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ABSTRACT  

 

Genomic instability plays a pathological role in various malignancies, including acute myeloid 

leukemia, and thus represents potential therapeutic target. Recent studies demonstrate that SIRT6, a 

NAD+-dependent nuclear deacetylase, functions as genome-guardian by preserving DNA integrity in 

different tumor cells. Here, we demonstrate that also CD34+ blasts from Acute Myeloid Leukemia 

patients show ongoing DNA damage and SIRT6 overexpression. Indeed, we identified a poor-

prognostic subset of patients, with widespread instability, which relies on SIRT6 to compensate for 

DNA-replication stress. As result, SIRT6 depletion compromises the ability of leukemia cells to repair 

DNA double-strand breaks that, in turn, increases their sensitivity to daunorubicin and Ara-C, both in 

vitro and in vivo. In contrast, low SIRT6 levels observed in normal CD34+ hematopoietic progenitors 

explain their weaker sensitivity to genotoxic stress. Intriguingly, we have identified DNA-PKcs and 

CtIP deacetylation as crucial for SIRT6-mediated DNA repair. Together, our data suggest that 

inactivation of SIRT6 in leukemia cells leads to DNA-repair mechanisms disruption, genomic 

instability and aggressive Acute Myeloid Leukemia. This synthetic lethal approach, enhancing DNA 

damage while concomitantly blocking repair responses, provides the rationale for the clinical 

evaluation of SIRT6 modulators in leukemia treatment. 
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INTRODUCTION 

Acute myeloid leukemia (AML) is an aggressive form of cancer with an estimated incidence in 

Europe of three to five cases per 100.000 people. (1, 2) It is a highly heterogeneous disease, both 

biologically and clinically, with variable prognosis. Despite the improvement in our understanding of 

the biology of AML, treatment outcome has not improved in the past 20 years. (3, 4) Chemotherapy 

remains the backbone of therapy whereas stem cell transplantation is mainly offered to young patients 

(age< 60 years). (5, 6) Therefore, the majority of AML patients (e.g. elderly patients), who are often 

unable to tolerate intensive treatments, face a particularly poor prognosis. (7) Thus, there is an urgent 

need to overcome biologic mechanisms underlying drug resistance in AML, to enhance the efficacy of 

existing treatments and to facilitate the design of novel approaches. Several studies show that AML 

oncogenes, such as MLL fusions, N-RAS, and FLT3-ITD, by promoting replication and oxidative 

stress, can lead to DNA damage accumulation. (8-12) In these cases, upregulation of DNA damage 

response (DDR) provides AML cells with a selective survival advantage, but also creates room for 

synthetic lethal interventions.  

Sirtuins are a family of NAD+-dependent deacetylase modifying enzymes that are upregulated in a 

wide range of tumors and have a central role in integrating growth signals that regulate a number of 

cellular pathways including metabolism, genome stability, cell proliferation, and survival. (13, 14) 

Recently, we have demonstrated that Multiple Myeloma (MM) cells exhibit constitutive overexpression 

of SIRT6, a member of this family with a critical role for DNA damage repair, which provides 

implications for both tumorigenesis and treatment of this tumor. (15) Here, we show that SIRT6 has 

biological relevance also in AML being frequently upregulated in tumor cells compared with normal 

CD34+ hematopoietic progenitors. Importantly, such feature is associated with a signature of 

chromosomal instability (CIN) which in turn confers poor prognosis to a subgroup of AML 

patients.(16) Consistent with its observed role, SIRT6 loss unleashes genomic instability thus 



5 

 

triggering hypersensitivity to clinically used DNA-damaging agents, including daunorubicin (DNR) 

and cytarabine (ARA-C), both in-vitro and in-vivo. Mechanistically, SIRT6 binds DNA damage sites, 

recruits and activates, by deacetylation, DNA-PKcs and CtIP promoting overall DNA repair.  

Altogether, our findings suggest that hematologic cancers, including AML, have constitutive ongoing 

DNA damage as well as DNA repair response steadily activated. As a result, strategies aimed to shift 

the balance towards high DNA damage and reduced DNA repair by SIRT6 inhibition can decrease 

tumor growth and may benefit patients with otherwise unfavorable outcomes.  
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METHODS  

For a more detailed description of the methods used, see supplemental experimental procedures. 

Cell lines and Reagents 

The AML cell lines U937, MOLM-14, MV4-11, HL60, HEL, THP-1, NOMO-1, OCI-AML2, OCI-

AML3 and NB4 were provided by collaborators or purchased from ATCC or DSMZ (Braunschweig, 

Germany). All cell lines were cultured in RPMI-1640 medium containing 10% FBS (GIBCO, Life 

Technologies, Carlsbad, CA), 2 μM l−1 glutamine, 100 U ml−1 penicillin, and 100 μg ml−1 

streptomycin (GIBCO, Life Technologies, Carlsbad, CA). 293T cell line was purchased from ATCC 

and cultured in DMEM containing 10% FBS (GIBCO, Life Technologies, Carlsbad, CA), 2 μM l−1 

glutamine, 100 U ml−1 penicillin, and 100 μg ml−1 streptomycin (GIBCO, Life Technologies, 

Carlsbad, CA). Daunorubicin (DNR) and cytarabine (ARA-C) were purchased from Selleck Chemicals 

LLC (Houston, TX) and Sigma-Aldrich (St.Louis, MO), respectively; SIRT6 chemical inhibitor (2,4-

dioxo-N-(4-(pyridin-3-yloxy)phenyl)-1,2,3,4-tetrahydroquinazoline-6-sulfonamide, henceforth named 

compound  1) was obtained from MolPort (Riga, Latvia). 

Primary cell isolation from patient samples 

All studies involving human samples were performed under IRCCS AOU San Martino Hospital 

(Genoa, Italy) IRB committee-approved protocols, after informed consent; de-identified samples were 

utilized. Patient AML cells (n=20) were obtained from bone marrow samples with high disease load 

(>90% CD34+ blasts in the marrow) and mononuclear cells were isolated by Ficoll-Hypaque gradient 

separation as described previously.(17) Normal mononuclear cells (MNCs) were isolated from BM 

healthy donors by Ficoll-Hypaque centrifugation. In some experiments, normal PB MNCs were 

processed by MiniMacs high-gradient magnetic separation column (Miltenyi Biotec, Bergisch 

Gladbach, Germany) to obtain highly purified CD34+ cells. Cells were either used immediately for 
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viability assays or for mRNA isolation, or stored at −80°C in medium containing 50% FBS and 10% 

DMSO. 

