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Abstract: Acute respiratory distress syndrome (ARDS) is characterized by the acute onset of
pulmonary edema of non-cardiogenic origin, along with bilateral pulmonary infiltrates and reduction
in respiratory system compliance. The hallmark of the syndrome is refractory hypoxemia. Despite
its first description dates back in the late 1970s, a new definition has recently been proposed.
However, the definition remains based on clinical characteristic. In the present review, the diagnostic
workup and the pathophysiology of the syndrome will be presented. Therapeutic approaches to
ARDS, including lung protective ventilation, prone positioning, neuromuscular blockade, inhaled
vasodilators, corticosteroids and recruitment manoeuvres will be reviewed. We will underline how a
holistic framework of respiratory and hemodynamic support should be provided to patients with
ARDS, aiming to ensure adequate gas exchange by promoting lung recruitment while minimizing the
risk of ventilator-induced lung injury. To do so, lung recruitability should be considered, as well as
the avoidance of lung overstress by monitoring transpulmonary pressure or airway driving pressure.
In the most severe cases, neuromuscular blockade, prone positioning, and extra-corporeal life support
(alone or in combination) should be taken into account.

Keywords: acute respiratory distress syndrome; positive end-expiratory pressure; lung-protective
ventilation; critically ill patients

1. Introduction

Acute respiratory distress syndrome (ARDS) is defined by association of an acute onset of
hypoxaemia and bilateral pulmonary infiltrates following a trigger insult; since its first description,
ARDS has been redefined several times to ameliorate the accuracy of clinical diagnosis [1–3]. The first
known description of the syndrome dates back to 1821, when Laennec described fatal “idiopathic
pulmonary edema”. Later on, the first and the second World wars provided evidence that several
traumatic insult could result in the eventual development of an edematous lung injury [4], so that and
the term “shock lung” was developed to describe such a condition. In 1967, Ashbaugh and colleagues
published a case-series of 12 patients that developed respiratory failure after a variety of insults [1],
providing the first systematic description of this condition.

Nowadays, approximately 5% of hospitalized, mechanically ventilated patients meet the
diagnostic criteria for ARDS [5]. As for the severity of the clinical presentation, it has been shown
how only 25% of patients have a mild form of ARDS, while the remaining 75% display a moderate
or severe form [6]. Indeed, in the last decades the incidence of ARDS has constantly declined, the
change being primarily due to a reduction in the nosocomial form of ARDS [7], while the incidence
of the community-acquired form has not changed. While this trend can partially be explained by a
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decrease in the routine use of chest radiographs [8] and arterial blood gas analyses [9], thus potentially
leading to some degree of underdiagnosis, several major advances in critical care practice likely also
contributed to this trend. Among key contributing measures are timely resuscitation and antimicrobial
administration, restrictive transfusion strategies [10], ventilator care bundles [11], and the widespread
use of lung-protective ventilation [12].

2. Definition

In 1994, during the American-European Consensus Conference (AECC) on ARDS, the term
ARDS firstly achieved a common definition. Indeed, due to some critical issues of that definition,
the European Society of Intensive Care Medicine convened an international expert panel in 2011 in
Berlin, to develop a new definition of the syndrome, which led to the so-called “Berlin definition” of
ARDS [3] (Table 1). According to this new definition, ARDS is an acute form of diffuse lung injury
occurring in patients with a predisposing risk factor, meeting the following criteria: (1) onset within
1 week of a known clinical insult or new/worsening respiratory symptoms; (2) presence of bilateral
opacities on chest X-ray, not fully explained by effusion, lobar/lung collapse, or nodules; (3) diagnosis
of respiratory failure not fully explained by cardiac failure or fluid overload; (4) presence of hypoxemia,
as defined by a specific threshold of the PaO2/FiO2 ratio measured with a minimum requirement of
PEEP ≥ 5 cm H2O, thus identifying three categories of severity: mild (200 millimeters of mercury
(mm) Hg < PaO2/FiO2 ≤ 300 mm Hg), moderate (100 mm Hg < PaO2/FiO2 ≤ 200 mm Hg), severe
(PaO2/FiO2 ≤ 100 mm Hg) [1,3].

Table 1. Comparison between AECC definition (1994), and the Berlin definition of acute respiratory
distress syndrome (2012).

Characteristic AECC Definition 1994 [2] Berlin Definition 2012 [3]

Timing Acute, without any specification Maximum within a week after a trigger insult

Imaging Chest X-ray with bilateral infiltrates Chest X-ray or CT scan with bilateral infiltrates, not fully
explained by effusion, lung collapse or nodules

Non-cardiogenic source
of edema

Confirmation of non-elevated left
atrial pressure

Respiratory failure not completely explained by
excessive volume loading or cardiac failure

Classification

Based on PaO2/FiO2 Based on PaO2/FiO2 calculated with PEEP ≥5 cmH2O
Acute lung injury: ≤300 Mild: 201–300
ARDS: ≤200 Moderate: 101–200
– Severe: ≤100

Predisposing condition Not specified If none identified, then need to rule out cardiogenic
edema with additional data

