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ABSTRACT 

Steam reforming of hydrocarbons is a mature technology and its implementation on other substrates 

such as bio-ethanol appears as a ready opportunity to produce H2 from renewable sources. The Low 

Temperature Ethanol Steam Reforming (LT-ESR, 300-500°C) could be a really efficient technology 

from the energetic point of view. However, deactivation by coke deposition remains the biggest issue, 

due to inefficient carbon gasification by steam in such low temperature range. We demonstrated the 

feasibility of the process at low temperature taking into account both activity and deactivation issues. 

The attention was focused on the addition of basic promoters and on the development of an 
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unconventional preparation procedure, in comparison with a traditional precipitation/impregnation 

route, to improve stability and activity. 

Therefore, in this work several catalysts were studied, differently promoted by alkali and alkali earth 

oxides (CaO, MgO, K2O) using a non conventional doping method. H2 yield and selectivity to CO 

demonstrated tightly related to the promoter adopted. Flame Spray Pyrolysis synthesis of nickel 

nanoparticles stabilized in a zirconia matrix (Ni/MxO–ZrO2) was performed, obtaining more stable 

catalysts toward deactivation by coking with respect to the analogous prepared by traditional 

precipitation/impregnation. The effect of the doping using a scalable one-pot technique were 

investigated by means of characterization of fresh catalysts and activity testing. Catalyst resistance 

toward deactivation was studied by SEM-EDX, TEM, Raman spectroscopy and temperature 

programmed analysis. Among the promoters, CaO and K2O showed the best performance, producing 

a reformate with low CO/CO2 ratio and, thus, leading to higher H2 yield with consequent lower impact 

on H2 purification in an integrated process. K2O deeply modified the chemical behaviour of the 

catalyst allowing to achieve a significant H2 production also at very low temperature (300°C).  

 

Keywords: Low Temperature Ethanol Steam Reforming; Coke Formation; Flame Spray Pyrolysis; 

Alkali Doping; Ni-based catalysts; Catalyst Deactivation; ZrO2; Process intensification.  

 

1. Introduction 

There is a pressing need to underpin the sustainable and economic growth of a biofuel-based industry 

that can put together the rising fuel demand with urgent environmental issues [1]. Hydrogen is the 

ideal energy carrier to solve distributed emissions problems and there is increasing interest for 

effective alternatives to produce it safely and cleanly from renewable sources [2]. However, efficient 

processes should be developed for its production and process intensification is a pivotal step for the 
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economic sustainability of the proposed technologies. Among the various achievable and renewable 

feedstocks, bioethanol is considered at least since 10-15 years a promising raw material, because it 

can be produced by biomass fermentation and it is expected to be available industrially on a large 

scale in the near future from second generation biomass [2,3]. Hence, Ethanol Steam Reforming 

(ESR) represents a promising way to produce hydrogen thermo-catalytically, though the process 

needs heat input due to the endothermicity of the reaction. The possibility to work at Low 

Temperature (LT) is very interesting for this process, due to the much lower thermal energy need, 

which leads to lower operational costs (thus process intensification), and to avoid catalyst de-

activation through sintering, easily occurring at the commonly used high temperatures (T > 650 °C) 

[4]. Moreover, the CO concentration in the outlet gas is strongly reduced at low temperature due the 

contribution of the exothermal Water Gas Shift (WGS) reaction. Therefore, the research of catalysts 

which promote as much as possible the Steam Reforming of Ethanol at Low Temperature (LT-ESR) 

is very challenging. The application of the process in demonstrative stage is already accomplished 

[5,6], so that the optimisation of catalyst formulation and process intensification are now required. 

The reaction network is usually affected by the formation of several by-products, thus reducing the 

selectivity to hydrogen and possibly leading to the formation of coke, especially at low temperature 

where C gasification is not favoured [7]. Besides tuning the operating conditions, the use of highly 

active and stable catalysts plays a crucial role, overcoming the activity and selectivity aspects, due to 

the much easier reformation of ethanol with respect to other substrates such as methane or heavier 

hydrocarbons [4]. 

Carbon deposition can occur through three different pathways: i) decomposition of hydrocarbons; ii) 

CO disproportion (Boudouard reaction); iii) olefins polymerization. During the LT-ESR, coking 

occurs mainly by the last two routes, because the former is a strongly endothermal process, prevailing 

at higher temperature (650-800°C), only [8]. Ethylene is the main olefin generated during the process, 

as result of the ethanol dehydration, favoured over acid sites, while CO disproportion strongly 
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depends on the selectivity of the catalysts and on the presence of CO2 [9]. In addition, not only the 

source, but also the nature of the carbon formed is fundamental. Carbon can either be found as ordered 

(filamentous or graphitic) or amorphous structures [4].  

In primis, the support plays a crucial role towards coking resistance, thanks to its own acid-base 

character and to metal-support interactions [10]. The modification of the support properties can be 

done choosing carriers with basic/amphoteric features such as La2O3, TiO2, MgO [11–14], or 

combining different properties by doping [15–17]. ZrO2 has been proposed as valuable support for 

the catalytic reforming of methane [18,19] and oxygenated compounds [20,21]. Its beneficial features 

are attributed to the steam adsorption ability, which promotes water activation and coke gasification. 

Strong metal-support interaction can be also achieved when nickel is used as active phase [22]. In 

addition, the high thermal stability of this material allows its use in thermocatalytic processes [12]. 

A criticism is represented by its intrinsic acidity, usually of Lewis type, possibly leading to ethanol 

dehydration and polymerisation to form coke. Doping with alkali and alkali-earth metal oxides can 

be a suitable way to improve the catalyst stability toward deactivation phenomena. Basic doping has 

been previously investigated in the case of catalysts prepared by traditional wet-methods, such as 

incipient wetness impregnation, co-precipitation and sol-gel methods [23–29]. This strategy has been 

selected here to prepare MOx-modified zirconia (M=Ca, Mg, K) as a support for LT-ESR, in order to 

couple its water activation properties with a limited acidity, to prevent extensive coking. 

Nickel was added as active phase, because of its very high activity and selectivity among non-noble 

metals, coupled with much lower cost and availability for industrial and commercial purposes 

[3,16,30]. However, poor resistance to carbon formation with respect to noble metals, forced to find 

alternative preparation strategies because of the tight correlation between the coking phenomena and 

support properties or metal dispersion [12,31–33].  

The Flame Spray Pyrolysis (FSP) technique is a powerful method for the scalable synthesis of 

nanostructured materials [34], since it allows the simultaneous synthesis and calcination of oxide 
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nanomaterials. The transfer from the laboratory level to the plant scale concerning flame aerosol 

process is nowadays a very intriguing point due to the easy scalability of this one-pot synthesis if the 

key parameters are properly controlled. Pilot scale reactor and economic analysis carried out by 

Wegner and co-workers [34,35] for zirconium oxide further enhanced the interest toward this non-

conventional synthesis. This may allow overcoming major drawbacks of traditional preparation 

processes, such as the long processing time, batch-to-batch synthesis and uneasy control over active 

phase dispersion. By contrast, flame- and aerosol-based processes offer the advantages of simple and 

often lower cost synthesis, with a continuous production process combined with a short processing 

time [36].  

The main goal of this work was to demonstrate the feasibility of low temperature ethanol steam 

reforming addressing both the activity and deactivation issues. To do this, we focused on a 

specifically developed preparation procedure and on catalyst doping with alkali and alkali-earth ions. 

