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ABSTRACT IN ENGLISH 

The present thesis is focused on genomic epidemiology of bacterial hospital infections. The 

hospital environment is unique, as it concentrates a high number of bacterial agents, 

frequent antibiotic use, and patients with weak immune systems. This combination favours 

the development and selection of antibiotic resistant strains and the spread of opportunistic 

infections: in general the thriving of nosocomial pathogens. Genomics and evolutionary 

approaches have emerged as the cutting edge tools for studying this kind of infections, 

allowing to study the genomic features of bacterial strains and their evolution. Thanks to the 

possibility to sequence DNA at a constantly cheaper price, research projects are supported 

by a growing number of genomes and a considerable amount of genomic data is available in 

the databases, expanding the amount of possible investigations that can be performed. 

The first work presented here describes the evolution of the Clonal Complex 258 (CC258) of 

Klebsiella pneumoniae. Single nucleotide polymorphisms (SNPs) allowed to reconstruct the 

global phylogeny of the entire species and to collocate the CC258 in its evolutionary context. 

Furthermore, it was possible to detect the presence of a 1.3 Mb recombination in the 

genomes of the clade in analysis. A molecular clock approach allowed to date this and other 

previously discovered recombination events. These findings were used to complete the 

picture of the evolutionary history of CC258, which is characterized by frequent macro-

recombination events. A quick evolutive strategy characterized by exchange of high amount 

of information is a common feature to other nosocomial pathogens, which develop 

“superbug” phenotypes. 

Although common, the macro-recombination evolution model is not shared by all nosocomial 

infection bacteria. One exception is the SMAL strain of Acinetobacter baumannii, presented 

in another subproject of this thesis. In this work, the genomes of Sequence Type (ST) 78 of 

A. baumannii were analyzed. Phylogeny and comparative genomics revealed the presence 

of two different clades within the ST, presenting different evolutive “lifestyles”. One group 

(containing the SMAL genomes) was characterized by a lower gene content variability and 

by the presence of a higher copy number of insertion sequences (ISs). One IS interrupts the 

comEC/rec2 gene in all the SMAL genomes. This gene codes for a protein involved in the 

exogenous DNA importation, thus its inactivation limits the gene exchange, suggesting an 

explanation for the low genomic plasticity. 

In another work presented in this document, genomic epidemiology was applied to 

reconstruct the spreading routes of a K. pneumoniae epidemic event in an hospital intensive 

care unit. At first, a phylogenetic approach was used to separate the isolates that belonged 



to the outbreak from the sporadic ones. Then the isolation dates and genomic SNPs allowed 

to build a genomic network, which modelled the chain of infection events in the ward. The 

reconstruction suggested a star-like diffusion of the pathogen from patient zero to the other 

infected ones, thus revealing a systematic error in the biosafety procedures of the hospital. 

This almost-forensic application of genomic epidemiology was also used in two other works 

presented, both of them concerning the reconstruction of food-borne infections. In one of the 

works, focused on Salmonella enterica, only synonymous SNPs were used as input to a 

phylogenetic based investigation, in order to filter out pathoadaptative mutations. In the other 

article, epidemiological data, molecular typing and SNP-based phylogeny were used to 

investigate the infection of nine Listeria monocytogenes isolates, which were believed to be 

part of the same outbreak and in the end proved to be genomically unrelated. 

Lastly, a review paper on genomic epidemiology is also presented. The article is focused on 

the latest high impact publications analyzing the genome evolution of bacterial pathogens as 

well as the propagation dynamics of epidemic outbreaks in very short periods of time. The 

article also describes the latest historical epidemiological studies, which are possible thanks 

to modern DNA isolation and sequencing technologies. 



ABSTRACT IN ITALIANO 

La presente tesi è incentrata sull'epidemiologia genomica delle infezioni batteriche 

ospedaliere. L'ambiente ospedaliero è peculiare, in quanto al suo interno si concentrano un 

elevato numero di agenti batterici, pazienti con un sistema immunitario debole e un uso 

massiccio di sostanze antimicrobiche. Questa combinazione favorisce lo sviluppo e la 

selezione di ceppi resistenti agli antibiotici e la diffusione di infezioni opportunistiche: in 

generale il prosperare dei patogeni nosocomiali. Alcune tecniche all'avanguardia per lo 

studio di questo tipo di infezioni sono basate sull’uso della genomica e di approcci 

evoluzionistici: esse permettono di conoscere le caratteristiche genomiche dei ceppi batterici 

e di ricostruire la loro storia evolutiva. Grazie alla possibilità di sequenziare il DNA ad un 

prezzo sempre più economico, i progetti di ricerca sono supportati da un numero sempre 

crescente di genomi e i dati genomici depositati nelle banche dati sono in crescita 

esponenziale: questo rende possibile eseguire una varietà sempre maggiore di analisi. 

Il primo lavoro qui riportato descrive l'evoluzione del Clonal Complex 258 (CC258) di 

Klebsiella pneumoniae. Le mutazioni puntiformi (single nucleotide polymorphism, SNP) 

hanno permesso di ricostruire la filogenesi globale di tutta la specie e di collocare il CC258 

nel suo contesto evolutivo. Successivamente, è stato possibile rilevare la presenza di una 

ricombinazione di 1,3 Mb nei genomi del clade in analisi. Un’analisi del molecular clock ha 

poi consentito di datare sia questo che gli altri eventi di ricombinazione scoperti in lavori 

precedenti. Questi risultati sono stati usati per completare il quadro della storia evolutiva del 

CC258, caratterizzata da frequenti eventi di macro-ricombinazione. Un’evoluzione rapida e 

caratterizzata da scambi di elevate quantità di informazioni genomiche è una caratteristica 

comune ad altri patogeni nosocomiali che sviluppano fenotipi da "superbatteri". 

Sebbene frequente, il modello di evoluzione per macro-ricombinazioni non è comune a tutti i 

batteri responsabili di infezioni nosocomiali. Un’eccezione è il ceppo SMAL di Acinetobacter 

baumannii, presentato in un altro sottoprogetto di questa tesi. In questo lavoro sono stati 

analizzati i genomi del sequence type (ST) 78 di A. baumannii. La filogenesi e la genomica 

comparativa hanno rivelato la presenza di due differenti cladi all'interno del ST che 

presentano differenti "stili" evolutivi. Un gruppo (contenente i genomi SMAL) è caratterizzato 

da una minore variabilità del contenuto genico e dalla presenza di un numero più elevato di 

copie di insertion sequence (IS). Una IS interrompe il gene comEC/rec2 in tutti i genomi 

SMAL. Questo gene codifica per una proteina coinvolta nell’acquisizione del DNA esogeno, 

quindi la sua inattivazione limita lo scambio di geni. Questo suggerisce una spiegazione per 

la bassa plasticità genomica. 



In un altro lavoro presentato in questa tesi, l'epidemiologia genomica è stata applicata per 

ricostruire la diffusione di un focolaio epidemico di K. pneumoniae in un’unità di terapia 

intensiva ospedaliera. In un primo momento, è stato utilizzato un approccio filogenetico per 

separare gli isolati appartenenti all'epidemia da quelli sporadici. Poi le date di isolamento e 

gli SNP genomici hanno permesso di costruire una rete genomica che modellasse la 

propagazione delle infezioni nel reparto. La ricostruzione ha indicato una diffusione radiale 

del patogeno dal paziente zero a tutti gli altri infetti, rivelando così un errore sistematico nelle 

procedure di biosicurezza dell'ospedale. 

Questa applicazione quasi forense dell'epidemiologia genomica è stata utilizzata anche in 

altri due lavori qui presentati, entrambi riguardanti la ricostruzione di infezioni alimentari. In 

uno degli articoli, incentrato su Salmonella enterica, l’analisi filogenetica è stata eseguita 

solamente con gli SNP sinonimi al fine di filtrare le mutazioni patoadattative. Nell'altro lavoro 

sono stati utilizzati dati epidemiologici, tipizzazione molecolare e filogenesi basata sugli SNP 

per studiare l'infezione di nove isolati di Listeria monocytogenes, che si ritenevano essere 

parte dello stesso focolaio e alla fine sono risultati genomicamente non correlati. 

Infine, viene qui presentato anche un articolo di review riguardante l'epidemiologia 

genomica. L'articolo è focalizzato sulle ultime pubblicazioni ad alto impatto che analizzano 

l'evoluzione genomica degli agenti patogeni batterici e le dinamiche di propagazione delle 

epidemie in brevi periodi di tempo. L'articolo descrive, infine, le ultime ricostruzioni 

epidemiologiche a livello storico, che sono possibili grazie alle moderne tecnologie di 

isolamento e sequenza del DNA. 
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Nosocomial infections. Prokaryotes have appeared on our planet billions of years before 

humans and they have always influenced and shaped our life. Indeed, prokaryotes interact 

with virtually all other life forms, playing multiple important roles, from beneficial symbiosis to 

harmful pathogenesis. They inhabit a big share of the human body, living on the skin, in the 

gut, and in the nasal cavity. Moreover, prokaryotes cover every surface we touch and 

populate every environment we live in. Thus, the interaction with them cannot be avoided, 

but evolution has shaped our immune system in order to restrict the relationship to some 

species and only in certain body compartments. For example, our food is almost completely 

sterilized by the acid environment of the stomach but colonized right afterwards by the gut 

microbiota. Microbial spillover from the gut to other body compartments is a common 

phenomenon but is always controlled and restricted by the immune system. 

Problems occur when the immune system is weakened, i.e. with old age, during recovery 

from surgery or in the presence of pathological states such as AIDS or cancer. By this 

conditions, normally harmless commensals are free to invade and heavily colonize body 

districts in which they are normally not allowed such as the blood stream, the urinary tract or 

even the brain. Such infections occur mostly in the hospital environment (in this case they 

are labelled nosocomial infections). 

The Centers for Disease Control and Prevention (CDC) has classified nosocomial infection 

into 13 types, with 50 infection sites, which are specific on the basis of biological and clinical 

criteria. The most common types are urinary tract infections (UTI), surgical and soft tissue 

infections, gastroenteritis, meningitis and respiratory infections (1). In 2011, the number of 

recorded hospital infections in the USA alone was over 722,000 (2). According to the CDC, 

the total cost for the treatment of healthcare associated infections is around 30 billion US 

Dollars (3). In Italy, the number of infections in one year is between 450,000 and 700,000. 

One percent of these are estimated to be the direct cause of the death of the patient (4). 

Bacteria are responsible for about ninety percent of infections, while protozoans, fungi, 

viruses and mycobacteria take the remaining 10% share. The species that are usually 

involved in hospital-acquired infections include Streptococcus spp., Acinetobacter spp., 

enterococci, Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, coagulase-

negative staphylococci, Legionella and Enterobacteriaceae family members including 

Proteus mirabilis, Klebsiella pneumoniae, Escherichia coli, Serratia marcescens. Out of 

these, P. aeruginosa, S. aureus, E. coli and Enterococcus spp. have a major role. E. coli is 

common in the UTI, while S. aureus is frequent in other body sites (S. aureus is very 

frequent in blood-borne infections). Enterococcus spp. mostly infect surgical-sites while P. 

aeruginosa infections are evenly distributed among all body districts (1). 
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Resistance to antibiotics. The key factor that turns nosocomial infections in a serious 

threat for health is resistance to antibiotics. Indeed, infections with resistant bacteria are 

difficult to treat because identifying what antibiotic is effective requires time-consuming 

microbiology assays. A delay in the identification of the infective agent and in its 

characterization is often the cause of death for many patients. Moreover, in a growing 

number of cases, physicians have to deal with multiresistant microbes or, in some cases, 

pan-resistant microbes, which are resistant to all known antimicrobial agents. 

There are several mechanisms of antibiotic resistance that bacteria can acquire or develop: 

enzymatic degradation of antibiotics, antibiotic target modification, changes in the bacterial 

cell wall permeability and the use of pathways alternative to that targeted by the 

antimicrobial agent. 

Enzymatic degradation or inactivation of antibiotics is a very common mechanism of 

resistance. The most known examples are the β-lactamases; i.e. enzymes hydrolyzing the β-

lactam ring of antibiotics such as the cephalosporins. These are mainly of concern in Gram-

negative bacteria (5). Additional examples include inactivation of aminoglycosides by 

enzymatic modification by acetyltransferases, nucleotidyltransferases and 

phosphotransferases (6). Each of these enzymes has many variants, each active against 

specific antibiotic molecules (7). 

Resistance by target modification consists in modifying the binding site of the antibiotic on its 

target, thus making the drug ineffective. Examples of this mechanism are mutations in the 

gyrase and topoisomerase genes, which are the targets of the quinolone and 

fluoroquinolone antibiotics (8). Instead, in the case of Methicillin resistant Staphylococcus 

aureus (MRSA), the mecA gene codes for a variant of the penicillin binding protein PBP2A 

that has a very low affinity for β-lactams (9). One curious case is resistance to colistin 

(polimixin E) in Klebsiella pneumoniae. This phenotype is achieved by changing the 

composition and thus the charge of the lipopolysaccharide (LPS), which is the target of the 

antibiotic (10). 

Changing the cell wall or cell envelope permeability implies reducing the entry rate or 

increasing the efflux of antibiotics. Mutations in pores can limit or completely inhibit the influx 

of antibiotics into the cell. On the other side, efflux can be increased by synthesizing specific 

efflux pumps, as in the case of resistance to tetracycline (11), or by over-producing 

physiologically expressed ones. 

Finally, cells can become resistant by deviating from their normal physiological pathway by 

including a step alternative to that targeted by the antibiotic. An example of this mechanism 
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is the production of an alternative dihydrofolate reductase in trimethoprim resistant 

Escherichia coli and Citrobacter sp (12). 

Virulence factors in specialized strains. Very often nosocomial pathogenic species 

comprise strains that evolved specifically to fit into the hospital environment and to invade 

specific body district of patients. This is achieved through the acquisition of virulence factors, 

including mechanisms used to attach to surfaces, to migrate between body districts, to 

defend from the host immune system, to outcompete other microorganism in nutrients 

uptake and to attack and damage the host.  

Bacteria produce a wide variety of surface proteins that allow them to adhere to the host 

tissues, such as fimbriae, lipoteichoic acid and trimeric autotransporter adhesins. Capsules, 

instead, are used to evade the immune system, by inhibiting phagocytosis, and to protect the 

bacteria while outside the host. Another group of virulence factors are destructive enzymes, 

which cause damage to host tissues in order to invade other body districts or gain nutrients. 

Enzymes include hyaluronidase, which breaks down the connective tissue component 

hyaluronic acid, but also a range of proteases, lipases and DNases (13). Other mechanisms 

to provide nutrients include siderophores and other system used for the uptake of metals 

and ions. One example of this category of virulence factor is Yersiniabactin, a siderophore 

used by Yersinia pestis (and frequently horizontally transmitted to other species)(14) to 

monopolize iron in colonized environments (15). 

Lastly, a major category of virulence factors are toxins. The lipid A component of LPS (also 

known as endotoxin) binds to monocytes receptors and stimulates the inflammatory 

response in the host. An excess of such response can lead to septic shock. Exotoxins, on 

the other hand, are actively secreted molecules and cause damage to the host by targeting 

different specific biological processes. The two most potent known exotoxins are 

tetanospasmin (secreted by Clostridium tetani) and the botulinum toxin (Clostridium 

botulinum). Other bacteria that produce exotoxins include: Escherichia coli, Vibrio cholerae, 

Bacillus anthracis, and Clostridium difficile. 

Acquisition of antimicrobial resistance factors and virulence factors is also common in 

bacteria that cause food-borne infections (such as Salmonella spp. and Listeria 

monocytogenes), sex transmitted diseases (Neisseria gonorrhoeae, Treponema pallidum, 

Chlamydia trachomatis, Haemophilus ducreyi, Mycoplasma genitalium) (7, 16). 

Horizontal gene transfer. Antimicrobial resistance and virulence factors can surely evolve 

through random mutations and selection, however they can also be exchanged among 

bacteria using several mechanisms of horizontal gene transfer (HGT). HGT allows such 
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factors to spread quickly in a population and among populations, species and genera, and 

thus represents a set of mechanisms of great importance for increasing a pathogen 

virulence of resistance. 

Transformation is the direct uptake of DNA and depends on the expression of numerous 

genes (17). Transformation happens most frequently with genomic material of the same 

species as the recipient bacterium; Transformed DNA is usually integrated by homologous 

recombination. Competence for transformation is typically induced by stress conditions 

during the stationary phase of growth.  

Bacterial conjugation, instead, involves the presence and contact of the two living individuals 

between whom the DNA exchange happens. This process is mediated by pili and consists in 

the transfer of a conjugative or mobilizable genetic element that is most often a plasmid or 

transposon. Most conjugative plasmids have systems ensuring that the recipient cell does 

not already contain a similar element (18). Conjugation was discovered observing the 

transmission of fertility factor F, an autonomous DNA molecule. F can integrate into the 

bacterial chromosome to produce Hfr derivatives. Both in the autonomous and in the 

integrated state, F allows the bacterium to pair with F− recipient bacteria. This allows a copy 

of the replicating F to be transferred to the partner cell. From in the Hfr state, F can also 

transfer neighboring parts of the donor chromosome. This process allows the transmission of 

new functions to the recipient strain (19). 

Lastly, transduction is a mechanism of HGT based on bacterial viruses that carry part of the 

previous host genome when infecting other individuals. Generalized transduction is operated 

by viral particles that carry a segment of host DNA instead of a replica of the viral genome. 

On the other hand, specialized transduction is based on the transportation of hybrid 

molecule with a part of the phage genes and some bacterial genes (20). 

The role of genomic epidemiology. Nosocomial bacterial infections are mostly transmitted 

by contact. The vectors are often the hands of the medical staff, when they are not carefully 

cleaned in-between the treatment of one patient and another. Other carriers of infections are 

the so-called fomites: i.e. surfaces like diagnostic tools, catheter tubes, ventilators or simply 

door handles that are not sterilized. The control of the spread of pathogens might be difficult, 

due to the many potential sources of contagion and because bacteria can use people with 

healthy immune system as carriers, by colonizing them (e.g. in their intestines). These 

category of people, who do not have any symptom, can include the hospital personnel and 

patients with mild diseases, that are hospitalized in wards where regular checks for 
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pathogens are not run. For this reason, it is fundamental for hospitals to have surveillance 

programs and strict protocols of behaviour for all workers. 

Even the evolution of multidrug resistant pathogens can be contained. This is obtained by 

regulating and limiting the use of antibiotics. Indeed, resistance is acquired when a selective 

pressure is applied on the microbial community, i.e. when antibiotics are used. The best 

environment for the development of resistance is one with a sublethal antimicrobial dose. 

Thus, low dosages or short treatments must be avoided. 

The two provisions above are fundamental in order to solve this problem, but on the other 

hand, much can be done to improve diagnostic and surveillance systems and to design new 

strategies and protocols to prevent the development and spread of resistance mechanisms. 

This can be achieved through the use of genomic approaches and genomic epidemiology. 

Indeed, sequencing the DNA of an isolate allows to know what genes are present in its 

genome and to predict the associated phenotype. Moreover genomic structures can be 

studied using sequencing: e.g. the presence of plasmids, recombined regions in the 

chromosome, insertions and deletions of entire portions of the genome, such as 

pathogenicity islands, i.e. regions where genes coding for virulence factors or determinants 

for resistance to antimicrobial agents are clustered and usually co-transmitted by HGT. 

Lastly, shuffling of genomic regions can be recognized using genomics, together with the 

promoters of such reorganization, e.g. transposons and insertion sequences. 

Comparative genomics consists in finding common tracts and differences between two or 

more genomes or groups of genomes. This allows to find the determinants for a specific 

phenotype, such as a novel resistance factor. Comparative genomics can be performed by 

grouping strains based on their phenotypic traits or in light of their evolution (although the 

two classifications often coincide). 

Evolutionary classification is performed using molecular phylogenetics. Ordering bacteria 

(and their features) on a phylogenetic tree allows to reconstruct the history of a pathogen. 

Furthermore, using molecular clock approaches it is possible to fit a phylogeny inside a 

timescale and date evolutionary events. Lastly, phylogeography allows to compare 

phylogeny with geographical maps: this can be used to locate the area of origin of a strain of 

interest, as well as to hypothesize the origin of an epidemic event. Performing phylogeny 

with more isolates, can often lead to a better comprehension of a pathogen. Using a 

metaphor, genomic sequencing can be compared to taking a picture of a pathogen in a 

specific moment of its history. The more genomes are sequenced, the more frames can be 

used to reconstruct a movie about the evolution of the pathogen. 
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In the present years, sequencing genomes is not a limiting step when performing genomic 

epidemiology. This is thanks to the high amount of available genomes in the databases, 

which were sequenced at low cost. This situation is the result of the ongoing revolution 

represented by the advent of next generation sequencing. 

Next generation sequencing. Next generation sequencing (NGS) techniques were 

introduced in 2005 (21, 22) and completely changed the way many fields of biomedical 

research were conducted. The new technologies permitted to sequence an extremely high 

(when compared to the previous technology) amount of nucleotides at the same time, thus 

making the price of such precious information drop dramatically and starting a revolution, 

possibly more game-changing than the advent of PCR. 

The first technology introduced in 2005 was Roche 454 (21, 22), which was based on the 

use on a system of beads and wells that permit to separate and simultaneously sequence 

hundreds of thousands of small fragments of DNA. 454 machines use the energy of the 

pyrophosphate released by the attached nucleotides to produce a light signal (for this 

reason, this technology is also known as pyrosequencing). The development of this 

technology was discontinued in 2013 but its place in the market was taken by the Ion Torrent 

machines. These sequencers use a similar approach as 454, but replace the base calling 

system based on pyrophosphate with one based on the positive hydrogen ions released in 

the DNA synthesis process. The increase of H+ ions, changes the pH of the solution in which 

the reaction happens. This difference can be translated into an electric signal (23). This 

approach makes ion-torrent sequencing cheaper than 454. The policy of Ion Torrent is to 

produce easy to use sequencing kits and develop analysis software that require very few 

informatic skills, thus optimizing the technology to perform standard assays. 

Among the market leaders in the NGS field, together with Ion Torrent, is Illumina. Machines 

produced by this company use a technology introduced in 2006 by Solexa, which does not 

use beads and wells to handle DNA fragments but a flat surface, called the flowcell. DNA 

fragments are attached to the flowcell thanks to short single strand DNA probes, which bind 

to the sequencing primers. Each piece of DNA is amplified locally and forms an island of 

identical sequences on the flowcell. When sequencing is performed, each island emits a light 

signal which is detectable by a CDC receptor. The use of the flowcells allows Illumina to 

scale up the throughput of its machines easily. Today the machine with the highest output 

capabilities, Illumina HiSeq 4000, can sequence up to 1.5 terabases per run. The other main 

advantage of Illumina technologies is the accuracy in sequencing homopolymers, i.e. 

repeated stretches of the same base. A system of reversible terminators allows to pause the 

reaction after the incorporation of each nucleotide, regardless of the nitrogenous base 
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attached. This allows to detect the right length of homopolymers. The very high throughput 

and versatility of Illumina machines is what makes it the preferred choice for bacterial 

genomics. In fact, all sequences obtained in the works described in the present thesis were 

obtained using this technology. 

In more recent years, so-called third generation sequencing have been launched on the 

market. These technologies allow to sequence very long fragments of DNA (~10,000bp)  in 

one read. In 2011 Pacific Bioscience released a sequencing machine based on the Single 

Molecule Real Time (SMRT) technology, a parallelized single molecule DNA sequencing 

method. This technology relies on the use of nanoscale wells called zero-mode waveguides 

(ZMW). At the bottom of each ZMW, a single DNA polymerase enzyme sequences a single 

molecule of DNA. The structure of ZMW is small enough to observe the light of only one 

fluorescent dye, released with the incorporation of a single nucleotide (24). SMRT 

sequencing, also called PacBio, is used today to produce high quality genomic assemblies. 

Precision and reliability of called bases is achieved through high coverage sequencing or by 

coupling PacBio and Illumina reads. 

A more recent technology called Nanopore, was introduced in 2012. Nanopore sequencing 

uses electrophoresis to transport DNA through a porin protein of diameter 10−9 m. 

Sequencing is made possible because samples cause specific changes in electric current 

density across nanopore surfaces, which allow the nucleotide to be recognized (25). At the 

beginning of 2017, Nick Loman reported having obtained reads of several hundred thousand 

bases in length (with a maximum of 882 kb) (26). Protocols for the use of this technology are 

still being developed; thus it is still not as widely used as SMRT.  

In the present thesis, all genomes are sequenced with the Illumina technology. In particular, 

the MiSeq machine was used for most of the projects. The MiSeq is a low output benchtop 

machine, that allows to obtain the reads of 12-15 bacterial genomes per run. Libraries were 

prepared using the Nextera XT kit. This technology uses a modified transposases to 

fragment the DNA and attach the sequencing primers at the same time, in a process called 

tagmentation. Nextera allows to avoid the use of ultrasonicators and sensibly lower the price 

of library building. The cost of the reagents for one genome using the approach presented in 

this thesis is around 100€. 
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Preface to manuscripts. In the following sections I have included a collection of papers, 

relative to the research work performed during my period as a doctoral student. Works will 

be presented in the following order: 

a) The first three articles included are works in which I was listed as first author and 

contain the main results of this Ph.D. project. They are focused on genomic 

epidemiology of nosocomial pathogens 

b) The fourth and fifth articles are focused on the reconstruction of the spreading routes 

of food-borne pathogens during epidemic events. My contribution in these works was 

minor 

c) The sixth paper is a review article on genomic epidemiology. 
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ABSTRACT 
Klebsiella pneumoniae is at the forefront of antimicrobial resistance for Gram-negative 

pathogenic bacteria, as strains resistant to third-generation cephalosporins and 

carbapenems are widely reported. The worldwide diffusion of these strains is of great 

concern due to the high morbidity and mortality often associated with K. pneumoniae 

infections in nosocomial environments. We sequenced the genomes of 89 K. pneumoniae 

strains isolated in six Italian hospitals. Strains were selected based on antibiotypes, 

regardless of multilocus sequence type, to obtain a picture of the epidemiology of K. 

pneumoniae in Italy. Thirty-one strains were carbapenem-resistant K. pneumoniae 

carbapenemase producers, 29 were resistant to third-generation cephalosporins, and 29 

were susceptible to the aforementioned antibiotics. The genomes were compared to all of 

the sequences available in the databases, obtaining a data set of 319 genomes spanning 

the known diversity of K. pneumoniae worldwide. Bioinformatic analyses of this global data 

set allowed us to construct a whole-species phylogeny, to detect patterns of antibiotic 

resistance distribution, and to date the differentiation between specific clades of interest. 

Finally, we detected an ∼1.3-Mb recombination that characterizes all of the isolates of clonal 

complex 258, the most widespread carbapenem-resistant group of K. pneumoniae. The 

evolution of this complex was modeled, dating the newly detected and the previously 

reported recombination events. The present study contributes to the understanding of K. 

pneumoniae evolution, providing novel insights into its global genomic characteristics and 

drawing a dated epidemiological scenario for this pathogen in Italy. 
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INTRODUCTION 

Multidrug resistance is currently a matter of concern worldwide. At the end of the 1970s, 

most Escherichia coli and Klebsiella pneumoniae strains encoded ampicillin-hydrolyzing β-

lactamases, making it necessary to use third-generation cephalosporins. In the early 1980s, 

the first cases of resistance to these novel antibiotics were reported in Enterobacteriaceae 

(1) and were caused by genes classified as ESBL (extended-spectrum beta-lactamases). In 

1985, the United States Food and Drug Administration approved the commercialization of 

imipenem, a molecule that showed activity against ESBL producers. This drug, and similar 

compounds that quickly followed (i.e., carbapenems), then were introduced into clinical 

practice and widely used. 

In 2001, Yigit and colleagues reported a K. pneumoniae strain isolated in 1996 that exhibited 

resistance to the carbapenems imipenem and meropenem (2). The gene responsible for the 

resistance was identified as a group 2f, class A, carbapenem-hydrolyzing beta-lactamase, 

named Klebsiella pneumoniae carbapenemase 1 (KPC-1). Since its discovery, carbapenem 

resistance caused by the blaKPC gene has been reported increasingly in K. pneumoniae 

isolates, initially moving through the northeastern states (3, 4) and quickly becoming the 

most frequently found carbapenemase in the United States (5). The spread of KPC then 

continued, with reports from different countries appearing ceaselessly, to the point that today 

this is regarded as a worldwide issue (6). 

The blaKPC gene is carried by a plasmid; thus, horizontal transfer between various K. 

pneumoniae strains, as well as other bacterial species, could be expected and was 

extensively reported (7–9). Nevertheless, most of the clinical reports to date have been 

caused by K. pneumoniae isolates belonging to clonal complex 258 (CC258) (10). This 

complex comprises sequence type 258 (ST258) and single-allele mutant STs based on 

multilocus sequence typing (MLST), such as ST11 and ST512. These epidemiological data 

suggest a dissemination starting from a single ancestor and that CC258 presents a genomic 

background that is favorable both to the acquisition of plasmids bearing the blaKPC gene and 

to the clonal spread in nosocomial environments. In 2014, Deleo and colleagues (11) 

presented a phylogenomic study on 85 K. pneumoniae isolates belonging to CC258, 

detecting two subclades and concluding that an ∼215-kb recombination event was at the 

origin of the differentiation between the two. A second comparative genomic analysis, 

presented by Chen and colleagues (12), detected an ∼1.1-Mb recombination between an 

ST11 recipient and an ST442 donor as the event that originated the present ST258 strain. 
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Since the first finding of circulation of ESBL-producing K. pneumoniae in Italy in 1994, a 

rapid and extensive dissemination of different types of ESBLs has been reported (13–15). 

More recently, the first Italian KPC-positive K. pneumoniae strain, belonging to ST258, was 

isolated in a hospital in Florence in 2008 from an inpatient with a complicated intra-

abdominal infection (16). Since then, the diffusion of carbapenemase-producing K. 

pneumoniae in Italy has been extremely rapid and characterized mainly by isolates of 

CC258 (i.e., ST258 and ST512) (17–19). ST512 in particular, first reported in Israel in 2006 

(20), has been spreading in southern Europe and South America (11, 19). The sporadic 

detection of isolates belonging to other STs (e.g., ST101 and ST147) also have 

characterized the epidemiology of KPC K. pneumoniae in Italy (19). 

