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Introduction

The field of quantum optics investigates how the quantum mechanical properties of op-
tical fields can be manipulated, characterised, and utilised. Until recently, experiments in
the field were motivated primarily by a desire to test properties of the microscopic world.
As laser physics has advanced, however, many new quantum optical techniques have
been developed in order to improve the technology utilised in many scientific research
fields. In this context, the continuous variable (CV) regime has rapidly gained attention
and a lot of progress has been made over the last years in the generation and detection
of CV nonclassical states. From a theoretical point of view, although CV states lie in an
infinite dimensional Hilbert space, many of them can be handled by mathematical tech-
niques from finite-dimensional algebra. In particular, operations on the density matrix
of the so-called Gaussian states can be achieved by manipulating the finite-dimensional
covariance matrix. Within the family of Gaussian states, when we speak of ”nonclassi-
cal” states, we are referring to squeezed states in which the variance of at least one of the
canonical variables is reduced below the noise level of zero point fluctuations. These
squeezed states have proved to be the most readily accessible optical fields with demon-
strably quantum mechanical behaviour in the CV regime and they are considered to be
at the heart of quantum mechanics.

This thesis experimentally examines their generation and detection processes by fea-
turing the experimental setup improved during my Ph.D studies. Here, continuous-
wave squeezed light is generated by a sub-threshold optical parametric oscillator (OPO),
whose physical background consists in the Spontaneous Parametric Down-Conversion (SPD
C).

Historically, the first observation of squeezing using an OPO cavity has been achieved
by Wu et al. in 1986 [1]. They used a magnesium-doped lithium niobate (MgO:LiNbO3)
crystal embedded in a linear cavity and pumped at the second harmonic of the degen-
erate signal and idler fields as shown in Fig. 1 (a). The resulting squeezed vacuum
state was analysed by means of a homodyne detector (HD), in which the weak signal
under investigation is amplified by a bright laser beam called local oscillator (LO). The
HD output was recorded and fed into a spectrum analyser that displays the power spec-
tral density corresponding to the variance of the quadratures of the squeezed vacuum.
The results are displayed on the right of Fig. 1 (b), where the root mean square noise
voltage measured by the spectrum analyser is shown versus the LO phase. The squeez-
ing reached in that experiment was about 3.5 dB below the vacuum noise (dashed line).
Since then, significant advancements have been made to further develop this approach
[2][3][3]. One of the most recent results reported a squeezing of about 15 dB [4]. Here

xv
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(a) (b)

Figure 1: Wu et al. used degenerate parametric down-conversion (MgO:LiNbO3) in a magnesium-
doped lithium niobate crystal placed in a standing-wave cavity (M;M’) (a). The results are dis-
played on the right (b), where the root mean square noise voltage measured by the spectrum
analyzer is shown versus the phase of the local oscillator. The squeezing was about 3.5 dB below
the vacuum noise (dashed line) [1].

the squeezing was generated by PDC in a cavity (OPA in Fig. 2) based on a periodi-
cally poled KTP (PPKTP) crystal. The measurements were performed by means of HD
and were recorded with a Spectrum Analyzer. Fig. 2 (b) shows the OPA pump power
dependence of the experimental squeezing and antisqueezing spectra.

(a) (b)

Figure 2: (a): Schematic of the experimental setup used in Ref. [4]. (b): Squeezing and anti-
squeezing spectra normalized to the vacuum noise level, experiment (continuous lines) and theory
(dashed lines) for different OPA pump power (P). With P = 16 mW, a nonclassical noise reduction
of 15.3 dB was obtained [4]

It is interesting to note that the basic experimental scheme used in 1986 is the same as
that used today for generating highly efficient squeezing. The improvements in this area
have mainly been concentrating on the technical aspects concerning with the primary
cause of the squeezing degradation: the noise. The main types of noise mechanisms
are related to intra-cavity losses, detection losses and phase noise. The remarkable de-
velopments of the low-noise electronics for phase locking, low loss optical components
and high efficiency photodiodes and subsequent development of the optical homodyne
tomography have enabled a considerable improvement of this system performances.

Initially, from the application point of view, the major advantages was awaited in the
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improvement of the optical measurements resolution. In this scenario, the prominent
example is the application in the gravitational waves (GWs) detection. The idea was
proposed by Caves in 1981 [5] and was implemented first in the GEO600 gravitational
wave detector [6] and later in the LIGO detector [7]. Although squeezed light has al-
ready been integrated into these GWs detectors, it has not yet been used in actual data
acquisition runs. In Advanced LIGO, for example, the squeezing is expected to enhance
the sensitivity by up to a factor of ten. Hopefully, such a detector will not only be able to
prove the existence of GWs but provide information about their spatial distribution and
temporal dynamics. This would result in a fundamentally new method for observing
the universe, which has a potential to revolutionize the entire field of astronomy.

In addition to these applications, those relating to quantum information science stand
out. This is a new and promising field of research that combines the techniques devel-
oped in quantum mechanics with those of information science which could not only pro-
vide better methods to interrogate the microscopic world but also real improvements to
data storage, information processing and communication. Although originally the in-
vestigations of this area mostly focused on the discrete variable world, since the first
experimental demonstration of CV quantum teleportation by Furusawa and al. [8] in
1998, a novel approach has been developed, which relies on canonical observables with
continuous spectra. This quantum information with CVs offers many practical advan-
tages over its discrete variable counterpart. Manipulating a single photon is a difficult
experimental task. Single photons are hard to produce on demand and hard to detect
efficiently. These experimental limitations make the implementation of quantum infor-
mation based on discrete variables both difficult and expensive. In the regime of CVs,
instead, nonclassical states of light can be deterministically generated in OPOs, precisely
manipulated with linear optics and measured with very high efficiency in balanced HDs.
All these features make the optical CV approach a very promising candidate for quan-
tum information processing and communication. In particular, the squeezed states gen-
erated from the OPO are the main source of CV quantum states exploited in quantum
information processing protocols [9]. One of the main obstacles for quantum information
processing is the difficulty of the experimental implementation. Quantum information
tasks require unprecedented precise control of complicated systems. For this reason, it
is crucial to be able to control each step of the states generation and acquisition pro-
cesses. Our experimental setup allows to accomplish this task successfully. Moreover,
the generation/acquisition process is engineered in such a way that we are able to pro-
duce different kinds of nonclassical states on demand. Indeed, the states that SPDC can
produce, namely the single- and dual-mode squeezed vacua, can be used as a starting
point for the generation of several other quantum states of light and the ability to engi-
neer this process is a central requirement for quantum communication, computing and
metrology.

The thesis is divided into two Parts. The first Part introduces the theoretical and
experimental techniques used in our laboratory to generate and detect nonclassical states
in CV regime. After introducing the mathematical tools that we need for studying them
and the theoretical basis of the detection process (Chap. 1), we discuss the physical
background on which the experimental generation techniques are based (Chap. 2). Our
experimental implementation is then shown in Chap. 3.

The results obtained from the performed work has been published or submitted for
publication in international peer-reviewed journals:

• S. Cialdi, C. Porto, D. Cipriani, S. Olivares, and M. G. A. Paris. Full quantum state
reconstruction of symmetric two-mode squeezed thermal states via spectral homodyne de-
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tection and a state-balancing detector. Physical Review A 93, 043805 (2016)

• A. Mandarino, M. Bina, C. Porto, S. Cialdi, S. Olivares, and M. G. A. Paris.Assessing
the significance of fidelity as a figure of merit in quantum state reconstruction of discrete
and continuous-variable systems. Physical Review A 93, 062118 (2016)

• C. Porto, D. Rusca, S. Cialdi, A. Crespi, R. Osellame, D. Tamascelli, S. Olivares, and
M. G. A. Paris. Detection of squeezing by on-chip glass-integrated homodyne analyzer
Preprint arXiv:1710.04665 [quant-ph] (2017)

The second part of this thesis deals with these papers: the last three chapters feature
each one of them individually and the speech recalls what we wrote in. In Chap. 4
we present a measurement scheme to fully reconstruct the class of symmetric two-mode
squeezed thermal states which are those widely exploited in CV quantum technology.
Chap. 5 presents the first application of the engineered generation/detection scheme
implemented during my Ph.D. which allow us to generate different kinds of squeezed
states on demand. The last chapter (Chap. 6) deal with the upgrade developed in order
to miniaturise the HD system by exploiting a waveguide beam splitter inscribed in a
glass substrate by femtosecond laser writing technology [10] [11]. This device has been
embedded in our setup and for the first time, we have characterized nonclassical CV
optical states by using it.
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Nonclassical states of light





CHAPTER 1

Theoretical concepts

This Chapter is concerned with the description of quantum states in the continuous variable
regime and the theoretical models and methods of analysis required for the experimental work
of this thesis. In the first Sections we introduce the quantum mechanical description of electro-
magnetic field and its possible representation. In particular we introduce the mathematical tool
used to describe the Gaussian states which are the field states relevant to our experiments. In the
second part of this chapter we describe how to detect quantum states of light by introducing the
optical homodyne detection. Finally we show the method to characterise these states.

1.1 The electromagnetic field quantization

In classical physics the properties and behaviour of light propagating in the free space
are described by the source free Maxwell equations [12]:

∇ ·B = 0 (1.1a)

∇×E =−∂B
∂ t

(1.1b)

∇ ·D = 0 (1.1c)

∇×H =
∂D
∂ t

(1.1d)

where B = µ0H, D =ε0E, µ0 and ε0 being the magnetic permeability and electric permittiv-
ity of free space. Maxwell’s equations are gauge invariant when no sources are present.
A convenient choice of gauge for problems in quantum optics is the Coulomb gauge. In
this gauge both B and E may be determined from a vector potential A(r,t) such that

B = ∇×A (1.2a)

E =−∂A
∂ t

(1.2b)

and
∇ ·A = 0 (1.3)

From these conditions we find that A satisfies the wave equation:

∇
2A(r, t) =

1
c2

∂ 2A(r, t)
∂ t2 (1.4)

It is more convenient to deal with a discrete set of variables rather than with the
whole continuum. We shall therefore describe the field restricted to a certain volume

3



4 1.1 The electromagnetic field quantization

of space and expand the vector potential in terms of a discrete set of orthogonal mode
functions:

A(+) (r, t) = ∑
k

ckuk (r)e−ıωkt (1.5)

where ωk is the angular frequency of the k-th mode and we have separated the vector
potential into two complex terms A(r, t) = A(−) (r, t) +A(+) (r, t), with A(−) (r, t) which
contains all amplitudes varying as e−ıωt for ω >0 and A(−) (r, t) which contains those
varying as eıωt and A(−)=( A(+)) ∗. The Fourier coefficients ck are constant for a free field
and the mode functions depend on the boundary conditions of the physical volume un-
der consideration. For example, the plane wave mode functions appropriate to a cubical
volume of side L may be written as

uk (r) = L−3/2ê(λ )eık·r (1.6)

Each component of the wave vector k takes the values

kx =
2πnx

L
, ky =

2πny

L
, kz =

2πnz

L
, nx,ny,nz = 0,±1,±2, . . . (1.7)

and the unit polarization vector ê(λ ), with λ=1,2, is required to be perpendicular to k by
the transversality condition. The vector potential may now be written in the form

A(r, t) = ı∑
k

(
}

2ωkε0

)1/2 [
akuk (r)e−ıωkt +a∗ku∗k (r)eıωkt] (1.8)

and the corresponding form for the electric field is

E(r, t) = ı∑
k

(
}ωk

2ε0

)1/2 [
akuk (r)e−ıωkt −a∗ku∗k (r)eıωkt] (1.9)

where } is Planck’s constant and the normalization factors have been chosen such that
the amplitudes ak and a∗k are dimensionless.

The transition from the classical to a quantum mechanical description of light is done
via canonical quantization which changes the complex amplitudes ak and a∗k to the mu-
tually adjoint operators âk and â†

k . [13][12]. Due to the bosonic character of photons, the
operators follow the bosonic commutation relations

[âk, âk′ ] =
[
â†

k , â
†
k′

]
= 0,

[
âk, â

†
k′

]
= δkk′ (1.10)

With the quantization the electric field may then be featured as an ensemble of indepen-
dent harmonic oscillators with frequency ωk obeying the above commutation relations.
Each of these oscillators describes the dynamical behaviour of one individual mode in-
dependently of the other modes. The quantum state of each mode can be described by
a state vector |Ψ〉k of the Hilbert space corresponding to the mode k and the state of the
entire field is then defined in the tensor product space of the Hilbert spaces for all the
modes. The Hamiltonian for the electromagnetic field is given by

H =
1
2

∫ (
ε0E2 +µ0H2)dr. (1.11)
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Substituting 1.9 for E and the equivalent expression for H, the Hamiltonian may be re-
duced to the form [12]

H = ∑
k
}ωk

(
a†

kak +
1
2

)
(1.12)

that is the Hamiltonian of a set of quantum harmonic oscillators (h. o.) with frequencies
ωk. It represents the number of photons in each mode k multiplied by the photon energy
}ωk, plus 1

2}ωk representing the energy of the vacuum fluctuations in each mode.

1.2 Quantum states of light

Because of the analogies of the e.m. field with a set of harmonic oscillators, we can apply
the knowledge of the h.o. states to describe the states of the e.m. field. Below we will
consider two possible representations of the e.m. field.

1.2.1 Fock states

The eigenstates of the number operator Nk = a†
kak are the number or Fock states |nk〉 and

the corresponding eigenvalues are the integer numbers nk, namely:

a†
kak |nk〉= nk |nk〉 (1.13)

where the application of the creation and annihilation operators to the number states
yields

ak |nk〉= n1/2
k |nk−1〉 , a†

k |nk〉= (nk +1)1/2 |nk +1〉 (1.14)

The ground state of the oscillator (or vacuum state of the field mode) is defined by

ak |0〉= 0 (1.15)

and its energy is given by

〈0| Ĥ |0〉= 1
2 ∑

k
h̄ωk (1.16)

The state vectors for the higher excited states may be obtained from the vacuum by
successive application of the creation operator

|nk〉=

(
a†

k

)nk

(nk!)1/2 |0〉 , nk = 0,1,2, . . . (1.17)

The number states are orthogonal

〈nk|mk〉= δmn (1.18)

and complete
∞

∑
nk=0
|nk〉〈nk|= 1 (1.19)

Since the norm of these eigenvectors is finite, they form a complete set of basis vectors
for a Hilbert space.
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1.2.2 Coherent States

While the number states form a useful representation when the number of photons is
very small, they are not the most suitable representation for optical fields where the total
number of photons is large. Despite the fact that the number states of the electromagnetic
field have been used as a basis for several problems in quantum optics including some
laser theories, a more appropriate basis for many optical fields is given by the coherent
states [12] which are the quantum mechanical states closer to a classical description of
the field and the closest approximation of the output state of a laser.

These states are the eigenvectors of the annihilation operator:

â |α〉= α |α〉 α ∈ C (1.20)

The coherent state contains an indefinite number of photons. This may be high-
lighted by considering its expansion in the number states basis:

|α〉= e−|α|
2/2

∑
αn

(n!)1/2 |n〉 (1.21)

We note that the probability distribution of photons in a coherent state is a Poisson dis-
tribution

P(n) = |〈n|α〉|2 = |α|
2n e|α|

2

n!
(1.22)

where |α|2 is the mean number of photons, 〈n̂〉= |α|2.
Two coherent states 〈α〉 and 〈β 〉 are not orthogonal:

|〈α | β 〉|2 6= 0 (1.23)

and they are over-complete. In fact we can see that the identity can be resolved as

1
π

∫

C
|α〉〈α|= Î (1.24)

These states are most easily generated using the unitary displacement operator

D(α) = exp
(
αa†−α

∗a
)

(1.25)

where α is an arbitrary complex number. The coherent state |α〉 is generated by operat-
ing with D(α) on the vacuum state

|α〉= D(α) |0〉 (1.26)

1.2.3 Thermal states

The photon number states and the coherent states are two pure states. Another quite
common state is the thermal state, which is a mixed state, being a mixture of Fock states.
If the state of the radiation is at thermal equilibrium with a heat bath of temperature T,
it is described by the density operator written as[12] :

ρ̂th (Nth) =
1

1+Nth

∞

∑
n=0

(
Nth

1+Nth

)n

|n〉〈n| (1.27)
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where the mean number of thermal photons, Nth is given by:

Nth =

[
exp
(

}ω

kBT

)
−1
]−1

(1.28)

with ω the radiation frequency and kB the Boltzmann constant.
Note that if Nth = 0, we have ρ̂th(0)= |0〉〈0| that is the vacuum state.

1.3 Quadrature operators

For the sake of simplicity we consider now a monochromatic electric field. By reorgan-
ising the eq. 1.9, we can rewrite the electric field vector E (r,t) as [13]

E(r, t) = E0
(
α (r, t)e−ıωt +α

∗ (r, t)eıωt)p(r, t) (1.29)

where we have explicitly included the polarization contribution in the polarization vec-
tor p(r,t), and now α(r,t) is the complex amplitude function:

α (r, t) = α0 (r, t)eıφ(r,t) (1.30)

where α0(r, t) is the (dimensional) magnitude of the field and φ (r, t) is the phase term
which determines the shape of the wave front. For example, in the case of a plane wave
with wave vector k = ω/c and moving along the positive direction of z-axis we have
α(r,t)=α0eıkz. This description of a wave allows us to introduce the quadrature amplitudes,
which are proportional to the real and imaginary parts of the complex amplitude:

X1 (r, t) = α (r, t)+α
∗ (r, t) (1.31a)

X2 (r, t) = ı [α (r, t)−α
∗ (r, t)] (1.31b)

In this notation we can explicitly write the absolute phase as:

φ0 = arctan
(

X2 (r, t)
X1 (r, t)

)
(1.32)

and rewrite the eq. 1.29 as

E(r, t) = E0 (X1 (r, t)cosωt +X2 (r, t)sinωt)p(r, t) (1.33)

In this way we can introduce a common graphical representation of classical waves
called phasor diagram which is a two dimensional diagram of the values X1 and X2 as
shown in Fig. 1.1 (a): the field in a given space point r at time t corresponds to a point in
the X1-X2 plane and each wave corresponds to one particular vector of length a from the
origin to the point (X1, X2). The magnitude of the wave is given by the distance of the
point from the origin and the relative phase, φ0 is given by the angle with the X1 axis,
since the absolute phase is arbitrary. The wave can have fluctuations or modulations in
both amplitude and phase. Such variations correspond to fluctuations in the quadrature
values and we can describe the time dependent wave with the complex amplitude

α (t) = α0 +δX1 (t)+ ıδX2 (t) (1.34)

In the limit α0 � δX1(t),δX2(t), which means that the waves change or fluctuate only
very little around a fixed value α0, we see (Fig. 1.1 (b)) that δX1(t),δX2(t) describe the
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𝑋2

𝑋1

𝑋1

𝑋2

𝛿𝑋1(𝑡)

𝛿𝑋2(𝑡)

Figure 1.1: (a) Phasor representation of the classical wave. In (b) it is highlighted that the fluctua-
tions of the quadratures correspond to amplitude and phase fluctuations

changes in the amplitude and phase respectively. Therefore, one usually refers to them
as the amplitude and phase quadratures.

If the above considerations are applied to the quantized form of the electromagnetic
field, we can define the quadrature operators:

X̂1 = â+ â† (1.35)

X̂2 =−ı
(
â− â†) (1.36)

which are the amplitude quadrature operator and the phase quadrature operator, respectively.
The electric field observable Ê with a certain frequency ω , by reorganising the phase
term in the Eq. 1.9, becomes:

Ê =

(
}ω

2ε0V

)1/2 1
2

(
âe−ıθ + â†e+ıθ

)
=

(
}ω

2ε0V

)1/2

X̂ (θ) (1.37)

where X̂ (θ) is the generic quadrature operator which define any quadrature between the
amplitude and phase quadrature:

X̂ (θ) =
(

âe−ıθ + â†e+ıθ
)
= X̂1 cosθ + X̂2 sinθ (1.38)

where we have used X̂1 = X̂ (0) and X̂2 = X̂
(

π

2

)
.

From the commutation relations 1.10, we see that X̂1 and X̂2 obey the commutator
[
X̂1, X̂2

]
= 2i (1.39)

The Heisenberg uncertainty principle [12] states that it is impossible to simultane-
ously obtain precise knowledge of two non-commuting observables. This means that
the product of the uncertainties of simultaneous measurements on two arbitrary observ-
ables Â and B̂ is bounded by

∆Â∆B̂≥ 1
2

∣∣[Â, B̂
]∣∣ (1.40)

where ∆Â ∆B̂ are the standard deviation of measurements of A end B which are given
by:

∆Â =

√〈
Â2
〉
−
〈
Â
〉2 (1.41)
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෠𝑋1

෠𝑋2 Δ𝑋2
2

Δ𝑋1
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෠𝑋2

Δ𝑋2
2

Δ𝑋1
2

Vacuum State Generic Coherent State

Figure 1.2: Representations in the phasor diagram of the vacuum and generic coherent states.

Therefore, due to eq. 1.39, the uncertainty principle constrains the variances of the
operators X̂1 and X̂2 in any state to

〈
∆X̂2

1
〉〈

∆X̂2
1
〉
≥ 1 (1.42)

Let us consider a coherent state |α〉. If we calculate the expectation of the quadrature
operator we find:

〈
X̂ (θ)

〉
= 〈α|â|α〉e−ıθ +

〈
α|â†|α

〉
eıθ = 2ℜ

[
αe−ıθ

]
(1.43)

and if we put α = (X1 + ıX2), with X1,X2 ∈ R, we obtain:
〈
X̂ (θ)

〉
= X1 cosθ +X2 sinθ (1.44)

as for a classical wave (see Eq. 1.33). However, whereas in the classical case the uncer-
tainty of the expectation of the quadrature is null, in the present case we have

〈
∆X̂ (θ)2

〉
=
〈

X̂ (θ)2
〉
−
〈
X̂ (θ)

〉2
= 1 ∀θ (1.45)

and, in particular: 〈
∆X̂2

1
〉〈

∆X̂2
2
〉
= 1 (1.46)

which means that a coherent state is a minimun uncertainty states among the classical
states.