FSP was therefore employed in this work for the synthesis of the materials as a key to impart strong 

metal-support interaction and high metal dispersion [37]. These have been proved key points to ensure 

sufficient resistance to coking for this application. Indeed, the carbides accumulation at the interface 

between metal particles and support, the main step for the growth of carbon nanofilaments, can be 

conveniently limited if small Ni particles are obtained and kept stable by strong metal support 

interaction (SMSI). Thus, the detailed characterisation of the prepared catalysts, mainly by electron 

microscopy and TPR, allow to correlate resistance to coking with metal support interaction and metal 

dispersion, as a way to improve catalyst durability. 

The basic doping of the support by means of FSP was also addressed here and related to the catalytic 

results. CaO, MgO and K2O were chosen as basic promoters for ZrO2 in order to limit the role of 

surface acidity on coking. Also in this case, tuning the acid-base character of the catalyst, but also 

contributing to peculiar redox properties, the attention was addressed to improve operational stability. 

The loading of promoter and active metal (Ni) were chosen considering our best previous results, 
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obtained by using conventional preparation procedures [38]. The samples were tested for the LT-ESR 

(300-500°C), representing a mean for process intensification, but being very critical for carbon 

formation, especially when using, as in this case, stoichiometric steam-to-carbon ratio (S/C) as 

overstressing condition. Comparison with the catalysts prepared by an alternative precipitation-

impregnation method was also carried out. The characterisation of the spent materials allowed to 

identify the most durable candidate catalyst and optimal reaction conditions. 

 

2. Experimental 

2.1. Preparation of Ni/MxO-ZrO2  

Ni-based catalysts were prepared by FSP using a home-made apparatus, comprehensively described 

elsewhere [39,40]. Samples were prepared diluting Zirconium acetyl-acetonate (Aldrich, pur. 98%), 

the alkaline precursor and Nickel (II) acetate tetrahydrate (Aldrich, pur. 98%), in a mixture 1:1 

(vol/vol) of o-xylene (Aldrich, pur. >98%) and propionic acid (Aldrich, pur. 97%), with a 0.22 M 

final concentration. Alkaline precursors were: Calcium acetate (Aldrich, pur. >99%), Magnesium 

acetate (Aldrich, pur. >99%) and Potassium acetate (Baker, pur. >99%). The proper concentration of 

the precursors solution was chosen in order to optimize the opposite effect of production rate 

(favoured by higher concentration of the precursors) and aggregation phenomena (more likely with 

increasing particle density in the flame) [39]. Preparations were carried out to achieve 10 wt.% Ni 

loading and 4 wt.% MxO in the zirconia matrix.  The solution was fed to the burner using a 50 ml 

glass syringe with a flow rate of 2.2 ml/min and a 0.7 bar pressure drop across the nozzle, cofed with 

5 l/min of O2. Ni/MxO-ZrO2 catalysts with the following composition were prepared: Ni 10 wt.% / 

ZrO2 (labelled as Zr-Ni); Ni 10 wt.%/ CaO 4 wt.% - ZrO2 (labelled as CaZr-Ni); Ni 10 wt.% / MgO 

4 wt.% - ZrO2 (labelled as MgZr-Ni); Ni 10 wt.% / K2O 4 wt.% - ZrO2 (labelled as KZr-Ni). The 

concentration was selected based on a preliminary screening and based on precursors solubility in the 

mother solution. The expected value of flame temperature, ca. 1500°C [41,42], was ensured by the 
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selected propionic acid / o-xylene ratio and the decomposition of acetate precursors, whose 

combustion contributes to increase the total combustion enthalpy, and by selecting proper pressure 

drop across the nozzle (P = 0.7 bar), liquid and oxygen flowrates. The use of acetates as metal 

precursors was chosen considering their better solubility with respect to nitrate in the selected solvent 

mixture [39,42], and their further contribution to the combustion enthalpy. 

Additionally, a precipitation-impregnation technique was used (PC). Zr(OH)4 was prepared by a 

precipitation method [43] at a constant pH of 10. ZrOCl2*8H2O (Sigma–Aldrich, purity ≥99.5%) was 

dissolved in distilled water and added with a peristaltic pump under vigorous stirring to an ammonia 

(33%, Riedel-de Haën) solution. During the precipitation, the pH value was kept constant at 10.0 ± 

0.1 by the continuous addition of a 33% ammonia solution. After the complete addition of the salt 

solution, the hydroxide suspension was aged for 20 h at 90 °C, then filtered and washed with warm 

distilled water until it was free from chloride ions (AgNO3 test). The samples were dried overnight at 

110 °C. Zr(OH)4 was impregnated with an aqueous solution containing both the metal 

(Ni(NO3)2*6H2O, Sigma–Aldrich, purity ≥98.5%) and the dopants (Ca(NO3)2*4H2O, Fluka, purity 

≥99%, KNO3, Fluka, purity ≥99%,) precursors. The active phase (Ni) and the dopants (CaO and K2O) 

were added to Zr(OH)4 simultaneously by means of the incipient wetness impregnation technique. Ni 

was added at the loading of 10 wt%, whereas CaO and K varied at 9 wt%. This amount of promoter 

has been optimised in a previous work [38]. The samples were dried overnight at 110 °C and finally 

heated (2 °C/min) up to 500 °C in flowing air (30 mL/min STP) and kept at this temperature for 4 h. 

 

2.2. Catalysts characterization  

X-ray powder diffraction (XRD) analysis was carried out at room temperature by means of a PHILIPS 

PW3020 diffractometer with Bragg-Brentano θ - 2θ geometry with the CuK radiation (λ = 1.5406 

Å). Intensities were collected over a 21° – 90° 2θ range with 0.03° step size and 4 s step time. The 
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apparatus was provided with graphite monochromator. The voltage and current intensity of the 

generator were set at 40 kV and 30 mA respectively. The surface area and porosity distribution were 

determined by N2 adsorption-desorption at -196 °C using a Micromeritics ASAP 2020 instrument. 

Surface area was calculated on the basis of the Brunauer, Emmet and Teller equation (BET), while 

the pores size distribution was determined by the BJH method, applied to the N2 desorption branch 

of the isotherm. Prior to the analysis the samples were outgassed at 300°C for 24 hours. 

TPR (Temperature Programmed Reduction) measurements were performed by placing the catalyst in 

a quartz reactor and heating by 10°C min-1 from r.t. to 800°C in a 10 vol% H2/N2 gas stream flowing 

at 40 ml/min. 

Temperature Programmed Oxidation (TPO) experiments were run placing the spent catalysts in a 

quartz reactor. The temperature was ramped at a rate of 10 °C min-1 from r.t. to 800 °C in 10 vol% 

O2/He gas stream flowing at 40 mL min-1.  

Deconvolution of the peaks was carried out by means of the Origin Pro 9.0 software. The number of 

peaks was chosen considering the best fitting of the whole curve using Gaussian functions. 

SEM images have been obtained using a Field Emission Gun Electron Scanning Microscopy LEO 

1525, after metallization with Cr. Elemental composition was determined using a BrukerQuantax 

EDS.  

TEM images of spent samples have been obtained using a Philips 208 Transmission Electron 

Microscope. The samples were prepared by putting one drop of an ethanol dispersion of the catalysts 

on a copper grid pre-coated with a Formvar film and dried in air. 