The aim of this study was to evaluate the geographic and phylogenetic distribution of K. 

pneumoniae isolates of different antibiotypes, both at a national and a global scale. Thus, we 

sequenced and analyzed the genomes from 89 K. pneumoniae strains, collected in six 

Italian hospitals from 2006 to 2013, without any a priori knowledge of the sequence type. We 

compared this national collection to all of the K. pneumoniae genomes available from 

worldwide isolations to obtain insights into both the Italian epidemiology and the global 

structure of the species. 

 

MATERIALS AND METHODS 

Strain sampling. Eighty-nine non-duplicate K. pneumoniae strains, collected from six 

different Italian hospitals, were included in this study without prior knowledge of the 

sequence type. Thirty-one were KPC producers, as demonstrated using phenotypical tests 

(positivity with disk diffusion synergy testing using a meropenem disk alone and in 

combination with aminophenylboronic acid) (21) and/or genotypical analysis (in-house 

methods based on reference 22); 29 were ESBL producers, as demonstrated using the 

procedure recommended by the CLSI (23), while 29 were susceptible to third-generation 

cephalosporins and carbapenems. Throughout this work, we refer to this last group of 

isolates as susceptible. Antimicrobial susceptibility testing was performed using a Vitek2 

automated system (bioMérieux), and MICs were interpreted by following the European 

Committee on Antimicrobial Susceptibility Testing guidelines (24). The list of isolates, year, 

location of isolation, sequence type, and presence of selected antibiotic resistance genes 

are reported in Table S1 in the supplemental material. 

Genome sequences. DNA was extracted using a QIAamp DNA minikit (Qiagen) by 

following the manufacturer's instructions. Whole genomic DNA was sequenced using an 
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Illumina Miseq platform with a 2 by 250 paired-end run after Nextera XT paired-end library 

preparation. On 24 March 2014, sequences of draft and complete genomes of K. 

pneumoniae were retrieved from the NCBI ftp site, while sequencing reads of the isolates 

sequenced by Deleo and coworkers (11) were retrieved from the sequence read archive 

(SRA) database (accession no. SRP036874). 

Genome assembly and retrieval. Sequencing reads from the isolates obtained in this study 

were assembled using MIRA 4.0 software (25) with accurate de novo settings. Assembled 

genomes are now publicly available under Bioproject (EMBL project B6543). Reads 

retrieved from the SRA database were checked and filtered for sequencing quality using an 

in-house script and then assembled using Velvet (26) with a K-mer length of 35 and 

automatic detection of average expected coverage and low coverage threshold. 

Resistance profile and MLST determination. The MLST profile was obtained in silico by 

searching the characterizing gene variants on each genome, using an in-house Python 

script. The antibiotic resistance profile was determined using a BLAST search on a gene 

database comprising all of the most common resistance genes associated with resistance to 

beta-lactams, including ESBL- and KPC-producing phenotypes. 

Core SNP detection and phylogeny. Single-nucleotide polymorphisms (SNPs) were 

detected using an in-house pipeline based on Mauve software (27), using the NJST258_1 

complete genome as a reference. Each genome was individually aligned to the reference, 

and alignments were merged with in-house scripts. Core SNPs were defined as single-

nucleotide mutations flanked by identical bases present in all of the analyzed genomes. The 

core SNP alignment was used to perform a phylogenetic analysis using the software RAxML 

(28) with a generalized time-reversible (GTR) model and 100 bootstraps. The same 

phylogenetic approach was used to perform the analysis on three core SNP sub-data sets 

(i.e., non-recombined regions and two distinct putatively recombined regions). 

Recombination. We divided the genome alignment in 5,264 windows of 1,000 nucleotides 

(nt) each and calculated core SNP frequency in each window for each genome, generating a 

matrix. The software R then was used to generate a heatmap of SNP frequency. The newly 

characterized strain 46AVR was used as a reference for plotting SNPs, being a member of 

the sister group to CC258. In parallel, we created a sub-data set of 174 CC258 genomes 

and 13 closely related K. pneumoniae genomes, removing genomes of isolates distant from 

the CC258 clade (n = 103) and the genomes within CC258 that exhibited extremely limited 

variability (n = 29), such as all but one of those obtained from single outbreaks. The choice 

of using a relatively large number of non-CC258 genomes (n = 13) was made in order to 



 

 24 

allow the detection of recombination events common to the whole clonal complex. We used 

this sub-data set of core SNPs in 187 genomes to perform a recombination detection 

analysis using the software BRATnextgen (29) with 100-iteration analysis, using 100 

replicates for statistical significance. 

Analysis of the recombined region. A database was created collecting protein sequences 

of factors previously reported to be involved in virulence and antibiotic resistance. We 

collected sequences from the Comprehensive Antibiotic Resistance Database (CARD) (30) 

and from the Antibiotic Resistance Genes Database (ARDB) (31), from proteins involved in 

the biosynthesis of lipopolysaccharides (LPS) and polymyxin resistance, and from the most 

common virulence factors and siderophores found in Gram-negative bacteria (obtained from 

the NCBI site). Finally, we added to our manually designed database all K. pneumoniae 

proteins described as potential virulence or resistance factors in the work by Lery and 

colleagues (32). Gene sequences present in the novel putative recombined region were 

extracted from the genome of strain NJST258_1 using an in-house Python script. 

Correspondence between proteins in our database and genes in the recombined region was 

tested using a TBLASTN search, selecting genes covering at least 75% of the database 

sequence with a minimum of 75% identity. Results then were manually checked (see Table 

S2 in the supplemental material for a complete list). 

Molecular clock. We created a sub-data set of 174 CC258 genomes and 3 closely related 

K. pneumoniae genomes (used as outgroups), removing genomes of isolates distant from 

the CC258 clade (n = 113) and the genomes within CC258 that exhibited extremely limited 

variability (n = 29), such as all but one of those obtained from single outbreaks. We used the 

software BEAST (33) on the core SNP alignment of the 177-genome sub-data set after 

removing SNPs located in the potentially recombined regions. BEAST parameters used 

were the following: uncorrelated log-normal relaxed clock with the GTR model, with no 

correction for site rate heterogeneity according to analyses performed in similar scenarios 

(34). The analysis was run for 1,000,000,000 steps, and at every 10,000 steps samples were 

taken. We discarded 250,000,000 steps as burn-in. The program TRACER 

(http://beast.bio.ed.ac.uk/tracer/) was used to evaluate the convergence of the analysis. 
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RESULTS 

Sampling and genome sequencing. Eighty-nine K. pneumoniae strains were collected in 

six Italian hospitals, chosen based on antibiotypes regardless of sequence type, which was 

determined only afterwards. The data set was composed of 31 KPC producers, 29 ESBL 

producers, and 29 strains susceptible to carbapenems and third-generation cephalosporins, 

here referred to as susceptible. The genome of each of the 89 isolates was sequenced and 

assembled (average genome size, 5,551,959 nt; average N50, 154,414 nt; average 

coverage, 76.46×). All of the available K. pneumoniae genome sequences and reads then 

were retrieved from the databases (n = 230) to create a global data set of 319 K. 

pneumoniae genomes. All genomes in the data set were screened for genes responsible for 

KPC and beta-lactam resistance phenotypes, as well as for all MLST genes. A total of 55 

different MLST profiles were detected, eight of which were novel; thus, they were submitted 

to the curators of the K. pneumoniae MLST database (35). Each of the eight new profiles 

was represented by a single newly sequenced Italian isolate (7 susceptible, 1 ESBL 

producer). Two of these isolates also presented a single novel allele, one for the gene rpoB 

and one for the gene infB. See Table S1 in the supplemental material for a list of all of the 

isolates sequenced in this study and their main characteristics. 

Global SNP phylogeny. We used a maximum likelihood phylogenomic approach based on 

core SNPs to elucidate the relationships within the global genome data set comprising the 

newly sequenced isolates and the K. pneumoniae genome sequences available in the 

database. The presence of antibiotic resistance genes was mapped on the resulting 

phylogenetic tree, obtained from an alignment of 94,812 core SNPs (Fig. 1). This revealed 

that 97% of all KPC K. pneumoniae strains sequenced to date, regardless of the location of 

isolation, belong to a well-supported clade, corresponding to the complex CC258. On the 

other hand, the phylogenomic analysis showed that the isolates encoding common beta-

lactam resistance genes (blaSHV family, blaTEM family, blaOXA family, and blaCTX-Mfamily) are 

widespread along the tree and belong to various STs (both inside and outside CC258), with 

no sign of clustering. In fact, the 141 isolates encoding blaTEM belong to 24 different STs, the 

26 isolates encoding blaOXA belong to 11 different STs, and the 37 isolates encoding blaCTX-M 

belong to 16 different STs. 
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FIG 1. Maximum likelihood phylogeny of Klebsiella pneumoniae, based on 319 genomes. 

The phylogeny was reconstructed starting from an alignment of 94,812 core SNPs, using the 

software RAxML with a generalized time-reversible (GTR) model and 100 bootstraps, which 

are not shown for the sake of figure clarity. (A) Circular representation of the phylogeny, 

obtained using iTOL (itol.embl.de), ignoring branch length. Color circles indicate, from the 

innermost to the outermost, presence/absence of KPC variants, geographic location in terms 

of continents, ST based on multilocus sequence typing, and presence in the genome of 

genes from four beta-lactamase families. The red arrow indicates the origin of the clonal 

complex 258 clade. (B) Unrooted representation of the phylogeny showing the branch 

lengths, highlighting the genetic uniformity of clonal complex 258. 
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Phylogeny excluding potentially recombined regions. In a recent work by Castillo-

Ramirez and coworkers (34), high-density SNPs clusters with a low ratio of nonsynonymous 

to synonymous evolutionary changes (dN/dS) in closely related bacterial genomes were 

suggested to be indicators of recombination events. Thus, we evaluated the distribution of 

SNPs on the genome data set, detecting a highly uneven distribution in the genomes of 

CC258 isolates, as most core SNPs clustered into two main regions. The first region is 

located between positions 1,675,550 and 2,740,033, while the second comprises the origin 

of replication and spans from 4,554,906 to 629,621 in strain NJST258_1 (Fig. 2) (for the 

distribution of core SNPs on the whole data set of 319 genomes, see Fig. S1 in the 

supplemental material). To further analyze the possible presence of recombination events in 

CC258, we used the software BRATnextgen (29), specifically intended for this purpose, on a 

reduced data set of 187 genomes of CC258 and closely related strains. This analysis (see 

Fig. S2) confirmed the presence of the two main recombination events, additionally 

indicating in what position of the phylogeny they could have occurred. The first event was 

placed between the entire CC258 clade and the non-KPC external isolates of different STs, 

while the second was between the outermost strains of ST11 and the inner CC258 clade. 

Details on these recombined regions are presented in the following paragraph. 

  



 

 28 

 

 

 

FIG 2. Uneven clustering of core SNPs in the clonal complex 258 clade. The phylogenetic 

reconstruction of the 206 representatives of the clonal complex 258 clade is shown on the 

left, while the core SNP frequency is shown on the right in shades of red, representing the 

number of core SNPs per 1,000-bp window for each genome. Detected recombinations are 

indicated at the top of the figure, and main clades of the clonal complex are indicated on the 

right side of the figure. 
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We removed the two putative recombined regions from the core SNPs data set of 319 K. 

pneumoniae genomes and performed a phylogenetic analysis on the remaining 55,368 core 

SNPs. The resulting tree (see Fig. S3 in the supplemental material) is largely consistent with 

the one generated from the initial data set, confirming the widespread distribution of 

susceptible and ESBL isolates and the presence of the highly supported KPC CC258 clade. 

Indeed, both the analysis on all core SNPs and the one performed by removing recombining 

sites agree in clustering 97% of all KPC K. pneumoniae isolates sequenced in a well-

supported clade (Fig. 1; also see Fig. S3). This monophyletic clade comprises 203 strains 

from Asia, Europe, Oceania, and North and South America, with isolation dates ranging from 

2002 to 2013; 193 of these (95%) present the blaKPC gene. Most isolates of this clade belong 

to ST258 (n = 167), but 4 other sequence types are present (i.e., ST11, SST379, ST418, 

and ST512), all single-nucleotide variants of ST258; thus, they belong to CC258. The 

second most common sequence type in the CC258 clade is 512, represented by 28 isolates 

that form a single monophyletic subgroup, located within the ST258 diversity. Interestingly, 

24 of these 28 have been isolated in Italy, mostly in this study (n = 19) but also in previous 

works (18, 36). Within the CC258 clade, two main highly supported distinct subclades are 

detectable, comprising the vast majority of the genomes. Three additional CC258 genomes 

are located in the tree as sister groups of the two main clades, and all are representatives of 

ST11, again a single-nucleotide variation of ST258. The existence of the two main CC258 

subclades was reported previously, and a single recombination event was proposed to be 

the cause of the differentiation between the two (11), while a subsequent work suggested 

multiple recombination events (37). 

Analysis of recombined regions. As described above, the SNP clustering analysis 

detected high SNP concentrations in two large genomic regions (Fig. 2). The smaller of the 

two is highly congruent with the ∼1.1-Mb recombination found by Chen and colleagues (12), 

which represents the major evolutive change between the members of ST11 and those in 

the 2 main subclades of the CC258 clade. Chen and colleagues found this region to be most 

similar to the corresponding region of isolate Kp13 of ST442 and suggested a recombination 

event, with the donor strain being a close relative of Kp13. Thus, we investigated whether a 

recombination event is at the origin of the second, newly detected, highly mutated genomic 

region, located from positions 4,554,906 to 629,621. We performed a phylogenetic analysis, 

including all of the 319 K. pneumoniae genomes examined in this work, on the core SNPs 

located in this region and in parallel on the core SNPs located in the ∼1.1-Mb region. The 

phylogenetic analysis of the novel ∼1.3-Mb region (see Fig. S4 in the supplemental material) 

confirms the recombination hypothesis, as the topology of the resulting tree clearly shows 

that Italian isolate 67BO, of the newly described ST1628, is the sister taxon to the entire 
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CC258 clade, suggesting that the donor was related to this isolate. The phylogenetic tree 

obtained from the ∼1.1-Mb recombined region (see Fig. S5) confirms the published results, 

clustering the donor Kp13 as a sister taxon of the CC258 clade, with the exclusion of the 

outermost ST11 isolates. Thus, we propose an updated scenario in which a first 

recombination event gave origin to the first CC258 strains (represented by ST11), a second 

recombination subsequently originated ST258, and a third, smaller recombination initiated 

the split between the two main ST258 subclades (Fig. 3). 

 

 

FIG 3. Hypothesis of recombinations occurring in the clonal complex 258 clade. Schematic 

representation based on the results of the analyses presented. Main nodes of interest are 

shown, highlighting the hypothesized pattern of three recombination events leading to the 

current state of clonal complex 258. Dates are inferred based on the molecular clock 

analysis depicted in Fig. 4. 
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In order to investigate the potential effect of the newly discovered recombination on the 

phenotype of the acceptor CC258, the presence of genes possibly related to antibiotic 

resistance and virulence was investigated in the corresponding region of the genome of 

strain NJST258_1, using a specifically designed database (see Materials and Methods). 

Interestingly, 51 genes were detected in the region (see Table S2 in the supplemental 

material), grouped in three main categories: LPS modification (such as the waa operon), 

bacterial efflux transporters (i.e., efflux pumps and permeases), and regulators (e.g., ompR-

envZ operon) (see Discussion for an analysis of the detected genes). 

Molecular clock. In order to date the origin of the CC258 clade and its subclades, we 

performed a molecular clock analysis using the software BEAST (33). We produced a 

reduced data set of 3,615 core SNPs present in a selected subset of taxa (174 CC258 and 

three closely related non-KPC K. pneumoniae genomes used as outgroups), derived from 

the previously filtered data set, in which the potentially recombined regions of the genome 

were excluded (Fig. 4). Compared with the dates indicated in published reports, our 

estimations appear to be fairly accurate. For example, the molecular clock analysis dates the 

appearance of ST512 to 2007, close to the first report in Israel, i.e., 2006 (20). Additionally, 

the molecular clock analysis dates the radiation of American and European ST258 isolates 

to 1997, a time point coherent with the first report of KPC-bearing K. pneumoniae, i.e., 1996 

(2). Thus, our calibration of the evolutionary rate, superimposed on the phylogenetic tree 

(Fig. 4), could be used to infer unavailable dates on the global pandemic of CC258 K. 

pneumoniae. See Discussion for further discussion of the estimated dates. 
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FIG 4 Estimation of divergence times in clonal complex 258. A schematic version of the 

time-scaled phylogeny was obtained using BEAST software with an uncorrelated log-normal 

relaxed clock and GTR model with no correction for site rate heterogeneity. The analysis 

was run for 1,000,000,000 steps, with sampling every 10,000 steps and 25% burn-in. The 

Italian monophyla are highlighted in blue, while the sequence type 11 (ST11) Asian clade is 

highlighted in green. All of the phyla with no indication of ST are comprised mainly of isolates 

of ST258. The dates indicated in the figure, for selected branches and nodes, were inferred 

from the analysis described above; for a comparison with the dates of isolation of strains, 

see Discussion. 

 

Italian strains. The structure of the phylogenomic tree allows us to depict the scenario of 

the epidemiology of K. pneumoniae in Italy (Fig. 1 and 4). While susceptible and ESBL 

Italian strains are homogeneously distributed on the tree and belong to a number of different 

STs (24 and 15, respectively), all of the KPC strains sequenced in Italy belong to CC258, 

indicating a strong epidemiological prevalence of this clonal complex in the Italian hospitals. 

Within CC258, Italian isolates are well clustered in four monophyla, three composed mostly 

of isolates sequenced in this study and one encompassing two isolates from a previous 

study (38). Of the four Italian CC258 monophyla, the one including the most isolates is 

composed solely of ST512 (n = 24), confirming the multiple reports that indicate this ST as 

being of great epidemiological importance, at least in this country. Our phylogenetic analysis 

clearly indicates that this ST512 monophylum is found within the diversity of ST258. 
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DISCUSSION 

Klebsiella pneumoniae in Italy. We sequenced the genomes of 89 K. pneumoniae strains 

isolated in Italy, among them 31 KPC producers, 29 ESBL producers, and 29 strains 

susceptible to beta-lactams and carbapenems. Based on our phylogenomic analysis, the 29 

genomes from susceptible K. pneumoniae strains isolated in Italy are scattered along the 

tree, showing no evident sign of clusterization. The sequencing of these isolates allowed us 

to expand the known diversity of the K. pneumoniae species, detecting seven novel MLST 

profiles and contributing to the overall robustness of current and future phylogenetic 

analyses. The genomes obtained from 29 ESBL isolates also show a considerable diversity, 

as they are distributed on the phylogenetic tree and belong to 15 different STs, among them 

a newly found ST. 

Regarding KPC isolates, all Italian sequenced strains are found in CC258. Since no a priori 

selection of STs was performed, this result indicates a strong prevalence of CC258 among 

KPC K. pneumoniae isolates in Italy, even though isolates from different STs have been 

reported previously by nongenomic studies (e.g., reference 19), and a wider genomic 

sampling surely would allow us to obtain genomes of KPC isolates belonging to other STs. 

The genomes of KPC-producing K. pneumoniae strains isolated in Italy cluster in four 

monophyletic groups. If we consider that the first reported case of KPC in Italy occurred in 

2008, we can use the dates obtained from the molecular clock to conclude that these 

monophyletic groups represent four different entrances of KPC K. pneumoniae in Italy (Fig. 

4). This indicates that KPC strains can move effectively among different countries and 

continents, and that the current Italian scenario of widespread KPC resistance has been 

caused by multiple overlapping outbreaks. Additional sampling from Italian CC258 isolates 

could either confirm these results or detect novel monophyla, possibly discovering additional 

entrance events. 

Among the four Italian CC258 monophyla, one is composed entirely of isolates of ST512. 

This KPC sequence type was first reported in Israel in 2006 (20) but has been spreading 

since then, mostly in Italy and South America (11, 17). In accordance with these reports, the 

four available ST512 genomes from South American isolates cluster in our phylogeny as a 

sister group of the Italian ST512 clade (Fig. 1 and 4). The molecular clock analysis dates the 

common ancestor of all members of ST512 to 2007, in relative agreement with the first 

report of this ST, i.e., 2006 (20). Considering that this ST is known to be a single-nucleotide 

variant of ST258, these results indicate that a mutational event occurred around 2006, giving 

rise to this sequence type, that then spread to Israel, South America, and Italy. Genome 

sequencing of isolates of this ST from Israel, currently unavailable, could allow us to perform 
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phylogenetic analyses aimed at better understanding the geographical and temporal origin of 

the ST512 clade. 

Origin of the CC258 clade. Our phylogenomic analysis, coupled with the detection of 

recombination events and with the molecular clock analysis, allow us to update the 

hypothesis regarding the origin and evolution of CC258, the most widespread bearer of KPC 

resistance worldwide (Fig. 3). We postulate a first recombination event that occurred before 

1985 between a donor similar to ST1628 and a receiver, an ancestor of ST11. This event, 

which transferred a region of ∼1.3 Mb to the current ST11, gave rise to the basal lineage of 

CC258. Since only three genomes of ST11 currently are available, all isolated from Asian 

patients, the current phylogeny suggests that this first recombination event occurred on the 

Asian continent. However, additional genome sequences of ST11 from different geographic 

locations are necessary to support or falsify this hypothesis. Our molecular clock analysis 

also can be useful to date the two subsequent, previously reported (11, 12) recombination 

events. The second recombination event, confirmed by our phylogenies, gave rise to ST258, 

having as a recipient ST11 and a donor similar to ST442 (12). Our molecular clock analysis 

dates this event to between 1985 and 1997. Considering that all of the known genomic 

CC258 diversity from the American and European continents is included within the subclade 

that originated in 1997 (Fig. 4), this second event could have been pivotal in the subsequent 

pandemic of KPC-bearing CC258. Finally, we can date the third smaller recombination 

event, the one that gave origin to the differentiation between the two main CC258 subclades 

(11), to between 1999 and 2001. Thus, we can hypothesize that these three events have 

produced a genomic background apt to bear and diffuse KPC plasmids, contributing to the 

success of the KPC pandemic. 

The proposed scenario suggests that the genomic diversity of the whole K. pneumoniae 

species constitutes a reservoir of genetic variability capable of recombination events of large 

portions of the genome, with subsequent generation of novel variants. In this scenario, we 

hypothesize that large genomic recombinations are at the basis of important 

phenotypic/functional changes that, together with the acquisition and diffusion of plasmids 

bearing antibiotic resistance genes, have led to the current global epidemic. This hypothesis 

is supported by the multiple detected recombination events, as well as by the limited number 

of SNPs identified outside the recombined regions (a total of 1,086 core SNPs in the 206 

analyzed CC258 genomes), and finally by the current impossibility to phenotypically 

differentiate the isolates of subclade ST512 from those of ST258. An alternative hypothesis 

is that the main reason for the diffusion of CC258 is simply the acquisition of the resistance 

to carbapenemic antibiotics, and that the genomic variations, whether they are 
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recombinations or point mutations, do not provide a specific fitness benefit but are merely an 

example of genetic hitchhiking. 

In order to investigate the importance of the recombination event described in this work, the 

gene content of the ∼1.3-Mb region was analyzed. Fifty-one genes in this genomic context 

were found to be potentially related to virulence or antibiotic resistance (see Table S2 in the 

supplemental material). The presence of LPS synthesis genes is worth a mention because 

of the multiple linkages between the outer membrane and virulence (39). Genes of the 

operon waa (also known as rfa) are responsible for the biogenesis of the core LPS, while 

genes of the family arn control the modifications of lipid A. Modifications in membrane 

composition can lead to changes in surface charge and interfere with the activity of 

antibiotics that act on LPS, such as polymyxins and novobiocin (40). Moreover, the presence 

of mla genes in the recombined region is worth being highlighted. These genes are 

presumed to maintain lipid asymmetry in the Gram-negative outer membrane, as they 

transport phospholipids to the inner side of the membrane. mla genes were reported as 

virulence factors in Escherichia coli and in other Gram-negative bacteria, as mutations in 

these genes can lead to a change in the permeability of the outer membrane and to a 

subsequent variation in virulence (41). The presence of fumarate reductase genes of the 

family fmr in the recombined region suggests a link with the variation of virulence of CC258. 

In fact, fumarate reductase is a virulence determinant in Helicobacter pylori, Mycobacterium 

tuberculosis, Actinobacillus pleuropneumoniae, and Salmonella enterica, as mutants of 

these genes show variations in virulence (32). Finally, the ompR-envZ operon, present in the 

recombined region, is a two-component system that acts as a transcription regulator, 

affecting the expression of the genes ompF and ompC (42). Mutations in the ompR and 

envZ genes have been shown to reduce the expression of outer membrane porins OmpF 

and OmpC (43). This in turn can have drastic effects on both the virulence and antibiotic 

resistance of mutant strains. It has been reported in particular that OmpR mutations can lead 

to reduced susceptibility to carbapenemic antibiotics in Enterobacteriaceae (44). 

Further functional investigations aimed at unveiling the reasons for the success of the 

CC258 clade, possibly focusing on the detected recombinant regions, would greatly improve 

our understanding of the K. pneumoniae pandemic and would provide important tools in the 

fight against KPC-producing strains. Finally, our conclusions should lead to additional 

studies focused on the recombination potential of other STs of K. pneumoniae. If this 

capacity were found to be widespread, we should be aware that future recombination events 

could lead to the diffusion of novel epidemic clones. 
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ABSTRACT 

Acinetobacter baumannii is a known opportunistic pathogen. Its genome has been described as 

characterized by a very high plasticity, with high frequency of homologous recombinations and 

proliferation of insertion sequences. The SMAL pulsotype is an A. baumannii strain putatively 

isolated only in Italy, characterized by a low incidence and a high persistence over the years. In the 

present work, we have conducted a comparative genomic analysis on this clone. All genomes 

presented the Sequence Type 78 (ST78) and were analysed in comparison with 11 other 

assemblies of the same ST. The phylogeny highlighted the presence of two different clades, one of 

which (ST78A) encompasses all the SMAL genomes and three others. ST78A resulted to have a 

low rate of homologous recombination and low gene content variability. Surprisingly, genomes 

inside the clade present a high number of Insertion Sequences (IS), mostly absent in the other 

genomes of the ST. Among these IS, one IS66 was found to interrupt the gene comEC/rec2, 

involved in the acquisition of exogenous DNA. This leads to the depiction of an evolutionary 

scenario in which the proliferation of IS is slowing the acquisition of exogenous DNA, thus limiting 

genome plasticity. Such genomic architecture can explain the epidemiological behaviour of high 

persistence and low incidence of the clone, and provides an interesting framework to compare 

ST78 with the highly epidemic international clones, characterized by high genomic plasticity. 
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INTRODUCTION  

The bacterium Acinetobacter baumannii is an opportunistic pathogen diffused worldwide, part of 

the so called ESKAPE group of microbial threats of our age (1). It has emerged in recent decades 

as a clinically relevant pathogen causing a wide range of both nosocomial and community-acquired 

infections, including injured soldiers (2), also thanks to its ability to colonize skin, plastic 

intravascular devices and mucous membranes and to survive in the hospital environment (3). 

Indeed A. baumannii was also known as “Iraqibacter”, when it became a major threat for troops on 

a mission in the Middle East (4). 

The genome of hundreds of A. baumannii isolates have been sequenced, showing a strong level of 

genome plasticity, in the form of a tendency to undergo frequent and substantial rearrangements, 

including recombinations (5, 6) and movement of insertion sequences (IS) (7).  

Generally, proliferation of IS elements in bacteria brings genomic variability, which can lead to 

adaptation in a new niche. Thus, bacterial genomes with higher numbers of IS copies have been 

observed to lead to virulent clones in multiple species (8,9) which often have a successful 

worldwide spread (10,11). Moreover, IS elements act as anchors for homologous recombination 

process, leading to internal genome rearrangements but also very often to the inclusion of 

exogenous DNA in the chromosome. Such homologous recombination events were found to be 

crucial for the evolution and adaptivity of A. baumannii and other pathogens; therefore, this 

genomic feature granted the bacterium a place among the so-called “bacterial hopeful monsters”, a 

set of microorganisms able to rapidly modify their genotype through recombination events, and 

thus capable of quickly adapting to novel environmental conditions (12). The role of ISs in A. 

baumannii has been investigated mainly for what concerns specific classes. For example, the 

presence of the Insertion Sequence ISAba1 upstream the gene encoding for the beta-lactamase 

OXA-51 grants A. baumannii resistance to carbapenemic antibiotics. The gene blaOXA-51 is always 

found in clinical isolates of A. baumannii, but only through the presence of the insertion sequence it 

can confer the bacterium the resistant phenotype (13). 

The most commonly isolated strains of A. baumannii in Europe belong to the two main European 

Clones, i.e. ECI and ECII (also known as International or Global Clones, IC or GC). In the early 

2000s these two clones were the first discovered to carry the plasmid-encoded gene blaOXA-58, 

which confers resistance to carbapenems. More recently, strains of both European Clones have 

been reported to carry another determinant of resistance to carbapenems, the gene blaOXA-23, 

which can be either plasmid or chromosome borne (14). While report of blaOXA-23 strains are 

increasing, the gene blaOXA-58 is being found less commonly in clinical isolates. This has been 

hypothesized to be due to the fitness cost that the gene carries (15, 16). Strong evidence of 

recombination events and movement of IS has been found in the European Clones, not rarely 

related to a change in antimicrobial resistance pattern (7, 17, 18). 
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In the last 15 years, a different clone of A. baumannii, not evolutionary related to the two main 

European Clones, has been isolated multiple times in Italian hospitals. The clone was identified by 

Pulse Field Gel Electrophoresis (PFGE) and named SMAL (based on the hospitals from which it 

was first isolated, San Matteo and Salvatore Maugeri Acute care and Long term care facilities, 

respectively) (19). Concurrently it was characterized by MultiLocus Sequence Typing (MLST) as 

ST78, by multiplex-PCR as Sequence Group 6 (20, 21), by repetitive-sequence-based PCR (rep-

PCR) as type 3 and by Amplification Fragment Length Polymorfism (AFLPTM) analysis as type 21; 

finally termed “Italian Clone” (22). Within a National survey on the spread of carbapenem-resistant 

A. baumannii strains, the majority of the isolates (n=52) belonged to ICII/ST2; however, 3/55 

genotyped strains showed a SMAL pulsotype (15). Despite the low number of isolates reported, 

the SMAL Clone represents an endemic reality in Italy since its first detection, in 2002 

(Migliavacca, personal communication). 

