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ABSTRACT  27 

Paraxonase 1 (PON1) is a HDL-associated enzyme involved in the protection of LDL and HDL-28 

lipoproteins against lipid peroxidation. Several studies documented the capacity of polyphenols 29 

to stimulate PON1 transcription activation.  30 

The objective of the present review is to provide the main evidence about the role and the 31 

potential mechaninsm of action of polyphenols and polyphenol-rich foods in the modulation of 32 

PON1 gene expression and activity.  33 

A total of 76 in vitro and in vivo studies were included in the review. Overall, while evidence 34 

obtained in vitro are limited to quercetin and resveratrol, those deriving from animal models 35 

seem more convincing for a wide range of polyphenols but only at pharmacological doses. 36 

Evidence from human studies are promising but deserve more substantiation about the role of 37 

polyphenol-rich foods in the regulation of PON1 activity and expression.  38 

Research focused on the understanding of the structure-activity relathionship of polyphenols 39 

with PON1 and on the mechanisms at the base of PON1-modulation is warranted. Well-40 

designed human intervention studies are encourage to corroborate the findings of polyphenols 41 

also at physiological doses.  42 

 43 

44 
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1.INTRODUCTION 45 

Paraoxonases (PON) are a family of three enzymes named PON1, PON2 and PON3. PON1 and 46 

PON3 are predominantly synthesized in the liver and secreted into the plasma where they are 47 

associated with HDL. PON2 is not generally present in plasma but widely distributed also in 48 

cells and tissues such as liver and kidneys. Both PON2 and PON3 have antioxidant properties 49 

but lack of paraoxonase or arylesterase activities compared to PON1. Although all the three 50 

enzymes have shown anti-atherogenic activity, PON1 is considered the major protective factor 51 

against LDL and HDL oxidation [1]. Studies investigating the role of PON1 in cardiovascular 52 

disease have provided evidence that PON1 status is a better predictor of disease than PON2 and 53 

PON3. The mechanism by which PON1 protect LDL from oxidation seems to be related to its 54 

capacity to hydrolyze oxidized fatty acids derived from phospholipids, cholesterylester and 55 

triglycerides hydroperoxides that are potentially atherogenic compounds [2]. In this regard, data 56 

from several animal models of atherosclerosis demonstrated the ability of PON1 to retard and 57 

reverse atherosclerosis through a reduction of oxidized-LDL, a reduction of macrophages 58 

oxidative stress and foam cell formation, an increase in reverse cholesterol transport and an 59 

improvement of arterial function. In addition, PON1 is involved in the detoxification of 60 

homocysteine (Hcy)-thiolactone, a reactive metabolite that, through a process of N-61 

homocysteinylation, affects the structure and function of proteins and lipoproteins including 62 

HDL [3].  63 

Several studies support the hypothesis that a low paraxonase and lactonase activity of 64 

PON1 has been associated with an increased oxidative stress and vulnerability to plaque 65 

formation, atherosclerosis and cardiovascular diseases [1,4-9]. Moreover, alterations in 66 

circulating PON1 levels have been found in a variety of diseases including diabetes mellitus, 67 

hepatic and renal diseases, psoriasis and rheumatoid arthritis [10]. It is well know that PON1 68 

activity can be influenced by several factors such as lifestyle and diet.   69 
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Very recently, Lou-Bonafante and colleagues critically revised the role of Mediterranean 70 

diet, and its components, in the modulation of PON1 activity [11]. The authors suggested that 71 

the Mediterranean diet, through the intake of nuts, fruit and vegetable may affect PON1 activity 72 

by protecting the enzyme from oxidative stress-induced inactivation and/or by improving its 73 

activity.  74 

Regarding the effects of dietary constituents, several in vivo studies showed an increase in 75 

PON1 activity/expression following vitamin C [12-13], vitamin E [14-16], folate [13], 76 

carotenoids [17], mono- and poly- unsaturated fatty acids [18-22], selenium [21,22], and 77 

polyphenols supplementation [23-25]. Polyphenols are a heterogeneous family of bioactive 78 

compounds widely distributed in the plant kingdom. Chemically, they are characterized by the 79 

common presence of at least one aromatic ring in their structure, linked with other phenolic-, 80 

hydroxyl-, carbon- or other chemical groups [26]. Polyphenols can be classified into flavonoids 81 