Statistical analyses 

All data are shown as means±SD. The Student's t test was used to compare two experimental groups 

using Graph-Pad Prism software. Correlation of SIRT6 expression with disease progression and OS 

was measured using the Kaplan-Meier method, with log-rank test for group comparison. Significance 

was p< 0.05. 
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RESULTS 

SIRT6 is consistently overexpressed in CD34+
 blasts of AML patients 

SIRT6 is a chromatin remodeling-deacetylase involved in tumorigenesis. (15, 18-21) In order to 

explore its function in AML, we tested a panel of leukemia cell lines and patient-derived tumor cells to 

evaluate presence of this protein. All tested tumor cells showed higher SIRT6 staining than normal 

cells, regardless of their genetic landscape. (Fig.1A) Notably, immunofluorescence analysis of selected 

AML cell lines (Fig.1B) confirmed a prominent, although not restricted, nuclear localization of this 

protein, as already reported in different tumors. (15, 22-24) Next, SIRT6 expression was further 

analyzed by querying publicly available data sets. (25, 26) Significant higher SIRT6 mRNA level was 

found in tumor samples (n=300) compared with PB and BM normal hematopoietic and stem cells, 

including CD34+ stem/progenitor cells (HSPCs), more primitive CD34+ CD38- cells and unselected 

mononuclear cells (from BM or PB). (Fig.1C) Correlative analysis of SIRT6 levels with clinic-

pathological features suggested significant association between SIRT6 expression and French-

American-British (FAB) classification. (Fig. S1A) Indeed, among AML groups SIRT6 was higher in 

FAB M0 and M5 whilst FAB M6 subgroup was enriched in patients with SIRT6 low levels. The 

increased SIRT6 expression in tumors vs normal controls was further verified by performing a similar 

analysis on primary CD34+ blast cells obtained from AML patients (n=200) collected at our 

Hematologic unit, compared with bone marrow as well as peripheral blood mononuclear cells 

(PBMCs) from healthy donors (n=10). (Fig.1D) A subsequent investigation focused on molecular 

features showed that SIRT6 high levels were significantly censured in FLT3-ITD mutant than in FLT3 

wild-type (p=0.034), otherwise no correlations were observed between SIRT6 expression and further 

abnormalities including NPM1, BAALC and WT1. (Fig. S1B) Among these 200 AML patients, 

detailed survival information was available for 100 cases. As a result, we retrospectively analyzed the 

prognostic significance of baseline SIRT6 expression from BM aspirate samples on the overall 



9 

 

survival. Results show a statistically significant inverse correlation between SIRT6 levels and overall 

survival, with high SIRT6 expression associated with shorter survival rates than low expression 

(median survival 16 vs 32 months, p=.025). (Fig.1 E) These results were also observed by analyzing 

other publicly available AML patient data sets, (27) which confirmed the higher SIRT6 expression in 

tumors as well as its prognostic significance. (Fig.S2 A,B) Together, our data suggest a role of SIRT6 

in the pathogenesis of AML providing also a rationale for its targeting. 

SIRT6 controls AML cells proliferation and makes them vulnerable to DNA-Damage Agents.  

To further elucidate the possible oncogenic role of SIRT6 in AML, we investigated the effect of its 

genetic depletion by employing a lentiviral-mediated long-term gene knockdown with two shRNA 

constructs targeting SIRT6. (Fig.2A) We chose two AML cell lines with robust SIRT6 expression and 

the role of SIRT6 in cell viability and proliferation was assessed. Surprisingly, introduction of SIRT6-

targeted shRNA induced significant increase in cell numbers and cell-cycle progression, that were 

proportional to the reduction in protein levels (Fig.2A-B); instead SIRT6 overexpression did not affect 

cell count, due to the high SIRT6 levels at baseline (data not shown). These findings, as already 

observed in MM and in various solid tumors are likely to account for the discrepancies in the tumor 

burden, but clearly contrast with SIRT6 overexpression in AML patients.(15, 28) Such paradoxical 

behavior prompted us to hypothesize a tumor-specific role for this NAD+-dependent histone 

deacetylase. 

As SIRT6 has been found to play a key role in mediating DNA repair mechanisms, (22, 29-32) we 

investigated whether it acts as genome-guardian also in AML blasts. SIRT6 depleted cell lysates 

subjected to western blot analysis, showed an increased γ-H2A.X staining, suggesting that 

downregulation of SIRT6 expression enhances instability of AML cells. (Fig. 2C and S3) Importantly, 

these changes were not associated with DNA response activation, since pATM, pATR, pCHK1 and 

pCHK2 were almost unchanged after SIRT6 silencing. Similarly, replicative stress markers, including 
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RAD51, resulted unaffected by gene-knockdown in AML cells. (Fig. 2C and S3) Overall these data 

indicate that SIRT6 depletion freezes DNA repair mechanisms which in turn lead to greater damage. 

Lack of DNA repair efficiency sensitizes cancer cells to DNA damaging agents (DDAs). (33) Based on 

the observation that SIRT6 affects such mechanisms in AML, we hypothesized that cells depleted of 

SIRT6 would be more sensitive to the genotoxic agents DNR and Ara-C. We therefore, incubated 

SIRT6 depleted cells with clinically relevant concentrations of either agents and assessed their 

viability. As showed in Fig.2D, significantly more cytotoxicity was observed in absence of SIRT6 

compared with scramble control transfectants. Consistent with these data, the SIRT6 chemical inhibitor 

compound 1, (34, 35) was also found to sensitize cell lines as well as primary AML cells to DDAs. 

(Fig. 2 E-F) Together, these results are consistent with a leading role played by SIRT6 in regulating 

AML cells sensitivity to chemotherapy. 

SIRT6 loss affects ATM/CHK2 pathway, as well as recruitment of repair factors to sites of DNA 

damage. 

