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Abstract—The distributed shuffle index strengthens the guar-
antees of access confidentiality provided by the shuffle index
through the distribution of data among three cloud providers.
In this paper, we analyze architectural and design issues and
describe an implementation of the distributed shuffle index
integrated with different cloud providers (i.e., Amazon S3,
OpenStack Swift, Google Cloud Storage, and EMC Elastic
Cloud Storage). The experimental results obtained with our
implementation confirm the protection guarantees provided
by the distributed shuffle index and its limited performance
overhead, demonstrating its practical applicability in cloud
scenarios.
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I. INTRODUCTION

Moving data to the cloud provides unprecedented advan-
tages, as testified by the growing success of companies of-
fering cloud services. To fully benefit from these advantages,
users need guarantees on the protection of their data, which
are no more under the direct control of their owner. The
problem of protecting data confidentiality has been widely
addressed by the research community (e.g., [1]). Protecting
data confidentiality may however not be sufficient. Indeed,
by observing accesses, a cloud provider could infer sensitive
information about the user performing the access and the
possibly sensitive content of the outsourced dataset. Con-
sider, as an example, a user searching for the treatments
for a rare disease in a publicly available medical database.
A cloud provider observing this access operation can infer
that, with high probability, the user (or a person close to her)
suffers from the searched disease. Also, by observing a long
enough sequence of accesses, a cloud provider can partially
reconstruct the content of the dataset (e.g., [2]). In fact, it can
trace the frequency with which each piece of information is
accessed and exploit it to infer its content (which would in
turn also disclose the targets of accesses). It is then necessary
to protect also the confidentiality of accesses (i.e., the fact
that an access aims at a specific piece of information) and of
patterns of accesses (i.e., the fact that two accesses aim at the
same target). Among the approaches recently proposed for
protecting access and pattern confidentiality, the shuffle index

organizes the outsourced data in a tree-based index structure
and efficiently supports searches for index values [3]. The
shuffle index can also operate in a distributed scenario

with even higher protection guarantees [4]. The distributed
shuffle index partitions the data over three independent cloud
providers. The key idea to provide access confidentiality
is to guarantee uniform visibility at each cloud provider,
which operates as if it was the only one serving the client,
and to enforce dynamic reallocation of data at a different
cloud provider at each access, which breaches the otherwise
static correspondence between a piece of information and the
physical block (and cloud provider) in which it is stored.

In this paper, we study the design and architectural issues
to be addressed to implement the distributed shuffle index
and to integrate it with real-world cloud providers (i.e.,
Amazon S3, OpenStack Swift, Google Cloud Storage, and
EMC Elastic Cloud Storage). The experimental evaluation
on our implementation confirms the ability of the distributed
shuffle index to protect access confidentiality, and the limited
performance overhead to obtain such protection guarantees.

The remainder of this paper is organized as follows.
Section II illustrates the distributed shuffle index structure
and the protection techniques it adopts to provide access
confidentiality. Section III describes the implementation of
the distributed shuffle index for its integration with real-
world cloud providers. Section IV presents the results of our
experimental evaluation. Section V discusses related works.
Finally, Section VI concludes the paper.

II. BASIC CONCEPTS

The shuffle index [3] is an indexing structure that enables
efficient key-based data retrieval, while guaranteeing con-
tent, access, and pattern confidentiality. For outsourcing, we
assume data to be indexed over a candidate key K . The
outsourced data collection is a set of pairs ⟨key, value⟩,
with key the value of candidate K , and value the resource
associated with the candidate key value.

A distributed shuffle index [4] is an unchained B+-tree

(i.e., a B+-tree with no link between leaves) with fan-out
F defined over candidate key K , storing the resources in
its leaves, where internal nodes and leaves are distributed
among three cloud providers. Each node stores at most
F − 1 key values but the root, which has three times the
capacity of internal nodes because it is split in three nodes,
each allocated at a different cloud provider. Each node is
associated with a logical identifier, and it is allocated at
one of the cloud providers. Logical identifiers are used as



