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Abstract

Consciousness is a multidimensional construct with no widely accepted definition. Especially in pathological conditions, it
is less clear what exactly is meant by (un)consciousness, how it can be reliably observed or measured. Here, we aim at

(i) bringing together state of the art approaches to classification of single patients suffering from disorders of consciousness
by means of motor-independent assessment of consciousness states with electrophysiology and functional neuroimaging,
(ii) showing how each proposed metric translates into clinical practice and (iii) raising a discussion on the ethical aspects of
consciousness measurements. We realize that when dealing with patients some issues commonly pertain to each method-
ology discussed here, such as the overall clinical condition, clinical heterogeneity, and diagnostic uncertainty. When pre-
dicting patients’ diagnosis, though, each method adopts a different approach to determine (a) a “gold standard” of the
benchmark population upon which the metric is computed and (b) the generalization and replicability in the attempt to
avoid overfitting. From an applied ethics perspective, the focus is, hence, on knowing what one is measuring and on the
validity of measurements. We conclude that, when searching for consciousness in pathological conditions, confident diag-
nosis can be based on the use of probabilistic predictions as well as on accumulative evidence stemming from multiple
non-overlapping assessments with different modalities. A framework which will regulate the application order of these
techniques (balancing their availability, sensitivity, and specificity, based on underlying clinical assumptions about a pa-
tient’s conscious state), is expected to ameliorate clinical management and further inform on the critical patterns of
(un)consciousness.
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Introduction

Defining consciousness and its disorders

Consciousness is a multidimensional construct for which there
is no universal definition (Baars 2015). Although there is a com-
mon sense of what conscious experience feels like in healthy
conditions, descriptions of such experiences may vary in focus
(e.g. perceptual, visual, being conscious of redness). However, in
pathological conditions, it is less clear what exactly is meant by
(un)consciousness, how it can be reliably observed or measured.
In order to overcome prominent philosophical challenges
around consciousness (e.g. Demertzi et al. 2009a), we here adopt
an operational definition coming from clinical neurology, which
evaluates consciousness based on two dimensions: wakeful-
ness and awareness (Posner et al. 2007; Giacino et al. 2014).
Wakefulness refers to the level of vigilance and is supported by
the function of the subcortical arousal systems in the brain-
stem, midbrain, and thalamus; clinically, it is indicated by eyes-
opening. Awareness refers to the contents of consciousness and
it is thought to be supported by the functional integrity of the
cerebral cortex and its subcortical connections; clinically, it is
assessed by evaluating command following and by observing
nonreflex motor behaviors, such as eye tracking and oriented
movements to pain. Based on this definition, patients in coma
and under anesthesia are not conscious because they cannot be
awakened. An interesting dissociation between these two com-
ponents comes from patients with disorders of consciousness,
i.e. those in vegetative state/unresponsive wakefulness syn-
drome (VS/UWS) and in minimally conscious state (MCS). The
VS/UWS is characterized as a “state of arousal without aware-
ness” (Jennett and Plum 1972) because, although patients show
intermittent wakefulness (manifested as eyes-open/eyes-closed
periods), preserved hypothalamic and brainstem autonomic
functions (permitting survival with medical and nursing care)
as well as variably preserved cranial nerve and spinal reflexes,
they nevertheless exhibit no evidence of awareness of self or
environment, they are unable to interact with others and they
show no evidence of sustained, reproducible, purposeful, or vol-
untary behavioral responses to visual, auditory, tactile or nox-
ious stimuli, and no evidence of language comprehension or
expression (The Multi-society Task Force on PVS 1994).
Historically this state has been referred to as the “vegetative
state” (VS). Recently, it has been proposed that, because the
term “VS” might carry pejorative connotations, the more neu-
tral term “unresponsive wakefulness syndrome” might be more
appropriate to refer to patients showing a number of clinical
signs of unresponsiveness (no conscious behaviors) in the pres-
ence of wakefulness (Laureys et al. 2010). Interestingly, some of
these unresponsive patients may show inconsistent, but dis-
cernible signs of behavioral activity that is more than reflex.
These patients are then said to be in a MCS (Giacino et al. 2002).
Patients in MCS manifest at least one of the following: purpose-
ful behavior, including movements or affective behavior contin-
gent to relevant environment stimuli which are not due to
reflexive activity (visual pursuit or sustained fixation occurring
in direct response to moving or salient stimuli, smiling or crying
in response to verbal or visual emotional but not neutral stim-
uli, reaching for objects demonstrating a relationship between
object location and direction of reach, touching or holding ob-
jects in a manner that accommodates the size and shape of the
object, and vocalizations or gestures occurring in direct re-
sponse to the linguistic content of questions), they can follow

simple commands (gestural or verbal yes/no response, regard-
less of accuracy), and show intelligible verbalisations.

Measuring states of pathological unconsciousness

When it comes to bedside detection of consciousness, this
needs to be inferred via the evaluation of motor activity, with
the aim to disentangle reflex from nonreflex behavior (Giacino
et al. 2014). To date, the Coma Recovery Scale-Revised (CRS-R) is
among the most accurate scales to assess such behaviors (Seel
et al. 2010). The scale evaluates 25 arranged items and is
organized on 6 subscales, addressing auditory, visual, motor,
oromotor, communication, and arousal function. Each item
assesses the presence or absence of a specific physical sign that
represents the integrity of brain function at one of four levels:
generalized, localized, emergent, or cognitively mediated re-
sponsiveness. Scoring is based on the presence or absence of
specific behavioral responses to sensory stimuli administered
in a standardized manner (Giacino et al. 2004). Despite the sys-
tematic assessment, the evaluation of nonreflex behavior is not
straightforward because patients can show fluctuating vigi-
lance, may suffer from cognitive (e.g. aphasia, apraxia) and/or
sensory impairments (e.g. blindness, deafness), from small or
easily exhausted motor activity and pain. As a result, the
presence of consciousness can be underestimated (Schnakers
et al. 2009).

During the past two decades, the diagnosis of disorders of
consciousness has been notably facilitated by means of techno-
logical modalities, such as electroencephalography (EEG) and
functional neuroimaging (Gantner et al. 2013). Although most of
such research has concerned patient groups (Laureys and Boly
2007), lately single-patient differentiation by means of auto-
matic algorithms has been achieved (Noirhomme et al. 2017).
Data-driven single-patient categorization in MCS and VS/UWS
has been performed by combining different markers derived
from EEG recordings (Sitt et al. 2014), by estimating values of
particular index reflecting reactions of the EEG signal after per-
turbations with transcranial magnetic stimulation (TMS)
(Casarotto et al. 2016) and by functional magnetic resonance im-
aging (fMRI) during resting state, estimating connectivity within
and between brain networks (Demertzi et al. 2015).

Considering the advances in single-patient automatic classi-
fication by means of technology-based measurements, the aim
of the present article is to (i) bring together state of the art
approaches for motor-independent assessment of conscious-
ness levels with EEG, TMS/EEG, and fMR], (ii) show how each
proposed metric translates into clinical practice, and (iii) raise a
discussion on the neuroethical aspects of measuring conscious-
ness. It should be clarified that what we intent to measure with
these approaches is not necessarily patients’ level of conscious-
ness, in the sense that patients can be ordered on the basis of
how conscious they are, which may imply that consciousness is
by definition graded. In lack of a full understanding of the na-
ture of consciousness, we rather aim to investigate global states
of consciousness, namely states which characterize an organ-
ism’s overall conscious condition. Global states of conscious-
ness are distinguished from each other on cognitive, behavioral,
and physiological grounds, such as wakefulness, variable de-
grees of sedation, dreaming, hypnosis, and absence seizures. As
such, an organism can be only in one global state of conscious-
ness at a time avoiding assumptions about the features which
are represented in experience (Bayne et al. 2016).
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Methodological and technical challenges

The estimation of clinical diagnosis by means of data-driven
approaches can be done in several ways (Noirhomme et al.
2017). The approaches we discuss here have utilized machine
learning techniques which derive a prediction model that is
used on individual subjects, and receiver operating curve (ROC)
analysis which determines an optimal threshold for separating
the categories we are interested in.

