 A data-driven MEC management optimiza-

tion framework

The algorithmic core architecture of our data-driven MEC management optimization
framework is sketched in Figure 5.2. The framework receives as input a representation
of the (time-varying) data traffic demand recorded at each AP of the MEC network.
The framework output are (multiple) assignment patterns of APs to MEC facilities,

122 MEC Facility Assignment

Figure 5.2: A data-driven MEC management optimization framework.

meant to be enforced by the orchestrator on the MEC network over time through
switching operations.

The input data is collected as historical records of the mobile traffic demands
in the MEC network. Part of the data is reserved for testing by the Validation Tool
module. Part instead is used for training, i.e., it is fed to the Preprocessing and
Data Mining module, which filters by meta-data and produces a suitable time (and
possibly space) discretization and a corresponding data aggregation. The aggregated
profiles are sent to the Optimization Core module, which leverages them to compute
candidate assignments. The Orchestrator module, in turn, receives the candidate
assignments and queries the Validation Tool module for an evaluation on test data,
so as to determine their quality. Based on the result, the Orchestrator module finally
chooses a suitable assignment and implements it in the MEC network.

Preprocessing and Data Mining We assume that switching can occur only at
certain points in time (e.g., once every fifteen minutes), due to practical limitations of
the MEC technology: this introduces an implicit time discretization of the system.
In order to identify suitable discrete-time profiles of the traffic demand, different
strategies can be employed in the Preprocessing and Data Mining module. The
simplest option is to aggregate the demand observed at each AP during every time
step in the training data. This returns one profile for each time step: since switching

5.3. MEC MGMT OPTIMIZATION FRAMEWORK 123

between assignments cannot occur at shorter timescales than the time step, this is the
highest resolution useful to the Optimization Core – and the one deemed to return
the highest-quality result. However, it also creates a very large number of profiles
(e.g., in the order of thousands for hour-long time steps over months of historical
data) that may be computationally too expensive to manage.

Another option to identify suitable discrete-time profiles of the traffic demand
is to use temporal clustering analytics on the historical data, so as to group together
time slots that feature very similar distributions of the mobile traffic demand across
the APs. In this case, the module returns a limited number of profiles, each of which
corresponds to the typical demand observed in a large set of time slots. It is then
possible to reduce the computational cost at the Optimization Core, by feeding it
with a small number of profiles. However, this comes at the expense of assignment
quality, since typical profiles can only approximate the actual MEC network load at
a specific time step. We provide an example of temporal clustering analytics, which
builds on the methodology of [1], in Section 5.7.1.

Optimization Core Once the traffic demand profiles are defined, the Optimiza-
tion Core builds effective dynamic assignment plans on top of those. Plans include,
for each time slot, the connections of APs to MEC facility (many APs to one MEC fa-
cility), and, as a by-product, the set of switching operations to be performed between
subsequent time slots. We consider different operational options:

• single versus split assignment: in the single assignment variant, an AP is as-
sociated with exactly one MEC facility in each point in time, while in the split
assignment variant the AP demand can be served simultaneously by different
facilities. That is, in the first case we suppose that, whenever connecting to a
certain AP, each user is routed to the same facility, while in the latter case an
AP can route the traffic of each user independently to different facilities.

• linear versus periodic assignment: in the periodic variant we explicitly take
into account the potential switching cost between the last and the first point
in time of our plan, since it is meant to be repeated over a longer planning
horizon. This is not the case in the linear model, which assumes no system
periodicity.

Validation Tool Once a set of candidate plans is produced by the Optimization
Core, a Validation Tool is used to check their quality on test data. In our case,
test data consist of a few weeks of raw traffic demand data: the Validation Tool

124 MEC Facility Assignment

evaluates the plan by simulating its application in those weeks, and computing quality
measures.

Orchestrator The MEC orchestrator is the functional element in charge of ac-
tually sending VM orchestration instructions to MEC hosts, monitoring the MEC
system status and the MEC network link states as well. Legacy cloud orchestrator
systems typically take orchestration decisions based on simple best-fit policies, as
data-center network resources are often over-dimensioned and a large set of clusters
is made available; the placement and assignment decision logic is therefore typically
not tightly constrained by computing facility location. Such orchestration algorithms
however cannot be readily applied to a MEC context essentially because of the ge-
ographical nature of MEC networks and the capacity limitation of MEC facilities.
This is typically done at the orchestrator subsystem level by adding an abstraction
layer, with a dedicated descriptive language to map computing resources to physical
location of servers.

5.4 Formulation

A key component of the data-driven MEC management optimization framework
is the optimization core. Its task is to find suitable assignments of APs to MEC
facilities over time, together with corresponding user VMs migration patterns. For
the sake of readability, we focus on the single-assignment linear-plan variant: a
discussion on how to adapt our models and methods to the other variants is provided
in Section 5.5.6.

Let us denote as A the set of APs and as K the set of MEC facilities. We
assume the planning horizon to be discretized in a set T of time slots. For each AP
i ∈ A, let us indicate as dti the mobile traffic demand that has to be accommodated
by AP i at time t ∈ T , and as mi,k the physical distance between AP i and MEC
facility k ∈ K. Let Ck be the capacity of MEC facility k ∈ K, and lk′,k′′ be the
network distance between MEC facilities k′, k′′ ∈ K. We assume lk,k = 0 for each
k ∈ K, where with network distance we mean a distance that is directly proportional
to the network latency (including packet processing latency at intermediate nodes)
and the physical distance.

Let xti,k be binary variables taking value 1 if traffic from AP i ∈ A at time
t ∈ T is routed to MEC facility k ∈ K, 0 otherwise. Let yti,k′,k′′ be binary variables

5.4. FORMULATION 125

t = 1

A B

1 2 3

t = 2

A B

1 2 3

x1
2A x2

2B

y2
2AB

Figure 5.3: DASP - x and y variables

taking value 1 if AP i ∈ A is associated with MEC facility k′ ∈ K at time t− 1, and
switches to MEC facility k′′ ∈ K at time t.

Our Dynamic Assignment and Switching Problem (DASP) can be formulated
as follows:

min α
∑
t∈T

∑
i∈A

∑
(j,k)∈
K×K

dtiljky
t
ijk + β

∑
t∈T

∑
i∈A

∑
k∈K

dtimikx
t
ik (5.1)

s.t.
∑
i∈A

dtix
t
ik ≤ Ck ∀t ∈ T,∀k ∈ K

(5.2)∑
k∈K

xtik = 1 ∀i ∈ A,∀t ∈ T

(5.3)

xtik =
∑
l∈K

ytilk ∀i ∈ A,∀t ∈ T \ {1},∀k ∈ K

(5.4)

xtik =
∑
l∈K

yt+1
ikl ∀i ∈ A,∀t ∈ T \ {T},∀k ∈ K

(5.5)

xti,k ∈ {0, 1} ∀i ∈ A, ∀k ∈ K, ∀t ∈ T
(5.6)

yti,k′,k′′ ∈ {0, 1} ∀i ∈ A, ∀k′, k′′ ∈ K, ∀t ∈ T
(5.7)

the objective (5.1) aims at finding a trade-off between the minimization of
network- and user-related costs. The former is generated by the change of AP-MEC

126 MEC Facility Assignment

facility associations in consecutive time slots, which produces control overhead due to
the necessity of migrating VMs. The latter is instead the latency experienced by the
user with the current AP-MEC facility association. Parameters α and β represent
the relative weight of the network- and user-related costs in the objective function.
Constraints (5.2) impose that the overall demand assigned to MEC facility k at time
t does not exceed its capacity. Constraints (5.3) impose that each AP is connected
to a single MEC facility during a time slot. Constraints (5.4) and (5.5) link x and y
variables in a flow conservation fashion: when xtik = 0, that is AP i is not assigned
to MEC facility k at time t, they impose that no switching operation is made; when
xtik = 1, instead, they impose that a single switching operation assigns i to k at time t
and reassigns it at time t+1 (possibly involving the same MEC facility, in which case
the switching cost is zero). No additional restriction are imposed on the assignment
of APs to MEC facilities; however, an infeasible association can be modelled fixing
the corresponding variable xti,k to value 0 and, moreover, distance parameter mi,k is
flexible enough to represent values coming from any distance function considering
the topology of the network.

A sample instance with three APs (squares), two MEC facilities (circles) and
two time-slots (left and right parts) is depicted in Figure 5.3: AP 2 is assigned to
MEC facility A at t = 1 and MEC facility B at time t = 2, therefore a switching
operation from A to B needs to be performed.

Model (5.1) – (5.7) has a few interesting features.

Observation 1 The DASP can be seen as a multi-period generalization of the Gen-
eralized Assignment Problem (GAP).

In fact, when |T | = 1, the DASP reduces to a GAP.

Observation 2 For t > 1, constraints (5.3) are redundant.

Indeed, for t > 1, they are implied by constraints (5.4) and (5.5) and
∑

k∈K x
1
ik =

1 for each i ∈ A. It is easy to check it by induction over t: for each i ∈ A,
constraints (5.5) ensure that if a k ∈ K exists such that xt−1

ik = 1 then
∑

l∈K y
t
ikl = 1;

then by aggregating constraints (5.4), we obtain that if
∑

k∈K
∑

l∈K y
t
ikl = 1 then∑

k∈K x
t
ik = 1. In turn, since the x variables are binary,

∑
k∈K x

t
ik = 1 implies that a

k ∈ K exists, such that xtik = 1. All we need to additionally enforce is the base case
t = 1. However, constraints (5.3) are included in the model for the computational
experiments presented in Section 5.6.

Proposition 1 When all xtik variables take integer values, the ytikl variables also
(automatically) take integer values in any feasible solution. The converse is also

5.5. OPTIMIZATION ALGORITHM 127

true.

In fact, for each i ∈ A and each t ∈ T , due to constraints (5.5) if xtik = 0 then
yt+1
ikl = 0 for each l ∈ K. If xtik = 1, assume by contradiction that a feasible

solution exists, containing fractional yt+1
ikl values; each fractional yt+1

ikl will appear in
a different constraint of family (5.4), that can be feasible only if xt+1

ik = 1 for more
than a single k ∈ K, violating constraints (5.3), yielding infeasibility and thus leading
to a contradiction. The converse is trivially implied by both constraints (5.4) and
(5.5).

That is, in the search for optimal solutions by means of algorithms exploiting
continuous relaxations, branching on ytikl variables is unnecessary.

5.5 Optimization Algorithm

Unfortunately, when the size of the MEC network is large, even solving the continuous
relaxation of model (5.1) – (5.7) turns out to be computationally hard. Therefore,
we devise an ad-hoc exact solution approach based on decomposition.

Following the Dantzig-Wolfe reformulation principle [58], let

P i = {(xtik, ytikl) : (5.3), (5.4), (5.5), (5.6), (5.7)},∀i ∈ A

represent the convex hull of the feasible region respect to constraints (5.3) – (5.7).
Let Ωi be the set of corresponding extreme integer points, and for each p ∈ Ωi let x̃t,pik
and ỹt,pijk be the coefficients encoding point p. Each element of P i can be represented

as a linear convex combination of points in Ωi. Therefore we introduce a set of
variables zp ≥ 0, expressing multipliers in such a combination, and we reformulate the
continuous relaxation of (5.1) – (5.7) as the following Master Problem (MP):

min
∑
i∈A

∑
p∈Ωi

(
α
∑
t∈T

∑
(j,k)∈
K×K

dtiljkỹ
t,p
ijk + β

∑
t∈T

∑
k∈K

dtimikx̃
t,p
i,k

)
zp (5.8)

s.t. −
∑
i∈A

∑
p∈Ωi

dtix̃
t,p
ik z

p ≥ −Ck ∀t ∈ T,∀k ∈ K (5.9)

∑
p∈Ωi

zp = 1 ∀i ∈ A (5.10)

zp ≥ 0 (5.11)

128 MEC Facility Assignment

We provide further details of this DW decomposition, together with an alter-
native version, in Appendix 5.A.

The MP has an exponential number of variables. We optimize it by column
generation: we replace Ωi by a small representative subset Ω̄i (see Subsection 5.5.1)
and we solve the Restricted Master Problem (RMP) obtained in this way; then, for
each i ∈ A, we search if any element of Ωi exists whose corresponding variable has
negative reduced cost, by solving a pricing problem (see Subsection 5.5.2): any such
element is added to Ω̄i and the process is iterated. Otherwise we stop: the solution
obtained by restricting to Ω̄i is optimal also for the full problem.

Such a solution provides a valid lower bound to the DASP. It might indeed
be fractional. In such a case we run rounding heuristics (see Subsection 5.5.3) to
obtain a corresponding upper bound. If upper and lower bounds do not match, we
first perform probing to potentially fix variables (see Subsection 5.5.4) and then,
when needed, we enter a recursive tree search phase (see Subsection 5.5.5). Our
algorithms can be easily adapted to the split-assignment and periodic-plan variants
(see Subsection 5.5.6).

5.5.1 Initialization

In order to populate the initial sets Ω̄i, as well as obtaining an initial primal bound, we
run a simple greedy heuristic that builds the solution time-slot by time-slot and AP
by AP. The corresponding pseudo-code is reported as Algorithm 4. In particular, for
each time slot, APs are sorted by non-increasing demand and each AP is associated
with a profitable MEC facility following this order. The choice for the most profitable
MEC facility to which to associate an AP i at time t follows these rules: let k̄ be the
MEC facility to which the AP i was associated in the previous time slot t− 1:

1. if t > 1 and the demand of the AP i does not exceed the residual capacity of
the MEC facility k̄, assign i to k̄;

2. otherwise, find the nearest MEC facility (in terms of distance mik) to which the
AP demand does not exceed the residual capacity; if no such a MEC facility
exists, stop in a FAIL state.

This algorithm always terminates inO(|T ||A| log(|A|)|K|) time. Unfortunately,
as for a fixed t the problem is a special instance of GAP, even the problem of finding
an arbitrary feasible solution is NP-Hard. Indeed, the algorithm might stop in a
FAIL state, without producing feasible solutions. However, in our computational

5.5. OPTIMIZATION ALGORITHM 129

Algorithm 4 Greedy Binary AP-MEC facility assignment

k̄a = none , ∀a ∈ A {MEC facility associated with AP a in previous time-slot}
for all t ∈ T do
As = sortDec(dta|a ∈ A) {sort AP for non-increasing demand at time t}
ck = 0 , ∀k ∈ K {used capacity of MEC facility k}
for all a ∈ As do
k = k̄a {first choice is the previous assignment}
if k = none ∨ ck + dta ≤ C then
k = nearestAvailable(a, dta, ck) {get nearest MEC facility with enough
residual capacity}

end if
xta,k = 1.0
ck = ck + dta {update used capacity of chosen MEC facility}
if t > 0 ∧ k 6= k̄a then
yt
a,k̄a,k

= 1.0
end if
k̄a = k

end for
end for

experiments that never happened.

Nevertheless, to complete the population of the initial RMP, we insert also a
single dummy column of very high cost, having coefficient 0 in each constraint (5.9).
This ensures RMP feasibility also after branching.

We also remark that many other heuristics are possible, however considering
and independent subproblem for each time-slot is likely to yield very poor solutions.
Therefore classical heuristic as dose proposed in [90, 91] are very-hard to adapt.

5.5.2 Pricing algorithms

Let λt,k be the (non-negative) dual variables corresponding to constraints (5.9), and
ηi be the (free) dual variables corresponding to constraints (5.10).

For each î ∈ A, the problem of finding the element of Ωî corresponding to the
variable of minimum reduced cost can be formulated as follows:

130 MEC Facility Assignment

min πi =− ηî + α
∑
t∈T

∑
(j,k)∈
K×K

dt
î
ljky

t
îjk

+

+
∑
t∈T

∑
k∈K

(
βdt

î
mik + dt

î
λt,k
)
xt
î,k

(5.12)

s.t.
∑
k∈K

xt
îk

= 1 ∀t ∈ T (5.13)

xt
îk

=
∑
j∈K

yt
îjk

∀t ∈ T \ {1},∀k ∈ K (5.14)

xt
îk

=
∑
j∈K

yt+1

îkj
∀t ∈ T \ {T},∀k ∈ K (5.15)

x ∈ {0, 1},y ∈ {0, 1} (5.16)

Proposition 2 The pricing problem (5.12) - (5.16) possesses the integrality prop-
erty.

In fact, according to Observation 2, constraints (5.13) can be removed for t > 1, and
constraints (5.14) used to replace xt

îk
in (5.15) and then removed. The remaining is

basically a network flow matrix, which is known to be totally unimodular [58].

On one hand, Proposition 2 implies that the lower bound obtained by the MP
through column generation is equivalent to that obtained by optimally solving the
continuous relaxation of the original model (5.1) – (5.7). On the other hand, it allows
to employ polynomial time Linear Programming solution algorithms, making us to
expect the solution process to be fast. Indeed, we could exploit its structure even
further, as the elements of Ωi have a particular combinatorial interpretation: they
correspond to all feasible association paths, that is sequences of MEC facilities to
which the AP i is assigned in consecutive time-slots. More in details, we build a
directed layered graph G(N,A), with a layer for each time-slot, as follows. Each
layer has one node for each MEC facility; each pair of nodes in consecutive layers are
connected by an arc. Each node (t, k) ∈ T ×K, modeling the assignment to MEC
facility k at time t, has an associated traversal cost given by atik = dti(βmik + λt,k),
while each arc connecting nodes (t, j) and (t+ 1, k) has an associated traversal cost
given by btijk = dt+1

i αlj,k. We also add a dummy source σ (resp. sink τ) nodes, having
one outgoing arc to each node in layer t = 1 (resp. one incoming arc from each node
in layer t = |T |) of zero cost. Figure 5.4 sketches the structure of G for a certain
AP î on a sample instance with two MEC facilities (A and B): a potential solution
assigns i to A at time t = 1, to B at time t = 2 and so forth.

5.5. OPTIMIZATION ALGORITHM 131

Algorithm 5 Pricing Algorithm

for all i ∈ A do
c1
k = a1

ik ∀k ∈ K {cost of path starting at MEC facility k}
p1
k = {k} ∀k ∈ K {path starting at node k′ at time}

for all t ∈ 2..T do
for all k ∈ K do
k∗ = arg mink′∈K(ct−1

k′ + btik′k)
ctk = ct−1

k∗ + btik∗k + atik
ptk = pt−1

k∗ ∪ {k∗}
end for

end for
k∗ = arg mink∈K{c

|T |
k } {minimum reduced cost related to AP i}

π∗ = c
|T |
k∗ − ηi

if π∗ < 0− ε then
add variable related to minimum cost path pk∗ to the model

end if
end for

In fact, an optimal pricing solution corresponds to a shortest σ − τ path in
G.

Proposition 3 For each i ∈ A, the pricing problem can be solved in O(|T ||K|2)
time.

In fact, for solving the pricing problems we devise a simple dynamic programming
algorithm, which is presented as Algorithm 5.

5.5.3 Rounding Heuristics

In order to find good primal bounds, a simple rounding algorithm (presented in
Algorithm 6) is executed at every column generation iteration. Let z̃ be the (possibly
fractional) variable values of the RMP at a certain iteration: we can compute the
values of the corresponding x̃ variables as

x̃tik =
∑
p∈Ωi

x̃t,pik z̃
p.

For each time-slot t ∈ T , for each APs i the highest x̃tik is retrieved. For each
AP, sorted by descending highest x̃ value, the assignment is made with the MEC

132 MEC Facility Assignment

facility corresponding to the highest x̃ and with enough residual capacity. Although
no guarantee in feasibility is given, our computational experiments revealed it to be
highly effective.

5.5.4 Variables fixing

We also experimented with probing techniques to potentially perform problem reduc-
tion during the column generation process. In particular, we employed Lagrangean
probing to fix variables at a pricing level. The main idea is to run the Pricing
Problem Resolution Algorithm twice: the first time as described in 5, that is con-
sidering each layer t = 1 . . . |T | in forward order; the second time, instead, consid-

ering the layers in backward order, that is initializing c
|T |
k = 0 and updating each

ctk = mink∗∈K c
t+1
k∗ +dt+1

i (αlk,k∗+βmi,k∗+λt+1,k∗). In this way, the cost χtk of the best
path in which at time t an assignment is forced to MEC facility k can be computed
by summing the forward and backward labels ctk.

A valid dual bound LB can be computed at each column generation iteration
as

LB = ρ−
∑
i∈A

πi

where ρ is the value of the last RMP solution. Let UB be the value of the best primal
(integer) solution found so far.

For each i ∈ A, let s(t) be the MEC facility at which AP i has been assigned
at time t in the optimal pricing solution returned by Algorithm 5. We perform the
following fixes:

t = 1

A

a1
îA
x̃1
îA

B

t = 2

A

B

a2
îB
x̃2
îB

. . .

. . .

t = |T |

A

a
|T |
îA
x̃
|T |
îA

B

b2
îAB

ỹ2
îAB

0 · ỹ3
îBB

b
|T |
îBA

ỹ
|T |
îBA

Figure 5.4: DASP - Pricing Problem Structure

5.5. OPTIMIZATION ALGORITHM 133

Algorithm 6 Rounding heuristic

Input: variable values x̃ from a RMP fractional solution
Output: x̂ = 0, ŷ = 0 {integer solution}
for all t ∈ T do
rk = Ck ∀k ∈ K {residual capacity of MEC facility k}
Ã = sort(A,maxk∈K x̃

t
ik) {sort the set of AP by non-increasing value of fractional

assignment to the ’most desirable’ MEC facility}
for all i ∈ Ã do
{consider APs in such an order}
if {k ∈ K|dti ≤ rk} = ∅ then

FAIL {no MEC facility with enough capacity: exit with FAIL status}
else
k = arg maxk∈K|dti≤rk x̃

t
ik {get highest assignment}

x̂ti,k = 1.0 {fix assignment with MEC facility}
rk = rk − dti {update residual capacity}

end if
end for

end for
ŷ = compute shift(x̂) {compute ŷ variable values to be consistent with x̂}

134 MEC Facility Assignment

• for each t ∈ T and k ∈ K if LB + χts(t) − χtk ≥ UB, then if assignment to
MEC facility k was forced, no improvement in the primal bound would ever
be obtained. Therefore node k can be removed from layer t without losing
optimization power, that means fixing variable xtik = 0 in the original model;

• for each t ∈ T if LB + χts(t) − mink∈K\{s(t)} χ
t
k ≥ UB, then if such an as-

signment was forbidden, no improvement in the primal bound would ever be
obtained. Therefore all nodes k 6= s(t) can be removed from layer t without
losing optimization power; that means fixing variable xtis(t) = 1 in the original
model.