Micro-Raman sampling was made by an OLYMPUS microscope (model BX40) connected to an ISA 

Jobin–Yvon model TRIAX320 single monochromator, with a resolution of 1 cm−1. The source of 

excitation was a Melles Griot 25LHP925 He Ne laser that was used in single line excitation mode at 

 = 632.8 nm. The power focused on the samples was always less than 2 mW. The scattered Raman 
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photons were detected by a liquid-nitrogen cooled charge coupled device (CCD, Jobin Yvon mod. 

Spectrum One). 

 

2.3. LT-ESR activity testing 

Activity tests were performed by means of a micropilot plant constituted by an Incoloy 800 

continuous downflow reactor (i.d. 0.9 cm, length 40 cm), heated by an electric oven. Temperature 

was controlled by an Eurotherm 3204 TIC. The reactor was fed with gaseous reactants. The catalysts 

were pressed, ground and sieved into 0.15–0.25 mm particles and ca. 0.5 g were loaded into the 

reactor after dilution 1:3 (vol/vol) with SiC of the same particle size. Catalyst activation was 

accomplished by feeding 50 cm3 min-1 of a 20 vol% H2/N2 gas mixture at 500 °C for 1 h. During 

activity testing 0.017 cm3 min of a 3:1 (mol/mol) water/ethanol liquid mixture were fed to the reactor 

by means of a Hitachi, mod. L7100, HPLC pump, added with 57 cm3 min-1 of N2, used as internal 

standard, and 174 cm3 min-1 of He. The liquid mixture was vaporised in the hot inlet of the reactor 

before reaching the catalyst bed. Such dilution of the feed stream was calibrated so to keep the 

reactants mixture in the vapour phase even at zero conversion at the reactor outlet. The activity tests 

were carried out at atmospheric pressure, with a Gas Hourly Space Velocity (GHSV) of 2700 h−1 

(referred to the water/ethanol gaseous mixture) at 300, 400 and 500°C. The testing sequence was 

carried out starting progressively from the highest temperature in order to avoid possible deactivation 

by coking of the samples. Analysis of out-flowing gas was performed by a gas chromatograph 

(Agilent, mod. 7980) equipped with two columns connected in series (MS and Poraplot Q) with a 

thermal conductivity detector (TCD), properly calibrated for the detection of ethanol, acetaldehyde, 

acetone, acetic acid, water, ethylene, CO, CO2, H2. Repeated analyses of the effluent gas were carried 

out every hour and the whole duration of every test at each temperature was 8 h. The raw data, 

expressed as mol/min of each species outflowing from the reactor, have been elaborated as detailed 
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elsewhere [12,40]. Material balance on C-containing products was used as first hand indicator to 

evaluate coke deposition. 

 

3. Results and discussion 

3.1. Textural, structural and morphological properties 

In order to investigate the crystalline phases present in the catalysts, XRD analyses were carried out. 

XRD patterns of the samples (Fig. 1) showed only the tetragonal phase of zirconia in the case of Zr-

Ni, CaZr-Ni and MgZr-Ni, characterized by the most intense peak at 2θ ≈ 30°, while mixed tetragonal 

and monoclinic zirconia phases were obtained for KZr-Ni. Although the tetragonal stabilization of 

zirconia after the addition of CaO and MgO is in accordance with the materials prepared by traditional 

methods [38,44], the presence of the same structure for the undoped sample suggested that the 

metastable phase can be effectively synthesized by FSP. On the contrary K-promotion led to a mixed 

phase. The stabilization effect of potassium for zirconia support is not clearly reported in literature. 

For instance, Li and co-workers reported the stabilization of the monoclinic phase for catalysts 

prepared by impregnation [45]. Generally, the polymorph phase of the flame prepared materials is 

tightly related with the residence time and temperature achieved during the synthesis [46], but also 

the dopant nature is fundamental. Mueller et al. [47], in a study on metal-free zirconia nanoparticles 

prepared by flame pyrolysis at different production rates, showed the correlation between phase 

composition and synthetic flame parameters. In particular, they found the highest content of 

tetragonal phase for the smallest particles and for the fastest quenching of the particles during their 

formation within the flame. The progressive increase of particle size led to an increase of the 

monoclinic phase, i.e. the stable phase at r.t. and atmospheric pressure for coarse grained zirconia 

[48]. This effect is known as Gibbs–Thomson effect and it can explain phase composition of sample 

KZr-Ni, indeed characterized by bigger particle size (vide infra). Ni crystal size, calculated from the 

Scherrer equation, is also reported in Table 1. The Ni particle size is particularly important for this 
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application because it is well known that big ni particles are more prone to form carbon nanotubes 

than very well dispersed nanoparticles [4] . From this point of view, no significant variation of Ni 

particle size was achieved when doping with Ca or Mg, whereas a general increase of both ZrO2 and 

Ni crystal sizes was observed upon K-doping. 

The presence of MgO and CaO crystalline phases revealed their partial segregation. This contrasts 

with the conclusions reported by Asencios et al. [49] for doped samples prepared by wet methods, 

where they found only the formation of solid solutions without any dopant’s crystalline phase. Phase 

segregation here observed are ascribed to aggregation mechanisms of the precursors inside the flame. 

That is why we selected a low promoter loading with respect to materials prepared by precipitation-

impregnation.  

BET/BJH models were employed to calculate the specific surface area (SBET), porosity and pore size 

distribution of the catalysts and the results are reported in Table 1. For all the materials a type IV 

isotherm was observed, with a characteristic hysteresis of materials containing slit-shaped pores or 

aggregates of platy particles [50]. These results were consistent with the FSP preparation adopted, 

which lead to the formation of particles in the nanometric size without large intrinsic mesoporosity 

[51], directly related to the decomposition mechanism of the oxide precursors within the flame and 

the subsequent agglomeration [39]. The porosity of the samples was not significant, because the 

single nanoparticles are essentially dense and some mesoporosity only results from particle 

agglomeration in the flame during the synthesis. 

No significant difference between the adsorption/desorption isotherms shape of doped and undoped 

samples was evidenced. However, almost halved SBET was obtained for KZr-Ni with respect to other 

samples. This result could be explained by different rearrangements during the particles 

agglomeration within the flame and by surface covering of potassium oxides produced at high 

temperature, in accordance with Pratsinis and co-workers [52], who revealed this effect for K-

Rh/Al2O3 catalysts prepared by FSP for the CO2 hydrogenation process. Ultimately, the effect can be 
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searched in the different volatility of the alkali and alkali-earth oxides adopted (Tmelt CaO = 2613°C, 

Tmelt MgO = 2825°C, Tmelt K2O = 740°C) [53].  

H2-TPR analysis provides a quick characterization to evaluate the effect of a dopant on the 

reducibility of the active metal oxide [54]. TPR signals are strongly influenced by metal particle size, 

dispersion and strength of interaction with the support, as extensively described in the literature 

[38,55]. The H2 consumption due to the reduction of the support was ruled out in agreement with the 

analysis of bare ZrO2 [56] and the H2 consumption quantification is reported in Table 1. The reduction 

patterns during temperature increased showing differences in the NiO reduction profiles depending 

on the promoters added to the zirconia support (Fig. 2). The peaks deconvolution is reported in the 

Supplementary Information (Fig. S2 and S3). 