(i.e. flavonols, flavanones, flavones, isoflavones, anthocyanidins, and flavan-3-ols) and 82 

nonflavonoids (i.e. condensed and hydrolysable tannins, stilbenes, phenolic acids, 83 

hydroxibenzoic and hydroxycinnamic acids and lignans) depending of their chemical structure 84 

[26,27]. They can be in the form of oligomers and polymers, or esterified with other chemical 85 

compounds (mainly sugars or organic acids), while rarely are present as aglycones (without 86 

sugar). Minor nonflavonoids include also derivatives of colonic microbiota metabolites such as 87 

phenylvaleric, phenyl-lactic, phenylpropionic, phenylmandelic and phenylhydracrylic acid [28]. 88 

In the last years, several studies focused on the bioactivity of polyphenols and polyphenol-rich 89 

foods. Most of the studies have been performed in vitro and in animal models, while limited are 90 

those in humans. In particular, observational and intervention studies documented an effect of 91 

polyphenols in the prevention/modulation of metabolic syndrome [28], endothelial dysfunction 92 

[29], hypertension [30-32] and cardiovascular and coronary diseases [33,,34]. The effects seem 93 

related to the antioxidant and anti-inflammatory activity [35,36], to vascular function 94 

modulation [33,37] and to lipid/cholesterol regulation [38]. In addition, it has been hypothesized 95 
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that polyphenols effects may be mediated also by the regulation of PON1 activity and gene 96 

expression. In the present review, we attempt to summarize the main evidence on the potential 97 

effects of polyphenols and polyphenol-rich foods on PON1 expression and activity also 98 

considering, when available, the contribution of genetic factors and the mechanisms of action. 99 

The review will focus on both in vitro and in vivo studies.  100 

2.OVERVIEW OF IN VITRO AND IN VIVO STUDIES ON POLYPHENOLS AS 101 

MODULATORS OF PON1 EXPRESSION AND ACTIVITY 102 

A systematic search for literature focused on the effect of polyphenols and polyphenol-rich 103 

foods in the modulation of PON1 was carried out. The search of the studies was performed 104 

based on the preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) 105 

flow diagram (Figure 1). PUBMED, ScienceDirect and Scopus databases were searched to 106 

identify pertinent articles. The systematic computerized literature search was performed from 107 

January 2000 up to November 2016. The exploration used the combination of the following 108 

terms: ‘polyphenols’, ‘polyphenol-rich foods’, ‘flavonoids’, ‘anthocyanins’ and ‘paraoxonase 109 

1’. Reference lists of the obtained papers were also searched for additional articles. The 110 

selection of the in vitro and in vivo studies was performed according to the following inclusion 111 

and exclusion criteria. Inclusion criteria: 1- be performed in cells and/or in animal models 112 

and/or in humans; 2-be a study evaluating PON-1 activity and/or expression; 3-be a study 113 

evaluating polyphenols and/or polyphenol-rich foods. Exclusion criteria: a) evaluating foods not 114 

having polyphenols as major bioactive compounds; b) performed in vitro but not using cells; c) 115 

written not in English; d) performed without a statistical analysis. A total of 406 records were 116 

screened and 323 out of them were excluded based on title or abstract or because duplicate 117 

papers. Eighthy-three full-text articles were obtained from the databases and from the reference 118 

lists of the obtained papers. Based on the full-text, inclusion and exclusion criteria, 7 articles 119 

were excluded while 76 papers were analyzed. Five of them combined two or three experimental 120 
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models [39-43] for a total of 81 studies. Among them, 11 were in vitro studies, 44 were 121 

performed on animal models and 26 were intervention studies in humans. The studies included 122 

in the review are described in Tables 1-3 (provided as supplemental material) and the following 123 