As SIRT6-depleted cells are more sensitive to genotoxic stress due to failure of  DNA repair 

mechanisms, we next measured levels of proteins mediating DNA DSBs response after SIRT6 

silencing. Although SIRT6 depletion did not affect the protein level of ATM, CHK2 or RPA, after 

DDAs treatment it markedly diminished their functional activity. Specifically, in scramble control, 

DDAs treatment induced RPA phosphorylation on Ser4 and Ser8, as well as increased ATM and CHK2 

phosphorylation together with accumulation of lower-molecular-weight protein γH2AX. DDAs 

treatment did not induce the same effects (in term of phosphorylation of CHK2, RPA32, and ATM) in 

SIRT6-knockdown cells. Similarly, increase in γH2AX level was more pronounced in SIRT6-depleted 

OCI-AML2 and OCI-AML3 cells. (Fig.3A and Fig. S4) Overall, these observations identify a crucial 

role of SIRT6 in preserving genome integrity of AML cells through promotion of DNA repair 

mechanisms. Next, we asked whether SIRT6 also mediates the recruitment of DNA repair factors to 
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damage sites, which represents an attempt to preserve genomic integrity. We employed 

immunofluorescence to measure ability of AML cells expressing SIRT6 shRNA to recruit repair 

factors including 53BP1, Rad51, RPA and γH2AX, to the sites of DNA damage following DDAs 

treatment. As shown in Fig.3 B-D, genotoxic stress resulted in increased γH2AX foci formation as well 

as impaired Rad51, pRPA and 53BP1 foci formation in SIRT6-knockdown compared with SIRT6-wt 

AML cells. Therefore, the simultaneous presence of increased DNA damage and decreased DNA DSBs 

repair explains the observed hypersensitivity of these cells to DDAs. 

SIRT6 maintains genome integrity by deacetylation of DNA-PKcs and CtIP in AML cells 

To gain insights into specific function of SIRT6 in DNA damage context of AML cells, we 

characterized SIRT6-interacting proteins. (30, 36, 37) GFP-tagged SIRT6 was expressed in OCI-AML3 

cells and then immunoprecipitated with anti-GFP antibody. Western blot analysis revealed that DNA-

PKcs and CtIP were enriched in the GFP-SIRT6 immunoprecipitates (IPs), mainly after DDAs 

treatment. Importantly, SIRT6 inhibition by compound 1 heavily reduced levels of both proteins, also 

in the presence of genotoxic stress. (Fig.4A) Other SIRTs family proteins, such as SIRT1, did not 

associate with GFP-SIRT6 under these conditions, validating specificity of the assay. Analysis of 

endogenous SIRT6 IPs confirmed this association as well as its resistance to ethidium bromide, 

indicating that it is not due to DNA bridging (Fig.4B and Fig.S5) Our data therefore indicate that 

SIRT6 interacts physically with DNA-PKcs and CtIP in AML cells, and that this interaction increases 

rapidly upon genotoxic stress. Since SIRT6 is a histone deacetylase, we next tested whether acetylation 

status of interacting proteins was affected by SIRT6 depletion. Each endogenous protein was pulled 

down separately after treatment with DDAs in both SIRT6-wt and SIRT6-KD AML cells. Although we 

readily detected acetylation of DNA-PKcs as well as CtIP in SIRT6 wild-type cells, their acetylation 

was abrogated after DNR and Ara-C treatment. In contrast, DNA damage-induced deacetylation of 

these proteins was totally abolished in SIRT6 depleted cells. (Fig.4C and Fig. S6) These data suggest 
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that DNA-PKcs and CtIP are constitutively acetylated in AML cells, and are deacetylated by SIRT6 

following genotoxic stimuli, thereby promoting DNA damage repair. This observation was further 

confirmed by treating AML cells overexpressing human SIRT6(H133Y) catalytic mutant with 

increased doses of DDAs. As shown in Fig.4D, DDAs treatment resulted in more pronounced anti-

tumor effect in AML cells overexpressing the catalytically inactive mutant than wild type form of 

SIRT6, indicating that enzymatic activity is required for SIRT6 to maintain genome stability of AML 

cells.  

Ongoing DNA damage is associated with intense replicative stress and high SIRT6 expression in 

AML cells. 

Several studies have recently demonstrated a pervasive dysregulation of genomic stability in several 

cancers, including AML. (8, 38) To explore whether observed high SIRT6 expression was related to 

constitutive DNA damage and intense replicative stress observed in AML cells, we employed a 

chromosomal instability signature (CIN) (16) to categorize AML cell lines included in a published 

dataset (GSE59808). As shown in Fig.5A, a subset of approximately 40% AML cell lines demonstrated 

overexpression of probe sets belonging to CIN-signature. To confirm this finding, we next explored a 

panel of AML cell lines together with primary tumor cells. Six of 9 AML cell lines, as well as primary 

cells derived from ten AML patients, showed high γ-H2A.X staining (Fig. 5B-C) as well as activated 

DDR (Fig. 5D). Remarkably, this pattern was absent in normal PBMCs derived from healthy 

individuals, (Fig. 5C) as already reported. (39) Thus, such ongoing DNA damage observed in tumor 

cells did not induce an extensive cell death under basal conditions, suggesting existence of alternative 

mechanisms to escape apoptotic cell death triggered in normal cells. 

We previously reported that SIRT6 preserves DNA integrity in MM cells.(15) To investigate whether 

such deacetylase affects instability also in AML cells, we categorized leukemia cell lines included in 

GSE59808 according to their SIRT6 expression levels. As shown in Fig.5E, AML cell lines with high 
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CIN-signature exhibited greater SIRT6 mRNA levels (p= 0.01). As a measure of specificity of this 

effect, we assessed gene expression profiles of AML cells based on their SIRT6 levels, using Gene Set 

Enrichment Analysis. (40) Remarkably, the gene expression profile defined by Carter et al. (16) 

significantly correlates with SIRT6 expression in AML cells (p = 0.02; Fig. 5F). In parallel, analysis on 

the entire set of transcription target gene signatures available from the Molecular Signatures Database 

(MSigDB) showed gene sets included in DNA replication and cell-cycle regulatory genes pathway as 

also significantly deregulated in these cells (data not shown), suggesting that SIRT6 drives DNA 

damage and activation of DNA damage response also in AML cells. 

AML patients with SIRT6 overexpression show feature of genomic instability and poor prognosis 

We next examined whether the broad DNA damage observed in AML patients-derived cells is also 

associated with SIRT6 mRNA levels. To this end, we probed samples from 5 data sets, including tumor 

and CD34+ cells from healthy donors (GSE1159, GSE7186, GSE425, GSE12417 and GSE37642), for 

CIN gene expression signature. As shown in Fig. 6A this analysis sharply divided samples into two 

groups, with AML patients overexpressing probe sets belonging to CIN signature compared with cells 

derived from healthy individuals. To further characterize this data, we next interrogated a publically 

available data set of 524 cases of de novo AML, (41) observing that tumor samples can be split up into 

three groups, based on the expression of genes included in CIN signature: low, intermediate and high. 