In the Zr-Ni TPR profile two main peaks were detected, due to NiO  strongly and weakly interacting 

with the zirconia support [57], i.e. a sharp peak at 489°C and a shoulder at 385°C, respectively. The 

weak signal at 258°C was ascribed to a very small amount of NiO very poorly interacting with the 

support and aggregated in larger particles.  

CaZr-Ni was characterized by two different peaks. A broad one was obtained by the overlap of two 

different peaks localized at 280 and 409°C. The former was attributed to NiO interacting with ZrO2 

influenced by oxygen vacancies due to the presence of CaO in the zirconia framework, as extensively 

explained elsewhere [38,58]. The latter was attributed to the NiO only interacting with bare ZrO2. 

This means that doping with CaO by FSP led to the same effect of partial substitution Zr4+/Ca2+ 

achieved by the traditional impregnation preparation route and, in such case, positively affecting 

activity and resistance to coking [38].  

On the contrary, a broad reduction band in the 370 °C and 700 °C range was detected for MgZr-Ni. 

The sharper peak at 409 °C was assigned to the reduction of Ni2+ species located on the MgO-ZrO2 

surface [50]. The broad band in the range 500°C-750°C was instead related to the reduction of several 
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complex species in a solid solution of NiO-MgO-ZrO2 (Ni2+–O–Mg2+) in accordance with a study of 

Garcia et al. [44] and Wang et al. [59].   

Several peaks were detected also in the case of KZr-Ni. This reduction profile is typical when there 

is not a narrow particle size distribution and several species are reduced. The possible contribution of 

K+ reduction was ruled out considering the quantification of the TPR signals (Table 1). XRD patterns, 

according to the Gibbs-Thomson effect, and BET analysis, according to the lowest SBET, confirm the 

highest heterogeneity of particle size for this sample considering ZrO2 particles, and this fact 

consequently reflected on active phase dispersion as it could be seen in the TPR curve. However, this 

aspect did not explain peaks at very high reduction temperature (maximum at 586°C). The latter effect 

is explained by a strong enhancement of the interaction strength between NiO and ZrO2 following K 

doping, in agreement with the stabilization effect of K addition [60] and its direct interaction with the 

transition metals in the lattice [61].  

From a quantitative point of view, Ni was fully reducible for every sample except for the Mg-doped 

one, whose H2 consumption was halved with respect to the other catalysts. 

Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) have been used 

to investigate samples morphology (Fig. 3 and 4). This allowed deepening the average Ni values of 

crystal size obtained by XRD, confirming them especially in case of overlapping reflections, as in the 

case of NiO/Al2O3 [4]. The results confirmed  a broader particle size dispersion for KZr-Ni. Although 

for all the other samples the size of NiO particles (darker spots in the TEM Figure) on the oxide 

matrix was around 10-20 nm in accordance with the XRD average values, no smaller particles were 

observed for the K-doped catalyst. In general a good metal dispersion was achieved at this quite high 

metal loading. Few big particles (size ≥ 50nm) can be observed in accordance with the weak TPR 

signals at very low temperatures for every sample. In order to clarify the absence of K oxide species 

in the XRD pattern, EDX analysis was carried out (Fig. S1). The results confirmed the presence of 

this promoter, although difficult to identify through X-ray diffraction, and its amount was 3.3 wt%.  
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Finally, the property modification of zirconia in the presence of basic dopants such as CaO, MgO and 

K2O is already known in literature. However the measure of the surface acidity could reveal some 

drawbacks and misunderstanding for two main reasons: i) the dopant significantly influences the OH 

mobility and is also correlated with more critical features such as Ni reducibility, particle sizes and 

support crystalline phase; ii) the general acidity features of the catalysts are often only partially 

suppressed by the presence of the dopant [38]; iii) Besides interaction with Ni as above discussed, 

support acidity is correlated to the formation of amorphous coke over support surface, This affects 

oxygen mobility, but it brings to a modification of catalyst performance that can be reversible or 

easily tunable by adding steam or oxygen. The most detrimental coking phenomenon is ascribed to 

the formation of nanotubes, which bring to the physical detachment of the active phase from the 

support and to the clogging of the reactor. 

 

3.4. Catalytic activity testing for LT-ESR 

To unravel the different possible contributions for the catalyst deactivation, critical steam/ethanol 

ratio (S/E=3 mol/mol) for coke deposition was chosen, corresponding to the stoichiometric 

composition. This aspect must be taken into account because also ethanol conversion and H2 

production are related with this important operating parameter [62]. In particular, higher S/E ratio 

favours the Water Gas Shift equilibria (higher yields of H2 and CO2) [8]. Space velocity was chosen 

in agreement with previous work [38] in order to operate under kinetic control. Hydrogen was used 

as reducing agent during catalyst activation and temperature was chosen below the Tammann 

temperature of Nickel (590 °C) in order to limit metal sintering. Blank tests were also conducted 

using a reactor filled only with quartz and SiC. The results were averaged between 4-8 hours, i.e. 

under steady state conditions, for tests at 400 °C and 500 °C, as reported in Table 2.  
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The expected equilibrium data were calculated for the chosen operating conditions as reference. They 

were calculated using the ASPEN Plus package choosing a Gibbs reactor and selecting as possibly 

present species all the observed products and byproducts. Identical products distributions were 

obtained when simulating the reactor as an Equilibrium block, where selected reactions take place. 

The proposed reactions were: 

 

CH3CH2OH + H2O   2 CO + 4 H2   (1)  ∆H0
298 = + 255.2 kJ mol-1 [63] 

CO + H2O    CO2 + H2    (2)  ∆H0
298 = - 41.2 kJ mol-1 [63] 

CH3CH2OH  CH4 + CO + H2   (3) ∆H0
298 = + 49.0 kJ mol-1 [63] 

CH3CH2OH  CH3CHO + H2   (4) ∆H0
298 = +284.9 kJ mol-1 [64] 

CH3CH2OH  CH2CH2 + H2O   (5) ∆H0
298 = + 45.0 kJ mol-1 [65] 

CH3CHO  CH4 + CO     (6)  ∆H0
298 = -79.5 kJ mol-1 [64] 

 

Where steps 1, 3 and 6 are considered unlikely to occur in the reverse sense in the operating conditions 

window adopted. No significant differences were achieved when adding the Boudouard and the 

methanation reactions. 

According to the results reported in Table 2, one may notice that full ethanol conversion is expected 

at every temperature and that the most favoured pathway based on thermodynamic considerations 

would be reaction 3, leading to methane, which is the most stable compound at low temperature. 

At 500°C every catalyst showed full ethanol conversion and equally negligible selectivity to common 

by-products such as acetaldehyde and ethylene, as prescribed by thermodynamics. However, lower 

methane formation was obtained, suggesting that the catalyst would inhibit the bare thermal 
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decomposition route (reaction 3), favouring other intermediate paths towards H2, CO and CO2. 

Considering a possible mechanism for ethanol conversion over metal particles, one may consider 

adsorption of ethanol, C-C bond cleavage and progressive loss of hydrogen leaving adsorbed CHx. 

The latter should be further oxidised by activated oxygen or oxydril species, possibly before the 

formation of carbides, which easily migrate through the metal lattice and are responsible of carbon 

nanotubes formation. According to this mechanism we can propose the hypothesis that our catalysts 

favour a fast oxidative path, inhibiting the recombination possibility between adsorbed CH3 and H 

entities. This can explain the lower methane selectivity with respect to thermodynamics predictions. 

