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Abstract: 23 

Ethnopharmacological relevance: Thistles species (Family: Compositae) are traditionally 24 

used in the Mediterranean area, particularly in Sardinia. They are usually gathered from the 25 

wild and used for both food and therapeutic purposes, including gastrointestinal disorders. 26 

Aim of the study: This work aims to evaluate the anti-inflammatory activity of eight wild 27 

thistles from Sardinia, in an in vitro model of gastric inflammation, and to identify the 28 

major active compounds in the extracts. 29 

Materials and methods: The hydro-alcoholic extract of the aerial part of each species was 30 

prepared. After the induction of inflammation by the addition of tumor necrosis factor-α 31 

(TNFα) (10 ng/ml), AGS cells were treated with extracts/pure compounds under study. The 32 



  

 

inhibition of interleukin-8 (IL-8) release, IL-8 and NF-κB promoter activities and NF-κB 33 

nuclear translocation was evaluated. Extracts main components were identified by HPLC-34 

PDA-MS/MS. 35 

Results: Only Onopordum horridum Viv. and Onopordum illyricum L. hydro-alcoholic 36 

extracts reduced, in a concentration-dependent fashion, the IL-8 release and promoter 37 

activity in human gastric epithelial cells AGS. The effect was partially due to the NF-κB 38 

pathway impairment. Onopordum hydro-alcoholic extracts were also chemically profiled, 39 

and caffeoylquinic acid derivatives were the main compounds identified in the extract. 40 

Further investigations showed that 3,5 dicaffeoylquinic acid highly inhibited IL-8 secretion 41 

in AGS cells (IC50 0.65 µM), thus suggesting that this compound contributed, at least in 42 

part, to the anti-inflammatory activity elicited by O. illyricum extracts. 43 

Conclusions: Our results suggest that Onopordum species may exert beneficial effects 44 

against gastric inflammatory diseases. Thus, these wild plants deserve further investigations 45 

as preventive or co-adjuvant agents in gastric diseases. 46 

 47 

Keywords:, Cardueae, Onopordum, caffeoylquinic acids, anti-inflammatory, AGS, IL-8.  48 

 49 

Chemical compounds studied in this article: 50 

Neochlorogenic acid (PubChem ID: 5280633); Cryptochlorogenic acid (PubChem ID: 51 

9798666); Chlorogenic acid (PubChem ID: 1794427); 1,3 Dicaffeoylquinic acid (PubChem 52 

ID: 6474640); 3,5 Dicaffeoylquinic acid (PubChem ID: 6474310), 1,5 Dicaffeoylquinic 53 

acid (PubChem ID: 122685); 4,5 Dicaffeoylquinic acid (PubChem ID: 6474309) 54 

 55 

1. Introduction 56 

The aetiopathogenesis of gastritis, an inflammatory state of gastric mucosa, is mostly due to 57 

the presence of Helicobacter pylori (H. pylori), a Gram-negative pathogen affecting 58 



  

 

humans and classified as Type 1 carcinogen by WHO. (Brown, 2000; Israel and Peek, 59 

2001). 60 

Many pro-inflammatory molecules (e.g. TNFα, IL-8, NF-κB), released during gastritis, can 61 

be considered as potential therapeutic targets to prevent or treat H. pylori-induced gastric 62 

diseases (Bodger and Crabtree, 1998; Crabtree et al., 1993; Israel and Peek, 2001; Martin 63 

and Wallace, 2006; Zaidi et al., 2012). Emerging resistance to antibiotics and adverse 64 

effects of conventional drugs lead to search for new therapeutic strategies to counteract the 65 

inflammatory processes exerted by H. pylori infection (Zaidi et al., 2012). 66 

Botanicals, from both wild or cultivated plants, are widely used all over the world, for 67 

nutritional and health purposes, as different types of products, including herbal medicinal 68 

products, food, food supplements, and functional foods.  69 

Wild plants, traditionally used by the native populations, recently received attention for 70 

their therapeutic properties and the high content of fibres, vitamins, minerals, and 71 

polyphenols (Licata et al., 2016; Tuttolomondo et al., 2014). Some of them are traditionally 72 

used to treat gastrointestinal disorders such as dyspepsia, constipation, diarrhoea, gastritis, 73 

colitis (Atzei, 2003; Tuttolomondo et al., 2014) and have shown beneficial effects against 74 

gastritis (Colombo et al., 2013; Di Lorenzo et al., 2013; Sangiovanni et al., 2015). 75 

Sardinia boasts a well-established culture on the traditional uses of wild plants (Atzei, 76 

2003; Lancioni et al., 2007; Maxia et al., 2013). The so-called thistles mostly refer to 77 

Compositae species and are traditionally consumed and used for therapeutic purposes by 78 

Sardinian inhabitants (Atzei, 2003; Guarrera and Savo, 2016; Lancioni et al., 2007; 79 