details were included: polyphenol/s or polyphenol rich-food (composition was reported when 124 

available) tested, cell model, animal model or subjects selected and their characteristics, study 125 

design, type of intervention and main findings. 126 

 127 

2.1 In vitro studies 128 

Eleven in vitro studies evaluated the role of polyphenols and polyphenol-rich extracts on PON1 129 

expression and activity (see Supplementary Table 1 under “Supplemental data” in the online 130 

issue) [39,42-51]. 131 

The main polyphenols considered were resveratrol [47-51], used in two studies also as positive 132 

control [42,43], and quercetin [39,43,45]. The human hepatoma cell line Huh7 was the main cell 133 

line tested, being utilized in 9 out of the 11 in vitro studies considered [39,42-45,49,50]. The 134 

duration of treatments generally ranged from 24 to 48 h, while the doses of resveratrol ranged 135 

from 2 to 25 μM with the exception of one study that used also concentrations of 200 μM [48]. 136 

Gouédard et al.[44] and Guyot et al.[50] reported an increased PON1 gene expression in human 137 

hepatocyte primary cultures and in HuH7 hepatoma cell line following 48 h supplementation 138 

with 10 µM of resveratrol. Similar results were also observed by Gupta and colleagues 139 

following incubation of HepG2 cells for 48 h with 15 µM of resveratrol [51]. Curtin et al.[50] 140 

found the optimal induction of intracellular and extracellular PON1 activity within 2–20 μM of 141 

resveratrol while no effect was observed at doses higher than 20 μM, which in turn resulted 142 

cytotoxic leading to a decrease of cell metabolic activity.  143 

Three studies found a dose-dependent in increase of PON1 activity [42,45,46]. Schrader and 144 

colleagues documented that Huh7 liver hepatoma cells supplemented with curcumin (1-20 µM 145 

for 48 h) increased PON1 activation in a dose-dependent manner for concentrations higher than 146 
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10 µM [42]. Khateet et al.[46] reported that supplementation with pomegranate juice 147 

polyphenols such as punicalagin and gallic acid (from 17.5 to 70 µg gallic acid equivalent/mL 148 

for 24 h) increased HuH7 hepatocyte-secreted PON1 arylesterase activity and the effect was 149 

dose-dependent. Garige and coworkers showed a progressive up-regulation of PON1 expression 150 

and activity following increasing quercetin supplementation (from 0 to 20 µM for 48 h) in 151 

HuH7 cell line [45].  152 

On the whole, studies documented a different effect of polyphenols in the modulation of 153 

PON1 activity and expression dependent on the compound tested. For example, Gouédard et al. 154 

[45] reported that supplementation of HuH7 cells for 48 h with flavone, catechin and quercetin 155 

(10 μM) and naringenin (50 μM) resulted in a significant increase of PON-1 activity even if the 156 

maximum induction was observed only with quercetin. Schader et al.[39] studied the effect of 157 

different flavonoids (concentration range 1–25 μM for 48 hrs) on induction of PON1 in stably 158 

transfected Huh7 liver cells. The authors documented that genistein was the most potent 159 

flavonoid with PON1-inducing activity, followed by daidzein, luteolin, isorhamnetin and 160 

quercetin. Other flavonoids such as naringenin, cyanidin, malvidin and catechin showed only 161 

little or no PON1-inducing activity. Quercetin and resveratrol proved to increase both PON1 162 

mRNA expression and PON1 activity when compared to the related control groups (untreated 163 

cells). However, a comparison of the findings from the different studies appear complicated due 164 

to the variability in terms of type and dose of compounds tested.   165 

 166 

2.2 Animal studies 167 

The effect of polyphenols and polyphenol-rich foods on animal models has been evaluated in 44 168 

studies (see Supplementary Table 2 under “Supplemental data” in the online issue) 169 