Figure 1. An example of shuffle index distributed at cloud providers (color
coded)

pointers to children in internal nodes. Note that logical
identifiers do not reflect the order among keys, and the
allocation of nodes to cloud providers does not depend on
the tree topology (i.e., children and/or siblings of a node
can be allocated to a different cloud provider). However,
the structure is evenly distributed among the three cloud
providers, both globally and among the children of each
node (i.e., each cloud provider stores one third of the nodes
in the shuffle index and nearly one third of the children
of each node). The content of a node is protected by
encrypting it together with its identifier and a randomly
generated nonce; the encrypted node is then stored at one
cloud provider. To guarantee authenticity and integrity of
the content of nodes and of the whole index structure, each
encrypted node is concatenated with the result of a HMAC
function applied to the encrypted node and its identifier.
Figure 1 illustrates an example of a shuffle index where
we report logical identifiers on the top of each node, and
we denote nodes allocated at different cloud providers with
different colors: blue for PB (darker color in b/w printouts);
green for PG (medium color in b/w printouts); and yellow
for PY (lighter color in b/w printouts). For simplicity, logical
identifiers start with a letter denoting the cloud provider
where the corresponding block is stored (B for PB , G for
PG, and Y for PY ), and their first digit denotes the level in
the tree. Also, we denote the content of each node with a
label.

To search for a key, a path in the tree is visited starting
from the root and following, at each visited node, the
pointer to the child along the path to the target, until a
leaf is reached. Since nodes are stored in encrypted form,
such a process requires an interaction between the client
and the cloud provider(s) for each level of the tree. Even
if encryption protects data in storage, it is not sufficient
to provide access and pattern confidentiality. In fact, by
observing a long enough sequence of accesses, the cloud
providers could reconstruct the topology of the tree, identify
repeated accesses, and possibly infer sensitive data content.
To protect access and pattern confidentiality, the distributed
shuffle index combines the following protection techniques
in access execution.

• Distributed covers: at each level, download a block
from each of the cloud providers. One of the accessed
blocks is along the path to the target, the other two
ensure uniform visibility at all the cloud providers.

Figure 2. An example of search for C2 on the index in Figure 1 (a),
swapping between accessed nodes (b), and structure of the paths after the
access (c)

• Swapping: at each level, the accessed nodes are re-
allocated to a different block at a different cloud
provider. To prevent cloud providers from tracking
swap operations, nodes are re-encrypted with a different
random nonce at each access. Swapping destroys the
otherwise static relationship between the node content
and the physical block where it is stored, preventing
the cloud provider from accumulating information on
frequency of accesses.

Being iterative, the search process discloses the level of each
node in the tree, which is however not considered sensitive.

To illustrate, consider a search for value C2 in the dis-
tributed shuffle index in Figure 1. Figure 2(a) illustrates the
accessed nodes (• denotes the target path). It is immediate
to see that we download a node from each cloud provider at
each level. Figure 2(b) illustrates swapping and Figure 2(c)
represents the status of accessed nodes after the search.

III. DISTRIBUTED INDEX IMPLEMENTATION

To demonstrate its practical applicability in a cloud sce-
nario, we implemented the distributed shuffle index. Our
implementation supports the creation, storage, and access
to a distributed shuffle index stored at real cloud providers:
Amazon S3, OpenStack Swift, Google Cloud Storage, and
EMC Elastic Cloud Storage (ECS). The prototype has been
realized in Python due to the wide availability of production-
ready libraries that support the interaction with multiple
cloud providers. An obstacle to the use of Python is the
performance penalty, but this is not a critical aspect since, for
the shuffle index, the bottleneck is represented by network
latency (Section IV). In the remainder of this section, we
first illustrate the data structures used to represent the nodes
in the shuffle index, and then discuss the architecture and
implementation of our prototype.

A. Node Data Structure

Given a collection of pairs of the form ⟨key, value⟩, we
represent key as 64-bit integer and value as a string. The
use of an integer to represent key is a common choice
for indexes, since it offers compactness and simplifies the
verification of the relative order between elements, without
the need of conversions. A 64-bit domain can support large



...

M
E

TA
D

A
TA

...

128 B 8 B 8 B 8 B 8 B 8 B 8 B

(a)
2p1k1pm

in
k FpF 

- 1
k

M
E

TA
D

A
TA

128 B 8 B 120 B 8 B 120 B

(b)

1v1k NvNk

Figure 3. Structure of internal (a) and leaf (b) nodes

data collections. Strings are the most common type in data
management applications, and their use to represent value

permits to easily manage resources of other data types.
Since all the nodes in the shuffle index must have the
same size (otherwise the cloud provider could easily identify
each of them and hence track swap operations), we need
to fix also the length of strings representing resources.
We then represent value as a 120-byte string. This choice
permits to represent each ⟨key, value⟩ pair in 128 bytes,
which simplifies their storage and retrieval. Since resources
do not have a fixed size, we manage larger resources by
splitting them among multiple ⟨key, value⟩ pairs, and pad
smaller resources. To support non-ASCII characters, we use
UTF-16 encoding, in which each character is represented
with 2 bytes, to represent our resources (i.e., value can
accommodate 60 characters).