(Fig. 6B) Importantly, this arrangement did not overlap with other features, including cytogenetic 

abnormalities and FLT3 mutations (data not shown). Next, we analyzed the prognostic significance of 

these findings observing that patients displaying higher CIN signature demonstrated poor prognosis 

compared with remaining patients. (p<0.001; Fig. 6C) Finally, we analyzed these AML patients using 

GSEA. As observed in AML cell lines, this analysis revealed that CIN signature was the most 

significantly altered pathway measured in patients classified on the basis of their SIRT6 expression 

level (p=0.03, FDR = 0.04; Fig. 6D); the DNA repair pathway and the BRCAness signature (42) also 
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differed in these patients subgroups. (Fig. S7 A,B) In line with these data, higher SIRT6 levels were 

observed in patients with high CIN signature than those with intermediate or low SIRT6 expression 

level. (Fig. 6E) Altogether our results suggest a link between SIRT6 and genomic instability also in 

AML patient-derived samples, justifying the highest SIRT6 levels observed in more aggressive disease 

subtypes. 

SIRT6 inhibition makes AML blasts more sensitive to DNR treatment in NSG mice  

To assess whether the biological results observed in vitro occurs also in vivo, we used two different 

xenotransplant mouse models of AML. First, U937 scramble or SIRT6-KD stably transduced cells 

were injected subcutaneously into NSG mice (n=20). After tumor engraftment, mice (n=5) of each 

group were randomly assigned to receive either 3 mg/kg of DNR administered intraperitoneally (at day 

1 and 5) or vehicle control. (15) As in the in vitro setting, SIRT6 depletion made AML cells more 

sensitive to genotoxic agents, with a significant reduction of tumor growth in mice bearing these cells 

compared with tumors induced by AML cells carrying normal SIRT6 levels. Indeed, at 30th day after 

tumor injection, mean tumor volume was 60 vs. 40 mm2 , respectively (p=0.03; Fig.7A).  

In a second in-vivo model, we intravenously injected human HL-60 cells, scramble or SIRT6 shRNA-

transduced, into NSG mice (n�=20; �5 mice per condition). Once a systemic xenograft was confirmed 

(greater than 0.1% in peripheral blood of mice) the treatment regimen was initiated (1.5mg/kg of DNR 

administered intraperitoneally, for 3 days, or vehicle control). At 31st day after cell transfer, flow 

cytometry evaluation of the circulating human CD45+ cells in the murine PB was performed to assess 

AML engraftment. As shown in Figure 7B, this analysis revealed a significant lower leukemia burden 

after DNR-treatment than vehicle, with SIRT6 depletion making these cells more sensitive to 

chemotherapy (the percentage of human engraftment: 0.9 ± 0.1% and 0.16 ± 0.01%, respectively, with 

p=0.006), as observed in-vitro. Tumor cells engraftment was measured also at 40th day and results 

showed that SIRT6-depleted treated mice had significantly fewer tumor cells compared with relative 
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control. (Fig. 7C) Furthermore, as shown in Fig. 7D, Kaplan-Meier analyses indicated that DNR-

treated mice injected with SIRT6-depleted survived significantly longer than those bearing tumors with 

normal SIRT6 levels (56 vs 39 days; p=0.004). Overall these data show that AML blasts depleted of 

SIRT6 are more sensitive to DDAs agents also in an in-vivo environment, suggesting therefore 

evaluation of SIRT6 inhibition as a novel strategy to enhance DDAs sensitivity in AML patients. 
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DISCUSSION 

The efficiency of DNA-repair and DNA damage-response pathways, affects both cancer susceptibility 

and responses to genotoxic agent-based therapies. (33) As a result, synthetic lethal approaches to 

specifically kill cancer cells, that are dependent on compensatory DNA repair pathways, are emerging 

as vulnerability that can be therapeutically targeted. (39, 43-45) In this context, we have recently 

showed that the chromatin-bound factor, SIRT6, safeguards the genome of MM cells. (15) Here, we 

further extend these observations to AML cells and demonstrate that SIRT6 controls leukemogenesis 

and tumor growth by struggling with their instability. Indeed, we show that defects in SIRT6 

expression or activity sensitize AML cells to genotoxic agents, leading to a significant blast-cell counts 

reduction, and to prolonged survival in AML mice models. Co-IP experiments have also demonstrated 

that SIRT6 deacetylates DNA-PKcs and CtIP, resulting in efficient DNA repair mechanisms and 

integrity of AML cells. In contrast, loss of SIRT6 enzymatic activity enhances instability which in turn 

sensitizes leukemia cells to DDAs. Overall our data suggest an innovative strategy to enhance efficacy 

of chemotherapy, which still remain the backbone for treatment, in AML. Additionally, based on low 

SIRT6 levels detected in normal CD34+ hematopoietic progenitors, a favorable therapeutic index of 

such approach is also warranted. 

Genomic instability is one of the distinctive markers of tumor cells providing them additional 

capabilities crucial for tumorigenesis. (46-50) In hematological cancers, the relevance of such feature, 

and the mechanisms underlying instability are largely unknown. (15, 30, 51-57) Based on our data, we 

assume that pervasive DNA damage observed in AML cells is reliant on genes such as SIRT6, that 

when disrupted, lead to further instability. (58, 59) The prominent role exerted by SIRT6 on 

leukemogenesis is reinforced by its prognostic relevance, as observed in primary AML samples. 

Indeed, SIRT6 overexpression is associated with greater instability and worse prognosis. As a result 

genetic inactivation of this chromatin remodeler, triggers growth advantage and DNA repair weakening 
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that in turn cause greater DDAs sensitivity. A comprehensive genomic analysis revealed that AML 

patients harbor several genetic alteration, (66) including FLT3-ITD which primes leukemic cells to 

genotoxic stress-induced. (12) Here we observed higher SIRT6 mRNA expression levels in AML 

patients carrying FLT3-ITD mutant, providing further evidence for a direct link between SIRT6 and 

genomic instability in AML. Nevertheless these effects were not related to other specific genetic 

makeup, suggesting that SIRT6 acts on genomic stability of AML regardless of its specific genomic 

landscape. 

As cancer genome is itself reflective of phenotypic properties, specific gene signatures have been 

employed to predict clinical outcome and identify prognostically relevant feature in different cancer 

subtypes. (60, 61)  Similarly, measurement of genomic instability degree, by leveraging specific genes 

signature, provides a valuable tool for prognostic stratification. (62) Based on our data, here we asked 

whether consequences of aberrant DNA repair are reflected in genomic features, and how these events 

are associated with SIRT6 expression levels in AML cells. Therefore, we analyzed published databases 

for abnormal expression of genes belonging to chromosomal instability signature (14), recently 

identified as instability biomarker. (43) As shown in Figure 6, the CIN-based stratification highly 

correlated with SIRT6 mRNA levels: greater instability was observed in patients harboring highest 

SIRT6 level which results in poor prognosis.  Thus, our data pinpoint SIRT6 as a valuable feature to 

segregate AML patients into distinct molecular and biological classes. 

