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Finite automata whose computations can be reversed, at any point, by knowing the last k symbols
read from the input, for a fixed k, are considered. These devices and their accepted languages are
called k-reversible automata and k-reversible languages, respectively. The existence of k-reversible
languages which are not (k−1)-reversible is known, for each k > 1. This gives an infinite hierarchy
of weakly irreversible languages, i.e., languages which are k-reversible for some k. Conditions char-
acterizing the class of k-reversible languages, for each fixed k, and the class of weakly irreversible
languages are obtained. From these conditions, a procedure that given a finite automaton decides if
the accepted language is weakly or strongly (i.e., not weakly) irreversible is described. Furthermore,
a construction which allows to transform any finite automaton which is not k-reversible, but which
accepts a k-reversible language, into an equivalent k-reversible finite automaton, is presented.

1 Introduction

The principle of reversibility, which is fundamental in thermodynamics, has been widely investigated for
computational devices. The first works on this topic already appeared half a century ago and are due
to Landauer and Bennet [9, 2]. More recently, several papers presenting investigations on reversibility
in space bounded Turing machines, finite automata, and other devices appeared in the literature (see,
e.g., [1, 15, 6, 10, 13, 3, 11]).

A process is said to be reversible if its reversal causes no changes in the original state of the system.
In a similar way, a computational device is said to be reversible when each configuration has at most one
predecessor and one successor, thus implying that there is no loss of information during the computation.
As observed by Landauer, logical irreversibility is associated with physical irreversibility and implies a
certain amount of heat generation. Hence, in order to avoid power dissipation and to reduce the overall
power consumption of computational devices, it can be interesting to realize reversible devices.

In this paper we focus on finite automata. While each two-way finite automaton can be converted
into an equivalent one which is reversible [6], in the case of one-way finite automata (that, from now on,
will be simply called finite automata) this is not always possible, namely there are regular languages as,
for instance, the language a∗b∗, that are recognized only by finite automata that are not reversible [15].

In [3], the authors gave an automata characterization of the class of reversible languages, i.e., the
class of regular languages which are accepted by reversible automata: a language is reversible if and
only if the minimum deterministic automaton accepting it does not contain a certain forbidden pattern.
Furthermore, they provide a construction to transform a deterministic automaton not containing such
forbidden pattern into an equivalent reversible automaton. This construction is based on the replication of
some strongly connected components in the transition graph of the minimum automaton. Unfortunately,
this can lead to an exponential increase in the number of the states, which, in the worst case, cannot
be avoided. To overcome this problem, two techniques for representing reversible automata, without
explicitly describing replicated parts, have been obtained in [12].
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In this paper, we deepen these investigations, by introducing the notions of weakly and strongly
irreversible language. By definition, a reversible automaton during a computation is able to move back
from a configuration (state and input head position) to the previous one by knowing the last symbol
which has been read from the input tape. This is equivalent to saying that all transitions entering in a
same state are on different input symbols. Now, suppose to give the possibility to automata to see back
more than one symbol on the input tape, in order to move from a configuration to the previous one. Does
this possibility enlarge the class of languages accepted by reversible (in this extended sense) automata?
It is not difficult to give a positive answer to this question.

Considering this idea, we recall the notion of k-reversibility: a regular language is k-reversible if it
is accepted by a finite automaton whose computations can be reversed by knowing the sequence of the
last k symbols that have been read from the input tape. This notion was previously introduced in [8] by
proving the existence of an infinite hierarchy of degrees of irreversibility: for each k > 1 there exists a
language which is k-reversible but not (k−1)-reversible. Here we prove that there are regular languages
which are not k-reversible for any k. Such languages are called strongly irreversible, in contrast with the
other regular languages which are called weakly irreversible.

As in the case of “standard” reversibility (or 1-reversibility), we provide an automata characterization
of the classes of weakly and strongly irreversible languages. Indeed, generalizing the notion of forbidden
pattern presented in [3], we show that a language is k-reversible if and only if the minimum automaton
accepting it does not contain a certain k-forbidden pattern. We also give a construction to transform
each automaton which does not contain the k-forbidden pattern, into an equivalent automaton which
is k-reversible. Furthermore, using a pumping argument, we prove that if an n-state automaton contains
an N-forbidden pattern, for a constant N = O(n2), then it contains a k-forbidden pattern for each k > 0.
Hence, applying this condition to the minimum automaton accepting a language L, we are able to decide
if L is weakly or strongly irreversible. We finally present a decision procedure for such problem.

We point out that, according to the approach in [3], in this paper we refer to the classical model of
deterministic automata, namely automata with a unique initial state, a set of final states, and deterministic
transitions. Different approaches have been considered in the literature. The notion of reversibility
in [1] is introduced by considering deterministic devices with one initial state and one final state, while
automata with a set of initial states, a set of final states and deterministic transitions have been considered
in [15]. In particular, the notion of reversibility in [1] is more restrictive than the one studied in [3] and
in this paper. Hence, also the notion of k-reversibility, introduced and studied here, is different from a
notion of k-reversibility studied in [1].