Signorini et al., 2009). The aim of the present study was to investigate the anti-80 

inflammatory activity of eight wild thistles species from Sardinia in a cell model of gastric 81 

inflammation. The species under study belong to the Cardueae Cass. Tribe (Family: 82 

Compositae) and to four genera: Carduus L. (C. argyroa Biv., C. cephalanthus Viv., C. 83 

pycnocephalus L., C. nutans subsp macrocephalus (Desf.) Nyman), Onopordum L. (O. 84 

illyricum L., O. horridum Viv.), Silybum L. (S. marianum (L.) Gaertn.), and Ptilostemon 85 

Cass. (P. casabonae (L.) Greuter). All these plants are traditionally used for food and 86 

medicinal purposes, also against gastrointestinal disorders (Atzei, 2003; Guarrera and Savo, 87 

2016; Lancioni et al., 2007; Licata et al., 2016; Rinchen and Pant, 2014; Signorini et al., 88 

2009). 89 

The in vivo activity of C. pycnocephalus has been previously reported towards the rat paw 90 

oedema inflammation, while the in vitro inhibition of NF-κB pathway, IL-1β, TNFα, and 91 

the adhesion molecules VCAM-1, ICAM-1 and E-selectin release has been described for S. 92 



  

 

marianum extracts, demonstrating that the effects are mostly due to the presence of 93 

silymarin components (Al-Shammari et al., 2015; Giorgi et al., 2012; Kang et al., 2003; 94 

Manna et al., 1999). In vivo studies have shown the ability of S. marianum to inhibit TNF-95 

R1, TNFα, IL-4 and IFN-γ expression (He et al., 2004; Schumann et al., 2003). Moreover, 96 

the in vitro NF-κB, STAT3 inhibitory activity and the Nrf2 activation were evaluated for 97 

six sesquiterpenes from O. illyricum (Formisano et al., 2017). O. acanthium inhibited 98 

COX-2 and NF-κB gene expression, NO production and 5-LOX, COX-1 and COX-2 99 

enzymes activity in THP-1 cells (Lajter et al., 2015). However, no studies investigating the 100 

in vitro anti-inflammatory activity of the thistles species under study in human gastric 101 

epithelial cells have been reported so far. 102 

A preliminary screening of the selected thistles hydro-alcoholic extracts was assessed to 103 

investigate their inhibitory effect on IL-8 released by human gastric epithelial cells (AGS). 104 

To elucidate the underlying molecular mechanisms, the extracts showing remarkable 105 

activity were tested on the NF-κB pathway. The extracts were also chemically profiled to 106 

identify the compounds responsible for the observed biological activity. 107 

 108 

2. Materials and Methods  109 

2.1 Materials 110 

Dulbecco’s Modified Eagle’s Medium/F12 (DMEM)/F12 (1:1), penicillin, streptomycin, L-111 

glutamine, sodium pyruvate and trypsin-EDTA were from Gibco (Life Technologies Italia, 112 

Monza, Italy). DMEM, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 113 

(MTT) were from Sigma Aldrich (Milan, Italy). All reagents used for analytical 114 

determinations and biological assays were HPLC grade. Human TNFα and Human IL-8 115 

Elisa Development Kit were from Peprotech Inc. (London, UK). Foetal bovine serum 116 

(FBS), and disposable material for cell culture were purchased by Euroclone (Euroclone 117 

S.p.A., Pero-Milan, Italy). Human adenocarcinoma cells (AGS, CRL-1739) were purchased 118 

from LGC Standard S.r.l., Milano, Italy. 1,5 dicaffeoylquinic acid (purity >99.4%), 3,5 119 

dicaffeoylquinic acid (purity >98.2%), 1,3 dicaffeoylquinic acid (purity >99.36%), were 120 

purchased from Phytolab (Vestenbergsgreuth, Germany), chlorogenic acid (purity >99.6%) 121 

was from Sequoia Research Products (Pangbourne, UK), epigallocatechin-3-O-gallate 122 

(purity >99%, EGCG), and DMSO were from Sigma-Aldrich (St Louis, USA). The plasmid 123 

NF-κB-LUC containing the luciferase gene under the control of three κB sites was a gift of 124 

Dr N. Marx (Department of Internal Medicine-Cardiology, University of Ulm, Germany). 125 



  

 

Native IL-8-LUC promoter was kindly provided by Dr T. Shimohata (Department of 126 

Preventive Environment and Nutrition, University of Tokushima Graduate School, Japan). 127 