Indeed, the Berlin criteria provided a little but significant improvement in the predictive ability
for mortality (area under the curve AUC 0.577), when compared to the AECC criteria (AUC 0.536).
However, some issues still remain with this definition, the bigger being the lack of a sensitive and
specific biomarker that can help the clinical diagnosis. In fact, even if the several biomarkers are
currently under investigation, they have not proven helpful enough to be introduced into clinical
practice [13,14]. Moreover, the level of positive end-expiratory pressure applied may also greatly affect
PaO2/FIO2 value, thereby masking acute respiratory distress syndrome severity, which should reflect
the underlying lung injury (lung edema and recruitability). Recently, it has been demonstrated how the
assessment of acute respiratory distress syndrome severity at standardized low positive end-expiratory
pressure (i.e., 5 cm H2O) allows a better evaluation of lung recruitability and edema than at higher
positive end-expiratory pressure clinically set [15]. Eventually, the role of excessive hydrostatic
pressure, not always easily identified by the use of echocardiography or computed tomography (CT)
scan, remains a major confounder.
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3. Diagnostic Evaluation

Common risk factors for ARDS are: pneumonia, sepsis, gastric content aspiration, trauma,
pancreatitis, inhalation injury, burns, non-cardiogenic shock, drug overdose, acute lung injury
following massive tranfusions (TRALI), drowning [16]. Indeed, the critical factor for a favorable
outcome of ARDS patients is an adequate treatment of the underlying cause. Undoubtedly, pneumonia
still remains leading cause of ARDS [17], hence the first step is to quickly identify the pathogen
responsible for the infection, and microbiological assessment for any potential pathogens represents
the first diagnostic effort. Table 2 shows the microorganisms most often associated with a diagnosis
of ARDS.

Table 2. Most common pathogens responsible for ARDS genesis.

Bacteria Virus Fungi Parasites

Streptococcus pneumoniae Influenza A and B

Pneumocystis Jirovecii

Toxoplasma gondii

Haemophilus influenzae Rhinoviruses
Enterobacteriaceae RSV

Staphylococcus aureus Parainfluenza viruses
Legionella pneumophila Coronavirus
Clamydia pneumoniae Enterovirus

Aspergillus fumigatus
Mycoplasma pneumoniae HSV
Pseudomonas aeruginosa CMV
Acinetobacter baumannii –

Stenotrophompnas maltophilia –

Community-acquired bacterial pneumonia represents the first type of pneumonia leading to
ARDS [17]. Nosocomial bacteria, on the other side, should be considered in mechanically-ventilated
or hospitalized patients who develop ARDS [18]. Indeed, a recent study found a 36% rate of viruses
isolated from the respiratory tract of patients with ARDS, compared to a historic value as low as
5%–10% [19–21], the majority being respiratory viruses [22]. As viruses can cause pneumonia and
ARDS, the suggested diagnostic technique is performing real-time PCR on a bronchoalveolar lavage
(BAL) sample [23]. HSV and CMV are increasingly recognized causes of ARDS [24,25]. Moreover,
fungi and parasites such as Pneumocystis jirovecii, Toxoplasma gondii and Aspergillus fumigatus may be
responsible, in immunocompromised patient, for some forms of ARDS [26]. Prompt recognition is
then pivotal, because a specific treatment may change the outcome [26].

Physicians caring for patients with ARDS thus need to first systematically investigate a potential
infectious etiology, and such initial assessment should include: blood cultures, urinary antigen testing
for Legionella pneumophila and Streptococcus pneumoniae, serologic tests for Mycoplasma pneumoniae and
Chlamydia pneumoniae, and microbial sampling of the lung [27], preferably realized with a fiberoptic
BAL. The first step aims at bacterial identification using Gram staining, while the following step aims
at recognition of respiratory viruses using PCR. Indeed, a recent study investigated the prevalence of
ARDS without any identifiable risk factor, demonstrating a prevalence of 7.5% of cases [28]. In this
scenario, BAL cytology, CT scan and immunologic examinations should be performed, looking for
less common etiologies. Drug-induced respiratory failure or a malignant etiology should also be
considered. Eventually, if neither CT scan nor BAL cytology help the clinicians in the diagnosis, open
lung biopsy (OLB) should be performed to identify the underlying trigger cause. Another potential
role for OLB is the histological identification of fibroproliferation, which occurs after the first week
of evolution in a subset of patients, in order to consider the use of corticosteroids [29]. As previously
discussed, then, there are in the current clinical practice only few indications to perform an OLB in
patient with non-resolving ARDS [30]. Figure 1 shows a schematic diagnostic approach to identify the
causal pathogen in patients with ARDS.
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Figure 1. Diagnostic approach to identify the causal pathogen in patients with pulmonary ARDS. 