As in the classical case, the quadrature operators allow us to represent a state graph-
ically by using a phasor diagram that is a plot of X̂2 versus X̂1. In such a diagram any
particular coherent state |α〉 is equivalent to an area whose size is given by the variances〈
∆X̂2

1
〉

and
〈
∆X̂2

1
〉

and therefore describes the extent of the uncertainty distribution. This
area, centered around the point given by the value (〈X1〉, 〈X2〉) for the state, is usually
represented just by a circle as shown in Fig. 1.2.

In agreement with the Eqs. 1.45 and 1.46, we see that a coherent state is represented
by a circle whose uncertainty area is symmetric and constant, independent of the state
intensity.
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Figure 1.3: Representations in the phasor diagram of the amplitude (on the right) and phase
squeezed (on the left) vacuum states.

1.4 Squeezed states

We have seen that the ground state of an electromagnetic oscillation is the vacuum state
or in other words the state |0〉 with zero photons and that the amplitude and phase
quadratures for any electromagnetic oscillation must satisfy an Heisenberg uncertainty
relation. So even though the vacuum state has no photons, its electromagnetic field still
fluctuates. In fact

〈
∆X̂2

1
〉
=
〈
∆X̂2

2
〉
= 1, so that the fluctuations of the amplitude and phase

quadratures of a vacuum state are equal. The fluctuations of the vacuum state pose a
limit to most optical measurement devices and it is sometimes called the quantum noise
limit, or from an engineering point of view the shot noise limit. Besides we have seen
that a coherent state (whereby we can represent the output of an ideal laser) has the same
fluctuations as a vacuum state.

Now, we want to introduce states that have noise properties different from those of
the vacuum and coherent states. They are the so-called squeezed states in which the noise
of the electric field at certain phases falls below that of the vacuum state, that is, states
for which either

〈
∆X̂2

1
〉
< 1 or

〈
∆X̂2

1
〉
< 1. Of course, the Heisenberg uncertainty principle

must still be satisfied, so that the noise in the non-squeezed quadrature must be greater
than unity. In fact, due to the optical loss and other imperfections present in any real
experiment, the product

〈
∆X̂2

1
〉〈

∆X̂2
2
〉

is always greater than unity. The representation of
this kind of state in the phasor diagram is shown in Fig. 1.3.

1.5 Gaussian states

Generally quantum states are classified according to their Gaussian or non-Gaussian na-
ture. The coherent state is the most prominent example of a Gaussian state, while the
number state is an example of a non-Gaussian state. Here we will focus on the Gaussian
states because they are the ones considered throughout this thesis. The basic reason is
that this class of states is at the heart of quantum information processing with continu-
ous variables [14]. The observation that the vacuum state of quantum electrodynamics
is itself a Gaussian state, together with the fact that the quantum evolution achievable
with current technology is described by Hamiltonian operators at most bilinear in the
quantum fields explains why the states commonly produced in laboratories are Gaus-
sian. In fact, as we will show below, bilinear evolutions preserve the Gaussian character
of the vacuum state and this remains also valid when the evolution of a state occurs in a
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noisy channel.

1.5.1 Basic notation and definition of Gaussian state

Any quantum state can be fully characterised by its density matrix ρ̂ , also called den-
sity operator. [12] In particular, a n-mode state described by the density matrix ρ̂ is a
Gaussian state if its characteristic function [14]:

χ [ρ̂] (ΛΛΛ) = Tr
[
ρ̂ exp

{
−ıΛΛΛT

ΩΩΩR̂
}]

(1.47)

is Gaussian, namely, if χ [ρ̂] (ΛΛΛ) can be written in the following form:

χ [ρ̂] (ΛΛΛ) = exp
{
−1

2
ΛΛΛ

T
ΩΩΩσσσΩΩΩ

T
ΛΛΛ− ıΛΛΛT

ΩΩΩ〈R̂〉
}

(1.48)

with ΛΛΛ=(a1,b1, ...,an,bn)
T ∈R2n and Ω is the symplectic matrix defined as ΩΩΩ=

⊕n
k=1 ωωω, ωωω =(

0 1
−1 0

)
. In order to simplify the formalism we have introduced the vector of operators

R̂ = (q̂1, p̂1, ··, q̂,n, p̂n)
T and we have defined the covariance matrix σσσ (CM) as:

σkl ≡ [σ ]kl =
1
2
〈R̂kR̂l + R̂lR̂k〉−〈R̂k〉〈R̂l〉 (1.49)

By Fourier transform of the characteristic function 1.47 , we obtain the so-called Wigner
function of ρ̂[12][14]:

W [ρ̂] (X) =
1

(2π2)n

∫

R2n
d2n

ΛΛΛexp
{

ıΛΛΛT
ΩΩΩX
}

χ [ρ̂] (ΛΛΛ) (1.50)

where X = (x1,y1, ...,xn,yn)
T ∈ R2n. In the case of the Gaussian state it become:

W [ρ̂] (X) =
exp
{
− 1

2

(
X−〈R̂〉

)T
σσσ−1

(
X−〈R̂〉

)}

πn
√

det [σσσ ]
(1.51)

that is still Gaussian. Therefore a Gaussian state is fully characterized by its CM and its
first-moments vector.

1.5.2 Linear and bilinear Hamiltonians

In order to preserve Gaussian states, a Hamiltonian should be linear or bilinear in the
fields mode [14]. This kind of Hamiltonian can be experimentally realized by means of
parametric processes in quantum optical systems which involves parametric interactions
in nonlinear media. The most general Hamiltonian of this kind can be written as:

H =
n

∑
k=1

g(1)k â†
k

︸ ︷︷ ︸
(i)

+
n

∑
k≥l=1

g(2)kl â†
k âl

︸ ︷︷ ︸
(ii)

+
n

∑
k,l=1

g(3)kl â†
k â†

l

︸ ︷︷ ︸
(iii)

+h.c. (1.52)

The first block (i) is linear in the field modes. The corresponding unitary transfor-
mations are the set of displacement operators we used to define coherent states, |α〉 =
D(α) |0〉 , that is the unitary evolution of the vacuum through the displacement operator.

The second block (ii) appearing in the Hamiltonian 1.52 represents two different
physical processes. The first process refers to the terms with l=k in (ii), i.e. proportional



12 1.5 Gaussian states

to g(2)â†
k âk and describes the free evolution of the modes: in most cases these terms can

be eliminated by choosing a suitable interaction picture. The effect of free evolution is to
add an overall phase shift that, for single-mode fields, has no physical meaning, but it
is of extreme relevance in the case of interference phenomena involving different beams
of light, such as the interferometric scheme used to implement the homodyne detection
[14].

If l 6=k we deal with a second process which describes a linear mixing of two modes
and, in the quantum optics context, the simplest example corresponds to a Hamiltonian
of the form H ∝ â†b̂+ b̂†â, where for the sake of simplicity we consider a system of two
modes â≡ â1 and b̂≡ â2. This Hamiltonian describes the action of a beam splitter.

In the particular case of quantum optics, the last block (iii) describes χ(2) non-linear
interactions in which a photon in the input is converted into two photons, conserving
both the energy and the momentum, and which we will illustrate in Chap.2.

• Single-mode squeezing
If in these processes two photons are emitted into the same mode â, we obtain the
single-mode squeezing transformations, which, thus, correspond to Hamiltonians
of the form H ∝

(
â†
)2

+h.c. .

The single-mode squeezing operator is usually written as:

S (ξ ) = exp
{

1
2

[
ξ
(
â†)2−ξ

∗â2
]}

(1.53)

where ξ = reıΨ.

• Two-mode squeezing
The two-mode squeezing transformations correspond to Hamiltonians of the form
H ∝ â†b̂† +h.c. and describe χ(2) nonlinear interactions introduced in the previous
subsection but with the two photons emitted in different modes.

The evolution operator is usually written as:

S2 (ξ ) = exp
{

1
2
[
ξ â†b̂†−ξ

∗âb̂
]}

(1.54)

In conclusion a generic Gaussian state can be written as:

ρ̂ = D(α)S (ξ )νth (N)S† (ξ )D† (α) (1.55)

where νth (N) is the thermal state introduced in Sec. 1.2.3. In particular, for the vacuum
state we have α = ξ = N = 0 whose corresponding Wigner function is shown in Fig. 1.4.
Recalling the analogy between the quadrature operators and position- and momentum-
like operators:

q̂ =

√
}

2ω

(
â+ â†) p̂ =−ı

√
}ω

2
(
â− â†) (1.56)

it is easy to immediately understand that the uncertainty areas which are shown in the
phasor diagrams in Sec. 1.3 are simplified representations of the Gaussian Wigner func-
tions [13]. They are the levels curves at the level of the quadrature variances as shown
in Fig. 1.4 for the vacuum state. Wigner functions corresponding to a coherent state, and
displaced phase and amplitude squeezed states are instead shown in Fig. 1.5.
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Figure 1.4: The Gaussian Wigner function for the vacuum state. The level’ curve at the level of the
quadrature variances is the uncertainty area in the two-dimensional phasor diagram.

Figure 1.5: Wigner functions for a coherent state, a displaced phase squeezed state and a displaced
amplitude squeezed state from left to right.

1.6 Detecting quantum states of light

Our purpose is to perform phase-sensitive measurements of the electric field in an elec-
tromagnetic mode, i.e. of X̂ (θ) for all values of θ . In this way, indeed, we can reconstruct
the Wigner function of the mode’s quantum state. Unfortunately, a single instrument
able to perform such a measurement does not exist. Typical oscillation frequencies of
the light fields are hundreds of terahertz (1014-1015 Hz), and a detector that can follow
such fast changes does not exist. Anyway there is an experimental technique that al-
lows to do phase-sensitive measurements of the electric field using regular, “slow” de-
tectors. This method is known as balanced Homodyne Detection (HD). The balanced
HD theoretically developed by Yuen and Chan in 1983 [15] and subsequently imple-
mented by Abbas et al. [16], has been widely applied to many quantum optics experi-
ments as an effective tool to characterize the non-classical states of light in either the time
[17][18][19][20][21][22][23][24] or the frequency [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38] domain. It provides the measurement of single-mode quadratures through
the mixing of the field under investigation, called signal, which is usually weak, with
a highly excited semiclassical field (e.g. a relatively strong laser beam) at the same fre-
quency, called local oscillator (LO), by using a relatively simple interference setup. The
LO has to be phase locked to the input, otherwise it cannot provide a phase reference to
distinguish between the quadratures. For this reason, the signal and the LO are usually
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Dt

Figure 1.6: Schematic diagram of the Homodyne Detector.

generated by a common source, so that they have a fixed phase relation.
The schematic diagram of a HD is reported in Fig.1.6: Let â0(t) be the signal mode

which is in the state ρ̂ under investigation. It interferes at a beam splitter (BS) with a
second mode â1(t) excited in a coherent state, â1(t)=|α|eıφ e−ıω0t , with |α| � 1, as shown
in Fig. 1.6. The BS produces the mixing of this two incident optical modes and by using
its quantum mechanical description, the reflected and transmitted modes, âr and ât , can
be expressed as [13] (

âr
ât

)
=

(
ı
√

R
√

T√
T ı

√
R

)(
â0
â1

)
(1.57)

where R and T are the BS reflection and transmission coefficients, respectively. After the
BS, the two modes are detected by two identical photodetectors, Dr and Dt. Photode-
tection of a CW laser beam is described by the photoelectric effect, with electrons being
liberated from a material when it is subjected to a radiant field. Within the bandwidth
of the detectors, the produced photocurrent is directly proportional to the number of
photons in the field, i.e. îi = ηiâ

†
i âi, with i = r, t, where ηi is the detection efficiency which

contains all processes that reduce the conversion of the light into a current [13]. In what
follows, we will assume ηi to be one for the sake of simplicity. The photocurrents are
subtracted from each other and the difference photocurrent, î−, can be written as

î− (t) ∝ (R−T ) â†
1 (t) â1 (t)+2ı

√
RT
(

â†
1â0− â1â†

0

)
+(T −R) â†

0 (t) â0 (t)

≈ (R−T ) â†
1 (t) â1 (t)+2ı

√
RT
(

â†
1â0− â1â†

0

) (1.58)

where we have neglected the term (T −R) â†
0 (t) â0 (t) because the LO beam is more pow-

erful than the signal beam.
If R=T, it can be proved that i−(t) is proportional to X̂(θ ). In fact, we can write the

time varying field annihilation operator â(t) as

â0 (t) = e−ıω0t
∫

dω â(ω)e−ıωt def
= e−ıω0t ã(t) (1.59)

i.e. as Fourier transform of â( ω), where ω now denotes the frequency separation from
the laser carrier ω0. With ã we are considering only the slowly varying part of the signal
without the carrier. By considering Eq. 1.59, we can rewrite Eq. 1.58 as
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î− (t) ∝ 2
√

RT |α|
(

ã(t)e−ıφ+ı π
2 + ã(t)† e+ıφ−ı π

2

)

= 2
√

RT |α|
(

ã(t)e−ıθ + ã(t)† e+ıθ
) (1.60)

where we have replaced â1(t) with |α|eıφ e−ıω0t .
Finally, by recalling the definition of electric field observable X̂(t,θ ) in 1.38, we have

î− (t) ∝ 4
√

RT |α| X̂ (t,θ) . (1.61)

It’s worth noting that the “fast term” ω0 is removed by the presence of the LO at the
same frequency and what we observe at time t is a photocurrent proportional to the
signal field amplified by the LO. Besides the phase θ can be selected by changing the LO
phase.

The state which we observe cannot be defined independently of the measurement
apparatus because the latter has its response time proportional to spectral bandwidth:
∆t ∝ 1/(∆ω/2π). For instance, the main photons number carried by the measured co-
herent state is the number which on average comes in this response time. Therefore the
expression 1.59 becomes

â0 (t) = e−ıω0t
∫

dωF (ω) â(ω)e−ıωt def
= e−ıω0t ã(t) (1.62)

where F(ω) is the apparatus spectral response function.
Theoretically, if the quantum states, such as squezeed states, are generated in a con-

tinuous nonlinear process, it could be observed by measuring the variance of the homo-
dyne detector output photocurrent as a function of the LO phase. In a real situation,
however, this measurement is obscured by many frequency dependent noises which are
present in an experimental system. Fortunately, such technical (classical) noises often
occur within specific frequency bands. Among them the most difficult to eliminate are
the laser classical noise and the detector electronic noise which are low frequency noises.
The idea is to bypass them by shifting the signal towards higher frequencies (few MHz).

For this purpose the HD shown in Fig. 1.6 can be modified by adding a amplitude/phase
modulator, a phase shifter and a mixer, as shown in fig. 1.7.

Let us now see how this detector works. The signal field is modulated by using a
phase or amplitude modulator (PM/AM). In order to understand its action on â0, we
start from a classical description and then switch to the quantum one. Therefore we
consider the classical electric field at a certain position at frequency ω0

α (t) = α0eıω0t (1.63)

where we omit the complex conjugate term for simplicity, and we focus on the amplitude
modulation. A beam of light which is amplitude modulated by a fraction 2δ at the
frequency Ω can be described by [13]

a(t) = a0 (1−δ (1− cosΩt))eıω0t

= a0 (1−δ )eıω0t +a0
δ

2

[
eı(ω0+Ω)t + eı(ω0−Ω)t

] (1.64)

Here we see that the effect of the modulation is to create two frequency components
at ω0−Ω and ω0 +Ω: these are known as the upper and lower sidebands, respectively,
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Figure 1.7: Schematic diagram of the Homodyne detection.

Figure 1.8: Sidebands.

whereas the component at frequency ω0 as the carrier (see Fig. 1.8). By taking in consid-
eration also the complex conjugate terms, Eq. 1.64 becomes:

a(t) = a0 (1−δ )
(
eıω0t + c.c.

)
+a0

δ

2

[
eı(ω0+Ω)t + c.c+ eı(ω0−Ω)t + c.c.

]
(1.65)

Since the contribution at the carrier frequency ω0 will be eliminated through the
mixer (⊗) and the low-pass filter (F) during the detection stage, we can focus only on
the terms which depend on Ω. In order to write the quantum mechanical counterpart, it
is useful to introduce the operator:

ã′0 (t) = eıω0t ã+Ω (t)e−ıΩt + ã−Ω (t)eıΩt
√

2
= eıω0t ã′ (t) (1.66)

which formally corresponds to a linear mixing of the field operators of the two side-
bands. Upon the substitution of this operator in Eq. 1.60, we now obtain:

î− (t) ∝ 2
√

RT |α|
(

ã′ (t)e−ıθ + ã′ (t)† e+ıθ
)

(1.67)
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namely, the signal that we want to measure is now around the frequency Ω. In order to
bring the information around 0, we mix î−(t) with a signal at the frequency Ω and with
phase Ψ by means of mixer (⊗). At the mixer output we have:

Îmix(t) = î− cos(Ωt +Ψ) ∝ X̃ (t,θ)cos(Ωt +Ψ) (1.68)

With some algebra we obtain:

Îmix(t) ∝
1
4
(
X̂Ω (t,θ −Ψ)+ X̂−Ω (t,θ +Ψ)

)
(1.69)

where X̂Ω (t,θ) and X̂−Ω (t,θ) are the quadrature operators associated with the sidebands.
We see that the result depends on Ψ. By setting Ψ=0 with a phase shifter we obtain the
result that we wanted.

1.7 Quantum state tomography

We have seen that we can perform state reconstruction of the CV systems by quantum
homodyne tomography, i.e., by collecting the outcome points xk at different LO phases
θk. In this section we show how we can obtain the expectation of an observable Ô given
a state ρ̂ and its homodyne data sample {(θk,xk)} k = 1, . . . ,M. This technique is called
the pattern function tomography [39, 40]. Upon exploiting the Glauber representation
of operators in polar coordinates, the average value of a generic observable Ô may be
rewritten as

〈Ô〉=
∫

π

0

dθ

π

∫ +∞

−∞

dx p(x,θ)R[Ô](x,θ), (1.70)

where p(x,θ) = 〈xθ |ρ̂|xθ 〉 is the distribution of quadrature outcomes, with {|xθ 〉} the set
of eigenvectors of x̂θ , and R[Ô](x,θ) =

∫ +∞

−∞
dy|y|Tr[Ôeiy(x̂θ−x)] is the estimator of the oper-

ator ensemble average 〈Ô〉. In the case of the homodyne data sample {(θk,xk)} k = 1, . .
. ,M. where θk uniformly spans the interval [0, π] and M� 1, the integral (1.70) can be
rewritten as:

〈Ô〉= lim
M→∞

1
M

M

∑
k=1

R[Ô](xk,θk) . (1.71)

Its discrete form is:

〈Ô〉= 1
M

M

∑
k=1

R[Ô](xk,θk) . (1.72)

gives an approximation of the actual value of
〈
Ô
〉
.

The uncertainty of the estimated value 〈Ô〉 is ruled by the central limit theorem and
scales as

√
M, namely

δ 〈Ô〉= 1√
M

√√√√ M

∑
k=1

[
R[Ô](xk,θk)

]2−〈Ô〉2
M

. (1.73)

In order to properly characterize a single-mode prepared in a Gaussian state and
measured with HD, we need to estimate the first two moments of the quadrature opera-
tor X̂ (φ) and reconstruct the first-moment vector and the CM, as well as the total energy
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â†â of the state. We thus need the following estimators [39]:

R[X̂ (φ)] = 2xcos(θ −φ) (1.74a)

R[X̂2 (φ)] = (x2−1)
{

1+2cos[2(θ −φ)]
}
+1 (1.74b)

R[â†â] =
1
2
(
x2−1

)
. (1.74c)

In this way it is possible to compute the average value 〈Ô〉 and the fluctuations 〈∆Ô2〉 ≡
〈Ô2〉− 〈Ô〉2 for the observables of interest, toghether with the corresponding uncertain-
ties (1.73). This is the technique wich we will use to analyse the majority of experimental
results exhibited in this thesis.



CHAPTER 2

Generation of nonclassical states

This chapter provides a brief introduction into the main nonlinear optical phenomena and dis-
cusses how it is possible to exploit them to generate nonclassical states.

2.1 Second-order optical nonlinearity

Nonlinear optics is the study of phenomena that are observed when the presence of light
changes the optical properties of a material system. These phenomena are “nonlinear”
in the sense that they occur when the response of a material system to an applied optical
field depends in a nonlinear manner on the strength of the optical field. Although some
classes of nonlinear optical effects were known long before the invention of the laser (for
example, Pockels and Kerr electro-optic effects and light-induced resonant absorption
saturation[41]), it was only with the advent of lasers that systematic studies of optical
nonlinearities and the observation of a vast catalogue of nonlinear-optical phenomena
became possible. An excellent treatment can be found in the nonlinear optics text by
Boyd [42]. Here we will focus on the second-order nonlinearity which can be used to
generate non-classical states of light or, more specifically, the squeezed states which con-
stitute the main object of this thesis.

In order to describe more precisely what we mean by an optical nonlinearity, let us
consider how the dipole moment per unit volume, or polarization P̃ (t), which describe
the optical response of a material system, depends on the strength Ẽ (t) of an applied
optical field

P̃(t) = ε0

[
χ
(1)Ẽ(t)+χ

(2)Ẽ2(t)+χ
(3)Ẽ3(t)+ ...