A similar fixing procedure is run on arcs of the pricing graph, thereby allowing to fix
ytk′′,k′ variables in the original model.

From an implementation point of view, we always allowed a relative tolerance of
5e−4 in the fixing test, to prevent numerical troubles. We run the fixing procedure at
the end of the column generation process of every node of the search tree; additionally,
at the root node, we run it whenever an improving primal solution is found.

5.5.5 Branch-and-price

When upper and lower bounds at the end of the column generation process do not
match, we proceed to branching. We branch on original variables x rather than on
variables of the MP. Fixing variable xti,k to value 0 corresponds to fixing to value
0 all variables zp ∈ Ωi that assign AP i to MEC facility k at time t. Similarly,
fixing variable xti,k to value 1 corresponds to fixing to value 0 all variables zp ∈ Ωi

that do not assign AP i to MEC facility k at time t. Neither forbidding nor forcing
assignments change the structure of the pricing problem: these conditions are eas-
ily included within the dynamic programming algorithm by simply removing nodes
from the pricing graph. According to Proposition 1, no branching on y variables is
needed.

We considered the following two branching rules:

1. considering all possible assignments of AP i at time t, take the pair (i′, t′)
which has greatest number of variables xt

′

i′,k with strictly positive value, that
is, that AP whose assignment at a certain time is split among the greatest
number of different MEC facilities. Sort variables xt

′

i′,k by non-increasing value
and partition this ordered set in two: the first set containing variables in the
odd positions of ordered set and the second set containing variables in the even

5.5. OPTIMIZATION ALGORITHM 135

positions. A left (resp. right) branch is created, fixing to zero all the variables
in the first (resp. second) set.

2. select the variable xti,k whose value is closer to 0.5, i.e. the variable related to the
most fractional assignment. Create two branches fixing the selected variable
respectively to value 0 or to value 1.

We always consider branching rule 1 first, triggering rule 2 only when all (i, t)
pairs have at most two corresponding fractional xti,k variables. During preliminary
experiments, a simple depth-first exploration policy showed to perform best. When
rule 2 is used, the xti,k = 1 branch is explored first.

5.5.6 Split assignment and periodic plans

We first observe that global optimal split-assignment plans can be obtained by simply
stopping at the root node, and considering the (potentially fractional) solution of the
column generation master problem.

Furthermore, as discussed in the Introduction, the application is periodic in
nature: the decision maker creates a plan, that is meant to be repeated over time.
Such a periodic variant can be managed by minor modifications to our models and
algorithms. In particular, model (5.1) – (5.5) needs to be enriched, adding con-
straints

x1
ik =

∑
l∈K

y
|T |
ilk ∀i ∈ A, ∀k ∈ K

to the family (5.4) and constraints

x
|T |
ik =

∑
l∈K

y1
ikl ∀i ∈ A,∀k ∈ K

to the family (5.5): these link the assignments made in the last and first time-slots
assignment, hence closing the period of assignments. The column generation master
problem does not change. The pricing problem, instead, requires to be adapted, as
cycles rather than paths need to be generated. We therefore modified our pricing
routine as presented in Algorithm 7. Exactly solving the modified pricing problem
via dynamic programming requires O(|T ||K|3) time for every AP. The main idea is
to tentatively fix the assignment at time 1 to all the |K| possible MEC facilities, to
solve each reduced problem, and to choose the best among the |K| solutions found
in this way. Since it is possible to create a layer |T |+ 1 as a copy of the layer t = 1,
after fixing the assignment the pricing problem reduces to finding a minimum cost

136 MEC Facility Assignment

shortest path from the single fixed node in layer t = 1 to the single fixed node in
layer |T |+ 1.

Any other detail of the algorithm remains unchanged.

Algorithm 7 Periodic Pricing Algorithm

for all i ∈ A do
π∗ = +∞
p∗ = ∅
for all k̂ ∈ K do
c1
k̂

= a1
ik̂
{fix MEC facility k̂ at t = 1}

c1
k = +∞ ∀k ∈ K \ {k̂} {forbid MEC facility k at t = 1}
p1
k = {k} ∀k ∈ K {path starting at node k at time t = 1}

for all t ∈ 2..T do
for all k ∈ K do
k∗ = arg mink′∈K(ct−1

k′ + btik′k)
ctk = ct−1

k∗ + btik∗k + atik
ptk = pt−1

k∗ ∪ {k∗}
end for

end for
for all k ∈ K do
c
|T |
k = c

|T |
k + b1

ikk̂
+ a1

ik̂
end for
k∗ = arg mink∈K{c

|T |
k } {minimum reduced cost related to AP i when starting

at k̂}
if c

|T |
k∗ − ηi < π∗ then

π∗ = c
|T |
k∗ − ηi

p∗ = p
|T |
k∗

end if
end for
if π∗ < 0 then

add variable related to minimum cost path p∗ to the model
end if

end for

5.6. COMPUTATIONAL EVALUATION 137

5.6 Computational Evaluation

We implemented our algorithms in C++, using CPLEX 12.6 [72] to solve the master
LP subproblems, running tests on an Intel i7 4GHz workstation equipped with 32
GB of RAM.

Our first investigation is computational, benchmarking the effectiveness of our
algorithms in comparison to the branch-and-cut ILP solver of CPLEX using formu-
lation (5.1) – (5.7).

5.6.1 Dataset

We have access to a dataset of real-world mobile traffic demands [92], encompassing
two months with a time granularity of fifteen minutes. The geographical area covered
by the dataset extends for more than 2500 km2. The demand is not associated with
access points of the mobile network, whose location is unknown, but rather to a
geographical tessellation of the area in 1419 rectangular cells of different sizes, with
smaller (and more dense) cells in the center of the area. We select the centers of
every rectangular cell as elements of the set A of access points locations.

Then, we create ten clusters of access points using a standard k-means model,
taking as input the euclidean distances between APs, optimizing it with the classical
heuristics of [93]. The centers of these clusters are selected to define the locations
of the set K of MEC facilities. The network distances mik and ljk are computed as
euclidean distances accordingly, and rounded to the nearest integer.

Given this network infrastructure, we generate different problem instances by
randomly drawing demands in each AP in different ways.

In details, we create two random datasets.

Dataset A is synthetic, and aims at stressing our algorithms from a pure computational
point of view. We consider a planning horizon of one day, split in 96 consecutive
fifteen-minute time slots. Let d (resp. d̄) be the minimum (resp. maximum)
demand observed in any AP and time slot in [92]. Demands dti for each AP i
at time t are drawn uniformly at random independently in each fifteen-minute
time slot, in the range [d, d̄]. That is, demands do not follow particular trends,
even if falling into the same range of real data.

Dataset B is realistic, reproducing the main features of the starting data. We choose a
single day at random from the two months included in the dataset [92], we

138 MEC Facility Assignment

perform a direct query to the demand of each AP at each time slot in that
day, and then we perturb all demands with noise, uniformly drawn at random
in the interval [−5%,+5%], to create five perturbed instances from the same
single day. While Dataset A aims at stressing our algorithm, Dataset B aims
at evaluating its robustness in the presence of noise.

All demand values are rounded to the nearest integer. Besides the initial horizon
of 96 time-slots, we consider planning time horizons of 48, 24 and 12 time-slots by
merging respectively 2, 3 or 4 subsequent time-slots, setting their demands as the
average on the merged time-slots. Five instances are generated in both datasets A
and B.

We also consider a dataset of raw real demands.

Dataset C is obtained by considering a random week taken from the dataset [92], and
merging the time-slots in either 168 slots of 1 hour each (1h), 84 slots of 2
hours (2h), 56 slots of 3 hours (3h), 42 slots of 4 hours (4h) or 38 slots obtained
by the clustering methods described in Subsection 5.7.1 (clust) and previously
presented in [1]. The demand of each AP in each slot t is taken as the maximum
over the the fifteen-minute time slots merged in t.

For every instance, each MEC facility capacity Ck is set to
(

maxt∈T
∑

i∈A d
t
i/|K|

)
·

1.05, and parameters α and β are both set to value 0.5.

In Table 5.1 the instances of our datasets are summarized: for every instance
we specify its name (column ‘name’), the number of versions (‘no. of instances’), the
number of APs, MEC facilities and time-slots (‘|A|’, ‘|K|’ and ‘|T |’, resp.) and the
number of variables and constraints of the corresponding model (5.1)–(5.7) (‘|xti,k|’,
‘|yti,k′,k′′|’ and ‘no. of constraints’, resp.).

5.6.2 Column Generation profiling

We first report on the computational behaviour of our Column Generation algorithm
(CG). In this test we consider the single-assignment non-periodic variant.

In Tables 5.2a, 5.2b and 5.2c we include the details of the root node column
generation process, for each instance of datasets A, B and C, respectively. A best
known solution value z∗ is taken from a previous run of exact algorithms (see Subsec-
tion 5.6.3). Besides instance details (columns ‘|T |’ and ‘inst’), we include the relative
gap between the primal bound value (resp. dual bound value) and z∗, the number of
column generation iterations (‘# iter’) needed to reach convergence and the number

5.6. COMPUTATIONAL EVALUATION 139

name no. of instances |A| |K| |T | |xti,k| |yti,k′,k′′ | no. of constraints

1–5 5 1419 10

12 1.70e+05 1.70e+06 3.72e+05
24 3.41e+05 3.41e+06 7.30e+05
48 6.81e+05 6.81e+06 1.45e+06
96 1.36e+06 1.36e+07 2.88e+06

(a) Synthetic Dataset A - Realistic Dataset B

name no. of instances |A| |K| |T | |xti,k| |yti,k′,k′′ | no. of constraints

clust.

1 1419 10

168 2.38E+06 2.38E+07 5.02E+06
4h 84 1.19e+06 1.19e+07 2.52e+06
3h 56 7.95e+05 7.95e+06 1.68e+06
2h 42 5.96e+05 5.96e+06 1.27e+06
1h 38 5.39e+05 5.39e+06 1.15e+06

(b) Dataset C

Table 5.1: DASP - Dataset Instances Summary

of variables created in the process (‘# cols’), the overall CPU time spent for solv-
ing the pricing problems (‘tp’) and the CPU time required to complete the column
generation process (‘t’). As benchmark we also report the performances of CPLEX
12.6.3 ILP solver, when stopped at the root node, including the corresponding primal
and dual bound gaps and the time required to complete its root node computation
(column ‘t’).

We set a time limit of two hours to each computation, marking in the tables
as ‘T.L.’ those computations hitting that limit, and marking with ‘N.F.’ those com-
putations that were not able to retrieve any final solution.

We first note that CG has good convergence behaviour: less than 90 iterations
are always enough to complete the computation. The high number of pricing sub-
problems yields to a high number of generated columns, but thanks to our dynamic
programming algorithm, the overall pricing time remains low (below 10 seconds in
all cases but one).

By rounding in CG we are always able to obtain good integer solutions (that
is, below 1% from best known solutions in all cases but 4). CPLEX is not consistent:
in a few instances (e.g. block |T | = 48 and |T | = 96 of the Realistic Dataset B) it is
able to find very good primal solutions, while in other cases (e.g. block |T | = 24 of

140 MEC Facility Assignment

Dataset B, or block |T | = 48 of Dataset A), only very weak primal bounds can be
obtained.

We also observe that CG and CPLEX dual bounds are always similar. That is,
on one hand the integrality property of our pricing problem warns that no improve-
ment can be obtained by CG with respect to the continuous relaxation of the original
formulation; on the other hand, CPLEX generic cuts have no significant effect on
strengthening the same continuous relaxation bound.

Finally, in more than 37% of the instances, CPLEX is unable to terminate
the root node computation within the time limit, while CG always completes the
computation. When both CG and CPLEX terminate, the CPU time required by CG
is up to two orders of magnitude lower that required by CPLEX.

We highlight that the (possibly fractional) solution found by CG is a global
optimal solution for the split-assignment model variants: no further computing is
needed in that case. The same solution can be retrieved by the execution of the LP
solver of CPLEX for the continuous relaxation of model (5.1)–(5.5), where integrality
conditions on variables x and y ((5.6) and (5.7)) are replaced by the conditions
x ∈ [0, 1], y ∈ [0, 1].

As a further experiment, we solved the continuous relaxation of our model
with the LP solver of CPLEX, setting a time limit of two hours, and using the final
fractional solution as input for our rounding heuristic to retrieve a feasible solution
(Algorithm 6). In Tables 5.3a and 5.3b we include details of these experiments for
each instance of datasets A and B, respectively, including the primal and dual bound
gaps and the time required to complete the computation: as for the ILP root node,
we can notice that the CPU time required by CPLEX LP is up to two orders of
magnitude higher than that required by our CG. In more than 25% of the instances,
CPLEX is unable to terminate the LP computation within the time limit, while CG
always completes the computation.

5.6.3 Exactly solving the DASP

In a second round of experiments we let both our Branch-and-Price (BaP) and
CPLEX 12.6 ILP solver (CPX) run for two hours, also exploring their branching
trees. In Tables 5.4a, 5.4b, 5.4c we report the results of this experiment on each
instance of datasets A, B and C, respectively. In each Table we report the relative
gap between the primal bound PB (resp. the dual bound DB) at the end of com-
putation and the best known integer solution value z∗, and the number of explored

5.6. COMPUTATIONAL EVALUATION 141

CG Root CPLEX Root

|T | inst. PB−z∗

z∗
|DB−z∗|

z∗ # iter # cols tp t PB−z∗

z∗
|DB−z∗|

z∗ t

12

1 0.130% 1.212% 19 10808 0 4 0.724% 1.197% 864
2 0.735% 1.955% 14 8715 0 4 244.932% 1.949% 410
3 0.793% 1.351% 13 7074 0 3 0.167% 1.345% 328
4 0.945% 0.999% 14 7515 0 3 2.824% 0.994% 344
5 1.206% 1.630% 13 7892 0 3 3.052% 1.627% 356

24

1 0.061% 1.475% 26 17027 1 15 0.249% 1.471% 2826
2 1.202% 1.537% 19 11429 1 11 274.940% 1.533% 1943
3 0.867% 2.019% 19 12296 0 13 267.368% 2.015% 1852
4 0.846% 1.864% 19 12525 0 12 123.542% 1.860% 1861
5 0.909% 1.764% 18 12077 0 12 267.486% 1.761% 1781

48

1 0.463% 1.819% 41 27035 6 114 246.767% 1.816% T.L.
2 0.221% 2.468% 32 20897 1 90 270.039% 2.465% T.L.
3 0.746% 2.336% 33 21468 4 95 269.274% 2.332% T.L.
4 0.295% 2.036% 31 20496 0 74 282.422% 2.033% T.L.
5 0.265% 2.514% 35 22707 0 106 258.676% 2.510% T.L.

96

1 0.176% 2.274% 68 47500 5 949 259.445% - T.L.
2 0.055% 2.633% 59 42621 6 913 N.F. N.F. T.L.
3 0.034% 2.779% 61 43107 9 863 N.F. N.F. T.L.
4 0.187% 2.528% 61 42692 5 850 N.F. N.F. T.L.
5 0.124% 2.568% 60 41913 6 815 272.834% - T.L.

(a) Synthetic Dataset A

CG Root CPLEX Root

|T | inst. PB−z∗

z∗
|DB−z∗|

z∗ # iter # cols tp t PB−z∗

z∗
|DB−z∗|

z∗ t

12

1 0.809% 0.107% 12 6542 1 2 0.055% 0.105% 138
2 0.917% 0.112% 11 6150 0 2 0.924% 0.110% 146
3 1.043% 0.125% 12 6611 0 2 0.155% 0.123% 158
4 0.797% 0.103% 11 5843 0 2 349.538% 0.102% 120
5 0.781% 0.102% 11 6548 0 2 349.089% 0.101% 113

24

1 0.766% 0.425% 15 9713 0 4 305.781% 0.424% 532
2 0.481% 0.280% 16 9715 0 3 306.562% 0.278% 587
3 0.613% 0.576% 15 9492 1 3 304.188% 0.575% 622
4 0.960% 0.183% 17 10345 0 3 306.874% 0.182% 615
5 0.648% 0.221% 16 10217 0 4 307.199% 0.220% 413

48

1 1.031% 0.264% 27 15539 1 16 0.253% 0.262% 2113
2 0.782% 0.344% 25 15636 2 15 0.557% 0.343% 2249
3 0.500% 0.363% 26 15286 1 15 0% 0.362% 2674
4 0.741% 0.314% 26 15791 3 18 0.049% 0.312% 2445
5 0.829% 0.296% 29 16294 0 15 0.651% 0.295% 1878

96

1 0.539% 0.475% 51 29786 6 130 0% 0.475% T.L.
2 0.315% 0.766% 43 28272 3 125 32.042% 0.766% T.L.
3 0.249% 0.853% 46 28221 9 129 5.953% 0.853% T.L.
4 0.395% 0.692% 49 29320 5 126 0.002% 0.692% T.L.
5 0.154% 0.726% 48 29005 4 120 N.F. N.F. T.L.

(b) Realistic Dataset B

CG Root CPLEX Root

inst. PB−z∗

z∗
|DB−z∗|

z∗ # iter # cols tp t PB−z∗

z∗
|DB−z∗|

z∗ t

clust 0.590% 0.092% 21 12928 2 9 0.429% 0.091% 468
4h 0.630% 0.272% 30 20690 2 25 0.175% 0.271% 5191
3h 0.513% 0.471% 37 25960 3 58 0.766% 0.470% 2814
2h 0.588% 0.297% 50 31706 2 133 0% 0.295% T.L.
1h 0.097% 0.905% 85 56322 18 953 N.F. N.F. T.L.

(c) Raw Real Demand Dataset C

Table 5.2: DASP Computational Results - CG Root vs. CPLEX Root

142 MEC Facility Assignment

|T | inst. PB−z∗
z∗

DB−z∗
z∗

t

12

1 0% -1.2% 754
2 1% -2.0% 820
3 1% -1.4% 589
4 1% -1.0% 573
5 1% -1.6% 705

24

1 1% -1.5% 4742
2 1% -1.5% 5115
3 0% -2.0% 4018
4 1% -1.9% 4102
5 1% -1.8% 4820

48

1 2% 0.2%1 T.L.
2 - 3.2%1 T.L.
3 4% 2.5%1 T.L.
4 - -0.1%1 T.L.
5 - 2.4%1 T.L.

96

1 25% 21.9%1 T.L.
2 17% 14.3%1 T.L.
3 15% 13.2%1 T.L.
4 17% 14.5%1 T.L.
5 14% 12.2%1 T.L.

(a) Synthetic Dataset A

|T | inst. PB−z∗
z∗

DB−z∗
z∗

t

12

1 4.34% -0.11% 99
2 3.67% -0.11% 89
3 4.09% -0.13% 97
4 4.13% -0.10% 89
5 3.85% -0.10% 89

24

1 0.46% -0.42% 603
2 0.50% -0.27% 613
3 0.46% -0.58% 580
4 0.63% -0.17% 572
5 0.58% -0.21% 598

48

1 0.75% -0.26% 2225
2 0.53% -0.34% 2107
3 0.73% -0.36% 2158
4 0.58% -0.31% 2250
5 0.77% -0.29% 2190

96

1 0.58% -0.47% 6151
2 0.15% -0.76% 5692
3 - 9.9e07%1 T.L.
4 0.05% -0.69% 5945
5 0.01% -0.73% 6290

(b) Realistic Dataset B

1 Sub-Optimal LP Solution

Table 5.3: DASP Computational Results - CPLEX LP

5.6. COMPUTATIONAL EVALUATION 143

branch-and-bound nodes, for both our BaP and CPX. We report no computing time
because, surprisingly, neither BaP nor CPX could bring the duality gap below 0.1%
within the time limit, except for instance 4 with |T | = 12 of Dataset A, 5 with
|T | = 12 of Dataset B and ’clust’ of Dataset C, that CPX is able to close (but still
using more than 90% of the available CPU time).

In terms of final dual bounds the results of both methods are very similar. Our
explanation for this phenomenon is the following: the root dual bound is already
very close to the integer optimum value, and therefore the real challenge is to find
an optimal primal solution. At the same time, the high number of time-slots yields
values of primal solutions on the order of magnitude of 108: as soon as the duality
gap becomes small, numerical approximation issues prevent to coherently explore the
remaining search tree.

In terms of searching for good primal solutions in the inner nodes of the branch-
ing tree, instead, BaP and CPX are not equivalent: in Figure 5.5a we plot the typical
primal bound value (y axis) improvements as the computation (x axis) proceeds (in-
stance 1, |T | = 24, dataset B); for the sake of comparison, the x axis report relative
values with respect to the overall number of branch-and-bound nodes for CPX and
the overall number of column generation iterations for BaP. For instance, correspond-
ing to x = 0.1, BaP series reports the primal bound after 10% of the overall number
of CG iterations needed to conclude the test, while CPX series reports the primal
bound after exploring 10% of the nodes of the full Branch-and-Bound tree needed
to conclude the test. Eventually, CPX is more numerically stable, offering after two
hours of computation primal solutions values a few tenths of percentage points better
(up to 0.5% of improvement, which yields negligible difference in the Figure). In
turn, BaP allows to find near-optimal integer solutions much more quickly, that is
in fact already at the root node. The behaviour of BaP in the early steps of com-
putation is further detailed in Figure 5.5b: the quality of the primal bound steeply
increase during the column generation iterations at the root node.

As a synthetic final assessment of our computational evaluation we can report
that when the number of time-slots is small, and the planner has no particular need
for quick optimization algorithms, both BaP and CPLEX might be viable alternatives
to optimize the DASP.

BaP is faster, especially when used heuristically, stopping the computation
either at the root node or after exploring a few nodes of the branch-and-bound tree.
This makes it well suited also when quick optimization is needed, like in what-if-
analyses.

144 MEC Facility Assignment

(a) BaP vs. CPLEX (b) BaP Detail

Figure 5.5: DASP Primal Bound BaP vs. CPLEX

When the number of time-slots increases, however, using CPLEX is not an
option anymore.