When these approaches are applied, several methodological
issues emerge (Noirhomme et al. 2017). Some of these issues
commonly pertain across all adopted methods. In particular,
patients’ clinical condition may hinder optimal data collection
because patients can fluctuate in vigilance, which can be diffi-
cult to be monitored by eye tracking and/or electrooculography.
As aresult, the obtained signal may represent lower level of vig-
ilance and/or be contaminated by noise due to motion artifacts.
Additionally, patients can be highly heterogeneous in terms of
etiology and chronicity, which may confound the results of the
test. Importantly, some of the diagnostic criteria for VS/UWS
and MCS do not share international consensus, such is the case
with visual fixation, which is considered as a sign of conscious-
ness for some whereas others provide evidence for the opposite
(Bruno et al. 2010; Naro et al. 2016). Such an issue could jeopar-
dize the initial clinical diagnosis with consequences both on the
outcome of a test as well as on the used labels which will train a
machine learning algorithm.

Each approach, though, addresses the following two issues
in different ways: First, it is the issue of establishing the “gold
standard”, namely the population on which the metric should
be validated. In general, a gold standard is the condition with
the highest regarded validity, i.e. it corresponds accurately to
what it is supposed to correspond to (Peterson 2016). Based on
that, a proposed metric can be validated on healthy controls un-
der the premise that subjective reports are a direct reflection of
conscious experience. With this approach, however, the capac-
ity for consciousness can be detected as either present or absent
thus providing, at the very best, only a very coarse calibration of
the proposed metric. A proposed metric can also be validated
on patient population under the premise that the proposed
metric will be specific for this group without strong priors com-
ing from healthy conditions. With this approach, however, one
runs the risk of reasoning in a circular manner, namely building
a predictive algorithm destined to distinguish two patient cate-
gories for which the labels are based on behavioral assessment,
which we already know is not an optimal measure (Harrison
and Connolly 2013). Second, it is the issue of generalization and
replicability to avoid overfitting of the wused algorithm.
Overfitting happens when a model describes noise in the data
rather the underlying pattern of interest. As a result, overfitting
characterizes very good classification performance on the ob-
served data and very poor performance on unseen data
(Arbabshirani et al. 2017). Therefore, we are in need of ways
which will ensure that the obtained results are relevant for the
prediction of newly assessed cases.

EEG signatures of awareness - Jacobo Diego Sitt

EEG recordings represent an important tool to evaluate the
state-of-consciousness of brain-injured patients. The main ad-
vantage of EEG is the availability in most clinical settings and
the applicability in both acute and chronic conditions. The vir-
tual absence of contraindications of this methodology and the
fact that it can be easily used at the bedside means that almost
all patients can be evaluated using this technique. The

Measuring states of pathological (un)consciousness | 3

challenge is that EEG data are of a multidimensional space
(i.e. several electrodes and time samples) and therefore a direct
clinical interpretation of the data is difficult. A way to reduce
this complication is to estimate two different types of clinically
relevant EEG markers of consciousness: (i) markers of conscious
access and (ii) markers of conscious state.

Markers of conscious access are linked to the brain activity
associated with the processing of specific external stimuli that
can later be reported by the subject. Detecting such activity in
patients is important because this would provide direct evi-
dence that the global state-of-consciousness of the patient al-
lows the processing and report of information. These markers
are typically extracted using event-related potentials (ERPs) in
the framework of different types of stimulation protocols.
These protocols are typically designed to evaluate three cogni-
tive processes in patients: stimulus perception (i.e. Bekinschtein
et al. 2009; Morlet and Fischer 2013), language processing
(i.e. Cruse et al. 2014; Rohaut et al. 2015), or emotional processing
(i.e. Perrin et al. 2006); see also Harrison and Connolly (2013) for
a review of the different protocols used in patients. A difficulty
with this approach is that the recoding conditions tend to be
rather noisy (i.e. recordings performed in a clinical environ-
ment) and the population is highly heterogeneous, e.g. each pa-
tient has cerebral lesions in different locations). It is worth
noticing that recent research has tried to overcome these limi-
tations and enhance the signal-to-noise ratio of the extracted
ERPs by using machine learning. The methodology used in that
case is based on the maximization of detecting an activity us-
ing multivariate decoding to optimally combine information
from several EEG electrodes at different time points (see King
et al. (2013a) for an example and Noirhomme et al. (2017) for a
review).

Markers of conscious state aim at detecting conscious infor-
mation processing independently of the actual content. These
markers are typically computed from resting state or nonstimu-
lus-locked activity. The approach here is to quantify the combi-
nation of neuronal markers that, according to predictions of
current theories of consciousness, are sufficient for the con-
scious processing of information. To this aim, in a series of
works we have introduced novel methods to determine the con-
scious state of brain-injured patients. In particular, we devel-
oped EEG markers to test the hypothesis that cortical
information-sharing could distinguish those patients showing
signs of conscious behavior (King et al. 2013b). In that work we
first demonstrated that the introduced measure of information-
sharing systematically varied in accordance to the state-of-
consciousness, particularly in parietal regions and for
long-distance connections. Next, we tested whether the simul-
taneous evaluation of several EEG markers (either markers of
conscious access or conscious state) could provide complemen-
tary information to determine patients’ state-of-consciousness.
To that end, we studied 92 different measures in a cohort of
181 EEG patient recordings (Sitt et al. 2014). Figure 1 shows a to-
pographical comparison of a subset of these measures in the
different clinical groups. In line with the “multidimensional
global states of consciousness” (Bayne et al. 2016), the proposed
EEG markers quantify different dimensions that are useful to
distinguish between different clinical states. This concept of
multidimensional EEG evaluation has been recently explored
using cognitive ERPs (Sergent et al. 2016).

We then examined whether these different EEG measures
could be combined to enhance the discrimination performance
between the different clinical states-of-consciousness, in partic-
ular between VS/UWS and MCS patients. To this aim we trained,
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Figure 1. (A) Scalp topography of markers of event-related potentials, spectral decomposition, complexity, and connectivity. The topographical
2D projection (top = front) of each marker is plotted for each state of consciousness (columns). While some markers can better distinguish VS/
UWS from MCS (i.e. delta power, permutation entropy, or wSMI connectivity) others are less efficient (i.e. MMN) (B) Comparing clinical and
data-driven diagnosis. (B-bottom) Seventy-five patients clinically classified in VS/UWS were evaluated using the EEG-based classification.
While in 50 of these recordings the two classifications matched, in 25 the EEG-based system classified the patients as in MCS. (B-top) The bar
charts show the clinical outcome of these subgroups of VS/UWS patients. The probability of recovery was higher (p = 0.02) for patients classi-
fied into a higher state of consciousness than for patients predicted to be actual VS/UWS. CNV: contingent negative variation, AMMN: mis-
match negativity, AP3b: P300b, |3|n: normalized power in delta band, |«/n: normalized power in alpha band, SE: spectral entropy, PE6:
permutation entropy in theta band, K: Komolgorov-Chaitin Complexity, wSMI6: weighted symbolic mutual information (modified from Sitt

et al. 2014).

with cross-validation, a support vector machine using the
scikit-learn library for machine learning (Pedregosa et al. 2012)
and contrasted the performance of the best marker to the opti-
mal combination of markers. The results showed that by using
the best marker, the VS/MCS discrimination performance
reached an area under the curve (AUG; in classification analysis
it determines which of the used models predicts the classes
best) value of 71 + 4%. In contrast, when using all EEG markers
the AUC was significantly higher and reached a value of 78 =
4% (Sitt et al. 2014). These results suggest that different EEG
markers carry partially independent information and that
their combination can better inform of patients’ state-of-
consciousness.