The absence of ethylene, which is a coke precursor, could be explained in two ways: i) all the ethylene 

possibly formed through ethanol dehydration is reformated and/or oligomerized to coke over the 

catalyst surface; ii) the materials adopted had very low activity for ethanol dehydration. Mattos et al. 

explained this behaviour as direct consequence of the basic nature of the support when using La2O3 

[8]. However, the whole properties of the catalysts, metal activity combined with support interactions, 

should be considered [66].    

Ethylene was detected in the reactor outlet gases only for the MgZr-Ni sample. At 500°C and 400°C 

a constant increase of ethylene yield was observed with a decrease of the ethanol conversion for this 

sample (Fig. 5). This showed a progressive coking over catalyst surface. The formation of carbon 

suppressed the steam reforming reaction leading to the lowest hydrogen productivity obtained among 

all the samples. Moreover, the presence of acetaldehyde, product of dehydrogenation, suggested its 

incomplete reforming at 400°C. However, the high C-balance could mean that also alternative 

deactivation phenomena were happening. One possibility is the loss of the alkaline promoter during 

the tests and subsequent enhancement of acidity, progressively increasing ethylene productivity. 

Alkali loss at temperature higher than 300°C could happen during the steam reforming if the 

interaction with the support is too weak [67]. This can be a significant problem not only for the 

stability of the catalyst, but also for the promotion of stress corrosion in stainless steel in the coldest 
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parts of the plant downstream the reactor. Especially in the case of MgO, steam can react with the 

oxide and volatilize the alkali through formation of the hydroxide (Tmelt Mg(OH)2 = 350°C [53]) : 

MgO + H2O  Mg(OH)2        H0
298 = -81.3 kJ mol-1 

Energy-Dispersive X-ray spectroscopy (EDX) was used to check the Mg loading after use. Fig. 6 

showed that the spent catalyst maintained a good Mg dispersion, without any significant loss of the 

promoter with respect to the fresh catalyst. This is expected from literature data [67], because the 

steam partial pressure here used was lower and temperature higher with respect to those needed for 

the hydroxide formation.  

Another possible cause to interpret the poor activity of the Mg-doped catalyst can be an incomplete 

activation treatment. TPR profile suggests that the activation by reduction at 500°C did not allow to 

reduce all the nickel oxide and consequently the activity was reduced. To clarify this point activation 

at 800 °C was also carried out, but no significant increase of hydrogen productivity was detected by 

repeating the activity test at 500 °C. However, quantitative TPR data showed that even at 800 °C not 

all the nickel was reduced. The main reason for low and decreasing activity of the Mg-doped sample 

was here correlated with the increase of ethylene formation and ascribed to the progressive formation 

of encapsulating carbon, which consequently deactivated the metal particles, as better clarified in the 

next section.  

The incomplete reduction of nickel oxide occurred also in the case of KZr-Ni [68]. However, when 

comparing this with a K-doped sample prepared by impregnation (vide infra) and much more 

reducible, the activity performance at low temperature was comparable. K doping led to a strong 

metal-support interaction, as testified by the highest reduction temperature, and this point can be 

associated to the high activity exhibited by this sample. Frusteri et al. very well explained the 

beneficial role of K, because of the electronic enrichment of the active phase depressing carbon 
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formation [13]. We have also drawn similar conclusions for alkali doped catalysts for different 

applications [69–71].  

The CO/CO2 ratio is considered as a parameter to evaluate the extent of the Water Gas Shift reaction 

(WGS, reaction 2). WGS reached nearly equilibrium products distribution at 500°C for the Ca-doped 

sample (CO/CO2 ratio in Table 2). By contrast, at 400°C the WGS reaction was more favoured from 

a thermodynamic point of view, but more limited kinetically. CaZr-Ni and KZr-Ni revealed the lowest 

CO/CO2 ratio and, accordingly, the highest H2 productivity at such a temperature. The local defect 

structures formation in the case of CaZr-Ni increase the oxygen-ion conduction and enhance the 

formation of active oxygen-containing species through water activation [72]. This may favour the 

oxidative paths with respect to reaction 3, which would be even more thermodynamically favoured 

at low temperature (higher methane selectivity calculated at equilibrium). 

KZr-Ni showed the best performance in terms of H2 productivity and low CH4 selectivity. The 

beneficial impact of K on Ni-based catalyst toward methane activation and inhibition of methanation 

was in accordance with Rostrup-Nielsen et al. [73]. Experimental results confirmed the DFT-

calculations concerning the strong dipole moment induced in the transition state of the dissociating 

methane molecule with an increase of the energy barrier for dissociation of methane and hence the 

formation of adsorbed carbon atoms, precursors of coke [73].  

The apparently low methane selectivity in the case of MgZr-Ni was only due to the high selectivity 

towards acetaldehyde, and in turn, the increasing selectivity to C2 by-products can be correlated to Ni 

deactivation by coking (encaspsulating carbon). 

The formation of coke is the most critical point for LT-ESR as mentioned in the Introduction. Material 

balance on C-containing products was checked to quickly quantify coke deposition during the tests. 

The C balance during blank tests was ca. 91% at 500°C and 100% at 400°C. The addition of Ca and 

K promoters decreased the carbon loss, especially during the tests at 400°C (Table 2), while 

reproducing C balance equal to the blank test at 500°C. The importance of these results increased 
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comparing them with our previous data on other active phases and supports [12,74]. The beneficial 

role imparted by these dopants concerning the oxygen mobility, the reduction of surface acidity and 

the improved H2O and CO2 adsorption [8,38] were exploited by using the FSP preparation technique.  

It should be remarked that some materials were prepared by us by FP, characterised by higher H2 

productivity (up to ca. 1.8 mol H2 / min kgcat) [75]. However, the present samples show lower 

selectivity to byproducts and lower coking rate, besides being more active at lower temperature. 

Hydrogen productivity and H2/CO vs. t-o-s are reported in Fig. 7. These parameters are very important 

because, besides improving H2 yield, they allow to decrease the impact of the downstream H2 

purification through CO-removal steps, such as the dedicated WSG reactors [76,77]. By contrast, an 

higher value of CO in the stream means catalysts more suitable for the syngas production dedicated 

to the Fischer−Tropsch (FT) process, which need a ratio of approximately 2 to obtain high molecular 

weight paraffin/olefin liquid transportation fuels [78,79]. CaZr-Ni and KZr-Ni revealed the best H2 

yield and lowest CO productivity. However, a progressive decrease of the H2/CO ratio was observed 

at 400°C, whereas the respective tests at 500 °C (not reported) revealed a flat pattern with time-on-

stream centred around the mean values of Table 2. Two possible causes may coexist: i) the 

progressive decrease of activity toward H2 formation by WGS and ESR reactions due to deactivation 

by coking; ii) the progressive increase of the Reverse Boudouard (RB) reaction due to the carbon 

possibly accumulated (CO2 + C  2CO). The increase of C-balance and  H2 production ruled out the 

former hypothesis. The 2nd hypothesis seems the most probable because of the positive effect of 

alkaline additives to prevent the Boudouard reaction and consequently favour the RB pathway, in 

agreement with Galetti and co-workers and their study on basic ceria doping [80]. Although can be 

not unexpected this attribution due to the endothermicity of the reaction [81], the presence of this 

type of reaction on Zr-promoted catalysts was revealed also by Debek et al., studying dry reforming 

at low temperature [19].  
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The detected high activity for the WGS reaction was compared also with some representative articles 

in the open literature. Prasongthum et al. obtained higher values of CO selectivity using Ni/silica fiber 

catalyst prepared by electrospinning technique [82] with full ethanol conversion, but without 

specifying the space velocity, so preventing a sefe comparison with the present data.  