Besides SIRT6, also SIRT1 promotes genomic integrity of tumor cells, proposing on overlapping 

function. (52, 63) In such a scenario, a broad gene expression analysis of SIRTs family members 

revealed SIRT6 and SIRT1 as top ranked, thus supporting the crucial role of these two proteins for 

AML cells. (Fig. S8 A-B) SIRT6 is a chromatin-bound deacetylase that participates to DNA double-

strand break repair by affecting activity of several proteins, including CtIP, PARP1, DNA-PK complex 

and SNF2H at DNA damage sites. (30, 32, 36, 56) Here we show that AML cells, after genotoxic 
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stress, rapidly recruit SIRT6 to DNA damaged sites where it deacetylates and promotes activity of 

DNA-PKcs and CtIP. In contrast, compromising SIRT6 activity decreases repair mechanisms resulting 

in greater DDAs cytotoxicity both in vitro and in murine xenograft models of human AML.  

In summary, among the potential mechanisms that could cause instability, the disruption of DNA repair 

complex is an intriguing avenue that anti-cancer therapies may pursue to increase activity of currently 

used therapeutics. While analysis of larger cohorts of patients may yet identify additional data on 

specific impact of SIRT6 on genomic instability, here we identify such deacetylase as vulnerability to 

be exploited in developing future intervention strategies, speculating also its role as surrogate genetic 

marker for instability in AML patients. Overall, our study provides proof-of-concept that depletion of 

SIRT6 represents a novel strategy to selectively target AML cells enhancing their sensitivity to 

currently used chemotherapies.  
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FIGURES LEGENDS  

Figure 1. SIRT6 is highly enriched in AML and its expression confers poor prognosis. (A) Protein 

lysates from a panel of AML cell lines (left panel), primary patient-derived AML cultures or normal 

PBMCs (right panel) were analyzed for SIRT6 expression by western blot. GAPDH was used as 

loading control. The quantification of SIRT6/GAPDH ratios is showed below. One experiment of two 

is shown. (B) Six AML cell lines were analyzed for SIRT6 (green) by immunofluorescence. 4′,6-

diamidino-2-phenylindole nuclear stain is shown in blue. Original magnification ×20. (C) Box plot 

distributions of SIRT6 gene expression levels in normal hematopoietic cells from healthy donors and 

leukemic CD34+ blasts from AML patients (N=300), combining data from GSE1159, GSE9476 and 

GSE30377 (using the probe set 219613_s_at). Normal hematopoietic samples included CD34+  selected 

cells (N= 18; 8 from BM and 10 from PB), CD34+ CD38- cells (N= 10), unselected bone marrows (N= 

10), and unselected peripheral bloods (N= 6). The numbers below graph are the samples per group 

(N=). ns, not significant, **P < 0.05, ***P < 0.001 (one-way analysis of variance (ANOVA) with 

expression data log(2) transformed). (D) Increased SIRT6 mRNA expression is observed in AML 

patients (CD34+ blast cells) relative to normal controls (CD34+ cells collected from peripheral blood or 

bone marrow of healthy donors; unpaired t test; **p=0.006;*p=0.02). GAPDH mRNA expression was 

used as an internal control. (E) Survival curves relative to SIRT6 expression in 100 individuals affected 

by AML diagnosed at our clinic. The patient group with higher SIRT6 expression (red line) had shorter 

overall survival than the patient cohort with lower SIRT6 expression (blue line) (log-rank test). The 

SIRT6 mRNA median value was use to split AML patients. 

Figure 2. SIRT6 affects proliferation and vulnerability to DNA-Damage Agents in AML cells. (A) 

SIRT6 silencing in THP-1 and U937 cells using a lentiviral delivery system. On the left, western blot 

analysis in pGIPz-infected cells after 48 h of selection with 1 μg ml-1 puromycin. In the center, cell 

numbers evaluated by cell counting with trypan blue exclusion. On the right AML-engineered cells 



27 

 

were assessed for cell number and (B) cell-cycle progression. All data throughout the panel are shown 

as the mean values ± s.d. of triplicates. ns: not significant, *P < 0.01, **P < 0.001 (Student’s t test) (C) 

Representative western blots showing DDR pathway deregulation in THP-1 cells depleted of SIRT6 

compared with control. GAPDH was used as loading control. One representative blot of two is shown. 

(D) OCI-AML-2 and OCI-AML-3 cells were transduced with a scrambled shRNA (CTR) or with an 

anti-SIRT6 shRNA (#911). Cells were used for immunoblotting detection of SIRT6 or γ-tubulin 

expression (upper insets) or in viability experiments. For the latter 2 x 104 cells/well were plated in 96-

well plates and incubated for 48h with or without DNR or ARA-C at the indicated concentration. 

Thereafter, dead cells were detected by propidium iodide staining and flow cytometry. 2 x 104 OCI-

AML2 (E) and primary AML (F) cells/well were plated in 96-well plates and incubated for 72h w/ or 

w/o DNR/ARA-C (at the indicated concentration) w/ or w/o compound 1 from [34]. Thereafter, dead 

cells were detected by propidium iodide staining and flow cytometry. *0.04<p<0.01; 

**0.009<p<0.001; ***<0.0001. 

Figure 3. SIRT6 affects ATM/CHK2 pathway, as well as recruitment of repair factors to sites of 

DNA damage in AML cells. (A) Indicated AML cells were engineered to express an anti-SIRT6 

shRNA (#911). Next, cells were incubated 3 hours with or without DNR (0.1 uM), or Ara-C (1 uM). 