Besides storing keys and resources or pointers to children,
each node should store additional metadata, that is, the node
identifier, and the HMAC of the encrypted node content [3].
We use a 64-bit unsigned integer to represent the node
identifier and reserve the first 128 bytes of each node to
store its metadata.

Figure 3 illustrates the structure of internal and leaf nodes.
Each internal node stores, besides its metadata, up to F − 1
ordered keys k1, . . . , kq and q + 1 pointers to children
(nodes with fewer keys/pointers are padded). For efficiency
reasons, each internal node also stores an additional key
kmin representing the minimum key value in the subtree
rooted at the node (Figure 3(a)). We consider a memory
page of 4096 bytes and, since keys and node identifiers
occupy 8 bytes, the fan-out of our distributed shuffle index
is F = (4096 − 128)/16 = 248. Each leaf node can
instead store up to (4096 − 128)/128 = 31 ⟨key, value⟩
pairs (Figure 3(b)). Leaves with fewer ⟨key, value⟩ pairs
are padded. A distributed shuffle index with height 3 can
then accommodate a dataset of ∼685 MB. Our choice of
using 128 bytes for each ⟨key, value⟩ pair and for metadata
permits to store an integer number of ⟨key, value⟩ pairs in
a memory page and guarantees that they are 64-bit aligned,
which simplifies extraction and processing.

B. Cloud DataLayer

The architecture of our prototype has to support the inter-
action with distinct cloud providers. It is a natural design
choice to identify a high-level interface, DataLayer, that
offers an abstract representation of a cloud storage service.
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Figure 4. Diagram of the DataLayer classes of the cloud providers
supported

This permits to isolate all aspects associated with the specific
protocol used for the interaction with the storage service.
The implementation of this abstract layer is simplified by
the fact that the storage of a shuffle index needs the basic
put/get primitives offered by cloud providers. To provide
access confidentiality, the client is responsible for all the
computations, while the cloud provider acts only as storage
server. We can use widely available object storage services.
In this case, each object implements a node where the
physical block identifier is represented through the object
name and the encrypted node content is stored as the object
content.

There are multiple public and private cloud providers that
offer object storage services. Our implementation supports
Amazon S3, OpenStack Swift, Google Cloud Storage, and
EMC Elastic Cloud Storage (ECS). Each cloud provider
exposes specific REST APIs, therefore we implemented a
different DataLayer for each cloud provider (see Figure 4),
as illustrated in the following.

• S3DataLayer permits the connection to Amazon Simple
Storage Service (S3) using the boto library (https:
//github.com/boto/boto).

• SwiftDataLayer permits the connection to an
OpenStack Swift storage service using the python-

swiftclient library (https://github.com/openstack/
python-swiftclient). This class can be used with both
OpenStack-based public clouds and privately-hosted
OpenStack instances.

• GCSDataLayer permits the connection to Google
Cloud Storage using the gcloud-python library
(https://github.com/GoogleCloudPlatform/google-
cloud-python).

• ECSDataLayer permits the connection to EMC ECS.
EMC ECS provides two different APIs to interact
with their storage service, based on S3 and Swift. We
therefore specialized this DataLayer into two classes:
ECSS3DataLayer and ECSSwiftDataLayer.

Note that our architecture can integrate additional cloud
providers or even custom servers by simply adding a class
that inherits the DataLayer interface, and implements get

and put methods and the constructor to initialize the con-
nection.



Figure 5. An example of instantiated DataLayer stack

Besides the DataLayer classes illustrated above (which
are in charge of realizing get and put primitives), two
additional layers are necessary in the implementation of our
prototype: SerializeLayer and AuthEncryptionLayer layers.
The SerializeLayer is in charge of converting an instance
of the object representing a node into a fixed-length string
buffer, according to the node structure illustrated in Sec-
tion III-A. The AuthEncryptionLayer encrypts this buffer and
adds the HMAC to the metadata.

Finally, the MultiShuffleLayer implements the distributed
shuffle index logic and is the only layer with which the
user needs to interact. It is independent from the chosen
cloud providers. Its constructor receives three DataLayer

instances as input, one for each of the cloud providers chosen
for storing the distributed shuffle index. Figure 5 illustrates
an example of an instantiated class stack, assuming to use
OpenStack Swift, Google Cloud Storage, and EMC ECS for
the distributed shuffle index.