]
(2.1)

where ε0 is the permittivity of free space and the quantities χ(1) and χ(i) are known as
the linear and ith-order non-linear optical susceptibilities, respectively. For the sake of
simplicity, we have taken P̃ (t) and Ẽ (t) like scalar quantities. In the case in which we
also aim to take account of the vector nature of the fields, χ(1) becomes a second-rank
tensor, χ(2) becomes a third-rank tensor, and so on[42]. For low electromagnetic field
intensities, P̃ (t) is purely linear. As the intensity increases the higher order terms in
Eq. 2.1 become more significant and P̃ (t) becomes increasingly nonlinear.

In particular, the second-order nonlinear optical processes (schematically illustrated
in Fig. 2.1) are all those relying on the second-order nonlinear susceptibility χ(2). They
can be widely described as the nonlinear optical processes that involve the interaction of
three photons, or in other words, as three-wave mixing processes. These processes can
be divided into two complementary categories: the up-conversions, where two photons
of lower energy combine to form a more energetic photon and the downconversions
where a single photon is converted into two photons of lower energies. Upconversion

19
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Figure 2.1: Overview of the basic χ(2) nonlinear interactions. There are two groups of nonlinear
effects which can be divided into upconversion and downconversion processes. The upconversion
processes are second harmonic generation (SHG) and sum frequency generation, which is the non-
degenerate case of SHG. The upconversion processes are degenerate optical parametric oscillation
(DOPO) and amplification (DOPA) and the corresponding non degenerate processes NDOPO and
NDOPA. The difference between OPO and OPA is that the OPA is seeded with fundamental field,
whereas this seed is replaced with a vacuum field for the OPO. ∗ denotes the seed photons.

processes include second harmonic generation (SHG) where two photons of frequency
ω0 are combined to form a photon of frequency 2ω0. When the pair of incoming photons
have different frequencies, ω0 +∆ and ω0−∆, their combination is known as sum fre-
quency generation (SFG). The downconversion processes are summarized on the right
of Fig. 2.1. Unlike the upconversion processes, they have normally associated threshold
powers below which the dissociation of a photon into the sub-harmonic photons does
not occur. These processes are called degenerate and non-degenerate optical paramet-
ric oscillation (DOPO and NDOPO). By the introduction of a seed field (labelled with ∗
in Fig. 2.1), the threshold condition can be lifted and we have the degenerate (DOPA)
and non-degenerate optical parametric amplifications (NDOPA). We can also think of
the DOPO and NDOPO as being vacuum seeded, that is to say it is the fluctuations of
the vacuum field which trigger the dissociation of the photons.
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2.1.1 Conservation laws

Conservation of energy

Like all physical processes, the conservation of energy must be satisfied during the χ(2)

interaction. For three photons with frequencies ω1, ω2 and ω3, we thus require

ω1 +ω2 = ω3
1 (2.2)

Conservation of momentum: Phase matching condition

The conservation of momentum in a nonlinear optical process is often referred to as the
phase matching condition. Request that the momentum of the three photons is con-
served means that their optical wavevectors ki fulfill the following equation

k1 +k2 = k3 (2.3)

where |ki| = ki = niωi/c, with ni being the refractive index of the nonlinear medium
experienced by the photon with frequency ωi, and c the light speed in the vacuum. When
this equation holds exactly, the system is said to be phase matched.

The simultaneous fulfilment of the energy conservation and the phase matching con-
dition imposes a relationship on the refractive indices. Here we will restrict our atten-
tion to SHG or degenerate OPO where ω1 = ω2 = ω0, since the treatment of the non-
degenerate processes is only a straight forward extension of the argument. In this case,
the phase matching condition for the refractive indices is simply

n(ω0) = n(ω3) (2.4)

It’s worth noting that the phase-matching condition is seldom fulfilled because the
refractive index of most dielectrics shows an effect known as normal dispersion: the re-
fractive index is an increasing function of frequency. For this reason the most common
procedure for achieving phase matching is to make use of the birefringence displayed
by many crystals, i.e. the dependence of the refractive index on the direction of polar-
ization of the optical radiation. In order to achieve phase matching through the use of
birefringent crystals, the highest-frequency wave ω3 = ω1 +ω2 is polarized in the direc-
tion that gives it the lower of the two possible refractive indices or in other words it is
polarised along the fast axis of the birefringent medium. Depending on the choice for
the polarizations of the lower-frequency waves, it is referred to as:

• type I phase matching when the two lower-frequency waves have the same polariza-
tion orthogonal to that of the highest-frequency wave, e.g. they are both polarized
along the slow axis of the birefringent medium, ↑ ω1+ ↑ ω2 =→ ω3. When the po-
larisation of one field is parallel to the optical axis (z), and the other field is free
to propagate along any direction of the xy-plane the phase matching is said to be
non-critical.

• type II phase matching when the two lower-frequency waves are orthogonally po-
larized to each other and the highest-frequency wave has the same polarization as
one of the lower-frequency waves, e.g. ↑ ω1+→ ω2 =↑ ω3.

1This condition must be satisfied precisely for all nonlinear interactions.
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In order to cancel the dispersion and to achieve the phase-matching condition ∆k =
k1 + k2 − k3 = 0, two methods are used: angle tuning, which involves precise angu-
lar orientation of the crystal with respect to the propagation direction of the incident
light[42] and temperature tuning changing the crystal temperature. For some crystals,
indeed, the amount of birefringence is strongly temperature-dependent. As a result, it
is possible to phase-match the mixing process by holding the crystal orientation with
respect to the propagation direction of the incident light and varying the crystal temper-
ature. The nonlinear medium used throughout the experiments presented in this thesis
in order to generate the non classical states is Magnesium Oxide doped Lithium Niobate
(MgO:LiNbO3) which deals with this latter case: its refractive index is strongly depend
on temperature and temperature tuning is used to achieve noncritical phase matching
as we will show in Chap. 3.

• Quasi-phase matching In a quasi-phase matched material, the phase matching is ob-
tained via a periodic manipulation of the cumulated relative optical phase. By the
short periodic inversion of the crystal domain, the phase mismatch is governed by

∆k = (k1 +k2)−k3−
2π

Λ
(2.5)

where Λ is the crystal inversion period. Hence, the condition imposed on the re-
fractive indices is no longer required due to an additional periodic poling term.
The advantage of periodic poling is that it can provide a means to access dielectric
polarization with high nonlinearity which are otherwise unreachable with angle
and temperature tuning. An example of quasi-phase matching is the use of peri-
odically poled lithium niobate (PPLN) at Nd:YAG wavelength for the purpose of
frequency doubling. In this situation, the polarization of all three modes are the
same, e.g. ↑ ω1+ ↑ ω2 =↑ ω3

2.2 Optical parametric oscillation

Among χ(2) processes, we want to focus on the parametric down conversion, which is our
basis for squeezed states generation. A strong beam Ep at frequency ωp and a weak beam
Es at frequency ωs (seed) are injected into the non linear crystal. Due to non-linear effect,
the two fields ”mix” inside the crystal and a macroscopic wave at frequency ωi = ωp−ωs

is generated by the induced P̃(2) polarization:

P̃(2)(ωp−ωs) = 2χ
(2)EpE∗s . (2.6)

The applied field Ep is called pump beam, the generated beams respectively signal (Es)
and idler (Ei). From the quantum point of view, the entire process can be depicted ac-
cording to the photon energy-level description. Due to absorption of a photon at fre-
quency ωp an atomic virtual level is excited. This level decays by a two photon emission
process that is stimulated by the presence of ωs field. Two photon spontaneous emission
occurs even if the ωs-field is not applied. In this case the pump energy is spread over
more signal/idler pairs so that the generated fields are very much weaker. In fact, we
can see that the amount of squeezing obtained by a single pass of a continuous-wave
pump laser through a nonlinear crystal of a reasonable size is very small. Two meth-
ods are commonly used to address this complication. First, one could use an ultrashort
pulsed laser, thereby greatly increasing the pump amplitude [43][44][45]. The second
approach is to place the crystal inside an optical resonator (see Fig. 2.3). This enables
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the enhancing of the down conversion process in order to obtain macroscopical signal
and idler beams even without any initial seed. In fact when a nonlinear medium inside
an optical cavity is irradiated with a pump beam, the signal generated on the first pass
trough the medium can act as an input on consecutive passes, if it is coupled into the
cavity. The signal builds up within the cavity if its wavelength corresponds to high re-
flectivity of the cavity mirrors and it fulfils the resonance condition of the cavity. The
cavity can be resonant to the pump light, thereby enhancing the effective pump power,
or to the signal, effectively allowing multiple passing of the signal through the crystal,
or both. In our case the cavity is resonant to the signal. This configuration is referred to
as the optical parametric oscillator (OPO).

2.3 The quantum behaviour of the Optical Parametric Oscillator (OPO)

Here we want to study the Optical Parametric Oscillator (OPO) in order to retrieve its
quantum equations of motion.

2.3.1 Classical description of a linear cavity

We start from a classical description for the linear cavity modelled in fig. 2.2 in order to
retrieve the equations of motion of a single cavity mode. It has two partially transmitting
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Figure 2.2: A model of passive optical resonator, including input fields from the input and output
couplers, input field fluctuations due to loss in the resonator, and output fields exiting the input
and output couplers.

mirrors, input (ic) and output (oc) coupler, with transmissivity Tic and Toc, respectively.
The internal loss can be schematized as a beam splitter with reflectivity ∆ and the in-
put field fluctuations due to this loss are referred to with al1,in(t) and al2,in(t). External
fields, aic,in(t) and aoc,in(t) enter at the ic and oc coupler respectively. We can calculate the
change in the complex field amplitude acav (t) after one round-trip when the laser carrier
frequency is perfectly resonant, under the assumption that this change is small [13]. The
classical equation of motion, that will be retrieved in this way, will be the starting point
for our quantum description.



24 2.3 The quantum behaviour of the Optical Parametric Oscillator (OPO)

If we follow the field acav(t) in a round trip we have:

acav (t + τ) =acav (t)
√

1−Tic
√

1−Toc
√

1−∆+aic,in
√

Tic +aoc,in
√

Toc
√

1−Tic
√

1−∆+

al1
√

∆
√

1−Toc
√

1−Tic
√

1−∆+al2
√

∆
√

1−Tic

(2.7)

where τ is the cavity round-trip time. If the change in the field in one round trip is small,
we can write

acav (t + τ)≈ acav (t)+ ȧcav (t)τ (2.8)

If the cavity is at resonance and Toc,Tic,∆� 1, the 2.7 can be approximated by

√
τ ȧcav (t)≈

√
τacav (t)

(
Tic

2τ
+

Toc

2τ
+

2∆

2τ

)
+aic,in

√
Tic

τ
+aoc,in

√
Toc

τ
+al1

√
∆

τ
+al2

√
∆

τ
(2.9)

Now, we can define the decay rate of the cavity as

γic =
Tic

2τ
; γoc =

Toc

2τ
; γl =

2∆

2τ
; (2.10a)

γ =γic + γoc +2γl (2.10b)

and the complex amplitude a(t) of the standing mode of the cavity as

a(t) =
√

τacav (t) (2.11)

. Thus, Eq. 2.9 becomes

ȧ(t)≈−γa(t)+
√

2γicaic,in +
√

2γocaoc,in +
√

2γl1al1 +
√

2γl2al2 (2.12)

If the fields acquire a phase shift φ in a round trip, or, in other words the mode isn’t
on cavity resonance we have:

a(t + τ) = a(t)+ ȧτ = a(t)eıφ ≈ a(t)(1+ ıφ) (2.13)

i.e.

ȧ(t)≈ ı
φ

τ
a(t) = ıΩa(t) (2.14)

where Ω is the frequency shift respect to the resonance. Therefore we can write:

ȧ(t)≈−(γ− ıΩ)a(t)+
√

2γicaic,in +
√

2γocaoc,in +
√

2γl1al1 +
√

2γl2al2 (2.15)

Besides if we want to link the output fields to the input fields, we have to consider
the boundary conditions which can be written as [13]:

aic,in =−aic,in +
√

2γica

aoc,out =−aoc,in +
√

2γoca
(2.16)
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Figure 2.3: OPO cavity layout.

2.3.2 Non-linear interaction

We now include in our system the crystal characterized by χ(2) (see Fig. 2.3). In this
case, in order to obtain the equations of motion for the internal cavity modes we have to
consider the interaction between the field inside the cavity and the crystal. If we work
in the interaction picture, the Hamiltonian describing such interaction is

Ĥ =
ıh̄χ(2)

2
(
b̂†â2− â†2b̂

)
(2.17)

where â and b̂ are the modes of the fundamental and the harmonic field (the pump),
respectively.

In the Heisenberg picture, the equation of motion for an arbitrary operator Ô, reads
as

dÔ
dt

=
ı
h̄

[
Ĥ, Ô

]
(2.18)

Therefore we have

dâ
dt

=−χ
(2)b̂â† (2.19a)

db̂
dt

=
χ(2)

2
â2 (2.19b)

We now assume that the harmonic field is an intense field which is virtually undepleted
by its interaction with the non-linear crystal. Under these conditions we can replace the
operator b̂ with the c-number b. Let us redefine the quadrature operator 1.35 so that the
vacuum variance is equal to one:

X̂1 =
1√
2

(
â+ â†) (2.20a)

X̂2 =
1√
2ı

(
â− â†) (2.20b)

In terms of them we obtain
dX̂1,2

dt
=∓χ̃X̂1,2 (2.21)
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where we have put χ̃ = χ(2)
√

τ
b. Therefore by considering only the non linear interaction

the solutions are:

X̂out
1 = e−χ̃t X̂ in

1 (2.22a)

X̂out
2 = e+χ̃t X̂ in

2 (2.22b)

and since the vacuum variance is one the quadrature variances are
〈
∆Xout2

1
〉
= e−2χ̃t (2.23a)

〈
∆Xout2

2
〉
= e+2χ̃t (2.23b)

We see that the crystal effect is to transfer noise from X̂1 to X̂2.

2.3.3 The quantum equations of motion for the OPO

In general, in order to describe the quantum behaviour of the OPO, we need to write
the Hamiltonian describing the interactions within the cavity as well as those between
the cavity mode and the continuum of field modes outside the cavity [13]. However, to
switch to the quantum description, here we use the simpler approach of canonical quan-
tization of the classical equation 2.15. With the substitution a(t)→ â(t) and by considering
the Eq. 2.19 we obtain

˙̂a(t) =−(γ− ıΩ) â(t)−χ b̂â† +
√

2γicâic,in +
√

2γocâoc,in +
√

2γl âl1 +
√

2γl âl2 (2.24a)
˙̂b(t) =−(γ2− ıΩ2) b̂(t)− χ

2
â2 +

√
2γ2icb̂ic,in +

√
2γ2ocb̂oc,in +

√
2γ2l b̂l1 +

√
2γ2l b̂l2 (2.24b)

where we term the decay rate relating to the second harmonic field b̂ with subscript
”2”. Also the boundary condition can be obtained directly from the classical boundary
conditions in the same way.

2.4 Calculation of squeezing from an OPO cavity

We start from our cavity equation for the parametric amplifier with Ω=0

˙̂a(t) =−γ â(t)−χbâ† +
√

2γicâic,in +
√

2γocâoc,in +
√

2γl âl1 +
√

2γl âl2 (2.25)

By observing only the output field we can use the boundary condition

âoc,out =−âoc,in +
√

2γocâ (2.26)

and the steady-state solution is obtained by setting the time derivative to zero. Therefore
we have:

aoc,out =−
χ̃

γ

(
a†

oc,out +a†
oc,in

)
+

1
γ

[
(γoc− γic−2γl)aoc,in +

√
4γocγicaic,out +

√
4γocγlal1 +

√
4γocγlal2

] (2.27)

From this equation we can obtain the expressions for the quadrature operators X̂1(oc,out)

and X̂2(oc,out):
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X̂1(oc,out) =
γoc− γic−2γl− χ̃X̂1(oc,in)+

√
4γocγicX̂1(oc,in)+

√
4γocγlX̂1(l1)+

√
4γocγlX̂1(l2)

γ + χ̃

X̂2(oc,out) =
γoc− γic−2γl + χ̃X̂1(oc,in)+

√
4γocγicX̂1(oc,in)+

√
4γocγlX̂1(l1)+

√
4γocγlX̂1(l2)

γ− χ̃

(2.28)

The condition γoc = χ̃ defines the threshold of the OPO and χ̃ ∝
√

P where P is the
pump power. We put

d =
χ̃

γoc
=

√
P

Pth
(2.29)

where Pth is the pump power and the OPO threshold power.
In order to understand the process of squeezing via optical parametric amplification

let us assume that all of the input fields are in coherent or vacuum states. The quadrature
variances of the output field are then given by the simplified expression

〈
∆X2

1,2
〉
= 1∓ηesc

4d

(1±d)2 (2.30)

where ηesc = γoc/γ is the escape efficiency of the cavity.
If we have Ω 6= 0, the quadrature variances of the output field become:

〈
∆X2

1,2
〉
= 1∓ηesc

4d

(Ω/γ)2 +(1±d)2 (2.31)
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Figure 2.4: Squeezing from an optical parametric oscillator as a function of pump power normal-
ized to the threshold power when Ω=0. The plots show the predicted amplitude (phase) quadra-
ture variance of the output field for two values of the escape efficiency of OPO cavity. Pump
depletion is neglected, and all the input fields are assumed to be in coherent or vacuum states.
The calculation was performed with the experimental parameters derived in Chap. 3

In the deamplifcation regime the second harmonic pump field is π out of phase with
the fundamental seed, so that the coherent amplitude of the pump field is real and nega-
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Figure 2.5: The predicted frequency spectra of the squeezing at half threshold for an OPO operat-
ing in the deamplification regime, with ηesc = 0.914.

tive. We see that in this regime the amplitude quadrature of the output field is squeezed
for all non-zero pump powers and all sideband frequencies.

At Ω=0, and at threshold, the level of squeezing is ultimately limited by the es-
cape efficiency→ 1−ηesc and the optimum squeezing is achieved. In the amplification
regime (the coherent amplitude real and positive) the squeezing is observed on the phase
quadrature of the output field, and the amplitude quadrature is anti-squeezed. Also in
this case it is observed the squeezing improving at low frequencies and near threshold.
Fig. 2.4 shows the predicted squeezed quadrature variance as a function of pump power
for two different ηesc values: ηesc = 0.815 and ηesc = 0.914. These are the two cases real-
ized in our laboratory as we will see in more detail in Chap. 3.

In practice, due to low frequency noise sources, we do not observe squeezing at ω=0,
as we have already explain in Sec. 1.6. The predicted frequency spectra of the squeezing
at half threshold is shown in Fig. 2.5 for an OPO operating in the deamplification regime,
with ηesc = 0.914. As Ω increases the level of squeezing drops with

〈
∆X2

oc,out
〉
→ 1 as

Ω→ ∞. In our experiment Ω/2π=3 MHz where we expect to observe a reasonable level
of squeezing.

2.5 Classical properties of parametric amplification.

Let us now examine the classical property of parametric amplification by considering
the Eq. 2.24a in the classical case, i.e. a e b are c-numbers [13]. The steady-state solution
is obtained by setting the time derivative to zero

0 =−γa− χ̃a∗+
√

2γicaic,in (2.32)

where we have set only aic,in 6= 0 because in our experiment, we seeded our OPO through
ic. Besides we consider aic,in ∈ℜ. The complex conjugate equation of Eq. 2.32 reads as

0 =−γa∗− χ̃
∗a+

√
2γicaic,in (2.33)

where we have take into account of the pump field phase in χ̃ . By replacing the Eq. 2.33
in Eq. 2.32 we obtain
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(
1− | χ̃ |

2

γ2

)
a =

√
2γic

γ

(
1− χ̃

γ

)
aic,in (2.34)

Finally, by considering the boundary condition for the output mirror and by putting
the input of this mirror equal to zero:

aoc,out =

√
4γicγoc

γ

1(
1± |χ̃|

γ

)aic,in (2.35)

and the regenerative gain G=
∣∣∣ aoc,out

aic,in

∣∣∣
2

is

G± =
1

(1±d)2 (2.36)

2.6 Losses effect on squeezing
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The beam splitter model of loss.

Figure 2.6: The beam splitter model of losses.

Squeezed states that are observed in practical experiments necessarily suffer from
losses present in transmission channels and detectors which degrade the observed squeez-
ing and anti-squeezing levels. In order to understand the effect of losses on a single-
mode squeezed state, we can use the model in which a lossy optical element with a cer-
tain power reflectivity ε (i.e. with an efficiency η = 1− ε) is replaced by a beam splitter .
At the other input port of the beam splitter there is the vacuum state (see fig.2.6).