SMAL strains often show resistance to carbapenems in in vitro testing. The mechanisms 

underlying such phenotype are heterogeneous: mainly the overexpression of the chromosomic 

blaOXA-51-like gene or the presence of acquired resistance determinants (e.g. blaOXA-58 and blaOXA-

23). The firstly collected SMAL isolates were characterized by the presence of a blaOXA-58 acquired 

determinant; such resistance gene was then almost completely replaced in 2009 by a blaOXA-23 

gene (19, 22). Therefore, the SMAL Clone seems appears to have followed the same evolutionary 

response (in terms of resistance genes acquisition) of the European Clones I and II (23). 

SMAL isolates showing Minimum Inhibitory Concentration (MIC) values for carbapenems under 

clinical susceptibility breakpoint could be very difficult to treat in case of localized and device 

associated infections. Therapeutic failures can be at least partially due to the SMAL biofilm forming 

ability. This feature has been well demonstrated in previous studies, which showed how the SMAL 

biofilm production was considerably higher in comparison with the ATCC19606 reference strain 

(19, 22). 

The purpose of the present work was to characterize, from the genomic point of view, 15 isolates 

belonging to the SMAL pulsotype, investigating the possible links between the phenotypic and 

genetic features of this Clone. 
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RESULTS 

Genome sequencing and assembly. The total DNA of 15 isolates of A. baumannii previously 

recognized as SMAL was sequenced and assembled resulting in draft genomes with an average of 

193 contigs above 1000bp, an average total length of 4,293,267 bp and an average N50 of 48,860 

bp. Draft genomes are published on EBI-EMBL under the study accession number PRJEB19248. 

One plasmid was detected in each of four genomes (i.e. 14336, 2RED09, 20C15 and 5MO, 

respective accession numbers KY202456, KY202457, KY202458 and KY652669). 

Global phylogeny of the species. All available genomes of the species A. baumannii were 

retrieved from the NCBI database and joined with those of the isolates presented in this work, to 

obtain a database of 1,412 genomes. Genomes were aligned, SNPs were called in order to 

perform a Maximum Likelihood phylogeny. The 15 SMAL isolates were in silico assigned to the 

ST78 and resulted to be clustered on the global tree in a single monophylum, together with 11 

database genomes of the same ST (Supplementary Figure 1). 

Phylogeny of the ST78. The ST78 monophylum was selected to be further investigated. Core 

SNPs were called and used to create a 2,760 core SNP alignment (945 informative sites) to 

perform a phylogeny of the ST78 (Figure 1). The ST78 monophylum was split in two well 

supported monophyletic groups (called ST78A and ST78B) plus a single evolutionary distant 

genome (strain ABBL025). The 15 novel genomes were clustered in a smaller single monophylum, 

together with strain 3909, within ST78A. Analysis of available metadata (see Table 1) revealed that 

strain 3909 was isolated in Italy in 2007 (24). The isolate was obtained from the hospital of origin 

and analyzed with PFGE. The resulting pattern of migration showed that isolate 3909 belongs to 

the pulsotype SMAL as well. For this reason, from now on, the 16 genomes in this monophylum 

will be addressed as the SMAL cluster. Within ST78A, three other genomes isolated in Arizona 

(USA) in 2011 (J. Sahl, personal communication) form a highly supported clade that is positioned 

as a closely evolutionarily related sister group of the SMAL cluster. SNP distribution along the 

genome was plotted in order to spot possible recombinations (See Figure 2). One  ~34 Kbp region 

with higher SNPs density was detected, and identified as common to the genomes of both main 

clades (i.e. ST78A and ST78B), indicating that it could represent a recombination of the common 

ancestor of the two clades, or of the sole genome ABBL025. 
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Strain Year of 

isolation 

Country of 
Isolation 

City/State/Institute of isolation Genome 
length (bp) 

N of predicted 
ORFs 

3909 2007 Italy Napoli, Ospedale Monaldi 3948828 3719 

14336 2010 Italy Firenze, Ospedale Careggi 3961089 3682 
831240 NA USA NA 3970899 3700 

855125 NA USA NA 4401277 4109 

1096934 NA USA NA 4330037 4010 

103SM 2012 Italy Pavia, Policlinico San Matteo 3984084 3705 
20C15 2011 Italy Napoli, Ospedale Cardarelli 4014203 3749 
25C30 2011 Italy Catania, Policlinico di Catania 4002419 3722 
2MG 2012 Italy Pavia, Fondazione Salvatore 

Maugeri 
4028799 3760 

2RED09 2009 Italy Milano, Istituto Geriatrico “P. 
Redaelli” 

3983268 3710 

5MO 2009 Italy Monza, Ospedale San Gerardo 4026195 3760 
61SM01 2006 Italy Pavia, Policlinico San Matteo 4020527 3733 
65SM01 2006 Italy Pavia, Policlinico San Matteo 4002746 3717 
68SM01 2007 Italy Pavia, Policlinico San Matteo 4015623 3738 
72SM01 2007 Italy Pavia, Policlinico San Matteo 4001559 3726 
74SM01 2007 Italy Pavia, Policlinico San Matteo 3969850 3681 
96SM 2012 Italy Pavia, Policlinico San Matteo 4010167 3739 
ABBL025 2006 USA Chicago (IL) 4067524 3765 
ABBL026 2006 USA Chicago (IL) 3934606 3660 
MGTN 2004 Italy Pavia, Fondazione Salvatore 

Maugeri 
4002517 3722 

MONUR 2004 Italy Pavia, Fondazione Salvatore 
Maugeri 

4001892 3721 

TG22142 2011 USA Arizona 4229994 3937 
TG22146 2011 USA Arizona 4240225 3978 
TG22150 2011 USA Arizona 3978141 3708 
UH1752 2007 USA Cleveland (OH) 4007789 3740 

UH5207 2007 USA Cleveland (OH) 4009458 3739 
  

 
Table 1. Microbiologic and genomic information on the strains of the Sequence Type 78. From left 

to right are reported: name of the isolate, year of isolation, country, city and institution (where 

available) of isolation, size of the complete genome (in base pairs), and number of predicted 

ORFs. 
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Figure 1. Phylogeny of the Sequence Type 78 obtained with the software RAxML on a dataset of 

core Single Nucleotide Polymorphisms. Bootstrap values over 40 are reported next to the relative 

node. The main clades are highlighted with colored boxes. 
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Figure 2. Concentration of core Single Nucleotide Polymorphisms, calculated in windows of 

1000bp along the whole genome (using the genome of strain ABBL025 as a reference). Genomes 

are ordered following the phylogenetic tree of Sequence Type 78, which is reported on the left. 
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Phenotypic characterization.  SMAL clade susceptibility profiles were determined using routine 

diagnostic automated systems; MIC values were assessed by E-test. Six out of 16 strains (3909, 

2RED09, 14336, 5MO, 20C15 and 25C30) showed an intermediate/resistant phenotype to both 

Meropenem (MER) and Imipenem (IPM), with MIC values ranging from 6 to >32 mg/L (MIC50= 

>32 mg/L). Susceptibility was retained in 7/16 and 9/16 strains for MER and IPM, respectively. Full 

results of resistance profiles are reported in Supplementary Table 1. 

Biofilm formation was tested for all SMAL cluster strains and no significant difference was 

assessed; all strains showed a strong biofilm formation ability, higher than that comparatively 

observed for the reference strain ATCC19606 (19). Averages of the three replicate values ranged 

from 0.4 to 0.7 OD600. Full results are reported in Supplementary Table 1. 

Analysis of gene content. Coding sequences were called and ortholog proteins were predicted in 

the 26 genomes of ST78. Results indicate that the gene content of the SMAL isolates is highly 

conserved (gene dispersion of 37.38 genes/taxon), while the dispersion of the whole ST78 is 73.58 

genes/taxon. Moreover, the three Arizonan isolates, besides having a very low dispersion 

themselves (30.67 genes/taxon), when combined with the SMAL genomes (thus the ST78A clade), 

show a  dispersion of 35.84 genes/taxon. Distribution of the accessory genes was plotted on the 

tree (Figure 3A). The high internal and reciprocal similarity of the two genome clusters is clearly 

shown, and it is strongly highlighted in the second plot, where a distance analysis of the accessory 

gene content was run, using gene presences as characters (Figure 3B). We thus wondered if the 

limited gene content variation of ST78A was indeed indicative of low genomic plasticity, or if it was 

due to a small evolutionary distance. To address this question, the phylogenetic distance between 

each pair of genomes of the two main clusters (ST78A and ST78B) was calculated and plotted 

against the binary distance of gene content (Figure 3C). The plot shows that the lower gene 

presence distance of ST78A does not correspond to a lower phylogenetic distance, supporting the 

hypothesis of a lower genomic plasticity of ST78A. 
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Figure 3. Representation of 

presence of accessory genes in 

the Sequence Type 78. A) From 

left to right: the phylogeny of the 

sequence type (with tips aligned) 

and the matrix of gene presence 

(blue squares are detected 

genes); B) From left to right: the 

phylogeny of the sequence type 

(with tips aligned) and the 

distance matrix of the genomes, 

obtained using gene presence as 

characters; C) Plot of the 

intergenomic distances. Each 

genome pair is represented on 

the X axis by their phylogenetic 

distance (expressed as number of 

non-homoplasic core SNP 

between the two genomes) and 

on the Y axis by the gene content 

distance (expressed by the binary 

distance between the two 

genomes, calculated on a matrix 

of accessory gene presence). 

Genome pairs inside the ST78A 

clade are reported in red; pairs 

inside the ST78B clade are 

reported in blue 
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Resistome. Resistance gene content of the 26 genomes of ST78 was analyzed by manually 

curated Blast alignments against custom and public databases. Full results are reported in 

Supplementary Table 2. Genes encoding the intrinsic OXA-51-like beta-lactamase were detected 

in all the ST78 genomes. One of the novel genomes presents a previously unknown variant of this 

gene, that was assigned the code blaOXA-545. This result prompted to test the presence and 

genomic position of the known resistance-enhancer insertion sequence ISAba1. Such IS is present 

in all the genomes of the ST78A cluster, while absent in all the other ST78 genomes, except 

UH1752. The sequence was found to be upstream the resistance gene blaOXA-90 in five genomes 

(25C30, 103SM, TG22142, TG22146, TG22150). The carbapenem-resistance gene blaOXA-58 was 

found to be encoded in four genomes of the dataset, all belonging to the SMAL cluster (2RED09, 

20C15, 14336, and 3909). These genomes are clustered with a fifth one (MGTN) blaOXA-58 

negative, in a low supported monophyletic clade. The gene blaOXA-23, instead, was detected in the 

genome of strains 5MO and 20C15. This pattern of gene presence is in accordance with the 

results of MIC tests. Indeed, five of the six intermediate/resistant strains carry genes encoding for 

carbapenemases and one (25C30) has the ISAba1 enhancer upstream the blaOXA-90 gene. 

Surprisingly, the isolate 103SM, which also presents the resistance enhancing genotype, resulted 

to have a susceptible phenotype. 

The gene blaADC-52 was detected in all the 26 genomes in analysis. In the ST78A cluster, the gene 

presents an unpublished single-SNP mutation. Furthermore, the carO gene and the adeS-adeR 

regulation system are present in all genomes. The sequence of adeS was found to be interrupted 

by the end of the contig in the assemblies of five strains (3909, 855125 and the three Arizonan 

ones) suggesting a possible presence of an insertion sequence and a consequent loss of function. 

Detection of other genes of interest. Gene content of the ST78 genomes was further 

investigated for the presence of virulence factors, competence and biofilm formation capability. Full 

results are reported in Supplementary Table 2. Virulence genes present a very conserved 

distribution. In fact, 26 genes, including the whole set of pilum-related pil genes and the 

transporter-encoding ptk are present in all the ST78 genomes. Notable exceptions are the genes 

cap8J (present only in the genomes of the ST78A clade) and epsA (present in the seven genomes 

of the ST78B clade). Twelve Genes coding for biofilm formation were also searched, detecting 

multiple point mutations and two frame-shifting insertions, thus showing no particular pattern 

relationship to the phylogeny. Based on the results of the in vitro biofilm formation assay (i.e. all 

isolates are strong producers) we can conclude that none of the detected mutation inhibit biofilm 

formation.  

Lastly, all genomes in the ST78A cluster present the genes of the O-antigen group A. The 

remaining seven genomes present matches with some genes of the group C but the evidence was 

not strong enough to assign the classification. 
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Analysis of mobilome. All 26 genomes were analyzed for presence of insertion sequences (IS) 

obtaining the results depicted in Figure 4 (full results reported in Supplementary Table 3). 

Interestingly, the ST78A contains strikingly more IS than the others. Furthermore, the 19 genomes 

in this cluster possess a set of exclusive IS classes which is absent in the other seven organisms.  

This result prompted us to investigate whether the genes of interest that were found to be 

truncated, were interrupted by IS. The interruption in the competence gene comEC/rec2 was found 

to be caused by an insertion sequence of the class IS66 in all the genomes of the SMAL clade. 

The gene adeS, interrupted in five strains, was found to have an insertion of IS66 in the three 

Arizonan genomes. For the other two genomes, the assembly did not allow to retrieve the 

sequence that interrupts the genes adeS and ompF because the contigs end with the interrupted 

gene. 
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Figure 4. Histogram of the insertion sequences detected by ISSaga on the genomes of the 
Sequence Type 78. On the left, the phylogeny tree of the sequence type is reported 
 

Plasmid analysis. Three of the four detected plasmids (pIBAC_oxa58_2RED of 25311 bp in strain 

2RED09, pIBAC_oxa58_1433 of 26496 bp in strain 14336 and pIBAC_oxa58_20C15 of 26781 bp 

in strain 20C15) contained one single copy of gene blaOXA-58. This result is congruent with the 

already published sequence of the plasmid of strain 3909 (24). Plasmid sequences (including the 

one of strain 3909) showed to have a good reciprocal synteny when analyzed with the software 

Mauve (25) (see Supplementary Figure 2), with some small internal reorganization. Conversely, 

the gene blaOXA-23, detected in the strains 20C15 and 5MO, was found to be chromosomally 

encoded in both cases. The blaOXA-23 site was recognised in both cases to have a 100% sequence 

similarity with the previously described transposon Tn2006 which was found to transfer the 

resistant determinant from Acinetobacter radioresistens to A. baumannii (26). Plasmid annotation 

analysis showed strong backbone similarity among the three sequences, and with the one found in 

strain 3909 as well. All four sequences presented two replication initiation sites repAci1 and 

repAci2 and two genes encoding for conjugal transfer proteins, trbL and traA (except for 3909 

harboring only traA), followed by two ISAba25 insertion sequences. Some differences, however, 

were found around the blaOXA-58 locus. Indeed, the plasmid of isolate 14336 (pAB14336) had 



 55 

opposite orientation of the ISAba2/ISAba3-blaOXA-58-ISAba3 cluster when compared to the 

previously described plasmid p183Eco (27). Moreover, one IS26 sequence is missing. On the 

plasmid of strain 2RED09, instead, blaOXA-58 is surrounded by two ISAba3 with opposite orientation 

(see Supplemental Figure 3). On the plasmid of strain 20C15, blaOXA-58 is surrounded by ISAba3 

and ISAba2. Lastly, on the plasmid of 3909, blaOXA-58 is surrounded by ISAba2 and ISAba3 with 

different orientation for blaOXA-58 when compared to p14336. 

Two plasmid replication sites were found in the assembly of strain 5MO. One was the replication 

site of plasmid pAB5MO (published in the present work). The second was found on a contig 

possibly integrated in the chromosome. Indeed, the read coverage on the contig carrying the 

repAci (aci6) was similar to the average of the chromosomic contigs. The presence of aci6, even 

though it does not directly correspond to the resistant gene, suggests that it could be responsible 

for the transfer of plasmid carrying the carbapenemase gene, as previously described by Bertini 

and coworkers (28).  Indeed, the strain 5MO was found to encode a copy of gene blaOXA-23 

integrated in its chromosome. 

 

DISCUSSION 

The genomes of 15 strains of A. baumannii with SMAL pulsotype were sequenced and compared 

with the genomic variability of the species as a whole, and of the ST they were found to belong to, 

ST78. A phylogenomic approach focused on 26 ST78 genomes led to the identification of an 

evolutionary monophyletic group of 16 Italian genomes (previously assigned to the SMAL 

pulsotype. Three other genomes isolated in Arizona (USA) formed a closely related clade, while 

the remaining seven strains resulted more divergent. These data lead to conclude that the SMAL 

clone was imported in Italy in one single event. 

Four of the 15 sequenced genomes were found to carry plasmids. The complete sequence of the 

three plasmids carrying the gene blaOXA-58 was compared with the existing ones. Limited 

differences in the global structures of the plasmids harboured by the Italian ST78 strains were 

detected. The site including the resistance gene, on the other hand, showed high variability, 

especially concerning the IS. These variations surrounding the blaOXA-58 locus suggest a lack of 

stability of this site. Such instability, together with the high energetic burden of maintaining a 

plasmid, could lead to a possible loss of carbapenem resistance. These observations could 

indicate an ongoing switch, in epidemiological terms, from the plasmid encoded blaOXA-58 to the 

more stable and chromosomally mediated blaOXA-23. Other cases of replacement between the two 

determinants have been reported for other Clones both in Italy and elsewhere (29, 30). 

The 16 Italian strains present three interesting genome features: i) limited or absent recombination 

signal (Figure 2), ii) highly conserved gene content (Figure 3), and iii) a strong proliferation of 
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multiple classes of IS elements, including class 66 (Figure 4). These three characteristics seems to 

be in contrast, as the first two features suggest genome stability, while IS proliferation is 

considered a trademark of genomic plasticity. Here we propose a genome evolution scenario that 

starts with the proliferation of ISs, including IS66 elements. One IS66 then inactivated the gene 

comEC/Rec2, an event clearly shown by our genome data to have occurred just once, at the basis 

of the Italian clade. ComEC is the inner membrane protein responsible for the intake of DNA in the 

cytoplasm (31, 32). In our scenario, the interruption of this gene reduced the capability of DNA 

exchange of the Italian strains. In parallel, IS elements proliferation played other roles in the 

evolution of the clade, such as affecting the stability of the blaOXA-58 gene and causing the loss of 

function of other genes, which could have in turn contributed to the current low genomic plasticity 

of the entire ST78A clade, or to branches of it. 

These key elements depict a scenario in which the force driving the evolution of the SMAL clone is 

selfish DNA, in the form of IS elements. IS are known to be, usually, anchors for homologous 

recombination processes and are thus considered carriers of genomic plasticity and responsible for 

the evolution of virulent clones in multiple bacterial species. In the case described in the present 

work, the SMAL clone possesses a high number of IS elements but surprisingly there is no 

evidence of homologous recombination. On the contrary, the interruption of the comEC/rec2 gene 

by IS66 may contribute to the reduction of import of exogenous DNA. Thus, in this case, 

recombination events are not coupled with IS proliferation but seem to be in a competitive 

relationship. 
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MATERIALS AND METHODS 

Pulsed Field Gel Electrophoresis. PFGE of A. baumannii was performed after ApaI digestion 

using a method described previously (33). Genomic DNA was prepared in agarose plugs, and DNA 

restriction was carried out at 30°C for 16 h. PFGE was performed in a CHEF DRII system (Bio-

Rad, Hercules, CA, USA), with pulses ranging from 0.5 to 15 s at a voltage of 6 V/cm at 14°C for 

20 h. Lambda 48.5-kb concatemers (New England BioLabs, Beverly, MA, USA) were used as 

molecular size markers. Isolates showing three or fewer band differences were regarded as a 

single PFGE type, according to the criteria described previously by Tenover et al. (34).  

Biofilm formation capability assay. One millilitre of fresh medium in borosilicate (15×125 mm), 

polystyrene (12×75 mm) or polypropylene (12×75 mm) sterile tubes was inoculated with 0.01 ml of 

an overnight culture. Triplicate cultures for each sample were incubated for 8 h shaking (at 200 

r.p.m. in an orbital shaker) at 37 °C. The supernatant of the tube was aspirated and rinsed 

thoroughly with distilled water. The cells attached to the tube walls were visualized and quantified 

by staining with crystal violet and solubilization with ethanol–acetone as described by Thomas and 

coworkers (35). The OD600 was detected using a spectrophotometer and compared to that of 2MG 

and 65SM01 (i.e. known biofilm forming SMAL strains, already included in the work by Nucleo and 

coworkers (19)). 

Identification and Antibiotic resistance profiling. Identification and susceptibility profiles were 

initially established using MicroScan4 (Beckman Coulter) NBC46 panels. MICs of imipenem (IPM) 

and meropenem (MER) (carbapenem resistance) were obtained by Etest strips (bioMérieux). 

Results were interpreted according to the latest recommendations EUCAST guidelines 

(http://www.eucast.org/clinical%20breakpoints/). 

DNA extraction, sequencing and assembly. Bacterial strains were cultivated in MacConkey 

medium in petri dishes. One single colony per strain was used for the downstream genomic 

analyses treated in this work. DNA was extracted using NucleoSpin Tissue (Macherey-Nagel) kit, 

library were prepared using Nextera XT kits and sequenced with the Illumina MiSeq technology 

with 2x250 paired-end runs. Reads were assembled with the Mira 4.0 assembler (36) using the 

default settings for Illumina reads and excluding the control for high coverage. 

Global database of Acinetobacter baumannii genomes. All available A. baumannii genomes 

(April 2016) were downloaded from the NCBI ftp site. All genomes were merged to those 

sequenced in this work to form the global database of sequenced strains of this species. The 

Multilocus Sequence Type of all genomes was determined using an in-house script and the 

Pasteur profiling scheme (37). Genomic sequences were aligned to each other using an in-house 

Perl script and the Mauve software (25). Small Nucleotide Polymorphisms (SNPs) were extracted 

from regions where all genomes aligned to the others. SNPs were used to investigate the evolution 
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of the species. The software fasttree 2.1.7 SS3 (38) was used to build a maximum likelihood 

phylogeny using the alignment of single nucleotide variants as input. 

Fine phylogeny of the SMAL and closely related strains. 26 genomes were aligned to the 

evolutionary closest available complete genome (i.e. AB031, according to the global phylogeny). 

Each global genomic alignment was performed using the software Mauve and a set of in-house 

Perl and Python scripts for output formatting. A global alignment of the 26 genomes of interest was 

obtained and used to extract SNPs, which are used for phylogeny. The evolutionary analysis was 

performed using the software RAxML (39) with the ASC_GTRGAMMA evolution model and 100 

bootstrap replicates, using the ascertainment bias correction of Lewis. 

Recombination analysis. The presence of recombination in the dataset was tested by plotting the 

concentration of core SNPs along the genomes. Assemblies were aligned to the complete genomic 

sequence of strain AB031 as for the phylogeny of ST78 (see paragraph for details). Concentration 

of core SNP was calculated in windows of 1000bp along the whole genome (using the genome of 

strain ABBL025 as a reference) and plotted using the R software. 

Pan/core-genome analysis. All 26 genomes of ST78 were annotated with the automatic pipeline 

Prokka (40) using the default settings for bacteria and avoiding to call rRNA sequences. Gene 

presence and absence was calculated using PanOCT (41), using the Prokka annotation and a 

reciprocal blastp analysis as input and adopting the same parameters as the work by Chan and 

colleagues (42). Reciprocal blast was performed using blast+ program instead of blastall in order 

to minimize the time of calculations). Pan-genome and core-genome of the whole dataset and of 

single genomic clusters were calculated using PanOCT and R. An analysis of binary distance 

using gene presence as characters was carried out using R. Dispersion in gene content for each 

clade of interest was calculated as follows: (pan-genome of the clade – core-genome of the clade) 

/ number of organisms in the clade. The evolutionary distance between two genomes was 

expressed as number of non-homoplasic core SNPs between the two genomes. Non-homoplasic 

sites were obtained using Noisy (43) on the core SNP alignment previously used for the phylogeny 

of ST78. The evolutionary distance was plotted against the binary distance of gene content for 

each couple of genomes inside the clusters ST78A and ST78B. 

Gene content analyses. The presence of genes coding for antimicrobial resistance and 

competence factors was tested using blast with ad hoc prepared set of genes (see Supplementary 

Table 2). Virulence gene database was obtained (44) and tested with blast. More research was 

performed on the whole ResFinder and VirulenceFinder databases 

(https://cge.cbs.dtu.dk/services/data.php), using a permissive blast search and checking positive 

results manually. O-antigen genes were extracted from the reference genomes of the strains 

ABNIH1 (Biosample SAMN00855421), ABNIH2 (Biosample SAMN00857848), and ABNIH3 

(Biosample SAMN00857859). 
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In-silico Plasmid extraction and characterization. Assembled genomes and contigs were 

blasted against in-house generated database of plasmid replication sites of A. baumannii, while 

resistant genes were determined by uploading the contigs to ResFinder database 

(www.cge.cbs.dtu.dk/services/ResFinder, (45)). Genomes positive to the plasmid replication site 

search, were reassembled using SPAdes (46). The contigs containing plasmid sequences were 

detected, analyzed and closed using the software Bandage (47). ORFs and their relative amino 

acids were predicted using Artemis (48). The annotation was performed manually using the online 

blast tool on the nr database. Genbank files were formatted and uploaded using the Sequin tool. 
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ABSTRACT 

Multidrug-resistant (MDR) Klebsiella pneumoniae is one of the most important causes of 

nosocomial infections worldwide. After the spread of strains resistant to beta-lactams at the 

end of the previous century, the diffusion of isolates resistant to carbapenems and colistin is 

now reducing treatment options and the containment of infections. Carbapenem-resistant K. 

pneumoniae strains have spread rapidly among Italian hospitals, with four subclades of 

pandemic clonal group 258 (CG258). Here we show that a single Italian hospital has been 

invaded by three of these subclades within 27 months, thus replicating on a small scale the 

“Italian scenario.” We identified a single clone responsible for an epidemic outbreak involving 

seven patients, and we reconstructed its star-like pattern of diffusion within the intensive 

care unit. This epidemiological picture was obtained through phylogenomic analysis of 16 

carbapenem-resistant K. pneumoniae isolates collected in the hospital during a 27-month 

period, which were added to a database of 319 genomes representing the available global 

diversity of K. pneumoniae strains. Phenotypic and molecular assays did not reveal virulence 

or resistance determinants specific for the outbreak isolates. Other factors, rather than 

selective advantages, might have caused the outbreak. Finally, analyses allowed us to 

identify a major subclade of CG258 composed of strains bearing the yersiniabactin virulence 

factor. Our work demonstrates how the use of combined phenotypic, molecular, and whole-

genome sequencing techniques can help to identify quickly and to characterize accurately 

the spread of MDR pathogens. 
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INTRODUCTION 

Klebsiella pneumoniae is a major nosocomial pathogen that is rapidly spreading in hospitals 

worldwide, mainly due to the common occurrence of multidrug-resistant (MDR) strains (1). 

Infections caused by this pathogen are difficult to eradicate, since K. pneumoniae carries 

genes for resistance to the majority of antimicrobial drugs, including carbapenems (2, 3). 

The first strain of carbapenem-resistant K. pneumoniae was isolated in 1996; the plasmid-

encoded determinant was named K. pneumoniae carbapenemase (KPC) and was indicated 

as the blaKPC gene (4). Since then, KPC-producing K. pneumoniae strains have been 

spreading worldwide. Additional carbapenemases (blaNDM, blaOXA-48, blaVIM, and blaIMP-1) have 

now been reported for MDR Enterobacteriaceae, including K. pneumoniae (5–8). A last-

resort treatment for infections caused by MDR Gram-negative bacteria is represented by 

membrane-acting polymyxins such as colistin, but resistance to this antibiotic in K. 

pneumoniae is also emerging (9, 10). 

In addition to the study of genes providing resistance to antibiotics, genetic factors involved 

in the variable levels of virulence of different isolates of K. pneumoniae are currently highly 

investigated but only partially understood. Among the most important virulence factors are 

fimbrial genes (mrk and fim operons), which mediate adherence to surfaces and host tissues 

(11, 12). Another important aspect involved in the colonization of the host is the presence of 

genes for iron uptake systems such as aerobactin (13), enterobactin (ent operon) (14), and 

yersiniabactin (irp and ybt genes) (15). Capsular types, particularly K1 and K2, and 

hypermucoviscosity, favored by the positive regulator genes rmpA and rmpA2, are also 

important for K. pneumoniae virulence. Capsule production increases resistance to 

phagocytosis and other immune response components (16, 17). For detailed descriptions of 

these and other potential virulence factors of K. pneumoniae, see references 18 and 19. 

Most of the KPC-producing K. pneumoniae strains isolated worldwide have been attributed 

to clonal group 258 (CG258) (19, 20). Recent phylogenomic analyses showed that four 

different subclades of pandemic CG258 are present in Italy, indicating entrance into the 

country on at least four different occasions during the period of 2008 to 2010 (21). The 

spread of MDR K. pneumoniae in hospitals and nursing homes in Italy is known to have 

occurred very rapidly, with a diffusion pattern that has been described as the “Italian 

scenario” (22). The worldwide spread of K. pneumoniae is due, in part, to failures in the early 

identification of MDR strains, as well as high rates of recombination and horizontal gene 

transfer (21, 23, 24). 
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Whole-genome sequencing is now offering the possibility of in-depth characterization of 

bacterial isolates, and it holds the potential to reconstruct the origin and diffusion of 

nosocomial infections and outbreaks (19, 25). Here we present a phylogenomic study of 16 

isolates from a single hospital in northwestern Italy that were collected between 2011 and 

2013, including an epidemic outbreak in 2013 that involved seven patients. Genomes from 

these isolates were compared with 319 publicly available genomes, representing the 

available global genomic diversity of K. pneumoniae. Phylogenomic analysis, together with 

phenotyping assays and molecular characterization of drug resistance determinants and 

virulence genes, allowed us to trace the origins of sporadic infections and the outbreak, to 

describe the monophyletic origin of a yersiniabactin-positive subclade of CG258, and to 

detect a common genetic trait in colistin-resistant strains. 
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MATERIALS AND METHODS 

Nosocomial infections with K. pneumoniae and hospital outbreak. Between January 

2011 and March 2013, 16 cases of infection due to carbapenem-resistant K. pneumoniae 

occurred at the Ospedale di Circolo e Fondazione Macchi (Varese, Italy). Seven cases that 

occurred in the intensive care unit (ICU) during a short period were part of a single epidemic 

event that started in February 2013 (Fig. 1). Evidence indicated that a 69-year-old man was 

patient zero (indicated as KpVA-8 in Fig. 1). He had been transferred to the ICU from a 

nearby hospital, with an already diagnosed infection due to KPC-producing K. pneumoniae. 

During his stay in the ICU, infection spread to six other patients. 