We repeated all the experiments with a periodic-plan model, without finding
substantial changes in the computational behaviour of the methods. Indeed, the
periodic-plan model has main impact only in the structure of the pricing problem
of BaP, but pricing involves only a small amount of the overall computational ef-
fort.

5.7 Practical Case Study

Our final aim is to assess the effectiveness of our optimization core in the context
of the data-driven MEC management optimization framework. To this end, we rely
on the complete real-world dataset in [92], and run actual analytics on it so as to
generate the demand profiles. We then feed our optimization models with such
profiles, which, ultimately, let us measure the quality of the assignment plans it
returns in a practical case.

5.7. PRACTICAL CASE STUDY 145

BaP CPLEX

|T | inst. PB−z∗

z∗
|DB−z∗|

z∗ # nodes PB−z∗

z∗
|DB−z∗|

z∗ # nodes

12

1 0% 1.208% 17661 0.411% 1.197% 203
2 0% 1.951% 17038 0.777% 1.949% 371
3 0.198% 1.347% 18572 0% 1.345% 452
4 0.370% 0.997% 19198 0% 0.993% 548
5 0.020% 1.626% 18013 0% 1.626% 699

24

1 0% 1.473% 8576 0.249% 1.471% 14
2 0% 1.535% 8657 0.855% 1.533% 24
3 0% 2.018% 9349 267.368% 2.015% 46
4 0% 1.863% 9353 123.542% 1.860% 38
5 0% 1.763% 10204 267.486% 1.761% 40

48

1 0% 1.818% 2123 246.767% 1.816% 0
2 0% 2.468% 2724 270.039% 2.465% 0
3 0% 2.335% 2558 269.274% 2.332% 0
4 0% 2.036% 3133 282.422% 2.033% 0
5 0% 2.514% 2528 258.676% 2.510% 0

96

1 0% 2.274% 113 259.445% - T.L.
2 0% 2.633% 217 N.F. N.F. T.L.
3 0% 2.779% 168 N.F. N.F. T.L.
4 0% 2.528% 135 N.F. N.F. T.L.
5 0% 2.568% 207 272.834% - T.L.

(a) Synthetic Dataset A

BaP CPLEX

|T | inst. PB−z∗

z∗
|DB−z∗|

z∗ # nodes PB−z∗

z∗
|DB−z∗|

z∗ # nodes

12

1 0.160% 0.105% 35112 0% 0.103% 2398
2 0.235% 0.111% 30708 0% 0.109% 2579
3 0.320% 0.124% 26374 0% 0.122% 1818
4 0.406% 0.102% 26490 0% 0.100% 1932
5 0.267% 0.100% 24714 0% 0.098% 1844

24

1 0.133% 0.424% 17961 0% 0.423% 144
2 0.274% 0.279% 18354 0% 0.278% 109
3 0% 0.576% 20016 0.717% 0.574% 225
4 0.353% 0.183% 17481 0% 0.182% 232
5 0.284% 0.220% 20446 0% 0.220% 522

48

1 0.312% 0.263% 10738 0% 0.262% 20
2 0.249% 0.343% 10465 0% 0.343% 18
3 0.113% 0.363% 10482 0% 0.360% 17
4 0.227% 0.313% 10321 0% 0.311% 16
5 0.226% 0.295% 10818 0% 0.295% 21

96

1 0.462% 0.475% 3133 0% 0.475% 0
2 0% 0.765% 3193 32.042% 0.766% 0
3 0% 0.852% 3398 5.953% 0.853% 0
4 0% 0.691% 3099 0.002% 0.692% 0
5 0% 0.726% 3299 - - T.L.

(b) Realistic Dataset B

BaP CPLEX

inst. PB−z∗

z∗
|DB−z∗|

z∗ # nodes PB−z∗

z∗
|DB−z∗|

z∗ # nodes

clust 0.376% 0.091% 13849 0% 0.091% 812
4h 0.442% 0.272% 8985 0% 0.270% 30
3h 0.403% 0.471% 5086 0% 0.470% 33
2h 0.430% 0.297% 2864 0% 0.295% 0
1h 0% 0.905% 370 N.F. N.F. T.L.

(c) Raw Real Demand Dataset C

Table 5.4: DASP Computational Results - BaP vs. CPLEX

146 MEC Facility Assignment

5.7.1 Experimental setup

The real-world mobile traffic data covers a planning period of eight weeks, split in
a set T̃ of fifteen-minute snapshots. The first approach we take in order to infer
demand profiles exploits a well-known property of mobile traffic, i.e., its weekly
periodicity [94]. Namely, a single week is taken as training data, and the mobile
traffic recorded in each fifteen-minute time-slot is considered as a profile. The tasks
performed by the data mining and validation modules are kept as simple as possible,
in order to highlight the effect of the optimization core.

Training Conceptually, the resulting 4 · 24 · 7 = 672 training profiles are then used
as input for our optimization algorithms. By optimizing over the training data we
obtain a planning solution, which becomes our assignment plan: we apply such a plan
to the remaining seven weeks of test data. As an example, optimizing over training
data yields a solution including a specific assignment of APs to MEC facilities on
Monday between 7:00 am and 7:15 am: we then blindly apply the same assignments
on the 7:00-7:15 am time slots of each Monday in the test data, presuming that the
demand configuration is similar on all Mondays at the same time. In a sense, this is
a worst-case situation, in which the decision maker simply observes the system for
one week before deciding on the planning for the remaining weeks.

Practically, we do not directly use the 672 fifteen-minutes time-slots for train-
ing. We assume, instead, that the preprocessing and data-mining module produces
suitable aggregations. We experimented therefore with simple aggregation of the
profiles, merging time-slots sequentially over 1, 2, 3 or 4 hours. Each aggregation
step was performed by considering in each AP and in each aggregated time-slot the
maximum demand value of that AP over the corresponding base time-slots. The
optimized solution was then disaggregated in post-processing, simply replicating the
same plan over the fifteen-minutes time-slots composing each aggregated time-slot.
By choosing the maximum demand values during aggregation, we ensure that our
optimized solutions remain feasible after disaggregation.

It is apparent that less aggregated profiles entail a higher potential for opti-
mization: in the baseline scenario the assignment of APs to MEC facilities can be
changed every 15 minutes, possibly assigning to the same MEC facility APs that
experience very high peaks of demand in subsequent time slots. They are, how-
ever, more prone to overfitting, as peaks in particular hours of the training week do
not necessarily correspond to peaks in the corresponding hour of testing weeks. In
addition, they are more clearly expensive from a computational standpoint.

5.7. PRACTICAL CASE STUDY 147

More aggregated instances, instead, are more conservative: two APs with very
high demand peaks in the same four-hours time slot cannot be assigned to the same
MEC facility, thus possibly preventing capacity violations in the test weeks if those
peaks slightly move in time. They are also less demanding in terms of computational
costs. However, aggregation forces the same configuration for longer timeframes,
making the optimization possibly oblivious of fast dynamics in the demand.

In order to further balance the aggressive optimization process during the train-
ing phase of low aggregation instances, we found empirically useful to set the Ck
capacity values differently in training and in testing:

• in training instances, Ck is set to to
(

maxt∈T
∑

i∈A d
t
i/|K|

)
· 1.05 in each test.

That is, for each instances the capacity is computed separately using its own
values of dti and, for example, one-hour time-slot instances are optimized with
lower capacity values;

• while testing, to ensure fairness in the comparison, we use a single reference
MEC capacity value fixed to

(
maxt∈T̃

∑
i∈A d

t
i/|K|

)
· 1.10, considering the 15-

minute time-slots demands over the complete dataset.

Test To ensure fairness in the comparison, during the test phase only disaggregated
solutions are considered. That is, independently on the aggregation used for train-
ing, only solutions defined over the original fifteen-minutes time-slots are compared.
Similarly, the reference MEC capacity value was fixed to

(
maxt∈T̃

∑
i∈A d

t
i/|K|

)
·1.10

in any comparison.

Clearly, neither the cost nor the capacity usage are guaranteed to remain the
same when the planning obtained with training data is applied to test data, as
fluctuations in the demand may occur across weeks. The quality of our solutions
is therefore evaluated according to two measures: (i) the assignment and switching
cost of the planning and (ii) the amount of violations in capacity constraints, both
measured on test data. The latter is computed as follows:

max
t∈T̃

∑
k∈K

max{
∑

i∈A d
t
ix
t
ik − Ck, 0}

Ck|K|

that is, the overall amount of violation in capacity constraints, as a relative value
respect to the available capacity, in the worst time-slot.

These measures are computed for each plan by the validation module through
simple simulation on the seven weeks of test data.

148 MEC Facility Assignment

Figure 5.6: Time-Clustering resulting from [1]

Advanced Clustering Benchmark An alternative to employing our ad-hoc tech-
nique on the optimization module would be to perform a more aggressive aggregation
over time, producing instances that are small enough to be optimized by CPLEX.
We experimented on such an option, adapting the temporal clustering solution pre-
sented in [1] to our needs. Specifically, we take the following steps: (i) we generate
a median week of mobile traffic demand, by computing the median load recorded at
each AP during every hour of the week, using it as training data; (ii) we perform two
separate hierarchical clusterings, respectively using the total volume and normalized
distance metrics introduced in [1]; (iii) we find the intersection of the two cluster
sets obtained at the previous point.

Figure 5.6 shows the resulting clustering of one-hour time slots: five typical
demand profiles are identified, which can be associated with working hours (denoted
by 0 in the figure), relax hours in the late afternoons and weekends (1), morning
commuting hours (2), night hours (3) and late evening hours (4). Very few time-
slots are actually produced this way, allowing CPLEX to optimize the corresponding
instances. Consecutive time-slots belonging to the same cluster are then aggregated.
The aggregated instance is optimized and the solution obtained in this way is then
disaggregated in fifteen-minute time-slots plans, as in the previous case, during post-
processing, before being compared on test data.

5.7. PRACTICAL CASE STUDY 149

5.7.2 Experimental evaluation

Following the computational results of Section 5.6, our core optimization module al-
ways employs our Branch-and-Price as a heuristic (HBP), stopping its computation
at the root node, except for the aggregated instances produced by time-clustering.
This is the same setting reported and analysed previously in Table 5.2 and labeled
as “CG Root”. Having |T | = 38, these are manageable efficiently even by general
purpose solvers: CPLEX 12.6.3 ILP solver was then used to solve them to proven op-
timality. The scatter plot in Figure 5.7 summarizes our results. Each point represents
the outcome on a single week of test data. Different shapes refer to different demand
profile aggregation methods, obtained by merging 1, 2, 3 or 4 consecutive one-hour
time slots, as well as using the Advanced Clustering and CPLEX (Bench-CPLEX).
The y axis coordinate of each point represents the capacity violation measure, as
introduced above; the x axis coordinate of each point represents the solution cost
measure, expressed as percentage value of that of the optimal solution employing the
Advanced Clustering Benchmark method. Therefore, negative (resp. positive) per-
centages map to a performance improvement (resp. reduction) with respect to the
benchmark. As a reference we report also the results obtained by using HBP instead
of CPLEX for optimizing the Advanced Clustering Benchmark instances (Bench-
CG). The details about capacity violation measures are reported also in Table 5.5
for each week in the training set (columns) and for each demand profile aggregation
method (rows).

A first remarkable result is that in all cases our HBP with sequential clustering
allows for solutions with less capacity violations. In particular, HBP with either
four-hours or three-hours aggregation offer almost no capacity violations, coming at
the price of three to five percent increase in solutions cost. HBP with two-hours
aggregation always outperforms the benchmark method both in terms of exceeded
capacity and in terms of solution costs. HBP with one-hour aggregation further
decrease costs at the price of slightly higher capacity violation.

Finally, we can notice that result of week 6 differs from the other weeks, with
higher peak exceeded capacity for every training set. This behavior is associated to
the special nature of the week with respect to all others: indeed, week 6 contains
data of a national holiday (Easter).

We also experimented on using the full BaP instead of the truncated HBP. Our
results are reported in Figure 5.8: no significant change was observed. Similarly, no
significant change was observed by using HBP instead of CPLEX on the benchmark
clustering.

150 MEC Facility Assignment

Figure 5.7: DASP 1-Week Plan - Time Aggreg. Comparison

Week

inst. train 1 2 3 4 5 6 7

Bench-CPLEX 9.59% 7.03% 5.71% 4.25% 2.57% 3.88% 14.68% 9.51%
Bench-CG 9.59% 6.76% 5.48% 4.08% 2.45% 4.10% 14.34% 9.27%

4h 2.09% 1.54% 1.72% 0.66% 0.00% 2.54% 11.63% 2.92%
3h 1.94% 1.42% 1.48% 1.10% 1.25% 1.58% 11.07% 2.98%
2h 2.20% 2.58% 1.99% 1.19% 2.26% 2.82% 11.22% 4.15%
1h 2.84% 2.38% 4.17% 1.14% 1.92% 4.04% 10.65% 5.47%

Table 5.5: DASP Time-Slot Peak Exceeded Capacity Over Available Capacity

5.7. PRACTICAL CASE STUDY 151

(a) Total Costs (b) Exceeded Capacity

Figure 5.8: Mean Costs And Exceeded Capacity - CG Root vs. BaP

inst. inter-weeks intra-week tot. switch. costs assign. costs total costs

Bench-CG 803.11% -16.53% 8.69% 0.02% 0.10%
4h 96.69% 4.20% 10.97% -0.19% -0.04%
3h 196.67% 2.60% 11.83% -0.31% -0.07%
2h 249.25% -4.80% 2.81% -0.08% 0.01%
1h 225.90% -2.61% 1.67% 0.10% 0.18%

Table 5.6: DASP Switching Cost Gap - Acyclic vs. Cyclic

5.7.3 Effect of periodic planning

Finally, we measure the impact in solution switching costs yielded by choosing a
period model instead of a non-periodic one. In Table 5.6 we report, for each ag-
gregation listed in the previous Subsection, the change in switching costs between
inner time-slots of the week (intra-week), between border time-slots of different weeks
(inter-week), as well as the total switching cost, the total assignment cost and the
overall cost of the solution. Using a periodic model allows for huge improvements in
inter-week switching costs, worsening intra-week and assignment costs only slightly.
The effect on the overall total costs is however negligible, thus suggesting a form of
asymmetry between assignment and switching costs in the objective function.

152 MEC Facility Assignment

5.8 Conclusions

To tackle the complex problem of assigning APs to MEC facilities over time we have
proposed a data-driven MEC management optimization framework, including an
optimization core component, that is combined with preprocessing and data-mining
and validation by simulation modules.

As a main result, we verified that instances arising in practical analyses strongly
benefit from the explicit use of mathematical programming models in such an opti-
mization core. The performances of the framework are enhanced even further when
our ad-hoc algorithms are exploited: being much more effective than a general pur-
pose solver like CPLEX, they allow to create candidate assignment plans with a finer
time discretization; this proved to be beneficial in a training-and-test evaluation on
real data.

From a computational point of view, although exact in nature, the main appeal-
ing feature of our algorithms is their ability of finding near-optimal integer solutions
very quickly, providing at the same time good dual bound guarantees. This makes
them well suited also for what-if analyses.

A promising future step is the tighter integration of temporal clustering and ad-
hoc optimization algorithms, allowing for a higher number of time slots of potentially
different size, obtained through data mining. From an application perspective, our
good computational results open also the possibility of optimizing simultaneously
more than a single service.

Appendix

153

154 MEC Facility Assignment

5.A Danztig-Wolfe Decomposition of DASP

In Section 5.5 we presented the result of a Dantzig-Wolfe reformulation of DASP
model (5.1)–(5.7) presented in Section 5.4. In this Section we give further details on
the reformulation, and we present a possible alternative DW reformulation.

With respect to DASP model (5.1)–(5.7) we identify constraints (5.2) as the
complicating constraints. Let us decompose DASP following DW principles relaxing
constraints (5.2). We rewrite DASP as:

min α
∑
t∈T

∑
i∈A

∑
(j,k)∈
K×K

dtiljky
t
ijk + β

∑
t∈T

∑
i∈A

∑
k∈K

dtimikx
t
ik (5.17)

s.t.
∑
i∈A

dtix
t
ik ≤ Ck ∀t ∈ T,∀k ∈ K (5.18)

(xtik, y
t
ikl) ∈ P i = {(xtik, ytikl) : (5.3)− (5.7), ∀t∈T∀k∈K} ∀i ∈ A (5.19)

xti,k ∈ {0, 1} ∀i∈A,∀k∈K
∀t∈T (5.20)

yti,k′,k′′ ∈ {0, 1}
∀i∈A,∀t∈T
∀k′,k′′∈K (5.21)

P i represents the feasible region with respect to constraints (5.3)- (5.7). We can
replace P i with its convex hull conv(P i). The relaxation of the integrality conditions
(5.20), (5.21) leads to a final bound of (5.17)–(5.19) that is not weaker than the LP
relaxation of the original problem (5.1)–(5.7).

Let Ωi be the set of extreme points of conv(P i). Ωi have a particular com-
binatorial interpretation: they correspond to all association paths p for the AP i,
that is the sequence of MEC facilities to which the AP i is assigned in consecutive
time-slots and complying with constraints (5.3) – (5.7). For each path p ∈ Ωi let
x̃t,pik and ỹt,pijk be the coefficients encoding the path itself. Each element of P i can be

represented as a linear combination of points in Ωi and hence we can replace (5.19)
with the following:

xti,k =
∑
p∈Ωi

x̃ikλp ∀i ∈ A, ∀t ∈ T,∀k ∈ K (5.22)

ytijk =
∑
p∈Ωi

ỹtijkλp ∀i ∈ A,∀t ∈ T,∀j, k ∈ K (5.23)

with λp ≥ 0. Replacing every variable xti,k (resp. ytijk) with its linear combination

5.A. DANZTIG-WOLFE DECOMPOSITION OF DASP 155

(5.22) (resp. (5.23)) we obtain the master problem (5.8)–(5.10) presented in Section
5.5.

5.A.1 Alternative DW Decomposition of DASP

Several alternative DW decomposition of the DASP model (5.1)–(5.7) are possible,
depending on the subset of constraints that are relaxed. In the DW relaxation
presented in Section 5.5 we choose constraints (5.2) to be relaxed, which lead to a
pricing problem with integrality properties (Proposition 2).

We tested a different variant of DW decomposition of DASP, relaxing con-
straints (5.4). We rewrite DASP as:

min α
∑
t∈T

∑
i∈A

∑
(j,k)∈
K×K

dtiljky
t
ijk + β

∑
t∈T

∑
i∈A

∑
k∈K

dtimikx
t
ik (5.24)

s.t. xtik =
∑
l∈K

ytilk ∀i ∈ A,∀t ∈ T \ {1},∀k ∈ K (5.25)

(xtik, y
t
ikl) ∈ P t = {(xtik, ytikl) : (5.2), (5.3), (5.5), (5.6), (5.7), ∀i∈A∀k∈K} ∀t ∈ T (5.26)

xti,k ∈ {0, 1} ∀i ∈ A,∀k ∈ K, ∀t ∈ T (5.27)

yti,k′,k′′ ∈ {0, 1} ∀i ∈ A,∀k′, k′′ ∈ K, ∀t ∈ T (5.28)

P t represents the feasible region with respect to constraints (5.2),(5.3), (5.5),
(5.6), (5.7). We can replace P t with its convex hull conv(P t). The relaxation of the
integrality conditions (5.27), (5.28) leads to a final bound of (5.24)–(5.26) that is not
weaker than the LP relaxation of the original problem (5.1)–(5.7).

Let Ωt be the set of extreme points of conv(P t). Ωt have a particular com-
binatorial interpretation: they correspond to a single time assignments of AP to
MEC facilities, that can be modelled as a Generalized Assignment Problem with
additional constraints. For each set of assignment in time p ∈ Ωt let x̃t,pik and ỹt,t+1,p

ijk

be the coefficients encoding the assignments itself, and having same behavior of the
corresponding variables xtik and yt,t+1

ijk of the original model. Each element of P t can
be represented as a linear combination of points in Ωt and hence we can replace
(5.26) with the following:

156 MEC Facility Assignment

xti,k =
∑
p∈Ωt

x̃ikλp ∀i ∈ A, ∀t ∈ T,∀k ∈ K (5.29)

ytijk =
∑
p∈Ωt

ỹtijkλp ∀i ∈ A,∀t ∈ T,∀j, k ∈ K (5.30)

with λp ≥ 0. Replacing every variable xti,k (resp. ytijk) with its linear combination
(5.29) (resp. (5.30)) we obtain the following Master Problem:

min
∑
t∈T

∑
p∈Ωt

β
∑
i∈A

∑
k∈K

dtimikx̃
tp
i,kλp +

∑
t∈T
|t<|T |

∑
p∈Ωt

α
∑
i∈A

∑
(j,k)∈
K×K

dtiljkỹ
t,t+1,p
ijk λp (5.31)

s.t.
∑
p∈Ωt

x̃tpikλp −
∑

p∈Ωt−1

∑
(j,k)∈
K×K

ỹt−1,t,p
ijk λp = 0 , ∀i∈A,∀k∈K∀t∈T\{1} (5.32)

∑
p∈Ωt

λp = 1 , ∀t ∈ T (5.33)

The corresponding pricing problem can be decomposed for each time-slot t ∈ T .
It makes use of free dual variables µtik of constraints (5.32) and free dual variable ηt
of constraints (5.33). Given a fixed time-slot t̂, the corresponding IP formulation is
the following:

min − ηt̂ +
∑
i∈A

∑
k∈K

ct̂ikx
t̂
ik (5.34)

s.t.
∑
k∈K

xt̂i,k = 1 ∀i ∈ A

(5.35)∑
i∈A

dt̂ix
t̂
ik ≤ Ck ∀k ∈ K

(5.36)

ct̂ik = βdt̂imik +

+ minj∈K{αdt̂+1

i lkj + µt̂+1
ij } if t̂ = 1

−µt̂ik if t̂ = |T |
−µt̂ik + minj∈K{αdt̂+1

i lkj + µt̂+1
ij } if 1 < t̂ < |T |

∀i ∈ A, ∀k ∈ K

(5.37)

xt̂ik ∈ {0, 1} (5.38)

5.A. DANZTIG-WOLFE DECOMPOSITION OF DASP 157

This pricing problem does not possess integrality property. As a consequence,
its optimal resolution is not straightforward but the LP relaxation bound retrieved
at the end of the CG should be tighter than the LP relaxation bound of the original
model (5.1)–(5.7).