The interference of the signal mode as with the vacuum mode avac will produce a
outgoing mode aout

aout =
√

ηas + ı
√

1−ηavac (2.37)

Accordingly, we have

X̂out (θ) =
√

ηX̂s (θ)+
√

1−ηX̂vac (θ) (2.38)

Because signal and vacuum states are uncorrelated to each other, it follows that:

〈
∆X2

out
〉
= η

〈
∆X2

s
〉
+(1−η)

〈
∆X2

vac
〉

(2.39)
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Therefore, since the vacuum variance is one, we can rewrite the Eq. 2.31 as

〈
∆X2

1,2
〉
= 1∓ηηesc

4d

(Ω/γ)2 +(1±d)2 (2.40)
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The experimental setup
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Figure 3.1: Experimental setup for generation and detection of squeezed state. It consists of
four stages, laser, state generation, PDH and homodyne detection stages. The principal radia-
tion source is provided by a homemade single-mode Nd:YAGlaser internally frequency doubled
by a periodically poled MgO:LiNbO3. The laser output at 532 nm is used as the pump for an
optical parametric oscillator (OPO), whereas the other output at 1064 nm is sent to a polarising
beam splitter (PBS) to generate the input for the state generation stage and the local oscillator (LO)
for the homodyne detector. The sidebands used as OPO coherent seeds are generated by exploit-
ing the combined effect of the two optical systems, MOD1 and MOD2. A phase modulator (PM)
generates the sidebands used as active stabilization of the OPO cavity via the Pound-Drever-Hall
(PDH) technique. The homodyne detector consists of a balanced beam splitter, two low noise de-
tectors (D1 and D2), and a differential amplifier. The powers of the LO and of the pump are set by
amplitude modulators (AM) that consist of an half-wave plate and a Brewster plate.
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In this Chapter we discuss in detail the experimental system that enabled generation and
detection of the states analysed throughout the work presented in this thesis. It has been imple-
mented during my Ph.D in order to study several features of non-classical states of light. In
particular, the published or submitted papers in which it has been exploited will be shown in the
Part II of this thesis.

3.1 Introduction

The experimental setup used for the generation and detection of non-classical states in
the continuous variables regime consists of four stages, as highlighted in Fig.3.1: laser,
state generation, PDH and homodyne detection stages. A brief description of these
stages is provided below. Then they will be analysed individually in the subsequent
sections in more detail.

The principal radiation source is provided by a homemade Nd:YAG laser internally
frequency doubled by a periodically poled MgO:LiNbO3 (PPLN in Fig. 3.1). The laser
output at 532 nm is used as the pump for an optical parametric oscillator (OPO), whereas
the other output at 1064 nm is sent to a polarising beam splitter (PBS) to generate the in-
put for the state generation stage and the local oscillator (LO) for the homodyne detector.
The pump and LO powers are set by two amplitude modulators (AM) which consists in
a half-wave plate and a Brewster plate. The core component of the state generation stage
is the OPO, which consist in an linear cavity in which a MgO:LiNbO3 crystal is placed.
The OPO generates the squeezed light by means of the non linear effect, whose corre-
sponding theories and experimental realizations have already been reported in Chap. 2.
The sidebands (at frequency Ω/2π = 3 MHz) used as OPO coherent seeds are generated
by exploiting the combined effect of the two optical systems, indicated in Fig. 3.1 as
MOD1 and MOD2, whereas a phase modulator (PM) generates the sidebands used as
active stabilization of the OPO cavity via the Pound-Drever-Hall (PDH) technique. The
homodyne detector consists of a balanced beam splitter, two low noise detectors (D1
and D2), and a differential amplifier (�). To remove the low frequency signal we use
an high-pass filter @ 500kHz and then the signal is sent to the demodulation apparatus.
To extract the information about the signal (that is at frequency Ω/2π) we use a phase
shifter (Ψ) a mixer (⊗) and a low pass filter @ 300kHz.

3.2 The laser

The radiation source is a single-mode home-made Nd:YAG laser producing radiation
at 1064 nm. It consists of a 4 mirrors ring cavity, as sketched in Fig. 3.2. The active
medium is a cylindrical Nd:YAG crystal with a diameter of 2 mm and 60 mm length
radially pumped by three arrays of laser diode at a wavelength of 808 nm, water cooled.
The two curved mirrors (M3 and M2), with high reflectivity at 1064 nm, have radius of
curvature roc=300 mm, the mirror M4 has maximum reflectivity at an angle of incidence
of 10◦ and the output coupler for the wavelength at 1064 nm (M1) has 97.5 % reflectivity.

There are several methods of forcing a laser to oscillate in a single transverse and/or
longitudinal mode. In our case in order to achieve the single transverse mode selec-
tion, the cavity is designed such that only TEM00 mode is selected whereas the other
higher order modes are cute off by the active medium. Hence, the beam waist inside the
Nd:YAG crystal is wAM=0.52 mm÷0.55 mm (see Fig. 3.3). For laser bandwidths much
larger than the Free Spectral Range (FSR) 1, the most efficient method of achieving single

1The resonance frequencies of a cavity satisfy the condition ν = n c
2L with n integer, c being the light speed
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Figure 3.2: Schematic diagram of the laser compared with its photo. The active medium is a
cylindrical Nd:YAG crystal and a periodically poled MgO:LiNbO3 (PPLN) is used for the second
harmonic generation. The single mode operation is ensured by a light diode which consists of a
half-wave plate (λ/2), a Faraday rotator (FR) and a Brewster plate (BP).

longitudinal mode selection is to force the oscillation to be unidirectional. In this case,
in fact, the phenomenon of spatial hole burning 2 within the active medium does not oc-
cur and the laser tends to oscillate on a single mode [46]. To achieve unidirectional ring
operation, an optical diode is inserted within the laser cavity. It is a device giving preferen-
tial transmission of one direction of beam propagation and consist of a half-wave plate
(λ/2), a Faraday rotator (FR), and a Brewster plate (BP) which is a plate of an optical
material with coplanar surfaces, inserted into the laser beam at Brewster’s angle so that
the reflection loss becomes minimal for p-polarized light. Our FR consists of a Terbium

and L the optical length of the cavity. The resonance frequencies are equally spaced and the difference between
two adjacent resonance frequencies is called free spectral range (FSR) [13] [46]

FSR =
c

2L
.

2Lasers with both homogeneously and inhomogeneously broadened gain media tend to oscillate in several
longitudinal modes as result of spatial and spectral hole burning, respectively [46]. For homogeneous line, multi-
mode oscillation is due to holes burned in the spatial distribution of inversion within the active medium. This
phenomenon is known as spatial hole burning. More specifically, in standing-wave laser cavities, the coherent
superposition of the optical fields travelling in opposite directions within the cavity results in a sinusoidal
intensity distribution. At the maxima of the intensity distribution, there is strong gain saturation, and the pop-
ulation inversion is depleted. However, at nulls in the optical field, the oscillating mode is unable to deplete
the inversion. As the result, the inversion density is no longer uniform, but has ”holes” at the positions corre-
sponding to the peaks in the optical intensity. The gain at the nulls in the optical field will continue to increase
as the gain medium is pumped harder. Because other cavity modes have a different spatial profile than the
first mode and can use the population inversion at these positions, this can lead to multimode operation.
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Figure 3.3: Profile of w(z) inside the laser cavity during a round trip starting from the Nd:YAG
crystal. The crystal for the second-harmonic generation (PPLN) is in the center.

Gallium Garnet (TGG) crystal immersed in a longitudinal dc magnetic field, H. When
a linearly polarized optical beam passes through the Faraday rotator, its polarization
plane experiences a rotation about the beam axis:

θFR =V dH (3.1)

where d is the crystal length and V is the Verdet constant ( V=40 rad/Tm @1064nm)
[47]. The sense of rotation depends on the relative direction of the magnetic field and the
beam propagation direction: counterclockwise for a left-to-right propagating beam and
clockwise for a right-to-left propagating beam.

The p polarized wave travelling from left to right passes first through a λ/2 plate that
rotates the polarization vector of θ=15◦. Then it passes through the Faraday rotator, with
its axis in the magnetic field direction. The output beam has the plane of polarization
rotated about the beam axis of θFR=-15◦. Therefore the two rotations exactly cancel, so
no attenuation is suffered by the beam passing through the BP. For a beam travelling in
the opposite direction, right to left, the two rotation add to each other (i.e. θtot= 30◦).
Correspondingly, the beam experiences losses larger than the laser gain.

The second-harmonic generation (SHG) occurs within the laser cavity by using a pe-
riodically poled MgO:LiNbO3 (PPLN) thermally stabilized around 70 ◦C. The intracavity
frequency doubling prevents the mode hopping [48]. This is the phenomenon in which a
laser exhibits sudden jumps between different modes: the laser may operate on a single
resonator mode for some time, but then suddenly switches to another mode. This means
that this other mode suddenly takes over or that there may be power in both modes. The
intracavity SHG, introduces a loss that is less for the oscillating mode than for the neigh-
boring modes. At first sight this seems counterintuitive, since it is the lasing mode that
obviously has a significant loss, namely that resulting from the generation of its second
harmonic, whereas adjacent, nonlasing modes would have negligible loss due to SHG.
However, these modes are subject to loss from the generation of their sum frequency.
The effect turns out to be twice the loss that the lasing mode experiences through SHG.
Mode hopping is thereby suppressed, as the lasing mode dominates the neighboring
modes. The cavity is designed so that the waist in SHG cristal is wSHG=0.11÷0.12 mm
(see Fig.3.3) in order to obtain a good conversion efficiency however remaining below
the damage threshold (500kW/cm2). The laser output powers for 1064 nm and 532 nm
vs the pump current are shown in Fig. 3.4. By considering that the output coupler (M1)
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reflectivity at 1064 nm and that the losses experienced by the output at 532 nm output
(M3) are 35%, we have a conversion efficiency about 5.8 % at a current value of 13 A.

The FSR is 203 MHz and the relaxation oscillation frequency at the current at which
we operate (∼ 13 A) is about 90 kHz thus allowing a noise spectrum shifted towards the
low frequencies.

3.3 States generation stage

Out

532nm

1064nm

HOMODYNE 
DETECTION

Y
1

Y
2

W

LASER

SQUEEZED STATE GENERATION STAGE

O
P

O

PDH

Pump

MOD2

PMD

MOD1

AM

HF

Signal

LO

A
M

PDH

RG

STATE  PREPARATION STAGE
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The non classical states generation process is performed in two steps, labelled as
state preparation stage and squeezed state generation stage in Fig. 3.5, respectively. First, the
sidebands used as OPO seeds are generated at frequency Ω/2π= 3 MHz by exploiting the
combined effect of the two optical systems, indicated in Fig. 3.5 as MOD1 and MOD2.
Then, the resultant state is sent into the OPO cavity, in which it is squeezed as shown in
Chap. 2.

3.3.1 State preparation stage

Our aim is to generate an arbitrary state, with amplitude and phase selectable on de-
mand. In a first step, we have to generate an arbitrary coherent state (CS) which we can
model as a cosine function:

CS = Acos(ωt +ϕ) (3.2)

with adjustable values of the amplitude A and phase ϕ . The idea underlying our strategy
is that this CS can be viewed as a linear combination of two coherent states with a phase
shift of π/2 with respect to each other. The Eq. 3.2, indeed, can be written as

CS = Acosϕ cosωt−Asinφ sinωt (3.3)

In our apparatus, the optical system MOD1 generates a CS with phase 0, while MOD2
generates a CS with phase π/2. Therefore by matching these CSs with properly chosen
amplitudes (as expressed in eq. 3.3 ), it is possible to generate our arbitrary CS. In or-
der to perform this operation we designed and realized two parts: an optical one and
electronic one. A structured generation/acquisition PC-system allows us to control this
process.

Optical layout
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Optical Layout of state preparation stage

Figure 3.6: Optical layout of the state preparation stage.
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MOD1 and MOD2 are two optical systems which are exploited to generate two CS as
expressed by Eq. 3.3. For this purpose they are positioned to sequentially intercept the
laser beam at 1064 nm as shown in Fig. 3.5. Their optical layout is sketched in more de-
tail in Fig. 3.6. MOD1 consists of a λ/4 plate, a KDP crystal, and a PBS: the optical field
is prepared with circular polarization by setting the fast axis of λ/4 at an angle of 45◦
with respect to the incident p polarization, and then it is passed through a KDP crystal
whose axes are oriented at 45◦. The horizontal component of the output beam selected
by the PBS is sent in MOD2, which consists of a LiNbO3 crystal whose extraordinary
axis is horizontal. The physical phenomenon underlying this system is the electro-optic
effect, which consists in the change of the index of refraction of certain anisotropic ma-
terials resulting from the application of an electric field. This effect can be exploit to
design electro-optic modulators [13][41]. The basic idea behind these electro-optic de-
vices is to alter the optical properties of a material by applying a voltage in a controlled
way. Depending on the device configuration, it is possible to vary phase, polarization,
amplitude , frequency , or direction of propagation of the light beam. In particular, the
KDP crystal in MOD1 configuration is usually used as an amplitude modulator, while
LiNbO3 crystal in MOD2 configuration is used as a phase modulator as described in de-
tail in Ref. [13]. In this context, these devices, instead, are used to generate two coherent
states phase-shifted by π/2.

Electronic layout

In order to control this process via PC, we implemented two identical electronic circuits
which drive MOD1 and MOD2. They consist of a phase shifter (Ψ1,2 in fig 3.5) and a
mixer (⊗). A voltage signal, A(B)=cost, generated by PC, is sent to the mixer together
with the sinusoidally varying signal at frequency Ω/2π = 3MHz (sidebands). The mixer
combines them and its output, Acos(Ωt +Ψ1) (Bcos(Ωt +Ψ1)) is sent to MOD1 (MOD2).
These two optical systems generate two CSs with a π/2 phase shift only if Ψ1 = Ψ2.
Therefore the two phase shifters are used in order to set Ψ1 = Ψ2 so that the modulation
signals are in phase when they reach MOD1 and MOD2.

Ramp generator (RG)

The generated states are acquired by means of the Homodyne detector (HD) whose fea-
tures will be described in the remainder of this chapter. In HD, the LO phase θ is scanned
from 0 to 2π thanks to a piezomounted mirror (PZT) which intercepts the LO optical
path. In this way we can acquire the homodyne trace of our generated states as function
of θ . The PZT is driven by a ramp generator (RG) custom built in order to ensure the
synchronization between the generation and the acquisition processes. This is, as we
shall see, a necessary feature when we want to generate and observe mixtures of CSs.

The core of this circuit is a function generator which generates a triangle-shaped
waveform. This process is triggered by a rectangular function with the two pulse widths
(positive and negative) different in time. When square waveforms are used as “clock”
signals the time of the positive pulse width is known as the “Duty Cycle” of the period.
For example, if we have a square waveform for which the positive or “ON” time is equal
to the negative or “OFF” time, the duty cycle is 50% of its period. On the falling edge
of the rectangular wave, the positive rise of the ramp which drives the LO PZT starts as
shown in fig. 3.7. With our RG we can change the pulse width along with the duty cycle
and therefore we can appropriately set the ramp time and the number of PZT oscillations
in that time.
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Figure 3.7: The ramp generator (RG) output which drives the LO PZT. generates a triangle-shaped
waveform triggered by a rectangular function with the two pulse widths (positive and negative)
different in time: on the falling edge of the rectangular wave, the positive rise of the ramp. Its
pulse width along with the duty cycle can be changed.

The rectangular wave of RG is used as trigger for the generation and acquisition pro-
cesses allowing their synchronization. Indeed the timing of the generation/acquisition
task is tuned by imposing that the two processes start after the same time from the wave
falling edge. In this way the start of the pulse train generation is synchronized with the
start of the data acquisition. Besides, the two processes occur in the same time window
at the same sampling rate. In order to monitor this, we developed the PC-control system
explained below.

Engineering of generation process

In our apparatus we can control the generation process together with the one for the data
acquisition via PC. We developed a control system based on LabVIEW programming
environment, since it provides powerful programming tools for data acquisition and
signal processing. It is structured in three separate parts whose main operations can be
followed by the sort of ”flow charts” illustrated in fig 3.8.

Below we will focus on each of them individually, by following the specific sequence
with which they run. Each part will be explained along with the help of graphical user
interface screenshots.

• The first step
The fist steps consist in acquiring the vacuum state (obtained putting the PC-
generated voltage values equal to zero) and calculating its variance (see the screen-
shot in fig.3.9). In the work presented here, all the homodyne measurements are
normalized so that the variance of the vacuum state is equal to 1. Therefore the
variance value is saved in a file that will be read from the two following ”pro-
grams” which will process it to normalize all the acquired experimental data.

• The second step
The second part generates a train of identical voltage values A which are sent to
MOD1 through the electronic circuit described above. MOD1 generates a coherent
state with a mean photon number, (nph), which depends on the response of the
KDP crystal to the applied voltage.
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The third step

The second step

The first step

Figure 3.8: The ”Flow charts” of the main operations developed in Labview program in order to
control the generation and acquisition processes.

The generation and acquisition operations are synchronized with each other, mean-
ing that each generated point is simultaneously recorded. As we already men-
tioned, the rectangular wave of RG is used as trigger for the two processes: they
begin after the same selectable time from the wave falling edge. The operator can
set the acquisition time window and the sampling rate. These two parameters de-
termine the number of the generated/recorded data points. In the example shown
in Fig. 3.10, we set a time window of 70 ms with a repetition rate of 100 kHz so
that we collect 7000 data points.

In the homodyne detection it is necessary to associate the right phase value θ to
a certain measured quadrature X(θ ). However, the voltage-dependent displace-
ment of LO PZT actuators doesn’t vary linearly with the applied voltage. In order
to overcome this trouble, once the data are recorded, they are processed as fol-
lows: the experimental data are fitted according to a fitting function of the form:
a+ bcos(cx+ d + ex2). The fitting parameters are used to linearise the phase vari-
ation. Besides from them it is possible to derive the voltage to signal amplitude
conversion β1 and therefore the voltage to nph conversion. At this point of our
analysis, we know the KPD response to the applied voltage and therefore we can
drive it in a controlled manner. The same operations are repeated on MOD2 in
order to obtain the voltage to signal amplitude conversion β2 corresponding to
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Save Vacuum Variance

Figure 3.9: Screenshot of the first step of the generation/acquisition process. It is consist in acquir-
ing the vacuum states and saving its variance.

A(V) on MOD1

B(V) on MOD2

Start Delay Time window (s)

Sample clock

Homodyne trace of the CS generated by MOD1

Time (s)

Homodyne trace of the CS generated by MOD1

phase (°)

Fit Parameters

Save Fit Parameters

Save conversion factors 𝜷𝟏Save conversion factors 𝜷𝟐

Read  vauum variance

Figure 3.10: Screenshot of the second step of the generation/acquisition process.
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LiNbO3 crystal.

• The third step

Phase (°) Main photon 
number

Coherent State

Read 𝜷𝟏

Read 𝜷𝟐

Figure 3.11: The screenshot of the front panel when we choose to generate a CS with selectable
main photon number and phase. Once these parameters are set, the software reads β1 and β2
saved in the previous step and generates the right voltage value to be sent to MOD1 and MOD2,
according to the sequence illustrated in the block diagram at the bottom right corner.

nph=1.5
nph=4.5
nph=2.3

𝜃 (𝑟𝑎𝑑) 𝜃 (𝑟𝑎𝑑)

Figure 3.12: Coherent States generated by choosing the main photon number, nph and phase, ϕ

on demand. On the right the homodyne traces corresponding to three coherent states generated
by setting ϕ = 0 and nph = 1.5,nph = 2.3 and nph = 4.5 are shown, on the left three coherent states
with the same main photon number, nph = 4.5 but with different phase values, ϕ1 = 0,ϕ2 = π/4 and
ϕ3 = π/2 are plotted. The fitted curves (continuous lines) parameters, amplitude and phase, are in
agreement with the values which we have chosen to set.

The last step allows to set the amplitude A and the phase ϕ of the state which
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we want to generate. Once these values are set, the ”program” process them
by reading the data files (β1, β2), saved in the previous step, and converting
them into two specific and simultaneous trains of voltage values which are
sent to the crystals. In the software configuration considered here, the user
can choose to generate two kinds of states: coherent and thermal states.

1. Coherent state
In Fig. 3.11 we can see the screenshot of the front panel which occur when we
choose to generate a CS with selectable nph and ϕ . Once these parameters are
set, the software reads β1 and β2 and generates the right voltage value to be
sent to MOD1 and MOD2, according to the sequence illustrated in the block
diagram at the bottom right corner of Fig. 3.11.
This enables the CS generation under controlled conditions: Fig. 3.12 show
the homodyne traces corresponding to three CSs generated by setting ϕ = 0
and different values for the main photon number, nph = 1.5, nph = 2.3 and
nph = 4.5 on the right, and three CSs with the same main photon number,
nph = 4.5 but with different phase values, ϕ1 = 0, ϕ2 = π/4 and ϕ3 = π/2, on the
left. The fitted curves (continuous lines in Fig. 3.12) parameters, amplitude
and phase, are in agreement with the values which we have chosen to set.

2. Thermal state

Read 𝜷𝟏

Read 𝜷𝟐

Main photon 
number

Thermal State

Amplitude distribution

Phase distribution

Right Voltage Value 
to be sent to MOD1

Right Voltage Value 
to be sent to MOD2

Figure 3.13: Screenshot of the third step of the generation/acquisition process when we want to
generate a termal state by setting the main photon number on demand.

Our aim now is to generate a thermal state by setting nph at will. The density
matrix of a thermal state (see Sec. 1.2.3) in the Glauber representation reads
as follows

ρ̂(ñth) =
∫

∞

0
d|α|2|α|

ñth
e−
|α|2
ñth

∫ 2π

0

dφ

2π
||α|eiφ 〉〈|α|eiφ | , (3.4)

i.e., it can be viewed as a mixture of coherent states with phase φ uniformly
distributed over the range 0 to 2π , and a given amplitude |α| distribution.
Therefore, we have to generate a rapid sequence of coherent states with |α|
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and φ randomly selected from these distributions. The pc generates random
|α| and φ values according to their specified distributions and converts them
in two simultaneous trains of voltage values which are sent to the crystals.
The code of the block diagram which performs this task is shown at the bot-
tom right-hand of Fig. 3.13. For each pair of generated voltage value, the
”program” acquires a homodyne point in a synchronised way and this oper-
ation is repeated in the time window and with the repetition rate which we
set. It is worth noting that the proper synchronization between the gener-
ated signal and the acquisition is the basic feature to the optimal working of
the system. Finally the data are properly converted (by reading the vacuum
state variance and fitting parameters which allow to linearise the LO phase
variation) and displayed.