 

 

FIG 1. Time frames of stays in the ICU for the seven patients involved in the K. pneumoniae 

outbreak. Horizontal bars, length of stay for each patient. Black squares, day of the first 

isolation of K. pneumoniae for each patient. 

 

Bacterial isolates. A total of 16 non-duplicated isolates of K. pneumoniae were 

investigated, specifically, the first isolate obtained from each patient. Multiple K. pneumoniae 

isolates were obtained subsequently from each patient, for clinical reasons (e.g., spread of 

infection to novel body sites) or in the course of surveillance studies. Clinical specimens 

included urine, blood, bronchoalveolar lavage fluid, sputum, tracheal aspirate, and wound 

specimens. During the outbreak period, ICU patients were screened every 3 days for 

surveillance, using nasal, armpit, inguinal, and rectal swabs. Species identification and 

antibiotic susceptibility tests were performed with the FDA-approved Phoenix automated 

microbiology system (Becton, Dickinson, Sparks, MD). Additional quantitative assays were 

performed using Etest strips (bioMérieux, Marcy l'Etoile, France) on Mueller-Hinton agar II 

plates (Becton, Dickinson), according to clinical breakpoints from the European Committee 

on Antimicrobial Susceptibility Testing (EUCAST). Short descriptions of the investigated 

isolates are presented in Table 1, while Etest MICs are reported in Table 2. 
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Patient no. Clinical isolate 
status 

Date of isolation 
(mo/day/yr) 

Source* Sequence type 

KpVA-4 Sporadic 1/11/11 B ST258 

KpVA-5 Sporadic 1/28/11 B ST258 

KpVA-6 Sporadic 3/14/11 B ST258 

KpVA-7 Sporadic 5/3/11 B ST258 

KpVA-1 Sporadic 10/31/12 SP ST512 

KpVA-2 Sporadic 1/30/13 BAL ST258 

KpVA-8 Epidemic 2/1/13 BAL ST512 

KpA-10 Epidemic 2/8/13 BAL ST512 

KpVA-9 Epidemic 2/12/13 BAL ST512 

KpVA-11 Epidemic 2/13/13 B ST512 

KpVA-12 Epidemic 2/15/13 TA ST512 

KpVA-13 Epidemic 2/16/13 WS ST512 

KpVA-14 Epidemic 2/19/13 BAL ST512 

KpVA-3 Sporadic 3/14/13 B ST258 

KpVA-15 Sporadic 3/24/13 U ST512 

KpVA-16 Sporadic 3/24/13 U ST512 

TABLE 1. Clinical isolates and main properties. * B, blood; WS, wound sample; SP, 

sputum; BAL, bronchoalveolar lavage fluid; TA, tracheal aspirate; U, urine. 



 

Characteristic KPVA-4 KPVA-5 KPVA-6 KPVA-7 KPVA-1 KPVA-2 KPVA-8 KPVA-10 KPVA-9 KPVA-11 KPVA-12 KPVA-13 KPVA-14 KPVA-3 KPVA-15 KPVA-16 

Date of 
isolation 
(mo/day/yr) 

1/11/11 1/28/11 3/14/11 5/3/11 10/31/12 1/30/13 2/1/13 2/8/13 2/12/13 2/13/13 2/15/13 2/16/13 2/19/13 3/14/13 3/24/13 3/24/13 

Sensitivity and MIC (mg/liter)* 

Ampicillin R, >16 R, >16 R, >16 R, >16 R, >8 R, >8 R, >8 R, >8 R, >8 R, >8 R, >8 R, >8 R, >8 R, >8 R, >8 R, >8 

Amoxicillin-
clavulanate 

R, >16/8 R, >16/8 R, >16/8 R, >16/8 R, >8/2 R, >8/2 R, >8/2 R, >8/2 R, >8/2 R, >8/2 R, >8/2 R, >8/2 R, >8/2 R, >8/2 R, >8/2 R, >8/2 

Ceftazidime R, >16 R, >16 R, >16 R, >16 R, >8 R, >8 R, >8 R, >8 R, >8 R, >8 R, >8 R, >8 R, >8 R, >8 R, >8 R, >8 

Cefotaxime R, >32 R, >32 R, >32 R, >32 R, >4 R, >4 R, >4 R, >4 R, >4 R, >4 R, >4 R, >4 R, >4 R, >4 R, >4 R, >4 

Aztreonam R, >16 R, >16 R, >16 R, >16 R, >16 R, >16 R, >16 R, >16 R, >16 R, >16 R, >16 R, >16 R, >16 R, >16 R, >16 R, >16 

Ertapenem R, >1 R, >32 R, >1 R, >1 R, >1 R, >1 R, >32 R, >32 R, >32 R, >32 R, >32 R, >32 R, >32 R, >1 R, >1 R, >1 

Imipenem R, >32 R, 8 R, 32 R, 8 R, >8 R, >8 R, >32 R, >32 R, >32 R, >32 R, >32 R, >32 R, >32 R, 8 R, >8 R, >8 

Meropenem R, >32 R, 32 R, >32 I, 6 R, >8 R, >8 R, >32 R, >32 R, >32 R, >32 R, >32 R, >32 R, >32 R, 12 R, >8 R, >8 

Ciprofloxacin R, >2 R, >2 R, >2 R, >2 R, >1 R, >1 R, >1 R, >1 R, >1 R, >1 R, >1 R, >1 R, >1 R, >1 R, >1 R, >1 

Levofloxacin R, >4 R, >4 R, >4 R, >4 R, >2 R, >2 R, >2 R, >2 R, >2 R, >2 R, >2 R, >2 R, >2 R, >2 R, >2 R, >2 

Amikacin R, 48 R, 64 R, 48 R, 64 R, >16 R, >16 S, 1 S, 1 S, 1 S, 1 S, 1 S, 1 S, 1 R, 48 R, >16 R, >16 

Gentamicin S, 0.5 S, 1.5 S, 1 S, 2 S, 2 S, 2 S, 0.25 S, 0.25 S, 0.25 S, 0.25 S, 0.25 S, 0.25 S, 0.25 S, 1.5 S, 4 S, 2 

Tobramycin S, 0.5 R, 16 R, 16 R, 24 R, >4 R, >4 S, 0.38 S, 0.38 S, 0.38 S, 0.38 S, 0.38 S, 0.38 S, 0.38 R, 12 R, >4 R, >4 

Colistin S, 0.12 S, 0.19 S, 0.38 S, 0.19 R, >4 S <1 R, 8 R, 8 R, 8 R, 8 R, 8 R, 8 R, 8 S, 0.19 R, >4 R, >4 

        

TABLE 2. Antimicrobial susceptibility profiles of 16 investigated K. pneumoniae isolates. * R, resistant; I, intermediate; S, susceptible. 
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Direct sequencing of 16S rRNA, drug resistance genes, and virulence factors. Starting 

from pure cultures on Mueller-Hinton agar, bacterial DNA was obtained by lysozyme 

pretreatment (Sigma-Aldrich, Milan, Italy) followed by extraction with a QIAmp DNA Blood 

minikit (Qiagen, Milan, Italy). Confirmatory identification was performed via direct sequencing 

of the 16S rRNA gene. PCR was performed using AmpliTaq Gold with buffer I (Applied 

Biosystems, Life Technologies, Monza, Italy) in 50-μl mixtures, according to the 

manufacturer's instructions. PCR primers were synthesized by Sigma-Genosys (Haverhill, 

United Kingdom). Published primers and thermal protocols were used (26). DNA fragments 

were analyzed by electrophoresis on a 1.5% agarose gel in TBE buffer (89 mM Tris-borate 

and 2 mM EDTA [pH 8.3]) containing GelRed (10,000× in water; Biotium, DBA Italy, Segrate, 

Italy). PCR products were purified and sequenced on an ABI Prism 310 sequencer (Life 

Technologies). Sequences were compared with those in GenBank. 

PCR assays for detecting antimicrobial resistance genes (27) and virulence factors were 

performed according to published protocols. Genes coding for adhesion fimbriae, 

enterobactin, and yersiniabactin siderophores were searched for, as follows: fimH gene, 

coding for type 1 fimbriae (28); mrkA gene, coding for the major subunit protein, and mrkD 

gene, coding for the adhesin, for type 3 fimbriae (29, 30); entE gene, coding for synthase 

subunit E, and entB gene, coding for isochorismatase, for enterobactin siderophore 

synthesis (14); ybtS gene, coding for salicylate synthase, for yersiniabactin siderophore 

synthesis; irp-1 and irp-2 genes, related to yersiniabactin siderophore (15). Direct 

sequencing was performed as reported above. 

Whole-genome sequencing and assembly. Whole-genome DNA was sequenced using an 

Illumina MiSeq platform (Illumina Inc., San Diego, CA), with a paired-end run of 2 by 250 bp, 

after Nextera XT paired-end library preparation. Sequencing reads were assembled using 

MIRA 4.0 software (31) with accurate de novo settings. 

In silico MLST and gene mining. Multilocus sequence typing (MLST) profiles were 

obtained in silico by analyzing appropriate gene variants 

(http://bigsdb.web.pasteur.fr/perl/bigsdb/bigsdb.pl?db=pubmlst_klebsiella_seqdef_public&pa

ge=downloadAlleles) for each genome, using an in-house Python script. The presence of 

selected genes coding for antibiotic resistance and virulence factors was determined by 

using BLAST with a specifically designed database, BIGSdb-Kp 

(http://bigsdb.web.pasteur.fr/perl/bigsdb/bigsdb.pl?db=pubmlst_klebsiella_seqdef_public&pa

ge=sequenceQuery) (19). All hits were manually checked, and genes requiring specificity for 

a particular variant (e.g., blaKPC versus blaOXA-48) were requested to have 100% identity with 

the database sequences. BLAST searches and filters were also used to test for the 
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presence of yersiniabactin genes in all genomes used for the global phylogenetic analysis 

(see Results for details). Analysis of the presence of insertion sequences within the mgrB 

gene (a putative determinant of colistin resistance) (32) was performed with a manually 

corrected BLAST search. 

Core SNP detection and phylogeny. Whole-genome sequences of the 16 isolates were 

added to a previously described database of 319 genomes of K. pneumoniae strains isolated 

throughout the world (21). Single-nucleotide polymorphisms (SNPs) were detected using an 

in-house pipeline based on Mauve software (33), using the published NJST258_1 complete 

genome as a reference (21). Briefly, each genome was individually aligned with the 

reference and alignments were merged with Perl scripts to obtain a global alignment. Core 

SNPs, defined as single-nucleotide variations flanked by at least one identical nucleotide on 

both sides in all genomes analyzed (34), were detected. Maximum likelihood phylogenetic 

analysis was performed using core SNPs merged in a multialignment file. RAxML software 

was used (35) with the generalized time-reversible (GTR) model and 100 bootstraps. 

Core genome MLST. Core genome MLST (cgMLST) analysis was performed using the 

BIGSdb software and database (19, 36). cgMLST profiles made of allelic variants at 694 loci 

were obtained for 219 genomes of CG258, representing the 16 genomes presented in this 

work. cgMLST profiles were used to produce a tree of all 219 genomes, using the 

unweighted pair group method with arithmetic mean (UPGMA) approach. 

Outbreak reconstruction. The spreading routes of outbreak strains were reconstructed by 

combining core SNPs and the dates of sample collection, applying the SeqTrack method 

implemented in the R package Adegenet (37). The outbreak chain of transmission was then 

obtained using the R package Outbreaker (38). 

Nucleotide sequence accession number. Genome assemblies were deposited in the 

EMBL database under accession number PRJEB7661. 
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RESULTS 

Species identification and antimicrobial susceptibility. In this work, the first isolate 

obtained from each patient was investigated. Species identification was performed with 

biochemical and molecular assays. The seven isolates collected in February 2013 were 

suspected to belong to a single outbreak; these strains are referred to as epidemic. The 

remaining isolates are termed sporadic. Five of 16 isolates were obtained from blood 

cultures (3 of 7 for patients involved in the ICU outbreak). 

Phenotypic assays detected resistance to imipenem, meropenem, and ertapenem in all 

isolates, regardless of the isolation date. All were thus classified as carbapenem resistant. 

The seven epidemic isolates were resistant to colistin but susceptible to aminoglycosides 

(gentamicin, amikacin, and tobramycin). Three of 9 sporadic isolates were also resistant to 

colistin. 

Drug resistance determinants and virulence factors. Isolates were subjected to a set of 

PCR assays to detect drug resistance genes and virulence factors. The blaKPC gene was 

detected in all isolates, while other carbapenem resistance genes (blaNDM, blaIMP-1, blaOXA-48, 

and blaVIM) were not detected. Genes coding for type 1 and type 3 fimbriae (fim and mrk 

operons, respectively) were detected in all isolates, as was the enterobactin siderophore 

located in the ent operon (Table 3). Three sporadic isolates carried genes for yersiniabactin, 

i.e., ybtS and the iron-repressible genes irp1 and irp2 (14, 39, 40). In K. pneumoniae, the 

yersiniabactin siderophore is expressed together with or instead of enterobactin. Finally, 

genomes were scanned for the presence of any beta-lactamase gene with the web tool 

BIGSdb (19). Genes coding for BlaSHV were detected in all isolates, while genes coding for 

BlaTEM were detected in 13 of the 16 genomes, being absent only in KpVa-2, KpVA-3, and 

KpVA-4. None of the analyzed genomes were found to carry genes of any of the other 17 

beta-lactamase families. 



 

Characteristic KPVA-4 KPVA-5 KPVA-6 KPVA-7 KPVA-1 KPVA-2 KPVA-8 KPVA-10 KPVA-9 KPVA-11 KPVA-12 KPVA-13 KPVA-14 KPVA-3 KPVA-15 KPVA-16 

Date of 
isolation 
(mo/day/yr) 

1/11/11 1/28/11 3/14/11 5/3/11 10/31/12 1/30/13 2/1/13 2/8/13 2/12/13 2/13/13 2/15/13 2/16/13 2/19/13 3/14/13 3/24/13 3/24/13 

Presence and type of antibiotic resistance determinants 

blaKPC 2 3 3 3 3 2 3 3 3 3 3 3 3 2 3 3 

blaVIM No No No No No No No No No No No No No No No No 

blaNDM1 No No No No No No No No No No No No No No No No 

blaIMP No No No No No No No No No No No No No No No No 

blaOXA No No No No No No No No No No No No No No No No 

blaSHV 12 11 11 11 11 12 11 11 11 11 11 11 11 11 11 11 

blaTEM No 1 1 1 1 No 1 1 1 1 1 1 1 No 1 1 

mgrB insertion No No No No Yes No Yes Yes Yes Yes Yes Yes Yes No Yes Yes 

Presence of virulence determinants 

fimACDEFH Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

mrkABCDF Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

rpmA No No No No No No No No No No No No No No No No 

magA No No No No No No No No No No No No No No No No 

entABCDEF Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

ybtA Yes No No No No Yes No No No No No No No Yes No No 

ybtS Yes No No No No Yes No No No No No No No Yes No No 

irp1 Yes No No No No Yes No No No No No No No Yes No No 

irp2 Yes No No No No Yes No No No No No No No Yes No No 

 

TABLE 3. Antimicrobial resistance and virulence determinants in 16 investigated K. pneumoniae isolates 
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Whole-genome sequencing and characterization. Whole-genome sequences were 

obtained for all 16 K. pneumoniae isolates. The assembled genomes were characterized in 

silico for MLST and were searched for genes coding for drug resistance determinants and 

virulence factors (Tables 1 and 3). MLST analysis enabled identification of two groups of 

isolates. Six isolates (KpVA-2, KpVA-3, KpVA-4, KpVA-5, KpVA-6, and KpVA-7) were of 

sequence type 258 (ST258); 10 isolates, including the epidemic ones, belonged to ST512. 

ST512 differs from ST258 at a single nucleotide, thus belonging to the same clonal group, 

CG258 (19, 20). Confirming the results obtained by molecular analysis, all strains were 

found to carry the blaKPC gene. The blaKPC2 variant (KPC2) was found in three of six isolates 

belonging to ST258, while the remaining 13 isolates carried the blaKPC3 variant (KPC3). 

The three isolates belonging to ST258 and possessing the blaKPC2 variant also presented 

unique profiles of virulence and drug resistance factors. Strains KpVA-2, KpVA-3, and KpVA-

4 harbored the irp1, irp2, ybtA, and ybtS genes, which were not detected in other strains. 

These four genes encode yersiniabactin, a virulence factor expressed by Yersinia and other 

enterobacteria, including K. pneumoniae (19, 41). All 16 strains analyzed here possessed 

the mrk and fim operons, coding for fimbrial genes (11, 12), and the ent operon, coding for 

enterobactin (14), consistent with previous results showing that these genes are highly 

conserved in K. pneumoniae (19, 30). None of the isolates demonstrated rmpA and wzy-K1 

(magA) genes, which are hypermucoviscosity-associated genes (16, 17, 19). 

Genes related to colistin resistance were also investigated. The entire set of pmr genes was 

highly conserved among the 16 strains, including the pmrB locus, which has been indicated 

as a colistin resistance determinant (42). All colistin-resistant strains harbored a variant of 

the mgrB gene interrupted by an IS5-like transposon (Table 3). Insertion of a transposon in 

this gene has been reported as a determinant of colistin resistance (32). 

Global core SNP phylogeny. A global genome phylogeny of K. pneumoniae, including the 

16 isolates investigated in this study, was obtained by adding the novel genomes to a 

previously constructed database of 319 isolates (21). Phylogeny was obtained in order to 

contextualize our strains among the previously sequenced K. pneumoniae isolates. The 16 

novel genomes clustered in 5 monophyletic groups on the global tree (Fig. 2). As expected, 

they fit within CG258. Interestingly, these 16 isolates were assigned to three of the four 

previously identified groups of Italian isolates of CG258 (21). Inclusion of the investigated 

genomes in the global phylogeny allowed us to define the relationships among the isolates 

at the investigated hospital. KpVA-2, KpVA-3, and KpVA-4, the three isolates that were 

yersiniabactin positive, clustered together in a clade containing nine additional Italian strains 

and two U.S. strains, all demonstrating the yersiniabactin genes (which could also contribute 
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to copper toxicity) (38). Thirty-nine additional isolates, belonging to different sequence types 

and scattered on the global K. pneumoniae phylogeny, also demonstrated yersiniabactin. 

The genomes of the seven isolates collected in February 2013 and hypothesized to 

represent a single epidemic event clustered together in a single, well-supported, 

phylogenetic clade (Fig. 2). This result confirmed the original hypothesis of a single clone 

being responsible for the seven infections that occurred in the ICU. 
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FIG 2. Representation of the 

phylogenetic relationships 

between isolates of clonal group 

258 of Klebsiella pneumoniae, 

reconstructed using RaxML 

software with 100 bootstrap 

replicates and the generalized 

time-reversible model. The 16 

novel isolates investigated in this 

study are highlighted in bold type. 

Highlighted in blue boxes are the 

four clades encompassing Italian 

isolates (both newly sequenced 

and taken from databases). 

Triangles represent coherent 

monophyletic clades of isolates 

from other countries, and orange 

dots indicate the presence of 

yersiniabactin genes. Bootstrap 

values are indicated only on 

nodes of interest, for the sake of 

image clarity. For a complete 

phylogeny of 335 K. pneumoniae 

isolates worldwide, see Fig. S1 in 

the supplemental material. 
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In analyses of the numbers of SNPs differentiating the isolates, the seven strains belonging 

to the investigated outbreak presented an average of 20 SNPs per genome in comparisons 

among them. Interestingly, a similar average number (27 SNPs per genome) differentiated 

strains KpVA-1, KpVA-15, and KpVA-16, which are grouped in a single clade but have been 

sampled over a longer time (about 5 months). This could indicate a difference in the 

measured paces of the molecular clock between the two clusters. Multiple hypotheses could 

explain the observed situation, such as the presence of different environmental conditions or 

a conservative pressure from purifying selection. 

Core genome MLST. cgMLST analysis was performed with the same genomic data set 

used for the SNP phylogeny presented in Fig. 2 (219 K. pneumoniae genomes belonging to 

CG258). The resulting UPGMA tree (see Fig. S2 in the supplemental material) is largely 

consistent with the tree resulting from the SNP-based phylogenomic analysis. Specifically, in 

both analyses, the main subdivisions of CG258 (23) were clearly detectable, while the 16 

genomes presented in this work were clustered in four monophyletic groups, one of which 

corresponded to the seven outbreak strains. 

Outbreak reconstruction. To define the investigated ICU outbreak in greater detail, a 

genomic network was built using the core SNPs identified among the epidemic isolates, 

which were ordered according to the isolation date. The resulting structure showed a star-

like topology (Fig. 3) centered around the isolate obtained from patient zero (KpVA-8). This 

structure suggested a nonlinear spread of infection. Thus, multiple events of contagion 

probably took place, all starting from patient zero and infecting six ICU patients (Fig. 3). It is 

important to note that patient zero (KpVA-8) stayed in the ICU for >2 months and the stays 

of the other infected patients coincided with his presence (Fig. 1). In addition, the location of 

his bed in the ward was not related to the date of infection (i.e., patients in beds closer to the 

bed of patient zero were not infected before patients in beds more distant from the bed of 

patient zero). Interestingly, the phylogenetic analysis of SNPs (Fig. 2) showed KpVA-8 (i.e., 

the isolate from patient zero) as the sister taxon of a single clade including the other six 

epidemic strains (Fig. 2). The result confirms that isolate KpVA-8 was at the origin of the 

outbreak. 
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FIG 3. (A) Reconstruction of the star-like diffusion pattern, starting from isolate KpVA-8, 

among the seven K. pneumoniae isolates belonging to a single outbreak event that occurred 

in the ICU of Ospedale di Circolo e Fondazione Macchi in February 2013. The star-like 

topology was obtained using the R package Outbreaker. Numbers in bold indicate the 

temporal order of contagion. (B) Graphic representation of the bed-to-bed spread of infection 

on a map of the ICU. 

  



 81 

DISCUSSION 

This work was aimed at characterizing 16 carbapenem-resistant K. pneumoniae isolates 

collected from a single hospital during a 27-month period, including an epidemic that 

occurred in February 2013. This allowed us to identify the genomic characteristics of the 

isolates, to elucidate the epidemiological relationships among them, and to place them in the 

context of the global phylogeny of K. pneumoniae. In particular, whole-genome analyses 

allowed us to characterize the diversity of this bacterial species within a single hospital, to 

contextualize the local features within the global genomic spectrum of the species, and to 

reconstruct the spreading route of seven isolates within the ICU. 

The 16 carbapenem-resistant isolates were shown to belong to CG258, the most prevalent 

KPC-producing K. pneumoniae lineage. Indeed, all 16 genomes demonstrated the gene 

blaKPC, and none of them had other known carbapenem resistance genes. This is not 

surprising, considering previous reports that showed the worldwide diffusion and high 

prevalence of KPC isolates of this clonal group among carbapenem-resistant K. pneumoniae 

strains (21, 23). 

When the drug resistance profiles of the investigated isolates were compared, the main 

difference was colistin resistance. In 10 of the 16 isolates, the colistin MIC was 4 mg/liter or 

higher (Table 2), thus above the EUCAST MIC breakpoint. Genomic analysis aimed at 

detecting the determinants for this resistance trait found that the 10 resistant isolates 

demonstrated insertion of an IS5-like transposon in the mgrB, a gene that regulates a 

pathway of lipopolysaccharide biosynthesis (43). Insertion of an IS5-like sequence in the 

mgrB gene has indeed been proposed as a determinant of colistin resistance (32). Our 

results appear to support this causative link, considering that none of the six colistin-

sensitive strains presented the aforementioned insertion. 

The global phylogeny of K. pneumoniae (Fig. 2) reveals that the 16 isolates are assigned to 

three of the four previously characterized Italian clades of CG258. These four clades have 

been proposed to represent four different dissemination events for KPC isolates in Italy, from 

2008 to 2010 (21). Therefore, within a time span of 27 months, three of the four main Italian 

lineages of CG258 KPC-producing K. pneumoniae were detected in a single hospital in 

northwestern Italy. This result clearly indicates that at least three of the four lineages are 

currently circulating, creating a scenario of multiple, contemporary, overlapping epidemics. 

With regard to virulence genes, all 16 isolates possessed the operons fim, ent, and mrk but 

lacked the genes rmpA and wzy-K1 (magA). The only detected difference among the 16 

isolates was the presence in three isolates of four genes responsible for yersiniabactin 
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synthesis (ybtA, ybtS, irp1, and irp2). Yersiniabactin has been reported to provide 

advantages in metabolism and multiplication, particularly in mixed infections and under iron-

deprived conditions and especially in pulmonary infections, according to recent studies (14, 

39, 40). When investigating the presence of yersiniabactin genes in the global CG258 K. 

pneumoniae phylogeny (Fig. 1), we detected a monophyletic group encompassing the three 

novel isolates as well as all other Italian isolates belonging to the same subclade, in addition 

to two U.S. isolates. This result clearly indicates that these genes were acquired before the 

diversification of this specific subclade and have been maintained since, which allows the 

characterization of this group of isolates as a yersiniabactin-positive monophyletic lineage of 

strains within CG258. 

Seven of the 16 isolates, which were collected from ICU patients over a period of 17 days, 

were hypothesized to represent a single epidemic event. The monophyletic relationships 

among the seven epidemic isolates (Fig. 2) confirmed the hypothesis. A specific analysis for 

outbreak reconstruction showed that the epidemic isolates were connected in a star-like 

diagram (Fig. 3) originating from the isolate from patient zero. This is congruent with the 

rapid spread among the seven ICU patients. 

Epidemic isolates could not be differentiated from sporadic isolates based on a specific 

pattern of the presence/absence of genes coding for virulence factors. The drug resistance 

profiles of these isolates also were identical to those of some sporadic isolates. This 

indicates that the spread of the outbreak was not related to genes conferring a specific 

advantage to the epidemic clone. Rather, it suggests that external factors might have caused 

the spread of the clone among ICU patients. 

In conclusion, this study shows how whole-genome analysis can facilitate accurate 

reconstruction of the spread of bacterial pathogens. The wealth of data from genome 

sequencing allows reconstruction of the relationships of isolates from single hospitals and 

outbreaks and placement of the isolates in overall global phylogenies, and comparisons of 

genomes permit determination of whether strains involved in a specific outbreak share 

common characteristics that might confer specific selective advantages. The introduction of 

bacterial genomics into clinical settings will thus allow reconstruction of the routes and 

causes of nosocomial infections, with estimation of the relative roles of human- and microbe-

related factors. 
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ABSTRACT 
We retrospectively analyzed a rare Salmonella enterica serovar Manhattan outbreak that 

occurred in Italy in 2009 to evaluate the potential of new genomic tools based on differential 

single nucleotide polymorphism (SNP) analysis in comparison with the gold standard 

genotyping method, pulsed-field gel electrophoresis. A total of 39 isolates were analyzed 

from patients (n = 15) and food, feed, animal, and environmental sources (n = 24), resulting 

in five different pulsed-field gel electrophoresis (PFGE) profiles. Isolates epidemiologically 

related to the outbreak clustered within the same pulsotype, SXB_BS.0003, without any 

further differentiation. Thirty-three isolates were considered for genomic analysis based on 

different sets of SNPs, core, synonymous, nonsynonymous, as well as SNPs in different 

codon positions, by Bayesian and maximum likelihood algorithms. Trees generated from 

core and nonsynonymous SNPs, as well as SNPs at the second and first plus second codon 

positions detailed four distinct groups of isolates within the outbreak pulsotype, 

discriminating outbreak-related isolates of human and food origins. Conversely, the trees 

derived from synonymous and third-codon-position SNPs clustered food and human isolates 

together, indicating that all outbreak-related isolates constituted a single clone, which was in 

line with the epidemiological evidence. Further experiments are in place to extend this 

approach within our regional enteropathogen surveillance system. 
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INTRODUCTION 

Salmonellosis is a major food-borne disease worldwide, with an estimated 93.8 million cases 

occurring each year, resulting in 155,000 deaths (1). The European Union summary report 

on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks (2) indicated 

that nontyphoid salmonellosis was the second most reported food-borne zoonosis in Europe 

in 2012, trailing only behind Campylobacter jejuni infection. The 2012 overall notification rate 

for human salmonellosis in the European Union (EU) was 22.2 episodes per 100,000 

population, for a total of 91,034 confirmed cases, with hospitalization and mortality rates of 

45.1% and 0.14%, respectively. The highest proportions of Salmonella-positive foodstuff 

samples were reported for fresh turkey, poultry, and pork at 4.4%, 4.1%, and 0.7%, 

respectively (2). In order to manage this food-borne infection and to limit its health and 

economic burdens, surveillance programs have developed and implemented DNA-based 

subtyping methods to identify outbreaks in a timely manner and to trace infections back to 

their food sources. Over the past decades, the two most intensively used protocols for 

Salmonella subtyping have been pulsed-field gel electrophoresis (PFGE) and multilocus 

variable-number tandem-repeat analysis (MLVA) (3). Unfortunately, these methods rely on 

just few features of the entire bacterial genome (rare restriction sites for PFGE or few 

polymorphic loci for MLVA) to assess the relatedness of different isolates. During 

epidemiological investigations of food-borne outbreaks, this limitation might lead to 

difficulties in distinguishing outbreak-related from outbreak-unrelated Salmonella enterica 

subsp. enterica isolates due to the high genetic homogeneity of this subspecies (4). 

Multilocus sequence typing (MLST) is another molecular tool for bacterial typing based on 

allelic differences in the loci of specified housekeeping genes (5). While proposed as an 

alternative to classical serotyping (6), MLST does not seem to be discriminatory enough 

when all isolates being tested belong to the same serotype (7). With the aim of improving 

resolution in molecular epidemiology, the technological advancements of whole-genome 

sequencing (WGS) may provide an unprecedented opportunity to access the entire genome 

information at a reasonable cost, as well as to set a new series of high-resolution standards 

in molecular epidemiology. As PFGE and MLVA are able to resolve more genotypes within a 

single serovar, WGS has already proved its resolution power to detect variations within 

otherwise undistinguishable bacterial clones (by PFGE or MLVA), as shown by recent 

examples in the literature (8, 9). Large studies based on WGS within S. enterica subspecies 

(10) and within serovars in S. enterica subsp. enterica (11, 12) contributed to the elucidation 

of Salmonella phylogenetic diversity and also accomplished important steps forward in the 

area of bacterial disease tracking. Moreover, serovar-specific studies on S. enterica subsp. 

enterica have highlighted microevolutionary differences among clinical, environmental, and 
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food isolates in S. enterica serovars Montevideo (13, 14), Enteritidis (4), Newport (15), 

Typhimurium (16–18), and Heidelberg (12), which would have been missed by more 

traditional approaches. 