Subsequently, total and phosphorylated ATM, Chk2, and RPA as well as γH2AX levels were detected 

by immunoblotting. Detection of Rad51 and γH2AX (B), pRPA (C), 53BP1 (D), and DAPI was 

measured by confocal microscopy in OCI-AML2 cells expressing shRNA (clone #911) targeting 

SIRT6 or control and cultured with or without treatment with Ara-C (1μM) or DNR (0.1μM) for 1 h 

(Magnification: 40X). Each panel includes representative foci-containing cells graph, over three 

experiments. *0.04<p<0.01; **0.009<p<0.001 

Figure 4. SIRT6 depletion/inhibition sensitizes AML cells to genotoxic agents by disrupting DNA 

repair machinery. (A) OCI-AML2 cells were engineered to express a GFP-tagged SIRT6. Cells were 
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stimulated with compound 1, DNR (0.1 uM), or Ara-C (1 uM) for three hours. Thereafter, cells were 

used for protein lysate generation. SIRT6 in the different samples was co-immunoprecipitated using an 

anti-GFP antibody. Finally, GFP, CtIP, DNA-PKcs and SIRT1 levels were detected by 

immunoblotting. (B) OCI-AML2 cells were stimulated with compound 1, w/ or w/o DNR (0.1 uM) for 

three hours. Thereafter, cells were used for protein lysate generation. Endogenous SIRT6 in the 

different samples was immunoprecipitated using an anti-SIRT6 antibody and CtIP, DNA-PKcs, SIRT6, 

and SIRT1 levels were detected by immunoblotting. (C) OCI-AML2 engineered to express an shRNAs 

targeting SIRT6 (#911) were stimulated w/ or w/o DNR (0.1 uM), or Ara-C (1 uM) for three hours. 

CtIP (upper) and DNA-PKcs (lower) were immunoprecipitated and CtIP, DNA-PKcs, acetylated 

proteins (pan-acetyl-antibody) and γ-tubulin were detected by immunoblotting. (D) Viability assays 

after Ara-C (left) or DNR (right) treatment of OCI-AML2 non transfected cells, as well as in OCI-

AML2 cells overexpressing SIRT6 wild type or mutant (H133Y).*p=0.02; **p<0.001 

Figure 5. Ongoing DNA damage and high CIN signature are associated with intense replicative 

stress and SIRT6 overexpression in AML cells. (A) Expression levels in a panel of 32 human AML 

cell lines for the probe sets corresponding to the chromosomal instability signature described in (16), 

using GSE59808. Red color for a gene indicates expression above the median and blue color indicates 

expression below the media. (B) Immunofluorescence staining of γ-H2A.X in AML cell lines and 

primary tumor cells; magnification: 40X. (C) Western blot analysis (one representative blot out of 

three) of γ-H2A.X in AML cell lines (top), AML patients’ cells and PBMCs from healthy donors 

(down). GAPDH, glyceraldehyde 3-phosphate dehydrogenase. (D) 53BP1 and RAD51 number of foci 

in a panel of AML cells presenting with high DNA damage (red bracket) and low DNA damage (blue 

bracket). (E) SIRT6 expression was compared to CIN signature among AML cell lines in the 

GSE59808 data set. *p=0.04. (F) GSEA enrichment profile for AML cell lines (included in GSE59808) 

divided in high and low SIRT6 expression groups of chromosomal instability signature as annotated in 
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(16). The analysis pointed to an association between high SIRT6 levels and CIN in AML cells. 

Figure 6. High CIN gene expression signature confers poor prognosis in AML and correlates 

with SIRT6 expression. (A) Heat map showing CIN signature in 1157 AML patients compared to 

CD34+ cells derived from healthy individuals (GSE1159, GSE7186, GSE425, GSE12417 and 

GSE37642). Red color for a gene indicates expression above the median and blue color indicates 

expression below the media. (B) Expression levels for the probe sets corresponding to the 

chromosomal instability signature using GEP data of 524 AML patients (GSE14468). (C) Kaplan-

Meyer survival curves of AML patients showed in panel B based on their CIN gene expression 

signature. (D) GSEA enrichment profiles for AML patients included in GSE14468, divided in high and 

low SIRT6 expression groups of CIN signature as described in (16). The analysis pointed to an 

association between high SIRT6 levels and CIN in AML cells. (E) SIRT6 expression was compared to 

CIN signature in AML patients described in GSE14468 data set. **p=0.001; ***p=0.0001 

Figure 7. SIRT6 inhibition makes AML blasts more sensitive to DNR treatment in NSG mice. (A) 

Growth of U937 control and SIRT6-depleted xenografts in mice treated with vehicle or DNR (3mg/kg 

i.p. day 1 and +4) at 20th day after tumor engraftment. *p=0.036. Data are mean tumor volume ± SD. 

(B) 1�×�106 of scramble or shSIRT6-expressing HL-60 cells were engrafted into NSG mice (n= 20) 

by tail-vein injection. Once a systemic xenograft was confirmed, mice were randomized to receive 

DNR (1.5 mg/kg for 3 days) (treated group) or vehicle (control group). The histogram represents 

percentage of human CD45+ cells in mice, at 31st day post engraftment. Data are represented as mean ± 

SEM. *p = 0.006. (C) Representative flow cytometric dot plots representing tumor engraftment 

evaluated at 40th day post-injection. (D) Kaplan-Meier survival plot showing median survival of mice 

injected with tumors w/wo SIRT6 before and after treatment with vehicle or DNR. 

 

















SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

 

Gene editing by lentiviral transgenesis 

SIRT6 was knocked-down using a pGIPz vector (Thermo Scientific, Pittsburg, PA) containing the 

target sequence (clone#984: TGCATTGAGGACTTTTCCA; clone#911: 

ACAAGTAACAAAGTGAGAC) or scramble control, according to manufacturer's specifications. To 

obtain stable silenced cells, the following protocol was used. 293T cells were plated (300,000 cells on 

6-cm plates) in DMEM, 5% FBS, and 0.1% penicillin-streptomycin. After 24 h when cells were 60–

70% confluent, 6,000 ng of the vector of interest together with Trans-Lentiviral Packaging Mix were 

co-transfected with CaCl2 (Thermo Scientific, Pittsburg, PA). After 12 h, the 293T medium was 

changed with DMEM, 20% FBS, and 10% penicillin-streptomycin to promote viral production. 24 and 

48 h after transfection, the supernatant containing lentiviral particles was harvested, filtered with a 

0.45-μm-diameter filter, and used to infect 2,500,000 AML cells. AML cells were spinoculated at 750g 

for 45 min with 8 μg ml−1 polybrene, (Santa Cruz Biotechnologies, CA) incubated with viral 

supernatant for 6 h and left in culturing medium. After the second cycle of infection, cells were 

selected with a suitable concentration of puromycin (2 μg ml−1). 48 and 72 h after selection, the 

transduction efficiency was approximated by counting the proportion of cells expressing the fluorescent 

protein (GFP) using a fluorescence microscope (Nikon Eclipse 80i, Nikin, Melville, NY); and the 

knockdown efficiency was validated by detecting SIRT6 protein level by WB analysis.(1) Further 

experiments were performed on SIRT6-depleted AML cells generated with sh#911 infection, which 

represented the most efficient approach. 