2 Preliminaries

In this section we recall some basic definitions and results useful in the paper. For a detailed exposition,
we refer the reader to [4].

Given a set S, let us denote by #S its cardinality, by 2S the family of all its subsets, and by S<k (Sk,
respectively), for a fixed integer k≥ 0, the set of sequences of less than (exactly, resp.) k elements from S,
where ε is the empty sequence. Given an alphabet Σ, |w| denotes the length of a string w ∈ Σ∗.

A deterministic finite automaton (DFA) is a tuple A = (Q,Σ,δ ,qI,F), where Q is the finite set of
states, Σ is the input alphabet, qI ∈ Q is the initial state, F ⊆ Q is the set of accepting (or final) states,
and δ : Q×Σ→ Q is the partial transition function. A nondeterministic finite automaton (NFA) is an
automaton in which it is possible to reach multiple states at the same time: multiple initial states are
allowed and the transition function is defined as δ : Q×Σ→ 2Q. The language accepted by an automaton
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is defined in classical way as the set of all strings that define a path from one initial state to one of the
accepting states.

Let A = (Q,Σ,δ ,qI,F) be a DFA. A state p ∈ Q is useful if it is reachable, i.e., there exists w ∈ Σ∗

such that δ (qI,w) = p, and productive, i.e., if there is w ∈ Σ∗ such that δ (p,w) ∈ F . In this paper we
only consider automata with all useful states.

The reverse transition function of A is δ R : Q×Σ→ 2Q, with δ R(p,a) = {q ∈ Q | δ (q,a) = p}. The
reverse automaton AR = (Q,Σ,δ R,F,{qI}) is the NFA obtained by reversing the transition function δ and
in which the set of initial states coincides with the set of final states of A and the unique final state is qI .

A state r ∈ Q is said to be irreversible when #δ R(r,a) > 1 for some a ∈ Σ, i.e., there are at least
two transitions on the same letter entering r, otherwise r is said to be reversible. The DFA A is said
to be irreversible if it contains at least one irreversible state, otherwise A is reversible (REV-DFA). As
pointed out in [7], the notion of reversibility for a language is related to the computational model under
consideration. In this paper we only consider DFAs. Hence, by saying that a language L is reversible,
we refer to this model, namely we mean that there exists a REV-DFA accepting L. The class of reversible
languages is denoted by REV.

We say that two states p,q ∈ Q are equivalent if and only if for all w ∈ Σ∗, δ (p,w) ∈ F exactly
when δ (q,w) ∈ F . Two automata A and A′ are said to be equivalent if they accept the same language,
i.e., L(A) = L(A′).

A strongly connected component (SCC) C of a NFA or a DFA A is a maximal subset of Q such that
in the transition graph of A there exists a path between every pair of states in C. Let us denote by Cq

the SCC containing the state q ∈ Q.
We consider a partial order � on the set of SCCs of A, such that, for two such components C1 and C2,

C1 � C2 when either C1 = C2 or no state in C1 can be reached from a state in C2, but a state in C2 is
reachable from a state in C1. We write C1 ≺C2 when C1 �C2 and C1 6=C2.

3 Strong and weak irreversibility

In this section we introduce the main notions we consider in this paper, by defining strong and weak
irreversibility and by presenting their basic properties.

Definition 1. Let k > 0 be an integer, A = (Q,Σ,δ ,qI,F) be a DFA, and L⊆ Σ∗ be a regular language.

• A state r ∈ Q is said to be k-irreversible if there exist a string x ∈ Σk−1 and a symbol a ∈ Σ, such
that the cardinality of the following set is greater than 1:

{δ (p,x) | p ∈ Q and δ (p,xa) = r} .

Otherwise, r is said to be k-reversible.

• The automaton A is k-reversible if each of its states is k-reversible.

• The language L is k-reversible if there exists a k-reversible DFA accepting it.

• The language L is weakly irreversible if it is k-reversible for some integer k > 0.

• The language L is strongly irreversible if it is not weakly irreversible.

By definition, a state r is 1-reversible if and only if it is reversible. As a consequence, 1-reversibility
coincides with reversibility.

In the case of a k-reversible state r, with k > 1, we could have more than one transition on the same
symbol a entering r. However, by knowing the suffix of length k of the part of the input already inspected,
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Figure 1: The minimum automaton accepting the language a∗bkb∗

i.e., a suffix xa with |x|= k−1, we can uniquely identify which transition on a has been used to enter r in
the current computation. In other terms, while a reversible automaton is a device which is able to move
the computation one state back, by knowing the last symbol that has been read, a k-reversible automaton
can do the same, having the suffix of length k of the part of the input already inspected (when the length
of that part is less than k, the automaton can see all the input so far inspected).

Let us denote by REVk the class of k-reversible languages. Hence, REV = REV1. Furthermore k-
reversible DFAs are indicated as REVk-DFAs, for short.