Britelite™ plus was from Perkin Elmer (Monza, Italy). HPLC-grade acetonitrile and 128 

methanol were purchased from Sigma (Bellefonte, USA). De-ionized water (18.2 MΩ cm) 129 

was obtained from a Milli-Q purification system (Millipore, Bedford, MA, USA). Formic 130 

acid (purity >98%) was obtained from Sigma (Bellefonte, USA). 131 

2.2. Plant material 132 

Aerial parts of eight wild species belonging to the Cardueae tribe were collected from 133 

different sites in Sardinia, from May to June 2015 (Table 1). Plant material was identified 134 

at the Department of Life and Environmental Science, University of Cagliari, Italy, where a 135 

voucher specimen for each species was deposited. Several individuals from Carduus 136 

argyroa (10 individuals), Carduus cephalanthus (6 individuals), Carduus nutans subsp. 137 

macrocephalus (13 individuals), Carduus pycnocephalus (10 individuals), Onopordum 138 

illyricum (10 individuals), Onopordum horridum (10 individuals), Silybum marianum (10 139 

individuals), Ptilostemon casabonae (10 individuals) were collected. All individuals 140 

sampled within each site were separated by about 1–50 m from each other and were 141 

collected randomly. The fresh material was dried at 40°C to constant weight. 142 

Table 1. Localities and dates of collection, local name (Atzei, 2003; Congia, 1998), 143 

voucher numbers, and No. of individuals of the eight Cardueae species 144 
 145 

Species Local	name	
Localities and 

dates of collection 
Coordinates 

Voucher 

specimen 

No. of 

individuals 

Carduus 

argyroa 

Càdru,	

Cardu	

Decimomannu, 27 

May 2015 

39°17'47.96"N - 

8°58'14.95"E 
CAG-803 10 

Carduus 

cephalanthus 
Cardu	

Capo Testa, 12 

June 2015 

41°14'33.80"N –

9°8'49.25"E 
CAG-807 6 

Carduus nutans 

subsp. 

macrocephalus 

Gàrdu	

pissiaiòlu	

Gennargentu, 18 

June 2015 

39°57'35.77"N - 

9°19'12.46"E 
CAG-802 13 



  

 

Carduus 

pycnocephalus 

Ardu	

pissiarolu,	

baldu	

aininu,	

cardu	

pisciau	

Monte dei Sette 

Fratelli, 21 May 

2015 

39°20'43.60"N – 

9°17'43.74"E 
CAG-805 10 

Onopordum 

illyricum L. 

Ardu	

nieddu,	

cardu	

santu,	

cardu	

molentinu	

Monte dei Sette 

Fratelli, 21 May 

2015 

39°20'43.60"N – 

9°17'43.74"E 
CAG-798 10 

Onopordum 

horridum Viv. 

Aldu	

nieddu	

Gennargentu, 18 

June 2015 

39°53'54.9''N –

9°26'27.9''E 

CAG-

186/14 
10 

Ptilostemon 

casabonae (L.) 

Greuter 

Caldu	

drummitu,	

cardu	de	

Casteddu	

Gennargentu, 18 

June 2015 

39°53'54.9''N –

9°26'27.9''E 
CAG-796 10 

Silybum 

marianum (L.) 

Gaertn 

Ardu	

biancu,	

cardu	tufu,	

cima	de	

cardu	

Uta, 27 May 2015 
39°17'48.0''N –

8°58'14.9'' E 
CAG-801 10 

 146 

2.3. Preparation of plant extracts 147 

The aerial parts of each species were combined to obtain homogenous samples; 2 g from 148 

the dried and ground material were submitted to ultrasonic extraction with 10 mL of 149 

methanol/water (70:30, v/v) two times for 10 min. The extraction phases were then 150 

combined and centrifuged at 4000 rpm for 10 min. The extracts were then filtered, dried 151 

under vacuum, lyophilized and weighted. To test the biological activity, the extracts were 152 

dissolved in sterilized distilled water and DMSO (80:20 v/v for S. marianum, O. horridum 153 



  

 

and C. cephalanthus; 60:40 v/v for the other species), and immediately stored in aliquots at 154 

-80°C. The extracts were dissolved in methanol/water (70:30, v/v) and subjected to HPLC 155 

analysis. 156 

2.4. Cell culture 157 

AGS cells were grown at 37 °C in DMEM F12 supplemented with 100 U/mL penicillin, 158 

100 mg/mL streptomycin, 2 mM L-glutamine, and 10% heat-inactivated FBS (Euroclone 159 

S.p.A, Pero, Italy), under a humidified atmosphere containing 5% CO2. 160 

2.5. Measurement of IL-8 release 161 

AGS cells were grown in 24-well plates for 48 h (30 000 cells/well); then, cells were 162 

treated with TNF-α (10 ng/ml) and extracts/pure compounds under study. IL-8 was 163 

quantified using a Human Interleukin-8 ELISA Development Kit as described below. 164 

Briefly, Corning 96 well EIA/RIA plates from Sigma-Aldrich (Milan, Italy) were coated 165 

with the antibody provided in the ELISA Kit (Peprotech Inc., London, UK) overnight at 4 166 