[25,39,40,42,43,52-90]. Most of them were performed on mice or rats, while two studies on 170 

hamsters [62,74]. The main polyphenols tested were quercetin [43,52,54,58,63,68,71,87] and 171 

catechin [54,58,71,87], whereas pomegranate juice was the most polyphenol-rich food used 172 
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[40,53,69,72] followed by vegetable oils [62,77,81]. Several studies were also performed using 173 

grapevine derived products in the form of extracts or concentrate [25,67,79], red wine [54] or 174 

polyphenols [64]. Numerous studies did not provide information regarding the polyphenols 175 

concentration of food [25,53,56,57,69,70,78,85,87]. Other studies provided only an estimation 176 

of the polyphenol content evaluated through indirect techniques, for example measuring the total 177 

phenolic content by the Folin-Ciocalteau method. This lack of information makes comparison 178 

among studies, even those using the same food, particularly complex. All the studies were 179 

placebo-controlled. A large variability regarding the duration of the interventions (ranging from 180 

2 to 20 weeks), as well as the dose of the tested compounds was observed. In spite of this, 39 181 

out of 44 studies found a significant effect of supplementation with polyphenols on PON1 182 

expression and/or activity. No effect was found in 5 studies [39,40,56,82]. The lack of effect 183 

could be, at least in part, related to the relatively short duration of the intervention in several 184 

studies (2-3 weeks) [39,42,56,88] compared to others (12-20 weeks) 185 

[40,53,60,64,65,70,74,75,78,80]. For example, El-Beshbishy et al. [56] documented that the 186 

intake of a polyphenol-rich food (500 mg kg-1 day) for 2 weeks did not increase serum PON1 187 

activity in rats, but showed to protect LDL from oxidation hypothesizing that this effect was not 188 

mediated by PON1 but a direct effect of polyphenols on LDL itself. Schrader et al.[39] failed to 189 

observe a modulation on plasma PON1 activity in rats fed with genistein for 3 weeks, in spite 190 

the same authors found genistein as the most potent inducer of PON1-transactivation at 191 

concentrations higher than 5 μM in the cell model. Other than duration of the study, the lack of 192 

effects on PON1 mRNA induction, protein and activity levels in the in vivo study may be 193 

attributed to the concentrations of genistein that were much higher than those found in plasma 194 

and liver of rats.  195 

Some investigations revealed high variability in PON1 gene expression and activity 196 

when using the same compound or food. For instance, 3 studies documented an increase in 197 

PON1 expression following quercetin administration, while no effect was observed after 198 
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catechin [54,71,88] which was suggested to be a poor inducer of PON1 mRNA and PON1 199 

transactivation. On the contrary, Hamelet et al.[58] found catechin, but not quercetin, able to 200 

counteract homocysteine-induced impairment of PON1 gene expression and activity in liver of 201 

hyperhomocysteinemic mice. These conflicting results may be at least partially explained by the 202 

different animal model used or different absorption and metabolism of polyphenols. 203 

Regarding the studies investigating the effect of pomegranate juice intake, a significant 204 

increase in PON1 activity was found by Kaplan et al.[53] and Rosenblat et al.[69] who showed 205 

a significant increase in serum PON activity in mice supplemented with pomegranate for 1 and 2 206 

months, respectively. Similarly, Betanzos-Cabrera et al.[72] documented a significant increase 207 

in liver PON1 activity after 4 months of supplementation with pomegranate juice (0.35 mmol/L) 208 

used in combination with a high fat diet compared to the high fat diet alone, but not compared to 209 

the control group. Conversely, Aviram et al.[40] showed no effect on PON1 activity in mice 210 

following 14 weeks of supplementation with 6.25 or 12.5 mL pomegranate juice/day 211 

(corresponding to 0.175 and 0.350 mmol of total polyphenols, respectively). This variability 212 

among studies suggests that many variables (e.g. dose and duration of the studies, animal 213 

model) may affect findings from different studies.  214 

 215 

2.3 Human studies 216 

The effect of polyphenols and polyphenol-rich foods on PON1 gene expression and activity has 217 

been investigated in 26 human intervention studies (see Supplementary Table 3 under 218 