Gene Expression Analysis 

Gene expression profiling data were derived from publicly available Gene Expression Omnibus (GEO) 

datasets profiled on Affymetrix GeneChip Human Genome U133A or Plus 2.0 arrays, available at 



accession numbers GSE59808, GSE1159, GSE7186, GSE425, GSE12417 GSE37642, GSE30377, 

GSE9476 and GSE14468. GSE1159, GSE39377 and GSE9476 samples’ datasets were normalized 

together by Robust Multi-array Average procedure (2) and then re-annotated using Chip Definition 

Files from BrainArray libraries version 20.0.0. (3) ComBat function of sva package (available at 

http://www.bioconductor.org) was used to remove batch effects. (4) The Affymetrix U133 Plus 2.0 

GEPs were derived from publicly available Gene Expression Omnibus (GEO) datasets accession 

numbers GSE59808, GSE1159, GSE7186, GSE425, GSE12417 GSE37642, GSE30377, GSE9476 and 

GSE14468). GSEA was performed as previously described (5) (GSEAv2.0 at 

http://www.broad.mit.edu/gsea) using gene set as permutation type and 1,000 permutations and signal 

to noise as metric for ranking genes. Both absolute and real data preprocessing were performed with 

GenePattern (http://genepattern.broadinstitute.org/gp/pages/login.jsf). 

In vivo studies 

Experiments were carried out on non-obese diabetic severe combined immunodeficient (NOD/SCID) 

interleukin-2 receptor g (IL-2Rg)–null (NSG) mice, 6 to 8-weeks-old. NSG mice were bred and housed 

under pathogen-free conditions in the animal facilities at the European Institute of Oncology–Italian 

Foundation for Cancer Research Institute of Molecular Oncology (IEO-IFOM, Milan, Italy). All animal 

experiments were carried out in strict accordance with the Italian laws (DLvo 26/2014 and following 

additions) and were approved by the institutional committee. (6)  

For the subcutaneous xenograft study, U937 cells were transduced with GFP-tagged scramble and 

SIRT6 shRNA. Next 0.2 x 10
6
 cells (in 100 μl PBS) were injected subcutaneously in the right flank of 

mice. Following detection of tumor (~2 weeks after the injection), 20 tumor-bearing mice in each 

group were randomly assigned to receive either 3 mg/kg of doxorubicin administered intraperitoneally 

(at day 1 and then once more at 4-day interval) or vehicle control. Tumor volume was measured by 

caliper at day 20th and 30th post-tumor injection, with the following formula: (length x width2) / 2. (7) 



For induction of acute leukemia, 1 × 10
6
 HL-60 cells (scramble and SIRT6 shRNA transduced) were 

injected intravenously through the lateral tail vein in non-irradiated mice. After tumor engraftment, 

defined by means of percentage of human CD45+ cells in peripheral blood, 20 AML-bearing mice in 

each group were randomly assigned to receive either 1.5mg/kg of DNR administered intraperitoneally, 

for 3 days, or vehicle control. Human cell engraftment in the peripheral blood from tail vein was 

investigated by flow cytometry analyses at 35 and 45 days after transplant. The phenotype of human 

cells in NSG mice was evaluated using the following anti-human antibodies: anti-CD15-FITC (80H5), 

-CD13-PeCy7 (IMMU 103.44), -CD45-APC (J.33), -CD33-APC-Cy7 (D3HL60.251) from Beckman-

Coulter (Irving, TX, USA) and anti-mouse CD45-PE (30-F11) from BD Biosciences to exclude murine 

cells contamination. Cell suspensions were evaluated by a FACSCalibur (BD Biosciences) using 

analysis gates designed to exclude dead cells, platelets and debris. Percentages of stained cells were 

determined and compared to appropriate negative controls. Seven-aminoactinomycin D (7AAD) from 

Sigma-Aldrich was used to enumerate viable, apoptotic and dead cells. 

Cell Viability Assay  

Cell viability was assessed by using CellTiter 96 AQueous One Solution Cell Proliferation Assay 

(Promega Corporation, Madison, WI, USA), as previously described.(1, 7)  

Cell cycle analysis 

For cell cycle analysis, cells were re-suspended in a buffer containing 0.1% Na citrate, 0.1% Triton-X, 

and 50 μg/ml propodium iodide. Thereafter, the isolated cell nuclei were analyzed by flow cytometry 

using a FACS Calibur (Becton Dickinson, Milan, Italy). 

Real-time quantitative PCR 

Peripheral blood (PB) and blood marrow (BM) samples were collected from 200 patients with newly 

diagnosed AML at Hematology Unit of IRCCS-AOU San Martino Hospital (Genoa, Italy) between 

September 2009 and December 2014 during routine diagnostic assessments. Total RNA was extracted 



using RNeasy Mini Kit (Qiagen, Hilden, Germany). The purity and concentration of the total RNA was 

determined by a Nanodrop spectrophotometer (Labtech). The ratios of absorption (260 nm/280 nm) of 

all samples were between 1.8 and 2.0. cDNA was synthesized from 500 ng of total RNA with oligo(dT) 

primers using the High Capacity cDNA Reverse Transcriptase Kit (Invitrogen, Life Technologies, 

Carlsbad, CA) according to the manufacturer`s instructions. To evaluate the expression levels of listed 

genes, RT-PCR was performed using SYBR green PCR Master Mix (Applied Biosystems, CA) after 

optimization of the primer conditions. 20 ng of reverse-transcribed RNAs were mixed with 400 nM of 

specific forward and reverse primers in a final volume of 20 μl. RT-PCR was performed on an ABI 

Prism 7500 Sequence Detection System (Applied Biosystems, CA). Data were analyzed using the 

2
−ΔΔCt

 method to measure the relative changes in each gene's expression compared with GAPDH 

expression. To determine mRNA levels by qPCR, the following primers were used: SIRT6 (forward: 

CCTCCTCCGCTTCCTGGTC; reverse: GTCTTACACTTGGCACATTCTTCC); GAPDH (forward 

CATACCAGGAAATGAGCTTGACAA; reverse AACAGCGACACCCATCCTC). 