°C. After blocking the reaction, each sample (200 µl) was transferred into wells at room 167 

temperature for 2 h. The amount of IL-8 was detected by spectrophotometry (λ: 450 nm, 168 

0.1 s) using biotinylated and streptavidin–HRP conjugate antibodies, and evaluating the 169 

3,3′,5,5′-tetramethylbenzidine (TMB) substrate reaction. Quantification of IL-8 was done 170 

using an optimized standard curve supplied with the ELISA Kit (8-1000 pg/mL). The IL-8 171 

release was tested after 6 h treatment in the presence of the extracts (50 µg/mL for the 172 

screening assay, 1-75 µg/mL for the extracts, 1 µM for the pure compounds and 0.1-5 µM 173 

for concentration response curves). To evaluate the ability of the extracts to prevent IL-8 174 

release, AGS cells were pre-treated for 2 h with the extracts (1-75 µg/mL); then, IL-8 175 

secretion was induced by 6 h treatment with TNF-α (10 ng/mL). Epigallocatechin-3-O-176 

gallate (EGCG, 20 µM) was used as reference inhibitor of IL-8 release. 177 

2.6. Transient transfection assays 178 

AGS cells were grown in 24 well plates for 48 h (30 000 cells per well), to evaluate the NF-179 

κB driven transcription and IL-8 promoter activity. Cells were transfected by the calcium 180 

phosphate method with native IL-8-LUC (100 ng/well) or NF-κB-LUC (50 ng/well), a 181 

plasmid containing the luciferase reporter gene under the control of the NF-κB responsive 182 

promoter. After 16 hours, cells were placed in a FBS-free medium, and treated with TNF-α 183 

(10 ng/mL) in the presence of the extracts at 1–75 µg/mL. After six hours, cells were 184 

harvested and the luciferase assay was performed using the Britelite™ Plus reagent 185 

(PerkinElmer Inc., Massachusetts, USA), according to the manufacturer’s instructions. Data 186 



  

 

were expressed considering 100% of the luciferase activity related to the cytokine induced 187 

promoter activity. 188 

2.7. NF-κB nuclear translocation 189 

To verify the inhibitory effect on the NF-κB (p65) nuclear translocation, AGS cells were 190 

plated for 48 h in 100 mm dishes (2 × 10 6 cells per dish) with fresh complete medium. 191 

Then, the medium was replaced with fresh FBS-free medium containing different 192 

concentrations of extracts (1-20 µg/mL) in the presence of TNFα (10 ng/mL) for 1 h. 193 

Nuclear extracts were prepared using a Nuclear Extraction Kit from Cayman Chemical 194 

Company (Michigan, USA) and stored at −80°C until assayed. The same amount of total 195 

nuclear proteins, measured by the method of Bradford, was used to assess NF-κB nuclear 196 

translocation using the NF-κB (p65) transcription factor assay kit (Cayman) followed by 197 

spectroscopy (λ: 450 nm, 0.1 s). Data were expressed considering 100% of the absorbance 198 

related to the cytokine-induced NF-κB nuclear translocation. EGCG (20 µM) was used as 199 

the reference inhibitor of NF-κB nuclear translocation. 200 

2.8. Cytotoxicity assays 201 

The integrity of the cell morphology before and after treatment was assessed by light 202 

microscope inspection. Cell viability was measured by the MTT and LDH methods. No 203 

sign of cytotoxicity was observed in AGS cells treated for 6 h with the eight Cardueae 204 

extracts at the concentrations used for testing the biological activity.  205 

2.9. Phytochemical profile of Onopordum extracts 206 

Onopordum extracts were analysed using a Shimadzu Nexera X2 system equipped with a 207 

photodiode detector SPD-M20A in series to a triple quadrupole Shimadzu LCMS-8040 208 

system provided with electrospray ionization (ESI) source (Shimadzu, Düsseldorf 209 

Germany). An Ascentis Express RP-Amide column (10cmx2.1mmx2.7µm, Supelco, 210 

Bellefonte, USA) and a mobile phase with water (eluent A, containing 0.1% formic acid) 211 

and acetonitrile (eluent B, containing 0.1% formic acid) was used. The flow rate was 0.4 212 

mL/min and the column temperature was maintained at 30°C. The gradient program was as 213 

follow: 5-25% B for 20 min, 25-100% B in 25 min, 100% B for 1 min, 100-5% B in 4 min, 214 

5% for 10 min. The total pre-running and post-running time was 60 min. UV spectra were 215 

acquired in the 220-450 nm wavelength range. MS operative conditions were as follows: 216 

heat block temperature: 200 °C; desolvation line (DL) temperature: 250 °C; nebulizer gas 217 

flow rate: 3 L/min drying gas flow rate: 15 L/min. Mass spectra were acquired both in 218 

positive and in negative full-scan mode over the range 100–1000 m/z, event time 0.5 s. 219 



  

 