ISSUE 1. How to account for the gold standard

When establishing a clinical tool, the ultimate objective is to be
useful for routine clinical practice. Under this premise, our algo-
rithm was trained and tested on data whose labels were based
on behavioral evaluation of all patients admitted in neurological
service for the evaluation of their conscious state. In that
sense, we did not limit our dataset to specific characteristics.
Behavioral assessment of consciousness, however, is not en-
tirely accurate to diagnose patients and approximately 15% of
the patients behaviorally classified in VS/UWS are expected to
retain some conscious processing (Stender et al. 2014). In that
case, one should consider that a 100% prediction rate of the clin-
ical labels probably represents overfitting of the used dataset.

In keeping with this limitation, we automatically classified
subjects as belonging to a given clinical group, and showed that

EEG markers could be combined to improve the discrimination
of the patients’ state of consciousness (Sitt et al. 2014). We found
that most patients classified as in VS/UWS on both clinical and
EEG-based criteria showed no signs of regaining consciousness
in the 6 weeks following EEG recording. In clear contrast, for the
clinically VS/UWS patients who were classified as MCS based on
their EEG activity, the proportion of recovery significantly in-
creased (Fig. 1B). Hence, within a behaviorally indistinguishable
group of clinically unresponsive patients, neurophysiological
measures provided substantial information about the future
improvement of consciousness, suggesting a better functional
status at the time of recording.

More recently, and in order to increase clinical application,
we implemented a web-based automated solution to provide an
EEG-based clinical diagnostic of patients’ state-of-consciousness.
Its goal is to estimate, in each new patients’ recording, the proba-
bility that the patient belongs to either the VS/UWS or MCS clini-
cal groups. For this purpose, we developed a flexible and scalable
data analysis workflow that automates processing of EEG record-
ings, the extraction of EEG measures and the communication of
results (Fig. 2). The proposed solution is merely based on open
source software and is scalable on multiple levels (Engemann
et al. 2015).

ISSUE 2. Generalization and replicability

Using this tool, we validated our results using different record-
ing conditions that match the clinical EEG. The classification
performance remained unchanged to different conditions, such
as when varying the sampling frequency (125 and 250 Hz), the
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trates the overall workflow. The operator enters EEG data into the system, the automated pipeline is launched on a web-server, and summary
reports are dispatched to the operator. Panel (B) is a screenshot of a diagnostic report that presents the estimated probability of the patient be-

ing in a MCS (modified from Engemann et al. 2015).

total number of number of trials (10-500), and channels (8-256).
A similar procedure was followed to test the validity under dif-
ferent recording conditions, this time by training the classifier
using auditory stimulation recordings and testing on pure
resting-state recordings (Engemann et al.,, n.d., manuscript in
preparation).

In summary, these findings show that EEG can produce gen-
eralizable predictive models, sensitive to different recording
conditions. The capacity of integrating data across a wide range
of situations facilitates the evaluation of the state-of-
consciousness in both nonspecialist multisite clinical settings
and specialised research facilities.

Stratification of unresponsive patients by an
independently validated index of brain complexity -
Simone Sarasso

Validating and calibrating an objective index of the brain’s ca-
pacity for consciousness when behavioral signs of conscious-
ness are unreliable or inconsistent represents a formidable
challenge. Here we consider the Perturbational Complexity
Index (PCI), a theoretically inspired (Tononi 2004; Tononi et al.
2016) measure that gauges the ability of thalamocortical circuits
to integrate information irrespectively of the integrity of sen-
sory processing, motor behavior, and subject’s participation
(Casali et al. 2013). PCI gauges the amount of information con-
tained in the integrated response of the thalamocortical system
to a direct perturbation. In this context, the notion of informa-
tion is very different from its classical definition (Shannon
1948). Indeed, in Shannon’s formulation, information is extrin-
sic and observational; it is assessed from the extrinsic perspec-
tive of an observer and it quantifies how accurately input
signals can be decoded from the output signals transmitted
across a noisy channel. On the contrary, here, information is in-
trinsic and causal; it is assessed from the intrinsic perspective
of a system based on the cause-effect repertoire generated by
its internal mechanisms.

Practically, the idea is that brain complexity could be esti-
mated empirically by perturbing the cortex (“zapping”) to en-
gage distributed causal interactions and measuring the
information content of the ensuing responses by algorithmic
compressibility (“zipping”) (Massimini et al. 2009). This is made
possible by the introduction of an electrophysiological tech-
nique, based on the combination of navigated TMS and high-

density EEG (hdEEG) (Ilmoniemi et al. 1997). By means of TMS-
hdEEG, it is possible to measure the dynamics of the cortical re-
sponse to TMS, thus inferring on the complexity of the underly-
ing network (Massimini et al. 2009). Indeed, networks in which
functional integration is lost will react to TMS with a response
that is simple because it is local. On the other hand, networks in
which functional specialization is lost will react to TMS with a
response that is simple, because it is redundant. Only complex
networks, where functional specialization and functional inte-
gration are balanced, will react to TMS with a complex response
where a large number of integrated areas react in a differenti-
ated way.

In a recent work (Casarotto et al. 2016), we first validated the
PCI on a benchmark population of 150 subjects, who could pro-
vide a report about the absence or presence of conscious experi-
ence either during the TMS-hdEEG assessment or
retrospectively upon awakening from sleep (Siclari et al. 2013)
and anesthesia (Sanders et al. 2016). From this validation we de-
rived an empirical cutoff (PCI*) that was able to distinguish be-
tween the presence and the absence of consciousness as
assessed through subjective reports with 100% accuracy (Fig. 3).
In particular, PCI was invariably higher in the conscious as com-
pared to the unconscious conditions.

ISSUE 1. Determining the gold standard: reportability

In the lack of an objective independent measure of conscious-
ness, relying on subjective reports - either immediate or de-
layed — currently represents a reliable, although very coarse,
way to assess the presence/absence of conscious experience
(Noreika et al. 2011) and therefore to validate objective measures
of consciousness (Sanders et al. 2016). As mentioned above, con-
sidering subjective reports as the true state of affairs, if a brain-
based test of consciousness is positive in subjects who are fully
unresponsive at the time of measurement but provide a delayed
report of a vivid dream upon awakening, the result should be
considered a true positive. Here, the benchmark population in-
cluded data from subjects under ketamine anesthesia and REM
(rapid-eye-movement) sleep conditions in order to specifically
validate PCI in subjects who are, at the same time, conscious
but behaviorally unresponsive and disconnected from the ex-
ternal environment (Siclari et al. 2013). Moreover, the bench-
mark population also included a large group of responsive
brain-injured patients (with locked-in syndrome, subcortical
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Figure 3. The PCI differentiates between conscious and unconscious subjects. Each circle represents the PCI value computed from the cortical re-
sponses to TMS of one stimulation site. PCI values are computed from TMS-evoked potentials recorded in healthy subjects and conscious
brain-injured patients during different conditions. Individuals are grouped by condition, and within each condition are sorted by increasing
age. During non-rapid eye movement (NREM) sleep and anesthesia with midazolam, xenon, and propofol, subjects were behaviorally unre-
sponsive and did not provide any report upon awakening. During dreaming and ketamine anesthesia, subjects were behaviorally unresponsive
but provided delayed subjective reports upon awakening. During wakefulness, both healthy subjects and conscious brain-injured patients
(with locked-in syndrome-LIS, subcortical and cortical stroke, patients who emerged from the MCS-EMCS) could immediately report their sub-
jective experience. The dashed horizontal line represents the empirical cutoff PCI* obtained by applying ROC curve analysis using the pres-
ence/absence of report as the gold standard (modified from Casarotto et al. 2016).

and cortical stroke, patients who emerged from the MCS). This
latter feature allowed to account for the presence of brain le-
sions in the validation of PCI, which is ultimately aimed at a tar-
get population of MCS and VS/UWS patients with severe
neurological damage. Then, we applied this externally validated
PCI cutoff to evaluate patients with disorders of consciousness.
Slicing through the PCI distribution of a MCS cohort (n=38) with
the empirical cutoff derived from the benchmark population,
we further challenged the sensitivity of PCI in detecting patients
showing minimal but unequivocal behavioral signs of con-
sciousness. Crucially, PCI was higher than PCI* in 36 of 38 pa-
tients, leading to an unprecedented sensitivity value of 94.7% in
detecting minimal signs of consciousness (Fig. 4).