We performed computational evaluation of this formulation using the same
setup presented in Section 5.6, and solving the pricing problem with the ILP general
solver of CPLEX. With respect to the first instance of Dataset B with 12 time-slots,
while our HBP algorithm retrieves a first heuristic solution in 2 seconds, with an
optimality gap of 0.8% (in Table 5.2b), this approach was not able to improve the
initial solution after reaching the time limit of 2 hours and the dual bound of the
CG was far from the end.

We believe that this formulation is not suited for our instances: (i) our instances
contain a high number of APs making optimal resolution of this pricing problem
difficult, and (ii) decomposing the problem removing connections of consecutive time-
slots lead to a very slow convergence of the CG.

158 MEC Facility Assignment

Part III

Predicting User Mobility

159

Chapter 6

Predicting User Mobility With
Network Data

Accurate algorithms require accurate data, and one of the insights coming from
the design of MEC Network described in Chapters 3 and 4 is the following: the
knowledge of user mobility represents key data for the optimal design of a MEC
Network. These are however very hard to retrieve due to both availability and
privacy issues. Therefore, in this chapter we face the problem of estimating user
mobility given very aggregated data. In particular, we suppose that only mobile
access point demands in a time horizon are known, together with the knowledge of
some general statistical features of the mobility patterns.

We define the scope of our approach in Section 6.1, while in Section 6.2 we
present an extended mathematical programming formulations of our problem, for
which we provide a column generation based algorithm in Section 6.3. We experi-
ment on both synthetic datasets, obtained through generative models from the liter-
ature, and real world datasets for which ground truth is not available (Section 6.4).
Our approach proves to be accurate enough to faithfully estimate mobility on the
synthetic datasets, and efficient enough to tackle real world instances (Section 6.5).
Finally in Section 6.6 we draw our final conclusions.

Preliminary results were presented in [24].

161

162 Predicting User Mobility With Network Data

6.1 Introduction

The knowledge of user trajectories in urban areas is key data in many applications.
In our MEC Network context users’ movements cause changes to the network load,
and this latter must be balanced to optimize the use of resources and to decrease con-
gestion risks. Moreover the knowledge of users movement is also vital for application
requiring data to follow the user to be accessed in a short time.

The modeling of human mobility is a well studied research field, that the avail-
ability of spatiotemporal information of mobile phone users has push forward with a
great number of research projects and potential applications [23].

Human trajectories are far from random, as revealed by Gonzalez et al. in [95],
but rather they show a high degree of temporal and spatial regularity. Indeed, while
the distribution of the displacements lengths of an individual can be approximated
with a truncated Lévy flight distribution, the probability to return in an already vis-
ited location is much higher than that approximated by a Lévy flight. This regularity
is explained by the fact that individuals spend most of their time in a small number
of locations. Song et al. in [96] further investigate the differences between user mo-
bility and traditional random-walk models, such as Lévy flight and continuous-time
random-walk. In particular they identify two generic mechanisms which are unique
to user mobility:

• exploration: the tendency to explore additional locations, which decreases with
observation time;

• preferential return: users show significant propensity to return to locations
they visited frequently before, such as their home or workplace.

As mobility traces are not random, and users often return to their previous visited
locations, the authors of [97] face the problem of the predictability of user mobility,
deducing that an appropriate algorithm could predict up to 93% of user locations on
average, thanks to the temporal correlations of the users’ displacements.

Different philosophies have been devised to model user mobility, the two most
used being based on: (i) the solely traveled distance; and (ii) the so called intervening
opportunities [98] (also known as activity-based models), that take into consideration
the reasons that lead people to move.

Distance based models assume that mobility is directly deterred by the costs
(in time and energy) associated to physical distance. Among these, the gravity model
[99], in analogy with Newton’s law of gravity, assumes that the number of individuals

6.1. INTRODUCTION 163

that move between two locations per unit time is proportional to the population of
the source and destination locations, and decays as a function of the distance between
the locations.

On the other hand, the intervening opportunities theory, originally presented
in [98], states that a person aims to search for destinations where to satisfy her
needs. Hence migration from an origin to a destination is assumed to depend on the
number of opportunities to satisfy the underling need that lie closer to the origin
than the destination. Implementation of this theory includes models that require
the direct knowledge of the human activities [100]. Several proxies to intervening
opportunities have been proposed, such as the land use of locations, the importance
of locations acting as point of interest that attracts individuals [101, 78], the density
of population [102, 103], among others.

However, to the best of our knowledge, no law for user mobility has been proved
to be universally valid for all spatial scales, time periods and urban topologies. In
Appendix 6.A we propose a literature review of the human mobility prediction mod-
els, differing by: (i) the typology of mobility that they aim to predict, i.e. inter-city
commuters mobility or intra-city mobility; (ii) the range of time that they want to
predict, as it is assumed that in different time of the day, day of the week and week
of the year mobility can change from the normal routine; (iii) the underlying mo-
bility model, i.e. gravity-based or activity-based or a mixture of different models or
without a specific model and (iv) the amount of information required to train the
predictive model. This last point opens several issues: the need of information about
socio-economical and geographic attributes may involve availability and privacy is-
sues.

Main contributions and outline To the best of our knowledge, the majority of
human mobility prediction approaches presented in literature, a subset of which are
presented in Appendix 6.A, requires a considerable amount of information, such as:
complete census data of the considered area, origin-destination matrices, the history
of individual movements, social media check-in, among others.

With respect to all these works, our approach requires the knowledge of very
low amount of information that can be accessed more easily, that is: (i) the mobile
network demand across the day and (ii) the location of the underlying mobile access
points, or alternatively the area from which each portion of data is retrieved. As a
trade-off, we do not aim to model universal human mobility, but rather to model the
mobility of the users of the mobile network.

164 Predicting User Mobility With Network Data

Our approach aims to rebuild user mobility from the spatiotemporal fluctua-
tions of network usage; however, linking network load fluctuation to user trajectories
is not enough to predict the actual users’ mobility: in order to faithfully predict this
latter, we have to constraint trajectories to follow statistical features typical to user
mobility. To keep as low as possible the amount of information needed to exploit our
models, we take into account only aggregated statistical features. In particular we
include in our model the following feature, highlighted in [95, 96]: the distribution
of the displacements lengths on each individual path can be reliably approximated
with well known probability distribution.

In Figure 6.1 we present the sketch of our User Mobility Prediction Framework.
As already stated, our prediction algorithm requires three inputs data: we partition
the region covered by a mobile network into cells, one for each AP, and we suppose
to be given: (a) the adjacency matrix between cells, and (b) the demand in each cell
at each point in time, that is the number of users connected to the corresponding
AP; the time horizon is split in discrete time-frames; we also assume that an aggre-
gated information about user mobility is given, namely the probability distribution
of trajectory lengths.

Our aim is to find an estimate of the path of each user, in terms of sequence of
cells traversed by the user during the considered time horizon, that explains the net-
work usage fluctuations and fits the chosen statistical feature of mobility. In Figure
6.2 an example of such path is presented: given a region split in cells corresponding
to the AP covering areas, we define as paths-over-time (paths in the remainder) the
sequence of adjacent APs cells, i.e. geographically connected, and which are assumed
to be visited by users in consecutive time frames (from time t = 1 to t = 4 in the
Figure).

Since demand is usually easy to forecast, e.g. by time series analysis, our meth-
ods can be seen in the long term as means of predicting the corresponding user
mobility. These paths are also meant as a refined way of estimating user trajectories,
that is pairs of origin and destination for each user.

We model such a problem as that of finding a suitable set of paths-over-time on a
time-dependent graph, proposing extended mathematical programming formulations
and column generation algorithms: we present a bi-objective linear programming
model (Section 6.2), solved through a hierarchical algorithm (Section 6.3). Our
problem belong to the class of flows over time problem (also known as dynamic
network flows) over discrete time with a single commodity, multiple sources and
multiple destinations [22]; however, to the best of our knowledge, this is the first

6.1. INTRODUCTION 165

Figure 6.1: User Mobility Prediction Framework

time mathematical programming techniques have been used to link network load
fluctuation to user trajectories.

We experiment on both real-world and synthetic datasets (Section 6.4): in
order to test effectiveness of our approach we generate synthetic user trajectories
through three generative models inspired by literature. We propose several perfor-
mance measures that evaluate both the quality of predicted origin-destination tra-
jectory matrices and the full paths. Our approach proves to be accurate enough to
faithfully estimate mobility on the synthetic datasets, and efficient enough to tackle
real world instances; it performs well in a rush hour scenario, that is considering a
urban-size area for a limited amount of time with great mobility, while it performs
poorly in a commuters mobility scenario, that is considering a long time horizon and
long distances (Section 6.5).

166 Predicting User Mobility With Network Data

Figure 6.2: User Path-Over-Time

6.2 Formulation

In order to model our network, let T = {1, . . . , |T |} be a set of time-frames within
a time horizon and N be a set of APs, each lying at coordinates (xi, yi) in a plane
that models our urban area. For each time t ∈ T and AP i ∈ N , let dti ∈ N0 be the
number of users connected to AP i during time frame t. This set of data is problem
specific, and is supposed to be provided by the operator.

Modelling User Trajectories We denote as Ω the set of feasible paths-over-time
(paths in the remainder), each being a sequence of APs whose cells are adjacent,
i.e. geographically connected, and which are assumed to be visited by users in con-
secutive time frames. Notation-wise, for each p ∈ Ω, we indicate with ω(p, t) the AP
visited at time t in path p, and we suppose ω(p, t) to be set to a dummy value “-” if
path p starts after, or ends before t. Let l(p) be the total length of each path p ∈ Ω,
that is the sum of distances between consecutive APs in the path. The starting
and ending APs of each path (the first and last values of ω(p, t) which are different

6.2. FORMULATION 167

from “-”) identify a trajectory; the same trajectory can be identified by many feasi-
ble paths. We remark that indeed the same set of trajectories can be explained by
multiple sets of paths.

Modelling User Mobility Statistical Feature As stated previously in the In-
troduction, user trajectories are far from random. Linking network load fluctuation
to user trajectories is not enough to predict the actual users’ mobility: in order to
faithfully predict this latter, we have to constraint trajectories to follow statistical
features typical to user mobility. To keep as low as possible the amount of informa-
tion needed to exploit our models, we take into account only aggregated statistical
features. In particular we include in our model the following feature, highlighted in
[95]: the distribution of the displacements lengths on each individual path can be
reliably approximated with well known probability distribution.

Therefore, let K = {1, . . . , |K|} be a set of traveling distance classes, obtained
by partitioning Ω according to the length of its paths. For each k ∈ K, let lk (resp.
lk−1) be the upper (resp. lower) bound on the length of each path in class k, with
l0 = 0; let also nk ∈ Z∗ be the number of users whose path is in class k. This set of
data is not problem specific: it can be estimated without any sensitivity issue.

Summarizing, from an application point of view, we assume: (i) AP locations
coordinates (xi, yi) and expected number of users dti to be given, e.g. by a telecom-
munication service provider; (ii) Ω to be easily definable, e.g. by Voronoi tessellations
and street maps, and (iii) lk and nk to be estimated by previous knowledge on users
travel distance distributions like [95, 96].

Variables Our aim is to assess how many users are expected to follow a certain
path over our time horizon, that we indicate as xp for each p ∈ Ω. We also consider
the possibility that users enter or quit the system, or that simply data dti is affected by
noise, allowing a positive (resp. negative) correction ε̄ti (resp. εti) for each i ∈ N, t ∈ T .
As we are dealing with averages of quantities or, from a different point of view, of
expected values, we can relax integrality constraints on our variables and allow them
to take non-negative real values.

Our primary objective is to find a setting of the variables that explains our data
with minimum absolute value correction, that is to find user trajectories that best
explain network load fluctuations. We define this problem as the User Trajectories
Prediction Problem (UTPP):

We propose and compare two options to model the link between paths and

168 Predicting User Mobility With Network Data

network load: a flow conservation and a demand conservation formulation.

Flow conservation formulation We optimize the following Linear Programming
(LP) model:

min ε =
∑
t∈T

∑
i∈N

(ε̄ti + εti) (6.1)

s.t. dti = dt−1
i +

∑
j∈N

∑
p∈Ω

|ω(p,t−1)=j
∧ω(p,t)=i

xp −
∑
j∈N

∑
p∈Ω

|ω(p,t+1)=j
∧ω(p,t)=i

xp + ε̄ti − εti
∀i∈N,

∀t∈T\{t0,T} (6.2)

∑
p∈Ω
|l(p)<l̄k

xp ≥
∑
k′≤k

nk′ ∀k ∈ K (6.3)

xp ≥ 0 , ε̄ti ≥ 0 , εti ≥ 0 (6.4)

We consider a solution to be feasible if it respects three classes of constraints:
(i) constraints (6.2) represent the flow conservation constraints for the mobile traffic
demand in time t: demand dti at node i at time i is given by the demand in the
same node in the previous time-frame t− 1, plus the demand incoming in the node
in time range (t− 1, t), minus the demand leaving the node in time-range (t, t+ 1);
(ii) constraints (6.3) imply that number of users migrating with a traveling distance
in class k ∈ K meet at least the expected number of users migrating in that class
nkwe constrain the cumulative values rather than the values in each single class; (iii)
finally constraints (6.4) impose the non-negativity of the variables.

We name the model composed by equations (6.1)-(6.4) as flow conservation
variant of the UTPP (f-UTPP in the remainder).

Demand conservation formulation Given that the flow we consider represents
demand changes in time, we propose a variant of the flow-conservation constraints
(6.2), replacing them with the following:

dti = dt−1
i +

∑
j∈N

∑
p∈Ω

|ω(p,t−1)=j
∧ω(p,t)=i

xp −
∑
j∈N

∑
p∈Ω

|ω(p,t)=j
∧ω(p,t−1)=i

xp + ε̄ti − εti
∀i∈N,
∀t∈T\{t0} (6.5)

6.2. FORMULATION 169

t−1 t t+1

i

j j

i i

j

dt−1
i

+xt−1,t
j,i −xt,t+1

i,j

(a) Flow Conservation

t−1 t t+1

i

j j

i i

j

dt−1
i

+xt−1,t
j,i

−xt−1,t
i,j

(b) Demand Conservation

Figure 6.3: UTPP Variants of User Trajectories - Network Loads Link

in which demands dti of node i at time t are given by the demands in the same node
in the previous time-frame t−1, minus the demands that leave the node in the range
of time (t − 1, t), plus the demands that arrive in the nodes in the range of time
(t − 1, t). In Figure 6.3 differences of the two different conservation constraints are
presented graphically.

We name the model composed by equations (6.1), (6.3), (6.4), (6.5) as demand
conservation variant of the UTPP (d-UTPP in the remainder).

Result. As encoded by our decision variables, the output obtained by optimizing
our models corresponds to the number xp of users whose path over time is p ∈ Ω.
For our prediction task, we draw an aggregated result, computing for each i ∈ N
and j ∈ N the value Fij as the sum of xp variables corresponding to paths starting
in i and ending in j, that is the predicted number of users on the trajectory from i
to j.

6.2.1 Hierarchical bi-objective approach

Once an optimal ε value is found, we adopt a hierarchical bi-objective approach,
and as secondary objective we try to match the path lengths distribution as close as
possible. That is, we minimize the maximum difference between the number of users
migrating on paths of each class k and the expected ones nk, fixing the total amount
of absolute value correction to use. The modified LP model is:

170 Predicting User Mobility With Network Data

min η (6.6)

s.t. (6.3), (6.4), (6.5)

−
∑
p∈Ω

|l(p)∈[lk,l̄k)

xp − nk ≥ −η ∀k ∈ K (6.7)

∑
i∈N

∑
t∈T\{t0}

ε̄ti + εti ≤ ε (6.8)

η ≥ 0 (6.9)

The new objective (6.6) aims to minimize the maximum difference between the
predicted and expected number of users in a traveled distance class, represented by
the variable η valorized by constraints (6.7). Constraint (6.8) states that the total
amount of value correction change cannot exceed the optimal amount found by the
primary objective, possibly moving the correction to different nodes and times.

A complete notation table for UTPP model can be found in Table 6.1.

The rationale for the use of this hierarchical model is given by the laminar
structure of constraints (6.3) which generates solutions presenting a poor fit of the
probability distribution of trajectories lengths. In order to satisfy those cumulative
constraints, the model may generate short paths associated to a number of users high
enough to satisfy the constraints for several successive classes in K. This behavior is
clear in Figure 6.4a, showing the expected Cumulative Distribution Function (CDF)
of the traveled distances with black circles and the CDF predicted by the first stage of
our model with red triangles: the model associates to short distances a high number
of users, such that cumulative constraints (6.3) are satisfied. In Figure 6.4b the same
fit is presented after the second stage of our model: a significant improvement can
be observed.

6.3 Algorithms

Both stages of our model require to solve only LPs. However, as the cardinality of Ω
grows combinatorially, it is computationally infeasible to solve the problem directly.
Instead we perform column generation [70] on the set of variables xp. That is, we
consider a restricted LP in which Ω is replaced by a small subset Ω̄, we solve it,
we collect the values of optimal dual variables, and we search for variables xp of

6.3. ALGORITHMS 171

Sets

T set of time frames in a time horizon
N set of two dimension coordinates points of access points
U set of users in the system
K classes of travelling distances

Ω = {(t, i), (t+ 1, j),
. . . , (t+ k, n)} set of feasible trajectory paths, composed by pairs (times,

locations)
E ⊆ (N ×N) adjacent pair of locations nodes

Parameters

di,j distance between pair of nodes (i, j) ∈ E [km]
dti demands in terms of number of users in access point i at

time t

(lk, lk) range of distance characterizing a distance traveling class
k

nk expected number of users moving with distance in traveling
class k

ω : Ω× T → N function retrieving the location of a path p in time t
l : Ω→ R function retrieving the total length of a path p

Variables

xp ∈ N number of user moving using path p ∈ Ω

ε̄ti ∈ Z number of users entering the system in access point i at
time t

εti ∈ Z number of users quitting the system in access point i at
time t

ε total number of value correction to minimize in (6.1)
η min max support variable in (6.6)-(6.7)

Table 6.1: UTPP - Notation Table

172 Predicting User Mobility With Network Data

(a) 1st stage fit (b) 2nd stage fit

Figure 6.4: Traveled Distance Probability Fitting

negative reduced cost whose corresponding path p is therefore not in Ω̄. If no such
a variable can be found, the current solution is optimal for Ω as well, otherwise Ω̄
is enlarged with the paths corresponding to the variables found, and the process is
iterated.

Let us consider d-UTPP variant: for the primary objective problem, let λti be
the dual variables associated to constraints (6.5) and let µk be the dual variables
associated to constraints (6.3). The reduced cost of a variable xp is:

c̄p =
∑
t∈T

|ω(p,t) 6=−

(λtω(p,t−1) − λtω(p,t))−
∑
k∈K
|l(p)>l̄k

µk (6.10)

For each k ∈ K, the search for the most negative reduced cost variable encoding
a path in class k can be mapped into a resource constrained minimum cost path
problem in a time-expanded directed graph G = {N ′, A} [104]. The set of nodes N ′

is composed by each pair (i, t) of AP i ∈ N and time frame t ∈ T , together with
two additional dummy nodes acting as origin and destination; i.e. N ′ = (N × T) ∪
{(o, t−1), (d, tT+1)}. The set A includes one arc (i, t−1; j, t) connecting nodes (i, t−1)
and (j, t) if and only if the cells of APs i and j are adjacent. The dummy origin
has an outgoing arc to every other node except the dummy destination, and no
incoming arc. The dummy destination has an incoming arc from every other node
except the dummy origin, and no outgoing arc. Indeed, the graph node is organized
in layers, one for each time frame; paths in G can only be composed by nodes of

6.3. ALGORITHMS 173

t = 0 t = 1 t = |T |

o d

i

j

i

j

. . .

. . .

i

j

(0,0)

(0,0)

(0,0) (0,0)

(0,0)

(0,0) (0,0)

(w0,1
i,j , li,j)

(w0,1
i,i , li,i)

Figure 6.5: Time-Expanded Directed Graph G

different layers, and by arcs connecting one layer with the subsequent one. Modeling
of waiting decisions is included, as represented by arcs (i, t− 1; i, t). An example of
graph G is presented in Figure 6.5.

Dual variables give weights to nodes of the graph i ∈ N ; we reformulate the
problem to a graph with negative weights on arcs. Each arc (i, t−1; j, t) has a weight
related to the value of the dual variables of the constraints in the master in which
the link is used, i.e. wt−1,t

i,j = λti − λtj, and lengths li,j = ‖(xi, yi) − (xj, yj)‖, except
those incident to either the origin (o, 0) or the destination (d, T + 1), whose cost and
length are set to 0.

A feasible path in G belonging to traveling distance class k ∈ K starts from
the origin node (o, 0), ends in the destination node (d, T + 1) and the sum of its arc
lengths falls into the range [lk, l̄k) We aim to find for each class of traveling distance
k ∈ K a path in the graph G that respect the length given by the class and with
negative reduced cost or proving that none exist.

The pricing problem can be formulated as an integer linear program as fol-
lows.

Integer Programming Pricing Model The pricing problem can be modeled as
an integer programming model, having a binary variable yt−1,t

i,j for each arc in graph
G with value 1 if arc (i, j) is used in time frame (t−1, t), 0 otherwise. Formally:

174 Predicting User Mobility With Network Data

min
k∈K

∑
t∈T\{0}

∑
(i,j)∈N×N

yt−1,t
i,j wt−1,t

i,j − µk (6.11)

s.t.
∑
t∈T

∑
i∈N

y−1,t
o,j = 1 (6.12)∑

t∈T

∑
i∈N

yt,T+1
j,d = 1 (6.13)

lk ≤
∑

t∈T\{0}

∑
(i,j)∈N×N

yt−1,t
i,j di,j ≤ l̄k (6.14)

∑
j∈N∪{o}

yt−1,t
j,i =

∑
j∈N∪{d}

yt,t+1
i,j ∀i ∈ N,∀t ∈ T (6.15)

yt
′,t′′

i,j ∈ {0, 1} ∀(i, t− 1; j, t) ∈ A (6.16)

Objective function (6.11) aims at minimizing the total cost, composed by the
weights of the arcs belonging to the chosen path and the dual variable µk of the
traveling distance class k ∈ K to which the path belong. Constraints (6.12) and
(6.13) imply respectively that a single unit of flow exits the dummy origin at time
−1 to any node in any time frame (except the destination), and that a single unit of
flow enters the dummy destination at time T+1 coming from any node in any time
frame (except the origin). Constraint (6.14) links the total length of the path to the
distance range given by class k ∈ K. Constraints (6.15) ensure flow conservation at
each point of the network at each time frame. Finally constraints (6.16) define the
variables and their possible values. Notation of this ILP model is presented in Table
6.2.