Product Ion Scan mode (collision energy: - 35.0 V for ESI + and 35.0 V for ESI -, event 220 

time: 0.2 s) was applied to compounds for which a correspondence between the 221 

pseudomolecular ions [M+H]+ in ESI + and [M-H] - in ESI - had been confirmed. The 222 

identification of the compounds was assessed by comparing their retention times, UV and 223 

MS spectra to those of authentic standards, when available. The other components were 224 

tentatively identified on the basis of their UV spectra and mass spectral information, 225 

compared to those present in the literature. The major components were quantified using 226 

the Multiple Reaction Monitoring acquisition in ESI+ (collision energy: - 35.0 V for ESI+, 227 

dwell time: 20) on specific ion products derived from precursor ions fragmentation. 228 

Chlorogenic acid and 1,3 dicaffeoylquinic acid were used for the quantification of 229 

chlorogenic acid derivatives and the dicaffeoylquinic and succinyl dicaffeoylquinic acids, 230 

respectively. Each standard solution and extracts were analysed in two replicates. 231 

Calibration curves were prepared with five different concentrations, in the range of 0.1-5 232 

µg/mL, monitoring the reported transitions: ESI+: m/z 355.00 →163.00, for chlorogenic 233 

acid and 517.00 →163.00 for 1,3 dicaffeoylquinic acid. (dwell time: 20 msec, collision 234 

energy -35 V, event time: 0.096 sec). The determination coefficients were 0.993 and 0.995 235 

for chlorogenic acid and 1,3 dicaffeoylquinic acid, respectively. 236 

2.10. Statistical analysis 237 

All data are the mean ± SD of at least three experiments performed in duplicate (ELISA) or 238 

triplicate (transfections). Data were analysed by unpaired one-way analysis of variance 239 

(ANOVA), or two-way analysis of variance (ANOVA) followed by Bonferroni’s post hoc 240 

test. Statistical analyses were performed using GraphPad Prism 5.02 software (GraphPad 241 

Software Inc., San Diego, CA, USA). p < 0.05 was considered statistically significant. IC50 242 

was calculated using GraphPad Prism 5.02. 243 

 244 

3. Results 245 

3.1. Screening of the eight Cardueae species on the TNFα-induced IL-8 release in AGS 246 

cells 247 

Preliminary screening of the eight Cardueae extracts on the TNFα-induced IL-8 release in 248 

human epithelial gastric AGS cells was performed. As shown in Figure 1, only the extracts 249 

belonging to the Onopordum genus inhibited the TNFα-induced IL-8 secretion at 50 250 

µg/mL. The inhibitory effect of O. horridum and O. illyricum reached 80% and 95% 251 

respectively. Thus, the extracts from O. horridum and O. illyricum were selected for further 252 



  

 

studies aimed to assess the inhibitory effect on IL-8 release, under conditions of pre- or co-253 

treatment. 254 

 255 

Figure 1. Effect of the eight Cardueae extracts on the TNFα-induced IL-8 256 

secretion. AGS cells were treated for 6 h with both TNFα (10 ng/mL) and each of 257 

the eight extracts at the concentration of 50 µg/mL. Secreted IL-8 was evaluated 258 

by ELISA assay. **p < 0.01, ***p < 0.001 vs. TNFα alone. 20 µM EGCG was 259 

used as the reference inhibitor of IL-8 secretion, according to the literature 260 

(Fumagalli et al., 2016). A: Carduus argyroa; B: Carduus nutans subsp 261 

microcephalus; C: Carduus cephalanthus; D: Ptilostemon casabonae; E: Carduus 262 

pycnocephalus; F: Silybum marianum; G: Onopordum horridum; H: Onopordum 263 

illyricum. 264 

3.2. Onopordum species inhibit TNFα-induced IL-8 release in AGS cells 265 

The extracts inhibited IL-8 release induced by TNFα in a concentration dependent fashion; 266 

IC50 were 4.31 and 12.27 µg/mL for O. horridum and O. illyricum, respectively . Moreover, 267 

Onopordum extracts prevented TNFα-induced IL-8 release, when added to the cells 2 h 268 

before challenging with the pro-inflammatory stimulus; IC50 were 18.45 and 12.75 µg/mL 269 

for O. horridum and O. illyricum, respectively (Figure 2, A-B). 270 

 271 

As shown by comparison of the IC50, the inhibitory effect of O. horridum extract under co-272 

treatment conditions was more pronounced than that observed under pre-treatment (IC50: 273 

4.31 vs. 18.45 µg/mL) whereas the inhibitory effect of O. illyricum extract was comparable. 274 

Thus, we decided to further investigate the effect of the extracts exclusively in the co-275 

treatment conditions. 276 



  

 