While outbreaks of more common serovars, such as Salmonella Typhimurium and 

Salmonella Enteritidis, have been reported and investigated, only a few human outbreaks 

due to S. enterica serovar Manhattan have been reported (19, 20) worldwide in the past 60 

years, and none have been characterized at the genomic level. Here, we present a WGS-

based retrospective analysis of the only Salmonella Manhattan outbreak ever documented in 

Italy, which occurred from June to July 2009 in a relatively small geographic area in the 

province of Modena. 

The outbreak investigation at the time of the event was carried out by international standard 

epidemiological techniques (21) and by PFGE on the isolates from patients and food, feed, 

animal, and environmental sources. 

The aim of this study was 2-fold: (i) to evaluate the effectiveness of WGS to accurately 

identify the relationships among all the outbreak-related isolates with enough resolution to 

clarify the ambiguities that PFGE was not able to unravel, and (ii) to explore and test new 

genomic tools for bacterial molecular epidemiology based on synonymous and 

nonsynonymous single-nucleotide polymorphisms (SNPs) and SNPs in different codon 

positions. 

We selected this specific Salmonella Manhattan outbreak to test our WGS pipeline because 

of three main features that made this outbreak a particularly suitable case study. First, 

Salmonella Manhattan is considered a rare serotype, as confirmed by the regional 

surveillance system for Salmonella of Emilia-Romagna, which over the past 3 years 

recorded a yearly average of only 5.6 sporadic cases over a total of 924 isolates per year, 

from a regional population of about 5,000,000 (M. Morganti, E. Scaltriti, L. Bolzoni, G. 

Casadei, and S. Pongolini; Enter-net Italia, unpublished data). This low prevalence of 

Salmonella Manhattan infection provides a reasonable confidence that virtually all isolates 

collected in the outbreak area at the time of the episode belonged to the outbreak, therefore 

preventing the noise effect due to unrelated isolates wrongly assigned to the epidemic. 

Second, the investigation conducted at the time of the outbreak was successful in tracing the 

infection back to a food point source using internationally coded epidemiological methods 

(21); bacterial isolates were also recovered not only from food (pork sausage) at the retail 

level but also along the food chain up to the raw meat used to prepare the implicated food 

(at the production establishment). Third, the regional surveillance system for Salmonella of 
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Emilia-Romagna, hosted at the Istituto Zooprofilattico Sperimentale della Lombardia e 

dell'Emilia Romagna (IZSLER), holds a full collection of Salmonella Manhattan strains 

covering the years 2001 to present. This set of isolates was pivotal in the conduct of a 

successful epidemiological investigation and for testing our WGS-based analyses of this rare 

serovar. 

 

CASE REPORT 

The diagnostic unit of Parma of IZSLER is the Regional Reference Center for Surveillance of 

Enteropathogens (Enter-net) of clinical, environmental, animal, and food origins. Within this 

activity, a cluster of 15 human infections caused by Salmonella Manhattan was detected in 

the province of Modena from June to July 2009. All 15 isolates showed the same PFGE 

profile, SXB_BS.0003, strengthening the hypothesis that the unusually high incidence of this 

rare serovar was due to an epidemic outbreak. Consequently, an epidemiological 

investigation was undertaken and, considering the rarity of the serovar involved, all 21 

isolates of Salmonella Manhattan available from the surveillance collection of IZSLER were 

genotyped by PFGE to get possible clues about the source of the outbreak. Thirteen isolates 

from the collection had the same PFGE profile as that of the outbreak strain, but only three 

of them had been isolated just before the onset of the outbreak (May/June 2009). Two had 

been isolated from pork sausage at the establishment of an industrial producer that 

distributed in the outbreak area, while one had been recovered from swine intestine at an 

establishment near the outbreak area that processed guts for the salami industry. According 

to the epidemiological investigation, the gut processing establishment had no correlation with 

the outbreak. However, as its isolate presented the same PFGE pulsotype as that of the 

outbreak-related isolates, health authorities were left with a certain degree of uncertainty 

about its possible role. Following the results of the epidemiological and molecular analyses, 

food samples were collected at retail sources in the outbreak area and at the establishment 

producing the sausage in order to confirm the source and clonality of the outbreak strain. 

Two samples from retail-collected sausages, along with a sample from fresh pork supplies of 

the sausage producer, scored positive for the outbreak pulsotype. Based on these results, 

the sausage from the implicated producer was recalled, leading to the outbreak extinction. 
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MATERIALS AND METHODS 

Bacterial isolates. A total of 39 Salmonella Manhattan isolates were included in the study. 

Fifteen isolates were involved in the epidemic episode, another three isolates were collected 

within the epidemiological investigation, and 21 were collected between 2001 and 2009 

during the surveillance activity of IZSLER (Table 1). The isolates were isolated and streak 

purified with standard microbiological techniques and stocked at −80°C. They were cultured 

on plates with Trypticase soy agar with 5% defibrinated sheep blood (TSA-SB) and 

incubated overnight at 37°C before being typed by pulsed-field gel electrophoresis, 

according to the PulseNet protocol (22). The isolates selected for WGS were inoculated into 

brain heart infusion broth and cultured overnight at 37°C with agitation (200 rpm). 
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Lab no. Isolate no. 
(this study) 

Date of 
isolation 
(DD/MM/YYYY) 

Isolation 
place 
(province) 

Matrix PFGE 
pulsotype 

160969_3 SM1b 06/30/2009 Modena Human SXB_BS.0003 

160969_5 SM2b 06/30/2009 Modena Human SXB_BS.0003 

160969_6 SM3b 06/30/2009 Modena Human SXB_BS.0003 

165051_2 SM4b 07/03/2009 Modena Human SXB_BS.0003 

165051_3 SM5b 07/03/2009 Modena Human SXB_BS.0003 

165051_5 SM6b 07/03/2009 Modena Human SXB_BS.0003 

165051_7 SM7b 07/30/2009 Modena Human SXB_BS.0003 

111113 SM8b 07/03/2009 Modena Human SXB_BS.0003 

165051_11 SM9b 07/03/2009 Modena Human SXB_BS.0003 

165051_12 SM10b 07/03/2009 Modena Human SXB_BS.0003 

180073_1 SM11b 07/22/2009 Modena Human SXB_BS.0003 

180073_2 SM12b 07/22/2009 Modena Human SXB_BS.0003 

180073_3 SM13b 07/22/2009 Modena Human SXB_BS.0003 

180073_4 SM14b 07/22/2009 Modena Human SXB_BS.0003 

180073_6 SM15b 07/22/2009 Modena Human SXB_BS.0003 

250920 SM42b 08/31/2009 Milano Pork SXB_BS.0003 

227021 SM32b 05/06/2009 Milano Pork sausage SXB_BS.0003 

188801 SM52b 05/06/2009 Milano Pork sausage SXB_BS.0003 

216630_1 SM53b 09/03/2009 Modena Pork sausage SXB_BS.0003 

216630_2 SM54b 09/03/2009 Modena Pork sausage SXB_BS.0003 

226957 SM16 03/07/2006 Mantova Swine SXB_PR.0753 

226963 SM17b 03/20/2006 Mantova Swine SXB_PR.0753 

226972 SM19b 03/20/2006 Sondrio Pork salami SXB_PR.0753 

226979_1 SM21b 07/31/2006 Cremona Swine gut SXB_BS.0003 

226985 SM23b 08/03/2006 Milano Pork sausage SXB_BS.0003 

226987 SM24b 08/03/2006 Milano Pork sausage SXB_BS.0003 

226993 SM26 01/22/2007 Ravenna Hamburger SXB_BS.0003 

226998 SM27b 06/29/2007 Milano Pork SXB_BS.0003 
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227002 SM28 09/18/2002 Pavia Surface water SXB_BS.0003 

227009 SM29b 09/02/2002 Bologna Bovine sausage SXB_PR.0754 

227015 SM31 09/11/2001 Pavia Surface water SXB_PR.0751 

227033 SM35b 11/29/2008 Ravenna Swine stool SXB_BS.0003 

227039 SM36b 09/30/2008 Brescia Swine stool SXB_PR.0752 

227052 SM38b 09/24/2008 Milano Swine stool SXB_BS.0003 

188806 SM48b 06/03/2009 Reggio Emilia Swine intestine SXB_BS.0003 

188790 SM47 10/01/2002 Pavia Surface water SXB_BS.0003 

188795 SM49b 03/09/2009 Brescia Chicken farm SXB_PR.0753 

188787 SM51 09/17/2002 Pavia Surface water SXB_BS.0003 

188781 SM50b 07/31/2001 Modena Minced pork SXB_PR.0751 

 

TABLE 1. Complete data set of Salmonella Manhattan isolates analyzed in this studya.  
aThe isolates above the line break are the outbreak-related isolates (15 human-origin and 5 

food-origin isolates), and those below the line break are the 19 Salmonella Manhattan 

collection isolates. SM32 and SM52 were also collection isolates, but they were eventually 

attributed to the outbreak, following the results of this study. bThese Salmonella Manhattan 

isolates were selected for whole-genome sequencing. 
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Pulsed-field gel electrophoresis. All isolates were genotyped by PFGE, according to the 

PulseNet protocol (22). Genomic DNA underwent XbaI restriction before electrophoresis in a 

Chef Mapper XA system (Bio-Rad, CA, USA). The PFGE patterns were analyzed using the 

BioNumerics Software version 6.6 (Applied-Maths, Sint-Martens-Latem, Belgium) and 

associated with isolate information in our surveillance database. Clustering of the PFGE 

profiles was generated using the unweighted-pair group method using averages (UPGMA) 

based on the Dice similarity index (optimization, 1%; band matching tolerance, 1%). 

Following a comparison of the electrophoretic profiles, a PFGE pattern (pulsotype) was 

assigned to each isolate within the Regional Surveillance Database of Emilia-Romagna. 

Whole-genome sequencing. All outbreak-related isolates and a selection of the IZSLER 

Salmonella Manhattan collection, representative of the different pulsotypes detected, were 

subjected to WGS (Table 1), for a total of 33 isolates. Genomic DNA was extracted from 

overnight cultures using the Qiagen DNeasy blood and tissue kit (Qiagen) and quality 

controlled and quantified using a Synergy H1 hybrid multimode microplate reader (BioTek, 

Winooski, VT, USA). The sequencing libraries were prepared with the Nextera XT sample 

preparation kit (Illumina, San Diego, CA, USA), and sequencing was performed on the 

Illumina MiSeq platform, with a 2 × 250-bp paired-end run. 

Read quality check and assembly. All read sets were evaluated for sequence quality and 

read-pair length using the softwares FastQC and Flash (23). FastQC allowed us to assess 

the overall quality of the generated sequences, while Flash was used to measure the 

distance between the sequence read pairs. All the read sets that passed the quality check 

(visual check for FastQC and average read pair distance >100 nucleotides [nt] for Flash) 

were assembled with MIRA 4.0 (24) using accurate settings for de novo assembly mode. 

In silico multilocus sequence typing. In silico MLST was performed using the MLST 

scheme optimized by the University of Warwick 

(http://mlst.warwick.ac.uk/mlst/dbs/Senterica). 

Comparative genomics by local variation calling. In a previous work, we sequenced and 

published the first improved high-quality draft genome (25) of Salmonella Manhattan (strain 

111113) (26). The 18 contigs of the Salmonella Manhattan 111113 genome, belonging to a 

human isolate of the outbreak presented here, were concatenated in a pseudochromosome 

and used as a reference for alignment of each of the other 32 genome assemblies included 

in this study, using progressiveMauve (27). A previously described bioinformatic pipeline 

(28) was then used to merge the results of all isolates for comparison and to extract the 

coordinates of all local variations spanning from SNPs to longer variations (mutations, 
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insertions, and deletions), based on the annotation of the reference genome of strain 

111113. Core SNPs were identified as single nondegenerate mutated bases flanked by 

identical bases and present in all 33 genomes (including that of strain 111113). Genes 

presenting at least one core SNP were selected and compared against the Virulence Factors 

Database (VFDB) (29–31), using a BLAST search with a 10−5 E value cutoff. 

Analysis of variations. Open reading frames (ORFs) were predicted and translated on all 

assembled genomes (including the previously published Salmonella Manhattan strain 

111113 genome [26]) using Prodigal (32). Next, every genomic variation (SNPs, mutations, 

insertions, and deletions) was parsed in order to assign it to one of the following subsets of 

isolates: (i) all outbreak-related isolates, irrespective of the human, food, or raw meat origin; 

(ii) outbreak-related human-origin-only isolates; and (iii) outbreak-related food-origin-only 

isolates (including those from sausage and raw meat). 

Phylogenetic analysis. From the core SNP data set, different subsets were generated: (i) 

nonsynonymous SNPs, (ii) synonymous SNPs, and (iii) SNPs at the first, second, or third 

codon position. The core and subsets of SNPs were used as inputs for generating SNP-

based phylogenies using the maximum likelihood (ML) or the Bayesian methods. Model 

choice was evaluated in JModelTest (33). Maximum likelihood analyses were run in PhyML 

(34), with a generalized time-reversible (GTR) substitution model and 100 bootstrap 

iterations, while Bayesian analyses were run in MrBayes (35, 36), using the same model for 

2,000,000 generations, with chains sampled every 1,000 generations. The final parameter 

values and trees were summarized after discarding 25% of the posterior sample. The ML 

and Bayesian trees were displayed and edited for publication with FigTree version 1.4.0. 

Nucleotide sequence accession numbers. The genome sequences of Salmonella 

Manhattan (strain 111113; study identification [ID], SM8) contigs were previously deposited 

at EBI under the accession no. CBKW010000001 to CBKW010000021 (project 

PRJEB1854). The newly 32 sequenced genomes (contigs) of Salmonella Manhattan were 

deposited at EBI under the project number PRJEB5339 and are summarized here in the 

format isolate lab no./study identification no.: WGS accession number: 160969_3/SM1: 

CCBJ010000610 to CCBJ010000701, 160969_5/SM2: CCBJ010000175 to 

CCBJ010000212, 160969_6/SM3: CCBJ010000291 to CCBJ010000308, 165051_2/SM4: 

CCBJ010001977 to CCBJ010002069, 165051_3/SM5: CCBJ010002070 to 

CCBJ010000089, 165051_5/SM6: CCBJ010000001 to CCBJ010000100, 165051_7/SM7: 

CCBJ010004043 to CCBJ010004081, 165051_11/SM9: CCBJ010003194 to 

CCBJ010003512, 165051_12/SM10: CCBJ010000309 to CCBJ010000327, 

180073_1/SM11: CCBJ010002338 to CCBJ010002378, 180073_2/SM12: CCBJ010003726 
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to CCBJ010003749, 180073_3/SM13: CCBJ010001070 to CCBJ010001515, 

180073_4/SM14: CCBJ010001516 to CCBJ010001924, 180073_6/SM15: CCBJ010000702 

to CCBJ010000770, 250920/SM42: CCBJ010000328 to CCBJ010000609, 227021/SM32: 

CCBJ010004870 to CCBJ010004957, 188801/SM52: CCBJ010002097 to CCBJ010002229, 

216630_1/SM53: CCBJ010002817 to CCBJ010003193, 216630_2/SM54: CCBJ010000213 

to CCBJ010000238, 226963/SM17: CCBJ010002257 to CCBJ010002337, 226972/SM19: 

CCBJ010002230 to CCBJ010002256, 226979_1/SM21: CCBJ010000101 to 

CCBJ010000174, 226985/SM23: CCBJ010003750 to CCBJ010004042, 226987/SM24: 

CCBJ010003702 to CCBJ010003725, 226998/SM27: CCBJ010000771 to CCBJ010001069, 

227009/SM29: CCBJ010001925 to CCBJ010001976, 227033/SM35: CCBJ010000239 to 

CCBJ010000268, 227039/SM36: CCBJ010000269 to CCBJ010000290, 227052/SM38: 

CCBJ010002379 to CCBJ010002816, 188806/SM48: CCBJ010003540 to CCBJ010003701, 

188795/SM49: CCBJ010004082 to CCBJ010004692, and 188781/SM50: CCBJ010004693 

to CCBJ010004869. 
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RESULTS 

We present here reanalysis by WGS of an outbreak caused by Salmonella Manhattan in the 

province of Modena (Italy) in 2009. The isolates from the human cases were SM1, -2, -3, -4, 

-5, -6, -7, -8, -9, -10, -11, -12, -13, -14, and -15. Out of the 21 collection isolates available, all 

were genotyped by PFGE to search for clues on the source of infection, and SM21, -23, -24, 

-26, -27, -28, -32, -35, -38, -47, -48, -51, and -52 showed the outbreak pulsotype; however, 

SM36, -16, -17, -19, -29, -31, -49, and -50 belonged to different pulsotypes, and a selection 

of them were included in this study as outgroup isolates. SM42, -53, and -54 were isolated 

during the microbiological follow-up of the episode and presented the outbreak pulsotype. 

Pulsed-field gel electrophoresis. The 39 Salmonella Manhattan isolates of the study 

showed five different XbaI-PFGE profiles: SXB_BS.0003, SXB_PR.0753, SXB_PR.0754, 

SXB_PR.0751, and SXB_PR.0752 (Fig. 1). All the human isolates (SM1 to SM15) showed 

the same PFGE profile (SXB_BS.0003), supporting the hypothesis that the unusually high 

incidence of this rare serovar was due to a single epidemic clone. 

 

 

FIG 1. Similarity of Salmonella Manhattan isolates, examined in this study, inferred by 

pulsed-field gel electrophoresis profiles (PFGE-PR). The samples underwent XbaI restriction 

and pattern analysis according to the standard PulseNet protocol. The UPGMA dendrogram 

of all the profiles of the study is reported on the left; the ruler indicates the similarity values. 

The laboratory numbers of the isolates and their pulsotypes are reported on the right. 

  



 100 

Another 13 isolates from the IZSLER surveillance collection belonged to genotype 

SXB_BS.0003. Among these, three (SM32, SM48, and SM52) dated back to just before the 

outbreak period (May/June 2009) and were pivotal in guiding the epidemiological 

investigation. SM48 originated from an establishment near the outbreak area that processed 

swine guts for the salami industry. Due to this microbiological and molecular finding, the 

establishment was suspected of having a role in the outbreak, although no evident 

correlation with the human infections was made. More significantly, SM32 and SM52 were 

isolated just before the onset of the episode from pork sausages produced at an industrial 

establishment that shipped to retail stores in the outbreak area. Consequently, sausages 

from this producer, which were on sale in the outbreak area, were sampled along with the 

pork purchased by the producer. Both the sausages and the pork were positive for 

Salmonella Manhattan with the outbreak pulsotype (SXB_BS.0003) (isolates SM53 and 

SM54 from the sausages and SM42 from pork). Interestingly, two Salmonella Manhattan 

isolates from our collection, isolated within the own-check hygiene procedures of the 

producer (SM23 and SM24) 3 years before the outbreak, presented the same genotype. 

Also, the surveillance collection isolates SM21, -26, -27, -28, -35, -38, -47, and -51 shared 

the outbreak pulsotype, but they did not seem to be correlated with the outbreak or source of 

infection. 

Among the other non-outbreak PFGE profiles detected, the pulsotype SXB_PR.0752 (isolate 

SM36) had 95% similarity with the outbreak pulsotype, while the genotypes SXB_PR.0751 

(isolates SM31 and SM50), SXB_PR.0753 (isolates SM16, SM17, SM19, and SM49), and 

SXB_PR.0754 (isolate SM29) were less similar (90%, 84%, and 84%, respectively) (Fig. 1). 

Whole-genome sequencing. The genomes of the 33 Salmonella Manhattan isolates 

considered for genomic analysis, including the already deposited genome of strain 111113 

(26), were sequenced, quality checked, and assembled to draft status, from an average of 

2,593,738 MiSeq paired-end reads per genome. The average sequenced genome 

characteristics were 4,678,201 nt in length, 150 large (>1,000 nt) contigs, and an N50 of 

212,360. The genome data for each isolate are listed in Table S1 in the supplemental 

material. The MLST profile was determined for all draft genomes, which were found to 

belong to the same sequence type (ST), ST18. All assembled genomes underwent 

comparative and phylogenetic analyses. 

Analysis of variations. A comparative genomic analysis was implemented to detect the 

differences between the Salmonella Manhattan genomes, in terms of nucleotide variations, 

exclusive to (i.e., present in all the isolates of a group and absent in all the others) the 

outbreak-related isolates, as divided into the following main groups: (i) all outbreak-related 
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isolates, irrespective of the human, food, or raw meat origin; (ii) outbreak-related human-

origin-only isolates; and (iii) outbreak-related food-origin-only isolates (including sausages 

and raw meat). 

Of all the non-degenerate nucleotide variations (total 9,410) discovered by the 

progressiveMauve algorithm, 14 were outbreak specific, and all were core SNPs (two 

intergenic, two synonymous, and 10 nonsynonymous), divided as six variations exclusive to 

all outbreak-related isolates, three variations characteristic of the food-origin-only outbreak-

related isolates, and five characteristic of the outbreak-related human-origin-only isolates 

(Table 2). 



 

Group of 
isolates 

Amino acid 
change 

Codon change Position 
CDSa 

Type of SNP Gene Locus tag Strand Product name 

All outbreak C→R TGT→CGT 625 Genic cobT SMA01→2283 − Nicotinate-nucleotide–dimethylbenzimidazole 
phosphoribosyltransferase 

 N→N AAT→AAC 156 Genic gntR SMA01→3706 − Gluconate utilization system Gnt-transcriptional 
repressor 

 A→T GCC→ACC 577 Genic ansB SMA01→3765 − L-Asparaginase 

 V→A GTC→GCC 988 Genic dcuC SMA01→4465 − Putative cryptic C4-dicarboxylate transporter 

    Intergenic     

 K→E AAA→GAA 70 Genic betI SMA01→1140 + Transcriptional regulator, TetR family 

Human origin M→T ATG→ACG 584 Genic dsbI SMA01→0572 + Thiol-disulfide oxidoreductase, DsbB-like 

 A→T GCC→ACC 310 Genic sthD SMA01→3447 − β-fimbriae usher protein 

 V→V GTT→GTC 465 Genic ispH SMA01→3526 + 4-hydroxy-3-methylbut-2-enyl diphosphate 
reductase 

 Q→STOP CAA→TAA 252 Genic rfbD SMA01→4557 + UDP-galactopyranose mutase 

    Intergenic     

Food origin S→I AGC→ATC 872 Genic fliK SMA01→2244 + Flagellar hook-length control protein FliK 

 P→L CCT→CTT 17 Genic  SMA01→0101 + Hypothetical protein 

 A→V GCC→GTC 1544 Genic fdrA SMA01→4374 + Protein FdrA: acyl-CoA synthetaseb 

 
TABLE 2. Characteristic SNPs of three groups of outbreak-related isolates. a CDS, coding sequence. b CoA, coenzyme 
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Phylogenetic analysis. Phylogeny was reconstructed using an SNP-based approach. 

SNPs were extracted from the assembled genomes using a bioinformatic pipeline (28) 

based on progressiveMauve (27). Of the 9,410 detected variations, 953 were core SNPs, 

with 224 being synonymous and 467 being nonsynonymous; the remaining 262 SNPs were 

marked as intergenic. Among the synonymous SNPs, 6% and 94% were located in the first 

and third codon positions, respectively, while among the nonsynonymous SNPs, 43% were 

in the first, 42% in the second (total, 85% for the two positions), and 15% in the third codon 

position. The number of synonymous and nonsynonymous core SNPs at the first, second, 

and third positions were 214, 194, and 283, respectively. 

The phylogenetic analysis of the study isolates was performed separately based on the 

different subsets of SNPs considered, namely, core, synonymous, nonsynonymous, and 

different codon positions using both Bayesian (Fig. 2 to 4) and maximum likelihood 

algorithms (see Fig. S1 and S2 in the supplemental material). Both algorithms returned the 

same phylogenetic results on each subset. 

 

FIG 2. Bayesian phylogeny of the 33 Salmonella Manhattan sequenced genomes based on 

core SNPs. The posterior probabilities are indicated in each principal node of the tree. The 

scale bar units are the nucleotide substitutions per site. #, WGS analyses clustered isolate 

SM36 (pulsotype SXB_PR.0752) together with the isolates of the outbreak pulsotype 

(SXB_BS0003). 
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All data sets identified two major clades: one grouping all the isolates belonging to pulsotype 

SXB_BS.0003 and the highly related SXB_PR.0752 (95% similarity), and the other 

constituted by isolates with different pulsotypes (SXB_PR.0753, SXB_PR.0754, and 

SXB_PR.0751). Interestingly, WGS analyses clustered isolate SM36 (pulsotype 

SXB_PR.0752) together with the isolates of pulsotype SXB_BS0003, meaning they are 

highly related compared to isolates of the other pulsotypes of the study. Therefore, we 

considered SXB_PR.0752 together with SXB_BS.0003 for the subsequent analyses of 

phylogeny and presence of variants. 

Phylogeny based on core SNPs revealed four main groups inside the outbreak pulsotype. 

Isolates that were not epidemiologically related to the outbreak formed two monophyletic 

clusters, with the outermost one grouping isolates from various locations and previous years 

but always from swine stool within the own-check procedures of pig farms (isolates SM35, 

SM36, and SM38) or at food processing plants (isolate SM48). The other group included 

isolates collected at the sausage-producing establishment within its hygiene monitoring 

system 3 years before the outbreak (SM23 and SM24), along with an isolate collected on a 

pig farm in the same period (SM21). Isolate SM27 originated from another food processing 

plant in the same area of the sausage producer, but that was never linked to the outbreak. 

The two innermost clusters included all the outbreak-related isolates. Five strains isolated 

from sausages prepared by the implicated producer (SM32, SM42, SM52, SM53, and 

SM54), both at a retail locations in the outbreak area and at the establishment, which were 

distinct from the cluster of human isolates of the outbreak (from SM1 to SM15). All outbreak-

related isolates are monophyletic, confirming their derivation from a common ancestor. In 

order to better investigate the relationships among those isolates, we performed additional 

analyses on specific subsets of the core SNPs to take into account the possible effects of 

selective evolutionary pressure. We separately considered nonsynonymous SNPs, 

synonymous SNPs, and SNPs at the first, second, and third codon positions as 

presumptively subjected to decreasing selective pressures (37). The trees corresponding to 

the different subsets of SNPs are shown in Fig. 3 and 4. The trees generated by 

nonsynonymous SNPs and SNPs at the first plus second and second codon positions 

showed the same topology described by the whole data set of core SNPs, with a clear 

distinction between outbreak-related isolates of human and food origins. The phylogenies 

generated by SNPs under minor selective pressure (i.e., third position) revealed different 

scenarios, with the loss of a node inside the outbreak cluster showing isolates of human 

origin as a subgroup within the food-origin outbreak isolates. Considering synonymous SNPs 

only, the outbreak isolates of human and food origins are grouped in one cluster, being 



 105 

indicative of a single circulating clone. The phylogenetic inferences made by Bayesian and 

maximum likelihood algorithms gave identical results (see Fig. S1 and S2 in the 

supplemental material). 
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FIG 3. Phylogenetic Bayesian analysis of the 33 Salmonella Manhattan sequenced genomes 

based on synonymous (A) and nonsynonymous (B) SNP data sets. The posterior 

probabilities are indicated in each principal node of the tree. The scale bar units are the 

nucleotide substitutions per site. #, WGS analyses clustered isolate SM36 (pulsotype 

SXB_PR.0752) together with the isolates of the outbreak pulsotype (SXB_BS0003). 
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FIG 4 (A-B). Phylogenetic Bayesian analysis of the 33 Salmonella Manhattan sequenced 

genomes based on SNPs in first (A), second (B), third (C), and first plus second codon 

position (D) data sets. The posterior probabilities are indicated in each principal node of the 

tree. The scale bar units are the nucleotide substitutions per site. #, WGS analyses clustered 

isolate SM36 (pulsotype SXB_PR.0752) together with the isolates of the outbreak pulsotype 

(SXB_BS0003). 
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FIG 4 (C-D). Phylogenetic Bayesian analysis of the 33 Salmonella Manhattan sequenced 

genomes based on SNPs in first (A), second (B), third (C), and first plus second codon 

position (D) data sets. The posterior probabilities are indicated in each principal node of the 

tree. The scale bar units are the nucleotide substitutions per site. #, WGS analyses clustered 

isolate SM36 (pulsotype SXB_PR.0752) together with the isolates of the outbreak pulsotype 

(SXB_BS0003). 
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DISCUSSION 

Microbiologists often need to determine the relatedness of bacterial isolates to define the 

network of relationships of an infectious outbreak and effectively assist epidemiological 

investigations. Standard protocols for typing Salmonella rely on internationally accepted 

methods, like PFGE and MLVA, which a few decades ago flanked the more limited 

serotyping. The possibility of accessing the vast amount of information provided by WGS of 

bacterial isolates promises to be the next frontier of subtyping methods, probably capable of 

surpassing PFGE and MLVA for molecular epidemiological purposes. In this study, we 

reanalyzed a well-defined Salmonella Manhattan outbreak detected in the summer of 2009 

in the province of Modena (Italy) using WGS in order to test the power of this approach for 

resolving the ambiguities left by PFGE. The epidemic episode involved 15 human cases 

from June to July 2009, with all presenting the same PFGE profile (SXB_BS.0003). The 

molecular epidemiological investigation of the outbreak involved several isolates, some from 

the infectious episode and others from the historic collection of the regional surveillance 

system of the food chain. As expected, PFGE analysis attributed the same pulsotype 

(SXB_BS.0003) to all the outbreak-related isolates, but the same pulsotype was shared by 

many historic isolates as well. On the contrary, the WGS-based phylogeny inferred from the 

total core SNPs clearly showed the presence of four distinct groups of isolates (Fig. 2) within 

the outbreak pulsotype. The first branch of the tree, within the outbreak pulsotype, separates 

nonoutbreak historic isolates recovered from swine stool at different locations and times. 

Among these, we find isolate SM48, which was originally suspected of being implicated in 

the infectious episode, based on PFGE, and eventually cleared by WGS. Interestingly, 

isolate SM36, which does not belong to pulsotype SXB_BS.0003 but to the highly similar 

(95% similarity) pulsotype SXB_PR.0752, is included in this clade. This is a clear 

discrepancy between WGS and the more limited PFGE that relies on only few genomic loci 

(rare restriction sites) for its typing inferences. By placing SM36 together with pulsotype 

SXB_BS.0003 isolates, our WGS approach indicates that a limited genomic difference 

between isolates is able to jeopardize the typing outcome of PFGE. This observation 

confirms what Tenover et al. (38) already pointed out, the fact that as PFGE may be heavily 

influenced by a single mutational event (e.g., SNP occurring in a restriction site), isolates 

should be considered to be possibly related even if they differ by two or three bands. 