Finally, by applying the externally validated cutoff to a co-
hort of 43VS/UWS patients, we found that 9 unresponsive pa-
tients had a PCI value higher than PCI%, raising the issue of
whether these are false or true positives. Since PCI was always
higher than PCI* only when consciousness was present and
never when consciousness was absent across the 200 measure-
ments pertaining to the benchmark population, it is parsimoni-
ous to assume that these high-complexity unresponsive
patients may retain a capacity for consciousness that is not ex-
pressed in behavior.

Taken together, using subjective reports as the gold stan-
dard, we found that PCI optimally discriminates between the
conscious and the unconscious conditions in a benchmark pop-
ulation, irrespectively of behavioral unresponsiveness and
the presence of brain lesions. Testing our metric on an indepen-
dent dataset of subjects able to report — immediately or

retrospectively - the presence/absence of consciousness clearly
offers the advantage of avoiding the issue of reasoning in a cir-
cular manner, i.e. assessing the performance of a measure of
consciousness using the target population as a gauge for the ac-
curacy of the measure in the absence of a veridical benchmark
of the true state-of-affairs. Furthermore, the inclusion in our
benchmark population of subjects that were behaviorally unre-
sponsive and disconnected from the external environment
while conscious, as well as conscious brain-injured patients, al-
lows for the best available approximation of the challenging
conditions presented by the unresponsive brain-injured
patients.

ISSUE 2. Generalization and replicability

The sensitivity obtained by means of an independent validation
of PCI, confirmed on MCS patients, allows for a sufficiently un-
biased, and therefore generalizable, condition to slice through a
population of patients in which the absence of behavioral signs
of consciousness per se cannot be considered a proof of the ab-
sence of consciousness. More importantly, our approach allows
for the identification of three subgroups of VS/UWS patients
with both pathophysiological and management practical impli-
cations. Specifically, we observed (i) a no-response VS/UWS sub-
group in which TMS targeted over different cortical areas failed
to engage any significant cortical response (black traces in
Fig. 4), (ii) a low-complexity subgroup where TMS triggered a lo-
cal and stereotypical positive-negative response (blue traces in
Fig. 4) similar to the one observed in healthy controls during
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Figure 4. PCI* performance tested on behaviorally responsive and unresponsive patients. The histogram on the left summarizes the distribution
of PCI in the benchmark population, specifically obtained in the absence of subjective report (blue) and in the presence of subjective report (de-
layed, green; immediate, red) conditions. The dashed horizontal line highlights the optimal cutoff (PCI*) computed from ROC curve analysis on
the benchmark population. The scatter plot on the right shows all the PCI values obtained in minimally conscious state (MCS+/MCS—) and
unresponsive patients (VS). Within each diagnostic group, patients are sorted by the CRS-R total score in decreasing order. The three boxes at
the bottom show the average TMS-evoked potentials (all channels superimposed, with three illustrative channels highlighted in bold), together
with the PCI values for three representative unresponsive patients (VS) with individual value of PCI respectively=0 (left, in black), lower than
PCI* (center, in blue), and higher than PCI* (right, in purple) (modified from Casarotto et al. 2016).

unconscious NREM sleep and anesthesia, and (iii) a high com-
plexity subgroup, in which TMS engaged a rapidly changing and
spatially differentiated cortical response (purple traces in Fig. 4),
similar to the one observed in MCS patients and in responsive
wakefulness or unresponsive conscious controls, ie. during
REM sleep and ketamine anesthesia.

Practically, by approximating an optimal trade-off between
sensitivity and specificity, the PCI test may represent an impor-
tant step within a hierarchical diagnostic flow of patients with
DOC. For example, one may apply the PCI after a first screening
with tests characterized by high sensitivity, such as positron
emission tomography assessment of cortical metabolic rates
(Stender et al. 2014) in search of preserved cortical and subcorti-
cal metabolic activations that may have escaped the TMS prob-
ing. Then, patients with PCI>PCI* could be selected to confirm
the presence of covert consciousness through more demanding
tests characterized by maximal specificity, such as functional
MR imaging active paradigms. Finally, patients with PCI<PCI*
should be directed toward neuromodulation with medications
or brain stimulation techniques (Fridman and Schiff 2014)
aimed at restoring complex patterns of activity.

Single patients are classified in discrete diagnostic
categories based on fMRI default brain activity -
Athena Demertzi

Even when the mind is free to rest and do nothing, spontaneous
cognition tends to gravitate toward thoughts and feelings. This
means that the apparently idle brain is, instead, constantly ac-
tive (Gusnard and Raichle 2001). The resting state paradigm is
particularly appealing for clinical applications because it does
not require sophisticated experimental setup and surpasses the
need for subject’s collaboration (Demertzi and Whitfield-
Gabrieli 2016). Therefore, it is suitable for studying subjects who
are unable to communicate in a functional manner, including
patients suffering from disorders of consciousness.

Analyses of fMRI data during resting state indicate that the
brain can be organized in reproducible networks of cognitive
significance (Smith et al. 2009; Laird et al. 2011). The most ro-
bustly identifiable network is the default mode network (DMN)
which classically encompasses posterior cingulate cortex and
adjacent precuneus as well as anterior cingulate cortex and
mesiofrontal areas (Raichle et al. 2001). When DMN functional
connectivity (i.e. the temporal synchronization between
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spontaneous BOLD signal; Biswal et al. 1997) was estimated in
patients with disorders of consciousness, it was shown that it
was relatively preserved in patients in MCS and significantly re-
duced in patients in a VS/UWS; in contrast, there was preserved
connectivity in healthy controls and in a patient with locked-in
syndrome (Vanhaudenhuyse et al. 2010). Furthermore, DMN
connectivity was absent in a brain dead patients (Boly et al.
2009). Such results suggest that DMN functional connectivity
correlates with consciousness states and, at least to a certain
degree, can be used as a proxy to study residual cognitive func-
tion in these patients.