 277 

Figure 2. Effect of O. horridum (A) and O. illyricum (B) extracts on the TNFα-278 

induced IL-8 secretion. To evaluate the effect of Onopordum extracts (1-50 279 

µg/mL) AGS cells were treated for 6 h with both TNFα (10 ng/mL) and extract 280 

(black bar). Preventive effect on the TNFα-induced IL-8 secretion was assessed by 281 

pre-treating AGS cells for 2 h with the two Onopordum extracts (1-50 µg/mL); 282 

then, IL-8 release was induced by treatment with TNFα (10 ng/mL) for 6 h (white 283 

bar). Secreted IL-8 was evaluated by ELISA assay. **p < 0.01, ***p < 0.001 vs. 284 

TNFα alone. 20 µM EGCG was used as the reference inhibitor of IL-8 secretion, 285 

according to the literature (Fumagalli et al., 2016). 286 

 287 

 288 

3.3. Onopordum species inhibit the TNFα-induced IL-8 secretion through impairment of the 289 

corresponding promoter activity 290 

To test if the inhibitory effect of Onopordum extracts on IL-8 release could be due to 291 

inhibition of IL-8 promoter activity, AGS cells were transiently transfected with a plasmid 292 

carrying the luciferase gene under the control of a fragment of the IL-8 promoter containing 293 

several responsive sequences including a sequence responsive to NF-κB. 294 

As shown in Figure 3, Onopordum extracts inhibited TNFα-induced IL-8 promoter activity 295 

in a concentration dependent manner with comparable activity. IC50 for O. horridum and O. 296 

illyricum were 17.09 and 14.8 µg/mL, respectively.  297 

 298 

 299 



  

 

 300 

Figure 3. Effect of the O. horridum (A) and O. illyricum (B) extracts on the 301 

TNFα-induced IL-8 promoter activity. AGS cells were treated for 6 h with TNFα 302 

(10 ng/mL) and O. horridum (5-75 µg/mL) or O. illyricum (1-50 µg/mL) extracts. 303 

IL-8 promoter activity was evaluated in transiently transfected AGS cells by the 304 

luciferase assay. **p < 0.01, ***p < 0.001 vs. TNFα alone. 20 µM EGCG was 305 

used as the reference inhibitor of IL-8 secretion, according to the literature 306 

(Fumagalli et al., 2016). 307 

 308 

 309 

3.4. Onopordum extracts inhibit the TNFα-induced IL-8 release through inhibition of NF-310 

κB signalling 311 

To gain further insights into the molecular mechanisms by which Onopordum species exert 312 

anti-inflammatory activity at gastric level, we tested the extracts on the NF-kB. In fact, it is 313 

widely reported in the literature that IL-8 expression is dependent on the NF-kB activation, 314 

contributing to exacerbate inflammation. NF-kB driven transcription was assessed in AGS 315 

cells transiently transfected with the NF-kB-LUC plasmid and treated for six hours with 316 

TNFa (10 ng/mL), in the presence of increasing concentrations of the extracts (Figure 4, A-317 

B). The amount of p65 translocation was measured by ELISA, as indicated in the material 318 

and methods section (Figure 4, C-D). Both the extracts from O. horridum and O. illyricum 319 

inhibited the NF-kB driven transcription in a concentration dependent fashion with similar 320 

IC50s (6.2 vs. 7.3 µg/ml, respectively). O. illyricum extract showed higher inhibition than O. 321 

horridum on the TNFa-induced NF-kB nuclear translocation (IC50s 10.04 vs. 18.21 µg/ml, 322 

respectively).  323 



  

 

 324 

Figure 4. Effect of O. horridum and O. illyricum extracts on the TNFα-induced 325 

NF-κB driven transcription (A-B) and nuclear translocation (C-D). AGS cells were 326 

treated for 6 h (driven transcription assay) or 1 h (nuclear translocation assay) with 327 

TNFα (10 ng/mL) and O. horridum or O. illyricum extracts at 1-50 µg/mL (NF-κB 328 

driven transcription) or 1-20 µg/mL (nuclear translocation assay). **p < 0.01, ***p 329 

< 0.001 vs. TNFα alone. 20 µM EGCG was used as reference inhibitor of TNFα-330 

induced NF-κB driven transcription or nuclear translocation, according to the 331 

literature (Fumagalli et al., 2016). 332 

 333 

 334 

3.5 Phytochemical characterization of Onopordum extracts 335 

The literature reports several classes of metabolites as characteristics of the genus 336 

Onopordum, including sesquiterpenoids, flavonoids, acetylenic compounds, steroids, 337 

triterpenes, lipids and nitrogen containing compounds (Bruno et al., 2011; Lajter et al., 338 

2015). 339 

The extracts from O. horridum and O. illyricum were chemically profiled through 340 

HPLC-PDA-MS/MS analysis. Caffeoylquinic acid derivatives were identified by comparing 341 

the UV, MS and MS/MS spectra to those of reference standards.  Figure 5 reports the 342 

chromatographic profiles of caffeoylquinic acid derivatives standard compounds and  O. 343 

illyricum and O. horridum extracts (A,B,C).  3,5 dicaffeoylquinic acid was chosen as 344 