A pulmonary CT scan is also usually performed to better understand the underlying 
patophysiology and the possible presence of hidden diagnosis; typical morphological patterns are: 
consolidated regions (homogeneous areas of increased density without vessels and bronchi), ground 
glass areas (with augmented density but still recognizable vessels) and normally aerated regions 
[31]. Consolidated regions are typically localized on the dependent areas of the lung; they are related 
to the increase in lung weight, due to the presence of lung oedema, so that the increased 
superimposed pressure determines a reduction of lung gas volume and the development of 
non-aerated regions [32] (Figure 2). Moreover, CT scan has been used to evaluate the extent of lung 
recruitability, defined as the aeration of previously collapsed or non-aerated lung units following an 
increase in alveolar pressure. With this technique, lung recruitability was found to be highly variable 
among patients with ARDS, with values ranging from 0 to 70% of total lung weight, as shown in 
Figure 3. The presence of non-inflated areas determines a major expansion of the neighboring lung 
regions, causing an increase in the local pressure and thus acting as a “stress raiser” [33]. Typically, 
pulmonary ARDS present a similar amount of consolidated and ground glass areas, while 
extrapulmonary ARDS have a higher amount of ground glass areas [34]. CT scan may also be helpful 
in describing the distribution of lung opacities and, in some instances, it may allow the recognition 
of an unsuspected pneumothorax or help to identify the ARDS cause. 

Figure 1. Diagnostic approach to identify the causal pathogen in patients with pulmonary ARDS.

A pulmonary CT scan is also usually performed to better understand the underlying
patophysiology and the possible presence of hidden diagnosis; typical morphological patterns are:
consolidated regions (homogeneous areas of increased density without vessels and bronchi), ground
glass areas (with augmented density but still recognizable vessels) and normally aerated regions [31].
Consolidated regions are typically localized on the dependent areas of the lung; they are related to
the increase in lung weight, due to the presence of lung oedema, so that the increased superimposed
pressure determines a reduction of lung gas volume and the development of non-aerated regions [32]
(Figure 2). Moreover, CT scan has been used to evaluate the extent of lung recruitability, defined
as the aeration of previously collapsed or non-aerated lung units following an increase in alveolar
pressure. With this technique, lung recruitability was found to be highly variable among patients with
ARDS, with values ranging from 0 to 70% of total lung weight, as shown in Figure 3. The presence of
non-inflated areas determines a major expansion of the neighboring lung regions, causing an increase
in the local pressure and thus acting as a “stress raiser” [33]. Typically, pulmonary ARDS present a
similar amount of consolidated and ground glass areas, while extrapulmonary ARDS have a higher
amount of ground glass areas [34]. CT scan may also be helpful in describing the distribution of lung
opacities and, in some instances, it may allow the recognition of an unsuspected pneumothorax or
help to identify the ARDS cause.
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Figure 2. Ideal model depicting the effects of increased permeability in terms of increased 
superimposed pressure, with the inhomogeneous coexistence of areas of hyperinflation, normal 
inflation, collapse and areas of consolidation (as indicated by arrows), along with the necessary 
pressure that needs to be applied to the lung in order to overcome the superimposed pressure 
generated by the lung mass and by the chest wall and recruit the alveolar units (i.e., to inflate the 
collapsed lung regions) and to maintain these regions open. ∞ represents infinite pressure, i.e., areas 
that can never be open despite increased positive airway pressure. 

 
Figure 3. Example of lung CT scan of patients with high (upper panel) or low (lower panel) potential 
of lung recruitment. Arrows depict the morphologic change from a condition of low airway pressure 
(i.e., 5 cm H2O), to one of high airway pressure (i.e., 45 cm H2O). 

Further help in diagnosis and management of ARDS may come from the study of 
ultrasonographic artefacts produced by air, lung parenchyma, chest wall and pleura [35,36]; the 
pivotal finding in patients with respiratory failure is a B-line artifact, defined as the presence of a 
discrete vertical hyperechoic reverberation artefact that arises from the pleural line [36]. The finding 

Figure 2. Ideal model depicting the effects of increased permeability in terms of increased superimposed
pressure, with the inhomogeneous coexistence of areas of hyperinflation, normal inflation, collapse
and areas of consolidation (as indicated by arrows), along with the necessary pressure that needs to
be applied to the lung in order to overcome the superimposed pressure generated by the lung mass
and by the chest wall and recruit the alveolar units (i.e., to inflate the collapsed lung regions) and to
maintain these regions open. ∞ represents infinite pressure, i.e., areas that can never be open despite
increased positive airway pressure.
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Figure 3. Example of lung CT scan of patients with high (upper panel) or low (lower panel) potential
of lung recruitment. Arrows depict the morphologic change from a condition of low airway pressure
(i.e., 5 cm H2O), to one of high airway pressure (i.e., 45 cm H2O).