In order to have a clear overview and an explicit comparison of the catalyst performance considering 

tests not limited by full conversion, a test with the best catalyst KZr-Ni was performed using a tenth 

of the catalyst weight used in the activity tests previously shown. The resulting Gas Hourly Space 

Velocity was 13800 h-1, allowing a direct comparison also with literature data, and the activity results 

are reported in Fig. 8. The average conversion was 42 ± 4 %. A slightly lower selectivity to hydrogen 

was obtained, although the general trend and the general good features already discussed above were 

confirmed. Similar results at lower contact time were obtained by Palma et al. [83], with the same 

trend in product distributions, though their tests were carried out at higher water/ethanol ratio, which 

would increase the reactivity. He et al. detected better results using  Ni/SBA-15 catalysts at the same 

water/ethanol ratio, although any tests at lower conversion than 100% was carried out at a space 

velocity almost ten times lower than 13800 h-1, so comparable with the results reported in the present 

Tables 2 and 3.   

Finally, a more challenging temperature was investigated: 300°C. This reaction temperature is not 

commonly studied because of the very high catalyst activity necessary to achieve significant H2 

productivity. Usually thermodynamically more favourable side reactions occur, such as the ethanol 

dehydrogenation without subsequent acetaldehyde reforming, or ethanol decomposition/dehydration 

[8]. Products distribution is reported in Fig. 9. Generally, the low temperature ethanol steam 

reforming is considered divided in two steps: i) de-hydrogenation of ethanol to acetaldehyde (reaction 

4); ii) decarbonylation of acetaldehyde to form CO and CH4 (reaction 6) [64]. 

Zr-Ni confirmed that the first step of ESR was constituted by ethanol dehydrogenation (reaction 4), 

as acetaldehyde was the only C-product obtained. Mattos et al. evidenced the reaction routes for 
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acetaldehyde on oxide catalysts by means of a comprehensive IR study [8]. One route is the direct 

decomposition to CO and CH4 and the other is the hydrogen abstraction from adsorbed acetaldehyde 

to form acetyl species and their subsequent decomposition leading to CO(g) and CH3 adsorbed. 

Adsorbed methyl species should undergo a further hydrogenation step for the methane evolution or 

consecutive dehydrogenation to the formation of carbon. The product distribution and carbon balance 

confirmed the presence of both routes. High resistance toward Boudouard reaction for coke formation 

was witnessed by the absence of CO2. This pathway was confirmed by Choong et al., because of the 

surface oxygen sites modification by using CaO as dopant [84], and confirmed that the surface acidity 

was not the only property changed by doping with alkaline promoters.  

KZr-Ni was the only material still active toward H2 production at this very low temperature. The 

products were H2, CO, CO2 and CH4. The presence of CO2 suggests the acetaldehyde steam reforming 

reaction, which occurs at lower temperature with respect to ethanol SR using suitable catalysts [8][8]: 

CH3CHO + 3 H2O → 5 H2 + 2 CO2  (7) 

Under these operating conditions, doping with K led to a catalyst able to achieve the lowest methane 

selectivity at 300°C. Methane selectivity represents one of the key points in order to obtain a good 

SR catalyst for low operating temperatures. Indeed, methane is more difficult to reformate with 

respect to the oxygenated molecules and its presence decreases the hydrogen selectivity. On the other 

hand methane selectivity is less sensitive to other important process parameters such as the 

H2O/CH3CH2OH ratio [85]. Therefore, except for intrinsic catalyst activity and process temperature, 

SCH4 cannot be effectively tuned by manipulating other degrees of freedom[86,87].  

The lower concentration of CO with respect to CH4 could be explained by the higher activity toward 

COx methanation, favoured at low temperature, or by the enhanced WGS reaction, due to the 

exothermicity of both routes. The non negligible hydrogen presence in the products suggests the last 

route as the most likely.  
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3.5. Characterization of spent samples 

Qualitative and quantitative analyses were carried out on the used catalysts in order to better 

investigate the catalyst deactivation by coke formation or sintering. TPO is a useful technique to 

quantify coke amount [88]. During this temperature programmed analysis under oxidising 

atmosphere, the carbon species are oxidized at different temperature in accordance with their nature. 

Usually amorphous carbon is oxidized at lower temperature (200-300°C) whereas carbon nanotubes 

and graphitic/ordered carbon at higher temperature (400-600°C) [88]. In general, graphite is the most 

stable phase at low temperatures, while over 400°C, the MWCNTs are the main constituents of the C 

deposits, as extensively reported in the literature for Co and Ni-based catalysts [21,76]. Nevertheless, 

amorphous carbon, the less thermodynamically stable species [89], is the one most frequently found 

on a practical level, because the pathways leading to its formation are much faster. TPO profiles (Fig. 

10) ruled out the presence of amorphous carbon and confirmed the presence of carbon whiskers and 

ordered carbon. The absence of amorphous carbon was probably one of the main reasons to explain 

the lower deactivation here observed for K and Ca-doped samples with respect to other catalysts 

prepared by traditional techniques. Indeed ordered carbon, especially in the form of MWCNT, lead 

to a less evident deactivation because the tip of the metal particle can still remain accessible to the 

reactants due to the intrinsic mechanism of carbon formation [90]. By contrast, amorphous carbon is 

always encapsulating and in the presence of metal particles nearby the set up point, it can completely 

deactivate the active phase.  

The discrimination between graphitic carbon in form of nanotubes or graphitic layers in the region 

between 400-600°C is very complex. TEM and SEM pictures revealed both graphitic and filamentous 

carbon for all the catalysts (Fig. 11 and 12).  

Deconvolution of the TPO profiles was also carried out to attempt an attribution to the different 

carbon species (Fig.13). All features were formed by the overlap of two peaks, but the position in 
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terms of temperature changed slightly when varying the catalyst composition. As above mentioned, 

the higher is the order of the carbon species, the harsher is their oxidation [91]. However, the higher 

is the amount of carbon, the easier is the ability of the carbon to grow up in increasingly ordered 

structure. Raman spectroscopy (Fig. 14) pointed out that no significant variation of the D/G bands 

ratio was detected. Such parameter is usually applied to discriminate between different ordered 

carbon species. The D/G band intensity ratio here obtained between 1.1-1.3 confirmed the absence of 

amorphous carbon, because its presence usually leads to D/G intensity ratio higher than 1.8 [91].   

The observed shift of the peaks in TPO analysis was therefore attributed to the different carbon 

amount rather than to significantly different species. The two peaks were attributed to the formation 

of non-filamentous coke at lower temperature, in particular in the Cβ form, and filamentous coke at 

higher temperature [92]. The Cβ form is produced by the rearrangement and polymerization of the Cα 

form, instead of crystalline phase formation by the dissolution of Cα in Ni particles and diffusion to 

the interface with the support with subsequent formation of carbon nanotubes. The Cβ carbon polymer 

favours the encapsulation phenomena and leads to a complete de-activation of the Ni particles. For 

this reason Zr-Ni was less active at 400 and 300°C with respect CaZr-Ni and KZr-Ni, indeed it 

revealed the most intense 1st peak in TPO analysis.  