The quantification of fMRI resting state functional connec-
tivity in patients can be challenging. When employing data-
driven independent component analysis (ICA), for example, a
dataset is divided into maximally different statistical compo-
nents and, thus, it is able to isolate cortical connectivity maps
from non-neuronal signals (Beckmann et al. 2005). This method
allows us to evaluate and compare the coherence of activity in
multiple distributed voxels and hence identify more brain net-
works other than the DMN (Heine et al. 2012). However, ICA does
not provide any ordering of the independent components,
which can make the data representation difficult to interpret.
A common solution to identify the network of interest is to cal-
culate the fit between the components’ spatial pattern and the
pattern of a pre-defined template which represents the network
(Greicius et al. 2004). Importantly, in cases of deformed brains,
results should be interpreted with caution. This is because in
the extreme conditions, where a patient shows only one com-
ponent of neuronal origin, the use of a single template-
matching method would lead to identify this component as the
network we are investigating each time (Heine et al. 2012; Soddu
et al. 2012). In that case, one endangers to identify an unsuitable
component as the network of interest. We overcame this issue
by means of a multiple template-matching procedure, where
the goodness of fit was calculated among several pairs of
component-template comparisons. The pair with the maximal
goodness of fit value was eventually selected. Hence, the chan-
ces to select the “proper” network of interest increased
(Demertzi et al. 2014). As a second network selection criterion,
we isolated the components which were not characterized by
neuronal properties based on the information of how the BOLD
signal fluctuates. For the neuronality check, non-neuronal were
those components showing, among others, activation/deactiva-
tion in peripheral areas, in the cerebrospinal fluid and white
matter and which were characterized by high-frequency fluctu-
ations (>0.1Hz). Conversely, neuronal were considered those
components when at least 10% of the activations/deactivations
were found as gray matter clusters. With this “neuronality test”,
we ensured that the selected networks were within healthy
boundaries both in spatial and temporal terms. Following this
approach, we found that, compared to controls, patients
showed fewer neuronal components. Also, four networks were
less identifiable in the clinical population, namely the left and
right executive control network, the DMN and the auditory net-
work. Supervised machine learning was able to separate
healthy controls from patients with 85% accuracy based on in-
formation about the neuronality of the DMN and the auditory
network. The separation between MCS and VS/UWS, however,
was more challenging (Demertzi et al. 2014). These results imply
that systems-level resting state fMRI can be informative of con-
sciousness states. However, the discriminative characteristic
(here the neuronality of the networks) appeared as a non-sensi-
tive feature to capture the separation between these two

classes. Also, due to the selection criteria for identifying the net-
works, many patient data had to be excluded.

In order to increase power and determine a more sensitive
metric across all patients, we sought to go hypothesis-driven by
means of seed-based correlation analysis. We investigated
seed-based functional connectivity in three large-scale net-
works (DMN, frontoparietal, and salience) and three sensory
networks (auditory, sensorimotor, and visual) (Demertzi et al.
2015). We first found that the clinical scores of the CRS-R corre-
lated with functional connectivity of all networks, highlighting
their contribution to consciousness state (note: as a control net-
work we included the cerebellum which did not show connec-
tivity changes as a function of CRS-R scores). We further aimed
at determining the capacity of each network to differentiate be-
tween patients in MCS and VS/UWS. We found group-level dif-
ferences in all networks. Moving toward single-patient
classification, we identified that all networks were able to dif-
ferentiate patients in MCS and VS/UWS with high accuracy
(>86%). Such accuracy could be partially attributed to the fact
that the network ranking was based on features extracted from
the same population for which between-group differences were
already known. To avoid double-dipping, we validated the most
highly ranked network on two independent clinical datasets
and across healthy controls scanned in different centers.
Single-patient classification was performed based on the con-
nectivity strength of the “auditory network”, which was ranked
most highly among all studied systems in separating MCS and
VS/UWS patients. Based on this network’s connectivity, 20 of
the 22 new patients were classified congruently, namely the
clinical diagnosis matched the classifier's decision (Fig. 6A). It
should be noted that this network was referred to as “auditory”
for the sake of consistency with the literature. In fact, apart
from temporal cortices, this network encompasses regions in
occipital cortex, pre- and postcentral areas and insula. Hence,
the discriminative feature of this system was connectivity in
areas beyond audition-related, such as occipital and bilateral
opercular/insular cortex (Fig. 5).

This crossmodal connectivity has been previously identified
in normal conscious subjects during rest (Eckert et al. 2008). Also
in healthy subjects, preserved fMRI activity in temporal and oc-
cipital areas has been shown during mental counting of audi-
tory temporal irregularities, only when they were attentive and
aware of the auditory violations (Bekinschtein et al. 2009).
Inversely, when subjects were scanned under pharmacologi-
cally induced anesthesia, there was decreased crossmodal in-
teraction, which was restored after recovery of consciousness
(Boveroux et al. 2010). Crossmodal connectivity is considered
relevant for multisensory integration (Clavagnier et al. 2004), i.e.
a facilitator for top-down influences of higher order regions to
create predictions of forthcoming sensory events (Engel et al.
2001). Interestingly, top-down connections were found to be
present in patients in MCS but absent in patients in VS/UWS
(Boly et al. 2011). Taken together, our results indicate that con-
nectivity in occipital and bilateral opercular/insular cortex cap-
tures a dimension of the MCS conscious state which goes
beyond the classical DMN connectivity and is able to separate
these patients from those in VS/UWS.

ISSUE 1. Determining the gold standard:
multimodal assessment

In order to ensure that the proposed metric reflects the con-
struct which is supposed to reflect (i.e. a connectivity pattern
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Figure 5. The fMRI functional connectivity pattern which was used as a feature to differentiate MCS from VS/UWS patients. Areas in occipital
and bilateral opercular/insular cortex were more functionally connected in patients in MCS compared to those in VS/UWS. A support vector
machine classifier was trained on this pattern with data collected in one center, and it was generalized on an independently dataset of patients
evaluated at different sites. The algorithm’s classification was congruent with the clinical evaluation of consciousness in 20/22 assessed

patients.

Healthy controls

Patients

Figure 6. Validation and generalization of the fMRI resting state classifier for the separation between patients in minimally conscious state
(MCS) and in vegetative state/unresponsive wakefulness syndrome (VS/UWS). Panel (A) The classifier was validated on a dataset of patients as-
sessed in two sites (SAL: Salzburg, n=15; NY: NewYork, n=7) other than the center where the training dataset were collected (Liege, n=45). The
classifier’s decision was congruent with the clinical evaluation of MCS (blue) and VS/UWS (red) in 20/22 cases. Panel (B) The classifier was gen-
eralized on a set of healthy controls scanned in Liege and Salzburg (n=39; no data were available for New York). The majority of healthy con-
trols were classified as in MCS (left-hand side of the decision plane), ensuring the classifier’s ability of capturing properties of a fully conscious
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discriminating the conscious state of MCS from that of VS/
UWS), a well-defined diagnostic baseline was essential. To that
end, the classifier’s trainset included data of patients who
underwent a multimodal assessment of their conscious state by
means of behavioral evaluation and neuroimaging. Patients
were repeatedly examined with standardized clinical tools (an
average of six assessments per patient with the CRS-R by multi-
ple assessors). This clinical diagnosis was further cross-
validated with FDG-PET imaging, which has been shown to
have high sensitivity in identifying patients in MCS (Stender
et al. 2014). Therefore, patients with an ambiguous profile on
clinical assessment and neuroimaging data were not included
in the analysis. In that way, we ensured that the training set in-
cluded patients of both classes, whose profile was in accordance
with behaviural and cognitive criteria of the VS/UWS and MCS.

ISSUE 2. Generalization and replicability

To test the robustness of the classifier, we evaluated whether it
generalizes to healthy control subjects scanned in two centers
(Fig. 6B). The hypothesis was that healthy controls would belong
to the class of MCS, hence ensuring the classifier’s ability of cap-
turing properties of a fully conscious state. The hypothesis was
verified in all but two healthy individuals. It should be noted
that the present classifier was created on patients and subjects
scanned in an awake condition. In this case, its clinical transla-
tion needs to be restricted to those patients scanned under sim-
ilar conditions. Similarly, patients who received sedatives to
minimize motion in the scanner were further excluded. The
reason to exclude sedated patients was because of our limited
understanding of the potential effect of anaesthetics on net-
work connectivity (Heine et al. 2012). We here recognize the im-
portance of increasing the classification power for patients
scanned after receiving anesthetics, given that many patients
undergo anesthesia not only to restrict scanner motion but also
for neuroprotective reasons. In the future, a more generalizable
algorithm applicable to patients scanned under anesthetics
(Kirsch et al. 2017) is expected to shed light on both the patho-
physiology and the drug-related variance leading to conscious-
ness alterations in patients.