Further help in diagnosis and management of ARDS may come from the study of ultrasonographic
artefacts produced by air, lung parenchyma, chest wall and pleura [35,36]; the pivotal finding in
patients with respiratory failure is a B-line artifact, defined as the presence of a discrete vertical
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hyperechoic reverberation artefact that arises from the pleural line [36]. The finding of three or
more B-lines in one intercostal space is considered abnormal and is referred to as a B-pattern [36].
The interstitial involvement of the lungs correlates with the presence of B-lines, and a preponderance
of B-pattern is suggestive of an alveolar process, rather than a non-alveolar cause [37]. However,
the presence of a bilateral B-pattern does not permit a differentiation between ARDS and cardiogenic
pulmonary oedema [38]. Indeed, in ARDS, more commonly than in cardiogenic pulmonary oedema,
a non-homogeneous distribution of B-pattern, C (consolidative) pattern and pleural line abnormalities
are observed [39]. The systematic use of thoracic ultrasonography as a tool for bedside evaluation
of ARDS evolution has been suggested by some authors [40,41]. Figure 4 shows the different
ultrasonographic finding of lung examination; ultrasonographic findings in cardiogenic pulmonary
oedema and ARDS are summarized in Table 3.
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Figure 4. Possible ultrasonographic findings at lung examination. 0: Normal aeration with normal
sliding, with A-lines pattern; 1: Multiple B-lines but separated by at least 5 mm; 2: Multiple, coalescent,
not well-separated B-lines; 3: Lung consolidation, hyperechoic area with air bronchogram. Numbers on
the left side of each ultrasound image represent the depth (in cm).

Table 3. Comparison between ultrasonographic findings in ARDS and cardiogenic pulmonary edema.

Condition Thoracic Ultrasound Cardiac Ultrasound

ARDS

Bilateral B pattern No change in ventricular function vs.
previous examinationNon-uniform distribution

Pleural line abnormalities No inferior vena cava dilation (diameter < 23 mm)
Reduced in lung sliding E/e’ ≤ 8
C pattern –

Cardiogenic
Pulmonary Edema

Bilateral B pattern New or worsening left ventricular disfunction
Uniform distribution Inferior vena cava dilation (≥23 mm)
Pleural effusion E/e’ ≥ 14
Left-sided predominance –

E/e’ represents the ratio between the peak early diastolic mitral velocity between the tips of mitral leaflets
(E wave) and the spectral tissue Doppler-derived peak early diastolic velocity at mitral annulus (E’ wave),
thus yielding an accurate estimate of lesft ventricular diastolic function.

4. Patophysiology

The main characteristic of ARDS is an increased pulmonary capillary permeability.
The consequent accumulation of protein-rich fluid inside the alveoli is the result of the damage
to the capillary endothelium and alveolar epithelium; this cause the release of cytokines, producing
diffuse alveolar damage [42]. Since the lung is composed by two type of alveolar epithelial cell, damage
to type I cells leads to an increase of fluid entry into the alveoli and a decrease of fluid clearance;
on the other side, damage to type II cells results in a diminished production of surfactant that cause a
compliance reduction and alveolar collapse. In the lungs of patients with ARDS several abnormalities
have been found that involve gene transcription for pro-inflammatory mediators [43]; moreover,
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a relationship between the systemic response to endotoxin and the induction of cyclo-oxigenase-2 gene
expression has been suggested [44].

The characteristic pathological features of ARDS have classically been described by three
overlapping phases: an exudative or inflammatory phase, a proliferative phase and a fibrotic phase.
However, other variables, such as the occurrence of nosocomial pneumonia or ventilator induced
lung injury (VILI), may complicate these sequence. The initial fluid accumulation is followed,
within 72 h, by a variable amount of proliferation of type II alveolar cells, fibroblasts and new
matrix deposition. Patient who develop fibrosis show a reduction in pulmonary compliance, further
worsening in gas exchange and increased mortality [45]; indeed, the reason why some patient progress
to fibrosis whereas other progress toward resolution is not completely understood [46]. Similarly, the
pathophysiologic link between ARDS and the following development of multiple organ failure, which
often is the ultimate cause of death, is not completely understood [47].

Based on our current knowledge, a lung protective ventilatory strategy has been developed,
which insures adequate oxygenation and CO2 clearance, furthermore minimizing the extent of the
damage due to the institution of mechanical ventilation (VILI) [48]. Over time, VILI has been attributed
to excessive stress, tidal volume [49], driving pressure [50], respiratory rate and gas flow [51]. Recently,
a unifying theory has hypothesized that the fundamental determinant of VILI may be the result of
an excessive mechanical power applied to the lungs [52–54]. As said, an inappropriate ventilatory
strategy can exacerbate the initial lung injury, both in terms of excessive stress consequent on the
excessive volume or pressure with which the lungs are ventilated, but also as inappropriately low
levels of PEEP may cause the repetitive opening and closing of alveoli, which in turn exacerbates the
proinflammatory response [55]. The still actual framework is that of the “baby lung”, first introduced
by Gattinoni [56], which models the lung of a patient with ARDS as a small aerated lung; starting from
the consideration that respiratory system compliance is linearly related to the “baby lung” dimensions,
the author suggested that the ARDS lung is not “stiff” but instead small, with nearly normal intrinsic
elasticity. Moreover, the density redistribution in prone position shows that the “baby lung” is a
functional and not an anatomical concept. The size of the baby lung determines the lung susceptibility
to VILI, so that the smaller the baby lung, the greater is the potential for unsafe mechanical ventilation.

5. Treatments

The primary targets for ARDS treatment are to ensure adequate gas exchange while minimizing
the risk of VILI. Indeed, to date, the treatment remains largely supportive. Different, both
pharmacologic and non-pharmacologic, strategies exist to reach this objective and several types
of mechanical ventilatory support may be provided. Table 4 provides a summary of the treatment
strategies described.