ILP model (6.11)–(6.16) can be potentially sovled with general purpose tool.
However, such an approach is viable only for very small instances. Instead, we devise
an ad-hoc dynamic programming algorithm, that is able to optimize over all classes
simultaneously, presented in the following section.

Dynamic programming approach The pricing model to generate new paths
can be conveniently tackled with a dynamic programming approach that is able to
optimize over all classes simultaneously.

Our graph G is directed and layered, there is no possibility for cycles and all
paths are elementary.

6.3. ALGORITHMS 175

Sets

G = (N ′, A) time-expanded node graph
N ′ nodes of graph G, N ′ = (N × T) ∪ {(o, t−1), (d, tT+1)}
A arcs of graph G, in the form (i, t− 1; j, t)

Parameters

wt−1,t
i,j weight of arc between nodes i and j in consecutive times t− 1, t
λti dual variables associated to constraints (6.5) for d-UTPP variant
θti dual variables associated to constraints (6.2) for f-UTPP variant
µk dual variables associated to constraints (6.3)

Variables

yt−1,t
i,j ∈ B has value 1 if arc (i, t− 1; j, t) ∈ A belong to the chosen path

Table 6.2: UTPP Algorithms Notation Table

We exploit the layered directed graph G where each node i in layer t contains
states of the dynamic programming execution, while arcs in the graphs represent
state transitions. Different states, associated with the same node (i, t), correspond
to different feasible paths p reaching i at time t. They differ by: (i) the sum of arcs
lengths L of the path; and (ii) the sum of the weights C of the traversed arcs. Hence
states can be represented by a label (C,L, (i, t)). The length L in each state can
be seen as a value of consumption of a resource whose total availability is L, where
L = l̄k for each given class k ∈ K.

The main steps of the algorithm are the following:

• Initialization. We create a single starting label (−
∑

k∈K µk, 0, (i, t)) for each
i ∈ N, t ∈ T ;

• Propagation. We proceed layer by layer and node by node, that is, for each
t ∈ T and for each i ∈ N , we iteratively select each label (C,L, (i, t)) and
extend it to all the nodes (j, t + 1) having (i, t; j, t + 1) ∈ A, creating a new
label (C ′, L′, (j, t+ 1)) for each of them that has L′ = L+ li,j and

C ′ = C + wt,t
′

i,j +
∑
k∈K
|L>l̄k

µk −
∑
k∈K

|L+li,j>l̄k

µk (6.17)

The creation of labels having L′ ≥ l|K| is skipped, as encoding paths which are
infeasible for all classes.

176 Predicting User Mobility With Network Data

• Fathoming. The efficiency of the dynamic programming algorithm heavily
relies upon the possibility of fathoming feasible states that cannot lead to an
optimal solution, which results in applying dominance rules between pairs of
labels. After treating each label we perform the following check: if any label
(C ′′, L′′, (j, t + 1)) has already been created, having C ′′ ≤ C ′ and L′′ ≤ L′, at
least one inequality being strict, then (C ′, L′, (j, t+1)) is fathomed; similarly, if
C ′′ ≥ C ′ and L′′ ≥ L′, at least one inequality being strict, then (C ′′, L′′, (j, t+1))
is fathomed.

• Stopping. We stop when all pairs (i, t) have been considered. All labels whose
cost C is negative encode paths of negative reduced cost.

We remark that, given the laminar structure of constraints (6.3), this aggre-
gated dynamic programming algorithm is able to produce in a single run the labels
of all non dominated paths for each class k; a formal proof is omitted. This allows
us on one hand to improve efficiency, since only one resource constrained minimum
cost path problem needs to be solved at each column generation iteration, and on the
other hand to obtain an effective multiple pricing strategy, that consists in enlarging
the set Ω̄ at each column generation iteration with the minimum reduced cost path
for each class k ∈ K, if any negative reduced cost exists.

The overall dynamic programming procedure is formalized in Algorithm 8. For
each state (i, t) we indicate with Γ(i,t) the set of its associated labels, with li,t a generic
single label and with ∆(i,t) the set of successors of the state. Extend(l(i,t), (j,t’)) is
the extension procedure: it extends a label for (i, t) specified as a first argument to
the state (j, t′) specified as a second argument; this procedure checks the resource
constraints and produces only feasible states. EFF(Γ , l) is the procedure that
inserts label l into set Γ applying the dominance rules. Finally with P (l), L(l) and
C(l) we indicate respectively the path, the length of the path and the cost of the
path of label l.

Path generation for f-UTPP For the f-UTPP variant the reduced cost of a
variable xp is given by the dual variables θti associate to constraints (6.2):

c̄p =
∑
t∈T |

ω(p,t+1)6=′′−′′

θtω(p,t) −
∑
t∈T |

ω(p,t−1) 6=′′−′′

θtω(p,t) −
∑
k∈K|
l(p)>l̄k

µk (6.18)

Components θti cancel each other out, except those relative to first and last
visited node, which contributes respectively positively and negatively. The equation

6.3. ALGORITHMS 177

Algorithm 8 d-UTPP Dynamic Programming Pricing

for all t ∈ T do
for all n ∈ N do

for all lt,n ∈ Γ(t,n) ∪ {(p = {(−1, o), (t, n)}, 0, 0, (t, n))} do
for all (t′, n′) ∈ ∆(t,n) ∪ {(T + 1, d)} do
lt′,n′ ← Extend(lt,n, (t

′, n′))
Γ(t′,n′) ← EFF (Γ(t′,n′), lt′,n′)

end for
end for
Γ(t,n) references can be deleted

end for
end for
for all k ∈ K do
lkmin = arg min lT+1,d∈Γ(T+1,d)

{ C(lT+1,d) | lk ≤ L(lT+1,d) ≤ l̄k ∧ C(lT+1,d) < 0}
pk ← P (lkmin)

end for

can be written equivalently:

c̄p =
∑
t∈T |

ω(p,t−1)=′′−′′

θtω(p,t) −
∑
t∈T |

ω(p,t+1)=′′−′′

θtω(p,t) −
∑
k∈K|
l(p)>l̄k

µk (6.19)

In the dynamic programming algorithm that generate paths, the weights of
the layered directed graph change to wt−1,t

i,j = θt−1
i − θtj . The algorithm remain

unchanged.

Second Stage We adapt our algorithm to the second stage of our bi-objective
model as follows. Since dual variables νk of constraints (6.7) need to be taken into
account, the pricing objective function becomes:

min
k∈K

∑
t∈T\{0}

∑
(i,j)∈N×N

yt−1,t
i,j wt−1,t

i,j − µk + νk (6.20)

while other constraints in the pricing model remains unchanged. The dynamic
programming algorithm presented previously can still be used, changing the formula
that updates the label cost (6.17):

178 Predicting User Mobility With Network Data

C ′ = C + wt,t
′

i,j +
∑
k∈K
|L≤l̄k

µk −
∑
k∈K

|L+li,j≤l̄k

µk −
∑
k∈K

|L∈[lk,l̄
k]

νk +
∑
k∈K

|L+li,j∈[lk,l̄
k]

νk (6.21)

Formally, since the structure of constraints (6.7) is not laminar anymore, the
dominance rules need to be slightly relaxed to take into account of the contribution of
the new dual variables. In our implementation, instead, we found it computationally
useful to keep the original rules and resort to heuristic pricing. As discussed in
Section 6.5 the routine obtained in this way proved to be able to produce high
quality solutions with limited effort.

6.4 Experimental Analysis Methodology

Unfortunately, the real world origin-destination matrices we have access to (presented
in Chapter 4) include very limited data on the fine-grained user trajectories, to
be used as ground truth. Since obtaining a statistically significant testbed from
these data is not possible, in order to test both the computational viability and the
prediction accuracy of our methods, we create synthetic datasets as described in the
next subsections.

In Figure 6.6 we sketch the experimental analysis methodology. First, we draw
APs coordinates at random; we generate instances as collections of user paths-over-
time on this set of APs, to which we refer to as the original paths. We propose three
generative models of original paths (Subsection 6.4.1): (i) an ad-hoc model that
generates the paths in the same way our algorithm generates paths in the column
generation process, described in Section 6.3; (ii) a model based on the definition
of Point of Interests (POI) from which users starts their trips and to which are
attracted; and (iii) the generative model defined in [96].

Using the generated original paths we compute: (i) the network load in time,
i.e. the number of users dti connected to each AP i ∈ N at time t ∈ T ; (ii) the details
lk and nk of path length classes k ∈ K. These data are used as sole input of our
methods.

In order to test effectiveness of our algorithm, we have selected a probabilistic
predictive model from literature as benchmark (Subsection 6.4.2). In particular we
have selected the intra-urban mobility model presented in [103], that we classify as

6.4. EXPERIMENTAL ANALYSIS METHODOLOGY 179

a gravity model. We used the original paths to train this model, that retrieve an
estimation of the origin-destination matrix.

The full collection of original paths is kept only for cross-checking (as post-
processing) the quality of predicted paths, that are those produced as output solutions
of our methods.

Figure 6.6: Experimental Analysis Methodology

6.4.1 Generative Models

Ad-Hoc Generative Model

The ad-hoc model mimics the creation process of the paths of the dynamic program-
ming algorithm presented in Section 6.3: (i) we ask for a set of users U as input
of the generator; (ii) for each user u ∈ U we choose an origin AP o uniformly at
random and a displacement distance r from a power law distribution with exponent
α = 0.2; (iii) as destination node d we choose uniformly at random among those
whose distance from origin o is in the range [0.8r, 1.2r]. A path from o to d is then

180 Predicting User Mobility With Network Data

created as a minimum hops path in the adjacency graph of APs, where the adjacency
is defined by the Voronoi tessellation.

We assume that one hop is made in each time frame; the starting time frame
is chosen uniformly at random in such a way that the complete path fits in the time
horizon. In Algorithm 9 the pseudo-code of the ad-hoc model is presented.

Algorithm 9 UTPP - Ad-Hoc Mobility Generation

for all u ∈ U do
linit = getInitialRandomLocation()
∆r = P (∆r ∈ [rmin, rmax]) ∼ |∆r|−1−α

ldest = randomLocationAtDistance(linit,∆r)
pu = ShortestPath(linit, ldest)

end for

Points of Interest Generative Model

As second generative model, we exploit the concept of the presence in a city of
Points of Interest (POI) that attract users (such as industrial and commercial areas)
and from which users start moving (such as residential areas), as proxies for the
intervening opportunities such as presented in [98, 101]. Let us define the subset of
POI D ⊆ N which attracts mobility and the subset S ⊆ N which generates mobility,
drawn uniformly at random from the sets of nodes N . We estimate the number of
users nTi that will be in cell i at the end of the time-horizon with |D| pairs of normal
distributions centered in the coordinates of each POI in D. In the same way we
estimate the number of users n̄i that start their movements in cell i with |S| pairs of
normal distributions centered in the coordinates of each POI in S.

We define attractiveness of an AP i as ai = nTi /
∑

k n
T
k , i.e. as the percentage

of users expected to be in cell i at the end of the time-horizon. Following the gravity
model as the one presented in [103], we define the probability for a user to move
from cell i to cell j to be proportional to the attractivity of the destination cell j
and inversely proportional to the distance between the cells dij, formally:

Pi→j =

aj
dij∑
k
ak
dik

(6.22)

For each cell i and for each users starting in cell i, u ∈ n̄i, a destination cell j

6.4. EXPERIMENTAL ANALYSIS METHODOLOGY 181

is drawn with the probability distribution given by (6.22). The actual mobility path
is given by the shortest path in the adjacency graph of the APs between cell i and
cell j, where the adjacency if defined by the Voronoi tessellation.

Preferential Return and Exploration Generative Model

As third generative model we implement the model described by Song et al. in [96],
described in Algorithm 10. This model is based two mechanisms unique to user mo-
bility: preferential return and exploration. If a user moves, she will prefer an already
visited location, and among them the more visited location has more probability to
be visited again. If the user moves to a new location, the destination is chosen in
the same way as in ad-hoc generative model described in Algorithm 9.

Going into detail: given the number of distinct locations visited by a user S,
when a user moves she will choose as destination with probability Pnew = ρS−γ a
new location and with probability Pret = 1 − Pnew an already visited location. If
the user chooses an already visited location, the actual location l is drawn with
probability Πl = fl = ml∑

l′ ml′
, where ml is the number of times that location l where

visited and hence fl is the percentage of times location l were visited (the frequency
of visit). Parameters ρ and γ defines the willing of a user to explore new locations.
In our experiments γ is constant for all users with value 0.21, while ρ was drawn for
every user from a normal distribution with mean µρ = 0.56 and standard deviation
σρ = 0.1.

For each user u ∈ U the initial location is drawn uniformly at random from
the sets of nodes N , as well as the initial time is drawn uniformly at random from
the sets of times T . Movements occur after a waiting time drawn from a power law
probability distribution with exponent α = 0.20, truncated to a maximum value of
17 hours (suggested by [96]). The generation of new destinations end after reaching
the time tend, that we fixed to 25 hours of simulated trajectory. The final complete
trajectory is given by the union of all paths from origin to destinations, that are
composed by the shortest path in the adjacency graph of the APs.

We will refer to this generative model as PREGM.

6.4.2 Benchmark Model

In order to test effectiveness of our algorithm, we have selected a probabilistic pre-
dictive model from literature as benchmark.

182 Predicting User Mobility With Network Data

Algorithm 10 Preferential Return and Exploration Generative Model

S = 1, l0 = Pinit(N), t0 = tinit, d = 0
while td ≤ tend do
d = d+ 1
Pnew = ρS−γ, Pret = 1− Pnew

if Punif(0, 1) ≤ Pnew then
∆r = P (∆r ∈ [rmin, rmax]) ∼ |∆r|−1−α

ld = randomLocationAtDistance(ld−1,∆r)
S = S + 1

else
ld = P (Πl = fl = ml/

∑
lml(d))

end if
update Πl given new displacement ld
pd = ShortestPath(ld−1.ld)
tmin = travelT ime(pd)
∆t = P (∆t ∈ [tmin, tmax]) ∼ |∆t|−1−β

td = td−1 + ∆t
end while
return {p1, . . . , pd}

6.4. EXPERIMENTAL ANALYSIS METHODOLOGY 183

We select the intra-urban mobility model presented in [103], that we classify
as a gravity model. In order to predict users mobility, it takes into consideration
specific features of the area under analysis. In particular, this model splits a city in
regions and considers the density of population Qi of the region i together with the
distances dij between regions i and j to build the probability P (i → j) of a user to
move from region i to region j. Formally:

P (i→ j) = Q̄i
Qj/f(dij)∑
k 6=iQk/f(dik)

(6.23)

where Q̄i is the normalized density of population in region i and f(dij) is a function
of the distance between the regions i and j, defined as f(dij) = dσi.j. Supposing that a
reliable estimate of the number Tij of actual trips between regions i and j is available
for training, the optimal value for parameter σ can be obtained through a maximum
likelihood computation:

σ = arg min
σ

(
−
∑
i,j∈S |
i 6=j

Tij log
(
Q̄i

Qj/f(dij)∑
k 6=iQk/f(dik)

))
(6.24)

In our case, we compute instance by instance the value Aij of users whose
trajectory starts in i and ends in j, and directly use it for training the benchmark,
setting Tij = Aij, Qi =

∑
j∈N Aij, Q̄i = Qi/

∑
i∈N,j∈N Aij and computing σ as

in (6.24). Then, assuming a number U is given as input to the prediction model,
corresponding to the overall number of users into the system, we consider a predicted
(average) number of users on the trajectory from i to j equal to Fij = U · P (i →
j).

6.4.3 Key Performance Measures

We remark that a first performance index is the value of the objective function in our
optimization models, that is the residuals in the fitting of demands in our solutions.
These values, as reported in the following, are always very small.

However, these small values could in principle be also the result of overfitting.
Therefore, to provide a fair estimate on quality of our predicted mobility, we designed
three further classes of performance indices.

184 Predicting User Mobility With Network Data

• As encoded in constraints (6.3) of our model, the first index involves the com-
parison between the distribution of the distances of the original trajectories
and the predicted ones. As a numerical measure of goodness of the fitting we
use the average absolute residual defined as ē =

∑
k∈K(|Ỹk − Yk|)/|K|, given

Ỹk the cumulative number of users predicted for class k ∈ K and Yk the actual
number of users for the same class.

• After testing that users move as they are expected, we test if they move where
they are expected. Given that our simulation takes into consideration the
rush-hour time horizon, we assume for each trajectory the first and last vis-
ited location to be the two most important locations for the user, being the
intermediate locations transitional ones. Still denoting as Aij the original mo-
bility matrix entries, that is the number of users whose trajectory starts in i
and ends in j, and the predicted mobility matrix entries as Fij, we consider
a matching between original and predicted origins and destinations with in-
creasing flexibility, to which we will refer to as Prediction Accuracy Matching
in the remainder, that requires combinatorial algorithms to be computed and
that we fully detail in Appendix 6.B. The matching is producing as output the
measure PMEδ: we state that a predicted origin (resp. destination) point α
matches with an original origin (resp. destination) point β if α lies in a circle
centered in β with radius δ. A predicted path matches an original path if both
their origins and destinations match, and PMEδ is the percentage of original
paths which are successfully matched.

• Finally, we perform a fine grained check on the user mobility paths. In partic-
ular, we denote as Atij (resp. F t

ij) the number of users moving from AP i to
AP j at time t in the original (resp. predicted) paths. We compute:

1. the numerical difference for every cell values of the original and predicted
OD matrices, as: (i) the absolute sum of residual ASR,∑

t∈T
∑

(i,j)∈N×N |F t
i,j − Ati,j|/U

|T |
,

where U is the total number of users in the system, and (ii) the symmetric
mean absolute percentage error SMAPE,∑

t∈T
1
|N |2

∑
(i,j)∈N×N

|F t
i,j−At

i,j |
At

i,j+F t
i,j

|T |
;

both averaged over time-frames t ∈ T .

6.5. EXPERIMENTAL RESULTS 185

2. disregarding the number of users migrating between locations, we consider
if any amount of mobility is observed between each pair of locations i
and j at time t. In particular, we consider to be successfully predicted
all those pairs for which (F t

i,j > 0 ∧ Ati,j > 0) ∨ (F t
i,j = 0 ∧ Ati,j = 0),

and unsuccessfully predicted all the remaining pairs. Accordingly we can
compute the binary classification metrics of accuracy, precision and recall.1

In Table 6.3 a notation table for the performance measures is presented.

6.5 Experimental Results

We implemented our algorithms in C++, using IBM ILOG CPLEX 12.6 [72] to solve
LP problems. Our experiments ran on an Intel i7 4GHz workstation equipped with
32 GB of RAM. We created a synthetic set of 300 APs with coordinates randomly
drawn from two independent normal distributions with mean µ = 0 and standard
deviation σ = 1.2. We considered a time horizon split in 15 time frames. Given this
fixed set of APs and time frames, we created five instances for each of the generative
models described in Section 6.4, setting the number of users U = 40000 in every case.
Such a setting is chosen for two main reasons (i) it reflects values in real instances
(ii) mobility matrices are sparse, and therefore more challenging to predict. Given
the lengths of all original paths in each instance, we computed a set K of 100 path
length classes, with lk values given by the percentiles of lengths distribution and
accordingly nk = U/100 = 400. The dti values are computed from original paths
by simple counting operations. These data are fully synthetic, allowing us to make
them openly available if required, and hence allow reproducibility.

In the following, we first compare the f-UPPP and d-UPPP variants (Subsection
6.5.1). Then, since the numerical resolution of our models requires non-trivial algo-
rithms to be run, we evaluate the computational viability of our methods (Subsection
6.5.2). Subsequently, we focus on their prediction accuracy (Subsection 6.5.3), and
we compare them with a benchmark method (Subsection 6.5.4). We complete our
assessment by considering the effect of noise in data (Subsection 6.5.5) and longer
planning time-horizon (Subsection 6.5.6). We conclude with experiments on a real
world dataset (Subsection 6.5.7).

1Within the classification results let tp be the number of true positives, fp be the number of
false positives and fn be the number of false negative, and let: precision = tp

tp+fp , recall = tp
tp+fn ,

and accuracy = tp+tn
|N×N |

186 Predicting User Mobility With Network Data

Symbol Meaning

Aij generated OD matrix
Fij predicted OD matrix
Bij OD matrix generated by benchmark model
Yk cumulative number of users generated for

class k ∈ K
Ỹk cumulative number of users predicted for

class k ∈ K

ē =
∑

k∈K(|Ỹk − Yk|)/|K| average absolute residual of fitting

ASR =
∑

(i,j)∈N×N |Fi,j − Ai,j| absolute sum of residual

SMAPE = 1
n

∑
(i,j)∈N×N

|Fi,j−Ai,j |
Ai,j+Fi,j

symmetric mean absolute percentage error

Prediction Accuracy Matching Model

S ⊆ N ×N set of pairs location with predicted mobility
Fij > 0

R ⊆ N ×N set of pairs location with original mobility
Aij > 0

G = (V,E) bipartite graph
δ distance threshold defining a neighbourhood

of a location
V = S ∪R vertices of graph G

E ⊆ S ×R
edges of graph G
E = {(i, j;h, k) ∈ (S ×R)|
(di,h < δ ∧ dj,k < δ) ∨ (di,k < δ ∧ dj,h < δ)}

xh,ki,j ∈ R+ variable flow of users on edges ∀(i, j;h, k) ∈ E
z ∈ R+ total amount of mobility positively predicted

PMEδ = z/
∑

(i,j)∈RAi,j
prediction matching effectiveness measure with
distance threshold δ

Table 6.3: UTPP - Performance Indexes Notation Table

6.5. EXPERIMENTAL RESULTS 187

1st stage 2nd stage

Variant CG
iter

master
time

pricer
time

n.
paths

CG
iter

master
time

pricer
time

n.
paths

total
time

f-UTPP 1587.8 3.38 0.07 2.58 210.8 0.52 0.47 21.81 6130.40
d-UTPP 81 0.66 1.27 59.08 32.8 8.61 2.35 68.12 514.40

Table 6.4: f-UTPP vs. d-UTPP - Computational Efficiency

6.5.1 Comparing Modeling Variants

We first compare the performance of the two variants of the linking constraints of
user trajectories and network loads variations, namely f-UTPP and d-UTPP, limiting
ourselves to the Ad-Hoc generative model.