On measuring consciousness: ethical reflections -
Wim Pinxten

In principle, consciousness is impartial: humans are either con-
scious or not. Although a person may be conscious “of” more
than another person, this does not imply that the person is
“more” conscious (Bayne et al. 2016). Also the way in which we
try to infer consciousness, e.g. by checking wakefulness and
awareness, does not affect this impartiality. In practice, how-
ever, disorders of consciousness confront us with strong varia-
tions in the manifestation of consciousness among patients,
which are translated into states of consciousness. It is not writ-
ten in stone how such variations in the expression of conscious-
ness should be interpreted and whether or how they could be
translated into states or levels of consciousness. For example,
some patients show more clinical signs of consciousness than
others, according to which they are classified as either MCS or
VS/UWS. But such clinical signs can be misleading, and high
rates of misdiagnosis have been reported (Schnakers et al. 2009;
Weijer et al. 2014). An extreme example is the misdiagnosis of
patients with locked-in syndrome, in whom consciousness is
intact but motor function has almost completely been lost
(Laureys et al. 2005). New technologies, including advanced

neuroimaging, have extended the scope of parameters that can
be employed to explore variations in the state of consciousness,
and will continue to do so in the future (Laureys and Boly 2007).
This opens up potential for further refining states of conscious-
ness, or even for developing “consciousness meters”.

Determining the extent to which patients are capable of con-
scious experiences, now and in the future, is very relevant for
caregivers and decision-makers. For example, estimates of the
remaining capability of conscious experiences (further referred
to as residual consciousness) shape attitudes towards the ap-
propriate clinical approach of patients with DOC (including pain
management and end-of-life decisions). Failing to identify con-
sciousness, however, could influence medical care in terms of
limiting rehabilitation efforts, pain management, and end-of-
life decisions (Demertzi et al. 2009b, 2011, 2013; Jox et al. 2012;
Peterson et al. 2015). Distinguishing between different states of
consciousness, hence, comes with important ethical issues.

Any quantification of residual consciousness is man-made,
and therefore the meaning attributed to measurements of con-
sciousness requires adequate ethical justification. In other
words, measuring consciousness is a profoundly normative en-
terprise. In this article, we will adopt an applied ethics perspec-
tive, and reflect on ethical challenges related to the clinical
management of patients. As such, we will focus on two ethical
challenges: knowing what one is measuring and the validity of
measurements.

When exploring the ethical issues in measuring conscious-
ness, a first challenge lies in knowing what one is measuring. In
clinical practice, states of consciousness (VS/UWS or MCS) are
commonly determined by observing signs of awareness and
wakefulness. While such observations are practical, it is unclear
to what extent they provide a representative estimate of resid-
ual consciousness. As for now, much remains uncertain, which
comes at the risk of reductionist approaches. As it is the essence
of scientific endeavor to reduce subjectivity to the minimum,
we need to avoid reductionism to the maximum and pursue a
valid and reliable stratification of states of consciousness.
However, the current need to make decisions on the clinical
management of patients does not allow to merely wait until
emerging technologies and scientific insights will strongly re-
duce the level of uncertainty. Pragmatically, it therefore makes
sense to get the best out of the current state of the art, even
when the current determination of states of consciousness is
not infallible at all. Upon condition that the benefits (e.g. of a
more accurate diagnosis and prognosis) outweigh the risks
(e.g. false positive/negative observations of consciousness, and
the related risk of devaluating human persons building on an
uncertain or false observation), it might therefore be better to
have something rather than nothing, and to keep considering
the ever-richer information on the functioning of the brain in
the definition and assessment of states of consciousness.

This brings us to the second challenge, which lies in the va-
lidity of measurements. Machines can quantify certain traits of
patients, but since data do not speak up for themselves it is cli-
nicians who have to interpret the significance of quantitative
differences. But what if different measurements and/or inter-
pretations do not match? It has been suggested that in the fu-
ture classifiers should take into account the ensuing clinical
cost when predicting one class over the other (Noirhomme et al.
2017). What level of validity is required for adequate patient
management? It has been suggested that from the patient’s per-
spective, a false positive observation of consciousness may not
be as burdensome as being falsely identified as unresponsive
(Jox et al. 2012; Peterson et al. 2015). Additionally, Shea and
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Bayne (2010) argue in this respect that a new consciousness
metric should not be checked for validity against a single gold
standard, simply because there is still no consensus as to the
nature of consciousness and how this phenomenon is best
measured (Peterson 2016). Rather, accumulative information
needs to come from multiple independent sources (Seth et al.
2008). Such mode of reasoning, i.e. reasoning by consilience, ne-
cessitates to test the degree to which results of multiple tests
conciliate or deviate with a patient’s broader assessment
(Peterson 2016). Naturally, reasoning by consilience can be chal-
lenged by the presence of discordant results (which may result
from practical problems during assessment or actually reflect-
ing neurobiological differences), by the selection of what to in-
clude and exclude as sources of information and by
disentangling actual preserved consciousness from mere statis-
tical associations among different signals. This rationale has
been integrated in a multidimensional model which tracks the
recovery of aspects of consciousness after brain injury (Bayne
et al. 2016). Recent experimental data further support this
model, by showing that EEG evaluation covering different di-
mensions of cognitive processing increased diagnostic sensitiv-
ity: the presence of high-level effects distinguished between
MCS and VSUWS, while the presence of low-level effects was
similar in both groups. Such results show that a multidimen-
sional evaluation not only probed patients’ consciousness but
also established a more general and nuanced profile of the re-
sidual cognitive capacities (Sergent et al. 2016). In a third-person
perspective, false positives may instil false hopes about a posi-
tive clinical outcome in patients’ caregivers, and also in
socioeconomic terms false positive cases have associated costs,
such as intensified efforts to exhaust available treatment op-
tions (Kahane and Savulescu 2009; Jox et al. 2012).

With consciousness being surrounded by ambiguity and its
measurements being imperfect and (still) of uncertain signifi-
cance, how can we consider the appropriate way forward? First,
we lack convincing arguments against measuring, while the ad-
vantages of adding up to scientific insight and providing best
available information on brain functioning for patients that
show no clear clinical signs of consciousness are valuable.
Second, notwithstanding these advantages, one must keep in
mind that any level of consciousness is essentially a human
construct that is open to bias and misinterpretation. Taking
into account that decisions on patients are by definition being
made by proxy decision-makers, prudence to not overestimate
the value of measurements is essential. Therefore, continuous
reflection, also on the normative implications, should be in
place when building on measured levels of consciousness for
clinical management or end-of-life decisions.