“Supplemental data” in the online issue) [40,41,43,91-113]. Differently from what observed in 219 

in vitro and animal studies, the evidence of a modulation of PON1 expression and activity 220 

through polyphenols is promising but needs more substantiation. In fact, half of the studies 221 

reported an increase in PON1 expression and/or activity, while the other half showed no effect 222 

or even a reduction following polyphenol/polyphenol-rich food supplementation. These 223 

conflicting findings can be attributed to large differences among studies such as experimental 224 



10 
 

design, duration of the intervention, type of food and amount used, and last but not least, the 225 

study population selected. In this regard, 13 out of 26 studies were performed on healthy 226 

volunteers [40,41,43,91,94,96,100,101,104,107,108,110,112], whereas the remaining 13 227 

investigations involved subjects with asymptomatic severe carotid artery stenosis [93], diabetes 228 

[95,99,103,105,106], peripheral arterial disease [97], cardiovascular risk [92,102,110,111], 229 

hemodialysis [113] and end-stage renal disease [98]. 230 

Regarding the study design, 14 studies did not include a control group evaluating the effects at 231 

baseline and post-intervention with polyphenols or polyphenol-rich foods [41,42,92,94,95,98-232 

100,103,105,107,108,110,112]. A cross-over design was adopted in 5 studies 233 

[96,97,101,104,111], while 7 studies used a parallel design [43,91,93,102,106,109,113]. 234 

Twenty-three out of 26 trials investigated the effect of polyphenol-rich foods in the medium-235 

long term, with a duration generally ranging from 2 to 24 weeks [40,43,91-97,99-103,105-113] 236 

except for one study that was a 3-year long term intervention [93]. Three studies evaluated also 237 

the effect of a single serving of decaffeinated green tea extracts, blackcurrant-based juice and 5 238 

different beverages and wine on PON1 activity [41,104,108]. Compared to the long-term 239 

intervention, the acute effect of polyphenol-rich foods failed to positively modulate the activity 240 

of PON1. Only the administration of an orale dose of decaffeinated green tea extracts (455 mg 241 

equivalent to 4 cups of green tea) showed to increase PON1 activity in a group of end-stage 242 

renal disease patients.  243 

Pomegranate and derived products were the most examined food 244 

[40,41,93,95,101,103,105,112,113], followed by berries provided mainly in the form of juice 245 

[41,104,106,108]. The amount of food varied depending on the type of product and bioactive 246 

composition. For example, the amount of pomegranate and berry juice, and red wine ranged 247 

from 50 to 250 mL/day while that of virgin and extravirgin olive oil was around 25 mL/day. 248 

Eight studies did not provide information about the food matrix composition of polyphenols 249 

[91,92,97,100,105-107,109,112], while 10 trials provided an estimation of the total polyphenols 250 
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content [40,41,94,99,101,103,104,108,111,113]. Regarding pomegranate, a significant 251 

modulation of PON1 activity was observed both in healthy and unhealthy subjects at low doses 252 

(50 mL per day). For example, Aviram et al.[40] showed that a 2-week consumption of 253 

pomegranate juice (PJ; 50 mL/day) significantly increased serum PON1 activity in a group of 254 

healthy subjects. The same authors reported an improvement of PON1 activity in a group of 255 

patients with asymptomatic severe carotid artery stenosis following 1-3 year of PJ intervention 256 

(50 mL/day) [93]. Rosenblat and coworkers found an increase in serum PON1 arylesterase 257 

activity after 12 weeks of PJ in a group of diabetic subjects [95]. A 4 and 6-week intervention 258 

with PJ (50 mL/day) and pomegrate extract contributed to PON1 stabilization, increased 259 

association with HDL, and enhanced catalytic activities in a group of diabetic and overweight 260 

individuals [99].  Moreover, Fuhrman and colleagues documented that a 4-week intake of PJ (50 261 

mL/day) increased HDL-rePON1/free rePON1 ratio in diabetic subjects [103]. Only 2 studies 262 

utilized PJ at higher doses [41,105]. Rosenblat et al.[41] showed that 250 mL/day of PJ per 1 263 

week improved serum PON1 lactonase activity in healthy subjects, while no effect was observed 264 

following a single dose of PJ. Finally, a 6-week intervention with PJ (200 mL/day) documented 265 

an increase in paraoxonase and aryl esterase PON1 activity in a group of diabetic subjects [105].  266 