This explains also the higher activity of KZr-Ni with respect to CaZr-Ni, the former being 

characterised by an overall lower C deposition with respect to the Ca-doped sample. For MgZr-Ni 

the low amount of carbon formed was simply due to the lower activity of this catalyst, accumulated 

over the active phase, and not with the mechanism of carbon formation. Basically, the catalyst is less 

active towards every reaction, including those bringing to coke precursors. The progressive 

deactivation revealed during the activity tests were attributed to the encapsulating carbon. This 

attribution was confirmed by the higher peak intensity of the 1st peak with respect the 2nd one in the 

TPO deconvolution and by TEM analysis.  
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To quantify the overall amount of C accumulated during the whole testing, TPO analysis was 

elaborated after calibration and the results are reported in Fig. 15. In accordance with the C-balance 

of the activity tests, the lowest amount of carbon was detected for KZr-Ni and MgZr-Ni. As suggested 

in the Introduction, the strong metal-support interactions detected by TPR analysis confirmed to lead 

to the lowest carbon formation.  

 

3.6. Comparison of FSP with traditional preparation routes 

During this work, in comparison to the traditional doping methods such as incipient wetness 

impregnation, co-precipitation and sol-gel synthesis [93], we proposed an alternative FSP preparation 

procedure for the synthesis of doped catalysts. The study of this technique is very interesting because 

the particles are formed very rapidly and the aggregation mechanism could lead to a different way of 

doping because the dopant is added in the meantime of the other precursors.  This allows possible 

incorporation of the dopant into the support structure, with formation of oxygen vacancies as reported 

elsewhere [38]. In order to shed light about this point, the best catalysts in term of H2 productivity 

and selectivity, which were as aforementioned the doped by Ca and K, were compared with the 

homologous catalysts prepared by an optimized precipitation/impregnation method. (Table 3). 

Detailed characterization of the Ca-doped sample is reported elsewhere [38], whereas TPR, Ni content 

and specific surface area of the K-doped catalyst are reported in the Supplementary Information file. 

Considering the Ca doping, a higher hydrogen productivity was achieved at both 500 and 400°C. 

These results confirmed the theoretical line detailed in the previous sections of this paper about the 

best activity for this process using Flame Spray Pyrolysis preparation as synthetic route. However a 

different behaviour concerning methane selectivity was detected, probably due to the limited ethanol 

decomposition for the impregnated materials. The same feature was obtained for the K doping and 

better results with respect to Ca were observed, irrespectively of the preparation method. By using 

the traditional synthetic route the calcination step allowed to tune the metal-support interaction and 

the dispersion of the active phase. Moreover, calcination temperature and time often led to different 
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catalytic activity and crystal phase even though the dopant, the host oxide and the precursors were 

the same [93,94]. During FSP a high calcination temperature is attained depending on the solvent, 

precursors nature, flow rates and pressure drop within the burner [42]. The mixture of propionic acid 

and o-xylene adopted allows to achieve a temperature higher than 1000°C [42], and the calcination 

occurred in few milliseconds after the nucleation step. Ideally by FSP, homogeneous nanoparticles 

are formed by evaporation of the precursor, its conversion and subsequent nucleation to form the final 

catalyst. The optimized apparatus allowed to have a proper active phase dispersion for the LT-ESR 

process, as highlighted by the activity results and the characterization. Anyway, this degree of 

heterogeneity may be not acceptable for other processes with a very high activity-particle shape 

correlation, such as the CO oxidation[95]. The major drawbacks of the traditional preparation and 

doping methods, such as the long processing time and the batch-to-batch synthesis were successfully 

outdated considering CaZr-Ni and KZr-Ni. Ni nanometric particle size supported on oxide carrier and 

good average surface area combined with strong metal support interactions were obtained by FSP, in 

agreement with previous results obtained with different set-up by Mӓdler et al. [96]. The doping 

agents did not significantly influence Ni particle size or surface area unless in the case of K promoter. 

Therefore the results proved that the variation of catalytic performance was ascribed mainly to the 

properties modification imparted by the promoter oxides added.  

 

4. Conclusion 

In this work, the possibility to carry out ethanol steam reforming at low temperature was explored, as 

a step towards the economic feasibility and process intensification. 500 °C is considered a sufficiently 

low temperature for this process, while 400 °C and 300 °C are often too critical as for insufficient 

activity and catalyst deactivation. This latter is a key point from an industrial point of view. 

As a second goal, the effect of alkali addition on the performance of Ni/ZrO2 catalyst for the LT-ESR 

has been investigated. Activity results showed that full ethanol conversion can be achieved even at 
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400°C with the present catalysts, which thus proved very active for this application. The main 

differences were observed as for products distribution and resistance to coking. A strong decrease of 

CO/CO2 ratio can be achieved by doping the Ni/ZrO2 with Ca and K oxides. This parameter is 

fundamental to limit the further purification of reformate gas if the aim is the production of pure 

hydrogen or reformate with very low CO concentration. 

The results witnessed that K2O was mainly a chemical or electronic promoter rather than a textural 

promoter. The wider particle size distribution revealed a different agglomeration pathway within the 

flame during the synthesis. By contrast, the enhancement of activity at 500 °C and 400 °C, and the 

non negligible activity even at 300 °C, suggested K as one of the best chemical promoters for this 

process. Furthermore, alkaline promoters did not only affect surface acidity, but also Ni redox 

properties, crystalline phase and metal-support interactions. 

Finally, doped catalysts were prepared by Flame Spray Pyrolysis, a scalable and one-pot synthetic 

method rather new for this application, which can lead to peculiar catalyst properties. The 

characterization of fresh and spent samples allowed to correlate the structural modifications of the 

FSP catalysts by the addition of the promoters with their performance for this process, which has not 

been previously reported in the literature by this synthetic route.  

This work not only provides insights into the ESR process at very lower temperature than 

conventional (down to 300 °C), but it also provides guidance to develop new doped metal supported 

catalysts by a one step gas phase combustion synthesis already used routinely in a large scale to make 

millions of tons of powder single oxides. 
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Tables 

Table 1 

Textural and morphological properties of the FP prepared catalysts. SBET = BET specific surface area; 

Vp = pore volume; dp = mean pore diameter; dZrO2 = ZrO2 crystal size from XRD; dNi = NiO crystal 

size from XRD. a obtained by N2 physisorption; b obtained by Sherrer equation; c obtained by TPR. 

Catalyst Composition (wt%) SBET a   

(m2 g-1) 

Vp 
a     

(cm3 g-1) 

dp 
a 

(nm) 

dZrO2 
b 

(nm) 

dNi 
b 

(nm)  

mol H2 

consumed / mol 

Ni c 

Zr-Ni Ni - 10 - ZrO2 53 0.21 1.00 22 12 1.00 

CaZr-Ni Ni - 10 CaO - 4 ZrO2 49 0.17 1.00 23 10 1.00 

MgZr-Ni Ni - 10 MgO - 4 ZrO2 49 0.15 0.45 20 11 0.45 

KZr-Ni Ni - 10 K2O - 4  ZrO2 25 0.11 0.96 35 16 0.96 

KZr-Ni PI Ni - 10 K2O - 9 ZrO2 55 - 1.00 - - - 
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Table 2 

Activity testing for LT-ESR at 500°C and 400°C, 8h time-on-stream, data averaged out at 4-8 h-on-

stream, GHSV = 2700 h-1, Steam/Ethanol = 3 mol/mol. 