However, according to this conservative interpretation of PFGE results, the vast majority of 

the isolates of our study should be regarded as potentially belonging to the outbreak. This 

would have not been sufficiently discriminatory to help the epidemiological investigations. 

The interpretation criteria of Tenover et al. (38) are derived from logical considerations; as 

such, they are intrinsically valid, and our observations regarding isolate SM36 confirms their 
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validity. At the same time, their use leaves molecular epidemiologists with considerable 

uncertainty about how to interpret PFGE results with regard to whether or not different 

pulsotypes are part of a single outbreak. In our case, WGS removed that uncertainty about 

SM36. 

Moving deeper along the phylogenetic tree based on the total core SNPs, three other groups 

of isolates are evident. The outermost set of this node includes isolates (SM21, -23, -24, and 

-27) not related to the outbreak, as they were collected 3 years before (2006). It is 

interesting, however, to notice that WGS-based phylogeny indicates these strains to be 

closer to the outbreak node (inner branch) than was the previous set of swine-stool isolates. 

On a better look, we were struck by the fact that SM23 and SM24 were collected in 2006, 

within the own-check procedures of the sausage producer involved in the 2009 outbreak. 

Moreover, SM21, which is subbranched with SM23 and SM24, was routinely recovered from 

a local pig farm (from swine stool) at the same time as SM23 and SM24. While this specific 

molecular similarity was not inferred by PFGE, WGS highlighted a possible link between 

these two commercial entities. Moving one branch forward in the phylogenetic tree, WGS 

shows another bifurcation actually separating outbreak-related isolates of human origin from 

those of food origin. While still speculative, based on this WGS-based phylogeny, coupled 

with epidemiological data, we could argue that this outbreak was due to a persistent 

Salmonella Manhattan clone, which may have infected one or more pig farms and reached 

the food producer and the retail customers as animals arrived at the slaughterhouse in a 

nonclinical septic condition. This is a typical mode of transmission of Salmonella along the 

food chain, as it may asymptomatically persist (thus going unnoticed) within a herd of pigs 

for long periods of time (even years). Sporadically, animals carrying a high level of the 

pathogen arrive at the slaughterhouse and contaminate a defined set of food products, thus 

causing an infectious outbreak as the final consumers (39, 40) become exposed to it. In this 

scenario, WGS seems to depict a more detailed and articulated epidemiological story. In 

fact, the tree inferred from core SNPs (Fig. 2) leaves a certain level of uncertainty relative to 

the actual causative relationship between the isolates of food origin and of human origin 

within the outbreak, as they cluster in two distinct groups, although very closely to each 

other, as evidenced by the limited number of exclusive core SNPs accumulated by the two 

groups (3 for food and 5 for human isolates). In the absence of epidemiological insights, we 

argue that the two sets of isolates are very similar to each other but still are separate 

entities. This substantially contradicts the epidemiological evidence that the two sets of 

isolates belong to the same outbreak clone. Therefore, we further investigated this apparent 

inconsistency of the WGS-based results by comparing new alternative phylogenies based on 

two different subsets of polymorphisms, synonymous and nonsynonymous, instead of the 
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total core SNPs. The trees generated from these two subsets of SNPs were different (Fig. 

3A and B). Phylogenetic analysis based on nonsynonymous SNPs (Fig. 3B) still divided the 

outbreak isolates of food and human origins, as in the approach based on total core SNPs. 

On the contrary, the tree obtained from synonymous SNPs (Fig. 3A) clustered the human 

isolates together with the food isolates, indicating that all outbreak-related Salmonella 

Manhattan strains constituted a single clone, in line with epidemiological evidence. While 

intriguing, this new outcome may have been the misleading effect of the smaller amount of 

data present in these new subsets than that with the total set of core SNPs, of which there 

were 953, whereas the number of synonymous and nonsynonymous SNPs were 224 and 

467, respectively. Therefore, to confirm these results, we took a step forward in this 

approach by considering not just synonymous versus nonsynonymous SNPs but also taking 

into account the different codon position of each SNP in the core genome. Salmonella 

Manhattan synonymous SNPs were at the 3rd codon position 94% of the time, while 

nonsynonymous SNPs were at the 2nd 42% and at the first position 43% of the time (total, 

85%). In this study, 1st, 2nd, and 3rd position SNPs accounted for 214, 194, and 283 

nucleotide substitutions, respectively. The comparison of subsets of SNPs based on their 

codon site would then not be impaired by too-large differences in the amount of data 

processed by the phylogenetic algorithms. The tree obtained from second codon position 

(Fig. 4B) was comparable to that of the nonsynonymous SNPs, as expected, whereas the 

tree obtained from third codon position showed human isolates as a subgroup of the food 

isolates (Fig. 4C), essentially confirming the tree based on synonymous SNPs. These results 

show that at least limited to our outbreak, synonymous and third-position SNPs were the 

only ones able to describe the causal relationship between food (source of the outbreak) and 

clinical isolates in a way that was consistent with the epidemiological evidence. At the same 

time, our results indicate that nonsynonymous and total core SNPs may have led to 

misleading conclusions about the relationships between the human and food isolates of the 

outbreak. One last aspect that caught our attention by deciphering topologies of this WGS-

based retrospective analysis was that SNP-based clustering of isolates separated human 

from food outbreak-related isolates when considering total core SNPs (Fig. 2). As we just 

discussed, this topology was mainly influenced by nonsynonymous mutations, which means 

it is possible to find distinctive nonsynonymous SNPs for each group of isolates (human 

versus food). Using progressiveMauve, we identified a set of 953 core SNPs, among which 

we selected those that were exclusive to specific clusters of interest: six SNPs exclusive to 

all outbreak isolates (human and food origin), three exclusive to all food origin outbreak 

isolates, and only five exclusive to all human origin outbreak isolates (Table 2). The 

extremely limited number of exclusive SNPs in food and human isolates within the outbreak 

is an additional compelling element indicative of the fact that these two groups of isolates did 
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not have enough evolutionary time to significantly differentiate, indicating they belong to the 

same clone. A BLAST analysis of these SNPs against the Virulence Factors Database 

revealed three genes of particular interest: (i) fliK, coding for a flagellar hook-length control 

protein (41), (ii) sthD, a gene coding for a fimbrial outer membrane usher protein (42), and 

(iii) rfbD, coding for a UDP-galactopyranose mutase precursor involved in the synthesis of 

the O antigen of the lipopolysaccharide (LPS). All three proteins are virulence determinants 

in Salmonella (43–46). WGS has already proved its usefulness for elucidating the 

evolutionary diversity of large populations of bacterial isolates (11, 47, 48). In the specific 

case of Salmonella, WGS was successfully applied to illuminate the diversity of the 

pathogen within a vast epidemic episode, allowing highly efficient traceback of clinical and 

food isolates (4, 13). The results obtained in this study underscore the power of WGS-based 

methods, when applied together with the most appropriate phylogenetic tools, to resolve 

small outbreaks characterized by few and highly clonal bacterial isolates. Our comparative 

genomics approach was able to correctly cluster the clinical isolates within the composite 

scenario of outbreak-related and collection isolates. Accurate backtracking to the source of 

infection at the retail and industrial levels was made possible while flagging an originally 

overlooked suspicious correlation with a farm supplier and clearing an originally suspect food 

operator. Moreover, by selectively choosing the different types of detected nucleotide 

variations, we were able to read the message hidden within neutral mutations as opposed to 

the general use of total core SNPs. Further use of the differential analysis of synonymous 

and nonsynonymous mutations will test the validity of this approach in deciphering the 

details of infection transmission in the context of other outbreaks caused by Salmonella and, 

potentially, other pathogens. 
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ABSTRACT 

Introduction. Listeria monocytogenes (Lm) is a bacterium widely distributed in nature and 

able to contaminate food processing environments, including those of dairy products. Lm is a 

primary public health issue, due to the very low infectious dose and the ability to produce 

severe outcomes, in particular in elderly, newborns, pregnant women and 

immunocompromised patients. 

Methods. In the period between April and July 2015, an increased number of cases of 

listeriosis was observed in the area of Pavia, Northern Italy. An epidemiological investigation 

identified a cheesemaking small organic farm as the possible origin of the outbreak. In this 

work we present the results of the retrospective epidemiological study that we performed 

using molecular biology and genomic epidemiology methods. The strains sampled from 

patients and those from the target farm’s cheese were analyzed using PFGE and whole 

genome sequencing (WGS) based methods. The performed WGS based analyses included: 

a) in-silico MLST typing; b) SNPs calling and genetic distance evaluation; c) determination of 

the resistance and virulence genes profiles; d) SNPs based phylogenetic reconstruction. 

Results. Three of the patient strains and all the cheese strains resulted to belong to the 

same phylogenetic cluster, in Sequence Type 29. A further accurate SNPs analysis revealed 

that two of the three patient strains and all the cheese strains were highly similar (0.8 SNPs 

of average distance) and exhibited a higher distance from the third patient isolate (9.4 SNPs 

of average distance). 

Discussion. Despite the global agreement among the results of the PFGE and WGS 

epidemiological studies, the latter approach agree with epidemiological data in indicating that 

one the patient strains could have originated from a different source. This result highlights 

that WGS methods can allow to better. 
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INTRODUCTION 

Listeria monocytogenes (Lm), widely distributed in the environment including soil, plants, 

and water, is a foodborne bacterial pathogen that can contaminate different kinds of food 

among which milk and dairy products (1). Lm is capable of adapting to and growing at 

refrigeration temperatures and, moreover, it can form biofilm to help colonization of surfaces. 

Consequently, Lm can colonize food processing environments, contaminating the finished 

products (2). Although Lm is an uncommon cause of illness in the general population, it can 

represent an important public health problem in case of large scale distribution of 

contaminated food, due to the very low infectious dose (3,4). Listeriosis is a severe disease 

and it primarily affects the elderly (5), newborns, pregnant women and immunocompromised 

patients, categories that can be up to 20 times more susceptible to the disease (6). Clinical 

manifestations are highly variable and host-dependent: from non-specific and mild 

symptoms, to febrile gastroenteric syndromes or even cases of seps is and meningitis with 

mortality rates up to 30% (7). 

Most reported cases of listeriosis are sporadic, however, outbreaks have been described 

with increasing incidence worldwide (5,8,9,10,11). ECDC and EFSA report 2,161 confirmed 

human cases of listeriosis in the EU Summary report on zoonoses, zoonotic agents and 

food-borne outbreaks 2014 (12). The EU notification rate was 0.52 cases per 100,000 

population which represents a 30% increase compared with 2013 (0.40 cases per 100,000 

population). ECDC and EFSA report 210 deaths due to listeriosis in 2014, and a fatality rate 

above 12.5%. This was the highest number of deaths reported since 2009 (annual average: 

163). An average of 131 cases with 0.22 cases per 100,000 population were reported in Italy 

from 2010 to 2013 (12). A regional study regarding the Lombardia region reported 134 

isolates in the 2006-2010 period (6). The notification of listeriosis in humans is mandatory in 

most countries in Europe, in Italy since 1991, as regulated by Italian D.M. 15/12/1990. Since 

2009, was established a digital platform, ENTER-NET Italia system (Enteric Pathogen 

Network) connected to European ENTER-NET network, dedicated to the assessment of 

microbiological clusters of food-borne diseases (13). 

Pulsed-Field Gel Electrophoresis (PFGE) represents the gold standard for subtyping of Lm 

and other foodborne pathogens (14), however, studies employing other molecular and 

genomic methods have proliferated recently, allowing to characterize Lm strains not only by 

pulsotype, but also by multilocus sequence type (MLST) and core genome MLST (cgMLST) 

(15,16,17,18). 
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In this study we describe an outbreak of Listeria monocytogenes occurred in 2015 in 

Northern Italy, using a combination of molecular biology and genomics techniques. Despite 

the results obtained from the two approaches resulted coherent at large scale, the Whole 

Genome Sequencing (WGS) approach resulted more accurate in the discrimination of the 

strains involved in the outbreak. 

 

THE OUTBREAK 

Between 28th April and 11th July 2015 six patients showing symptoms compatible with 

Listeriosis (sudden onset of fever, chills, severe headache, vomiting, and other influenza-like 

symptoms) were admitted to hospitals in Pavia province of Lombardia region, Northern Italy. 

The first three cases were observed at the Fondazione IRCCS Policlinico San Matteo 

Hospital in Pavia (Italy), the fourth an the Ospedale SS Annunziata di Varzi, the fifth an the 

Ospedale unificato di Broni-Stradella and the sixt at the Ospedale Civile di Voghera. We will 

refer to the patients enumerating them chronologically from 1 to 6 (Table 1). 

Patient 1, upon admission, informed the hospital personnel of having recently consumed 

goat cheese produced by a small organic farm. The patient provided the leftover cheese (~ 

20g), that was tested and Lm was not detected. It must be noted that the small amount of 

available cheese could have influenced the sensitivity of the test, as the standard protocol 

indicates 25g as the correct amount for the analysis. 

During the following two weeks, two apparently unrelated listeriosis cases were observed at 

Pavia hospital, involving a drug-abusing subject (patient 2) and a 1.5 year old child (patient 

3). The child’s parents informed the hospital personnel that the child had recently consumed 

home-made cheese, and provided a cheese sample (>25g) which was tested, and no Lm 

was detected. During the previous three years an average of 3.3 cases per year were 

observed in Pavia province, thus, three cases in 16 days were considered a possible 

outbreak, and an epidemiological investigation was performed. 

The farm that produced the raw-milk goat cheese eaten by patient 1 was subjected to a first 

inspection during which goat cheese and raw milk, as well as the food contact surfaces in 

the processing plant19 were sampled. Lm was isolated from two samples from a single 

cheese shape (Cheese_1 and Cheese_2 in Table 1), while one of three samples collected 

from the plant (wood ripening surface) was found to be positive by PCR. In order to monitor 

the possible persistence of Lm contamination three additional sampling were performed 

during the two months after the first inspection. One wood ripening surface resulted positive 
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by PCR in June, and Lm was isolated from a cheese shape in July. (Cheese_3 in Table 1). 

All samples collected in the farm are showed in Table 2. 

        

Sample 
name 

Geographic 
origin 

Sampling 
date 

Source Age Gender Risk factor Diagnosis and 
symptoms 

Outcome 

Patient_1 Pavia 28/04/15 blood 
and CSF 

71 M no one Meningitis and 
sepsis 

cured 

Patient_2 Pavia 29/04/15 blood 47 M HIV and 
HCV 
infection, 
hepatic 
impairment 

HIV, HCV and 
HBV co-
infection, 
jaudice, 
sepsis 

cured 

Patient_3 Pavia 14/05/15 CSF 1.5 M < 2 year 
aged 

Diarrhea, 
fever and 
confusion 

hydroceph
alus 

Patient_4 Varzi 21/05/15 blood 78 M no one Sepsis cured 

Patient_5 Broni - 
Stradella 

11/07/15 blood 61 F cancer Sepsis death 

Patient_6 Voghera 28/07/15 blood 70 M Parkinson 
disease 

Diarrhea, 
Meningitis 

cured 

Cheese_1 Target farm 26/05/15 Cheese 
(inner) 

na na na na na 

Cheese_2 Target farm 26/05/15 Cheese 
(rind) 

na na na na na 

Cheese_3 Target farm 17/07/15 Cheese 
(rind) 

na na na na na 

Table 1. Characteristics of the patients and of the cheese samples where Listeria 

monocytogenes was detected. 

  



 124 

Collection 
date 

Cheese 
samples 

Milk 
samples 

Food-contact surface 
samples 

Non food-contact surface 
samples 

22/05/15 2/2/2  3/1/0  

15/05/15  1/0/0   

19/06/15 2/0/0  6/01/0 4/0/0 

17/07/15 4/1/1  5/0/0 2/0/0 

23/09/15   7/0/0 8/0/0 

Table 2. Samples from the putative target farm. Numbers indicate collected samples / PCR 

positive samples / isolation positive samples 

 

During the epidemiological investigation three other cases of listeriosis were diagnosed in 

the province of Pavia. None of the three patients reported to have eaten organic cheese, or 

other useful information for investigators to trace the origin of the infections. Four patients 

out of the six completely recovered, while patient 3 developed a hydrocephalus and patient 5 

died. All the isolates were subjected to molecular characterization and, subsequently, a 

retrospective genomic investigation was performed. 

 

METHODS 

Ethics statement. The study was designed and conducted in accordance with the Helsinki 

declaration. This study was performed according to the guidelines of the IRCCS Foundation 

Policlinico San Matteo Hospital in Pavia Institutional Review Board of on the use of biological 

specimens for scientific purposes in keeping with Italian law (art.13 D.Lgs 196/2003). The 

work described here is a retrospective study performed on bacterial isolates from human 

samples that were obtained as part of hospital routine. No extra human samples were 

obtained for this research. Therefore, informed consent (either written or verbal) was not 

required. 

Strain isolation. Blood and Cerebrospinal Fluid (CSF) samples obtained from the six 

patients were inoculated in aerobic or pediatric broth, and incubated in BACTEC FX (Becton 

Dickinson, Heidelberg, Germany). Positive broths from blood and CSF were analyzed by 

Gram staining method and culture, matrix-assisted laser desorption/ionization time-of-flight 

(MALDI-TOF) mass spectrometry (MS) MicroflexTM LT (Bruker Daltonik GmbH, Bremen, 
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Germany) was used for species identification through the Bruker biotyper 3.1 database. 

Antibiotic susceptibility tests of each isolate was performed via standard disk diffusion on 

Mueller-Hinton agar incubated at 37°C for 24 h using the Kirby-Bauer method (20). The 

results were interpreted with standardized criteria from breakpoint committee EUCAST (21). 

All isolates were then stocked at -80° C. The cheese samples provided by patient 1 and 3 

were subjected in parallel to molecular diagnosis and isolation protocols, respectively PCR 

Real Time – iQCheckTM L. monocytogenes II kit (BIORAD) AFNOR BRD 07/10 – 04/05 and 

ISO 11290-1:116/Amd 1:2004 (22). eight cheese, one raw milk and 35 environmental 

samples were collected from the putative origin dairy processing plant. All these samples 

were subjected to the above PCR method and PCR positive samples were subjected to 

standard Lm isolation protocol, according to ISO 11290-1:1996/Amd 1:2004 (22). 

Molecular characterization. All isolates were subjected to DNA extraction using the Qiagen 

DNeasy kit according to manufacturer’s instructions, and to Lm specific PCR using an 

accredited protocol (PCR real-time – iQ-CheckTM L. monocytogenes II kit (BIO-RAD) 

AFNOR BRD 07/10 – 04/05). All isolates were genotyped by PFGE according to the 

Pulsenet protocol (23). Genomic DNA underwent restriction with AscI and ApaI enzymes 

before electrophoresis in a CHEF Mapper® XA System (Bio-Rad, California, USA). PFGE 

patterns were analyzed using Bionumerics Software ver. 7.0 (Applied-Maths, Sint-Martens-

Latem, Belgium) and associated to strain information in our surveillance database. 

Clustering of the PFGE profiles was generated using the Unweighted Paired Group Method 

with arithmetic averages (UPGMA) based on the Dice Similarity Index (Optimization=1% and 

Band Matching Tolerance=1%). Following comparison of the electrophoretic profiles, a 

PFGE pattern (pulsotype) was assigned to each isolate within the database of the laboratory 

of the Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (Sezione 

Diagnostica di Parma). Two isolates were indicated as belonging to the same pulsotype if 

the band pattern differed by less than two bands. 

Genomics. Whole-genome DNA was extracted from each isolate using a QIAamp DNA 

minikit (Qiagen) following the manufacturer’s instructions, and sequenced using an Illumina 

Miseq platform with a 2 by 250 paired-end run after Nextera XT paired-end library 

preparation. Genome assemblies were obtained using Mira software (24) and subjected to 

open reading frame (ORF) calling using Prodigal (25). The MLST profiles of the sequenced 

strains were determined in silico (using an in-house Perl script), on the basis of the MLST 

profiles defined in the Institut Pasteur MLST database (http://bigsdb.pasteur.fr/listeria/ (26)). 

The 713 Lm genomes available in the Patric database (in date 11th July 2016) were 

retrieved and subjected to in silico MLST profile determination and the genomes belonging 

to the same clonal complexes of our strains were selected for further analyses. The selected 
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strains were subjected to core genome SNP-based phylogeny. The analysis was performed 

on a robust dataset of core genes selected from the cgMLST1748 genes (27). The 

cgMLST1748 genes were extracted from BIGSdb-Lm platform and searched, using Blastn, 

in the genomes of the selected strains. Bidirectional Best Hit (BBH) method (28) was then 

used to group the genes into clusters of orthologous genes. For each cgMLST1748-ortholog 

gene present in single copy in all the genomes, the sequences of all isolates were retrieved, 

aligned and translated using in-house Perl scripts and Muscle software (29). The cgMLST 

gene alignments were then screened and the genes with the following features were 

selected: a) all the aligned sequences begin with a start codon; b) all the aligned sequences 

finish with a stop codon; c) all the aligned sequences have a single stop codon; d) for each 

aligned sequence, the gaps cover less than 10% of the alignment length. The nucleotide 

alignments of the selected cgMLST1748 orthologs were then concatenated and subjected to 

phylogenetic analysis using Maximum Likelihood approach, with RaxML 8 software (30), 

setting GTRGAMMA model and 100 pseudo bootstrap replicates. 

Four databases of Lm sequences, namely virulence genes, antibiotic resistance genes, 

genes for resistance to Benzalkonium and genes for resistance to metals and detergents 

were retrieved from the ListeriaMLST database. For each genome sequenced in this study, 

the obtained paired-end reads were aligned against the curated genes databases using 

Bowtie2. Genes with >10X coverage for >95% of the sequence length were considered as 

present in the isolate.The genomes were searched for presence of phages using Phast (31). 
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RESULTS 

Case characteristics. The median age of the six patients involved in the study was 54 

years (range 1-78), five out of the six were males and all of them lived in the Pavia province. 

In four out of six patients Lm was isolated from blood cultures, in one patient from 

cerebrospinal fluid (CSF) and in another one from both blood and CSF. For full details on 

patients and symptoms see Table 1. An epidemiological investigation identified the 

cheesemaking small organic farm that possibly originated the outbreak, where sampling of 

milk, cheese and food processing environment was performed. Lm isolation was achieved 

from two cheese shapes, in the first case from both crust and paste, in the second case from 

the crust only. PCR positivity was obtained for 2 farm environment samples. 

Isolate characterization. All isolates were susceptible to ampicillin, erythromicin, 

meropenem, cotrimoxazole, penicillin. The result of the clustering analysis based on the 

PFGE patterns obtained with ApaI and AscI enzymes resulted congruent, grouping the 

isolates collected from patients 1, 2, 4, together with those from the three cheese samples in 

both analyses, indicating a clear relationship between the six. Isolates from the three other 

patients showed a clearly different PFGE pattern, excluding their belonging to the outbreak 

(Figure 1). 

Whole genome sequencing analysis. Whole genome sequencing was performed for the 

nine strains, six from patients and three from cheese. Genome assemblies, submitted to the 

EMBL-EBI database, resulted to be on average of high quality (Table 3). In-silico MLST was 

performed on the genome assemblies, revealing that the three isolates obtained from the 

cheese samples and three of the six isolates from patients belong to sequence type 29 

(ST29), and the remaining three isolates belong to ST1, ST7 and the ST398 (see Table 3 for 

genome statistics and STs). 



 128 

Fig. 1: PFGE profiles. Pulse Field Gel Electrophoresis analysis of the nine strains, obtained 

using the AscI and ApaI restriction enzymes. 
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Table 3. Statistics of the genomes assemblies obtained from nine Listeria monocytogenes 

strains and MLST profiles. 

 

The 713 Lm genomes present in the Patric database were retrieved, in-silico MLST typed, 

and the 81 genomes belonging to the clonal complexes of the study strains (i.e. CC1, CC7, 

CC29 or CC398) were selected. A cgMLST-based phylogenetic reconstruction was 

performed using a subset of the cgMLST1748 scheme genes, including only the 928 genes 

present in single copy in all the strains and giving a good quality alignment. The cgMLST-

based phylogeny shows that the isolates from patient 1, patient 2, patient 4, cheese 1, 

cheese 2 and cheese 3 are tightly related (Figure 2), while the other isolates are scattered 

on the tree. The six closely related strains were then investigated more in depth in order to 

reconstruct the outbreak structure, using whole genome sequencing (WGS) typing, and data 

from the epidemiological investigation. In particular, the following evidence was considered: 

a) Single nucleotide polymorphism (SNP) distance revealed that the strains from patient 1, 

patient 2, cheese 1, cheese 2 and cheese 3 differ by 0.8 SNPs on average (values ranging 

from 0 to 2), while their average distance from patient 4 isolate is ten times higher, at 9.4 

SNPs (values ranging from 9 to 10) (see Figure 3). 

b) Patient 1 reported to have eaten the cheese produced by the suspect farm, while patient 

4, referred to have never bought cheese from the farm. No information on whether patient 2 

ate the cheese became available. A potential, albeit unlikely, link would be that patient 4 

could have eaten foods prepared with raw materials in common with the contaminated 

cheese, such as salt solution. 

The combination of the higher SNP distance, and the absence of an epidemiological link, led 

us to consider patient 4 as not associated to the outbreak. 
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Regarding the presence of resistance genes, all the strains collected in this study showed 

the same profile of antibiotic resistance genes, harboring the fosX, lmo1708, norB, and sul 

genes. This genetic uniformity is in accordance with the results obtained in the antibiograms, 

which were identical for all strains. Conversely, the virulence genes profiles resulted less 

conserved among the lineages: the isolates belonging to ST29 (collected from patient 1, 

patient 2, patient 4, cheese 1, cheese 2, cheese 3 samples) and ST7 (patient 6) presented 

the same virulence gene profile, while the isolate from patient 5 (ST398) also possessed the 

vip gene. The isolate from patient 3 (ST1) had multiple additional virulence genes: aut IVb, 

gltA, gltB, mdrM, vipand genes of the cluster LIPI-3 (Figure 4). This gene cluster have been 

reported in the literature to be one of the three major virulence factors (LIPI-1, LIPI-2, LIPI-3) 

(3). Seven phages were detected, showing an identical pattern of presence/absence in all 

the strains belonging to ST29. See Figure 4 for a list of the detected phages. 
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Fig. 2 (a): Phylogeny. (a) Phylogenetic reconstruction of the relationships between the 

study isolates and database isolates of the corresponding clonal complexes. Tree obtained 

using Maximum Likelihood approach, with RAxML 8 software, setting GTRGAMMA model 

and 100 pseudo bootstrap replicates on an alignment of 928 conserved core genome MLST 

genes. (b) Sub-tree including only the CC29 strains. 
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Fig. 2 (b): Phylogeny. (a) Phylogenetic reconstruction of the relationships between the 

study isolates and database isolates of the corresponding clonal complexes. Tree obtained 

using Maximum Likelihood approach, with RAxML 8 software, setting GTRGAMMA model 

and 100 pseudo bootstrap replicates on an alignment of 928 conserved core genome MLST 

genes. (b) Sub-tree including only the CC29 strains. 
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Fig. 3: Heatmap of the SNP distances. Heatmap showing the single nucleotide 

polymorphism between the isolates obtained in this study. Bright red corresponds to the 

highest number of SNPs. The number of SNPs supporting tree branched are reported on the 

relative branch 
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Fig. 4: Presence/absence of resistance genes, virulence genes and phages. Profiles of 

presence of genes of interest, including genes for antibiotic resistance and virulence, and 

phages for each genome. LIPI genes are reported in orange, virulence genes in blue, 

resistance genes in green and phages in red. 
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DISCUSSION 

Six cases of listeriosis occurred between 28th April 2015 and 28th July 2015 in four hospitals 

of the province of Pavia, Northern Italy. This represented an important increase of the 

incidence in the area, from an average of 0.28 per month in the three previous years to 2 per 

month in the examined period. This suggested that an Lm strain could be emerging in the 

area, and an epidemiological investigation was performed. In particular, a first investigation 

was carried out using molecular techniques and patient interviews, and, after one year, a 

WGS investigation followed. The results of the two reconstructions were then compared. 

PFGE clustered together the strains from three patients (patient 1, 2 and 4) and from all the 

cheese samples collected from the farm identified as the outbreak origin, indicating that the 

outbreaking strain originated from that farm and then infected the three patients. Patients 3, 

5, and 6 resulted to be unrelated to the outbreak. Additionally, the farm environment was Lm 

positive by PCR, prompting the owner to refurbish the structure. The main inconsistency of 

this reconstruction was patient 4, who declared with confidence to have never eaten the 

cheese produced at the farm, while he stated to have consumed raw meat, but could not 

indicate the origin. 

The results of the retrospective WGS investigation allowed to better investigate this point. 

The core genes SNPcgMLST phylogenetic reconstruction clustered the strains from patient 

1, 2, 4 and the cheese strains together, in accordance with the PFGE clustering. We then 

calculated the number of SNPs between each pair of strains of the PFGE cluster. This 

analysis showed that the isolate from patient 4 presents an average SNP distance ten times 

higher than the average distance within the cluster (Figure 3). This pattern suggests that 

patient 4 could had been not part of the outbreak but, having a sole outlier strain, it was not 

possible to statistically test this hypothesis. Despite this, epidemiological data resulted 

coherent to the scenario we inferred from WGS data: since these six strains were collected 

in a span of three months, and the isolate from patient 4 was obtained in the middle of this 

period, such difference is unlikely to have arisen from multiple mutations of the isolate from 

patient 4. 

On the basis of the collected data we propose the following epidemiological scenario: patient 

1 and 2 were infected by the cheese from the target farm, while patient 4 acquired the 

bacterium from an unidentified source. Furthermore, we suggest that a WGS-based 

surveillance program could allow to detect this unidentified source, and solve similar cases 

in the future. 
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In summary, WGS allowed to characterize the six human isolates of Lm showing that they 

represent five different clonal clades that circulate in the studied area, all belonging to STs 

that were previously reported in the region (6). ST 29 is commonly described in Lm 

outbreaks in USA and Europe, and it was previously described as capable of causing 

invasive illness (32,33). Two closely related clones, both belonging to ST29, were 

discriminated through genomics leading to accurate assignment of cases to the outbreak 

source. The close relatedness of the two clones in absence of a demonstrated 

epidemiological link opens a question about their possible common ancestry and its 

associated shared environmental niche. Prospective genomic epidemiology investigations 

focused on ST29 in the area could allow to understand whether these clones are still 

circulating in the human population and potentially find clues about their environmental 

niche. 
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ABSTRACT 

Bacteriology has embraced the next-generation sequencing revolution, swiftly moving from 

the time of single genome sequencing to the age of genomic epidemiology. Hundreds and 

now even thousands of genomes are being sequenced for single bacterial species, allowing 

unprecedented levels of resolution and insight in the evolution and epidemic diffusion of the 

main bacterial pathogens. Here, we present a review of some of the most recent and 

groundbreaking studies in this field. 