3.3.2 Squeezed state generation: OPO.

Moc Mic

L=34 mm

L1= 21 mm
Lc=10mm

In(1064 nm)Out(1064 nm)

S1 (AR@532nm & 1064nm)

S2 (AR@532nm, R=91.7% @ 1064nm) 

roc=25mm

S1 (HR@532nm, R=99.8%@1064nm) 

S2 (AR@1064nm)

Ric=10mm

Moc Mic

MgO:LiNbO3

Figure 3.14: Schematic diagram of the optical parametric oscillator (OPO) with its photo. It is
a linear optical resonator consisting of two concave mirrors with radii of curvature ric=10mm,
roc=25mm and separation L, and a MgO:LiNbO3 crystal length Lc=10mm.

The optical layout of the OPO used to generate the squeezed field is depicted in
Fig. 3.14 in which its size and the mirror features are indicated. It is a linear optical res-
onator consisting of two concave mirrors with radii of curvature ric=10mm, roc=25mm
and separation L, and a MgO:LiNbO3 crystal length Lc=10mm. Such a crystal was cho-
sen as the nonlinear medium for the optical parametric oscillation in virtue of its rela-
tively high nonlinearity and its compatibility with the Nd:YAG laser wavelength. The
Magnesium oxide doping (5%) was introduced into bulk Lithium Niobate for the pre-
vention of photorefractive damage. The input coupler (Mic) has the flat surface that
is anti-reflection (AR) coated @1064 nm and the curved surface with a reflectivity of
Ric=99.8 % at 1064 nm and the coating for high reflection (HR) at 532 nm. The output
coupler (Moc) has the curved surface AR coated at 532 nm and a reflectivity of Roc=91.7%
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at 1064 nm whereas the other surface is AR coated at both wavelengths. The internal loss
for single pass, due to the two faces of the crystal, is estimated as ∆ = 2.42×10−3.

An optical resonator confines and stores light at resonance frequencies determined by
its configuration. It may be viewed as an optical transmission system that incorporates
a feedback: the light circulates or is repeatedly reflected within it.[41] The condition
for a stable resonator, that means a resonator which builds up a resonant wave, can be
derived. It results in the stability criterion which for two mirror cavity can be written as
[46]:

0≤ gicgoc ≤ 1 with gi = 1− Le f f

ri
, i = ic,oc; (3.5)

where Le f f is the effective length of the resonator, which takes account of the pres-
ence of the non linear crystal inside the cavity, Le f f = L1 +(L−L1)+ Lcn0 (λ ,T ), being
n0 MgO:LiNbO3’s ordinary refractive index depending on the wavelength λ and tem-
perature T. Based on this criterion we find that for a given set of mirror curvatures,
resonance only occurs for a restricted range of cavity lengths. We have to choose the
length and the curvatures together. Our OPO cavity is designed in order to satisfy this
stability condition and in such a way that it is not confocal. Therefore the changes in
the resonance frequencies ∆νnm for the modes TEMmn away from the resonance of the
fundamental mode are clearly visible [13]. The beam waist is minimum in the crystal
center. This requirement ensures a high conversion efficiency and the non-criticality of
the phase matching condition. The OPO cavity thus designed has a finesse 3 F = 67 and
the free spectral range is FSR = 3300 MHz, which corresponds to a linewidth of about 55
MHz.

By considering these cavity parameters, the links between the transmitted power
(Pout ) with the input one (Pin) as functions of detuning δν reads as [13]

Pout

Pin
=

(1−Ric)(1−Roc)

∣∣∣∣
√

RocRic (1−∆)2e−ı2π
δν

FSR

∣∣∣∣
√

RicRoc

∣∣∣∣1−
√

RocRic (1−∆)2e−ı2π
δν

FSR

∣∣∣∣
2 (3.6)

and the power of the field inside the cavity can be written as:

Pcav

Pin
=

1−Ric∣∣∣∣1−
√

RocRic (1−∆)2e−ı2π
δν

FSR

∣∣∣∣
2 (3.7)

The response of cavity is shown in Fig. 3.15.

3The finesse of an optical resonator is defined as

F =
FSR

FWHM

where FWHM is the Full Width at Half-Maximum bandwidth of cavity resonances. The finesse is generally
used as a measure for the quality of cavity. It is easy to show that

F =
π

(
RocRic (1−∆)2

)1/4

1−
√

RocRic (1−∆)2

in which one can explicitly see that it is fully determined by the resonator losses and it is independent of the
resonator length.
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Figure 3.15: Cavity response. Upper panel: expected link between the transmitted (Pout ) with the
input power (Pin) as function of OPO detuning δν , by considering the parameters of our cavity.
Lower panel: OPO internal field.

The ideal situation for transmitting the laser light through an external cavity would
be to have the external cavity length fixed, with the frequency of the laser light resonant
with the frequency of one of the modes of the cavity. Furthermore, the spatial profile of
the incident laser beam would ideally be matched to a transverse mode of the passive
optical cavity: since the laser light propagates in a T EM00 mode (by which we mean the
fundamental transverse mode of the laser resonator), we would ideally want to match
it with the fundamental transverse mode (T EM00) of the external cavity. Such mode
matching does not occur automatically, since the fundamental external cavity mode will
have its beam width and radius of curvature, entirely independent of the parameters of
the laser resonator. Therefore the experimental situation is more complex than the ideal
case and aligning an optical resonator to a laser beam is non-trivial. If the laser beam
is not perfectly aligned and mode-matched to the external cavity, the input beam will
partially couple to many different transverse modes of the optical cavity and the light
exiting the cavity will feature all the excited modes rather than maintaining the spatial
profile of the input beam.

To mode-match the laser T EM00 mode to that of the external cavity mode, lenses
having a specific focal length and placed at a specific location between the laser and
the resonator must be used to shape the incoming beam. One of mathematical tools for
studying the cavities is the ABCD matrix formalism. It is a ray optics formalism whereby
we can monitor the evolution of an optical beam as is propagates through optical ele-
ments. An excellent overview can be found in Ref. [46]. By using it, we studied how
the radius of curvature of the wavefront R(z) and the size w(z) of the beam propagate
in the cavity in order to obtain the best possible mode matching. (Recall here that the
ABCD formalism is based on the paraxial approximation: the optical rays remain con-
fined around the optical axis z). From the behaviour of w(z) and R(z) inside our cavity,
shown in Fig. 3.16, we have to propagate the beam through the mirror Mic, in order to
find the beam size outside the cavity. By studying the free-space propagation from the
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Figure 3.16: Propagation of the mode waist w(z) inside the cavity
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𝒆𝒙𝒑

z

OPO

OPO

Figure 3.17: Precise mode matching of a Gaussian beam via telescopic lens arrangement. With the
combination of L1 and L2 combination we collimate the beam. L3 is used to achieve the desired
beam waist in the crystal center.

flat face of mirror Mic, we can retrieve the focal length f3 of the lens L3 in Fig. 3.17. By
measuring w0 e R0 at the laser output, we can deduce the possible lenses to be used for
the telescopic system L1+L2.

The mode matching of the laser beam to the OPO is an iterative process and aligning
the overall system is non trivial.

The alignment procedure reads as follow:

1. The two mirrors M1 and M2 shown in Fig. 3.18 are used as alignment tool for
directing the beam so that it is parallel to the table at a convenient height above
it. This is an iterative process performed with aid of mounted iris or other height
marker.

2. We place the lens L3 on the optical beam path in the right location, so that the beam
hits the iris centres. After inserting the lens, we can observe the beam spot with a
CCD camera in order to take a further benchmark.

3. We insert the non linear crystal. We make sure that the beam crosses the centre of
the crystal and hits the centres of the markers previously taken.

4. Now we can align the two mirrors of the optical cavity.

• First of all, we set up the Moc at the correct distance from the crystal so that
the beam hits the mirror near its center. We direct the mirror so that the back-
reflected beam overlap the forward propagating beam.
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Figure 3.18: Photo of the OPO in which the optical elements used to achieve the mode-matching
are highlighted.

• We put the detector labelled as DR in Fig. 3.18 on the cavity reflected beam
(channelled through a beam splitter (BS1)) in order to monitor its power.

• We install the second mirror Mic so that its surface is facing Moc and the beam
hits its center. We adjust Mic by maximising the reflected beam intensity.

• We should now have a cavity that is close to being aligned. If the alignment is
very close, we may see flickering of light on observation screen for the trans-
mitted light. If the alignment is only somewhat close, we may be able to see
a couple of dim intensity spots, and not much flickering. We use the adjust-
ments on the two cavity mirrors to overlap these spots.

5. When the cavity is aligned to the incident beam, we should be able to see the time
dependent coupling of the laser light to the modes of the cavity when the resonator
mirror Mic is scanned back and forth using a piezo element so that the length of the
resonator changes in a periodic manner. Different transverse modes will in general
have different resonant frequencies and the laser light can couple to different trans-
verse modes of the cavity. A perfectly mode matched cavity will only transmit the
incident laser mode (T EM00): the transmitted T EM00 mode should be very bright
when resonant, while the other modes greatly suppressed. We maximize the trans-
mitted intensity by adjusting the cavity alignment and the position of the incident
beam waist with L3 which can be useful for the fine tuning of the mode matching.

MgO:LiNbO3’s refractive index is strongly depend on temperature, and temperature
tuning was used to achieve noncritical phase matching. The phase matching condition
of this system, can be obtained from temperature-dependent Sellmeier equations[49]:

n2
0 (λ ,T ) = 4.913+

1.173 ·105 +1.65 ·10−2T 2

(λ ·103)2− (2.12 ·102 +2.7 ·10−5T 2)
2 −2.78 ·10−8 (

λ ·103)2
(3.8)
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Figure 3.19: The ordinary refractive index, n0, and extraordinary refractive index, ne of
MgO:LiNbO3 as functions of the temperature.

n2
e (λ ,T ) =4.5567+

0.97 ·105 +2.7 ·10−2T 2

(λ ·103)2− (2.01 ·102 +5.4 ·10−5T 2)
2 −2.24 ·10−8 (

λ ·103)2
+

2.605 ·10−7T 2−2.1432 ·10−4TNCPM +4.96 ·10−6T 2
NCPM

(3.9)

which express the ordinary refractive index, n0, and the extraordinary refractive index,
ne as functions of the temperature and the wavelength λ . Here we have omitted the
dimensions for simplicity and TNCPM=108 ◦ C is the temperature of noncritical phase
matching for 1.064 µm ⇒ 0.532 µm SHG interaction. Fig. 3.19 shows n0(λ1,T) and
n0(λ2,T), with λ1=1.064 µm and λ2=0.532 µm, as functions of T. The phase mismatch
is then

∆k (λ ,T ) =
2π

λ
ne (λ ,T )−

2π

λ
n0 (2λ ,T ) (3.10)

The effect of phase mismatch on the non-linear interaction strength is given by [42]
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Figure 3.20: The effect of phase mismatch on the non-linear interaction strength using
MgO:LiNbO3

S (λ ,T,z) = sinc
(

∆k (λ ,T )z
2

)
eı∆k(λ ,T ) z

2 (3.11)

where z is the interaction length within the nonlinear medium. Fig. 3.20 plots S(λ , T, z)
as a function of temperature and for the interaction length z=Lc=10 mm. We see that the
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optimum nonlinearity occurs at 108◦C whereas the experimental temperature is about
108.6◦C.

3.3.3 Pump optical layout

1064nm
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Figure 3.21: Pump optical layout.

The second harmonic field generated inside the laser cavity is used to pump the
OPO which is seeded with the field at the fundamental frequency. When a nonlinear
medium inside an optical cavity is irradiated with a pump beam, the signal generated
on the first pass trough the medium by OPG can act as an input on consecutive passes,
if it is coupled into the cavity. The signal builds up within the cavity if it fulfils the
resonance condition of the cavity. In our case the OPO cavity is resonant with the field
at the fundamental frequency. Thus, the pump field (532 nm) enters and leaves the OPO
cavity through the out-coupling mirror immediately after crossing the crystal forward
and backward, whereas the fundamental seed field (1064 nm) enters the OPO through
the input coupler and could resonate within the cavity.

In order to optimise the non linear process efficiency we have to shape the pump
beam. The optimum beam waist for the pump in the non linear crystal is given by [50]:

w532

w1064
=

1√
2

√
n0 (1064)
ne (532)

(3.12)

Therefore we have to design a lenses system in such a way that w532=33µm inside the
crystal, since w1064=46µm. By following a procedure similar to that specified for the
seed, we can study the behaviour of w532 and R532 inside the cavity (see Fig.) and outside
the OPO output coupler. Fig. 3.22 show the behaviour of w(z) of the seed (red), already
shown in Fig. 3.16, compared to the behaviour w(z) of the pump (green) inside the
cavity. We can retrieve the focal length f3p of the lens L3p in Fig. 3.21 and then f1p
and f2p of the telescopic system L1p+L2p. By channelling the pump beam by means the
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Figure 3.22: Propagation of the mode waist w(z) of the seed field (red) and of the pump beam
(green) inside the cavity.

two mirror labelled M1p and M2p in Fig. 3.21, we can align it inside the OPO cavity.
Fig. 3.18, instead, shows a photo of the pump optical layout where we can see the real
placement of M1p and M2p. By finely adjusting the separation between L1p and L2p
we optimize w532 inside the OPO. The tool used to check the mode matching and the
alignment between the seed and the pump inside the crystal is the regenerative gain G
of the OPO’s amplification, defined as the ratio of the output power with and without
the second harmonic pump field. We have seen in Sec. 2.5. Such a gain can be written as
a function of pump field power, P, and the OPO threshold, Pth, as:

G± =
1

(
1±
√

P
Pth

)2 (3.13)
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Figure 3.23: Measurements of the gain of the parametric amplification as functions of pump power
P. By fitting the experimental data with expression in 3.13 we retrieve that the OPO threshold is
Pth=970 mW.

The pump phase is changed by means a piezo-mounted mirror. By driving it with
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a triangular waveform (VG in Fig. 3.21) we can measure the gain G± as function of P
which is set with the amplitude modulator, AM in Fig. 3.21.

By measuring the gain of the parametric amplification as a function of pump power
P and by fitting the experimental data with expression in 3.13 we can retrieve the OPO
threshold, Pth. In our case we find Pth=970 mW (see Fig. 3.23 )

3.4 PDH

In this Section we will describe how an error signal can be derived to hold the OPO
resonant with the frequency of the laser mode. In our apparatus we use an active stabi-
lization based on the Pound-Drever-Hall (PDH) technique [51] [52] whereby the length
of the resonator can be controlled. The idea behind this method is that the information
about whether the cavity is above or below the resonance, is encoded in the phase of the
total reflected electric field of the cavity.

As we defined the response of the OPO cavity for the transmitted light, we define the
one for the reflected light. The reflection coefficient F(ω) is the ratio between the electric
fields of the reflected beam, Ere f and the incident beam Ein

F (ω) =
Ere f

Ein
=

g(ω)−Rin

1−g(ω)

√
Rin (3.14)

where we have put

g(ω) =
√

RocRic (1−∆2)e−ı2π
δν

FSR (3.15)

Fig. 3.24 shows the intensity of the reflected beam, |F (ω)|2 and the phase response.
We see that the phase is a function which changes sign at the cavity line center. Therefore
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Figure 3.24: Magnitude and phase of the reflection coefficient for the OPO cavity.

it enables a distinction between different cavity positions in frequency. Since direct phase
measurements are not possible, one needs to probe quantities which are in some way
coupled to it. It’s worth noting that this is just the key point in the PDH technique: the
generation of an error signal which samples the phase of the reflected electric field from
the cavity. In order to extract information about the phase, a phase modulator is placed
between the laser and the cavity and the light reflected from the cavity is detected. In
this way the incident beam on the cavity is phase-modulated with a certain frequency
and its electric field becomes:

Ein = E0eı(ωt+β sinΩt)

≈ E0

[
J0 (β )eıωt + J1 (β )eı(ω+Ω)t − J1 (β )eı(ω−Ω)t

] (3.16)
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where we have used the expansion in terms of Bessel functions [51] [52].
To calculate the reflected beam’s field when there are several incident beams, we can

treat each beam independently and multiply each one by the reflection coefficient at the
appropriate frequency. In the Pound–Drever–Hall setup, where we have a carrier and
two sidebands, the total reflected beam is

Ere f = E0

[
F (ω)J0 (β )eıωt +F (ω +Ω)J1 (β )eı(ω+Ω)t −F (ω−Ω)J1 (β )eı(ω−Ω)t

]
(3.17)

The reflected beam is detected by a photodiode, which measures its power Pre f =∣∣Ere f
∣∣2. By defining

Pc = |Ein (r)|2 J2
0 (β )Ps,n = |Ein (r)|2 J2

n (β ) (3.18)

as the optical power in the carrier and the n-th order sidebands, respectively, the reflected
power can be written as

Pre f = Pc |F (ω)|2 +Ps,1

[
|F (ω +Ω)|2 + |F (ω−Ω)|2

]

+2
√

PcPs,1 [ℜ{F (ω)F∗ (ω +Ω)−F∗ (ω)F (ω−Ω)}cosΩt]

+2
√

PcPs,1 [ℑ{F (ω)F∗ (ω +Ω)−F∗ (ω)F (ω−Ω)}sinΩt]+ (2Ω terms)

(3.19)

which is a signal consisting of stationary terms, terms oscillating at frequency Ω , re-
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Figure 3.25: Real and imaginary part of the cavity reflection coefficient A(ω,Ω) at Ω=111 MHz.
ℑA(ω,Ω) is a smooth function with odd symmetry around the cavity resonance and therefore
represents a suitable candidate for the generation of an error signal.

sulting from interference between the carrier and the sidebands, and higher frequency
contributions arising from the sidebands interfering with each other. If the carrier is near
the cavity resonance and the modulation frequency is sufficiently high, the sidebands
will be totally reflected. In this regime, the expression

A(ω,Ω) = F (ω)F∗ (ω +Ω)−F∗ (ω)F (ω−Ω)≈−ı2ℑ{F (ω)} (3.20)

This expression is plotted in Fig. 3.25.
Therefore, the aim is to isolate this component by mixing it with the modulation sig-

nal (demodulation). Parts of the terms oscillating at Ω are shifted to DC, whereas all
remaining contributions will appear at multiples of the modulation frequency. By ignor-
ing them, the resulting DC component, i.e. the PDH error signal, takes the following
form

PPDH =−
√

PcPs,1ℑ{F (ω)F∗ (ω +Ω)−F∗ (ω)F (ω−Ω)}cosφ (3.21)
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Figure 3.26: Scheme of the system for generating the PDH signal and keeping the cavity length
constant.

where φ is the phase difference between the mixed signals.

A custom lock system has been realized for generating the PDH signal and keeping
the cavity length constant. Fig. 3.26 shows the setup which consist of a high-frequency
part and a low-frequency part (LFS). An RF source drives the PM and thereby modulates
the input seed of the OPO. The modulation frequency is 110.4 MHz, well above the OPO
linewidth. Half of this RF power is picked up by an RF power-splitter and mixed with
the signal from the photodiode (D) by means a mixer (⊗). The photodiode signal is
amplified before this mixing process to keep a good signal-to-noise ratio. The output
of the mixer is a composite signal that contains the frequency components of the source
signals, as well as their sums and differences. Therefore, the signal leaving the mixer
consists of the PDH error signal at DC, and higher frequency contributions, appearing at
multiples of the modulation frequency. These higher frequency contributions are filtered
away by means of a low-pass filter (LPF). Lastly, there is the LFS. This last one is used to
drive the PZT connected to the rear mirror of the OPO cavity in order to actively control
its length. LFS consists of the following parts. First we have an electronic circuit for
controlling the offset whereby an external offset signal is added to the PDH input. By
adjusting this offset signal, one can cancel a possible offset of the PDH error signal, which
would break its symmetry around zero and thereby deteriorate the lock. Then there is
a reference electronic circuit through which we can manually set the voltage applied to
the PZT until we find the OPO resonance. Now we are ready to turn on the integrator.
Lastly, there is a summing circuit which combines signals emerging from the integrator,
amplifier and reference circuits.
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Figure 3.27: Zoom on Homodyne Detection scheme

3.5 Homodyne detection

In order to perform the measurements of the quantum states we implement the Homo-
dyne Detection (HD) scheme whose operating principle has been already explained in
Sec. 1.6. It consists (see Fig. 3.27) of a beam splitter, two low noise detector (D1 and D2)
and a differential amplifier based on a LMH6624 operational amplifier (�). The elec-
tronic noise is 17 dB below the vacuum noise at 3 MHz for 10 mW of the LO power. To
remove the low frequency signal we use an high-pass filter @500kHz (F) and then the
signal is sent to the demodulation apparatus which extracts the information about the
signal that is at frequency Ω/2π=3 MHz. This apparatus consists of a phase shifter (Ψ)
a mixer (⊗) and a low pass filter @300kHz (F1). The output is sent to PC and the acqui-
sition process takes place according to the procedures shown in Sec. 3.3. Unlike ideal
situation described above, in the experimental scenario we have to consider the losses
resulting from the photodetection process, the non-perfect balancing between the two
arms of the HD and the non-optimum spatial mode-matching between the signal and
the LO. The inefficiencies linked to each of these factors are addressed separately below.