Western blotting (WB) 

Whole-cell lysates and cell fractions were prepared as previously described. (7) Protein concentrations 

were determined by Bradford assay (Bio-Rad, CA), and equivalent amounts (40-50μg) were subjected 

to SDS-PAGE, transferred to PVDF membranes immunoblotted with following antibodies: anti-SIRT6 

(#16486, Cell Signaling Technology, Danvers, MA, USA), anti-GAPDH (#5174, Cell Signaling 

Technology), anti-phospho-Histone H2A.X (Ser139) (#05-636, Millipore), anti-phospho-RPA32 

(S4/S8) (#300-245, Bethyl Labs), anti-RPA32 (#2208, Cell Signaling Technology), anti-phospho-Atm 

(#47739, Santa Cruz Biotechnology), anti-Atm (#7230, Santa Cruz Biotechnology), anti-phospho-Chk2 

(Thr68) (#16297, Santa Cruz Biotechnology), anti-RAD51 (#588-B01P, Novus Biologicals), anti-

DNA-PKcs (#1552, Santa Cruz Biotechnology), anti-CtIP (#271339, Santa Cruz Biotechnology), anti-

GFP (#NB600-308, Novus Biologicals) and anti-pan acetyl (#284922 Santa Cruz Biotechnology). 



Band intensities were quantified by Quantity One SW software (Bio-Rad Laboratories, Inc) using 

standard ECL Western Blotting Detection Reagents (Thermo Fisher Scientific, IL). Densitometric 

analysis of western blots was carried out using ImageJ software version 1.48 (National Institute of 

Health). 

Co-immunoprecipitation (co-IP) 

Cells were lysed in IP buffer (50mM Tris-HCl [pH7.4], 150mM NaCl, 5 mM EDTA and 1%NP-40) 

plus phosphatase and protease inhibitors. The resulting extracts were incubated with 20 μl Protein A/G 

PLUS Agarose beads (Santa Cruz Biotechnology, Dallas, TX) at 4 °C for 30 min on the rocker, and 

then incubated with specific antibody at 4 °C overnight on the rocker. Beads were then added, and 

samples were left on the rocker for an additional 4 h. Lysates were then centrifuged at 800g for 5 min; 

the supernatant was then isolated, and the beads (bound fraction) were washed three times, boiled in 4. 

Laemmli SDS sample buffer (Boston BioProducts, MA), and separated using SDS-PAGE.  

Immunofluorescence  

10,000 cells from AML cell lines, PBMCs or cells obtained from subjects affected by AML were 

cytospin for 5 min at 350–500 r.p.m., fixed in 4% paraformaldehyde (PFA) for 15 min, washed three 

times with PBS and incubated with 0.1 M glycin for 10 min to quench PFA autofluorescence. After 

washing again, cells were permeabilized and stained for 90 min with a solution of 0.1% Triton X-100 

and PBS plus 1% BSA containing primary antibodies at a dilution of 1:100. Cells were washed and 

incubated for 45 min with the appropriate secondary fluorescent antibodies. Alexa Fluor 488 anti-rabbit 

(#4412) and Alexa Fluor 488 anti-mouse (#4408) antibodies were purchased from Cell Signaling 

(Beverly, MA, United States), and Alexa Fluor 568 anti-mouse (A11061) antibody was purchased from 

Invitrogen (Life Technologies, Carlsbad, CA, United States). All secondary antibodies were diluted 

1:400. After washes, the nuclear content was stained with DAPI reagent (Invitrogen, Life 

Technologies, Carlsbad, CA, United States) for 5 min and washed. The entire procedure was performed 



at room temperature. The slides were then mounted with ProLong Gold Antifade reagent (Invitrogen, 

Life Technologies, Carlsbad, CA, United States), and images were taken using a Leica DMI3000 B 

microscope and analyzed with ImageJ software. Antibody to γ-H2A.X (clone JBW301) was obtained 

from Millipore/Merck (Darmstadt, Germany), antibody to SIRT6 (#12486) was from Cell Signaling 

(Beverly, MA, United States), antibody to pospho-RPA32 (S4/S8) (#4912) was from Bethyl Labs) and 

antibodies to RAD51 (#88572) and 53BP1 (#36823) were from Abcam (Cambridge, UK) 
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SUPPLEMENTARY FIGURES AND LEGENDS 

 

Figure S1. A) Box plot distributions of SIRT6 gene expression levels in AML patients stratified 

according to French-American-British (FAB) classification. SIRT6 gene expression levels 

(219613_s_at probe set) were obtained in purified leukemic blasts of 274 AML samples from a 

publicly available dataset (GSE1159) in 6 FAB classes (6 M0, 63 M1, 66 M2, 19 M3, 53 M4, 64 M5, 3 

M6). Differential SIRT6 gene expression levels (natural scale) between AML groups were assessed 

using non-parametric Kruskal-Wallis test. B) SIRT6 expression was compared to genomic landscape of 

AML samples (n=200) collected at University of Genoa, including FLT3-ITD, NPM1 mutation WT1 

overexpression and BAAL. Data are represented as mean ± SEM. ns: not significant. (Student’s t test) 



 

 

 

Figure S2. A) SIRT6-expression in tumor tissues (TT) of acute myeloid leukemia samples (Stirewalt et 

al., 2008), is compared to normal counterpart tissues (NT) (p=.01). Medians ± S.D. are represented. B) 

Kaplan-Meier plots of overall survival revealed that high SIRT6 expression conferred inferior clinical 

outcomes in acute myeloid leukemia (n=79),(Bullinger et al., 2004)  

 



 

 

 

 

 

Figure S3: Representative western blots showing DDR pathway deregulation in U937 cells depleted of 

SIRT6 compared with control. GAPDH was used as loading control. One representative blot of two is 

shown. 

 

 



 

 

 

Figure S4. Densitometric analysis of Western blots from Figure 3A. 

  



 

 

 

Figure S5. Endogenous SIRT6 levels in OCI-AML2 was co-immunoprecipitated in presence or not of 

ethidium bromide (EtBr,100 μg/ml) using an anti-SIRT6 antibody. CtIP and DNA-PKcs levels were 

detected by immunoblotting.  

 

 



 

 

 

 

 

Figure S6. Densitometric analysis of Western blots from Figure 4C 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure S7. A, B) The pathways potentially regulated by SIRT6 were explored by GSEA in the public 

gene expression data set, GSE14468. AML samples were ranked by their median SIRT6 expression 

levels and GSEA was used to identify significantly enriched pathways. FDR: false discovery rate.  

 

 



 

 

 

 

 

Figure S8. A,B) Expression levels (median-centered values) for SIRT1 and SIRT6 transcripts were 

evaluated in microarray data from AML patients (GSE37642 in A) and GSE9476 in B) using the 

indicated probe set. The lower and upper boundaries denote the 25th and 75th percentile, around the 

median value for each group.***P < 0.001 (one-way analysis of variance (ANOVA) with expression 

data log(2) transformed).  