Catalysts  Zr-Ni CaZr-Ni MgZr-Ni KZr-Ni Equilibrium 

500°C      

EtOH conversion (%) 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 

H2 productivity 

(mol min-1 kgcat
-1) 

1.04 ± 0.03 1.07 ± 0.10 1.04 ± 0.08 1.16 ± 0.10 1.23 

 

CO/CO2 0.82 ± 0.14 0.64 ± 0.10 1.13 ± 0.11 0.74 ± 0.04 0.601 

C balance (%) 81 ± 3 89 ± 4 83 ± 7 87 ± 2 - 

Sel. CH4 (%) 10.7 ± 1.5 19  ± 2 9.4 ± 1.1 3.97 ± 0.10 33.4 

Sel. CH3CHO (%) 0 ± 0 0 ± 0 0 ± 0 0 ± 0 1.1 10-8 

Sel. CH2CH2 (%) 0 ± 0 0 ± 0 0.9 ± 0.9 0 ± 0 2.2 10-6 

400°C      

EtOH conversion (%) 100 ± 0 100 ± 0 53 ± 9  100 ± 0 100 

H2 productivity 

(mol min-1 kgcat
-1) 

0.65 ± 0.04 0.752 ± 0.006 0.23 ± 0.02 

 

1.00 ± 0.05 

 

0.675 

CO/CO2 1.2 ± 0.2 0.2 ± 0.2 1.15 ± 0.08 0.242 ± 0.006 0.093 

C balance (%) 56 ± 4 87 ± 4 86 ± 11 84.2 ± 0.7 - 

Sel. CH4 (%) 16 ± 2 37  ± 3 9 ± 2 16.7 ± 0.4 92.1 

Sel. CH3CHO (%) 0 ± 0 0 ± 0 30 ± 4 0 ± 0 3.3 10-9 

Sel. CH2CH2 (%) 0 ± 0 0 ± 0 7 ± 1 0 ± 0 4.0 10-7 
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Table 3 

Activity testing for LT-ESR at 500 °C and 400°C, 8h time-on-stream, data averaged out at 4-8 h-on-

stream, GHSV = 2700 h-1, Steam/Ethanol = 3 mol/mol, different preparation methods (PI = 

Precipitation-Impregnation).  

Catalysts  CaZr-Ni CaZr-Ni PI KZr-Ni KZr-Ni PI 

500°C      

EtOH conversion (%) 100 ± 0 100 ± 0 100 ± 0 100 ± 0 

Sel. CH4 (%) 19  ± 2 13  ± 1 3.97 ± 0.10 10.0  ± 0.4 

Sel. CH3CHO (%) 0 ± 0 2.2 ± 0.4 0 ± 0 0 ± 0 

Sel. CH2CH2 (%) 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

CO/CO2 0.64 ± 0.10 0.44 ± 0.07 0.74 ± 0.04 0.96 ± 0.08 

H2 productivity 

(mol min-1 kgcat
-1) 

1.07 ± 0.10 0.86 ± 0.05 1.16 ± 0.10 1.15 ± 0.05 

400°C      

EtOH conversion (%) 100 ± 0 62 ± 9 

(decreasing) 

100 ± 0 100 ± 0 

Sel. CH4 (%) 37  ± 3 2.1  ± 0.5 16.7 ± 0.4 10.0  ± 0.4 

Sel. CH3CHO (%) 0 ± 0 7  ± 2 0 ± 0 0 ± 0 

Sel. CH2CH2 (%) 0 ± 0 20  ± 5 

(increasing) 

0 ± 0 0 ± 0 

CO/CO2 0.2 ± 0.2 0.28 ± 0.03 0.242 ± 0.006 0.21 ± 0.02 

H2 productivity 

(mol min-1 kgcat
-1) 

0.752 ± 0.006 0.3 ± 0.4 1.00 ± 0.05 

 

0.96 ± 0.04 
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Figures  

 

Fig. 1 XRD patterns of catalysts with various dopants:  (*) nickel oxide, (+) calcium oxide, (°) 

magnesium oxide, (T) tetragonal phase, (M) monoclinic phase of zirconia.  
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Fig. 2 H2-TPR profiles of the FSP catalysts prepared with different basic promoters. Peaks 

deconvolution is reported in Fig. S2 and S3. 
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Fig. 3 FE-SEM  images  of  Ni/MxO-ZrO2 synthesised  by  FSP; A) Zr-Ni; B) CaZr-Ni; C) MgZr-Ni; 

D) KZr-Ni. Marker size 20nm for A) and B), 200nm for C) and 100nm for D).  
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Fig. 4 TEM  images  of  Ni/MxO-ZrO2 synthesised  by  FSP; A) Zr-Ni; B) CaZr-Ni; C) MgZr-Ni; D) 

KZr-Ni. Marker size 100nm. Darker dots are attributed to Ni/NiO particles. 
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Fig. 5 Evolution with time-on-stream of ethanol conversion (upper) and ethylene production (lower) 

for MgZr-Ni at different temperature.  
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Fig 6 Representative elemental mapping images by EDX-SEM of Mg for spent MgZr-Ni 
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Fig. 7  H2 productivity and H2/CO ratio versus time on stream at 400 °C: S/E = 3 mol/mol; GHSV = 

2700 h−1; P = 1 atm. 
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Fig. 8  Products distribution of sample KZr-Ni considering test with a tenth of catalyst mass with 

respect to standard testing conditions (GHSV = 13800 h-1, T = 400 °C, S/E = 3 mol/mol, P = 1 atm, 

Average ethanol conversion = 42 ± 4 %)  
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Fig. 9 Products distribution and ethanol conversion for LT-ESR tests at 300 °C, S/E = 3 mol/mol; 

GHSV = 2700 h−1; P = 1 atm. 
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Fig. 10 TPO profiles of the catalysts after the LT-ESR the full testing sequence at 500, 400 and 300 

°C. 

 

 

 

 



47 
 

    

 

  

 

Fig. 11 FE-SEM micrographs of catalysts after the LT-ESR tests: A) Zr-Ni; B) CaZr-Ni; C) MgZr-

Ni; D) KZr-Ni. Marker size 200nm for A), B), C), and 100nm for D). 
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Fig. 12 TEM micrographs of catalysts after the LT-ESR tests: A) Zr-Ni; B) CaZr-Ni; C) MgZr-Ni; 

D) KZr-Ni. Marker size 200nm for A), 500nm for C), and 100nm for B) and D). 
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Fig. 13 TPO profiles deconvolution of the catalysts after the LT-ESR testing. 

 

 

 

 

 

 

 

 

   



50 
 

1000 1200 1400 1600 1800

G

In
te

n
s

it
y

 /
 a

rb
.u

n
it

s

Raman Shift / cm
-1

 KZr-Ni

 CaZr-Ni

 Zr-Ni

 MgZr-Ni

D

 

Fig. 14 Raman spectra of the spent samples. From bottom up: KZr-Ni, CaZr-Ni, Zr-Ni, MgZr-Ni 
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Fig. 15 Coke accumulated over Ni-based catalysts used in the LT-ESR (temperature sequence: 500, 

400, 300 °C) from TPO analysis. 