Inefficiencies in the photodetection process

As previously mentioned, in a realistic scenario we have to take account of the photodi-
ode quantum efficiencies ηD. It is the probability of the incoming light being converted
to measurable signal, that is the ratio of the number of photoelectrons released in a pho-
toelectric process to the number of radiation quanta absorbed. If the photodetection is
100 % efficient, each photon in the optical beam should generate one electron in the pho-
todetector current but in real photodectors ηD < 1 depending on the material and the
geometry of the detector, and the wavelength of the light. In order to understand the
effect of ηD on a single-mode squeezed vacuum state, we can use the model introduced
in Sec. 2.6 and we can model a real photodetector as a beam splitter with transmissivity
ηD followed by an ideal photodetector with η = 1, as shown in Fig. 3.28.
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Figure 3.28: Sketch of the homodyne detector showing in which way the quantum efficiencies ηD
of the photodiodes is modeled.

Recalling the BS action, the interference of the mode ai with the vacuum mode bi,
with i=2,3, will produce a mode ci

ci =
√

ηai + ı
√

1−ηbi =
√

η

{
1√
2
(a0 + ıa1)

}
+ ı
√

1−ηbi (3.22)

where, in the last expression, we have considered a 50:50 BS for the homodyne system.
Therefore the output photocurrent i− is

i− (t)≈ ıηD

(
a†

0a1−a0a†
1

)
+

√
ηD (1−ηD)

2

(
b†

2a1−b2a†
1

)
+

√
ηD (1−ηD)

2
ı
(

b†
2a1−b2a†

1

)

= 2ηD |α|X1 (t,θ)+2

√
ηD (1−ηD)

2
|α|X2 (t,θ +π/2)+2

√
ηD (1−ηD)

2
|α|X3 (t,θ +π)

(3.23)

where |α| is the amplitude of the LO a1 and X1 and X2 are uncorrelated. It is thus desir-
able that photodetectors have high quantum efficiency so that they accurately monitor
the optical field. Our detectors have ηD = 0.97 that is the quantum efficiency of photodi-
odes corresponding to the manufacturer specifications.

Inefficiencies in the homodyne detection balancing

The degree of balancing, or the signal ratio between the two arms of the homodyne
detector is crucial for its performance. From 1.58 we can write

i− =2(gT −R)
√

PLOXLO︸ ︷︷ ︸
(i)

+2(1+g)
√

RT
[√

PLOXs (θ)+
√

PsXLO
(
θ
′)]

︸ ︷︷ ︸
(ii)

+2(T −gR)
√

PsXs︸ ︷︷ ︸
(iii)

(3.24)

where Pi and Xi, with i=s,LO, are the LO and signal powers and field, respectively.
g = gt/gr, where gi, with i=t,r, is the amplifier gain of the detectors Di. The three terms in
this equation represent the coupling of the LO field into measurement (i), the coupling
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of the signal field into the measurement (iii), the LO amplification of the signal field and
signal amplification of the LO field (ii). Ideally, the splitting between the arms should
be equal, resulting in the terms (i) and (iii) being zero, but in a real situation we have
to measure the arms unbalance in order to evaluate its effect on measurements and,
in particular, on squeezing. If PLO � Ps, the signal amplification effect on LO can be
neglected. All the measurements presented in this thesis are performed with PLO=10
mW and Ps=1÷ 5 µ W. Besides it is easy to show that the efficiency which depends on
the not-ideal 50:50 splitting ratio of BS is ηBS = 4RT and in our apparatus it is negligible
being ηBS=0.999.

Inefficiencies in optical mode-matching at BS

When the two input optical fields to the BS of the homodyne system are not perfectly
mode matched, inefficiency in the homodyne measurement results. The mode mismatch
of the fields can have several causes like non identical polarization, difference in spatial
modes, lack of optical coherence and all have the same harmful effect to the homodyn-
ing. This effect can be viewed as the introduction of higher-order modes into the system,
which are occupied by the unsqueezed vacuum state[53]. The schematic model of mode
mismatch is shown in Fig. 3.29. Let us imagine that the LO is the overlap between two
orthogonal spatial mode, whereas the signal resides only in one spatial mode and, there-
fore, in the other one (orthogonal) there is the vacuum. In this case the LO will amplify
both the signal and vacuum.

In general, the modes at the beam splitter will overlap, and therefore interfere, with
some efficiency. Considering only the coherent amplitudes, the fields input at the beam
splitter can be written as: (

a1 (t) ,a1,⊥ (t,)
)
= (a1 (t) ,0)

(
a2 (t) ,a2,⊥ (t,)

)
=
(√

ηa2 (t)
√

1−ηa2 (t)
)

and the coherent amplitude of the output state is

(
ar (t) ,ar,⊥ (t)

)
=

1√
2

(
a1 (t)+ eıθ√

ηa2 (t) ,eıθ
√

1−ηa2 (t)
)

Calculating the intensity of the reference and orthogonal modes we obtain:

a∗r (t)ar (t) =
1
2
(
a2

1 (t)+ηa2
2 (t)+2

√
η cosθa1 (t)a2 (t)

)
(3.25a)

a∗r,⊥ (t)ar,⊥ (t) =
1
2
(
(1−η)a2

2 (t)
)

(3.25b)

The photocurrent ir obtained when this total field impinges on a photodetector is given
by

ir ∝ a2
1 (t)+a2

2 (t)+2
√

η cosθa1 (t)a2 (t) (3.26)

Notice that as the relative phase between the input modes changes we observe an inter-
ference fringe. The visibility V of this fringe is defined as

V =
maxθ {ir}−minθ {ir}
maxθ {ir}+minθ {ir}

=
2
√

ηa1 (t)a2 (t)
a2

1 (t)+a2
2 (t)

(3.27)

.
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Figure 3.29: Schematic models of mode mismatch at BS in Homodyne Detector

If the power in each of the input modes is arranged to be equal we obtain a simple
relationship between the visibility and mode-matching efficiency of the interference

ηvis =V 2 (3.28)

By using an amplitude modulator (AM in Fig. 3.27 ) that consists of an HWP and a BP, it
is possible to arrange the power of the two BS input beams to be equal. Therefore, once
the powers are balanced, we can measure V to determine the mode-matching efficiency
by means the Eq. 3.28.

Through careful design of the experimental optical path lengths and lens arrange-
ments, we can shape the signal and LO beams, to make sure that they are characterized
by the same beam waists and wavefront curvatures when they interfere at BS. The OPO
outcoming signal is collimated with the lens Ls (fs=100). Any residual divergence can be
fine adjusted by changing the position of the Ls along the beam direction. The telescopic
lens arrangements used for the LO beam is chosen in order to collimate it with the same
waist radius of the signal beam at BS. It consist of the lenses L1 (f1=-100) and L2 (f2=200)
that are placed in order to permit an adequate shape of the LO beam. Their overlapping
at the BS is achieved by using two beam steering mirrors (M1 and M2 in Fig. 3.30) which
drive the LO optical path. Through such technical tricks and using polarising optics, we
could typically achieve visibilities in the range from 0.96 to 0.98.

The relative phase difference between the signal and the LO is controlled by varying
the path length of one arm by small amounts using a piezo-electric-crystal (PZT) that
lengthens and shrinks in response to an applied voltage. By attaching a mirror to this
PZT we may actively control the length of the optical beam path of the LO. The maxi-
mum expansion achievable by a typical PZT is around 10µm , which is several optical
wavelengths and it is therefore sufficient for our purposes.
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Figure 3.30: Photo of our homodyne detector in which the main elements are highlighted.

3.6 Propagation of squeezing

We have seen that the amount of observable squeezing is limited by the escape efficiency
ηesc of the OPO cavity. It is defined as

ηesc = γoc/γ (3.29)

where

γ = γoc + γic + γi =⇒ OPO total loss (3.30a)

γoc =
1−Roc

2trt
=⇒ OPO out put coupler loss (3.30b)

γic =
1−Ric

2trt
=⇒ OPO input coupler loss (3.30c)

γi =
∆

trt
=⇒ OPO internal loss (3.30d)

where trt is the round trip time of the cavity and we have schematized the internal loss
as a BS with reflectivity ∆, as we already seen in Sec. 2.3.1.

During my Ph.D work we have implemented two OPO cavities. In the first we have
used an input coupler with Ric=0.986 and thereby we have obtained ηesc = 0.815. The
second OPO configuration is that already introduced and characterized by ηesc = 0.924.

In a complex experimental setup such as that described above the observed squeez-
ing and anti-squeezing levels are further degraded by losses present in the transmission
channels and detectors as shown in Sec 2.6. Therefore we have to include all the efficien-
cies of our apparatus and Eq. 2.40 becomes

〈
∆X2
±
〉
= 1±ηtot

4
√

P/Pth(
1∓
√

P/Pth

)2
+4
(

Ω

γ

)2 (3.31)
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where we have explicitly written the dependence on pump power P, and, for sake of
simplicity, we have put

〈
∆X2

1
〉
=
〈
∆X2
−
〉

and
〈
∆X2

2
〉
=
〈
∆X2

+

〉
. Ω/γ = 0.13 and ηtot is the to-

tal system efficiency which can be estimated by quantifying the individual contributions
as follows:

ηtot = ηDM ηesc ηHD ηD ηel , (3.32)
where ηDM = 0.96 is the propagation efficiency of the optical path in the space between
the OPO output coupler and the BS, the main amount of which comes from the mea-
sured dichroic mirror reflectivity (DM in Fig. 3.1), ηD = 0.97 is the quantum efficiency of
photodiodes corresponding to the manufacturer specifications and ηel = 0.98 is the pho-
todetectors’ electronic noise. Finally, ηHD is the homodyne detection efficiency given
by

ηHD = ηVisηBS (3.33)
where, as we have seen above, ηVis≡V 2, takes into account of the degree of mode match-
ing between OPO output mode and LO in BS. The best estimated visibility V is 0.98.
Furthermore, we have ηBS = 0.999, which depends on the not-ideal 50:50 splitting ratio
of BS. The resulting quantum noise suppression below shot noise value is limited not
only by losses but also by phase fluctuations between the OPO and the LO, which are
caused by the imperfection of phase locking and mechanical vibrations [54]. In order to
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Figure 3.31: Comparison between the experimental data and the theoretical expectation in the
two OPO configurations implemented in our laboratory: one with ηesc = 0.815 the other with
ηesc = 0.924.

include this effect, we write the variance as
〈
∆X ′2

〉
(θ) =

〈
∆X2
−
〉

cos2
θ +

〈
∆X2

+

〉
sin2

θ (3.34)

and assume that the phase fluctuations follow a Gaussian distribution D(φ ,σ) where
the standard deviation σ is estimated as 2.5 rad. The noise spectrum given by Eq. 3.31 is
modified as 〈

∆X2〉(θ) =
∫

D(φ ,σ)
〈
∆X ′2

〉
(θ +φ)dφ (3.35)
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Figure 3.33: Homodyne traces of the vacuum squeezed state with OL power ∼10 mW and pump
power∼ 300 mW. On the left the acquisition performed with the OPO configuration characterized
by ηesc = 0.924 is shown, on the right one with ηesc = 0.815. The measured squeezing levels are -5.8
dB and 3.6 dB, respectively, and are in agreement with the theoretical values.

in which
〈
∆X2

〉
(0) and

〈
∆X2

〉(
π

2

)
correspond to squeezing and anti-squeezing levels,

respectively. Fig. 3.31 shows the comparison between the experimental data and the
theoretical expectation in the two OPO configurations implemented in our laboratory:
one with ηesc = 0.815 and the other with ηesc = 0.924, in which the OPO Pth are retrieved
by fitting the measurements of the OPO regenerative gain G as a function of pump power
P (see Fig. 3.32). We obtain Pth1=1900 mW for the OPO configuration with ηesc = 0.815
and Pth2=970 mW for the OPO configuration with ηesc = 0.924.

In Fig. 3.33 we show two examples of homodyne traces of the vacuum squeezed state:
on the left we find an acquisition performed with the OPO configuration characterized
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by ηesc=0.924, on the right one with ηesc=0.815.

3.7 The glass-integrated homodyne detector

Our apparatus is implemented with another homodyne acquisition scheme which ex-
ploits an integrated-optics device entirely fabricated by femtosecond laser micromachin-
ing. The device incorporates in the same chip both a balanced waveguide beam splitter
and a thermo-optic phase shifter and we will refer to this device as integrated homodyne
analyzer (IHA). In the last chapter we will investigate the output of the IHA in the pres-
ence of coherent and squeezed states and compare the results with those obtained via
a standard homodyne detection (SHD) measurement based on a balanced cube beam
splitter and a mechanical piezo movement (PZT) described above. Here we will focus
on the feature of experimental setup sketched in 3.34.

3.7.1 The integrated homodyne analyzer (IHA)

In this section we describe the fabrication process and the main features of the IHA. It
consists in a directional coupler, where two optical waveguides are brought close at few
microns distance, so that they can exchange power by evanescent-field interaction, and
a thermo-optic phase shifter. Waveguides are directly inscribed in EAGLE XG (Corning)
glass substrate by femtosecond laser writing technology [11, 55]. To fabricate the waveg-
uides, ultrashort pulses of about 300 fs duration, 240 nJ energy and 1 MHz repetition
rate, from a Yb:KYW cavity-dumped femtosecond laser oscillator, are focused 30 µm
beneath the surface of the substrate through a 0.6 NA microscope objective. Non-linear
absorption processes of the ultrashort laser pulses generate a permanent refractive in-
dex increase, localized in the focal region. The translation of the sample under the laser
beam at the constant speed of 20 mm/s allows to directly inscribe the waveguide along
the desired path. The high precision translation is achieved by computer controlled air-
bearing stages (Aerotech FiberGLIDE 3D). The waveguides support a single mode at
1064 nm wavelength (mode diameter 1/e2 is about 7 µm). The directional coupler is
composed of two waveguides, starting at the relative distance of 125 µm, and brought
close at the distance of 11 µm for a length of 300 µm. In such a region, the waveguides
exchange power by evanescent field, and the interaction length is chosen to achieve a
balanced splitting ratio. The bent segments have a curvature radius of 90 mm, which
produces negligible additional bending losses. To fabricate the dynamic phase shifter,
a 55 nm gold layer is sputtered on the top of the chip and a resistor is patterned, by
femtosecond laser pulses, above one of the input waveguides of the directional coupler.
This technique is described in more detail in Ref. [10]. The resistor is 100 µm wide and
5 mm long, for a value of resistance of about 100 Ω. Thermal dissipation on the resis-
tor, when driven with a suitable current, creates temperature gradients in the glass, and
thus thermo-optic modifications of the refractive indices in the waveguides. Therefore,
a differential phase, directly proportional to the dissipated electrical power, can be im-
posed between the two input waveguides. In the homodyne measurements, the resistor
is driven by a ramp generator (RG) to scan the LO phase.

3.7.2 Optical layout

In our experiments we aim at assessing the performance of the IHA, also in compari-
son with the SHD. To this purpose, we employed the apparatus sketched in Fig. 3.34,
where the two homodyne detection configurations involving the SHD and the IHA can
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Figure 3.34: Once the state is generated, the OPO output beam can be directed onto either SHD or
IHA by means of mirrors with high reflectivity at 1064 nm mounted on flippers. The homodyne
detection system, indeed, is designed in such a way that we are able to pass from the configuration
based on SHD to the configuration exploiting the IHA in a quickly and simply way. Therefore, an
immediate comparison can be made between the measurements realized with both layouts. When
the mirrors are flipped up, the signal is coupled to the IHA. In order to efficiently coupling the out
coming signal from the OPO and the LO into and out of the waveguides, a pair of fiber arrays is
used for the entry and exit interfaces of the IHA to inject and eject signal and LO beams efficiently.
The LO phase is changed thanks to a thermal phase shifter (IPS). See the text for more details.
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Figure 3.35: Pictorial zoom on the coupling system fibers-IHA. The fiber arrays-to-waveguide
coupling efficiency is improved by aligning their position and orientation with a high degree of
accuracy. For this purpose the two fiber arrays are separately mounted on two six-axis positioning
stages with micron resolution. The alignment is a long and delicate iterative procedure but once
the relative orientations between the components have been optimised, we have observed that the
overall system remains stable.

be easily and quickly switched by means of flip mirrors. When the mirrors are flipped
up, the set-up is switched to the IHA configuration. In order to efficiently couple the
signal from the OPO and the LO to the inputs of the IHA we use a fiber arrays; a similar
fiber arrays is used to couple the outputs of the IHA to the photodiodes, as pictorially
shown in Fig. 3.34. Each fiber array contains two fibers, fastened with high precision
at a distance of 125 µm by means of quartz V-groove blocks. The input fibers, which
yield single-mode (SM) and polarization-maintaining operation, are Ferrule Connec-
tor/Physical Contact (FC/PC) connectorized. The signal and LO beams are coupled
into them by means of adjustable FiberPort micropositioners. To improve the coupling
efficiency, the built-in lenses of the latter components are chosen to ensure the optimal
match between the incident modes and the fiber modes. The IHA is placed on an alu-
minium holder, to enhance heat dissipation, and the two fiber arrays can be aligned
accurately to the waveguide inputs and outputs by means of two six-axis positioning
stages with micrometric resolution as shown in Fig. 3.35. Index-matching gel is used to
eliminate reflection losses at the fiber-waveguide interfaces. The fibers in the output fiber
array are instead multimode (MM), with a core diameter of 50 µm and a cladding diam-
eter of 125 µm, connectorized at the other ends with ferrule connector/angled physical
contact (FC/APC) terminals, to reduce back reflections.

It is worth noting that a critical issue in this configuration is the minimization of the
back reflections across the entire system. In fact, light back-propagating in the optical
paths may distort the error signal of the PDH system, destroying the locking of the res-
onant frequency of the OPO cavity. To avoid this situation and ensure the efficient func-
tioning of the active stabilization of the OPO, the use of such FC/APC fibers connectors
was found to be crucial.
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Light from the two FC/APC connectors is finally collected by lenses and focused
on the low-noise photodetectors (D1, D2), which are shared between the two configura-
tions.

In Chap. 6 we will show the measurements performed with this homodyne configu-
ration. In particular we will demonstrate that our integrated device is able to detect the
nonclassical features of the input signals.
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Nonclassical states measurements





CHAPTER 4

Full quantum state reconstruction of symmetric two-mode
squeezed thermal states via spectral homodyne detection

and a state-balancing detector

In this Chapter we discuss the first implementation and characterization of the experimental sys-
tem used throughout the work presented in this thesis. The results presented here has been pub-
lished in the journal article. In particular, we suggest and demonstrate a scheme to reconstruct
the symmetric two-mode squeezed thermal states of spectral sideband modes from an OPO.

4.1 Introduction

We have seen in previous sections that the interaction inside the OPO is bilinear and
involves the sideband modes a±Ω. It is described by the effective Hamiltonian HΩ ∝

a†
+Ω

a†
−Ω

+ h.c., that is a two-mode squeezing interaction (see Sec. 1.5.2). Due to the lin-
earity of HΩ, if the initial state is a coherent state or the vacuum, the generated two-mode
state ρΩ is a Gaussian state and, thus, fully characterized by its covariance matrix (CM)
σσσΩ and first moment vector R as we have shown in Sec 1.5. It is worth noting that due to
the symmetry of HΩ, the two-sideband state is symmetric [56] and can be written as ρΩ =

D2(α)S2(ξ )ν+Ω(N)⊗ ν−Ω(N)S†
2(ξ )D

†
2(α), where D2(α) = exp{[α(a†

+Ω
+ a†
−Ω

)− h.c.]/
√

2}
is the symmetric displacement operator and S2(α) = exp(ξ a†

+Ω
a†
−Ω
−h.c.) the two mode

squeezing operator and ν±Ω(N) is the thermal state of mode a±Ω with N average photons,
[14]. The state ρΩ belongs to the so-called class of the two-mode squeezed thermal states,
generated by the application of S†

2(ξ )D
†
2(α) to two thermal states with (in general) differ-

ent energies. Here we suggest and demonstrate a measurement scheme for the quantum
state reconstruction of these symmetric spectral modes based on a single homodyne de-
tector and the PDH error signal used to stabilise the OPO which we have shown in Chap.
3. The experimental apparatus used in this project can be for the most part superposed
on that already described. In this configuration however the seed to be injected into OPO
cavity is generated by a phase modulator labelled PMb in Fig 4.1 and the OPO cavity
has an escape efficiency ηesc=0.815. Therefore the squeezing level which we can observe
is about 3 dB. In order to test our experimental setup, we acted on the OPO pump and
on the phase modulation to generate and characterize three classes of states: the coher-
ent (α 6= 0 and N,ξ = 0), the squeezed (ξ ,N 6= 0 and α = 0) and the squeezed-coherent
(α,ξ ,N 6= 0) two-mode sideband state. We have already talked about Homodyne detec-
tion. In short, the signal under investigation interferes at a balanced beam splitter with a
local oscillator (LO) with frequency ω0. The two outputs undergo a photodetection pro-
cess and their photocurrents are are combined together thus leading to a photocurrent
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STATE GENERATION

HOMODYNE DETECTION

LASER

PDH 
SYSTEM

Figure 4.1: Schematic diagram of the experimental setup.

continuously varying in time. We recall here that, if ã0(ω0) is the photon annihilation op-
erator of the signal mode at the input of the HD, the detected photocurrent can be writ-
ten as (note that the ”fast term” ω0 is canceled by the presence of the LO at the same fre-
quency) I(t)∝ ã0(t)e−iθ + ã†