On the computational viability point of view in Table 6.4 we report for each
stage of our algorithm (column blocks) and for the two linking constraints vari-
ants (table rows): (i) the average number of column generation iterations; (ii) the
average execution time of each master LP optimization (in sec.); (iii) the average
execution time of each dynamic programming pricing algorithm (in sec.); (iv) the
average. number of paths added at each column generation iteration; and (v) the
total execution time (in sec.). Values are averaged over the 5 instances.

The f-UPPP model requires a higher running time for its execution; it also
requires a higher number of column generation iteration, in each of which it generates
a lower number of new (negative reduced cost) variables.

On the prediction accuracy point of view, we first report a visual comparison
of the CDF of distances for the original and predicted trajectories after both stages
of our algorithm (Figure 6.4).

As a quantitative comparison measure, instead, we report the average residual
fitting ē, averaged for the five data instances, for both stages of our algorithm for the
two model variants (Figure 6.8). In the first stage of the algorithm f-UPPP provides
higher residuals than d-UPPP, while after the second stage the residual is similar for
both models. In Figure 6.7 a single representative data instance is depicted, in terms
of fitting after the first stage of the algorithm for both model variants: f-UPPP
associates to short paths almost the total amount of users in the system (Figure
6.7b), while d-UPPP shows a step-wise fitting (Figure 6.7a).

In Figure 6.9 we present the PMEδ index averaged on all data instances (y

188 Predicting User Mobility With Network Data

(a) d-UTPP (b) f-UTPP

Figure 6.7: Fitting of Traveled Distance Probability 1st stage f-UTPP vs d-UTPP

Figure 6.8: ē - f-UTPP vs. d-UTPP
Figure 6.9: PMEδ - f-UTPP vs. d-
UTPP

axis), for both stages of the algorithm for the two model variants, with 5 different
values for δ (x axis). The PMEδ index of prediction accuracy is also detailed for all
data instances in Table 6.5. After the first stage, f-UPPP outperforms d-UPPP. On
the contrary, after the second stage d-UPPP performs slightly better.

As a further comparison we consider the OD matrices produced by f-UPPP
and d-UPPP. In Figure 6.10 we report ASR, SMAPE, accuracy, precision and recall
averaged on the 5 data instances for both stages of our algorithm and for the two
model variants. We can notice that for the ASR and SMAPE both variants have
similar outcome (d-UPPP performs only marginally better), but for precision and
recall indexes after both algorithm stages d-UPPP clearly outperforms f-UPPP. We

6.5. EXPERIMENTAL RESULTS 189

1st stage δ 2nd stage δ

Inst. Variant 3% 5% 10% 20% 40% 3% 5% 10% 20% 40%

1
f-UTPP 0.17 0.23 0.32 0.35 0.40 0.25 0.35 0.59 0.72 0.98
d-UTPP 0.24 0.33 0.53 0.66 0.92 0.24 0.35 0.56 0.67 0.93

2
f-UTPP 0.18 0.26 0.36 0.40 0.52 0.25 0.34 0.58 0.72 0.98
d-UTPP 0.21 0.28 0.49 0.63 0.89 0.25 0.35 0.57 0.69 0.96

3
f-UTPP 0.18 0.25 0.35 0.40 0.80 0.25 0.36 0.57 0.69 0.97
d-UTPP 0.25 0.34 0.55 0.67 0.93 0.25 0.35 0.56 0.69 0.94

4
f-UTPP 0.18 0.25 0.35 0.39 0.58 0.25 0.36 0.60 0.74 0.98
d-UTPP 0.22 0.30 0.52 0.65 0.92 0.24 0.35 0.56 0.67 0.92

5
f-UTPP 0.18 0.26 0.36 0.41 0.52 0.25 0.35 0.55 0.67 0.97
d-UTPP 0.23 0.31 0.52 0.65 0.91 0.25 0.35 0.57 0.68 0.92

Table 6.5: f-UTPP vs. d-UTPP - Prediction Accuracy PMEδ

can also notice that the second stage of our algorithm worsen the SMAPE measure
while does not change the ASR. However this worsening is combined to a substantial
improvement of the recall, this latter being more important in the evaluation of the
overall quality of the solution.

Given the outcome of this experiments we decided to focus only on the d-UTPP
model. Hence, in the remainder, every experiment is intended to be executed with
it.

6.5.2 Computational Viability

In a second round of experiments we focus on the computational viability of our
method, using d-UPPP, testing it on all generative models. Table 6.6 reports the
column generation performances for both stages of our algorithm (column blocks)
and for each data instance (table rows), for each generative model. The structure of
the Table is the same as that of Table 6.4. Our methods show to be computationally
stable, the most critical point being the master LP optimization during second stage
optimization.

Even with the same number of APs, users and time frames, different generative
models require different execution times, while performance is similar for all instances

190 Predicting User Mobility With Network Data

(a) ASR, SMAPE (b) Accuracy, Precision, Recall

Figure 6.10: Benchmark Comparison Flow Conservation Variants

of the same generative model. In particular the POI model requires the highest
computing effort (Table 6.6b): it amounts to almost the double of the Ad-Hoc model
(Table 6.6a). The Ad-Hoc model requires twice the column generation iterations for
the first stage and twice the time for the average master execution. On the other
hand, PREGM (Table 6.6c) requires fewer CG iterations for the first stage of the
model, but it requires a higher number of CG iterations for the second stage than
the Ad-Hoc model, which leads to higher total execution time.

As CG iterations add paths to the model we can assume that, not surprisingly,
a higher number of CG iterations in the first stage leads to fewer number of CG in
the second stage of the algorithm, as happens in POI model, given that potentially
useful paths for the secondary objective have already been added to the model in the
first stage. The higher number of paths added to the model in the first stage also
leads to a higher time required for the first master execution of the second stage, as
we can see for the POI model in Table 6.6b, given that the model has to deal with
a higher number of variables. On the contrary fewer CG iterations in the first stage
leads to a higher CG iterations in the second stage, as for the PREGM.

Figures 6.11 and 6.12 report, respectively for the first and second stage of the
model and for a single data instance of the Ad-Hoc generation model, several details
of column generation iterations: the execution time, the number of path generated
and the primal bound value of the master model. We notice (Figure 6.12a) that
the first execution of the master of the second stage of the algorithm requires the
majority of time of the overall execution, and afterward the execution time falls
down to increase again as CG iterations are executed and new paths are added to
the model. Execution of the pricer requires low times even as CG iterations go

6.5. EXPERIMENTAL RESULTS 191

(a) Exc. Time (b) N. Paths (c) PB

Figure 6.11: 1st stage Computational Efficiency Ad-Hoc Single Instance

(a) Exc. Time (b) N. Paths (c) PB

Figure 6.12: 2nd stage Computational Efficiency Ad-Hoc Single Instance

forward. On the contrary, for the first stage the time required for both master and
pricer increases as CG iterations increase, with both times being rather low.

Our multiple pricing strategy proves to be effective: the number of generated
paths remains almost constant through all CG iterations and consists in almost half
of the maximum number of paths that can be possibly generated in every iteration,
that is the number of traveling distance classes used in the data.

6.5.3 Prediction Accuracy

In a third round of experiments we focus on the prediction accuracy of our methods.
In Figure 6.13 we present, for each generative model and for both stages of our algo-
rithm, the PMEδ averaged for all data instances. Table 6.7 reports the same PMEδ

192 Predicting User Mobility With Network Data

1st stage 2nd stage

Inst. CG iter
master
t.

pricer
t.

n. paths CG iter
master
t.

pricer
t.

n. paths
total
t.

1 78 0.68 1.24 59.88 32 9.44 2.28 70.28 525
2 80 0.71 1.43 62.49 29 9.66 2.41 69.24 521
3 84 0.56 1.29 57.50 38 8.05 2.47 65.84 555
4 80 0.74 1.24 59.26 31 8.26 2.35 69.32 487
5 83 0.61 1.18 56.24 34 7.65 2.21 65.91 484

(a) Ad-Hoc

1st stage 2nd stage

Inst. CG iter
master
t.

pricer
t.

n. paths CG iter
master
t.

pricer
t.

n. paths
total
t.

1 126 1.83 1.78 56.02 15 25.60 2.80 58.93 880
2 124 1.81 1.66 54.40 10 23.60 3.40 59.90 701
3 108 1.89 1.70 62.71 28 21.25 2.39 62.25 1050
4 132 1.88 1.81 53.17 8 36.63 3 58.88 804
5 117 2.38 1.82 63.15 38 27.61 2.50 62.32 1636

(b) POI

1st stage 2nd stage

Inst. CG iter
master
t.

pricer
t.

n. paths CG iter
master
t.

pricer
t.

n. paths
total
t.

1 64 0.64 1.34 65.56 60 9.67 2.55 68.12 860
2 61 0.59 1.36 64.31 48 9.31 2.06 69.85 665
3 63 0.75 1.24 64.97 60 9.50 2.43 67.08 841
4 64 0.67 1.25 61.42 57 8.91 2.42 66.89 769
5 65 0.55 1.23 58.63 57 8.58 2.28 67.79 735

(c) PREGM

Table 6.6: d-UTPP - Computational Efficiency

6.5. EXPERIMENTAL RESULTS 193

Figure 6.13: d-UTPP PMEδ aver-
aged

Figure 6.14: d-UTPP PMEδ aver-
aged with noise

measures expanded for every data instance. We found low variability of measures
among instances of the same generative model. We can notice that results on Ad-Hoc
and PREGM instance are similar, with a great improvement after the second stage
of the algorithm. On the contrary, POI trajectories are harder to predict, with few
improvements given by the second stage of the algorithm: good accuracies require
a δ threshold greater than 30%. After the first stage of the algorithm, performance
is poor for Ad-Hoc and PREGM even with high threshold δ: we assume this effect
to be due to the low number of paths generated by the first stage of the algorithm.
Therefore, we keep only second stage results in the subsequent experiments.

6.5.4 Benchmark comparison

As fourth experiment we compare the prediction accuracy of our methods with that
of the benchmark presented in Section 6.4.2. For the sake of completeness, we stress
that a slight advantage is given to the benchmark, as the original matrices Atij are
used for testing, and their aggregation Aij is used also for training; this is not the
case for our method.

In Table 6.8 we report for each generative models (sub-tables) and for both our
algorithm and the benchmark(row-blocks), the performance measures averaged for
all instances (column-blocks). No comparison on PMEδ values is possible, as the
benchmark is unable to predict individual user paths. We notice that:

• our algorithm is always better than the benchmark in terms of ASR and
SMAPE, and in particular the SMAPE index is considerably higher;

• the benchmark model provides very poor results in terms of accuracy and

194 Predicting User Mobility With Network Data

1st stage 2nd stage

Inst. 3% 5% 10% 20% 40% 3% 5% 10% 20% 40%

1 0.169 0.230 0.320 0.351 0.402 0.249 0.348 0.586 0.722 0.977
2 0.184 0.260 0.364 0.396 0.520 0.246 0.345 0.577 0.715 0.978
3 0.182 0.254 0.351 0.402 0.800 0.253 0.357 0.570 0.688 0.972
4 0.176 0.251 0.349 0.387 0.575 0.248 0.356 0.599 0.740 0.977
5 0.179 0.255 0.357 0.407 0.519 0.249 0.346 0.546 0.671 0.974

(a) Ad-Hoc

1st stage 2nd stage

Inst. 3% 5% 10% 20% 40% 3% 5% 10% 20% 40%

1 0.064 0.112 0.263 0.427 0.874 0.068 0.114 0.277 0.461 0.950
2 0.053 0.092 0.212 0.372 0.871 0.046 0.087 0.217 0.382 0.867
3 0.037 0.060 0.209 0.432 0.867 0.047 0.075 0.244 0.486 0.982
4 0.047 0.080 0.216 0.342 0.805 0.057 0.093 0.243 0.395 0.932
5 0.032 0.071 0.188 0.281 0.515 0.063 0.126 0.327 0.522 0.979

(b) POI

1st stage 2nd stage

Inst. 3% 5% 10% 20% 40% 3% 5% 10% 20% 40%

1 0.140 0.180 0.227 0.263 0.536 0.243 0.350 0.567 0.707 0.990
2 0.143 0.179 0.244 0.309 0.799 0.211 0.294 0.457 0.568 0.966
3 0.132 0.166 0.216 0.256 0.557 0.227 0.328 0.542 0.682 0.990
4 0.130 0.163 0.221 0.263 0.498 0.216 0.308 0.489 0.616 0.990
5 0.132 0.160 0.191 0.202 0.239 0.231 0.334 0.548 0.692 0.990

(c) PREGM

Table 6.7: d-UTPP - PMEδ

6.5. EXPERIMENTAL RESULTS 195

Algo. ASR SMAPE accuracy precision recall

1st stage 1.4904 0.0158 0.9864 0.7613 0.2696
2nd stage 1.4595 0.2103 0.7938 0.5966 0.4530
bench. 1.5928 0.9907 0.0199 0.0166 1

(a) Ad-Hoc

Algo. ASR SMAPE accuracy precision recall

1st stage 1.6548 0.0114 0.9901 0.3080 0.4081
2nd stage 1.6835 0.2084 0.7938 0.2540 0.5379
bench. 1.8560 0.9953 0.0105 0.0072 1

(b) POI

Algo. ASR SMAPE accuracy precision recall

1st stage 1.5013 0.0172 0.9849 0.7920 0.2502
2nd stage 1.4182 0.2113 0.7933 0.6315 0.4740
bench. 1.5902 0.9904 0.0218 0.0185 1

(c) PREGM

Table 6.8: d-UTPP - Benchmark performance indexes

precision, while our algorithm provides balanced performances for the three
indexes. We further observe that the benchmark recall is (artificially) high: it
predicts mobility for almost all possible pairs of location, but the majority of
those pairs is not related to actual mobility;

• little differences can be noticed among the generative models’ performances:
the greatest difference is given by the POI generative model which provides the
worst results in terms of precision.

6.5.5 Demand matrix perturbation

In a more realistic scenario, trajectory predictions are not made on actual data,
but rather on a forecasting of it, that might therefore be affected by errors. To
test the performances of our algorithm in such a case, we designed the following
experiment. We consider the instances generated by the Ad-Hoc model to represent

196 Predicting User Mobility With Network Data

original data; the original paths yield trajectories and demand values dti. We perform
a perturbation by adding a random noise value to each dti, considering the perturbed
values as a possible outcome of a previous forecasting of the demand. Then, we use
this representation of forecast values as input of our models, we optimize it and we
retrieve predicted paths and corresponding trajectories. Finally, we compare these
solutions with the original paths and trajectories.

In details, we analyze two cases, drawing a percentage noise uniformly at ran-
dom in the ranges [0.8, 1.6] (resp. [0.9, 1.4]), to which we will refer as 20%-noise
(resp. 10%-noise) in the remainder.

The average computational results of 20%-noise and 10%-noise cases are pre-
sented in Table 6.9, whose format matches that of Table 6.6. By comparing with
values in Table 6.6a, we notice that the computing behaviour remains substantially
unchanged. The first stage of the algorithm requires more CG iterations, while the
second stage requires less CG iterations. The time required for master and pricer
executions in the first stage are similar to those of the original dataset, while master’s
execution times of the second stage are higher for the perturbed data, given that the
first stage generates more paths. We omit instance-by-instance results, since they
add no further insight.

The most interesting results are, indeed, on the prediction accuracy point of
view. In Figure 6.14 we report the average PMEδ (y axis) after the second stage
of our algorithms, for different values of δ (x axis), when different degree of noise
affects data (no noise, 10% or 20%). In Figure 6.15 we report histograms with the
corresponding performance measures related to the OD matrices. The PMEδ and
accuracy measures remain unaffected by noise. In Figure 6.15a we notice that ASR
and SMAPE are only slightly higher even for high noise values; in Figure 6.15b we
also notice that precision slighly decreases as noise increases, while recall has an
opposite behaviour.

The is, our models prove to be very robust to noise in demand values. We
conjecture that such a positive behaviour is given by the inner structure of our mod-
els, whose main target is to rebuild user paths: random noise changes demands, but
leave path structures (and therefore also predicted trajectories) unchanged, since we
are able to “collect” such noise in the εti terms during the optimization process.

6.5. EXPERIMENTAL RESULTS 197

1st stage 2nd stage

Variant CG
iter

master
t.

pricer
t.

n.
paths

CG
iter

master
t.

pricer
t.

n.
paths

total
t.

10%-noise 87.6 0.80 1.39 61.08 19.4 12.43 2.68 73.24 484.40
20%-noise 91.2 0.97 1.59 64.68 11.8 17.87 2.88 72.62 476.80

Table 6.9: d-UTPP - Computational Efficiency Perturbed Data

(a) ASR, SMAPE (b) Accuracy, Precision, Recall

Figure 6.15: d-UTPP - Benchmark Comparison Perturbed Data

198 Predicting User Mobility With Network Data

6.5.6 Increasing Time-Frames

As further experiments we increase the number of time frames on which we gen-
erate and predict user mobility. In order to maintain computationally manageable
instances, we used a smaller network of 50 APs with coordinates randomly drawn
from a pair of normal distributions with mean µ = 0 and standard deviation σ = 1.2
and then multiplied by one-thousand. We consider 40 and 80 times frames with
PREGM, that was originally meant to deal with commuters trajectory on a long
time scale rather than on a rush hour scale. Moreover during the trajectory gener-
ation also waiting times are randomly generated so that each hops in the trajectory
does not happens in successive time frames.

In Table 6.10 we report the computational results of these variants, in the
same format as in Table 6.6. We can see how the number of time frames affects the
required execution time. While in the previous experiments, using 300 nodes and 15
time-frames, ∼ 750 seconds were require on average (Table 6.6c), using 50 nodes and
40 time frames requires ∼ 110 seconds, while with double the time-frames requires
∼ 50 times more execution times, i.e. ∼ 5200 seconds. With the highest number of
time frames a higher number of CG iteration are required, and in the first stage of the
algorithm the time required to execute the pricer grows sensibly and is higher than
the time required by the master execution, while in the second stage both master
and pricers execution times are high.

Going into detail, in Figure 6.16 we report for a single instance with 80 time-
frames and for each CG iteration: the execution time required for the master and
the pricer, the number of negative reduced cost variables created and the primal
bound. In Figure 6.17 the same information are presented for the second stage of
the algorithm. We can notice in Figure 6.16a that in the first stage of the algorithm
as path variables are added in the model the time required by the pricer increase
faster than the time required by the master. On the contrary in Figure 6.17a we
can notice that as paths variables are added in the model in the second stage of
the algorithm, the time required for the master resolution increases, while the pricer
execution time does not show an increasing trend.

In Figure 6.18 the performance measures on the OD matrices are presented,
averaged on all instances: we can notice that we have worse results for the ASR and
SMAPE indexes compared to the results presented in Table 6.8c, primarily in the
SMAPE value. Moreover we can notice that, while the algorithm provides a precision
of almost 100%, the accuracy and recall are poor. We observed that the mobility
is estimated as grouped in few pairs of locations associated to real mobility, but

6.5. EXPERIMENTAL RESULTS 199

1st stage 2nd stage

Variant CG
iter

master
t.

pricer
t.

n.
paths

CG
iter

master
t.

pricer
t.

n.
paths

total
t.

40 times 34.6 0.21 0.83 62.29 24 1.35 1.74 79.10 109.80
80 times 50.4 1.89 14.30 93.64 82.4 25.91 27.63 99.02 5226.60

Table 6.10: d-UTPP - Computational Efficiency Long Time Horizon

(a) Exc. Time (b) N. Paths (c) PB

Figure 6.16: 1st stage Computational Efficiency PREGM Single Instance

(a) Exc. Time (b) N. Paths (c) PB

Figure 6.17: 2nd stage Computational Efficiency PREGM Single Instance

200 Predicting User Mobility With Network Data

(a) ASR, SMAPE (b) Accuracy, Precision, Recall

Figure 6.18: d-UTPP - Performance Indexes Long Time Horizon

the majority of actual mobility pairs are not predicted, so that there are few false
positive prediction, giving high precision, but high false negative, leading to low
recall and accuracy. In Table 6.11 detailed performance indexes for every instance
are presented.

6.5.7 Real-World Dataset

At last we perform experiments on real world dataset presented in Chapter 4, con-
sisting in actual mobile data traffic (without the corresponding individual user tra-
jectories); the user mobility was computed from aggregated data directly in form of
OD matrix; namely, each entry (i, j) of the OD matrix contains the number of users
having APs i and j as the two most frequently visited APs during the day. From
this OD matrix we extract 100 classes of traveled distance, and therefore the lk and
nk values as the percentiles of the corresponding distribution. That is, we obtain
all input data for our algorithms, but no ground truth for checking the prediction
accuracy of our solutions.

In Figure 6.19 we present the histogram of the strictly positive traveled dis-
tances of all users, according to our OD matrix. Almost 30% of the users does not
move at all during the considered day, while a hybrid trend is observed for the remain-
ing ones: the number of users with short (positive) traveled distance decade with a
trend similar to a power law, but after a certain threshold the distribution increases
mildly, but smoothly and constantly, until the maximum mobility probed.

For what concerns time discretization, we perform experiments with two set-

6.5. EXPERIMENTAL RESULTS 201

Inst. ASR SMAPE accuracy precision recall

40 time frames

1 1.722 0.933 0.118 1 0.100
2 1.733 0.930 0.121 1 0.102
3 1.740 0.932 0.119 1 0.098
4 1.697 0.931 0.119 1 0.100
5 1.709 0.930 0.119 1 0.100

80 time frames

1 1.820 0.933 0.155 0.997 0.138
2 1.838 0.936 0.161 1 0.144
3 1.849 0.934 0.159 0.997 0.141
4 1.831 0.934 0.161 1 0.144
5 1.837 0.934 0.158 1 0.140

Table 6.11: Long time horizon performance indexes

Figure 6.19: Traveled distances statistics

202 Predicting User Mobility With Network Data

1st stage 2nd stage

Variant CG
iter

master
t.

pricer
t.

n.
paths

CG
iter

master
t.

pricer
t.

n.
paths

total
t.