C. Configuration File

Our prototype receives a configuration file as input. The
configuration file provides the parameters needed to initialize
the connection (e.g., API keys, credentials) to the three
cloud providers chosen by the user to store the distributed
shuffle index. The file has one section for each selected cloud
provider. For each section, a DataLayer is instantiated. Each
section has the following mandatory parameters:

• type: type of the DataLayer (i.e., S3DataLayer, Swift-

DataLayer, GCSDataLayer, or ECSDataLayer);
• rootnode: identifier of the root node stored at the cloud

provider;
• configuration: dictionary of parameters needed to ini-

tialize the connection to the cloud provider.

IV. EXPERIMENTAL RESULTS

To evaluate the confidentiality guarantees and the impact
on performance of the protection techniques used by a
distributed shuffle index, we performed a series of exper-
iments using our implementation. To analyze confidential-
ity guarantees, we compared the frequency of (read/write)
accesses to physical blocks obtained when relying on our
distributed shuffle index and when using a plain encrypted

index with the same static structure (i.e., an encrypted B+-
tree). The adoption of a plain encrypted index still requires
the client to visit the nodes in the tree level by level, but
it does not use distributed covers and swapping. To analyze
performance, we compared the access times obtained with a
plain encrypted index and with our distributed shuffle index,
to measure the performance overhead caused by the adoption
of distributed covers and swapping.

A. Access Pattern Confidentiality

The data structure used for this experiment is a 3-level
B+-tree with fan-out F = 248. To compare the frequency
distribution of accesses to blocks obtained with a shuffle
index and with a plain encrypted index, we performed 104

accesses to the index structures, analyzing two different
access patterns: the Gaussian access pattern, generating a
Gaussian distribution of frequency of accesses to keys, and
the single-node access pattern, where all the accesses search
for the same key.

The experiment was performed on a private cloud with
three cloud providers based on OpenStack Swift, since the
results do not depend on the chosen cloud providers. The
use of a private cloud permits an in-depth analysis of the
accessed data both at the client and at the cloud provider
side, since all the log files are available.

Gaussian access pattern. We considered first a sequence
of accesses to keys that follows a Gaussian frequency
distribution. Figure 6 illustrates the frequency distribution
of read accesses to the blocks stored at one of the three
cloud providers (the results obtained for the other two
cloud providers are similar) in the plain encrypted index
(a) and in the distributed shuffle index (b). In the figure,
we ordered the nodes in the structure by decreasing level in
the tree (i.e., first leaves, then internal nodes, and finally the
root). Note that the frequency distribution of read accesses
to the (leaf) blocks in the plain encrypted index leaks
the Gaussian distribution of accesses to keys. An observer
knowing the frequency with which keys are accessed can
then easily determine which leaf block stores which key.
On the contrary, the frequency distribution of read accesses
to the blocks in each level of the distributed shuffle index is
almost flat (Figure 6(b)): the observer can only distinguish
between leaves, internal nodes, and the root. As already
pointed out in Section II, the iterative process between the
cloud providers and the client discloses the level of nodes.

Single-node access pattern. We then considered a sequence
of accesses where all the searches aim at the same target
key, and then visit the same path in the B+-tree. Figure 7
illustrates the frequency distribution of read accesses to the
blocks stored at one of the three cloud providers in the plain
encrypted index (a) and in the distributed shuffle index (b).
Also in this scenario, the adoption of a plain encrypted index
leaks to an observer the pattern of accesses: the spikes in
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Figure 6. Frequency distribution of accesses to blocks with the Gaussian access pattern

(a) plain encrypted index (b) shuffle index - read (c) shuffle index - write

Figure 7. Frequency distribution of accesses to blocks with the single-node access pattern

Plain encrypted index Distributed shuffle index
Local 0.06169s 0.17074s

(OpenStack Swift) σ = 0.00947s σ = 0.01840s

Remote 0.56777s 1.07609s

(Amazon S3) σ = 0.25588s σ = 0.42817s

Figure 8. Access times and their standard deviation σ

Figure 7(a) correspond to the nodes along the path to the
target. On the contrary, the frequency distribution of read
accesses to the blocks in each level of the distributed shuffle
index is almost flat. The frequency distribution of read
accesses in Figure 7(b) is similar to the one in Figure 6(b),
further demonstrating the ability of the distributed shuffle
index to protect access confidentiality. This is also confirmed
by the frequency distributions of write operations over the
blocks in the distributed shuffle index, which are similar for
the two patterns of accesses as illustrated in Figure 6(c) and
Figure 7(c) (note that we did not evaluate the frequency
of write operations for the plain encrypted index, because
searches do not require any rewrite operation).