From Definition 1, we can immediately prove the following facts:

Lemma 1. Let k > 0 be an integer, A = (Q,Σ,δ ,qI,F) be a DFA, and L⊆ Σ∗ be a regular language.

• If a state q ∈ Q is k-reversible, then it is k′-reversible for each k′ > k.

• If a state q ∈ Q is k-irreversible, then it is k′-irreversible for each k′ < k.

• If A is k-reversible, then it is k′-reversible for each k′ > k.

• If L is k-reversible, then it is k′-reversible for each k′ > k.

Example 1. [8] For each integer k > 0, consider the language a∗bkb∗, which is accepted by the minimum
automaton depicted in Figure 1. The only irreversible state is qk.

Suppose that, after reading a string w, the automaton is in qk. If we know a suffix of w of length i,
with i ≤ k, (this suffix can only be bi) then we cannot determine the previous state in the computation,
i.e., the state before reading the last symbol of w. In fact, this state could be either qk−1 or qk. Hence, the
automaton is not k-reversible. However, if we know the suffix of length k+1, then it could be either bk+1,
and in this case the previous state is qk, or abk, and in this case the previous state is qk−1. It could be
also possible that only k input symbols have been read, i.e., |w| = k. In that case, all w = bk can be
seen back and the previous state is qk−1. Hence, the automaton is (k+ 1)-reversible. As shown in [8,
Theorem 4] we cannot do better for this language, i.e., L ∈ REVk+1 \ REVk. This can be also obtained as
a consequence of results in Section 5.

As a consequence of the last item in Lemma 1 and of Example 1 we have the proper infinite hierarchy
of classes

REV = REV1 ⊂ REV2 ⊂ ·· · ⊂ REVk ⊂ ·· ·

In [3], the authors proved that a regular language is irreversible if and only if the minimum DFA

accepting it contains a forbidden pattern, which consists of two transitions of a same letter entering in
a same state r, where one of them arrives from a state p which belongs to the same strongly connected
component of r. We now refine such definition in order to consider strings of the same length that lead
to the same state:

Definition 2. Given a DFA A = (Q,Σ,δ ,qI,F) and an integer k > 0, the k-forbidden pattern is formed
by three states p,q,r ∈ Q, with a symbol a ∈ Σ, two strings x ∈ Σk−1 and w ∈ Σ∗, such that p 6= q,
δ (p,x) 6= δ (q,x), δ (p,xa) = δ (q,xa) = r, and δ (r,w) = q.
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Figure 2: The k-forbidden pattern: x ∈ Σk−1, a ∈ Σ, w ∈ Σ∗

The k-forbidden pattern just defined is depicted in Figure 2.
From Definition 2, we can observe that if a DFA A contains a k-forbidden pattern, for some k > 0, then it
contains a k′-forbidden pattern for each k′, with 0 < k′ < k.

The notion of k-forbidden pattern will be used in the subsequent sections to obtain a characterization
of the class REVk. In fact, we will prove that a regular language is k-reversible if and only if the minimum
DFA accepting it does not contain the k-forbidden pattern.

4 k-reversible simulation

In this section we present a construction to build, given a DFA A = (Q,Σ,δ ,qI,F) and an integer k > 0, an
equivalent DFA A′ = (Q′,Σ,δ ′,q′I,F

′), which is k-reversible if A does not contain the k-forbidden pattern.
The DFA A′ simulates A by storing in its finite control three elements:

• The current state q of A.

• An integer j ∈ {1, . . . ,k} which is used to count the first k visits to states in the current SCC of A,
namely in the SCC which contains the current state q. When the value of the counter reaches k, it
is no more incremented, until a transition leaving the SCC. At that point, after saving its value in
the third component of the state, 1 is assigned to the counter for denoting the first visit in the SCC

just reached.

• A sequence of pairs from Q×{1, . . . ,k}. This is the sequence of the first two components of the
states in Q′ which have been reached before simulating a transition that in A changes SCC. Since
the number of possible SCCs is bounded by #Q, we consider sequences of length less than #Q.

Formally, we give the following definition:

• Q′ = Q×{1, . . . ,k}× (Q×{1, . . . ,k})<#Q,

• for 〈q, j,α〉 ∈ Q′, if δ (q,a) = p then

δ
′(〈q, j,α〉,a) =

{
〈p,min{ j+1,k},α〉 if Cp = Cq

〈p,1,α · (q, j)〉 otherwise,

while δ ′(〈q, j,α〉,a) is not defined when δ (q,a) is not defined, and · denotes the concatenation of
a pair at the end of sequence,
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• q′I = 〈qI,1,ε〉 is the initial state,

• F ′ = F×{1, . . . ,k}× (Q×{1, . . . ,k})<#Q is the set of final states.

Notice that by dropping the second and the third components off the states of A′, we get exactly the
automaton A. Hence, A and A′ are equivalent.