  

 

illustrative example of a tandem mass spectrometry fragmentation pattern. As shown in 345 

figure 5D and 5E, the MS/MS fragmentation of both the standard compound and 3,5 346 

dicaffeoylquinic acid in O. illyricum extract generated diagnostic fragments at m/z 163 and 347 

191 in the positive and negative ESI mode, respectively (Marengo et al., 2017).   348 

Table 2 includes the quantitative analysis of the caffeoylquinic acid derivatives identified in 349 

the extracts. 350 

The most abundant compounds were quantified both in the UV mode and in the MRM 351 

acquisition, which provided similar results. The quantification through external calibration 352 

method based on the following transitions in ESI+: 355 à 163 for the chlorogenic acids, 353 

517 à 163 for the dicaffeoylquinic acids and 617 à 163 for the succynil dicaffeoylquinic 354 

acids, was chosen to obtain an accurate quantification of the compounds. 355 

The most abundant components in both species were the caffeoylquinic acid derivatives. 356 

Chlorogenic and dicaffeoylquinic acids are present in both species, whereas succinyl 357 

dicaffeoylquinic acids were found only in O. horridum (Figure 5A). In our extracts, 358 

chlorogenic acid, 3,5 dicaffeoylquinic acid and 1,5 dicaffeoylquinic acid are the main 359 

phenolic compounds in both species, although their amount is higher in O. illyricum extract 360 

(Table 2). 361 



  

 

 362 
 363 

Fig. 5. Chromatographic profiles of caffeoylquinic acid derivatives standard compounds (A) 364 

and O.illyricum (B) and O. horridum (C) extracts. Product Ion Scan spectra of the [M+H]+ 365 

and [M+H]- ions of 3,5 dicaffeoylquinic acid standard compound (D) and 3,5 366 



  

 

dicaffeoylquinic acid in O. illyricum extract (E). Compounds: 1=neochlorogenic acid; 367 

2=criptochlorogenic acid; 3=chlorogenic acid; 4=1,3 dicaffeoylquinic acid; 5=3,5 368 

dicaffeoylquinic acid; 6=1,5 dicaffeoylquinic acid; 7=4,5 dicaffeoylquinic acid; 8=succinyl 369 

dicaffeoylquinic acid1; 9=succinyl dicaffeoylquinic acid2 370 

 371 

Table 2. Quantitative analysis of caffeoylquinic acid derivatives in O. horridum 372 

and O. illyricum extracts 373 

Compound O. illyricum O. horridum 
 µg/mg % µg/mg % 

Neochlorogenic acid 1.48 ± 

0.17 

0.148 0.72 ± 0.19 0.072 
Cryptochlorogenic acid 0.31 ± 

0.08 

0.031 0.04 ± 0.004 0.004 
Chlorogenic acid 23.31 ± 

1.44 

2.331 9.35 ± 0.67 0.935 
1,3 Dicaffeoylquinic acid 0.66 ± 

0.12 

0.066 0.28 ± 0.02 0.028 
3,5 Dicaffeoylquinic acid 15.28 ± 

0.63 

1.528 3.31 ± 0.36 0.331 
1,5 Dicaffeoylquinic acid 38.36 ± 

2.57 

3.836 14.10 ± 1.44 1.410 
4,5 Dicaffeoylquinic acid 3.21 ± 

0.67 

0.321 0.80 ± 0.14 0.080 
Succinyl Dicaffeoylquinic acid - - 3.41 ± 0.41 0.341 
Succinyl Dicaffeoylquinic acid - - 0.05 ± 0.004 0.005 

 374 

 375 

3.6. Caffeoylquinic acid derivatives contribute to the inhibition of IL-8 release exerted by 376 

the extracts  377 

To connect the anti-inflammatory activity to one or more pure compounds identified in the 378 

extracts, chlorogenic acid, 3,5 dicaffeoyilquinic acid and 1,5 dicaffeoylquinic acid were 379 

tested at 1 µM on IL-8 release. Although 1,5 dicaffeoylquinic and chlorogenic acids 380 

showed around 20% inhibition of IL-8 secretion, only the effect of 3,5 dicaffeoyliquinic 381 

acid was statistically significant (Figure 6 A). 382 

Concentration response experiments revealed that 3,5 dicaffeoylquinic acid possessed a 383 

strong inhibition of IL-8 secretion in AGS cells, with an IC50 of 0.65 µM (Figure 6 B).  384 

 385 



  

 

 386 

Figure 6. Effect of the most abundant pure compounds (1µM) occurring in 387 

Onopordum extracts on the TNFα-induced IL-8 secretion (A). AGS cells were 388 

treated for 6 h with both TNFα (10 ng/mL) and each compound at the concentration 389 

of 1 µM. Concentration dependent inhibition of 3,5 dicaffeoylquinic acid on the 390 