Table 4. Pharmacologic and non-pharmacologic strategies for patients with ARDS.

Non-Pharmacologic Pharmacologic

Non-invasive ventilation Myoresolution
Invasive mechanical ventilation

Lung recruitment
Inhaled vasodilatorsPEEP selection

Tidal volume setting
CorticosteroidsOxygen and Carbon Dioxide target

Prone positioning –
Extracorporeal assistance
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5.1. Non-Pharmacologic Interventions

5.1.1. Non-Invasive Ventilation

Non-invasive ventilation (NIV) could reduce the work of breathing and the extent of
intrapulmonary shunt, thereby improving gas exchange, with the advantage of avoiding deep sedation
and lowering the risk of nosocomial pneumonia; however, its use is still under debate because
of the high risk of failure and the possible consequent risk of delaying tracheal intubation and
invasive mechanical ventilation. Recently, a meta-analysis, based on 13 studies with 540 patients
treated with NIV, showed an intubation rate varying between 30% and 86% and a mortality rate
ranging from 15% to 71% [57]. However, as the majority of these studies were not randomized, is not
possible to extrapolate firm conclusions. Given the high risk of failure, NIV should be provided in a
strictly monitored environment such an intensive care unit and should be reserved to patient without
extra-lung involvement.

The recent introduction of high flow nasal cannulae (HFNCs) could represent a valid alternative
to NIV. This device can deliver a high oxygen flow through the nose, yet delivering sufficient heating
and humidity [58]; it proved able to reduce the work of breathing, to improve oxygenation and CO2

clearance, and to increase the end expiratory lung volume. A recent observational study in ARDS
patients [59], show a 40% failure rate, with subsequent endotracheal intubated; however, this finding
was similar to the 46% found by by Antonelli et al. in a study of NIV in ARDS [60]. Currently, only
one randomized study compared HFNCs, NIV and oxygen therapy in acute respiratory failure [61];
the results show hoe there is no difference between the three groups with respect to the intubation rate,
while in the high flow nasal cannula group intensive care unit mortality was lower.

5.1.2. Invasive Mechanical Ventilation

Mechanical ventilation represents a supportive therapy able to guarantee sufficient gas exchange,
providing both an increase in PaO2 and CO2 removal, while reducing respiratory muscle activity [62].
The effect of mechanical ventilation on oxygenation is twofold: first, it allows the titration of FiO2;
secondly, it provides, during the inspiratory phase, enough positive pressure to ensure the opening
of collapsed pulmonary units. However, without the application of an appropriate level of positive
end-expiratory pressure (PEEP), the same pulmonary units will collapse again during the expiratory
phase [63].

Indeed, a completely “safe” ventilatory strategy does not exist, and the support must be tailored
to each single patient, based on hemodynamics, gas exchange, lung recruitability and respiratory
mechanics. The last 30 years of literature show how the use of high-volume and high-pressure
ventilation can damage the lung [64]: ventilatory strategies characterized by high-volume may cause
both the development of pulmonary edema in the uninjured lung [49,65] and the worsening of that
in the injured lung [66,67]. These effects are primarily due to alveolar overdistention, which in turn
causes endothelial and epithelial injury, then promoting a proinflammatory cascade. The same
proinflammatory cascade is also promoted by the continuous alveolar collapse and reopening,
the so-called atelectrauma [68].

Since a decrease in alveolar inhomogeneity was shown to reduce the VILI [69], the application
of high PEEP levels, while opening the collapsed alveoli and decreasing the intrapulmonary shunt,
might decrease the repetitive alveolar opening and closing during the whole respiratory cycle [70].
However, when two different large RCTs were performed to compare ARDS patients treated with
low vs. high levels of PEEP [71,72], the results did not demonstrate any benefit of a high PEEP
strategy. This apparently contradictory finding may be interpreted by considering the concept of lung
recruitment, defined as the extent of the collapsed regions in which aeration can be restored with
increasing airway pressure. In order to recruit and maintain a lung region open, the pressure generated
by the lung mass and by the chest wall, named superimposed pressure, must be overcome [73]. Various
techniques exist to recruit the lung, such as the sigh (a high tidal volume intermittently delivered
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during ventilation), the extended sigh (a stepwise increase of PEEP or both PEEP and plateau pressure)
and the sustained inflation (a static increase in airway pressure applied for 20–40 s) [74] (Figure 5).
The main target, irrespective of the technique used, is to apply a high transpulmonary pressure for an
adequate time, so to cause the reinflation of the closed pulmonary units. While these maneuvers are
able, without major side effects, to improve oxygenation for a variable period of time, however their
use has not shown per se to lead to a significant reduction in mortality [75].
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Figure 5. Pressure-time curve showing different recruitment maneuvers. (A) sustained inflation sigh
using continuous positive airway pressure (CPAP) of 35 cm H2O for 40 s (as depicted by the arrow);
(B) stepwise recruitment maneuver using both plateau pressure and PEEP increase, keeping a fixed
driving pressure of 15 cm H2O; after recruitment, a decremental PEEP titration is performed until an
optimal level is identified (e.g., one associated with the best compliance or best oxygenation).