Furthermore, observe that if δ ′(〈p,h,α〉,a) = 〈r, `,γ〉, with 〈p,h,α〉,〈r, `,γ〉 ∈ Q′, a ∈ Σ, and 1 <
` ≤ k, then the states p and r are in the same SCC of A and h = `− 1 when ` < k, while h ∈ {k− 1,k}
when `= k. This fact will be used in the following proof of the main property of A′.

Lemma 2. If A does not contain the k-forbidden pattern, then A′ is a k-reversible DFA.

Proof. By contradiction, let us suppose that A′ contains a k-irreversible state 〈r, `,γ〉 ∈ Q′. Then there
exist a string x ∈ Σk−1, a symbol a ∈ Σ, states 〈p0,h0,α0〉,〈p,h,α〉,〈q0, j0 β0〉,〈q, j,β 〉 ∈ Q′, such that
δ ′(〈p0,h0,α0〉,x) = 〈p,h,α〉, δ ′(〈q0, j0,β0〉,x) = 〈q, j,β 〉, δ ′(〈p,h,α〉,a) = δ ′(〈q, j,β 〉,a) = 〈r, `,γ〉,
and 〈p,h,α〉 6= 〈q, j,β 〉. The situation is summarized in the following picture:

〈p0,h0,α0〉
x−−→ 〈p,h,α〉 a−→

6= 〈r, `,γ〉

〈q0, j0,β0〉
x−−→ 〈q, j,β 〉

a
−→

For k > 1, the proof is divided in three cases, depending on the value of `.

• Case `= 1.
Considering the definition of δ ′, we notice that both states p and q are not in the same SCC of r.
Then γ = α · (p,h) = β · (q, j), thus implying α = β , p = q, and h = j. This is a contradiction to
the hypothesis 〈p,h,α〉 6= 〈q, j,β 〉.
• Case 1 < ` < k.

Again from the definition of δ ′, we can observe that h = j = `− 1 < k− 1 and α = β = γ . We
decompose x as x′bx′′, where x′,x′′ ∈ Σ∗, b ∈ Σ and |x′′|= `−2. Then, in the paths on the string x
from 〈p0,h0,α0〉 to 〈p, `−1,α〉 and from 〈q0, j0,β0〉 to 〈q, `−1,α〉 the last transitions that change
SCC in A are those on the symbol b, immediately after the prefix x′, i.e, we have the following
situation:

〈p0,h0,α0〉
x′−−→ 〈p1,h1,α1〉

b−→ 〈p2,1,α〉
x′′−−−→ 〈p, `−1,α〉 a−→

〈r, `,α〉

〈q0, j0,β0〉
x′−−→ 〈q1, j1,β1〉

b−→ 〈q2,1,α〉
x′′−−−→ 〈q, `−1,α〉

a
−→

for suitable 〈p1,h1,α1〉,〈q1, j1,β1〉 ∈ Q′, p2,q2 ∈ Q. Then α = α1 · (p1,h1) = β1 · (q1, j1), that
implies p1 = q1. As a consequence, since A is deterministic we get that p2 = q2 and p = q. Thus,
also in this case we get the contradiction 〈p,h,α〉= 〈q, j,β 〉.
• Case `= k.

From the definition of δ ′, we notice that either h = j = k−1, or at least one of h and j is equal to k.
In the first case, the proof can be completed as in the case 1 < ` < k, leading to a contradiction. In
the case h = k, moving backwards from the state 〈p,k,α〉 to 〈p0,h0,α0〉, along the transitions on
the string x of length k− 1, we find a sequence of states whose all second components are equal
to k, which is followed by a (possibly empty) sequence of states where the values of the second
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components decrease by 1 at each transition. In this way we can conclude that h0 ≥ 1 and all the
first components, included p0, of states on this path, are in the same SCC of r. Hence, A contains
the k-forbidden pattern. The case j = k is similar.

For k = 1, if p or q are in the same SCC as r then A should contain the 1-forbidden pattern. Otherwise,
we can proceed as in the case `= 1, obtaining a contradiction.

We now evaluate the size of the automaton obtained by using the previous construction.

Theorem 1. Each n-state DFA which does not contain the k-forbidden pattern can be simulated by an
equivalent k-reversible DFA with no more than (k+1)n−1 states.

Proof. Let A be a given n-state DFA not containing the k-forbidden pattern. According to Lemma 2, the
automaton A′ obtained from A with the above presented construction is k-reversible. Now, we are going
to estimate the number of reachable states in it.

First of all, we notice that if 〈q, `,α〉 is a reachable state of A′ and α = ((p1, j1),(p2, j2), . . . ,(ph, jh)),
then Cp1 ≺ Cp2 ≺ ·· · ≺ Cph ≺ Cq. Hence, since the ordering among states appearing in α is given by the
ordering of SCCs in A, we could represent α as a set.

This also allows to interpret the state 〈q, `,α〉 as the function f : Q→{0,1, . . . ,k}, such that for r∈Q:

f (r) =


` if r = q,
ji if r = pi, 1≤ i≤ h,
0 otherwise.

By counting the number of possible functions, we obtain a (k + 1)n upper bound for the number of
reachable states in A′.