0(t)eiθ , where θ is the phase difference between signal and LO
and we introduced the time-dependent field operator ã0(t), that is slowly varying with
respect to the carrier at ω0, such that ã0(t) = e−iω0t ∫ dω F(ω) ã0(ω0+ω)e−iωt ≡ e−iω0ta0(t),
F(ω) being the apparatus spectral response function. To retrieve the information about
the sidebands at frequencies ω0±Ω, described by the time-dependent field operators
a±Ω(t), we use an electronic setup consisting of a phase shifter (Ψ1/Ψ2) and a mixer
(⊗). After the mixer we have IΩ(t,Ψ) = I(t)cos(Ωt +Ψ). Neglecting the terms propor-
tional to exp(±2iΩt) (low-pass filter F1/F2 @300 kHz) we find the following expres-
sion for the operator describing the (spectral) photocurrent IΩ(t,Ψ) ∝ Xθ (t,Ψ|Ω), where
Xθ (t,Ψ|Ω) = b(t,Ψ|Ω)e−iθ +b†(t,Ψ|Ω)eiθ is the quadrature operator associated with the
field operator (note the dependence on the two sidebands):

b(t,Ψ|Ω) =
a+Ω(t)eiΨ +a−Ω(t)e−iΨ

√
2

. (4.1)

Note that
[
b(t,Ψ|Ω),b†(t ′,Ψ|Ω)

]
=
∫

dω |F(ω)|2 e−iω(t−t ′).
We see that by changing the phase Ψ we can select different balanced combinations

of the upper and lower sideband modes. In particular Ψ can be adjusted to select their
symmetric S or antisymmetric A balanced combinations. For the sake of simplicity we
implemented here a double electronic setup to observe the two outputs at the same time
(Out1 and Out2 by setting Ψ1 and Ψ2 in fig. 4.1). The mode operators which correspond
to the S and A combinations are:

b(t,0|Ω)≡ as, and b(t,π/2|Ω)≡ aa, (4.2)

respectively. We consider the corresponding quadrature operators qk = X0(t,Ψk|Ω), pk =
Xπ/2(t,Ψk|Ω), and z±k = X±π/4(t,Ψk|Ω), k = a,s, with Ψs = 0 and Ψa = π/2. In the S /A

modal basis, the first moment vector of ρΩ reads RRR′ = (〈qs〉,〈ps〉,〈qa〉,〈pa〉)T and its 4×4
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CM can be written in the following block-matrix form:

σσσ
′ =

(
σσσ s σσσδ

σσσT
δ

σσσ a

)
, σσσδ =

(
εq δqp

δpq εp

)
, (4.3)

where [57]:

σσσ k =

(
〈q2

k〉−〈qk〉2 1
2 〈(z+k )2− (z−k )

2〉
1
2 〈(z+k )2− (z−k )

2〉 〈p2
k〉−〈pk〉2

)
(4.4)

is the CM of the mode k = a,s, εl = 〈lsla〉− 〈ls〉〈la〉, δll̄ = 〈ls l̄a〉− 〈ls〉〈l̄a〉 with l, l̄ = q, p and
l 6= l̄. The matrix elements of σσσ k can be directly measured from the homodyne traces
of corresponding mode ak. We now explicitly show how we can calculate them. From
eq. 4.1

b(t,0|Ω) =
â+Ω(t)+ â−Ω(t)√

2
≡ as, (4.5a)

b(t,π/2|Ω) = i
â+Ω(t)− â−Ω(t)√

2
≡ aa, (4.5b)

therefore the quadrature operator Xθ (t,Ψ|Ω) = b(t,Ψ|Ω)e−iθ +b†(t,Ψ|Ω)eiθ can be writ-
ten as:

Xθ (t,Ψ|Ω) = cosΨ [qs cosθ + ps sinθ ]+ sinΨ [qa cosθ + pa sinθ ] . (4.6)

If we set Ψ = 0, we have:

X0(t,0|Ω)≡ qs = as +a†
s =

q+Ω +q−Ω√
2

⇒ 〈q2
s 〉−〈qs〉2, (4.7a)

Xπ/2(t,0|Ω)≡ ps = i(a†
s −as) =

p+Ω + p−Ω√
2

⇒ 〈p2
s 〉−〈ps〉2, (4.7b)

X±π/4(t,0|Ω)≡ qs± ps√
2
⇒ 1

2
〈qs ps + psqs〉−〈qs〉〈ps〉, (4.7c)

for Ψ = π/2 we obtain:

X0(t,π/2|Ω)≡ qa = aa +a†
a =

p−Ω− p+Ω√
2

⇒ 〈q2
a〉−〈qa〉2, (4.8a)

Xπ/2(t,π/2|Ω)≡ pa = i(a†
a−aa) =

q+Ω−q−Ω√
2

⇒ 〈p2
a〉−〈pa〉2, (4.8b)

X±π/4(t,π/2|Ω)≡ qa± pa√
2
⇒ 1

2
〈qa pa + paqa〉−〈qa〉〈pa〉, (4.8c)

Let us now consider the entries of σσσδ . The information about εl can be retrieved
by changing the value of the mixer phase to Ψ = ±π/4. In fact, it easy to show that
[57, 58, 59] εl =

1
2

(
〈l2
+〉−〈l2

−〉
)
− 〈ls〉〈la〉, l = q, p, where q± = X0(t,±π/4|Ω) and p± =

Xπ/2(t,±π/4|Ω). Namely, if we set Ψ =±π/4 we find:

X0(t,±π/4|Ω) =
qa±qs√

2
,

Xπ/2(t,±π/4|Ω) =
ps± pa√

2
,
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ad we have the following identities:

〈X2
0 (t,π/4|Ω)−X2

0 (t,−π/4|Ω)〉= 2〈qaqs〉 ≡ εq, (4.9)

〈X2
π/2(t,π/4|Ω)−X2

π/2(t,−π/4|Ω)〉= 2〈pa ps〉 ≡ εp. (4.10)

Let us now focus on δll̄ . It is not possible to calculate the elements δqp and δpq directly
from the spectral homodyne traces [56]. To overcome this issue, a resonator detection
method has been proposed and demonstrated in Refs. [56, 60]. Given the state ρΩ, but
with different thermal contributions, these elements are equal to the energy unbalance
between the sidebands (without the contribution due to the displacement that does not
affect the CM), namely, δqp = −δpq = ∆NΩ = (N+Ω−N−Ω), as shown in [61]. In our case
we can exploit the error signal from the PDH stabilisation to check the symmetry of the
sideband states and also to measure the presence of some energy unbalance of the two
sidebands, leading to non-vanishing δll̄ . In our setup, indeed, the presence of the energy
unbalance between the sidebands is due to the possible difference between the cavity
transmission coefficients of the involved modes. Therefore, to determine the energy un-
balance, we measure the normalized OPO cavity transmission coefficient when resonant
with the pump, its bandwidth ∆ω and get the corresponding analytical fit T0(ω).

Then, we consider the error signal EPDH(δx) of the PDH, where δx = L− L0, L and
L0 being the actual cavity length and its length at resonance with the pump, respec-
tively, see Fig. 4.2 (a). The detuning is thus given by δω = −ω0 δx/L0. If |δω| � ∆ω ,
that is our working regime, we can expand the error signal as EPDH(δx) ≈ κ δx, where
we used EPDH(0) = 0 and κ = ∂δxEPDH(0) is directly measured from the experimental
PDH signal. At resonance, the cavity has a maximum of the (normalized) transmis-
sivity at ω = 0 (or L = L0) and the corresponding PDH error signal vanishes, namely
EPDH(0) = 0. This scenario is sketched in Fig. 4.2 (b), where we show a pictorial view of
T0(ω) when EPDH = 0: we have that T0 = 1 and, thus, due to the symmetry of T0(ω), we
find T0(+Ω)= T0(−Ω). In the presence of a detuning |δω|�∆ω , we measure a PDH error
signal E(exp)

PDH = EPDH(δx) 6= 0, see Fig. 4.2 (c) (note that now the maximum of the transmis-
sivity is reached at ω = δω). Therefore, we can retrieve the actual value of detuning as
δω =−ω0 E(exp)

PDH /(κ L0) and use it to obtain the information about the (normalized) side-
band transmission coefficients Tδω(+Ω) and Tδω(−Ω) starting from Tδω(ω)= T0(ω−δω).
Eventually, we can assess the relative cavity transmission coefficients:

τ±Ω =
Tδω(±Ω)

Tδω(+Ω)+Tδω(−Ω)
, (4.11)

associated with the two sideband modes, and the energy difference can be obtained as:

N+Ω−N−Ω =
Tδω(+Ω)−Tδω(−Ω)

Tδω(+Ω)+Tδω(−Ω)
(N+Ω +N−Ω). (4.12)

In general, given the covariance matrix σσσ of a Gaussian state, the total energy can be
obtained from the sum of its diagonal elements [σσσ ]kk as (without loss of generality we
are still assuming the absence of the displacement):

Ntot =
1
4

4

∑
k=1

[σσσ ]kk−1. (4.13)

Experimentally, we can find the total energy N+Ω +N−Ω from the first and second mo-
ments of the operators in Eqs. (4.7) and in Eqs. (4.8), which are measured from the ho-
modyne detection.
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Figure 4.2: (a) PDH error signal as a function of the cavity displacement δx = L−L0, where L is
the cavity length and L0 refers to the resonant condition with the pump at ω0: the value of EPDH
allows to retrieve the information about the detuning δω . (b) Cavity transmission coefficient as a
function of ω when EPDH = 0: one has the maximum T0(0) = 1 and T0(+Ω) = T0(−Ω). (b) Cavity
transmission coefficient as a function of ω in the presence EPDH 6= 0 (in the plot we consider EPDH >
0): now one finds the transmissivity maximum at δω , namely, Tδω (δω) = 1. Note that Tδω (ω) =
T0(ω − δω) and it is clear that Tδω (+Ω) 6= Tδω (−Ω). Starting from the measured EPDH(δx), one
can retrieve the value δω and, thereafter, the sideband transmission coefficients Tδω (+Ω) and
Tδω (−Ω). For the sake of clarity we did not report the real experimental signals, but their pictorial
view to better explain our analysis. See the text for details.



72 4.2 Experimental results

R0 =

0
BB@

0.04 ± 0.06
3.12 ± 0.03
0.03 ± 0.06
0.03 ± 0.06

1
CCA

�0 =

0
BB@

1.00 ± 0.03 0.1 ± 0.1 0.04 ± 0.09 (0.1 ± 0.1) ⇥ 10�4

1.03 ± 0.3 �(0.1 ± 0.1) ⇥ 10�4 0.0 ± 0.2
1.01 ± 0.01 0.0 ± 0.02

1.00 ± 0.02

1
CCA

Figure 4.3: Homodyne traces referring to the coherent two-mode sideband state and the recon-
structed RRR′ and σσσ ′. The purities of the modes S and A are µs = 0.99+0.01

−0.02 and µa = 0.99+0.01
−0.01, respec-

tively. Only the relevant elements are shown.

4.2 Experimental results

Once the mode has been selected by choosing the suitable mixer phase Ψ as shown
above, the LO phase θ was scanned from 0 to 2π to acquire the corresponding homo-
dyne trace. For the measurements shown in this paper we used a 2 GHz oscilloscope
and collected about 100 000 points in the acquisition time of 20 ms. Figures 4.3, 4.4
and 4.5 show the experimental spectral homodyne traces corresponding to the coherent,
squeezed and squeezed-coherent two-mode sideband states, respectively. The coherent
state is generated by removing the OPO pump and sending to the PMa (see Fig. 4.1) a
sinusoidal signal at 3 MHz with the proper voltage amplitude in order to generate the
desired number of photons on the sidebands. In the case of the squeezed states, the OPO
pump is set at ∼300 mW (well below the OPO threshold, which is about 4 times greater)
whereas the input of the PMa seed generator is left in the vacuum (squeezed state) or
modulated as in the case of the coherent state generation (squeezed-coherent state). As
one can see, in the presence of squeezing (Figs. 4.4 and 4.5) all the four traces exhibit
a phase-dependent quadrature variance; the dependence disappears when the coherent
two-mode sideband state is considered (Fig. 4.3). In this last case we can also see that for
Ψ = π/2 the homodyne trace is that of the vacuum state, as one may expect.

The statistical analysis of each trace allows to reconstruct the expectation value of
the moments of the quadrature required to reconstruct the CM σσσ ′ and the first moments
vector R′, which are reported in the same figures. All the reconstructed σσσ ′ satisfy the
physical condition σσσ ′+ iΩΩΩ ≥ 0 where ΩΩΩ = iσσσ y⊕σσσ y, σσσ y being the Pauli matrix [14]. This
implies that the modes S and A represent the same local quantum state, namely, σσσ s =
σσσ a: this is in agreement with our measurement within statistical errors, as one can check
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Figure 4.4: Homodyne traces referring to the squeezed two-mode sideband state and the recon-
structed RRR′ and σσσ ′. The noise reduction is 3.1± 0.3 dB for both the modes S and A , wheres
their purities are µs = 0.68±0.07 and µa = 0.67±0.02, respectively. Only the relevant elements are
shown.
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Figure 4.5: Homodyne traces referring to the squeezed-coherent two-mode sideband state and
the reconstructed RRR′ and σσσ ′. The noise reduction is 2.7± 0.3 dB for the A mode and 2.4± 0.2 dB
for the S mode, whereas the purities are µs = 0.68±0.07 and µa = 0.64±0.02, respectively. Only
the relevant elements are shown.
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• Two-mode coherent state:
R = H0.05 ± 0.06, 2.18 ± 0.05, 0.01 ± 0.06, 2.23 ± 0.05LT

ΣW =

1.00 ± 0.02 0.0 ± 0.1 0.00 ± 0.02 0.1 ± 0.1
0.0 ± 0.1 1.02 ± 0.02 0.0 ± 0.1 0.01 ± 0.02

0.00 ± 0.02 0.0 ± 0.1 1.00 ± 0.02 0.0 ± 0.1
0.1 ± 0.1 0.01 ± 0.02 0.0 ± 0.1 1.02 ± 0.02

• Two-mode squeezed state:
R = H0.02 ± 0.04, 0.03 ± 0.04, 0.03 ± 0.04, 0.05 ± 0.04LT

ΣW =

2.3 ± 0.1 0.00 ± 0.06 -1.8 ± 0.1 0.05 ± 0.06
0.00 ± 0.06 2.3 ± 0.1 0.01 ± 0.06 1.8 ± 0.1
-1.8 ± 0.1 0.01 ± 0.06 2.3 ± 0.1 0.00 ± 0.06
0.05 ± 0.06 1.8 ± 0.1 0.00 ± 0.06 2.3 ± 0.1

• Two-mode squeezed-coherent state:
R = H-0.09 ± 0.05, 4.02 ± 0.06, -0.03 ± 0.05, 4.02 ± 0.06LT

ΣW =

2.4 ± 0.1 0.1 ± 0.2 -1.8 ± 0.1 0.0 ± 0.2
0.1 ± 0.2 2.3 ± 0.1 -0.2 ± 0.2 1.8 ± 0.1

-1.8 ± 0.1 -0.2 ± 0.2 2.4 ± 0.1 -0.1 ± 0.2
0.0 ± 0.2 1.8 ± 0.1 -0.1 ± 0.2 2.3 ± 0.1

Table 4.1: Reconstructed first moment vectors RRR and CMs σσσΩ of the two-mode sideband states ρΩ

corresponding to the states of Figs. 4.3, 4.4 and 4.5, respectively.

from Figs. 4.3, 4.4 and 4.5. Furthermore, the diagonal elements of the off-diagonal blocks
are zero within their statistical errors, in agreement with the expectation for a factorized
state of the two modes.

We should now calculate the corresponding CMs in the modal basis â+Ω and â−Ω of
the upper and lower sideband, respectively. Because of Eqs. (4.2) we can write σσσΩ =

SSST
σσσ ′SSS and RRR = SSST RRR′, where

SSS =
1√
2

(
I I

−iσσσ y iσσσ y

)
(4.14)

is the symplectic transformation associated with the mode transformations of Eqs. (4.2).
The results are summarized in Table 4.1. Whereas the reconstructed two-mode sideband
coherent state is indeed a product of two coherent states, the other two reconstructed
states exhibit non-classical features. In particular, the minimum symplectic eigenvalues
of the corresponding partially transposed CMs [62, 63] read λ̃ = 0.50± 0.02 and λ̃ =
0.55± 0.03 for the two-mode squeezed and squeezed-coherent state, respectively: since
in both the cases λ̃ < 1, we conclude that the sideband modes are entangled 1

4.3 Concluding remarks

In conclusion, we have presented a measurement scheme to fully reconstruct the class of
symmetric two-mode squeezed thermal states of spectral sideband modes from an opti-
cal parametric oscillator. This class of states, with Gaussian Wigner functions, is widely

1In the references cited the criterion is defined as λ̃ < 1/2. Here, all the traces are normalized to the shot
noise level of a pure vacuum field which is then set at one. Therefore such criterion read as λ̃ < 1.
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exploited in continuous-variable quantum technology. The scheme is based on homo-
dyne detection and active stabilization, which guarantees phase coherence in every step
of the experiment, and on a suitable analysis of the detected photocurrents. We have
shown that by properly choosing the electronic mixer phase it is possible to select four
different combinations of the upper and lower sideband which, together with the infor-
mation from the PDH error signal, allows to reconstruct the elements of the covariance
matrix of the state under consideration. The scheme has been successfully demonstrated
to reconstruct both factorized and entangled sideband states.

In our implementation we have used two electronic mixers and retrieved information
about two modes at a time. It is also possible to use four mixers and extract information
about the four modes at the same time. The method is based on a single homodyne
detector, the error signal from the active stabilization of the OPO and does not involve
elements outside the main detection tools of continuous variable optical systems. As
such, our procedure is indeed a versatile diagnostic tool, suitable to be embedded in
quantum information experiments with continuous-variable systems in the spectral do-
main, where, in particular, a state from an OPO is used as a signal or a quantum probe
and, therefore, should be fully characterized.





CHAPTER 5

Quantum-to-classical transition for squeezed thermal
states (STS) of a single-mode optical system

In this chapter we show how the generation/acquisition states system implemented during my
Ph.D studies has been used to observe and analyse quantum to classical transitions for squeezed
thermal states (STS) of a single-mode optical system.

5.1 Introduction

The engineering of the nonclassical states generation and detection processes which we
have developed during my Ph.D. has found its first concrete application in the study
of the quantum-to-classical transition for squeezed thermal states (STS) of a single-mode
optical system. Our findings have been exploited for analysing in details the significance
of fidelity as a figure of merit in quantum state reconstruction of continuous-variable
(CV) quantum optical systems. The result achieved has been published in the paper:

• A. Mandarino, M. Bina, C. Porto, S. Cialdi, S. Olivares, and M. G. A. Paris. Assessing
the significance of fidelity as a figure of merit in quantum state reconstruction of discrete
and continuous-variable systems. Physical Review A 93, 062118 (2016)

In this Chapter we want to stress the experimental aspects of this work, whereas we re-
fer you to the paper [64] for the theoretical analysis of the fidelity. Here we limit ourself
to merely stating the conclusions of the theoretical developments. For the sake of com-
pleteness, anyway, the fidelity concept should be introduced. In quantum technology,
it is commonly used to summarize the results of a reconstruction technique, either full
quantum tomography [65, 66, 67, 68, 69, 70, 71] or some partial reconstruction scheme
[72, 73, 74, 75, 76, 77]. The fidelity between two quantum states described by density
matrices ρ̂1 and ρ̂2 is defined as [78]

F(ρ̂1, ρ̂2) = Tr
[√√

ρ̂1ρ̂2
√

ρ̂1

]2

. (5.1)

Fidelity is not a proper distance in the Hilbert space. However, it can be easily linked
to a distance, and in turn to a metric over the manifold of density matrices. In fact, the
Bures distance [79] between two states is defined as

DB(ρ̂1, ρ̂2) =

√
2[1−

√
F(ρ̂1, ρ̂2)] .

Fidelity also provides an upper and a lower bound to the trace distance, namely [80]:

1−
√

F(ρ̂1, ρ̂2)≤
1
2
||ρ̂1− ρ̂2||1 ≤

√
1−F(ρ̂1, ρ̂2) .
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These relationships ensure that higher values of fidelity correspond to the geometrical
proximity of the two states in the Hilbert space. However, they do not seem straightfor-
wardly related to the physical properties of the two states. In turn, it has been pointed
out [81, 82, 83, 84] that a pair of states that appear very close to each other in terms of
fidelity, may be very far in terms of physical resources. Relevant examples may be found
with bipartite systems of either qubits or CV Gaussian states, where pairs of states com-
posed by one entangled and one separable states may have (very) high value of fidelity
one to each other. Besides, for single-mode CV states, high values of fidelity may be
achieved by pairs including one state with a classical analogue and a genuinely quan-
tum state of the field. In order to experimentally study this second case, we need to find
a method to switch from a classical to a quantum framework in a controlled way. On
the other hand, the OPO seeding is a crucial step to observe the quantum-to-classical
transition with STS. As a matter of fact, without seeding the OPO, the output signal is a
squeezed vacuum state, which is then degraded to a STS with a nonzero thermal compo-
nent by propagation in a lossy channel as we have already seen. However, STS obtained
in this way are always nonclassical for any value of the loss and the squeezing parame-
ters [14, 85, 86]. For this reason, the STS generation technique shown in Sec. 3.3 has been
developed.

5.2 Single-mode Gaussian states

Our goal is to study a single-mode STS and therefore we have to generate a thermal
seed to be injected into the OPO. We have seen the experimental strategy exploited for
generating and detecting this kind of states (see Sec. 3.3. We recall here that the density
matrix of a thermal state in the Glauber representation reads as follows

ν̂OPO(ñth) =
∫

∞

0
d|α|2|α|

ñth
e−
|α|2
ñth

∫ 2π

0

dφ

2π
||α|eiφ 〉〈|α|eiφ | , (5.2)

i.e., it can be viewed as a mixture of coherent states with phase φ uniformly distributed
over the range 0 to 2π , and a given amplitude |α| distribution. Therefore, we have to
generate a rapid sequence of coherent states with |α| and φ randomly selected from
these distributions.