 

INTRODUCTION 

It seems that lately all scientific articles presenting results based on next-generation 

sequencing start with slight variations of the same formula ‘In recent years the advent of 

novel sequencing technologies has revolutionized the field of …’. This uniformity can teach 

us a couple of lessons. First of all that scientists do not apply their unquestionable creativity 

to the writing of introductions, but more importantly that maybe we are actually really facing a 

scientific revolution. These technologies allow to obtain unprecedented levels of resolution 

and standardization in genomic data at affordable prices and turnaround times. 

Many researchers quickly understood the power of these novel sequencing approaches, 

generating wealth of data for a number of different biological systems, and designing novel 

methods to exploit these information. Among them, many bacteriologists fully embraced the 

revolution, understanding that the generation of high numbers of genomes from a single 

species, strain or clonal group would allow to reconstruct the history of a bacterium in time 

and space, to trace its movements and relevant evolutionary events, and to understand the 

success of specific strains. This genomic epidemiology approach has been applied to a 

plethora of bacteria, first and foremost to pathogens, with the final goal of obtaining novel 

strategies to effectively deal with diseases. In this review, we present a small collection of 

some of the most novel and groundbreaking results obtained in this field, to provide the 

reader with basic knowledge of the new advances and hopefully to inspire others to pursue 

innovative lines of research. 
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LOCAL STUDIES 

Third-generation sequencing to tackle the plasmid issue. Multidrug-resistant (MDR) 

bacteria are currently considered a health problem of primary importance both in Europe and 

USA (1). Enterobacteriaceae are among the most common MDR bacteria involved in 

nosocomial infection worldwide. These bacteria, Escherichia coli and Klebsiella pneumoniae, 

in primis are often commensals in healthy subjects, as part of the gut flora composition. 

When colonizing subjects with depressed or weakened immune system, they can turn into 

dangerous pathogens. These bacteria are able to rapidly develop antibiotic resistance, both 

by acquiring resistant factors from other bacteria and by developing favourable chromosome 

mutations. Among the most feared are carbapenem-resistant Enterobacteriaceae (CRE), 

capable of surviving even treatments with the most recently discovered molecules. 

Due to antimicrobial resistance and opportunistic pathogenicity, many of the fatal infections 

caused by CRE occur within the hospital intensive care units, hosting patients in precarious 

health conditions, where antibiotic pressure is continuous, often resulting in nosocomial 

outbreaks. Indeed, during 2013, MDR Enterobacteriaceae were responsible for over 9000 

nosocomial infections in the USA, causing over 600 deaths (2). Multiple genomic 

epidemiology studies have been performed on Enterobacteriaceae global evolution, in 

particular focusing on the most common antibiotic-resistant clones (3–6). Additionally, the 

application of genomic approaches has allowed to characterize nosocomial outbreaks in 

detail, identifying dangerous clones and detecting transmission patterns (7–9). These 

studies used the ‘standard’ next-generation technologies for genome sequencing (Illumina 

and 454). These now established technologies, sometimes now referred to as ‘second-

generation technologies’ (10), output very large sets of short sequences, suitable to obtain 

draft genome assemblies. Such methods, however, do not allow to fully characterize the 

genomic structure, that is to completely detect genomic rearrangements and fully reconstruct 

complete plasmid sequences. In order to overcome these issues, we can turn to the latest 

advancements in DNA sequencing, the so called third-generation sequencing platforms (10). 

Among them is the single molecule real time (SMRT) sequencing technology which allows to 

obtain very long sequences (> 10,000 nt) (11) and thus to perform genome assemblies that 

easily result in the full reconstruction of ‘closed’ chromosomes and plasmids. 

Recently, Conlan and co-workers (12) exploited this technology to bring local genomic 

epidemiology to a higher level. Twenty strains of CRE were sampled in the NIH Clinical 

Center in the time span between 2011 and 2013 both from patients and from the hospital 

environment. Initial sequencing, performed with Illumina or 454 technologies was, as 

expected, not precise enough to characterize the genomic content on a structural basis. For 
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this reason, genomes were sequenced a second time using SMRT technology and polished 

on two levels. Illumina MiSeq reads allowed to ensure the highest precision in base content, 

while OpGen physical maps (13) gave fundamental information on chromosome and plasmid 

structures. The effort allowed to obtain complete genomes at a very high level of accuracy, 

which were used together with epidemiological information to reconstruct the transmission 

routes of the pathogens. In five cases, the aid of complete genomes and plasmids was 

essential to detect the exact pattern of transmission. Among the 20 isolates analysed, four 

showed novel genomic features, never described before. A Klebsiella oxytoca strain carrying 

a plasmid with two copies of the blaKPC gene, an isolate of K. pneumoniae with three 

plasmids each carrying a copy of the blaKPC gene and two isolates with a chromosomal 

copy of the resistance gene. Is such an high-percentage of novel features (4/20) surprising? 

Are the bacteria isolated at the NIH Clinical Center so unique? The more parsimonious 

explanation is actually that these features are more common than we think, and that we had 

never seen them before because the quality of our sequencing was previously insufficient. 

The approach by Conlan and colleagues also allowed to detect the movement of KPC 

plasmids between isolates of different species through the environment. A p55-like plasmid 

of K. pneumoniae isolated from a patient was the same found in Citrobacter freundii and 

Enterobacter cloacae sampled from the sink in the patient’s room, differentiating only for two 

adaptive changes in the entire sequence. This suggested that the transmission happened in 

the sink, as a consequence of a transient presence of K. pneumoniae in the local biofilm. 

This finding underlines, once more, the importance of environmental controls in the hospital 

wards and suggests specific inspections that should be included in the safety protocols. 

Lastly, thanks to the finesse of the sequencing, it was possible to analyse a case of co-

colonization in a 2011 patient who was found to carry both a carbapenem-resistant K. 

pneumoniae and a E. cloacae. Since the patient resulted not colonized at admission, and the 

two pathogens present two different copies of KPC plasmids, the authors concluded that 

there was no plasmid transfer and that both resistant strains were circulating in the institution 

prior of the patient’s arrival. 

Hubs of gene flow in Streptococcus pneumoniae. Streptococcus pneumoniae is a gram-

positive bacterium that resides, usually as an innocuous commensal, in the nasopharynx of 
healthy carriers, with prevalence varying from 5 to 90% (14, 15). When S. pneumoniae 

colonizes immunocompromised individuals, children or elderly, it can act as an opportunistic 
pathogen, leading not only to pneumonia, but also to a variety of other important diseases, 

such as meningitis and febrile bacteraemia (16). Multiple vaccines are currently available. 

For example, conjugate vaccine PCV7 was introduced in the United States in 2000, rapidly 
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proving its effectiveness. Indeed, by 2003, the occurrence of infant pneumococcal disease in 

Massachusetts was 69% lower (17). Nevertheless, S. pneumoniae remains a leading 
infectious disease worldwide, with higher impact in developing countries. Multiple studies 

have used genomics to study this important pathogen, starting with the first complete 

genome sequence presented in 2001 (18). Subsequent comparative works allowed to 
discover that this species exhibits a high frequency of genomic recombination, which in turn 

favours the rapid acquisition of novel genetic features. This is often followed by rapid 
diffusion of those characteristics that give a distinct selective advantage, such as traits 

conferring resistance to antibiotics and vaccines (19–22). Such behaviour was described 

even within the course of a single-patient chronic paediatric polyclonal infection (23). 

Recently a study presented the sequencing of over 3000 genomes of S. pneumoniae 

isolated during the course of 4 years from the population of a single refugee camp in 

Thailand (24). This is, to our knowledge, the largest study of bacterial genomic epidemiology 

to date, structured so that it allows an unprecedented level of sampling density, providing 

novel insight in the genomic evolution of S. pneumoniae and of bacterial populations in 

general. The authors used the Bayesian approach BAPS (25, 26) to investigate the structure 

of the bacterial population of the refugee camp, identifying 33 clusters, that could be divided 

in 183 secondary, mostly clonal, subclusters. An analysis focused on the capsule 

biosynthesis locus and detected a strong presence of non-typeable (NT) isolates, lacking the 

capsule, but also the impressive number of 191 ‘plausible capsule switching events’, with 

numerous of these recombinations causing switches between the capsulated and non-

capsulated states. 

While nucleotide substitution rate did not differ between clusters, rate of recombination was 

variable. This ratio, intended as the ratio between recombination and mutation events (r/m), 

resulted to be very different among population clusters and significantly higher in NT 

isolates. The more striking result of this analysis was, however, the consistently higher rate 

of recombination of six genomic loci, specifically antigens and antibiotic-resistance genes. 

Among these ‘recombination hotspots’ were genes providing resistance to beta-lactams and 

cotrimoxazole. Interestingly, the recombination histories of genes providing resistance to the 

two antibiotics were different, and the authors found them to match the variable use of beta-

lactams and cotrimoxazole, respectively, increasing and decreasing during the time of the 

study within the refugee camp area. 

The extreme genome density of this study allowed also to tackle one important issue of 

recombination studies, the detection of the donor isolates. Indeed, the authors identified 443 

blocks that were identical between the recipient and the donor, nine of which were the 
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results of recombination between nine donors and one single recipient. These blocks were 

not uniformly distributed in the population, and the NT isolates resulted to be not only good 

recipients, but good donors as well. In summary, this study reported the presence of 

‘recombination hotspots’ that can easily move among isolates, but also the presence of 

specific lineages that can act as ‘hubs of gene flow’. Since these lineages are not 

necessarily those that present higher virulence, such as NT isolates in S. pneumoniae, these 

results provide novel insights that can help to change the way we look at the dynamics of 

bacterial populations. 

 

GLOBAL TRENDS 

The explosion of Salmonella Typhi H58. Salmonella enterica is a widely studied 

pathogenic agent, of such importance that has caused multiple health and economic crises 

worldwide (27). The three S. enterica clusters of greater importance for human health are 

serovar Typhi (or S. Typhi), serovar Typhimurium (or S. Typhimurium) and serovar 

Enteritidis (or S. Enteritidis). S. Typhi is the causative agent of typhoid fever, a disease 

particularly diffused in Asia, and endemic in the Indian subcontinent (28). It was estimated 

that, just during 2010, typhoid fever affected 26.9 million people worldwide, with fatality rates 

ranging from 1 to 30% (29). S. Typhi is able to infect human blood and intestine, producing 

an array of symptoms including nausea, vomiting, fever and death. A portion of colonized 

people usually remain asymptomatic for long periods of time (up to years), shedding the 

bacterium into their stool and urine (27), with the effect of sustaining the pathogen 

transmission. 

Blantyre is a ~1.3 million people district, localized in the south of Malawi. In this area, 

between 1998 and 2010, several cases of bloodstream infection (BSI) caused by 

nontyphoidal serovars of Salmonella were reported, while the typhoidal S. Typhi serovar was 

rare (30). Starting from 2011, an increase in the number of BSI caused by MDR S. Typhi has 

been reported. In particular, the S. Typhi lineage H58 resulted to be predominant in the 

infected population. Feasey and colleagues (30) used a genomic epidemiology approach to 

reconstruct the origin of the emergence of S. Typhi H58 in this area: they collected 

epidemiological data from the Blantyre district (covering the period 1998–2011) and 

sequenced the genome of 112 S. Typhi strains, isolated there from 2004 to 2011. Whole-

genome analysis was performed using a genome mapping approach, and the obtained 

SNPs were subjected to maximum-likelihood phylogenetic analysis. Merging the information 

from the resulting tree and the epidemiological data, the authors were able to reconstruct 
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that the increase of typhoid fever reported from 2011 was due to the rapid diffusion of a 

monophyletic S. Typhi lineage, the aforementioned H58-haplotype. H58 resulted to be 

associated with MDR with a much higher frequency (89.3%) than the other circulating S. 

Typhi types (21.4%). 

Strong phylo-geographical clusters were described within the H58 lineage, indicating it to be 

endemic in the areas included in the study. H58 isolates, collected in the same areas, 

resulted to be clustered on the phylogenetic tree, independently of the date of isolation. This 

geographical clusterization is consistent with the existence of reservoirs. Furthermore, 

genomes of the H58 strain result to be very conserved within the lineages, in contrast with 

the other S. Typhi monophyla. Indeed, the H58 tree branch lengths are shorter than the 

other S. Typhi lineages. These data can be explained hypothesizing that a strong purifying 

selective pressure affects the H58 lineage, and/or that frequent genomic recombinations 

occurred among the H58 strains. 

Due to the undeniable importance of this haplotype, a second study was performed to 

describe its emergence at the global level. Wong and colleagues (31) considered the 

impressive collection of 1,832 S. Typhi isolates collected in the period 1905–2014, from 63 

countries spanning 6 continents. Whilst the most ancient isolate included in the study was 

collected in 1905, the first S. Typhi H58 isolate was from 1992, indicating a very recent origin 

of this lineage. Since 1992, the H58 haplotype represents ~40% of all the isolates collected 

each year, a remarkable explosive diffusion. Indeed, H58 genomes differ by a mean of only 

six SNPs, with 93% of them having less than five isolate-specific SNPs. These data show 

that H58 isolates are very closely related, consistent with the hypothesis of an impressive 

recent clonal expansion. It must be noted that the number of isolates obtained before 1992 is 

limited (n = 50), and this may skew the perception of the H58 diffusion, nevertheless the 

result is remarkable. The authors then inferred the date of the H58 origin to be between 

1985 and 1992. After 1993, they observed a drastic increase of the H58 effective population 

size. Furthermore, on the basis of the phylogenetic reconstruction, the authors traced the 

major geographical transfers of the S. Typhi H58 haplotype: the strain originated in India, 

and through independent events reached Southeast Asia, Fuji, Western Asia, East Africa 

and Malawi. In Africa, it then invaded Malawi a second time through East Africa and then 

diffused from Malawi to South Africa. 

Novel insights into the genomic evolution of Staphylococcus aureus. Staphylococcus 

aureus is among the most important antibiotic-resistant pathogens worldwide. Methicillin-

resistant strains (MRSA), in particular, are spread in all continents and can be up to 70% of 

all S. aureus isolates in the most affected countries (32). The first report of MRSA was an 
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hospital-acquired infection in 1960 (33), but the pathogen has since then developed endemic 

status and can be transmitted outside of the nosocomial environment (the first cases were 

reported in the mid-1990) (34). The terms HA-MRSA (health care-associated MRSA) and 

CA-MRSA (community-associated MRSA) reflect this distinction. And if this was not enough, 

LA-MRSA (livestock-associated) is the zoonotic variant, which is common in farms (35). 

Resistance to methicillin is encoded in the staphylococcal cassette chromosome mec 

(SCCmec) which contains the mecA gene. Several variants of the cassette have been 

discovered and found to be able to transmit and move between strains. The spread of MRSA 

strains has been the focus of a number of high-profile studies that used genomic approaches 

to investigate their diffusion and evolution, starting from the pioneering study of Harris (36), 

already discussed in previous reviews (e.g. (37)). 

Holden and colleagues (38) used genomics to reconstruct the evolution of EMRSA-15, a 

strain belonging to sequence type 22, which is considered the most rapidly spreading and 

tenacious S. aureus in Europe, currently invading other continents. Genomes were obtained 

from 193 ST22 strains of S. aureus isolated from 1990 to 2009 and a SNP-based phylogeny 

was reconstructed. A molecular clock analysis allowed to distinguish and date different 

clades with variable virulence levels, corresponding to different stages in the epidemic 

diffusion. Genomic variability among the clades was analysed both at the SNP level and the 

gene content level, with the aim of correlating genomic changes with fitness and virulence. 

The study concluded that sequence type 22-A (ST22-A) was the first of this lineage to obtain 

resistance to methicillin, from the primitive community-associated methicillin-sensitive ST22, 

and dated this event to before 1977. This led to a health care-associated MRSA epidemic 

that spread in England in the 1980s (ST22-A1). In the mid 1980s, a sublineage acquired 

resistance to fluoroquinolones, and EMRSA-15 (also called ST22-A2) was born. The authors 

performed a bayesian analysis and detected a considerable difference in population size 

between ST22-A1 and ST22-A2, putative consequence of a fitness boost which caused the 

worldwide diffusion of the latter strain. Lastly, genomic traits were correlated with 

antimicrobial resistance profiles, thus highlighting the potential of genome sequencing as a 

diagnostic tool. Appearance on the tree of genetic variants responsible for antimicrobial 

resistance was found to agree with the variations of antibiotic prescription policy-making in 

the different regions during the years. Indeed, EMRSA-15 spread through the UK when 

fluoroquinolones where highly used, while a subsequent spread in Germany was a 

consequence of the development of yet another resistance, to clindamycin, which was 

heavily used in that country. Recently, other similar works reconstructed and dated the origin 

of other MRSA epidemic clones. Genomic variants were mapped on the trees and correlated 

with phenotypic changes. For example, Planet and coworkers (39) worked on USA300 and 
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USA300-LV clones, while Stinear and colleagues (40) on CA-MRSA ST93. Stegger et al. 

(41) studied CC80 and Baines et al. (42) focused their efforts on HA-MRSA ST239. 

In addition to these phylogeny-based works, the genomics of S. aureus has been used to 

investigate variations in genome structure. Indeed recombinations, transmission of plasmids 

and pathogenicity islands represent big adaptive steps in the history of MRSA, as they do for 

CRE and S. pneumoniae. Recently, Méric and coworkers (43) studied the evolution and 

genomic flow between two species that share the same niche: S. aureus and 

Staphylococcus epidermidis. These species are indeed both common commensals on the 

human skin and in the nasal pharynx. The authors selected and sequenced 324 isolates 

from archives and databases, in order to represent the global diversity of the two species, 

choosing among different genomic variants, location and sources of isolation. Shared genes 

and alleles were searched between each pair of isolates, and the two species resulted to 

share a maximum of nine core genome alleles between them, thus suggesting that genomic 

recombination is very rare between individuals of the two species. On the contrary, mobile 

elements were highly shared, in particular genes associated with the SaPIn1 pathogenicity 

island, metal detoxification and the methicillin-resistance island SCCmec. The authors use 

these interesting results to discuss the concept of evolution in relation with the host as a 

niche, that is two strains or species that share the same host, also share the same selective 

pressure. Recombination can be driven by direct contact between donor and receiver, but 

also by evolution of niches, as genomic material can be shared in these enclosed 

environments. 

In this review, we report multiple examples of how exchange of genomic material can involve 

the accessory parts of the genomes, but also homologous recombinations in core genome 

loci. The latter is a common thread in global genomic epidemiology as it is commonly found 

in most bacterial species involved in nosocomial infections. This was recently pointed out by 

Croucher and Klugman (44) who observed that large recombinations (even bigger than one 

megabase) seem to be an evolutive weapon that pathogens use to rapidly gain fitness and 

survive in the hospital environment. The two authors compare recombined bacteria to the 

‘hopeful monsters’ of the Cambrian period, citing the use by Stephen Gould of the term 

introduced earlier by Richard Goldschmidt(45). 

The presence of recombinations should be taken into account because they need to be 

removed from the genomic alignment in order to obtain resolved and correct phylogenies, 

which represent the real evolutive history of the pathogen. 
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HISTORICAL PERSPECTIVES 

Mycobacterium tuberculosis through history. Mycobacterium tuberculosis is an obligate 

aerobic pathogenic bacterium and the causative agent of tuberculosis (TB) (46). The 

presence of mycolitic acids in M. tuberculosis coating confers the bacterium resistance to 

weak disinfectants and dehydration and prevents the effective activity of hydrophobic 

antibiotics. Additionally, it allows the bacterium to grow inside of macrophages, effectively 

hiding it from the host’s immune system (47). All these characteristics contribute to the ease 

with which it is transmitted, despite its extremely slow replication time compared to other 

bacteria. Tuberculosis is a disease that accompanied human populations since antiquity, it 

has been prevalent worldwide and, if left untreated, causes death in 50% of cases. In the 

last two centuries, progress has been made both in diagnosis and treatment with the advent 

of screening programs, antibiotics and vaccines, relegating the emergency to third world 

countries. Nevertheless, deaths are increasing after an almost 40 years decline (46), and the 

emergence of multiple antibiotic-resistant strains (48) makes M. tuberculosis one of the most 

important re-emerging bacterial pathogens to date, and the leading bacterial killer worldwide 

with 1.3 million deaths a year. The so called M. tuberculosis Beijing family is a 

heterogeneous group of strains, among which hypervirulent subtypes stand out, equipped 

with multiple antibiotic resistances and the ability to cause disease outbreaks (49). The 

whole family, considered the predominant genotype in East Asia and still currently 

spreading, can be accounted for more than a quarter of the total tuberculosis cases 

worldwide. Despite previous epidemiology studies showed high genetic similarity even 

among strains isolated in different geographic areas (49), pathobiological characteristics 

appeared heterogeneous (50). The increasing availability of standard genotyping leads to 

the identification of several Beijing sublineages (51). This approach, however, proved itself 

limited for fully understanding the diversity of this family due to the insufficient amount of 

nucleotide variation detected by this technique. Once again, genomic epidemiology can 

come to our rescue. 

Given the relevance of this family for public health globally, several studies focused on 

reconstructing the origin and spread of M. tuberculosis Beijing strains (52–56). Merker et al. 

(57) focused on the biogeographical structure of strains belonging to the Beijing family, with 

a in-depth analysis on the association between sublineages and antibiotic resistance. The 

authors assembled a huge data set, comprising almost five thousand genotyped isolates 

plus 110 whole-genome sequences, the biggest and broadest collection of Beijing family 

strains to date, both in terms of sheer size and variety of geographical origins. Initially, a 

minimum-spanning tree (MStree) was constructed using genotyping data, grouping the 



 151 

genomic diversity into 6 major clonal complexes (CCs) and 3 distant branches which were 

collectively designated as basal sublineage 7 (BL7). CC1 through CC5 were classified as 

typical/modern Beijing while CC6 and BL7 comprised typical ancestral Beijing variants. The 

shape of the Mstree and the mean allelic richness confirmed this hypothesis, suggesting that 

CC1, CC2 and CC5 are in a state of population expansion, while CC6 and BL7 are more 

ancient and/or in a situation of milder expansion. 

The authors then used the information for all the five thousand genotyped isolates to 

estimate past expansions and time to the most recent common ancestor (TMRCA). CC6 and 

BL7 were confirmed once again as the oldest sublineages with, respectively, a TMRCA of 

~6,000 and 5,000 years, while CC5 resulted the youngest with a TMRCA of ~1500 years. 

For all sublineages, an estimate of the time elapsed since the beginning of the latest 

expansion was computed. This analysis showed a much recent timeframe, roughly 200 

years ago, for CC1, CC2 and CC5, compared to the estimate detected for the more ancient 

lineanges, CC6 and BL7, which dated back to the middle age. Once again, genome 

information, available for 110 isolates, made it possible to obtain a more sensitive estimate 

of population changes in the recent past, by means of a Bayesian skyline plot. Two 

significant population growth phases were detected in conjunction with the Industrial 

Revolution and the First World War. The only decrease in population size was observed 

contemporary with the spreading of anti-tuberculosis drug usage, while a slight expansion 

coincides with the advent of the HIV epidemics and the first tuberculosis outbreaks in the 

former Soviet Union and the United States in the 1990s. A subset of roughly one thousand 

clinical isolates with known drug resistance profiles was analysed to shed light on possible 

association between the identified CCs and antibiotic resistance, resulting in CC2 having the 

highest proportions of MDR strains. It is important to note that CC1, while having a similar 

proportion of MDR strains to the ancient lineages, showed a high clustering rate (95%) 

meaning that almost all isolates shared a single resistant haplotype, in contrast with CC6 

and BL7 (42% and 57%, respectively). Additionally, strains from CC1 (central Asian 

outbreak) and CC2 (Russian-European outbreak) showed a higher similarity between them 

than with other clonal complexes, supporting the MDR outbreak hypothesis and a recent 

specific expansion of these two clonal complexes. 

It is interesting to note that M. tuberculosis population growths are closely related to 

historical events and human migrations. Genotype data allowed to estimate the start of the 

last expansion events for the recent sublineages to 200–250 years ago, roughly around the 

time of the industrial revolution and matching known episodes of Chinese immigration 

towards Pacific islands, Americas and Russia. It is both interesting and not surprising that 

Beijing family strains experienced increases in population size in conjunction with the 
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Industrial revolution and with the First World War. This is consistent both with Chinese 

immigration episodes, as noted above, and with the deprivations caused by war conditions 

and the co-mortality due to the influenza pandemics of that time (58). The only decrease in 

population size detected coincides with the advent of antibiotics and mass vaccinations 

around the 1960s. It has to be kept in mind that the expansion of the two sublineages more 

associated with antibiotic resistance, CC1 and CC2, predates this event. This indicates that 

MDR is not the reason of the success of these clonal complexes but just the consequence of 

public health policies implemented on an already growing bacterial population. Finally, the 

most recent increasing trend is consistent with the onset of the global HIV epidemic and 

follows it closely. 

The strange case of the amphibious Mycobacterium. Albeit recent studies such as the 

one described above are shedding light in the history of M. tuberculosis, there are still plenty 

of dark patches that need to be illuminated. It is clear that the co-evolution of the bacterium 

with humans started with the shift from the hunter/gatherer behaviour to the onset of 

agriculture and animal husbandry, especially cattle (59). Until recent years, the most 

accredited theory had a zoonotic transfer of Mycobacterium bovis following animal 

domestication during the Neolithic (60). However, recent comparative genomic analyses 

lean towards the opposite theory. That is, strains adapted to bovines and other animals may 

have originated from human strains (61, 62). For what concerns the Americas, given that 

strains currently present in the area are closely related to the European ones, the consensus 

is that the pathogen was brought by colonizers and settlers after the Columbian discovery 

(63). This, however, is not consistent with several evidences of skeletal samples dated 

before 1492 with obvious signs of the disease. If tubercolosis was not brought on caravels, 

who or what carried it to the New World? And how can we explain the genomic similarity 

between American and European strains of M. tuberculosis? Bos et al. (64) try to give us an 

answer. 

Progresses in protocols for isolation of ancient DNA made it possible to collect three M. 

tubercolosis genomes from skeletal samples with signs of tuberculosis infection collected in 

Peru and dated back to roughly one thousand years ago. They completed a the data set by 

adding 259 modern M. tuberculosis complex (MTBC) genomes, 14 animal isolates and an 

additional ancient genome originated from an eighteen century Hungarian mummy. An 

alignment of 22,480 variable positions was the input for a phylogenetic analysis. The 

resulting tree came with a surprise: the ancient Peruvian samples did not cluster with other 

human isolates; they were closer to the animal strains, in particular to the modern 

Mycobacterium pinnipedii sample. As the latin suggests, M. pinnipedii has been isolated 

from seals and sea lions. Bayesian dating analysis, using radiocarbon dates as tip 
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calibration, was implemented for dating the most recent common ancestor (MRCA). Using a 

relaxed molecular clock model, the MRCA was dated between 4000 and 4500 years ago. 

Since the Bering land bridge closed some 15,000 years ago, 10000 years before the 

estimated time of the MRCA, the researchers discarded a human migration hypothesis for 

the appearance of TB in the New World. The remaining, unexpected hypothesis is the 

amphibious one: seals contracted the disease on the coasts of Africa and carried it to South 

America where populations living in the seaside contracted by exploiting the marine 

mammals. This is consistent with similar cases in literature for other pathogens (65). The 

later eradication of this strain and the almost total substitution with European-like lineages 

could be accounted by a spread-after-contact of the latter following favourable conditions 

(66). 

 

CONCLUSIONS: FROM EPIDEMIOLOGY TO DIAGNOSTICS 

The examples presented here testify how the use of genome sequencing in bacteriology for 

epidemiological purposes is now widespread. Favoured by the wealth of data that are being 

generated and by the continued advances in sequencing technologies, the next step will be 

to branch into microbiological diagnostics (67–69). Efforts are being made in multiple 

directions, two of the most promising being direct sequencing from clinical samples and the 

use of genomic data to predict phenotypic characteristics. 

The utility of direct sequencing of clinical samples for diagnosis purposes is obvious, and 

particularly important for bacteria that are difficult, slow or impossible to culture. A possible 

approach, when investigating a single pathogen, is the use of specific baits to sequence the 

target bacterium starting from a mixed clinical sample, an approach that was used for 

example to detect M. tubercolosis from sputum (70). In many clinical cases, it is, however, 

impossible to know a priori which bacterium is causing a pathological state. In these 

situations, a whole metagenomic sequencing approach could allow to identify the causative 

agent/s quickly and without bias. Ad-hoc bioinformatic methods are being developed to 

tackle the problematic issue of analysing the complex metagenomes that can be obtained 

from clinical samples, with the goal of correctly sorting and identifying bacterial populations 

(71, 72)(73)(71, 72).  

Some phenotypic characteristics of a pathogen can be readily inferred from its genome 

sequence. This is the case for example of antibiotic resistance traits that are determined by 

the acquisition of one single gene. Many other phenotypes are, however, multi-factorial, 

making such correlations more complex. These difficulties have not discouraged pioneering 
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projects that use genome-wide association studies to link genotype to phenotype, in an effort 

to obtain diagnostic informations from the now quick and cheap whole-genome sequences. 

Laabei and colleagues (74) applied such an approach to MRSA, developing a model that 

can predict with a high degree of accuracy the toxicity of an isolate based on the sequence 

of signature sites. Another study integrated a genomic approach with gene expression 

analysis, performed with RNA-seq, to determine antibiotic resistance profiles in E. coli (75). 

These are not the only examples, as other approaches are being tried and validated on 

multiple pathogens (76, 77). 