Now, we show how to reduce this bound to the one claimed in the statement of the theorem.
The above presented simulation can be slightly refined by observing that while simulating states in

the SCC of the initial state qI , it is not necessary to keep the counter. Furthermore, in each state 〈q, `,α〉
of Q′, with q /∈ CqI , the first element of α , which should represent a state in CqI , is stored without the
counter. Hence, the state 〈q, `,α〉 can be seen as a state in CqI (the first element of α) with a function f :
Q \CqI → {0,1, . . . ,k} (representing the current state with its counter and the other pairs in α). Since
the counter associated with the current state is always positive, f cannot be the null function. Hence, the
number of possible functions is bounded by (k+1)n−s−1, where s = #CqI . Considering also the states
which are used in Q′ to simulate the states in CqI , this gives at most s+ s((k+1)n−s−1) many reachable
states. For k > 0 this amount is bounded by (k+1)n−1.

We point out that for k = 1, Theorem 1 gives a 2n−1 upper bound, which matches with the bound for
the conversion of DFAs into equivalent REV-DFAs, claimed in [3]. In the same paper, a lower bound very
close to such an upper bound was presented.

5 A characterization of k-reversible languages

In this section we present a characterization of k-reversible languages based on the notion of k-forbidden
pattern. This characterization will be obtained by combining Theorem 1 with the following result.

Lemma 3. Let L be a regular language and k be a positive integer. If the minimum DFA accepting L
contains the k-forbidden pattern, then L /∈ REVk.
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Figure 3: The minimum DFA accepting the reversible language a∗, and an equivalent DFA containing
the 3-forbidden pattern

Proof. Let M = (Q,Σ,δ ,qI,F) be the minimum DFA accepting L. By hypothesis there exist p,q,r ∈ Q,
a ∈ Σ, x ∈ Σk−1, w ∈ Σ∗ such that p 6= q, δ (p,x) 6= δ (q,x), δ (p,xa) = δ (q,xa) = r and δ (r,w) = q.
Let s = δ (p,x) and t = δ (q,x). We are going to prove that each DFA A′ = (Q′,Σ,δ ′,q′I,F

′) accepting L
contains a k-irreversible state.

Let q0 ∈ Q′ be a state equivalent to p. In A′ we consider two arbitrarily long sequences of states
q1,q2, . . . and r1,r2, . . . equivalent to q and r, respectively, such that δ ′(qh−1,xa) = rh and δ ′(rh,w) = qh,
for h > 0. Since Q′ is finite, sooner or later we will find an index j such that either ri = r j or qi = q j, for
some 1≤ i < j. Let us take the first j with such property.

• Suppose ri = r j. If i = 1, let ŝ = δ ′(q0,x) and t̂ = δ ′(q j−1,x). Since q0 is equivalent to p and
q j−1 is equivalent to q, ŝ and t̂ are equivalent to the states s and t of M, respectively. So, ŝ 6= t̂.
Furthermore, δ ′(ŝ,a) = δ ′(t̂,a) = r1. Hence, r1 is k-irreversible. In the case i > 1, since j is the
first index giving a repetition we get qi−1 6= q j−1. We decompose the string xa as x′γx′′, where
x′,x′′ ∈ Σ∗, γ ∈ Σ, and δ ′(qi−1,x′) 6= δ ′(q j−1,x′), δ ′(qi−1,x′γ) = δ ′(q j−1,x′γ) = u for some u ∈ Q′

and δ ′(u,x′′) = ri. We observe that δ ′(qi−2,xawx′) = δ ′(qi−1,x′) 6= δ ′(q j−2,xawx′) = δ ′(q j−1,x′),
while δ ′(qi−2,xawx′γ) = δ ′(q j−2,xawx′γ) = u. This implies that the state u is |xawx′γ|-irreversible.
Hence it is k-irreversible.

• In the case qi = q j and ri 6= r j, we observe that since q0 is equivalent to p and q j is equivalent to
q for j ≥ 1, while p and q are not equivalent, we get i > 0. We decompose w as w′γw′′, where
w′,w′′ ∈ Σ∗, γ ∈ Σ and δ ′(ri,w′) 6= δ ′(r j,w′), δ ′(ri,w′γ) = δ ′(r j,w′γ) = u for some u ∈ Q′ and
δ ′(u,w′′) = qi. Then, δ ′(qi−1,xaw′) 6= δ ′(q j−1,xaw′) and δ ′(qi−1,xaw′γ) = δ ′(q j−1,xaw′γ) = u.
Hence, the state u is |xaw′γ|-irreversible, so it is k-irreversible.

Notice that the condition in Lemma 3 is on the minimum DFA accepting the language under consideration.
If we remove the requirement that the considered DFA has to be minimum, the statement becomes false.
For instance, the language L = a∗ is reversible even though for each k > 0 we can build a DFA accepting
it, which contains the k-forbidden pattern (see Figure 3).