10 time
frames

148 0.50 0.53 36.47 18 8.39 1.33 51.44 327

20 time
frames

245 3.63 7.55 60.30 49 129.80 13.18 69.96 9745

Table 6.12: d-UTPP - Computational Efficiency Real World Dataset

tings: (i) with 10 time frames, averaging traffic demand in time ranges of 24 minutes;
(ii) with 20 time frames, averaging traffic demand in time ranges of 12 minutes.

We report in Table 6.12 the computational efficiency measures, in the same
format of Table 6.6: even with ∼ 600 APs in the network, the execution time needed
with 10 time frames is reasonably low. With 20 time frames, instead, the execution
time grows very fast.

Since we have no access to original individual paths, we limit our prediction
accuracy tests on the comparison of the mobility matrices. In Figure 6.20 we present
average PMEδ measures with interesting insights:

• the outcomes are similar to those on instances generated through the Ad-Hoc
models, presented in Figure 6.13, and even slightly better: with a low threshold
δ of 5% PMEδ is still higher than 50%; that is, more than half of the original
OD matrix is correctly predicted;

• the prediction accuracy improves slightly using a higher number of time frames.

6.6 Conclusions

As reported in the introduction, our focus is in retrieving (i.e. predicting) the mobil-
ity of users in a mobile network of urban-size area during rush hours. The majority
of human mobility prediction approaches presented in literature requires a consid-
erable amount of information, such as complete census data of the considered area,
origin-destination matrices, traces of individual movements and social media check-
in, among others. Instead, we exploit very aggregated data: only the mobile AP
demands in a given time horizon and generic statistical properties of the distribution

6.6. CONCLUSIONS 203

Figure 6.20: d-UTPP - Prediction Accuracy Real World Dataset

of mobility in the considered area.

Standard predictive models are unsuitable for such a task: in a comparison
experiment a benchmark model from the literature yields, for instance, accuracy and
precision values as low as 2%.

We propose instead dedicated mathematical programming models. To test
their performances we introduce suitable performance measures.

We perform an extensive experimental campaign, adapting three generative
models from the literature (ad-hoc, PREGM and POI), and considering aggregated
data from a real world case study.

Since our models require us to design ad-hoc resolution algorithms, which ex-
ploit dynamic variable generation techniques, our first experiments focuses on the
computational issues. Our algorithms prove to be efficient enough to tackle both
synthetic and real world instances. As a main insight, we report that computational
issues arise mainly as the time discretization granularity gets finer.

For what concerns prediction accuracy, POI instances are the hardest to predict:
good PMEδ scores require a δ threshold greater than 30%; for ad-hoc and PREGM
instances, instead, a δ threshold greater than 10% is enough to match the mobility
of about 60% of the users.

Our methods prove also to be robust: we find low variability of measures among

204 Predicting User Mobility With Network Data

instances of the same generative model; furthermore, an experiment artificially in-
troducing noise in data shows that PMEδ scores remain unaffected even if demand
values are perturbed by up to 20% on average.

While no ground truth is available for real world data, we find our experiments
to match well those on ad-hoc generative datasets, yielding us to believe that the
results provided by our models might be accurate also in this case.

Appendix

205

206 Predicting User Mobility With Network Data

6.A Literature Review for Human Mobility Esti-

mation

In Chapter 6 we present a new approach to estimate user mobility given very ag-
gregated data. In particular we suppose that only mobile access point demands in
a time horizon are known, together with the knowledge of some general statistical
properties of the mobility patterns.

The modeling of human mobility is a well studied research field, that the avail-
ability of spatiotemporal information of mobile phone users has push forward with
a great number of research projects and potential applications. In this Chapter
we propose examples of the variety of human mobility prediction models available
in the literature, that is far to be an exhaustive survey of all models. A further
survey for mobility prediction models derived from mobile phone datasets analysis
has been presented in [23]. With respect to all these works, in our approach for
user mobility estimation presented we require the knowledge of very low amount of
information.

As a direct implementation of the intervening opportunities theory, authors
in [101] propose a rank-distance model: a rank value is computed for each possible
migration between pair of locations, equal to the number of opportunities nearer
to the origin than the destination. The probability that a migration take place is
inversely proportional to the associated rank value. Opportunities was retrieved by a
social media check-in data inside a city, used also to train and evaluate the predictive
model.

Authors in [102] make use of the density of population in different areas through-
out a region as a proxy for intervening opportunities, presenting the radiation model.
This states that the average number of commuters between the two locations depends
on the population of both locations and on the total population of the circular area
centered in the origin location and with radius equal to the distance between the
two locations. The rationale is that a dense area is full of opportunities for a person
to satisfy her need, and hence she is willing to move to a distant place only if the
nearer area has less opportunities, i.e. if it has low population density. Authors test
the model with long distance commuters data taken from census, claiming that their
radiation model out-perform gravity-models in this scope. However authors in [105]
question the universal accuracy of the radiation model as a prediction model, exper-
imenting that the gravity model perform better for transportation patters between
cities and intra-city mobility. To tune gravity model’s parameters they used long

6.A. LITERATURE REVIEW FOR HUMAN MOBILITY ESTIMATION 207

distance commuters data taken from census and the scheduled timetables of public
transport services.

Authors in [106] suppose that the mobility between two locations is propor-
tional to the intensity of communication between these two locations and inversely
proportional to the distance separating the two locations. Hence the intensity of
communication is used has a proxy for the intervening opportunities, with the ratio-
nale that a personal communicate between two locations if she has strong relationship
with these locations. In particular authors rely on the gravity-based model, replacing
the population density of the pair of locations with the volume of communication
between locations. In a similar fashion, authors in [107] make use of Erlang measure-
ment as a proxy for the density of population in an area. The Erlang measurement
indicates the aggregate call volume in a given cell during a given period. In par-
ticular the use of one mobile phone for one hour in a particular cell constitutes one
Erlang, whereas the use of two phones for half an hour each also constitutes one
Erlang. Their goal is to use the mobile network activity changes as a way to infer
the patterns of changes of population distribution as a whole in time. With respect
to these works, in our case we take into consideration a lower amount of data, that is
the load of the network in a certain area during time in terms of number of connected
UEs, without requiring the direction of communications.

Authors in [108] propose an individual mobility predictor that combines the
person’s past mobility choices and collective behavior. To model the individual
behavior they follow a probabilistic approach, defining a probability for each location
to be the next visit of the person as function of the person and collective past
behaviors. The location with greatest probability is then chosen as predicted next
visit of the person. In order to compute this probability matrix, a considerable
history of individual movements is needed to train the model to include the periodic
personal behavior. To model the collective behavior, they design the probability to
choose a given destination to be a function of: (i) the distance of the destination,
(ii) the presence of points of interests similar to the ones the collectivity has visited,
and (iii) the type of land use the collectivity has been in. To have a single final
probability to migrate between pair of location a combination of individual and
collective behavior is performed. In order to get the information needed to train
the model, they used a mobile phone CDR dataset containing the exact location of
anonymous users, a reviews and recommendations social media dataset to get POI
data and and administrative data to get land use information.

In [109] authors propose a probabilistic mobility prediction scheme based on:
(i) the trip origin and current location; (ii) current and future directions of the

208 Predicting User Mobility With Network Data

mobile users; (iii) the history of the trajectories followed by the users; and (iv) the
information on the users’ contextual knowledge, provided by the user itself, consisting
in usual activities, interests, more frequented locations, etc.. The mobility is modeled
with a second order Markov chain that is applied for predicting the transition that
an arbitrary user makes from its current location within a certain time period.

In [110] authors provide predictions as a probability distribution of the likeli-
hood of moving to a set of future locations. Taking into account the users’ mobility
history, they build a Discrete Time Markov Chain methods (DTMC), computing for
every pairs of locations the probability of transition as the frequency of historical
transition over the total number of transition starting from the same origin. A dif-
ferent DTMC is build for different classes of users. The membership of users to a
class is computed as a probability through an expectation-maximization algorithm.
They test the prediction accuracy using as training mobility history composed by
cell-level accuracy and GPS-level accuracy.

In [103] authors starts from gravity model to predict intra-urban mobility, split-
ting the geographic areas in location and using as input data the number of trips
between every pair of locations and the density of population of each locations. The
parameters of the gravity model are computed through a maximum likelihood esti-
mation algorithm. This model is used as benchmark in our experiments and will be
detailed further in Section 6.4.

In [111] autors study the inferences of size and topology of geographical terri-
tory on intra-urban mobility. Authors present an extension of the mobility model
presented in [95], embedding the geographical heterogeneity as a probability for each
location to act as an attractive point for a user. In our case we model the geographi-
cal space with an adjacency matrix which takes into account all cells of the network:
hence any topology can be tackled by our model.

In [100] authors combine activity-based analysis with a movement-based ap-
proach to model the intra-urban human mobility observed from social media check-
in records, building a temporal transition probability matrix to represent travel
demands during a time interval. They decouple the transition probability in two
components: the time-dependent probability that an activity is fulfilled and the
subsequent activity-depended probability that user move to a specific location.

Mobility simulation software already exists, often requiring a high amount of
information to characterize the system to simulate. As examples:

• TRANSIMS [112] is an agent-based simulation model of the daily movement
of individuals in virtual region or city with a complete representation of: (i)

6.A. LITERATURE REVIEW FOR HUMAN MOBILITY ESTIMATION 209

the population at the level of households and individual travellers; (ii) the
daily activities of the individuals, and; (iii) the transportation infrastructure.
Demographic characteristics are taken from census data: (i) households are
geographically distributed according to the population distribution; (ii) trans-
portation network is a precise representation of the city’s transportation infras-
tructure and includes multiple transport modes; (iii) data on activities include
origin destination route timing and forms of transportation used;

• in [113] authors propose an agent-based simulation model based on the combi-
nation of individual regular movements with spatial considerations, represented
by an expanded gravitation model, embedded in the properties of the agent.
Agents are characterized by several socio-economic attributes. Geographical
area is split in cells, which are characterized by land use. Day-time is split into
periods. Transition probabilities differ for every agent socio-economical class,
giving higher probabilities to different land use cells at different time periods.

210 Predicting User Mobility With Network Data

6.B UTPP - Prediction Accuracy Matching

In Chapter 6 we present a new approach to estimate user mobility given very ag-
gregated data. In Section 6.4.3 we present performance measures to qualify the
goodness of the simulated user mobility. Among the measures, we define the Predic-
tion Accuracy Matching (PMEδ) as a measure that tests if the predicted trajectories
estimates the original trajectories in terms of their origins and destinations, rather
than the complete set of traversed locations. In order to add some flexibility we can
be satisfied if the model can generate trajectories that lies in the proximity of the
original origin and destination. In this chapter we fully detail the computation of
PMEδ measure.

We introduce a model to match the original trajectories to the predicted ones
within a range of distance defining a neighborhood. To better clarify our approach,
in Figure 6.B.1 we present an example: let O be an original path and P and P ′

two paths generated by our algorithm. Our aim here is not to retrieve exactly the
original path, but rather to identify origins and destinations of users: we state that
a path generated by our algorithm match the mobility of an original paths if origins
and destinations of both paths are in the same area, this latter being identified by
a circle with radius δ centered in the origin and destination of the original path. In
the example in Figure 6.B.1 path P ′ matches the mobility of original path O, while
path P does not match the mobility of O because its destination node its outside
the feasible area of the destination of path O.

Formally, let: R = {(i, j) ∈ (N× N) : Ai,j > 0} be the set of pairs of locations
with strictly positive original mobility Ai,j; S = {(i, j) ∈ (N × N) : Fi,j > 0} to
be the set of pairs of locations with strictly positive predicted mobility Fi,j; δ to be
the radius of the neighborhood of a location; G = (V,E) to be a bipartite graph
having vertices V = S∪R and edges from vertices of predicted mobility S to vertices
of original mobility R if their respective origin and destination locations lies in the
same neighborhood defined by δ, i.e. E = {(i, j;h, k) ∈ (S × R) : (di,h < δ ∧ dj,k <
δ) ∨ (di,k < δ ∧ dj,h < δ)}.

On this graph we define an LP problem of maximum flow, where variables
xh,ki,j ≥ 0 ∀(i, j;h, k) ∈ E represent the flow (or matching) of users between the pair
of locations (i, j) ∈ S and the pair (h, k) ∈ R. Formally:

6.B. UTPP - PREDICTION ACCURACY MATCHING 211

O

P

P’δ

δ

Figure 6.B.1: UTPP - Example of Mobility Matching with Neighborhood

max z =
∑

(i,j;h,k)∈E

xh,ki,j (6.25)

s.t.
∑

(h,k)∈S
|∃(i,j;h,k)∈E

xh,ki,j ≤ Ai,j ∀(i, j) ∈ R (6.26)

∑
(i,j)∈R

|∃(i,j;h,k)∈E

xh,ki,j ≤ Fh,k ∀(h, k) ∈ S (6.27)

xh,ki,j ≥ 0 ∀(i, j;h, k) ∈ E (6.28)

Optimal value z in (6.25) represents the number of moving users positively
predicted by our algorithm. Constraints (6.26) impose that a flow from original
mobility vertices (i, j) ∈ R cannot exceed the corresponding original mobility Aij. In
the same way, constraints (6.27) impose that flow from predicted mobility vertices
(h, k) ∈ S cannot exceed the corresponding predicted mobility Fh,k. Flow from
a vertex can be splitted to any outgoing edge. Finally constraints (6.28) impose
non-negativity of flow variables for each edge.

The percentage value of users positively predicted z/
∑

(i,j)∈RAi,j is used as
effectiveness measure and we label it as prediction matching effectiveness. Given
that its value depends on the distance threshold δ that defines the neighborhood of
a location, in the remainder we will refer to the prediction matching effectiveness as
PMEδ.

212 Predicting User Mobility With Network Data

Chapter 7

Conclusions

This thesis is motivated by the rise of the highly promising Mobile Edge Computing
(MEC) paradigm (Chapter 1), bringing IT applications, computational and storage
resources to the periphery, or edges, of the cellular mobile network. While attracting
a lot of attention in recent years for its beneficial prospects, MEC is still a rather
immature technology due to the many challenges that need to be addressed before
its implementation.

In this thesis we tackled strategic, tactical and data-oriented planning issues
of MEC networks exploiting an optimization point of view, devising mathematical
models and combinatorial algorithms.

Part I For what concerns the strategic planning:

• we introduce for the first time at the state of the art a comprehensive framework
for the MEC Network Design Problem with mixed integer linear programming
extended formulations;

• new NP-Hard combinatorial optimization problems raised in the solution pro-
cess, that required us to design novel algorithms, exploiting a combination of
dynamic variable generation techniques in a matheuristic framework;

• we implemented our methods in prescriptive analytics tools, validating our
approach on real world 4G cellular network dataset.

Our models allow to include several fine-grained features of MEC networks,
thereby yielding a better matching between the structure of our solutions and a

213

214 CHAPTER 7. CONCLUSIONS

real setting. Our analyses on the real cellular network dataset provided interesting
insights:

• with ad-hoc matheuristic algorithms we could obtain methods for computing
high quality solutions in affordable computing time;

• multi-period demands and user mobility must be explicitly taken into account
in the models to ensure compliance of users’ service level agreement; dynamic
planning model also highlights counterintuitive solutions for the assignment
of APs to MEC facilities, that do comply with SLA constraints do not form
compact clusters;

• we qualified the eligibility of two different VM mobility strategies, namely
VM Bulk and Live Migrations: VM Live Migration has proved eligible for the
use both with delay-critical and delay-sensitive MEC services, while VM Bulk
Migration constantly violates limits on network resources and seems to be a
feasible alternative only when the size of VM files to synchronize is small.

Part II For what concerns the tactical planning:

• we proposed a data-driven MEC management framework for the assignment
of APs to MEC facilities, exploiting preprocessing, data-mining and validation
by simulation;

• the core of our framework entails a new combinatorial problem, representing a
novel multi-period variant of a generalized assignment problem;

• we tackled the core optimization problem with a branch-and-price algorithm
that, although exact in nature, performs well also as a matheuristics when
combined with early stopping;

We verified that instances arising in practice strongly benefit from the explicit
use of mathematical programming models in such an optimization core:

• our algorithms find near-optimal solutions very quickly with a good dual bound
guarantees: this makes them well suited for what-if analyses;

• the joint use of mathematical programming optimization and data driven clus-
tering proved to be beneficial in a training-and-test evaluation on real data:
in particular, training through mathematical programming algorithm over fine
time discretizations derived by the clustering proved to be effective also on
testing data coming from real cellular network.

215

Part III As discussed in the introduction, accurate algorithms require accurate
data to work as their are meant. In our strategical problem, the availability of
user mobility data in applications is a critical point, due to both data collection
and data sensitivity issues. While current approaches to estimate human mobility
require a considerable amount of data, we propose a new approach to estimate user
mobility:

• a new mathematical programming based model, that takes into account very
aggregated data;

• adequate accuracy for a specific scenario: rush-hour in a urban-size region.

We found that:

• estimate of users mobility can can be retrieved with adequate accuracy by
very aggregated data and simple (a-priori) statistical distributions on human
trajectory features, provided suitable mathematical models and combinatorial
algorithms are used;

• mathematical programming turned out to be an appropriate tool also in this
context: our approach proved to be comparable in accuracy to previous mobil-
ity models from the literature requiring at the same time much more aggregated
data for training. This makes it far more suitable in our context.

Perspectives While the thesis provided effective methodological tools, and high-
lighted interesting insights into the creation and management of a MEC network,
a further understanding and refinement of MEC technologies is certainly needed to
bridge theory to implementation. For instance, different (more involved) topologies
might be pertinent in a MEC network design process, as well as different VM mobil-
ity policies. These may require deep adaptations in our methods, or even to devise
alternative ones. A further promising research direction is the tighter integration
of data-driven techniques with ad-hoc optimization methods. For instance, in our
case we expect that substantial improvements may be readily obtained by exploiting
advanced clustering methods to preprocess data during the tactical planning.

More in general, network planning, being either at strategical, tactical or op-
erational level, is the typical realm of network engineering. As such, decisions are
often taken using consolidated techniques, best-practices and robust approaches. We
believe that Mobile Edge Computing can become the workbench for an alternative
approach, that is, integrating advanced mathematical modelling and algorithms de-
sign to support the decision process.

216 CHAPTER 7. CONCLUSIONS

The thesis, indeed, supports such a belief with computational evidence. Custom
methods, which up to few years ago were only of academic interest, thanks to the
advance of methodological understanding can now be effectively used in real world
data analytics. In particular, mathematical programming and data driven techniques
proved to be of fundamental importance in our approach and can indeed be seen as
appealing elements for next-generation of decision support systems in the context of
network optimization.

Bibliography

[1] Angelo Furno, Diala Naboulsi, Razvan Stanica, and Marco Fiore. Mobile de-
mand profiling for cellular cognitive networking. IEEE Transactions on Mobile
Computing, 16(3), March 2017.

[2] CVN Index: Global Mobile Data Traffic Forecast Update, 2016–2021. White
Paper, Cisco, 2017.

[3] Milan Patel, Brian Naughton, Caroline Chan, Nurit Sprecher, Sadayuki Abeta,
and Adrian Neal. Mobile-Edge Computing introductory technical white paper.
White Paper, European Telecommunications Standards Institute, 2014.

[4] Adrian Neal, Brian Naughton, Caroline Chan, Nurit Sprecher, and Sadayuki
Abeta. Mobile Edge Computing (MEC); Technical Requirements. White Pa-
per, European Telecommunications Standards Institute, 2016.

[5] Pavel Mach and Zdenek Becvar. Mobile Edge Computing: A survey on archi-
tecture and computation offloading. IEEE Communications Surveys & Tuto-
rials, PP, 2017.

[6] Bernardetta Addis, Giuliana Carello, and Alberto Ceselli. Combining very
large scale and ILP based neighborhoods for a two-level location problem.
European Journal of Operational Research, 231(3):535–546, 2013.

[7] Camilo Ortiz Astorquiza. Multi-level facility location problems. Technical
Report, Concordia University, April 2017. Available at http://spectrum.

library.concordia.ca/982462/1/OrtizAstorquiza_PhD_S2017.pdf.

[8] Mohammad Masdari, Sayyid Shahab Nabavi, and Vafa Ahmadi. An overview
of virtual machine placement schemes in cloud computing. Journal of Network
and Computer Applications, 66:106–127, 2016.

[9] Alberto Ceselli, Marco Premoli, and Stefano Secci. Heuristics for static cloudlet
location. In Electronic Notes in Discrete Mathematics, volume 55, pages 21–24,

217

http://spectrum.library.concordia.ca/982462/1/OrtizAstorquiza_PhD_S2017.pdf
http://spectrum.library.concordia.ca/982462/1/OrtizAstorquiza_PhD_S2017.pdf

218 BIBLIOGRAPHY

2016.

[10] Alberto Ceselli, Marco Premoli, and Stefano Secci. Cloudlet network design
optimization. In Proc. of IFIP Networking conference, 2015.

[11] Alberto Ceselli, Marco Premoli, and Stefano Secci. Mobile Edge Cloud network
design optimization. IEEE/ACM Transactions on Networking, 25(3):1818–
1831, 2017.

[12] Peter Rost, Albert Banchs, Ignacio Berberana, Markus Breitbach, Mark Doll,
Heinz Droste, Christian Mannweiler, Miguel A Puente, Konstantinos Samda-
nis, and Bessem Sayadi. Mobile network architecture evolution toward 5G.
IEEE Communications Magazine, 54(5):84–91, May 2016.

[13] Haytham Assem, Teodora Sandra Buda, and Lei Xi. CogNet - initial use cases,
scenarios and requirements. White paper, H2020 5G-PPP, 2015.

[14] Kan Zheng, Zhe Yang, Kuan Zhang, Periklis Chatzimisios, Kan Yang, and Wei
Xiang. Big data-driven optimization for mobile networks toward 5G. IEEE
Network, 30(1):44–51, January 2016.

[15] Richard Freling, H. Edwin Romeijn, Dolores Romero Morales, and Albert P. M.
Wagelmans. A branch-and-price algorithm for the multiperiod single-sourcing
problem. Operations Research, 51(6):922 – 939, 2003.