Conclusions

When predicting whether a patient belongs to a clinical class, it
is possible to be confronted with the disagreement between the
calculated thresholds and clinical labels. In that case, one of
two sources is less reliable about the current status of the pa-
tient. It can be that the metric outperforms the physician by
capturing subclinical features of eventual recovery of con-
sciousness. For example, the EEG-based classification showed
that while the machine and the physician matched in diagnosis
of 50 patients, 25 clinically diagnosed VS/UWS patients were
classified as in MCS by the EEG-based system. Interestingly,
these patients showed a higher rate of recovery (Sitt et al. 2014).
Similarly, for PCI, although not intended as a prognostic marker,
the outcome was more favorable in the high-complexity
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VS/UWS subgroup (six out of nine patients transitioned to a be-
havioral MCS within 6 months), whereas such transition was
observed only in 5 of 21 low-complexity patients and in none of
the no-response subgroup (Casarotto et al. 2016). Finally, for the
resting state fMRI connectivity, the patient who was misclassi-
fied as in MCS had a profile of VS/UWS on the day of scan but
evolved to MCS 38 days later; the other patient was misclassi-
fied as VS/UWS but had a clinical profile of MCS on the day of
scanning based on the presence of localization to noxious stim-
ulation but this behavior could not be elicited in any other eval-
uations (Demertzi et al. 2015). On the other hand, it can be that
the biomarker predicted the class incorrectly. This is not infre-
quent as the metrics rely on data representing neural function
instead of direct neural signals. Also, machines can quantify
certain traits of patients. One way to gain confidence in what
we measure is to utilize probabilistic predictions in place of
binary distinctions. Like that, clinical reality may be more repre-
sentative. Additionally, the use of accumulative evidence stem-
ming from multiple nonoverlapping assessments with different
modalities, which are sensitive and specific in detecting the
capacity for conscious processing, are expected to boost our
level of confidence in single-patient diagnostics. As regards the
diagnostic procedure, to date we are in need of a framework
which will determine the application order of each technologi-
cal modality, balancing the availability of these technologies at
each research/clinical site, each technology’s sensitivity and
specificity characteristics and the underlying clinical assump-
tions about a patient’s conscious state. Such a framework is
expected to ameliorate clinical management and further inform
on the critical patterns of (un)consciousness.

Acknowledgements

This work was supported by the James S. McDonnell
Foundation Scholar Award 2013, the Institut national
de la santé et de la recherche médicale (INSERM), the
EU 2020 Research and Innovation Programme under Grant
Agreement No. 720270 (HBP SGA1), the Institut du Cerveau
et de la Moelle Epiniére (ICM, Paris) and the STIC-AmSud
grant (Complex) awarded to JS.

References

Arbabshirani MR, Plis S, Sui J et al. Single subject prediction of
brain disorders in neuroimaging: promises and pitfalls.
Neuroimage 2017;145:137-65.

Baars BJ. Consciousness. Scholarpedia 2015;10:2207.

Bayne T, Hohwy ], Owen AM. Are there levels of consciousness?
Trends Cogn Sci 2016;20:405-13.

Beckmann CF, DeLuca M, Devlin JT et al. Investigations into
resting-state connectivity using independent component
analysis. Philos Trans R Soc Lond B Biol Sci 2005;360:1001-13.

Bekinschtein TA, Dehaene S, Rohaut B. Neural signature of the
conscious processing of auditory regularities. Proc Natl Acad Sci
U S A 2009;106:1672-77.

Biswal BB, Van Kylen ], Hyde JS. Simultaneous assessment of
flow and BOLD signals in resting-state functional connectivity
maps. NMR Biomed 1997;10:165-70.

Boly M, Garrido MI, Gosseries O et al. Preserved feedforward but
impaired top-down processes in the vegetative state. Science
2011;332:858-62.

Boly M, Tshibanda L, Vanhaudenhuyse A et al. Functional con-
nectivity in the default network during resting state is pre-
served in a vegetative but not in a brain dead patient. Hum
Brain Mapp 2009;30:2393-400.


Deleted Text: third 
Deleted Text: -
Deleted Text: -
Deleted Text:  
Deleted Text: 6 
Deleted Text: 9 
Deleted Text: u
Deleted Text: -

12 | Demertzietal.

Boveroux P, Vanhaudenhuyse A, Bruno MA et al. Breakdown
of within- and between-network resting state functional magnetic
resonance imaging connectivity during propofol-induced loss of
consciousness. Anesthesiology 2010;113:1038-53.

Bruno M, Vanhaudenhuyse A, Schnakers C et al. Visual fixation
in the vegetative state: an observational case series PET study.
BMC Neurol 2010;10. https://www.ncbi.nlm.nih.gov/pubmed/
23946194

Casali AG, Gosseries O, Rosanova M et al. A theoretically based
index of consciousness independent of sensory processing
and behavior. Sci Transl Med 2013;5:198ra105-198ra105.

Casarotto S, Comanducci A, Rosanova M et al. Stratification of
unresponsive patients by an independently validated index of
brain complexity. Ann Neurol 2016;80:718-29.

Clavagnier S, Falchier A, Kennedy H. Long-distance feedback
projections to area V1: implications for multisensory integra-
tion, spatial awareness, and visual consciousness. Cogn Affect
Behav Neurosci 2004;4:117-26.

Cruse D, Beukema S, Chennu S et al. The reliability of the N400 in
single subjects: implications for patients with disorders of con-
sciousness. Neurolmage Clin 2014;4:788-99.

Demertzi A, Antonopoulos G, Heine L et al. Intrinsic functional
connectivity differentiates minimally conscious from unre-
sponsive patients. Brain 2015;138:2619-31.

Demertzi A, Gomez F, Crone JS et al. Multiple fMRI system-level
baseline connectivity is disrupted in patients with conscious-
ness alterations. Cortex 2014;52:35-46.

Demertzi A, Ledoux D, Bruno M-A et al. Attitudes towards end-
of-life issues in disorders of consciousness: a European survey.
J Neurol 2011;258:1058-65.

Demertzi A, Liew C, Ledoux D et al. Dualism persists in the sci-
ence of mind. Ann N'Y Acad Sci 2009a;1157:1-9.

Demertzi A, Racine E, Bruno A et al. Pain perception in disorders
of consciousness: neuroscience, clinical care, and ethics in dia-
logue. Neuroethics 2013;6:37-50.

Demertzi A, Schnakers C, Ledoux D et al. Different beliefs about
pain perception in the vegetative and minimally conscious
states: a European survey of medical and paramedical profes-
sionals. Prog Brain Res 2009b;177:329-38.

Demertzi A, Whitfield-Gabrieli S. Intrinsic brain activity and con-
sciousness. In: Laureys S, Gosseries O, Tononi G (eds), The
Neurology of Conciousness, 2nd edn. Elsevier, 2016, 95-105.

Eckert MA, Kamdar N V., Chang CE et al. A cross-modal system
linking primary auditory and visual cortices: evidence from in-
trinsic fMRI connectivity analysis. Hum Brain Mapp
2008;29:848-57.

Engel AK, Fries P, Singer W. Dynamic predictions: oscillations
and synchrony in top-down processing. Nat Rev Neurosci
2001;2:704-16.

Engemann D, Raimondo F, King J-R et al. Automated measure-
ment and prediction of consciousness in vegetative and mini-
mally conscious patients. ICML Work Stat Mach Learn Neurosci
(Stamlins 2015).

Engemann D, Raimondo F, KingJ-R et al. (n.d.) Robust quantifica-
tion of consciousness from clinical EEG.

Fridman EA, Schiff ND. Neuromodulation of the conscious state
following severe brain injuries. Curr Opin Neurobiol
2014,29:172-77.

Gantner IS, Bodart O, Laureys S et al. Our rapidly changing under-
standing of acute and chronic disorders of consciousness:
challenges for neurologists. Future Neurol 2013;8:43-54.

Giacino JT, Ashwal S, Childs N et al. The minimally conscious state:
Definition and diagnostic criteria. Neurology 2002;58:349-53.

Giacino JT, Fins JJ, Laureys S et al. Disorders of consciousness af-
ter acquired brain injury: the state of the science. Nat Rev
Neurol 2014;10:99-114.

Giacino JT, Kalmar K, Whyte J. The JFK Coma Recovery Scale —
Revised: Measurement. 2004;85:2020-29.

Greicius MD, Srivastava G, Reiss AL et al. Default-mode network
activity distinguishes Alzheimer’s disease from healthy aging:
evidence from functional MRI. Proc Natl Acad Sci U S A
2004;101:4637-42.

Gusnard DA, Raichle ME. Searching for a baseline: Functional im-
aging and the resting human brain. Nat Rev Neurosci
2001;2:685-94.