We are now able to characterize k-reversible languages in terms of the structure of minimum DFAs:

Theorem 2. Let L be a regular language. Given k > 0, L ∈ REVk if and only if the minimum DFA

accepting L does not contain the k-forbidden pattern.

Proof. The if part is a consequence of Theorem 1, the only-if part derives from Lemma 3.

From Theorem 2, we observe that to transform each DFA A accepting a k-reversible language into an
equivalent REVk-DFA, firstly we can transform A into the equivalent minimum DFA M and then we can
apply to M the construction presented in Section 4.

As a consequence of Theorem 2 we also obtain:
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Corollary 1. L ∈ REVk+1 \ REVk if and only if the maximum h such that the minimum DFA accepting L
contains the h-forbidden pattern is k.

In the following result we present further families of languages, besides that in Example 1, which
witness the existence of the proper infinite hierarchy

REV = REV1 ⊂ REV2 ⊂ ·· · ⊂ REVk ⊂ ·· ·

Furthermore, we show that the difference between the “amount” of irreversibility in a minimum DFA and
in the accepted language can be arbitrarily large:

Theorem 3. For all integers k, j > 0 with j > k > 1 there exists a language Lk, j such that:

• The minimum DFA accepting Lk, j is a REVj-DFA but not a REVj−1-DFA.

• Lk, j ∈ REVk \ REVk−1.

Proof. Let Lk, j be the language accepted by the automaton Ak, j = (Q,Σ,δ ,qI,F) where Σ = {a,b},
Q = {qI,q′1,q

′′
1, . . . ,q

′
j−1,q

′′
j−1,q j}, F = {q′′j−1,q j}, and the transition function is defined as follows (see

Figure 4 for an example):

• δ (qI,a) = q′1
• δ (qI,b) = q′′1
• δ (q′i,a) = q′i+1 and δ (q′′i ,a) = q′′i+1 for 1≤ i≤ j− k

• δ (q′i,b) = q′i+1 and δ (q′′i ,b) = q′′i+1 for j− k < i < j−1

• δ (q′j−1,b) = δ (q′′j−1,b) = δ (q′′j−1,a) = δ (q j,b) = q j

Firstly, we can observe that Ak, j is the minimum DFA accepting Lk, j. It contains only one irre-
versible state, q j, with δ R(q j,b) = {q j,q′j−1,q

′′
j−1}. We also notice that δ (q′1,a

j−kbk−2) = q′j−1 6= q′′j−1 =

δ (q′′1,a
j−kbk−2), while δ (q′1,a

j−kbk−1) = δ (q′′1,a
j−kbk−1) = q j. Hence Ak, j is not a REVj−1-DFA. How-

ever, the knowledge of one more symbol in the suffix of the input read to enter q j allows to determine the
state of the automaton before reading the last symbol. In particular, if the suffix of length j is a j−k+1bk−1,
then the state was q′j−1; if the suffix is ba j−kbk−1 or ba j−kbk−2a, then the state was q′′j−1; in the remaining
cases it was q j. Hence, Ak, j is a REVj-DFA.

To prove that Lk, j ∈ REVk \REVk−1, we first show that Ak, j contains the (k−1)-forbidden pattern. To
this aim, in Definition 2 we can choose q = r = q j, p = q′j−k+1, a = b, x = bk−2 and w = ε . Further-
more, it is possible to obtain a REVk-DFA A′k, j equivalent to Ak, j by duplicating q j with its loop and by
redistributing incoming transitions from q′j−1 and q′′j−1, as in the case presented in Figure 5.

6 Weakly and strongly irreversible languages

By Definition 1, a language is weakly irreversible if it is k-reversible for some k > 0, namely if it is in the
class

⋃
k>0 REVk. A natural question is whether or not the class of weakly irreversible languages coincides

with the class of regular languages. In this section we will give a negative answer to this question, thus
proving the existence of strongly irreversible languages.

First of all, we observe that, by Theorem 2, a regular language is strongly irreversible if and only
if the minimum DFA accepting it contains a k-forbidden pattern for each k > 0. Using a combinatorial
argument, we now prove that in order to decide if a language is strongly or weakly irreversible, it is
enough to consider only a value of k which depends on the size of the minimum DFA:
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Figure 4: The minimum automaton A5,7 accepting the language L5,7
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Figure 5: A REV5-DFA accepting the language L5,7

Theorem 4. Let A = (Q,Σ,δ ,qI,F) be an n-state DFA and N > n2−n
2 . If A contains an N-forbidden

pattern, then it contains a k-forbidden pattern for each k > 0.

Proof. Suppose that A contains an N-forbidden pattern. As observed after Definition 2, A contains a
k-forbidden pattern for each k ≤ N.