5.1.3. Lung Recruitment

Lung recruitment is defined as the enrollment of pulmonary units in a new status of inflation [76].
In patients with ARDS, a varying extent of lung recruitability was found, ranging from 0% to 70% of
the total lung weight as estimated by lung CT-scan [77]. Pulmonary CT-scan is the gold standard for
the measurement of lung recruitability, although it requires the transport of the patient outside the
ICU and the use of X-rays [78]. As an alternative, lung ultrasound proved reliable in estimating lung
recruitability at the bedside, but further studies are necessary to confirm this finding [79].

In order to re-inflate the collapsed lung regions, it is necessary to overcome the superimposed
pressure generated by the lung mass and by chest wall. A transient increase in inspiratory airway
pressure to 40–45 cm H2O is generally used for this aim. Different types of recruitment maneuver,
such as sustained inflation, intermittent sighs and stepwise increase in inspiratory pressure, have
been suggested [74]. Indeed, the optimal procedure has not yet been defined. Independently of the
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specific maneuver applied, oxygenation improves for a certain period of time without major side
effects; however, recruitment maneuvers alone were not associated to a reduction in the mortality [75].

5.1.4. PEEP Selection

The selection of the ideal level of PEEP is an issue hard to resolve: if PEEP is too low some
portion of recruitable tissue will collapse, whereas excessive PEEP generate dead space and tissue
stretch. The philosophy behind the application of PEEP has changed over time: while in the
sixties it was considered as a tool to improve oxygenation, it is now regarded as a key element
to avoid the repetitive alveolar opening and closing during the respiratory cycle, so that it reached
a prominent position in the framework of lung protective ventilation [16,70,80,81]. Indeed, the key
question is how to titrate PEEP on individual patients. Various approaches have been proposed
to set PEEP (Table 5); the most commonly used is titration based on a PEEP/FiO2 table using as a
target the level of saturation/oxygenation [72]. However, it should always be kept in mind that the
improvement in oxygenation can simply be due to a hemodynamic effect (i.e., the reduction of cardiac
output and right-to-left shunt) without any effect on lung recruitment. Another method is based on
respiratory mechanics, with the aim of keeping airway pressure under a safe limit (26–28 cm H2O),
through stepwise increase of PEEP while maintaining a constant tidal volume [82]. Talmor et al. [83]
showed improved compliance and oxygenation when PEEP was set according to an absolute level
of end-expiratory transpulmonary pressure between 0 and 10 cm H2O. Other authors used the tidal
variation in esophageal pressure, rather than its absolute value, to evaluate the total end-inspiratory
transpulmonary pressure, then used as a marker of lung stress [84]. Given the difficulty to choose the
optimum PEEP level, which can simultaneously guarantee the higher level of oxygenation, the higher
compliance and the lower overdistention, then possibly reducing the risk of VILI, we recommend to
stratify ARDS severity by ventilating the patient at PEEP 5 cm H2O in pure oxygen, as suggested [15].
In case of severe (or moderate-to-severe) ARDS, lung recruitability should be computed by lung CT
scan or ultrasound, and high PEEP levels (i.e., >15 cm H2O) should be applied. In addition, to avoid
lung overstress, transpulmonary pressure should be measured while simultaneously titrating PEEP
and tidal volume.

Table 5. Methods for bedside PEEP selection.

Method Characteristics

Lung Open Ventilation (LOV)
study [72] Setting PEEP as for the PEEP/FiO2 table of the lung open ventilation arm of LOV trial

ExPress [85] Maintain an inspiratory plateau pressure between 28 and 30 cm H2O according to the increased
recruitment strategy of the ExPress trial

Stress Index [86] Obtain a stress index coefficient of 1

Esophageal pressure [87] Setting PEEP targeting an absolute end-expiratory transpulmonary pressure of 0–10 cm H2O

5.1.5. Tidal Volume Setting

The main determinant of VILI is the ratio between the size of tidal volume and that of the resting
lung volume in which it is distributed: together, they determine the non-physiologic stress (tension
generated within the lung tissue) and strain (deformation of the lung) [88]. Then, to maintain a low
stress and strain we need a low tidal volume or a high resting volume [82,83]. A seminal study on
ventilator strategy in ARDS (the ARMA trial), demonstrated how using a tidal volume of 6 mL/kg
(predicted body weight), as compared to the then conventional setting of 12 mL/kg, a 22% reduction
in mortality could be achieved [89]. A recent meta-analysis confirmed those findings, showing
a significant reduction in 28-day mortality in patient treated with the so-called “lung-protective
ventilation” [90]. Despite these data, which have been available for as much as two decades, the
use of low tidal volume ventilation is still not ubiquitous [91]. To conclude, in patients undergoing
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mechanical ventilation, the use of an excessive tidal volume increases the risk of developing ARDS,
while the exposure to high tidal volumes in patients with established ARDS increases mortality.