Multiple issues will need to be addressed to allow the transition from genomic epidemiology 

to genomic diagnostics in bacteriology, and one that needs the most concerted effort is 

standardization of genomes, related metadata and bioinformatic analysis. Indeed, the full 

potentiality of genomics will only be exploited in clinical microbiology when all the wealth of 

data generated worldwide will be fully compatible, allowing real time evaluation and 

comparison of the characteristics of sequenced isolates, in a single global database. This 

will in turn allow to fully correlate genotype with phenotype, to optimize diagnostic and 

therapeutic approaches and to monitor movement of dangerous strains worldwide. Efforts 

towards this goal are already being made from the setting of standards for genome 

qualities(78) to the establishment of platforms using standarized bioinformatic protocols for 

genome analyses (79, 80). 

It is only fitting to conclude this review how it started: Next-generation sequencing is 

revolutionizing bacteriology… and the best is yet to come. 
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Different evolutionary scenarios. In this thesis, I have presented five research papers and 

one review article. Two of the research articles are focused on the genomic evolution of a 

nosocomial pathogen strain. These works are focused on Klebsiella pneumoniae CC258 

(Gaiarsa et al., 2015; see Article 1) and Acinetobacter baumannii ST78 (Gaiarsa et al., 

submitted; see Article 2). In the K. pneumoniae paper, the main finding is the presence of a 

1.3 million base recombination in the genomes of the CC258 isolates. This discovery was 

used to complete the picture of the evolutionary history that led to the current genome of this 

worldwide spread pathogen. Moreover, it was possible to date the newly detected and the 

previously reported recombination events. The so-depicted scenario is reminiscent of the 

evolutionary model of punctuated equilibrium in which fast evolutionary events (in this case 

recombinations) lead to the establishment of an highly fit variant. The model of punctuated 

equilibrium was theorized by Stephen Gould to explain the high morphologic variability of the 

fossils of the Cambrian era. Such species were the result of a very quick and diverging 

evolutionary process, but only a few of them were fit enough to survive in the ages. Gould 

named those species “hopeful monsters” after a name invented by evolutionist Richard 

Goldschmidt (1, 2). Indeed, the isolates of CC258 can be compared to the “hopeful 

monsters”. This evolutionary strategy is not exclusive of the CC258: as a matter of facts, it is 

known that recombination of wide portions of genomes are a common feature in bacterial 

pathogens, such as Vibrio cholerae, Clostridium difficile, Salmonella enterica and 

Streptococcus pneumoniae. These and other examples are listed in a commentary article 

published by Nicholas Croucher in 2014, called ‘The Emergence of Bacterial “Hopeful 

Monsters”’ (3). 

Not all pathogens evolve in this way, though. In fact, the bacterial strain analyzed in Article 2 

showed to have a very low recombination lifestyle and a low gene content variability. Indeed, 

in this work about A. baumannii ST78, we were able to identify two different clusters of 

isolates, some of them (ST78A) with a low gene content variability and a very high number 

of copies of insertion sequences (ISs). In our evolutionary model, the acquisition of 

exogenous DNA is slowed down by the inactivation of the comEC/rec2 gene, which codes 

for a protein used for the importation of DNA through transformation and thus involved in the 

pathway of homologous recombination. ST78 has a “strong” phenotype (e.g. high production 

of biofilm) which grants it a very high persistence. Yet, the loss of genomic plasticity in this 

bacterium limits its ability to adapt to environmental changes and could be the cause of its 

low incidence.  

Almost forensic genomics.  The remaining three research articles (Article 3: Onori et al., 

2015; Article 4: Scaltriti et al., 2015; Article 5: Comandatore et al., 2017) are focused on the 

reconstruction of epidemic events of bacterial infections. Article 3 reconstructs the chain of 
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contagion of K. pneumoniae in an intensive care unit of an Italian hospital. In this case, 

global phylogeny and isolation dates helped in identifying what isolates were involved in the 

outbreak event. Then, an approach based on core SNPs and isolation dates allowed to 

reconstruct the spreading route, which resulted to be a star-like radiation from the patient 

zero to all the other ones and suggested that the hospital staff may be responsible of the 

spread, through negligence in respecting the safety procedures. In Article 4, phylogeny 

allowed to identify the source of a food poisoning by Salmonella enterica. In this case, only 

synonymous mutations were used as input to the phylogeny, in order to filter out 

pathoadaptative mutations. Lastly, in Article 5, epidemiological data, molecular typing and 

SNP-based phylogeny were used to reconstruct the dynamics of infection of nine Listeria 

monocytogenes isolates, which were believed to be part of the same outbreak and in the 

end proved to be genomically unrelated, and thus indicating different epidemic events. 

All three articles underline the high potential of genomic epidemiology, which is able to 

provide the resolution to reconstruct the chain of events happened in very short time spans 

and small spaces. In all three cases it was possible to identify the source and responsibility 

for the contagion. No result of these papers was used as evidence in a trial, but the level of 

precision in this kind of investigations is so high to suggest a possible forensic application 

(4). 

Future developments in the projects. Bacterial “hopeful monsters”, such as K. 

pneumoniae CC258, are pathogens with a very high rate of HGT. Thus, besides studying the 

evolutionary history of the strains, it is necessary to understand how these “superbugs” are 

formed: i.e. in what environments and conditions do recombinations happen. This could be 

achieved by studying the patterns of coinfections of the same patient by more than one 

variant of the same species. Of course the copresence in the same environment is the 

conditio sine qua non DNA exchange can happen. One other way of studying this 

phenomenon would be to use phylogenetic approaches to track the movements of 

transferred DNA portions instead of those of entire genomes. 

Moreover, the human body is not the only environment where “superbugs” should be 

searched. K. pneumoniae, for example, is almost ubiquitous and can be normally found in a 

wide array of other niches, such as other animals (either pets, farm animals or bugs) but also 

vegetation and water. Thus, it would be important to understand in what environments can 

resistant and/or virulent variants be found, i.e. what  the reservoirs of pathogens are. With 

this investigative strategy, it would be also possible to detect what the spreading routes are 

for dangerous bacteria and what are the hub points of transmission that could be tackled in 

order to limit the diffusion of the pathogens. Lastly, it would be possible to understand if one 
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of the studied environments can host recombination events. Indeed, the more diverse  the 

environments are, the more diverse is the gene pool that can be mixed when “superbugs” 

are formed. 

Article 2 underlines the importance of selfish DNA, such as ISs, in the evolution of genomes. 

Indeed the phenomenon of reduced genome plasticity caused by the proliferation of ISs 

should be investigated further. It should be understood if it is common to other variants of A. 

baumannii or even to other species. Moreover in A. baumannii ST78, all genes inactivated 

by ISs could be detected in order to understand what pathways are targeted by this 

mechanism. 

Potential translational application of microbial genomics. All works presented in this 

thesis and, more in general the vast majority of articles published in the field of microbial 

genomics and genomic epidemiology, prove that the resolution power of these techniques is 

very high. The characterization of an isolate and the detection of molecular determinants for 

antimicrobial resistance are quick and cheap tasks when performed with genomics. In light 

of the continuous drop of costs for DNA sequencing, there is a moral duty to exploit these 

new technologies to develop cheap diagnostic and surveillance tools (5). The new tests will 

eventually substitute the traditional molecular and microbiological assays, thus cutting the 

time span between isolation and cure administration. This will lower the chance of death of 

the patient as well as limit the possibility of spread of the pathogens. 
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TABLE S1

Table  of  Klebsiella  pneumoniae isolates  sequenced  in  this  study  and  selected

characteristics.

PUBLICATION_NAME ENTRY YEAR OF COLLECTION MLST HOSPITAL PHENOTYPE

100SGR ERS480596 2012 16 SAN GIOVANNI ROTONDO ESBL

101BO ERS480597 2012 512 BOLOGNA KPC

102BO ERS480598 2012 512 BOLOGNA KPC

103BO ERS480599 2012 512 BOLOGNA KPC

104BO ERS480600 2012 512 BOLOGNA KPC

10PV ERS480601 2012 307 PAVIA ESBL

11PV ERS480602 2013 258 PAVIA KPC

12PV ERS480603 2013 258 PAVIA KPC

13PV ERS480604 2013 258 PAVIA KPC

14PV ERS480605 2012 1624 PAVIA Susceptible

15PV ERS480606 2012 976 PAVIA Susceptible

16BO ERS480607 2011 37 BOLOGNA ESBL

17PV ERS480608 2012 307 PAVIA ESBL

18PV ERS480609 2013 15 PAVIA ESBL

19PV ERS480610 2013 15 PAVIA ESBL

20PV ERS480611 2012 1631 PAVIA Susceptible

21PV ERS480612 2012 240 PAVIA Susceptible

22PV ERS480613 2012 1625 PAVIA Susceptible

23PV ERS480614 2013 258 PAVIA KPC

24PV ERS480615 2013 258 PAVIA KPC

25BO ERS480616 2013 35 BOLOGNA Susceptible

26BO ERS480617 2013 35 BOLOGNA Susceptible

27BO ERS480618 2011 45 BOLOGNA ESBL

28BO ERS480619 2011 37 BOLOGNA ESBL

29BO ERS480620 2012 512 BOLOGNA KPC

30BO ERS480621 2012 512 BOLOGNA KPC

31AVR ERS480622 2013 512 CESENA KPC

32AVR ERS480623 2013 466 CESENA Susceptible

34AVR ERS480624 2013 405 CESENA Susceptible

36AVR ERS480625 2013 37 CESENA Susceptible

37AVR ERS480626 2013 323 CESENA ESBL

39AVR ERS480627 2013 395 CESENA Susceptible

40AVR ERS480628 2013 307 CESENA ESBL

41AVR ERS480629 2013 16 CESENA ESBL

42AVR ERS480630 2013 512 CESENA KPC

43AVR ERS480631 2013 512 CESENA KPC

44AVR ERS480632 2013 512 CESENA KPC

45AVR ERS480633 2013 160 CESENA Susceptible

46AVR ERS480634 2013 395 CESENA ESBL

47AVR ERS480635 2013 323 CESENA ESBL

48AVR ERS480636 2013 512 CESENA KPC

49BG ERS480637 2012 147 BERGAMO Susceptible

50BG ERS480638 2011 258 BERGAMO KPC

51BG ERS480639 2007 1626 BERGAMO Susceptible

52BG ERS480640 2006 268 BERGAMO Susceptible

53BG ERS480641 2009 321 BERGAMO Susceptible

54BG ERS480642 2011 258 BERGAMO KPC

55BG ERS480643 2012 466 BERGAMO Susceptible

56BG ERS480644 2011 258 BERGAMO KPC



PUBLICATION_NAME ENTRY YEAR OF COLLECTION MLST HOSPITAL PHENOTYPE

57BG ERS480645 2011 258 BERGAMO KPC

58BG ERS480646 2011 512 BERGAMO KPC
60BG ERS480647 2012 45 BERGAMO ESBL

62BG ERS480648 2011 147 BERGAMO ESBL

63BG ERS480649 2011 1627 BERGAMO ESBL

65BO ERS480650 2013 1243 BOLOGNA Susceptible

66BO ERS480651 2013 416 BOLOGNA Susceptible
67BO ERS480652 2013 1628 BOLOGNA Susceptible

68BO ERS480653 2011 37 BOLOGNA ESBL

69BO ERS480654 2011 277 BOLOGNA ESBL

70BO ERS480655 2011 37 BOLOGNA ESBL

71RE ERS480656 2011 258 REGGIO EMILIA KPC

72RE ERS480657 2011 258 REGGIO EMILIA KPC
73RE ERS480658 2011 258 REGGIO EMILIA KPC

74RE ERS480659 2011 512 REGGIO EMILIA KPC

75RE ERS480660 2011 258 REGGIO EMILIA KPC

76RE ERS480661 2012 1243 REGGIO EMILIA Susceptible

77RE ERS480662 2012 1629 REGGIO EMILIA Susceptible

78RE ERS480663 2012 1164 REGGIO EMILIA Susceptible
79RE ERS480664 2012 35 REGGIO EMILIA Susceptible

81RE ERS480665 2011 147 REGGIO EMILIA ESBL

82RE ERS480666 2012 405 REGGIO EMILIA ESBL

83RE ERS480667 2012 147 REGGIO EMILIA ESBL

84RE ERS480668 2012 322 REGGIO EMILIA ESBL

85RE ERS480669 2012 37 REGGIO EMILIA ESBL
86SGR ERS480670 2011 512 SAN GIOVANNI ROTONDO KPC

87SGR ERS480671 2011 512 SAN GIOVANNI ROTONDO KPC

88SGR ERS480672 2011 512 SAN GIOVANNI ROTONDO KPC

89SGR ERS480673 2011 512 SAN GIOVANNI ROTONDO KPC

90SGR ERS480674 2011 512 SAN GIOVANNI ROTONDO KPC
91SGR ERS480675 2012 29 SAN GIOVANNI ROTONDO Susceptible

92SGR ERS480676 2012 70 SAN GIOVANNI ROTONDO Susceptible

93SGR ERS480677 2012 35 SAN GIOVANNI ROTONDO Susceptible

94SGR ERS480678 2012 45 SAN GIOVANNI ROTONDO Susceptible

95SGR ERS480679 2012 1307 SAN GIOVANNI ROTONDO Susceptible

96SGR ERS480680 2012 1630 SAN GIOVANNI ROTONDO ESBL
97SGR ERS480681 2012 512 CESENA ESBL

98SGR ERS480682 2012 20 SAN GIOVANNI ROTONDO ESBL

99SGR ERS480683 2012 15 SAN GIOVANNI ROTONDO ESBL

9PV ERS480684 2012 307 PAVIA ESBL



TABLE S2

Genes with potential effect on virulence or antibiotic resistance phenotype comprised in

recombined region of ~1.3 Mb described in this work. Coordinates and strand are referred

to the genome of the reference strain NJST258_1, annotation was obtained by BLAST

search against a specifically designed database, as reported in the materials and methods

section.

START END STRAND PRODUCT NAME
18482 20224 + Integral membrane protein with trka domains
29471 30706 - Multidrug resistance protein emrD
69212 72319 - multidrug transporter
72319 73443 - acriflavine resistance protein E

138949 140223 - 3-deoxy-D-manno-octulosonic acid transferase WaaA
142431 143558 - glycosyl transferase family 1 WabG
143555 144631 - glycosyl transferase family 9 WaaQ
148902 149873 - ADP-heptose--LPS heptosyltransferase WaaC
149877 150935 - ADP-heptose--LPS heptosyltransferase WaaF
150945 151877 - ADP-L-glycero-D-manno-heptose-6-epimerase RfaD
188732 190165 + Xylose isomerase
291995 293161 + UDP-4-amino-L-arabinose synthase PmrH
293109 294146 + Undecaprenyl-phosphate alpha-4-amino-L-arabinosyltransferase ArnC
294143 296128 + UDP-4-amino-4-deoxy-L-arabinose formyltransferase ArnA
296125 297027 + 4-deoxy-4-formamido-L-arabinose-phospho-UDP deformylase PmrJ
297024 298682 + Undecaprenyl phosphate-alpha-4-amino-4-deoxy-L-arabinose arabinosyl transferase ArnT
298679 299017 + 4-amino-4-deoxy-L-arabinose-phospho-UDP flippase PmrL
299017 299397 + 4-amino-4-deoxy-L-arabinose-phospho-UDP flippase PmrM
373562 374329 + Transcriptional regulatory protein ompR
374326 375681 + osmolarity sensor protein envZ
408428 409060 - Crp/Fnr family transcriptional regulator
424107 425291 + Elongation factor Tu
457426 460536 - multidrug transporter AcrB
460549 461688 - acrE
462055 462717 + AcrAB operon repressor
532636 532923 - yhbH
536245 536811 - yrbI

540606 541172 + yrbD/mlad
541191 541826 + mlac
553941 554792 + dihydropteroate synthase

4632900 4634141 + multidrug transporter
4638808 4639326 - Transcriptional regulator, MarR family protein
4646942 4648030 - ABC-type_sugar_transport_system,_periplasmic_component
4682645 4683964 - xylose isomerase
4684337 4685830 + Xyloside transporter
4685889 4687568 + beta-xylosidase
4845809 4846771 + Phosphatidylserine_decarboxylase psd
4853100 4854890 + fumarate reductase frdA
4854835 4855617 + frdB
4855628 4856023 + fumarate reductase frdC
4856004 4856393 + frdD
4856507 4857040 + Bacterial_lipocalin
4857037 4857354 - Membrane_transporter_of_cations_and_cationic_drugs sugE
4874086 4875387 + C4-dicarboxylate ABC transporter DcuA
4901698 4904016 - Ferrienterobactin receptor precursor fepA
4996917 5000978 - rpoB
5005173 5006357 - elongation factor Tu
5149976 5150674 + cpxR
5150671 5152044 + Sensor protein cpxA
5160685 5161671 + ABC-type_sugar_transport_system,_periplasmic_component rhaS
5256865 5258115 - Chloramphenicol resistance protein
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FIGURE S1
Clustering of core SNPs in the 319 Klebsiella pneumoniae genomes. The phylogenetic reconstruction is shown on the left, while the core SNP 
frequency is shown on the right, in shades of red representing number of core SNPs per 1000bp windows for each genome. Detected 
recombinations are indicated on the top of the figure, main clades detected in the phylogenetic analysis are indicated on the 
right side of the figure.



FIGURE S2
Recombination analysis obtained with BRATnextgen. A subdataset of 187 genomes was used as input for a 100 iteration 
analysis with 100 replicates with the BRATnextgen software. The recombination proposed by Chen and coworkers is detected 
in green while the recombination proposed in this work is detected in blue. Recombined regions as detected with the SNP-
based method are indicated with boxes, using the same colors as those chosen by the BRATnextgen software.



FIGURE S3

FIGURE S3. Phylogeny of the 319 Klebsiella pneumoniae genomes based on core SNPs in non-recombined

regions. Phylogeny was reconstructed starting from an alignment of 55,368 core SNPs, located outside of

the two main recombined regions of the genome, using the software RAxML, with the Generalised time-

reversible (GTR) model and 100 bootstrap replicates. Bootstrap is shown only for the three main nodes of

Clonal Complex 258.



FIGURE S4

phylogeny of  the 319  Klebsiella pneumoniae genomes based on core SNPs in the ~1.3Mb recombined

region. Phylogeny was reconstructed starting from an alignment of 24,537 core SNPs present only in the

recombined region located from 4,554,906 to 629,621, spanning the origin of replication, using coordinates

of  genome NJST258_1.  The  tree  was obtained  using  the software  RAxML,  with  the  Generalised  time-

reversible (GTR) model and 100 bootstrap replicates, bootstraps are shown only for nodes of interest. The

putative donor of the ~1.3Mb recombined region, 67BO, results as sister clade of the recipient CC258.



FIGURE S5.  phylogeny of the 319  Klebsiella pneumoniae genomes based on core SNPs in the ~1.1Mb

recombined region. Phylogeny was reconstructed starting from an alignment of 14,905 core SNPs present

only  in  the  recombined  region  located  from  1,675,550  to  2,740,033,  using  coordinates  of  genome

NJST258_1. The tree was obtained using the software RAxML, with the Generalised time-reversible (GTR)

model and 100 bootstrap replicates, bootstraps are shown only for nodes of interest. The putative donor of

the ~1.1Mb recombined region, Kp13, results as sister clade of the recipient CC258 clade, with the exclusion

of the ST11 clade.
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Supplementary Figure 1. Global phylogeny of the species Acinetobacter baumannii obtained using 
fasttree on a dataset of core SNPs. The genomes of the Sequence Type 78 are highlighted in red 
and indicated with an arrow; names of the strains are not reported for seek of better visualization. 
  



 
 
Supplementary Figure 2. Synteny analysis of the plasmids containing the gene blaOXA-58 among all 
strains of the Sequence Type 78. The analysis was run on the software Mauve. 
  



 

 
 
Supplementary Figure 3. Structure of the genomic locus encompassing the gene blaOXA-58 in the 
three newly described Acinetobacter baumannii plasmids and the previously described plasmids 
p3909 and p183Eco 
  



  

Isolate MIC (μg/ml) Biofilm formation 
capability (OD600) 

MER IPM 

2MG 0.75 0.38 0.4 0.4 0.4 

65SM01 0.75 0.75 0.4 0.4 0.3 

5MO >32 >32 0.6 0.7 0.5 

2RED09 >32 >32 0.4 0.4 0.6 

14336 >32 >32 0.4 0.4 0.5 

20C15 >32 >32 0.6 0.4 0.6 

25C30 >32 >32 0.5 0.5 0.5 

96SM 1 0.5 0.6 0.7 0.4 

103SM 1 0.38 0.6 0.7 0.5 

74SM01 0.75 0.5 0.4 0.4 0.3 

MGTN 1 0.5 0.4 0.4 0.4 

72SM01 0.5 0.38 0.6 0.7 0.8 

68SM01 >32 0.38 0.2 0.7 0.5 

MONUR >32 0.38 0.5 0.5 0.5 

3909 32 6 0.4 0.4 0.4 

61SM01 >32 0.38 0.5 0.5 0.3 

 
Supplementary Table 1. Phenotypic testing on the 16 Italian strains. A. Results of Minimum 
Inhibitory Concentration using the E-test method. B. Results of the biofilm formation capability assay 
  



Table 2-A 

Strain blaOXA-90 ISAba1 blaOXA-58 blaOXA-23 blaADC-52 
blaCARB-

PSE carO adeR adeS floR sul2 aadB aph(3')-Ic	
2MG x x   1SNP x x x x x x x x	

2RED09 x x x  1SNP  x x x x x x x	
5MO x x  x 1SNP  x x x x x x x	

20C15 x x x x 1SNP  x x x x x x x	
25C30 1SNP x   1SNP  x x x x x x x	

61SM01 x x   1SNP  x x x x x x x	
65SM01 x x   1SNP  x x x x x x x	
68SM01 x x   1SNP x x x x x x x x	
72SM01 x x   1SNP  x x x x x x x	
74SM01 x x   1SNP  x x x x x x x	

96SM x x   1SNP  x x x x x x x	
103SM x x   1SNP  x x x   x x	
14336 x x x  1SNP  x x x   x x	
MGTN x x   1SNP  x x x x x x x	

MONUR x x   1SNP  x x x x x x x	
3909 x x x  1SNP  x x INT x x x x	

TG22142 3SNP x   1SNP x x x INT x x x x	
TG22146 3SNP x   1SNP x x x INT x x x x	
TG22150 3SNP x   1SNP x x x INT    x	
UH5207 x    x  x x x     
1096934 x    x  x x x     
831240 x    x  x x x     
855125 x    x  x x INT     
UH1752 x x   x  x x x     

ABBL025 x    x  x x x     
ABBL026 x    x  x x x     

	
Supplementary Table 2-A. Results of the refined analysis of presence of genes of interest of the 
following categories: A. Resistance. B. Virulence. C. Competence. D. Biofilm formation



Table 2-B 

Strain pil 
genes*  ptk cap8J zur hcp pmt entE sc1 bfmR envZ ompF ostA pbpG ptk rstA epsA bap	

2MG x x x x x x x x x x x x x x x  x	
2RED09 x x x x x x x x x x x x x x x  x	

5MO x x x x x x x x x x x x x x x  x	
20C15 x x x x x x x x x x x x x x x  x	
25C30 x x x x x x x x x x x x x x x  x	

61SM01 x x x x x x x x x x x x x x x  x	
65SM01 x x x x x x x x x x x x x x x  x	
68SM01 x x x x x x x x x x x x x x x  x	
72SM01 x x x x x x x x x x x x x x x  x	
74SM01 x x x x x x x x x x x x x x x  x	

96SM x x x x x x x x x x x x x x x  x	
103SM x x x x x x x x x x x x x x x  x	
14336 x x x x x x x x x x x x x x x  x	
MGTN x x x x x x x x x x x x x x x  x	

MONUR x x x x x x x x x x x x x x x  x	
3909 x x x x x x x x x x INT x x x x  x	

TG22142 x x x x x x x x x x x x x x x  x	
TG22146 x x x x x x x x x x x x x x x  x	
TG22150 x x x x x x x x x x x x x x x  x	
UH5207 x x  x x x x x x x x x x x x x x	
1096934 x x  x x x x x x x x x x x x x x	
831240 x x  x x x x x x x x x x x x x x	
855125 x x  x x x x x x x x x x x x x x	
UH1752 x x  x x x x x x x x x x x x x x	

ABBL025 x x  x x x x x x x x x x x x x x	
ABBL026 x x  x x x x x x x x x x x x x x	
	
*. pil genes are A, B, C, F, M, O, Q, W, R, S, T, and U.	
	

Supplementary Table 2-B. Results of the refined analysis of presence of genes of interest of the 
following categories: A. Resistance. B. Virulence. C. Competence. D. Biofilm formation	
 

 



Table 2-C 
Strain comEC comB comC comD comE	
2MG INT x x x x	

2RED09 INT x x x x	
5MO INT x x x x	

20C15 INT x x x x	
25C30 INT x x x x	

61SM01 INT x x x x	
65SM01 INT x x x x	
68SM01 INT x x x x	
72SM01 INT x x x x	
74SM01 INT x x x x	

96SM INT x x x x	
103SM INT x x x x	
14336 INT x x x x	
MGTN INT x x x x	

MONUR INT x x x x	
3909 INT x x x x	

TG22142 x x x x x	
TG22146 x x x x x	
TG22150 x x x x x	
UH5207 x x x x x	
1096934 x x x x x	
831240 x x x x x	
855125 x x x x x	
UH1752 x x x x x	

ABBL025 x x x x x	
ABBL026 x x x x x	
	
Supplementary Table 2-C. Results of the refined analysis of presence of genes of interest of the 
following categories: A. Resistance. B. Virulence. C. Competence. D. Biofilm formation 



Table 2-D 
Strain csuA csuB csuC csuD csuE ompA pgaA pgaB pgaC pgaD bfmS bfmR	

103SM x x x x x x x x x x x x	
1096934 x x 1SNP x x x 1SNP x x x 1SNP x	

14336 x x 1SNP x x x x x x x 1SNP x	
20C15 x x 1SNP x x x x x x x 1SNP x	
25C30 x x 1SNP x x x x x x x 1SNP x	
2MG x x 1SNP x x x x x x x 1SNP x	

2RED09 x x 1SNP x x x x x x x 1SNP x	
3909 x x 1SNP x x x 1INS (Stop 

Codon)# x x ND* 1SNP x	
5MO x x 1SNP x x x x x x x 1SNP x	

61SM01 x x 1SNP x x x x x x x 1SNP x	
65SM01 x x 1SNP x x x x x x x 1SNP x	
68SM01 x x 1SNP x x x x x x x 1SNP x	
72SM01 x x 1SNP x x x x x x x 1SNP x	
74SM01 x x 1SNP x x x x x x x 1SNP x	
831240 x 1SNP 2SNP 1SNP x x 2SNP x x x 1SNP x	
855125 x x 1SNP x x x 1SNP 1INS (Stop 

Codon)## x x 1SNP x	
96SM x x x x x Triplet INS x x x x x x	

ABBL025 x x 1SNP x x x 1SNP x x x 2SNP x	
ABBL026 x x 1SNP x x x ND** x x x 1SNP x	

MGNT x x 1SNP x x x x x x x 1SNP x	
MONUR x x 1SNP x x x x x x x 1SNP x	
TG22142 x x 1SNP x x x x x x x 1SNP x	
TG22146 x x 1SNP x x x x x x x 1SNP x	
TG22150 x x 1SNP x x x x x x x 1SNP x	
UH1752 x x 1SNP x x x 1SNP x x x 1SNP x	
UH5207 x x 1SNP x x x 1SNP x x x 1SNP x	

	
* the first 239 bases are not assembled; i.e. the contig ends at base 239 in a +/+ alignment. No evidence of the presence 
of the other half 
** the gene is split in two different contigs, no sign of insertion sequences. Impossible to determine if it is an assembly error 
#  insertion of an adenine in position 805, Stop codon at base 840  
## insertion of a timine in position 1203, Stop codon at base 1227 
Please note: all SNPs indicated are mutations of the allele found in strain 103SM 
 
 
Supplementary Table 2-D. Results of the refined analysis of presence of genes of interest of the 
following categories: A. Resistance. B. Virulence. C. Competence. D. Biofilm formation 
 
 
 
 



Strain IS5 ssgr 
IS903 

IS3 ssgr 
IS51 

IS5 ssgr 
IS427 IS1 ISL3 IS6 IS4 ssgr 

IS10 
IS3 ssgr 
IS150 IS256 IS3 ssgr 

IS3 IS91 IS66 IS5 ssgr 
ISL2 ISNCY 

74SM01 28 0 0 0 3 4 9 3 0 0 6 13 0 0 
65SM01 18 0 0 0 3 4 2 2 0 0 8 13 0 1 
20C15 62 12 0 3 1 26 9 3 0 0 5 6 0 0 

72SM01 6 0 0 0 3 25 2 6 0 0 2 5 0 1 
14336 20 3 0 2 3 18 10 1 0 0 0 8 0 0 

MONUR 5 0 0 0 2 20 11 4 0 0 7 32 0 1 
MGTN 20 0 0 0 3 18 10 5 0 0 7 12 0 1 
96SM 4 0 0 0 3 32 6 5 0 0 6 41 0 1 

103SM 31 0 0 0 3 9 7 2 0 0 0 48 0 1 
2MG 11 0 0 0 1 4 4 5 0 1 10 6 0 1 
5MO 12 0 0 0 3 5 7 2 0 0 10 10 2 1 
3909 2 1 0 2 3 2 2 2 0 0 4 1 0 0 

61SM01 17 0 0 0 3 3 5 5 0 0 6 6 0 1 
25C30 2 0 0 0 2 19 6 3 0 0 8 9 0 1 

68SM01 3 0 0 0 3 12 2 8 0 1 8 5 0 1 
2RED09 4 5 0 3 3 32 4 3 0 0 2 6 0 1 
TG22146 5 0 0 0 3 7 40 6 0 1 4 4 0 1 
TG22142 1 0 0 0 3 7 36 7 0 1 5 43 0 1 
TG22150 2 0 0 0 3 1 2 3 0 1 2 2 0 1 
831240 3 0 1 0 4 0 0 0 0 2 0 0 0 1 
UH5207 3 1 0 0 4 0 0 0 0 1 0 0 1 1 
1096934 3 1 0 0 3 0 0 0 0 1 0 0 1 1 
855125 1 0 0 0 3 0 0 0 0 4 0 0 1 1 

ABBL026 0 0 0 0 3 0 0 0 6 0 0 0 0 0 
UH1752 3 1 0 0 4 0 2 0 0 1 0 0 1 1 

ABBL025 4 0 0 0 4 1 2 0 0 0 0 0 1 1 
 
Supplementary Table 3. Number of insertion sequences of different classes detected by the platform ISSaga on each genome of the ST78. The 
number reported is the total number of putative sequence detected by the algorithm 
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