We now prove the same for k > N. By hypothesis there exist p,q,r ∈ Q, a ∈ Σ, x ∈ ΣN−1, w ∈ Σ∗,
such that p 6= q, δ (p,x) 6= δ (q,x), δ (p,xa) = δ (q,xa) = r, and δ (r,w) = q. Let x = a1a2 · · ·aN−1 with
ai ∈ Σ, for i = 1, . . . ,N− 1. Moreover, let p0, . . . , pN−1,q0, . . . ,qN−1 ∈ Q be such that p = p0, q = q0,
pi = δ (pi−1,ai), qi = δ (qi−1,ai) for i = 1, . . . ,N− 1, and δ (pN−1,a) = δ (qN−1,a) = r. Since pN−1 6=
qN−1 and A is deterministic, we get pi 6= qi for i = 0, . . . ,N−1. Notice that there are n2−n possible pairs
of different states.

We consider the pairs (p0,q0), . . . ,(pN−1,qN−1). Since N > (n2−n)/2 and pi 6= qi, for i = 0, . . . ,N−
1, there are two indices i, j, 0 ≤ i < j ≤ N− 1 such that either (pi,qi) = (p j,q j) or (pi,qi) = (q j, p j).
So δ (pi,(ai+1 · · ·a j)

2) = pi and δ (qi,(ai+1 · · ·a j)
2) = qi. Given h > 0, we consider the string zh =

a1 · · ·ai(ai+1 · · ·a j)
2ha j+1 · · ·aN−1. We can verify that δ (p,zh) = pN−1 and δ (q,zh) = qN−1. This implies

that A contains the |zh|+1-forbidden pattern. Since i 6= j, by properly choosing h, this allows us to obtain
a k-forbidden pattern for each arbitrarily large k.

Combining Theorem 2 with Theorem 4 we obtain:

Corollary 2. Let L be a regular language whose minimum DFA has n states. Then L is strongly irre-
versible if and only if it is not (n2−n

2 +1)-reversible.

We now present an example of strongly irreversible language.

Example 2. The language L = a∗b(a+b)∗ is strongly irreversible. The minimum automaton accepting it
has 2 states (see Figure 6). We notice that δ (qI,ab)= δ (p,ab)= p, while δ (qI,a) 6= δ (p,a). This defines
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qI p

a a,b

b

Figure 6: The minimum automaton accepting the language L = a∗b(a+b)∗

a 2-forbidden pattern. According to Corollary 2, this implies that L is strongly irreversible. Observe that
entering in p with each string akb, we have a (k+1)-forbidden pattern, for any k ≥ 0.

7 Decision problems

In this section we provide a method to decide whether a language L is strongly or weakly irreversible,
and, in the latter case, to find the minimum k such that L is k-reversible.

The idea is to simultaneously analyze all the paths entering each irreversible state r ∈ Q of the
minimum automaton A accepting L in order to find the longest string z that, with at least two different
paths, leads to r and defines the |z|-forbidden pattern or to discover that there exist arbitrarily long
strings with such property. This corresponds to analyze all couples of paths starting from two different
states p,q ∈ Q that, with the same string z, lead to r. Intuitively, this can be done by constructing the
product automaton of two copies of the reversal automaton of A, i.e., AR×AR, and by analyzing all paths
starting from the states of the form (r,r). Since the goal is to establish the nature of the (ir)reversability
of L — not of A — it is useful to recall that by Definition 2 it is enough to consider only the couples of
paths in which one of them is completely included in the same SCC of r, i.e., Cr = Cq. To this aim, we
are going to consider the product between AR and a transformation of AR which is obtained by splitting
it in SCCs.

Let A = (Q,Σ,δ ,qI,F) be an irreversible DFA, AR = (Q,Σ,δ R,F,{qI}) be the reversal automaton
of A, and AR

SCCs = (Q,Σ,δ R
SCCs,F,{qI}) be the NFA obtained by splitting AR in its SCCs, i.e., δ R

SCCs(r,a) =
{q | q ∈ δ R(r,a) and Cr = Cq}, for r ∈ Q, a ∈ Σ. Let us define the automaton Â = AR×AR

SCCs as follows:
Â = (Q̂,Σ, δ̂ , Î, F̂) where Q̂ = F̂ = Q×Q, Î = {(r,r) | r ∈ Q}, and δ̂ ((r′,r′′),a) = {(p,q) ∈ δ R(r′,a)×
δ R

SCCs(r
′′,a) | p 6= q}.

The resulting automaton Â accepts all strings z which define a |z|-forbidden pattern (plus the empty
string). Formally, this follows from the following lemma, whose proof can be given by induction:

Lemma 4. Consider a path (r,r),(p1,q1), . . . ,(p|z|−1,q|z|−1),(p,q) in Â from a state (r,r) to (p,q) on a
string z. Then δ̂ ((r,r),z) 3 (p,q) if and only if all the following conditions are satisfied:

1. pi 6= qi for each 0 < i < |z|, p 6= q,

2. δ (p,z) = r,

3. δ (q,z) = r and Cr = Cq.

Considering Theorem 2, this leads to state the following

Lemma 5. Let A be a minimum n-state DFA and Â be the NFA defined as above. Then:

• The following statements are equivalent:

– A is strongly irreversible,
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– L(Â) is an infinite language,

– L(Â) contains a string of length n2−n
2 +1.