Harrison AH, Connolly JF. Finding a way in: a review and practi-
cal evaluation of fMRI and EEG for detection and assessment
in disorders of consciousness. Neurosci Biobehav Rev
2013;37:1403-19.

Heine L, Soddu A, Gémez F et al. Resting state networks and con-
sciousness: Alterations of multiple resting state network con-
nectivity in physiological, pharmacological, and pathological
consciousness states. Front Psychol 2012;3:1-12.

[lmoniemi R, Virtanen J, Ruohonen J et al. Neuronal responses to
magnetic stimulation reveal cortical reactivity and connectiv-
ity. Neuroreport 1997;8:3537—-40.

Jennett B, Plum F. Persistent vegetative state after brain
damage: a syndrome in search of a name. Lancet
1972;299:734-37.

Jox RJ], Bernat JL, Laureys S et al. Disorders of consciousness: re-
sponding to requests for novel diagnostic and therapeutic in-
terventions. Lancet Neurol 2012;11:732-38.

Kahane G, Savulescu J. Brain damage and the moral significance
of consciousness. ] Med Philos 2009;34:6-26.

KingJR, Faugeras F, Gramfort A et al. Single-trial decoding of au-
ditory novelty responses facilitates the detection of residual
consciousness. Neuroimage 2013a;83C:726-38.

KingJR, Sitt D, Faugeras F et al. Information sharing in the brain
indexes consciousness in noncommunicative patients. Curr
Biol 2013b;23:1914-19.

Kirsch M, Guldenmund P, Ali Bahri M et al. Sedation of patients
with disorders of consciousness during neuroimaging: effects
on resting state functional brain connectivity. Anesth Analg
2017;124:588-98.

Laird AR, Fox PM, Eickhoff SB et al. Behavioral interpretations of
intrinsic connectivity networks. ] Cogn Neurosci 2011;23:4022-37.

Laureys S, Boly M. What is it like to be vegetative or minimally
conscious? Curr Opin Neurol 2007;20:609-13.

Laureys S, Celesia GG, Cohadon F et al. Unresponsive wakeful-
ness syndrome: a new name for the vegetative state or apallic
syndrome. BMC Med 2010;8:68.

Laureys S, Pellas F, Van Eeckhout P et al. The locked-in syn-
drome: what is it like to be conscious but paralyzed and voice-
less? Prog Brain Res 2005;150:495-611.

Massimini M, Boly M, Casali A et al. A perturbational approach
for evaluating the brain’s capacity for consciousness. Prog
Brain Res 2009;177:201-14.

Morlet D, Fischer C. MMN and novelty P3 in coma and other
altered states of consciousness: a review. Brain Topogr
2014,27:467-79.

Naro A, Leo A, Buda A et al. Do you see me? The role of visual fix-
ation in chronic disorders of consciousness differential diag-
nosis. Brain Res 2016;1653:59-66.

Noirhomme Q, Brecheisen R, Lesenfants D et al. “Look at my clas-
sifier’s result”: Disentangling unresponsive from (minimally)
conscious patients. Neuroimage 2017;145:288-303.


https://www.ncbi.nlm.nih.gov/pubmed/23946194
https://www.ncbi.nlm.nih.gov/pubmed/23946194

Noreika V, Jylhdnkangas L, Mér6 L et al. Consciousness lost and
found: subjective experiences in an unresponsive state. Brain
Cogn 2011,77:327-34.

Pedregosa F, Varoquaux G, Gramfort A et al. Scikit-learn:
Machine Learning in Python. Mach Learn 2012;12:2825-30.

Perrin F, Schnakers C, Schabus M et al. Brain response to one’s
own name in vegetative state, minimally conscious state, and
locked-in syndrome. Arch Neurol 2006;63:562-69.

Peterson A. Consilience, clinical validation, and global disorders
of consciousness. Neurosci Conscious 2016;2016:1-9. https://aca
demic.oup.com/nc/article-lookup/doi/10.1093/nc/niw011 (17
March 2017, last accessed).

Peterson A, Cruse D, Naci L et al. Risk, diagnostic error, and the
clinical science of consciousness. Neurolmage Clin
2015;7:588-97.

Posner JB, Saper CB, Schiff ND et al. Plum and Posner’s Diagnosis of
Stupor and Coma, 4th edn. New York: Oxford University Press,
2007.

Raichle ME, MacLeod AM, Snyder AZ et al. A default mode of
brain function. Proc Natl Acad Sci U S A 2001;98:676-82.

Rohaut B, Faugeras F, Chausson N et al. Probing ERP correlates of
verbal semantic processing in patients with impaired con-
sciousness. Neuropsychologia 2015;66:279-92.

Sanders RD, Raz A, Banks MI et al. Is consciousness fragile? Br ]
Anaesth 2016;116:1-3.

Schnakers C, Vanhaudenhuyse A, Giacino J et al. Diagnostic ac-
curacy of the vegetative and minimally conscious state:
Clinical consensus versus standardized neurobehavioral as-
sessment. BMC Neurol 2009;5:1-5.

Seel R, Sherer M, Whyte ] et al. A practice parameter of the
American Congress of Assessment Scales for disorders of con-
sciousness: evidence- based recommendations for clinical
practice and research. Arch Phys Med Rehabil 2010;91:1795-813.

Sergent C, Faugeras F, Rohaut B et al. Multidimensional cognitive
evaluation of patients with disorders of consciousness using
EEG: a proof of concept study. NeuroImage Clin 2016.

Measuring states of pathological (un)consciousness | 13

Seth AK, Dienes Z, Cleeremans A et al. Measuring consciousness:
relating behavioural and neurophysiological approaches.
Trends Cogn Sci 2008;12:314-21.

Shannon CE. A mathematical theory of communication. Bell Syst
Tech ] 1948;27:379-423.

Shea N, Bayne T. The vegetative state and the science of con-
sciousness. Br ] Philos Sci 2010;61:459-84.

Siclari F, LaRocque JJ, Postle BR et al. Assessing sleep conscious-
ness within subjects using a serial awakening paradigm. Front
Psychol 2013;4.

SittJD, KingJR, Karoui IE et al. Large scale screening of neural sig-
natures of consciousness in patients in a vegetative or mini-
mally conscious state. Brain 2014;137:2258-70.

Smith SM, Fox PT, Miller KL et al. Correspondence of the brain’s
functional architecture during activation and rest. Proc Natl
Acad SciU S A 2009;106:13040-45.

Soddu A, Vanhaudenhuyse A, Bahri MA et al. Identifying the
default-mode component in spatial IC analyses of patients
with disorders of consciousness. Hum Brain Mapp
2012;33:778-96.

Stender J, Gosseries O, Bruno MA et al. Diagnostic precision of
PET imaging and functional MRI in disorders of consciousness:
a clinical validation study. Lancet Neurol 2014;6736:8-16.

The Multi-society Task Force on PVS. Medical aspects of the per-
sistent vegetative state — 1. N EnglJ Med 1994;330:1499-508.

Tononi G. An information integration theory of consciousness.
BMC Neurosci 2004;5:42.

Tononi G, Boly M, Massimini M et al. Integrated information the-
ory: from consciousness to its physical substrate. Nat Rev
Neurosci 2016;17:450-61.

Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ-F et al. Default
network connectivity reflects the level of consciousness
in non-communicative brain-damaged patients. Brain
2010;133:161-71.

Weijer C, Peterson A, Webster F et al. Ethics of neuroimaging af-
ter serious brain injury. BMC Med Ethics 2014;15:41.


https://academic.oup.com/nc/article-lookup/doi/10.1093/nc/niw011
https://academic.oup.com/nc/article-lookup/doi/10.1093/nc/niw011