Two studies examined the role of pomegranate extract on PON-1 activity [112,113]. 267 

Tracy et al.[112] reported that a 3-month supplementation with 1g per day of pomegranate 268 

capsule extract increased serum PON-1 activity in a group of recurrent stone formers but not in 269 

the non-stone former group. Wu and colleagues [113] showed that a daily oral supplementation 270 

for 6 months of purified pomegranate extract (1g per day) improved serum PON-1 lactonase 271 

activity (but not paraoxonase and arylesterase PON-1 activity) in a group of hemodialysis 272 

patients. 273 

The effect of berries, alone or in combination with other foods, on PON1 activity was 274 

evaluated in 6 studies [40,91,97,104,106,108].  The results have shown high variability between 275 

studies. For example, 1 week of intervention with blackcurrant juice (250 mL/day) increased 276 
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serum PON1 lactonase activity in healthy subjects [56].  In a double-blind randomized clinical 277 

trial, the intake of 240 mL/day of cranberry juice for 12 weeks increased PON1 activity in type 278 

2 diabetic male patients [106]. Conversely, Kardum et al.[108] reported no effect of a 12-week 279 

intervention with polyphenol-rich chokeberry juice (100 mL/day) on PON1 activity in a group 280 

of healthy subjects. Similar findings were also observed by Huebbe and colleagues, which 281 

documented no effect on PON1 activity following a post-prandial consumption of 250 g of 282 

blackcurrant-based juice [104]. 283 

Three studies specifically evaluated the effects of virgin and extravirgin olive oil, and 284 

virgin argan oil [94,97,111]. Chercki et al. [94] showed that a 3-week intervention with 25 285 

mL/day of virgin argan and extra virgin olive oil (providing about 3.3 mg/kg and 790 mg/kg of 286 

total polyphenols, respectively) increased PON1 activity in a group of healthy subjects. Farràs 287 

and coworkers [111] reported that a 3-week intervention with a functional virgin olive oil (25 288 

mL/day providing about 500 ppm of total phenolic compounds) significantly improved PON1 289 

activtiy in a group of hyperlipidemic individuals. On the contrary, Loued et al.[107] 290 

documented that a 12-week intervention with extra virgin olive oil (25 mL/day) did not affect 291 

serum PON1 activity in young and elderly healthy subjects.     292 

A comparison of findings from animal and human studies testing the same food products 293 

appears difficult since most of the animal studies used larger doses compared to those in human 294 

trials. To give an example, the supplementation with 5-10 mL/day of pomegranate juice in mice 295 

weighting 200 g would correspond to 1.75-3.5 L/day when consumed by a subject of 70 kg. 296 

Thus, an appropriate extrapolation of animal dose to human dose and viceversa through 297 

normalization to the body surface area should be used.  298 

 299 

3. HYPOTHESIZED MECHANISMS OF PON1 REGULATION TROUGH POLYPHENOLS 300 

In Figure 2 are reported the possible mechanisms of action of polyphenols in the regulation of 301 

PON1 expression and activity. One of the most putative pathway of upregulation of PON1 could 302 
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be the activation of the AhR. The AhR is a ligand-activated transcription factor belonging to the 303 

basic helix-loop-helix/per-aryl hydrocarbon receptor nuclear translocator protein-(ARNT)- 304 

single-minded protein (Sim) family of proteins. It is classically activated by synthetic 305 

xenobiotics such as dioxins, polycyclic aromatic hydrocarbons but also polyphenols (i.e. 306 

resveratrol and quercetin). Upon ligand binding, AhR translocates to the nucleus and forms a 307 

heterodimer with the ARNT. The AhR/ARNT heterodimer binds to xenobiotic responsive 308 

elements (XREs) within the PON1 promoter (_126 and _106 region) and induces an 309 

upregulation as documented in human breast cancer and hepatoma cell line following quercitin 310 