• For each k > 0, L(A) ∈ REVk if and only if L(Â) contains only strings of length less than k.

The same argument can be exploited to prove that the problem of checking whether L(A) is strongly
or weakly irreversible is in NL, namely the class of problems accepted by nondeterministic logarithmic
space bounded Turing machines.

Theorem 5. The problem of deciding whether a language is strongly or weakly irreversible is NL-
complete.

Proof. (sketch) Given a minimum DFA accepting the language under consideration and the above de-
scribed automaton Â, the problem can be reduced to testing if the transition graph of Â contains at least
one loop. In such a case, there are arbitrarily long strings in L(Â), namely strings describing k-forbidden
patterns for arbitrarily large k, and L(A) is strongly irreversible. The problem of verifying the existence
of a loop is in NL.

To prove the NL-completeness, we show a reduction from the Graph Accessibility Problem (GAP)
which is NL-complete (for further details see [5]). Let G = (V,E) be a directed graph where V =
{1, . . . ,n}. Our goal is to define a DFA A such that A is strongly irreversible if and only if there exists a
path from 1 to n in G. We build A′ by starting from the same “state structure” of G, and adding a SCC

providing the forbidden pattern when combined with a path from 1 to n in the original graph.
We stress that the instance of our problem should be an automaton containing only useful states,

while automata that can be “intuitively” obtained from GAP instances could have useless states and,
detecting them, would require to solve GAP.

Let A′ = (Q,Σ,δ ,qI,{qF}) be a DFA where Q =V ∪{qI,qF ,q1, . . . ,qn−1}, Σ = {0, . . . ,n,$, ]}, and δ

is defined as follows:

i. δ (i, j) = j for (i, j) ∈ E, i 6= j

ii. δ (qi, j) = q j for 0 < i, j < n, i 6= j

iii. δ (qi,n) = n for 0 < i < n

iv. δ (n,0) = q1

v. δ (qI, i) = i and δ (i, ]) = qF for 0 < i≤ n

vi. δ (1,$) = 1 and δ (q1,$) = q1.

Observe that the restriction of the underlying graph A′ to states 1, . . . ,n coincides with G (transitions i.).
In addition, the set of states {q1, . . . ,qn−1} extends the SCC Cn so that each state can reach the others
in Cn with a single transition (transitions ii., iii., and iv.). This implies that the state n is reachable from q1
with all the possible paths passing through the states in the SCC. Furthermore, a loop is added to states 1
and q1 on the symbol $ in order to create a forbidden pattern (transitions vi.). Notice that each state in Q
is useful (transitions v.).

In such a way, the states {1,n,q1} form a forbidden pattern with strings of arbitrary length if and only
if the given graph contains a path from n to 1. Notice that any state i ∈Q\{n} is, at most, 1-irreversible.
So we can conclude that A′ is strongly irreversible if and only if there exists a path from 1 to n in G.

It can be shown that the reduction can be computed in deterministic logarithmic space.
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8 Conclusion

We introduced and studied the notions of strong and weak irreversibility for finite automata and regular
languages. In Section 5 we proved the existence of an infinite hierarchy of weakly irreversible lan-
guages, while in Section 6 we showed the existence of strongly irreversible languages, namely of regular
languages that are not weakly irreversible. In both cases, the witness languages are defined over a binary
alphabet, so the question arises if the same results hold in the case of a one-letter alphabet, i.e., in the
case of unary languages. We now briefly discuss this point.

First of all, we remind the reader that the transition graph of a unary DFA consists of an initial path,
which is followed by a loop (for a recent survey on unary automata, we address the reader to [14]).
Hence, a unary DFA is reversible if and only if the initial path is of length 0, i.e., the automaton consists
only of a loop (in this case the accepted language is said to be cyclic). We can also observe that given an
integer k > 0, a unary language is k-reversible if and only if it is accepted by a DFA with an initial path
of less than k states. Hence, for each k, the language ak−1a∗ is k-reversible, but not (k− 1)-reversible.
This shows the existence of an infinite hierarchy of weakly irreversible languages even in the unary case.
Furthermore, from the above discussion, we can observe that if a unary language is accepted by a DFA

with an initial path of k states, then it is (k+1)-reversible. This implies that each unary regular language
is weakly irreversible (see also [8, Proposition 10]). Hence, to obtain strongly irreversible languages, we
need alphabets of at least two letters.

The definition of k-reversible automata and languages have been given for each integer k > 0. One
could ask if it does make sense to consider a notion of 0-reversibility. According to the interpretation we
gave to k-reversibility, a state is 0-reversible when in each computation its predecessor can be obtained
by knowing the last 0 symbols which have been read from the input, i.e., without the knowledge of any
previous input symbol. This means that a 0-irreversible state can have only one entering transition, or
no entering transitions if it is the initial state. As a consequence, the transition graph of a 0-reversible
automaton is a tree rooted in the initial state and 0-reversible languages are exactly finite languages.
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