Of note, since actual body weight is not an accurate index of lung size, the use of predicted
body weight (based on height and sex) is currently recommended to calculate the appropriate tidal
volume. However, even predicted body weight is poorly related to the resting volume, to the extent
that a similar tidal volume can generate different lung stress/strain [92]. With the aim of better
individualizing the tidal volume, the use of airway driving pressure has recently been proposed [50].
The latter, i.e., the ratio between tidal volume and respiratory system compliance, should in fact better
reflect lung stress/strain, as the respiratory system compliance is related to the amount of lung gas
volume [93]. Recently, Amato et al. found that in a pooled sample of >3500 ARDS patients ventilated
with different combinations of tidal volume and PEEP, the airway driving pressure was the factor
most associated with the outcome: a higher mortality was only found when higher plateau pressures
were observed in patients with higher driving pressures. Similarly, the protective effects of higher
PEEP was only seen when this was associated with a decreased driving pressures, with a cutoff for
increased mortality at a driving pressure of 15 cm H2O [50]. Nonetheless, the driving pressure has
limitations, the main being that transpulmonary pressure, and not airway pressure, is the relevant
distending pressure for the lung. This is significant as the chest wall has been as unpredictably altered
in ARDS [94]. Indeed, the measurement of functional residual capacity, as an index of the baby lung
size, seems more physiologically appropriate, and its use may open the route to new studies that may
further optimize tidal volume setting. Indeed, a recent paper showed how airway driving pressure can
detect lung overstress with an acceptable accuracy patients with ARDS, as those with higher airway
driving pressure group had a significantly higher lung stress, respiratory system and lung elastance as
compared to those with lower airway driving pressure [95].

While in the past years the choice of a specific mode of mechanical ventilation (i.e.,
pressure-controlled versus volume-controlled), was considered relevant for patient outcome, two recent
meta-analysis were not able to show any significant difference in mortality, risk of barotrauma or other
physiologic responses (cardiac output, gas exchange, work of breathing) [96,97].

5.1.6. Oxygen and Carbon Dioxide Target

As recently demonstrated by Panwar et al. [98], similar outcomes and number of organ failures
were found in patients with ARDS randomized to an arterial oxygen saturation target >96% or
between 88% and 92%. The actual recommendation is a conservative oxygenation strategy with an
arterial oxygen saturation target between 88% and 95% in patients receiving invasive mechanical
ventilation. Indeed, the use of a low tidal volume, with the aim to reduce the risk of VILI, may
cause the development of hypercapnia. However, arterial carbon dioxide levels up to 70 mm Hg
with a pH of 7.20 were found to be safe [99,100], in the absence of pathological condition such as
raised intracranial pressure or right heart failure. The rationale of a more liberal CO2 management
(permissive hypercapnia) lies in the well-known positive effects of hypercapnic acidosis on arterial
and tissue oxygenation: the potentiation of hypoxic pulmonary vasoconstriction, the inhibition of
airway tone, the increase in cardiac output, the anti-inflammatory effect and the rightward shift in the
oxygen-hemoglobin dissociation curve [101].

5.1.7. Prone Positioning

As in the case of PEEP, the use and indications of prone positioning in patients with ARDS has
changed over time. While decades ago this procedure was only used to improve arterial oxygenation
in life-threatening acute respiratory failure [102,103], it is nowadays clear that prone positioning,
allowing for a more homogeneous distribution of stress and strain, helps to protect lung against the
VILI [104]. The most important consequences of prone positioning, which can explain its final effect
are: a better ventilation/perfusion matching with a consequent improvement in CO2 clearance, a more
homogenous distribution of ventilation with a reduction of VILI and a recruitment of dorsal regions
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through the redistribution of lung densities [104,105]. Therefore, prone positioning should be reserved
to all patients with severe ARDS, especially in the acute phase, because of the higher probability to
recruit lung parenchyma [37].

Given these premises, a multicenter randomized trial was designed to evaluate the use of prone
positioning in severe ADRS, for a minimum of 16 h per day (the Proning Severe ARDS Patients
(PROSEVA) trial) [105]. The study showed a higher extubation success and a significant reduction in
28-day mortality in the prone positioning-group (16% vs. 32%). Indeed, the simultaneous use of prone
positioning and NMBAs could exert a synergistic effect on oxygenation and decreasing the duration of
mechanical ventilation, eventually improving the final outcome. The few absolute contraindications to
prone positioning that have to be taken into consideration are: pregnancy, hemodynamic instability,
open abdomen treatment and unstable fractures [104].

5.1.8. Extracorporeal Assistance

The use of extracorporeal membrane oxygenation (ECMO) for the treatment of ARDS was
introduced in the early 70‘s with the aim of guaranteeing a protective ventilation and minimizing the
risk for the VILI, as an artificial lung may provide an adequate blood CO2 removal and oxygenation,
allowing to reduce mechanical ventilation. Several observational studies demonstrated some degree of
benefit from the use of ECMO (Venteruolo); recently, a randomized trial (CESAR study) of patients
with ARDS referred to an ECMO center showed a higher 6-months survival rate (63% vs. 47%) and no
difference in quality of life and spirometric parameters compared to patients treated with conventional
mechanical ventilation [106]. In spite of these positive data, the CESAR trial has been criticized for
its design; therefore, currently, is not possible to conclude for a superiority of ECMO with respect to
conventional mechanical ventilation [107].