[16] Ishwar Murthy and Phil K. Seo. A dual-ascent procedure for the file allocation
and join site selection problem on a telecommunications network. Networks,
33(2):109 – 124, 3 1999.

[17] Jordi Castro, Stefano Nasini, and Francisco Saldanha-da Gama. A cutting-
plane approach for large-scale capacitated multi-period facility location using
a specialized interior-point method. Mathematical Programming, 163(1):411–
444, 2017.

[18] Russell Halper, S. Raghavan, and Mustafa Sahin. Local search heuristics for
the mobile facility location problem. Computers & Operations Research, 62:210
– 223, 2015.

[19] Iric Gourdin and Olivier Klopfenstein. Multi-period capacitated location with
modular equipments. Comput. Oper. Res., 35(3):661–682, March 2008.

[20] Alberto Ceselli, Marco Fiore, Marco Premoli, and Stefano Secci. Dynamic
cloudlet assignment problem: a column generation approach. In Contribution
at CTW on graphs and combinatorial optimization, 2017.

BIBLIOGRAPHY 219

[21] Alberto Ceselli, Marco Fiore, Marco Premoli, and Stefano Secci. Optimized
Assignment Patterns in Mobile Edge Cloud Networks. Technical Report,
University of Milan, Dipartimento di Informatica, June 2017. Available at
http://www.optimization-online.org/DB_FILE/2017/08/6183.pdf.

[22] Jay E. Aronson. A survey of dynamic network flows. Annals of Operations
Research, 20(1):1–66, 1989.

[23] Vincent D Blondel, Adeline Decuyper, and Gautier Krings. A survey of results
on mobile phone datasets analysis. EPJ Data Science, 4(1):1, 2015.

[24] Alberto Ceselli and Marco Premoli. Towards mathematical programming meth-
ods for predicting user mobility in mobile networks. In Operations Research
Proceedings 2016: Selected Papers of the Annual International Conference of
the German Operations Research Society (GOR), pages 45–50, 2017.

[25] Pedro Garcia Lopez, Alberto Montresor, Dick Epema, Anwitaman Datta,
Teruo Higashino, Adriana Iamnitchi, Marinho Barcellos, Pascal Felber, and
Etienne Riviere. Edge-centric computing: Vision and challenges. ACM SIG-
COMM Computer Communication Review, 45(5):37–42, 2015.

[26] Blesson Varghese, Nan Wang, Sakil Barbhuiya, Peter Kilpatrick, and Dim-
itrios S Nikolopoulos. Challenges and opportunities in edge computing. In
Smart Cloud (SmartCloud), IEEE International Conference on, pages 20–26.
IEEE, 2016.

[27] Arif Ahmed and Ejaz Ahmed. A survey on mobile edge computing. In In-
telligent Systems and Control (ISCO), 2016 10th International Conference on,
pages 1–8. IEEE, 2016.

[28] Ejaz Ahmed and Mubashir Husain Rehmani. Mobile edge computing: oppor-
tunities, solutions, and challenges, 2017.

[29] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies.
The case for VM-based cloudlets in mobile computing. IEEE pervasive Com-
puting, 8(4):14–23, 2009.

[30] Yaser Jararweh, Loai Tawalbeh, Fadi Ababneh, and Fahd Dosari. Resource
efficient mobile computing using cloudlet infrastructure. In Mobile Ad-hoc and
Sensor Networks (MSN), 2013 IEEE Ninth International Conference on, pages
373–377. IEEE, 2013.

[31] Elijah project. [Online http://elijah.cs.cmu.edu; accessed June 2017].

[32] Sergio Barbarossa, Stefania Sardellitti, and Paolo Di Lorenzo. Communicating

http://www.optimization-online.org/DB_FILE/2017/08/6183.pdf
http://elijah.cs.cmu.edu

220 BIBLIOGRAPHY

while computing: Distributed mobile cloud computing over 5G heterogeneous
networks. IEEE Signal Processing Magazine, 31(6):45–55, 2014.

[33] Sarah Clinch, Jan Harkes, Adrian Friday, Nigel Davies, and Mahadev Satya-
narayanan. How close is close enough? Understanding the role of cloudlets
in supporting display appropriation by mobile users. In Pervasive Comput-
ing and Communications (PerCom), 2012 IEEE International Conference on,
pages 122–127. IEEE, 2012.

[34] Kiryong Ha, Padmanabhan Pillai, Grace Lewis, Soumya Simanta, Sarah
Clinch, Nigel Davies, and Mahadev Satyanarayanan. The impact of mobile
multimedia applications on data center consolidation. In Cloud Engineering
(IC2E), 2013 IEEE International Conference on, pages 166–176. IEEE, 2013.

[35] Debessay Fesehaye, Yunlong Gao, Klara Nahrstedt, and Guijun Wang. Impact
of cloudlets on interactive mobile cloud applications. In Enterprise Distributed
Object Computing Conference (EDOC), 2012 IEEE 16th International, pages
123–132. IEEE, 2012.

[36] Zhengyuan Pang, Lifeng Sun, Zhi Wang, Erfang Tian, and Shiqiang Yang. A
survey of cloudlet based mobile computing. In 2015 International Conference
on Cloud Computing and Big Data (CCBD), pages 268–275. IEEE, 2015.

[37] Ibrar Yaqoob, Ejaz Ahmed, Abdullah Gani, Salimah Mokhtar, Muhammad
Imran, and Sghaier Guizani. Mobile ad hoc cloud: A survey. Wireless Com-
munications and Mobile Computing, 16(16):2572–2589, 2016.

[38] OpenFog Consortium. OpenFog Reference Architecture for Fog Computing.
White Paper, OpenFog Consortium, February 2017.

[39] Michael Howard. Using carrier ethernet to backhaul LTE. White Paper, Info-
netics Research, 2011.

[40] Miguel Angel Alvarez, Frederic Jounay, Tamas Major, and Paolo Volpato. LTE
backhauling deployment scenarios. White Paper, NGMN Alliance, 2011.

[41] Ron Nadiv and Tzvika Naveh. Wireless backhaul topologies: Analyzing back-
haul topology strategies. White Paper, CERAGON, 2010.

[42] Architectural considerations for backhaul of 2G/3G and long term evolution
networks. White Paper, Cisco, 2010.

[43] Xin Jin, Li Erran Li, Laurent Vanbever, and Jennifer Rexford. Softcell: Scal-
able and flexible cellular core network architecture. In Proceedings of the ninth
ACM conference on Emerging networking experiments and technologies, pages

BIBLIOGRAPHY 221

163–174. ACM, 2013.

[44] Tarik Taleb, Marius Corici, Carlos Parada, Almerima Jamakovic, Simone
Ruffino, Georgios Karagiannis, and Thomas Magedanz. EASE: EPC as a
service to ease mobile core network deployment over cloud. IEEE Network,
29(2):78–88, 2015.

[45] Robert Bradford, Evangelos Kotsovinos, Anja Feldmann, and Harald
Schiöberg. Live wide-area migration of virtual machines including local per-
sistent state. In Proceedings of the 3rd international conference on Virtual
execution environments, pages 169–179. ACM, 2007.

[46] Patrick Raad, Stefano Secci, Dung Chi Phung, Antonio Cianfrani, Pascal Gal-
lard, and Guy Pujolle. Achieving sub-second downtimes in large-scale virtual
machine migrations with LISP. IEEE Transactions on Network and Service
Management, 11(2):133–143, 2014.

[47] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul,
Christian Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual
machines. In Proceedings of the 2nd conference on Symposium on Networked
Systems Design & Implementation-Volume 2, pages 273–286. USENIX Associ-
ation, 2005.

[48] Jiri Herrmann, Yehuda Zimmerman, Laura Novich, Scott Radvan, and Dayle
Parker. KVM live migration, chapter 4, pages 201–213. Red Hat, 1993.

[49] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchin-
son, and Andrew Warfield. Remus: High availability via asynchronous virtual
machine replication. In Proceedings of the 5th USENIX Symposium on Net-
worked Systems Design and Implementation, pages 161–174, 2008.

[50] OpenStack Tacker. [Online; accessed December 2016].

[51] OpenStack Nova. [Online; accessed December 2016].

[52] Vittorio Maniezzo, Thomas Stützle, and Stefan Voß. Matheuristics, volume 10
of annals of information systems, 2010.

[53] Christian Blum, Jakob Puchinger, Günther R Raidl, and Andrea Roli. Hybrid
metaheuristics in combinatorial optimization: A survey. Applied Soft Comput-
ing, 11(6):4135–4151, 2011.

[54] George B Dantzig and Philip Wolfe. Decomposition principle for linear pro-
grams. Operations research, 8(1):101–111, 1960.

222 BIBLIOGRAPHY

[55] Jacques Desrosiers and Marco E Lübbecke. A primer in column generation. In
Column generation, pages 1–32. Springer, 2005.

[56] Miguel Constantino and Luis Gouveia. Reformulation by discretization: Ap-
plication to economic lot sizing. Operations research letters, 35(5):645–650,
2007.

[57] Stefan Hougardy. The Floyd–Warshall algorithm on graphs with negative cy-
cles. Information Processing Letters, 110(8-9):279–281, 2010.

[58] Laurence A. Wolsey. Integer programming. Wiley-Interscience, New York, NY,
USA, 1998.

[59] Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimiza-
tion: Overview and conceptual comparison. ACM Computing Surveys (CSUR),
35(3):268–308, 2003.

[60] Marco Boschetti, Vittorio Maniezzo, and Matteo Roffilli. Decomposition tech-
niques as metaheuristic frameworks. In Matheuristics, pages 135–158. Springer,
2009.

[61] Günther R Raidl. Decomposition based hybrid metaheuristics. European jour-
nal of operational research, 244(1):66–76, 2015.

[62] Andreas Klose and Andreas Drexl. Facility location models for distribution
system design. European journal of operational research, 162(1):4–29, 2005.

[63] Alireza Boloori Arabani and Reza Zanjirani Farahani. Facility location dynam-
ics: An overview of classifications and applications. Computers & Industrial
Engineering, 62(1):408–420, 2012.

[64] Gianfranco Guastaroba and Maria Grazia Speranza. A heuristic for BILP
problems: the single source capacitated facility location problem. European
Journal of Operational Research, 238(2):438–450, 2014.

[65] Tingying Wu, Feng Chu, Zhen Yang, and Zhili Zhou. A Lagrangean relaxation
approach for a two-stage capacitated facility location problem with choice of fa-
cility size. In Systems, Man, and Cybernetics (SMC), 2015 IEEE International
Conference on, pages 713–718. IEEE, 2015.

[66] Suda Tragantalerngsak, John Holt, and Mikael Rönnqvist. An exact method for
the two-echelon, single-source, capacitated facility location problem. European
Journal of Operational Research, 123(3):473–489, 2000.

[67] Stefan Nickel and Francisco Saldanha da Gama. Multi-period facility location.

BIBLIOGRAPHY 223

In Location science, pages 289–310. Springer, 2015.

[68] Alan P Reynolds, Graeme Richards, Beatriz de la Iglesia, and Victor J
Rayward-Smith. Clustering rules: a comparison of partitioning and hierarchi-
cal clustering algorithms. Journal of Mathematical Modelling and Algorithms,
5(4):475–504, 2006.

[69] Martin Maechler, Peter Rousseeuw, Anja Struyf, Mia Hubert, and Kurt
Hornik. cluster: Cluster Analysis Basics and Extensions, 2017. R package
version 2.0.6.

[70] Guy Desaulniers, Jacques Desrosiers, and Marius M Solomon. Column gener-
ation, volume 5. Springer Science & Business Media, 2006.

[71] Matteo Fischetti and Andrea Lodi. Local branching. Mathematical program-
ming, 98(1-3):23–47, 2003.

[72] IBM corp. IBM ILOG CPLEX 12.6 User Manual, 2013.

[73] John E. Beasley. OR-Library: Distributing test problems by electronic mail.
Journal of the Operational Research Society, 41(11):1069–1072, Nov 1990.

[74] Albert Greenberg, James Hamilton, David A Maltz, and Parveen Patel. The
cost of a cloud: research problems in data center networks. ACM SIGCOMM
computer communication review, 39(1):68–73, 2008.

[75] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. Energy-aware re-
source allocation heuristics for efficient management of data centers for cloud
computing. Future generation computer systems, 28(5):755–768, 2012.

[76] ANR ABCD Project. [Online. Available at http://abcd.lip6.fr; accessed
December 2017].

[77] Balázs Cs Csáji, Arnaud Browet, Vincent A Traag, Jean-Charles Delvenne,
Etienne Huens, Paul Van Dooren, Zbigniew Smoreda, and Vincent D Blondel.
Exploring the mobility of mobile phone users. Physica A: statistical mechanics
and its applications, 392(6):1459–1473, 2013.

[78] James P Bagrow and Yu-Ru Lin. Mesoscopic structure and social aspects of
human mobility. PloS one, 7(5):e37676, 2012.

[79] Sibren Isaacman, Richard Becker, Ramón Cáceres, Stephen Kobourov, Mar-
garet Martonosi, James Rowland, and Alexander Varshavsky. Identifying im-
portant places in people’s lives from cellular network data. In International
Conference on Pervasive Computing, pages 133–151. Springer, 2011.

http://abcd.lip6.fr

224 BIBLIOGRAPHY

[80] Kenneth Church, Albert G Greenberg, and James R Hamilton. On delivering
embarrassingly distributed cloud services. In HotNets, pages 55–60. Citeseer,
2008.

[81] Victor Bahl. Mobile gaming. MobiGames 2012 Keynote Speech, 2012.

[82] Dirk Lindemeier. MEC Proofs of Concept. Technical report, European
Telecommunications Standard Institute.

[83] Stefano Secci, Patrick Raad, and Pascal Gallard. Linking virtual machine
mobility to user mobility. IEEE Transactions on Network and Service Man-
agement, 2016.

[84] EC H2020 5G infrastructure PPP. pre-structuring model, version 2.0. Technical
report, The 5G Public Private Partnership.

[85] Angelo Furno, Marco Fiore, and Razvan Stanica. Joint spatial and temporal
classification of mobile traffic demands. In IEEE INFOCOM 2017 - IEEE
Conference on Computer Communications, May 2017.

[86] Silvano Martello and Paolo Toth. Knapsack Problems: Algorithms and Com-
puter Implementations. John Wiley & Sons, Inc., New York, NY, USA, 1990.

[87] Dolores Romero Morales and H. Edwin Romeijn. The generalized assignment
problem and extensions. In Ding-Zhu Du and Panos M. Pardalos, editors,
Handbook of Combinatorial Optimization, pages 259–311. Springer, 2005.

[88] Ishwar Murthy. Solving the multiperiod assignment problem with start-up
costs using dual ascent. Naval Research Logistics, 40:325–344, 1993.

[89] Stefan Nickel and Francisco Saldanha da Gama. Multi-period facility location.
In Gilbert Laporte, Stefan Nickel, and Francisco Saldanha da Gama, editors,
Location Science, pages 289–310. Springer, 2015.

[90] Silvano Martello, David Pisinger, and Paolo Toth. New trends in exact algo-
rithms for the 0–1 knapsack problem. European Journal of Operational Re-
search, 123(2):325–332, 2000.

[91] Silvano Martello and Paolo Toth. Algorithms for knapsack problems. North-
Holland Mathematics Studies, 132:213–257, 1987.

[92] G. Barlacchi and et al. A multi-source dataset of urban life in the city of Milan
and the Province of Trentino. Scientific Data, 2(150055), 2015.

[93] John A Hartigan and Manchek A Wong. Algorithm AS 136: A k-means clus-
tering algorithm. Journal of the Royal Statistical Society. Series C (Applied

BIBLIOGRAPHY 225

Statistics), 28(1):100–108, 1979.

[94] Ram Keralapura, Antonio Nucci, Zhi-Li Zhang, and Lixin Gao. Profiling users
in a 3G network using hourglass co-clustering. In Proceedings of the Sixteenth
Annual International Conference on Mobile Computing and Networking, Mo-
biCom ’10, pages 341–352, New York, NY, USA, 2010. ACM.

[95] Marta C Gonzalez, Cesar A Hidalgo, and Albert-Laszlo Barabasi. Understand-
ing individual human mobility patterns. Nature, 453(7196):779–782, 2008.

[96] Chaoming Song, Tal Koren, Pu Wang, and Albert-László Barabási. Modelling
the scaling properties of human mobility. Nature Physics, 6(10):818–823, 2010.

[97] Chaoming Song, Zehui Qu, Nicholas Blumm, and Albert-László Barabási. Lim-
its of predictability in human mobility. Science, 327(5968):1018–1021, 2010.

[98] Samuel A Stouffer. Intervening opportunities: a theory relating mobility and
distance. American sociological review, 5(6):845–867, 1940.

[99] Marc Barthélemy. Spatial networks. Physics Reports, 499(1):1–101, 2011.

[100] Lun Wu, Ye Zhi, Zhengwei Sui, and Yu Liu. Intra-urban human mobility
and activity transition: Evidence from social media check-in data. PloS one,
9(5):e97010, 2014.

[101] Anastasios Noulas, Salvatore Scellato, Renaud Lambiotte, Massimiliano Pontil,
and Cecilia Mascolo. A tale of many cities: universal patterns in human urban
mobility. PloS one, 7(5):e37027, 2012.

[102] Filippo Simini, Marta C González, Amos Maritan, and Albert-László Barabási.
A universal model for mobility and migration patterns. Nature, 484(7392):96–
100, 2012.

[103] Xiao Liang, Jichang Zhao, Li Dong, and Ke Xu. Unraveling the origin of
exponential law in intra-urban human mobility. Scientific reports, 3, 2013.

[104] Giovanni Righini and Matteo Salani. New dynamic programming algorithms
for the resource constrained elementary shortest path problem. Networks,
51(3):155–170, 2008.

[105] A Paolo Masucci, Joan Serras, Anders Johansson, and Michael Batty. Grav-
ity versus radiation models: On the importance of scale and heterogeneity in
commuting flows. Physical Review E, 88(2):022812, 2013.

[106] Vasyl Palchykov, Marija Mitrović, Hang-Hyun Jo, Jari Saramäki, and Raj Ku-
mar Pan. Inferring human mobility using communication patterns. Scientific

226 BIBLIOGRAPHY

reports, 4, 2014.

[107] Andres Sevtsuk and Carlo Ratti. Does urban mobility have a daily routine?
Learning from the aggregate data of mobile networks. Journal of Urban Tech-
nology, 17(1):41–60, 2010.

[108] Francesco Calabrese, Giusy Di Lorenzo, and Carlo Ratti. Human mobility
prediction based on individual and collective geographical preferences. In In-
telligent Transportation Systems (ITSC), 2010 13th International IEEE Con-
ference on, pages 312–317. IEEE, 2010.

[109] Apollinaire Nadembega, Abdelhakim Hafid, and Tarik Taleb. A destination
and mobility path prediction scheme for mobile networks. IEEE Transactions
on Vehicular Technology, 64(6):2577–2590, 2015.

[110] David Stynes, Kenneth N Brown, and Cormac J Sreenan. A probabilistic
approach to user mobility prediction for wireless services. In Wireless Commu-
nications and Mobile Computing Conference (IWCMC), 2016 International,
pages 120–125. IEEE, 2016.

[111] Chaogui Kang, Xiujun Ma, Daoqin Tong, and Yu Liu. Intra-urban human
mobility patterns: An urban morphology perspective. Physica A: Statistical
Mechanics and its Applications, 391(4):1702–1717, 2012.

[112] Gerardo Chowell, James M Hyman, Stephen Eubank, and Carlos Castillo-
Chavez. Scaling laws for the movement of people between locations in a large
city. Physical Review E, 68(6):066102, 2003.

[113] Nimrod Serok and Efrat Blumenfeld-Lieberthal. A simulation model for intra-
urban movements. PloS one, 10(7):e0132576, 2015.

	Abstract
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Edge Computing and User Mobility
	Wireless Edge Computing Technologies Overview
	MEC Network Topology
	Virtual Machine Mobility Technologies

	Column Generation and Matheuristics
	Dantzig-Wolfe Decomposition
	Matheuristics

	I Strategical MEC Network Planning
	Optimization Algorithms for MEC Network Design
	Introduction
	Network Design Formulation
	Static Planning Formulation
	s-MNDP Matheuristic
	Capacitated Vertex Covering Rounding
	Clustering
	Dynamic generation of paths
	Hierarchical round and price
	Local search
	Clustering Update Restart Strategy

	Dynamic Planning Formulation
	Time Planning Horizon Discretization
	Modelling User Mobility
	VM replication
	Bulk and Live VM Migration

	l-MNDP Matheuristic
	Computational Results
	Synthetic Dataset
	s-MNDP Computational Results
	l-MNDP Computational Results

	Conclusions

	MNDP: Data Analytics and Best Practices
	Real-World Dataset
	Estimation of Model Parameters

	Experimental Setup
	Experimental Results
	s-MNDP Results
	Dynamic Planning Results
	Nearest MEC Facility Association
	Bulk VM Migration Results

	Conclusions

	II Tactical MEC Network Planning
	Dynamic Mobile Edge Computing Facility Assignment
	Introduction
	A data-driven MEC management optimization framework
	MEC Mgmt Optimization Framework
	Formulation
	Optimization Algorithm
	Initialization
	Pricing algorithms
	Rounding Heuristics
	Variables fixing
	Branch-and-price
	Split assignment and periodic plans

	Computational Evaluation
	Dataset
	Column Generation profiling
	Exactly solving the DASP

	Practical Case Study
	Experimental setup
	Experimental evaluation
	Effect of periodic planning

	Conclusions

	Appendices
	Danztig-Wolfe Decomposition of DASP
	Alternative DW Decomposition of DASP

	III Predicting User Mobility
	Predicting User Mobility With Network Data
	Introduction
	Formulation
	Hierarchical bi-objective approach

	Algorithms
	Experimental Analysis Methodology
	Generative Models
	Benchmark Model
	Key Performance Measures

	Experimental Results
	Comparing Modeling Variants
	Computational Viability
	Prediction Accuracy
	Benchmark comparison
	Demand matrix perturbation
	Increasing Time-Frames
	Real-World Dataset

	Conclusions

	Appendices
	Literature Review for Human Mobility Estimation
	UTPP - Prediction Accuracy Matching

	Conclusions
	Bibliography