supplementation [44,114].  311 

Another plausible pathway could involve the transcription factor sterol regulatory 312 

element-binding protein-2 (SREBP-2) via specificity protein 1 (Sp1). SREBPs are a new class 313 

of membrane-bound transcription factors that modulate lipid homeostasis. SREBP-2 is the major 314 

regulator of cholesterol biosynthetic pathway. Recent studies have reported that quercetin may 315 

modulate PON1 gene via SREBP-2 [45,115]. In particular, it has been hypothesized that 316 

quercetin can cause PON1 translocation through SREBP-2 from the endoplasmic reticulum to 317 

the nucleus, where interacts with sterol responsive elements-like sequence on the PON1 318 

promoter [45]. It has been reported that an interaction between Sp1 and protein kinase C (PKC) 319 

could represent a potential mechanism of PON1 transcription in HuH7 liver cells [56]. This 320 

process seems activated through a phosphorylation of PKC mediated by polyphenols (i.e. 321 

resveratrol and epigallocatechin gallate) in HepG2 cells [116]. 322 

SREBP-2 is linked to p44/42 mitogen-activated protein kinase (MAPKs) signaling cascade. 323 

MAPKs regulate the synthesis of chemokines, cytokines, adhesion molecules and 324 

prostaglandins involved in inflammation. MAPKs seem to play an important role in the 325 

regulation of PON1 activity and PON1 protein expression in Huh7 cells [117]. However, the 326 

role of polyphenols on MAPK regulation has not been deeply investigated. For example, 327 

epigallocatechin gallate has shown to inhibit interleukin-1beta-induced activation of MAPK in 328 
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human chondrocytes through the inhibition of c-Jun NH2-terminal kinase (JNK) dependent 329 

activity [118]. It is plausible that polyphenols may stimulate PON1 transcription through the 330 

activation of JNK or acting as scavenger by inhibiting ROS production and oxidation. In this 331 

regard, protocatechuic acid, the main metabolite of cyanidin-3-glucoside, was able to induce the 332 

activation of JNK in macrophages which, in turn, determined the increase of nuclear receptor 333 

Nrf2, leading to inhibition of the early ROS overproduction [119]. 334 

The intracellular signalling cascade of peroxisome proliferator-activated 335 

receptors (PPARs) pathway plays a critical role in the regulation of diverse biologic processes 336 

within the cardiovascular system, including PON activity. In this regard, recently pomegranate 337 

juice polyphenols, gallic acid and ellagic acid were demonstrated to upregulate PON1 338 

expression and PON1 release from hepatocytes through the activation of PKA and PPARγ 339 

signaling pathway [46]. 340 

Several studies have demonstrated that also inflammation can negatively affect PON1 341 

activity [120]. The inflammatory process is orchestrated by nuclear factor kappa-B (NF-κB), an 342 

oxidative stress sensitive transcription factor, predominantly existing in the cytoplasm in an 343 

inactive state bound to a member of the IκB family of inhibitory proteins [121]. Phosphorylation 344 

of IκB by PKC or IκB kinase (IKK) results in its degradation and dissociation from the NF-κB 345 

complex. Once NF-kB is activated, it stimulates the expression of a number of genes including 346 

those responsible for the production of citokines and interleukins. The production of citokines 347 

and interleukins such as C reactive protein, interleukin-6, interleukin-1 and tumor necrosis 348 

factor alpha have shown to reduce PON1 activity and PON1 mRNA levels in murine and human 349 

hepatoma cell lines [120]. In particular, polyphenols have been recognized to block the 350 

phosphorylation of IκB by inhibiting the activation of NF-kB and of the inflammatory cascade 351 

as documented in in vitro and in animal models [122,123]. Inhibitors of NF-kB translocation or 352 

the transient over-expression of IkB have shown to partially restore PON1 mRNA levels [120]. 353 



15 
 

The specific chemical structure of polyphenols seems to have a role in the modulation of 354 