5.2. Pharmacologic Interventions

5.2.1. Myoresolution

When a patient show a high ventilation demand, as in the event of ARDS, his vigorous breaths
might generate a transpulmonary pressure too high to ensure lung protective ventilation; in this
case, spontaneous breathing could worsen the extent of lung damage [48]. Moreover, during intense
spontaneous breathing, the negativization of pleural pressure brings to an increase of venous return
and hence of cardiac filling pressures that may increase the risk of VILI by itself [81].

Whit the purpose to ameliorate patient-ventilator synchrony and to reduce the oxygen
consumption related to respiratory muscle activity, many clinicians decide to abolish any spontaneous
respiratory effort by using neuromuscular blocking agents (NMBAs) [99]. An additional effect of
NMBAs is the reduction of the negative increase in pleural pressure seen during spontaneous breathing,
with the likely consequent reduction of stress and strain applied to the lung [99]. On the other hand,
NMBA use may lead to the development of diaphragmatic dysfunction or ICU-acquired weakness.
Indeed, it has been shown how patients with severe ARDS treated with an early, short-course of
NMBAs presented lower mortality, reduced length of mechanical ventilation and less episodes of
barotrauma [12].

The current knowledge seems to suggest that in patients with severe ARDS spontaneous breathing
seems to be dangerous, whereas it appears to be beneficial in patients with a mild to moderate
form. The use of NMBAs should then be reserved to the most severe patients, in order to insure
patient-ventilator synchrony and prevent the generation of a dangerously high transpulmonary
pressure, while the need of pharmacological paralysis should be evaluated daily.

5.2.2. Inhaled Vasodilators

Despite the well-known vasodilatory effects exerted by nitric oxide on the pulmonary vasculature,
leading to an improved ventilation/perfusion matching, its use in ARDS patients is highly
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controversial [108], as no clear mortality benefit could be demonstrated. Moreover, its use was
associated with important cost-safety concerns and an increase in the incidence of renal failure [109].

5.2.3. Corticosteroids

The central role of the inflammatory response in the pathogenesis of ARDS is the rationale behind
the idea to use corticosteroids as a therapy in ARDS patient. Based on these concepts, several trials
investigated corticosteroids use [110,111], however with heterogeneous results. Meduri [110] in its
study conducted in the early phase of ARDS demonstrated a decrease in ICU mortality rate; however
these findings could not be replicated in other studies [111,112].

A possible explanation of these conflicting results may lie in a varying pathophysiology of the
inflammatory state present in the different studies. MicroRNA (miRNA) are short, non-coding RNAs
that pair to specific messenger RNA (mRNA) targets and negatively regulate gene expression [113].
miRNA have shown to regulate genes involved in normal lung physiology and inflammatory lung
states [114]. A recent paper studied miRNA present in blood leukocytes of patients with ARDS during
the first week of care, with a particular focus on the effects of corticosteroid therapy on miRNA
expression during the first week of care [115]. The authors identified 21 miRNA that are expressed
at increased levels at the onset of ARDS, remain elevated at day 3 and increase further by day 7,
suggesting that the underlying inflammatory processes that led to ARDS remained active at day 3 and
the enhanced miRNA expression by day 7 may have a role in the resolution of inflammation. Steroid
therapy had no effect on the elevated miRNA species observed on days 3 or 7. These data suggest
the presence of steroid-responsive and steroid-independent inflammatory axes during the course of
ARDS, and that miRNA and corticosteroids may have similar but relatively independent mechanisms
that modulate inflammation. The increased expression of miRNA, independent of corticosteroid
therapy, may suggest a role in steroid-independent mechanisms that contribute to the resolution of
inflammation, thus potentially explaining the different response to corticosteroid therapy seen in
different patient cohorts.

6. Conclusions

ARDS still remains a syndrome with an elevated overall incidence, and with an attributable
mortality ranging from 40% to 60%. To allow for a better accuracy of the clinical diagnosis, its definition
has been reviewed several times, the last in Berlin, 2011. In order to ensure a rapid etiologic therapy,
a rapid identification of the underlying cause is mandatory, and the use of a systematic approach to
diagnosis may help the clinicians. Lung CT scan represents an important tool both for the diagnosis
of extra-pulmonary causes of ARDS and for the evaluation of lung recruitability and the consequent
ventilator setting. Ultrasonography had earned an important role in the bedside evaluation of lung
parenchyma, in association with the assessment of left and right ventricular function. The supportive
treatment of patients with ARDS should be oriented to sustain the vital functions, to improve and
ensure an adequate gas exchange, while reducing the probability to cause damage such as by VILI.
Irrespective of the mode of mechanical ventilation, lung recruitability should be assessed before
setting the PEEP value, and an inspiratory O2 fraction should be chosen to target an arterial saturation
between 88% and 95%. Lung volume and transpulmonary pressure monitoring might help to adjust
the ventilator settings and to avoid lung overstress, while maintaining a lung-protective strategy.
Eventually, the use of prone positioning and myoresolution should always be considered, at least in
the most severe cases.
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