B. Performance

To analyze the performance of our distributed shuffle
index, we considered two configurations: a private cloud
based on OpenStack Swift (local configuration), and the
public cloud infrastructure provided by Amazon S3 (remote

configuration). In our experimental evaluation, we did not
consider a specific configuration for EMC Elastic Cloud
Storage and Google Cloud Storage since we expect their
behavior to be similar to our local and remote configurations,
respectively. In fact, the most relevant factor influencing
access times is network latency [3]. For our experiment,
we used a client PC with Intel i7 3.4GHz processor, 16GB
RAM, 240GB SSD running Ubuntu 16.04. The OpenStack
Swift provider was running on a server PC with Intel
i7 3.6GHz processor, 32GB RAM, 480GB SSD running
Ubuntu 14.04.

For this set of experiments, we used a 2-level B+-tree
with fan-out F = 27 and we performed 100 accesses over it.
Figure 8 compares the average access times obtained when
adopting a plain encrypted index and our distributed shuffle
index in the local and remote configurations. The figure also
reports the standard deviation (σ). Note that the search for
a value in the plain encrypted index implies one read access
for each node along the path to the target. On the contrary,
the search for a value in the distributed shuffle index requires
one read and one write access for each node along the path
to the target and for each of its distributed covers (i.e., it
requires three read and three write accesses for each level
of the shuffle index). We note however that an access to the
distributed shuffle index is only one time (not five as one
would expect) slower than an access to the plain encrypted
index in the remote configuration. The reason is that we
leverage parallel connections to the cloud providers to read
and write the nodes, thus reducing the performance overhead
necessary to obtain access confidentiality. As expected,
access times are higher in the remote configuration than
in the local configuration, because the network represents
a bottleneck. It is interesting to note that access times in
the remote configuration are one order of magnitude greater
than the ones obtained in the local configuration, for both
the plain encrypted index and the distributed shuffle index.
Based on our results, we can conclude that the adoption of
distributed covers and swapping protection techniques have
a limited impact on access times. Hence, the distributed
shuffle index represents a practical solution for providing
access confidentiality.

V. RELATED WORK

Moving data to the cloud requires the secure management
and storage of data (e.g., [1], [5]–[7]) as well as the
protection of accesses to data (e.g., [3], [8]–[11]). Current
approaches addressing the problem of protecting access



confidentiality are based on Private Information Retrieval
(PIR) or on dynamically allocated data structures that change
physical data allocation at each access. PIR solutions do not
protect content confidentiality and require high access times
(e.g., [12]) even when operating in distributed scenarios
where several non-communicating cloud providers keep a
copy of the data (e.g., [13]). Dynamic data structures rely on
the Oblivious RAM (ORAM) structure (e.g., [10], [11]) or
on tree-based structures (e.g., [3], [8], [9]). These solutions
assume that the data are stored at one cloud provider. Cloud-
based solutions often provide data distribution services,
which can be used to improve both performance (at the
price of properly balancing workload distribution [14]) and
security. ORAM-based solutions have also been extended
to operate in distributed scenarios to reduce communication
costs for the client (e.g., [15]). These solutions, however,
require that storage providers do not communicate or do
not collude with each other to guarantee confidentiality.
The shuffle index proposal has also been extended to
operate in a distributed scenario characterized by three
cloud providers [4], [16]. The advantage of this solution
is that it guarantees access confidentiality also in case of
collusion among cloud providers. This paper demonstrates
the practical applicability of the distributed shuffle index in
real cloud environments, confirming its limited performance
overhead. Recently, different proposals have considered the
integration of protection techniques with real-world cloud
infrastructures (e.g., [17]). These solutions mainly aim to
protect content confidentiality to the cloud providers in out-
sourcing scenario, but do not protect access confidentiality.

VI. CONCLUSIONS

We presented the architectural and design issues addressed
for the implementation of the distributed shuffle index in-
tegrated with different cloud providers (i.e., Amazon S3,
OpenStack Swift, Google Cloud Storage, and EMC Elastic
Cloud Storage). Our prototype demonstrates the availability
of effective and practical protection solutions that can easily
be integrated with real-world cloud infrastructures. Our ex-
perimental evaluation demonstrates the effectiveness of the
distributed shuffle index in providing access confidentiality,
and its limited performance overhead.
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