PON1 activity and expression. The presence of hydroxyl groups on the flavonoid rings seems to 355 

increase their affinity to re-PON1, while the glucuronidation and sulfatation processes, which 356 

mask important hydroxyl groups of the flavonoid molecules decrease their PON1-inducing 357 

activity. Flavones and flavonols (i.e. luteolin, quercetin, kaempferol and apigenin), that show 358 

different numbers of hydroxyl groups on their rings, interact with higher affinity to re-PON1 359 

than other flavonoids. These compounds present a double bond at their C ring, making it planar 360 

due to coupling of the A and B rings’ electrons, so the hydroxyl group at position 3 and the 361 

oxygen at position 4 on the C ring are on the same plane [124]. 362 

However, the rePON1-flavonoid interaction, not only depends on the number and presence of 363 

flavonoids hydroxyl groups, but also on the flavonoids substructure. In fact, although apigenin 364 

and naringenin (flavone and flavanone, respectively) have the same number of hydroxyl groups 365 

at the same positions, apigenin shows a higher affinity to PON1 than naringenin probably due to 366 

a 2,4-substituted resorcinol moiety in the A ring [124]. 367 

Recently, Atrahymovic and colleagues showed that the isoflavan glabridin could link re-PON1, 368 

despite the high hydrophobic subunit, protecting re-PON1 in a dose-dependent (1−100 μM) 369 

manner [125]. The authors hypothesized that the mechanism governing the protective effect was 370 

not related to the antioxidant action, but rather to a physical interaction with the enzyme. The 371 

bind glabridin-re-PON1 affected the enzyme structure and significantly enhanced the ability of 372 

the enzyme to remove Ox-LDL associated cholesteryl ester hydroperoxides.   373 

The different chemical structure of polyphenols and the impact of PON1 polymorphisms in the 374 

response make it difficult to elucidate the ability of these dietary compounds to modulate PON1 375 

activity and gene expression and the specific mechanisms involved.  376 

 377 

4. CONCLUSIONS 378 
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Several observational studies outlined the importance of PON1 in the prevention of 379 

atherogenesis and preservation of HDL from oxidation. The mechanism by which PON1 can 380 

preserve HDL from oxidation is not completely elucidated and more research should focus on 381 

this aspect. In this context, the present review provides results supporting the role of 382 

polyphenols in the modulation of PON1, even if much remains to ascertain. In fact, the studies 383 

performed in vitro are few and most of the positive effects were observed only for quercetin and 384 

resveratrol at doses not comparable to those achievable in vivo. The evidence deriving from 385 

animal models seem to be more convincing; the majority of studies found a significant effect of 386 

polyphenols and polyphenol-rich foods supplementation on both PON1 expression and PON1 387 

activity, even if high doses have been generally used. Regarding human trials, it has been shown 388 

a positive modulation of PON1 gene expression and activity following the consumption of some 389 

polyphenol-rich foods, especially pomegranate juice at the dose of 50 mL/day. However, results 390 

deserve further investigations because of some methodological issues. In fact, the population 391 

characteristics were different among the studies and, in addition, in most of the trials the  392 

experimental designs were not placebo-controlled. This latter represents a limitation, since it is 393 

not clearly possible to attribute the effects observed specifically to the polyphenol-rich food 394 

treatment.  395 

Future studies should be performed to understand the mechanisms by which polyphenols can 396 

modulate PON1 activity, and to verify whether the effects can be obtained at physiological 397 

doses. This consideration highlights the importance of using reasonable doses of foods and 398 

related bioactive compounds in intervention studies as suggested by the Food and Drug 399 

Administration in clinical trials for therapeutics [126]. In addition, the adoption of rigorous and 400 

well controlled human intervention studies is encouraged. Moreover, since polyphenols are 401 

extensively metabolized in the human gut and liver, the contribution of their metabolic products 402 

should be considered.  403 

 404 
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FIGURE CAPTION 1 

Fig. 1 Flow chart highlighting the study selection   

 

 

FIGURE CAPTION 2 

Fig. 2 Polyphenols in the modulation of PON1 actvity and expression: the mechanisms of action 

 

 

 

 

 

 

 

 