The STS of a single-mode radiation field are states of the form

ρ̂ = Ŝ(r)ν̂(nth)Ŝ
†(r) , (5.3)

where Ŝ(r) = exp
{ 1

2 r
[
(â†)2− â2

]}
is the squeezing operator, with r ∈R, ν̂(nth) = nâ†â

th /(1+
nth)

â†â+1 is a thermal state with nth average number of photons and [â, â†] = 1, â and â†

being field operators. Upon defining the quadrature operators

x̂θ ≡ âe−iθ + â† eiθ , (5.4)

with θ ∈ [0,π], the STS are fully characterized by their first and second moments

〈x̂θ 〉= 0 ∀θ (5.5a)

〈∆x̂2
θ 〉= (1+2nth)(e

2r cos2
θ + e−2r sin2

θ) , (5.5b)

where 〈· · · 〉 ≡ Tr[ρ̂ · · · ]. In terms of the canonical operators x̂ ≡ x̂0 and p̂ ≡ x̂π/2, the co-
variance matrix (CM) of a STS reads

σ =

(
〈∆x̂2〉 0

0 〈∆p̂2〉

)
=

(
s/µ 0

0 1/µs

)
, (5.6)



Quantum-to-classical transition for squeezed thermal states (STS) of a single-mode optical
system 79

where µ = Tr[ρ̂2] = (2nth+1)−1 is the purity of the state ρ̂ and s≡ e2r is the squeezing fac-
tor. A STS is nonclassical, i.e. it corresponds to a singular Glauber P-function, whenever
the conditions s < µ or s > µ−1 are satisfied. The total energy of a STS is given by

Ntot = 〈â†â〉= nth +ns +2nthns , (5.7)

where ns = sinh2 r is the number of squeezing photons and nth is the thermal contribution
to energy. It is worth noting that the number of thermal photons nth does not coincide
with the parameter ñth in Eq. 5.2, as the former accounts for both the seeding and any
losses from the OPO to the detector, whereas the latter is related to the thermal seeding
of the OPO.

According to Eq. (5.7), it is possible to find a suitable parametrization of the single-
mode STS CM (5.6) in terms of the different energy contributions

〈∆x̂2〉=
(

1+2
Ntot−ns

2ns +1

)
(1+2ns−2

√
ns +n2

s ) (5.8a)

〈∆p̂2〉=
(

1+2
Ntot−ns

2ns +1

)
1

(1+2ns−2
√

ns +n2
s )
, (5.8b)

from which the linear behavior of the variances as a function of the total energy Ntot is
evident.

The fidelity between two STS is given by [87]

F(σ1,σ2) =
1√

∆+δ −
√

δ
, (5.9)

where ∆ = 1
4 det[σ1 +σ2] and δ = 1

4 ∏i=1,2(detσi−1).

5.3 Homodyne tomography

We perform state reconstruction of these single-mode CV systems by quantum homo-
dyne tomography, i.e. by collecting homodyne data at different LO phases θk. Gener-
ation and acquisition operations are synchronized in the same time window of 70 ms
at the same sampling rate of 100 kHz. Therefore we collect 7000 homodyne data points
{(θk,xk)}, by scanning the LO with θk ∈ [0,2π]. We address the quantum-to-classical tran-
sition by generating m = 14 STS with increasing thermal component, as the squeezing is
fixed by the geometry of the experimental setup.

These measurements are analysed by applying the pattern functions method whereby
we reconstruct the first-moment vector and the CM, as well as the total energy â†â of the
state using the estimators in Eq.1.74. We characterized these states in terms of the po-
sition 〈∆x̂2〉 and momentum 〈∆p̂2〉 variances and the total energy Ntot ≡ 〈â†â〉. From the
measured quadrature variances, the experimental squeezing factor sexp = [〈∆x̂2〉/〈∆ p̂2〉]1/2

and purity µexp = [〈∆x̂2〉〈∆ p̂2〉]−1/2 are obtained. These results are reported in Table 5.1.
Moreover for all the detected states, we tested the compatibility with the typical form

of the STS, i. e. null first-moment vector (5.5a) and diagonal CM (5.6). The shot-noise
threshold is set at 〈∆x̂2〉 = 〈∆p̂2〉 = 1, under which the state of the detected single-mode
radiation displays genuine quantum squeezing. The generated STS display squeezing in
position quadrature and anti-squeezing in momentum quadrature (i.e. we have real and
negative squeezing parameter r < 0). In Fig. 5.1 we show the position and momentum
variances as a function of the total energy for the m= 14 experimentally generated STS. A
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Table 5.1: Characterization, via homodyne tomography, of the m = 14 experimental STS in terms
of the position and momentum variances, total energy, squeezing factor and purity. The STS dis-
play squeezing in position and anti-squeezing in momentum coordinates (r < 0) .

state # 〈∆x̂2〉 〈∆p̂2〉 〈â†â〉 sexp µexp

1 0.48±0.03 3.15±0.09 0.41±0.02 0.39±0.01 0.81±0.03
2 0.67±0.04 3.33±0.09 0.50±0.02 0.45±0.01 0.67±0.02
3 0.62±0.04 3.77±0.11 0.60±0.02 0.40±0.02 0.66±0.02
4 0.69±0.05 3.94±0.11 0.66±0.02 0.41±0.02 0.61±0.02
5 0.70±0.05 4.51±0.12 0.80±0.03 0.39±0.02 0.56±0.02
6 0.77±0.05 4.54±0.13 0.83±0.03 0.41±0.02 0.54±0.02
7 0.77±0.05 4.60±0.13 0.84±0.03 0.41±0.02 0.53±0.02
8 0.93±0.06 5.00±0.14 0.98±0.03 0.43±0.02 0.46±0.02
9 0.95±0.06 5.36±0.15 1.08±0.03 0.42±0.01 0.44±0.02
10 0.93±0.07 5.56±0.15 1.12±0.03 0.41±0.02 0.44±0.02
11 1.00±0.07 5.80±0.17 1.20±0.03 0.42±0.02 0.42±0.02
12 1.13±0.07 5.87±0.16 1.25±0.03 0.44±0.02 0.39±0.01
13 1.11±0.08 6.33±0.18 1.36±0.04 0.42±0.02 0.38±0.01
14 1.30±0.08 6.16±0.18 1.36±0.04 0.46±0.02 0.35±0.01
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Figure 5.1: Tomographic reconstruction of the variances of the squeezed quadrature x̂ (red lower
dots) and of the anti-squeezed quadrature p̂ (green upper dots) as a function of the total energy
Ntot, for m = 14 experimental STS. Dashed lines represent linear fits of the experimental data (see
Eqs. (5.8)), from which we obtain the number of squeezed photons ns ' 0.2. The black dotted
horizontal line is the shot-noise level at 〈∆x̂2〉= 〈∆ p̂2〉= 1.
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linear fitting, following Eq. (5.8), provides the value of the number of squeezed photons
ns ' 0.2, which corresponds to ∼ 3.7 dB of squeezing. Fig. 5.1 makes apparent the capa-
bility of the experimental setup to generate STS-on-demand by seeding the OPO with a
controlled number of thermal photons and in turn, to monitor the quantum-to-classical
transition of a single-mode Gaussian state of light.

Once the information about the state of a system has been extracted from a set of
experimental data, the fidelity between the reconstructed state and a given target state,
is calculated [88, 89, 90, 91].

From an accurate theoretical development (details of which can be read in our paper
[64]), we found that neighbouring states in terms of fidelity (i.e. states characterized by
high values of fidelity) do not share the same quantum/classical properties.

5.4 Conclusions

In order to study the quantum-to-classical transition for STS of a single-mode optical
system, it is necessary to seed the OPO in a controlled fashion. Our experimental setup
allows this issue thanks to the system described in 3.3.1 whereby we can choose and
set the STS photon number on demand. By generating STSs with the photon number
increasing values, the quantum-to-classical transition has been observed.

This result has been exploit to study the significance of fidelity as a figure of merit in
quantum state reconstruction.High values of fidelity such as 0.9 or 0.99 are considered
as a piece of evidence in order to certify that the reconstructed and the target states i) are
very close each other in the Hilbert space, ii) they share nearly identical physical prop-
erties. In our paper [64] we have experimentally confirmed the first statement and, at
the same time, we have provided neat examples where the second one is clearly proved
wrong. Overall, we have concluded that while fidelity is a good measure of geometrical
proximity in the Hilbert space it should not be used as the sole benchmark to certify
quantum properties [92, 93, 94, 95, 96], which should be rather estimated tomography-
cally in a direct way, or using a suitable witness operator [65, 68].

In this thesis framework, we want to highlight that the accurate control of the ther-
mal and squeezing component of the apparatus, allows us to address the quantum-to-
classical transition for STS states.





CHAPTER 6

Squeezing detection by using an glass-integrated
homodyne analyzer

In this chapter we will show the measurements performed by exploiting the glass-integrated ho-
modyne analyzer (IHA) which we have described in Sec. 3.7. We will analyse the homodyne
traces of squeezed vacuum and coherent states. The comparison with those realized with the
standard homodyne detector will show the IHA effect on squeezing.

6.1 Introduction

Experiments involving non-classical states of light need highly complex optical circuits
through which optical beams propagate. This means the use of a lot of mirrors, beam
splitters and lenses. This kind of experimental setup in bulk optics encounters severe
limitations, in particular concerning the optical phase stability and control, which is a
crucial requirement for the manipulation of squeezed states. This makes the adoption of
a monolithic integrated platform highly beneficial. Actually, while integrated quantum
photonics has recently boosted many experimental demonstrations based on discrete-
variable systems [97, 98, 99, 100], few on-chip experiments have been reported to date
with continuous variable systems. Masada et al. demonstrated fundamental operations
for the manipulation of squeezed light states within a reconfigurable silica-on-silicon
chip [101]; however, an external piezo-electric controller was used in that case to vary
the local-oscillator phase in the homodyne measurement. Very recently, the integration
on the same chip of a beam splitter and balanced detectors of the homodyne appara-
tus was reported, to perform quantum random number generation [102], but no active
modulation was operated on the phase of the local oscillator in the experiment. A few
waveguide-based sources of squeezed light states have been also demonstrated [103,
104] and first steps are moving towards a fully guided-wave based architecture exploit-
ing squeezed light [105].

In line with these, here we report on homodyne measurements performed via our
integrated homodyne analyser (IHA) which we have introduced in Sec. 3.7. More in
detail, we investigate the output of the IHA in the presence of coherent and squeezed
states and compare the results with those obtained via the standard homodyne detection
measurement (SHD).

6.2 Squeezed vacuum states

As a first experiment, we characterize a squeezed vacuum state, generated by the OPO.
Figure 6.1 shows the experimental spectral homodyne traces achieved by collecting M=7000
data points in a time window of 800 ms with a repetition rate of 10 kHz, {(xk,θk)}, xk

83
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Figure 6.1: Homodyne traces referring to the vacuum squeezed states detected by using the SHD
(top panel) and the IHA (bottom panel). We also report the corresponding reconstructed Wigner
functions, the nonclassical depth (NCD) and the purity.
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Figure 6.2: Measured quadrature variance as a function of θ for the SHD (blue) and the IHA (red).
We also report the shot-noise level for comparison (black horizontal dashed line).

being the k-th outcome from the measurement of the quadrature at LO phase θk, with
k = 1, ...,M. They correspond to the vacuum squeezed states detected by switching be-
tween presets as we have seen in Sec. 3.7. In the top panel of Fig. 6.1 we can see the
homodyne trace acquired with the SHD, in which the LO phase is scanned from 0 to π .
The bottom panel of Fig. 6.1, instead, shows the measurement performed employing the
IHA. All traces are normalized to the shot noise level of a pure vacuum field which is
therefore set at one. In both cases the pump beam power for the OPO is P = 300 mW and
the LO power is set to 10 mW by using an amplitude modulator.

As one can see, the traces exhibit squeezing at θ = 0 and anti-squeezing at θ = π/2.
By applying the pattern function method to {(xk,θk)}, we perform a tomographic state
reconstruction of single-mode CV systems. The reconstructed Wigner functions which
correspond to the two examined cases are displayed next to the respective homodyne
traces in Fig. 6.1. The purity µ[ρ] = Tr[ρ2] and the non classical depth, NCD, [106] of the
state ρ acquired with the SHD are µ = 0.68 and NCD = 0.42, respectively, whereas those
acquired with the IHA are µ = 0.74 and NCD = 0.31, respectively. It is worth noting that
the higher purity of the state acquired by the IHA is due to the presence of losses, which
reduce the state energy and make it closer to the vacuum state (which is pure). This is
also testified by the squeezing level which is −4.9 dB in the case of SHD and is reduced
to −1.9 dB for the IHA.

By using the pattern function tomography, we can also evaluate the quadrature vari-
ance Var[xθ ] as a function of θ in order to highlight the difference between the squeezing
and anti-squeezing levels in the two measurement configurations. The results are shown
in Fig. 6.2: the horizontal dashed line represents the vacuum noise level and the observed
noise levels for squeezing are −4.9±0.5 dB for the SHD (blue) and −1.9±0.1 dB for the
IHA (red). This difference arises from the different efficiencies of the two systems. In-
deed, we have seen that the squeezed states that are observed in practical experiments
necessarily suffer from losses present in transmission channels and detectors which de-
grade the observed squeezing and anti-squeezing levels.

In order to analyse in more detail the effect of losses on the single-mode squeezed
state, we compare the performance of our apparatus with the theoretical model seen
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in Chap 3. We have seen that the noise spectrum
〈
∆X2
±
〉

of the squeezed (−) and an-
tisqueezed (+) quadrature variances for an OPO below threshold is expressed by Eq.
3.31. When the IHA is used, we also have to take account of the overall IHA efficiency
η IHA

c = ηf ηw, where ηf and ηw are the fiber coupling and the the waveguide transmis-
sion efficiencies, respectively. The actual value ηIHA has been evaluated by measuring
the input intensity into the fiber coupling lens and the output intensity at the multi-
mode fiber exit. Since the measured fibers coupling efficiency is η f = 0.82, we estimate
ηw = 0.51.

It is worth noting that the chip does not alter the features of the generated states but it
acts as a lossy channel. Thus, its effect is merely a degradation of the observed squeezing
level. Overall, employing the IHA we have:

η
(IHA)
HD = η

(IHA)
Vis η

(IHA)
BS η

(IHA)
c , (6.1)

with now η
(IHA)
Vis = 0.96 (the estimated visibility is V = 0.98), and η

(IHA)
BS = 0.998. For SHD

we recall that
η

SHD
HD = η

SHD
Vis η

SHD
BS (6.2)

In the measurements shown here, we have η
(SHD)
Vis ≡ V 2 = 0.962 whereas all other effi-

ciency values are those indicated in Sec. 3.6. The squeezing levels computed with the
theoretical formula Eq. 3.31 correspond to noise reductions of -4.9 dB in SHD and of
-1.9 dB in IHA, in agreement with the experimental results.

6.3 Squeezed coherent states

In order to test the reliability of the IHA, here we focus on coherent and squeezed-
coherent states. This will allow to demonstrate the performance of our integrated de-
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W

coherent state (CS) (with IHA)

NCD = 0.0
purity = 1.0

Figure 6.3: Homodyne trace referring to a coherent state (CS) by exploiting the IHA and the cor-
responding reconstructed Wigner function. The non classical depth (NCD) and the purity of the
state are also reported.

vice in the presence of both a classical state, i.e., the coherent state, for which the losses
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Figure 6.4: Homodyne traces and reconstructed Wigner functions of phase squeezed CS (top
panel) and amplitude squeezed CS (bottom panel) by using the IHA. Their non classical depths
(NCD) and purities are also reported.

only affect its amplitude but not the phase, and a quantum state. This latter case is the
most interesting, since the intrinsic losses of the IHA can make difficult to detect the
nonclassical features (squeezing) of the input signal.

In the presence of a coherent state (CS) we obtain the homodyne trace reported in
Fig. 6.3. We can see that the IHA allows to record the signal at different phases scanned
by the thermo-optic phase shifter. Moreover, the tomographically reconstructed Wigner
function corresponds to a coherent state with purity 1 and vanishing non classical depth,
as expected.

The phase and amplitude squeezed coherent states are generated by changing the
relative phase between the seed and the pump waves, which is controlled by a mir-
ror attached to a piezoelectric actuator intercepting the pump beam optical path. If the
pump and seed fields are in phase, the OPO acts to amplify the seed (phase squeezing);
if they are π out of phase, it acts to de-amplify the seed (amplitude squeezing). When
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we operate in the amplification regime, we observe the phase squeezed CS shown in the
top panel of Fig. 6.4: the observed level for squeezing at θ = π/2 is −1.9± 0.2 dB. On
the contrary, when the OPO is operating to de-amplify the seed we observe amplitude
squeezing. The measured amplitude squeezed CS shown in the bottom panel of Fig. 6.4
features a noise reduction of −1.2± 0.3 dB at θ = 0. It is worth nothing that the differ-
ence between the squeezing levels in these two cases is the same that we observe if we
perform the measurements using the SHD. The reason for such a discrepancy between
these two cases has to be attributed to the PDH system. One of the future improvements
of our apparatus should deal with this issue. An upgrade concerning the noise sources
suffered by the PDH system should resolve this discrepancy.

6.4 Conclusion

The IHA has been successfully embedded in our optics setup for the generation and
characterization of continuous variable optical states, namely, coherent and squeezed
coherent states. We have demonstrated that, despite the intrinsic losses which affect
the IHA, due to the very nature of the fabrication process, our integrated device is able
to detect the nonclassical features of the input signals. In particular, the reliability of
the recorded homodyne traces have allowed for the tomographic reconstruction of the
considered states by using the pattern function method, thus showing a high degree of
reliability also with respect to the standard homodyne technique based on a cube BS and
a piezo-mounted movement to scan the field quadratures.

As we pointed out, one of the main limitations of the IHA is the presence of losses.
The main future perspective is to work on the waveguide writing process in order to
reduce the device internal losses. Despite this limitation, we have shown that this device
can already be used in all applications which do not necessarily require a high degree
of squeezing. Our results open the way to applications of the IHA in more complex
schemes involving, for example, more mixing processes by means of BSs. In this case,
the main vantage is that, once aligned, the IHA shows a major stability with respect to
that of the cube BS. On the other hand, the IHA makes these complex systems more
compact and easier handling.



Conclusion and Perspectives

The research activity presented in this Thesis investigate quantum optical techniques to
generate and detect nonclassical states in continuous variable (CV) regime. The work
performed during my Ph.D. has been essentially devoted to the implementation of the
experimental setup. Its core is represented by an Optical Parametric Oscillator (OPO)
whereby squeezed states are generated. The acquisition system consists of an optical
homodyne detector (HD). The overall system has a complex structure involving both
optical and electronic components. Every step of the generation and acquisition pro-
cesses have been carefully studied and designed in order to improve as much as possible
the performance of the experimental apparatus. Moreover, we have addressed the prob-
lem of its alignment through an intense experimental work, in order to achieve the best
possible measurement conditions. The excellent agreement between the experimental
data and the theoretical predictions shows the level of control achieved in managing this
setup.

On the other hand, during my Ph.D. we worked on the engineering of the state gen-
eration process. In this regard, a system which consists of optical and electronic compo-
nents has been developed. By means of a software specifically implemented, it can be
controlled in such a way that the states to be injected in the OPO can be generated with
amplitude and/or phase distribution selectable on demand and properly acquired. Here
we have limited ourselves to regard the squeezed vacuum, coherent and thermal states.
In particular, it was just the study of these latter that has highlighted the real skill of our
generation/acquisition apparatus, for the first time. The results have been reported in a
paper [64] in which we have shown how the accurate control of the thermal and squeez-
ing components of the setup, allows us to address the quantum-to-classical transition
for squeezed thermal states. Anyway, this implemented system allows the generation
of any sort of Gaussian states on demand and offers novel possibilities of exploiting the
quantum features in various fields of applied physics such as measurement technology
and information processing.

During my research activity, we also developed an upgrade of the HD system in
order to miniaturise it by exploiting an integrated homodyne analyzer inscribed in a
glass substrate by femtosecond laser writing technology which incorporates in the same
chip both a balanced waveguide beam splitter and a thermo-optic phase shifter. This
device has been embedded in our experimental setup and we have demonstrated that,
despite the intrinsic losses which affect it due to the fabrication process, it is able to detect
the nonclassical features of CV quantum states. Precisely, for the first time, we have
demonstrated how this device can be used to measure vacuum and coherent squeezed
states. This feasibility testing opens the way for exploring the potential offered by this
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device in more complex experimental projects. For example, we have observed that this
integrated device tenders a major stability with respect to that of the homodyne system
realized with a macroscopic beam splitter (BS), once aligned. Therefore its use may be
preferable when we want to realize experiments which involve more BS. Anyway, it can
be already utilized whenever high degrees of squeezing is not required. Besides, the
future work may be finalized to improve the fabrication processes in order to reduce its
intrinsic losses.

In conclusion, our work contributed to understanding the control of nonclassical
states generation and detection processes not only in the field of quantum optics but
also for applications in the field of Quantum information. Some application has already
been realized, but the power of our experimental setup is not yet expired. Furthermore,
it is possible to improve our apparatus performance as regards the level of squeezing
which we can observe. A future perspective may be a higher insulation of the system
from external noises sources which degrade the observable squeezing level. For exam-
ple, our source is a water cooled laser as we have seen. By replacing the current cooling
system with another air-based one, the mechanical vibrations should be reduced. This
implementation should result in a further increase of the observable degree of squeezing.
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