TNFα-induced IL-8 release (B). 3,5 dicaffeoylquinic acid was evaluated at 391 

concentrations ranging from 0.1 to 5 µM. Secreted IL-8 was evaluated by ELISA 392 

assay. **p < 0.01, ***p < 0.001 vs. TNFα alone. 20 µM EGCG was used as the 393 

reference inhibitor of IL-8 secretion (Fumagalli et al., 2016). A: 1,5 394 

dicaffeoylquinic acid; B: 3,5 dicaffeoylquinic acid; C: chlorogenic acid. 395 

4. Discussion 396 

Gastric inflammation is mostly due to H. pylori infection. It causes the degeneration of the 397 

gastric epithelium and the infiltration of immune cells through the gastric mucosa, thus 398 

leading to release a variety of pro-inflammatory mediators (Bodger and Crabtree, 1998). 399 

This work reports, for the first time, the screening of eight wild thistles species, 400 

traditionally used in Sardinia, to test their anti-inflammatory activity in human gastric 401 

epithelial cells. Two inflammatory target molecules (IL-8, NF-κB) were evaluated in an in 402 

vitro model of gastric inflammation. IL-8 was chosen since it plays a pivotal role in the 403 

development of gastric inflammation during H. pylori infection. NF-κB is a transcription 404 

factor playing a crucial role in the development of gastro-intestinal inflammatory diseases, 405 

its activation is involved in the transcription of several pro-inflammatory mediators, 406 

including IL-8. TNFα as pro-inflammatory stimulus was chosen since it is widely released 407 

by immune cells during gastritis, thus leading to a massive production of IL-8 (Bodger and 408 

Crabtree, 1998; Crabtree, 1996; Crabtree et al., 1993; Israel and Peek, 2001). 409 

Our results, summarized in TableS1, suggest that, among the tested samples, O. horridum 410 

and O. illyricum extracts may exert a beneficial effect against gastric inflammatory 411 



  

 

diseases. Both the extracts inhibited IL-8 release and expression; inhibition of IL-8 412 

promoter activity paralleled the inhibitory activity on IL-8 release for O. illyricum extract, 413 

whereas other mechanisms seem to contribute to inhibition of IL-8 release elicited by O. 414 

horridum extract. Additionally, both extracts inhibited the NF-kB pathway, and the efficacy 415 

resembled inhibition of IL-8 release and promoter activity, thus suggesting that NF-kB is 416 

deeply involved in the molecular mechanisms underlying the anti-inflammatory effect. 417 

The effect appears approximately at concentrations as low as 10 µg/ml; thus, benefits could 418 

be easily reached upon moderate consumption of thistles. 419 

The n-hexane, chloroform and hydro-alcoholic (water/MeOH) extracts of both aerial parts 420 

and roots of the O. acanthium (10 µg/mL) inhibited the NF-kB transcription ranging from 421 

10 to 21.8 % in THP-1 cells (Lajter et al., 2015). Comparing our results obtained testing 422 

Onopordum extracts activity with the hydro-alcoholic extract from aerial parts of O. 423 

acanthium, it appears that the species investigated in the present study show higher 424 

inhibitory effect.  425 

The phytochemical analysis of O. horridum and O. illyricum extracts reports caffeoylquinic 426 

acid derivatives as major components. Previous studies aimed to perform phytochemical 427 

characterization of O. illyricum extracts, identified dicaffeoylquinic acids, luteolin, apigenin 428 

and the corresponding glycosides, onopordopicrin and other sesquiterpene lactones, and 429 

taraxasteryl acetate (Braca et al., 1999; Bruno et al., 2011; Rosselli et al., 2012; Topal et al., 430 

2016; Verotta et al., 2008). O. horridum chemical composition was herein investigated for 431 

the first time. Caffeoylquinic acid derivatives are the most abundant compounds in both 432 

extracts. Onopordopicrin, a characteristic sesquiterpene lactone found in Onopordum 433 

genus, was not detected in our extracts. However, solvents and conditions used for 434 

extraction, in addition to the plant material, could deeply affect the extraction of this 435 

compound. Our findings agree with other studies occurring in the literature; as an example, 436 

onopordopicrin was found in O. illyricum grown in Poland in the dichloromethane extract 437 

and in the ethyl acetate fraction of samples from Sardinia in addition to the chloroform 438 

extract from Sicilian samples. However, it was not present in the n-butanol extract of a 439 

Sardinian sample and in the acetone extract of a sample from Sicily (Braca et al., 1999; 440 

Formisano et al., 2017; Rosselli et al., 2012; Verotta et al., 2008). 441 

The presence of , chlorogenic acid, 3,5 dicaffeoylquinic acid and 1,5 dicaffeoylquinic acid 442 

in Onopordum species is confirmed by a previous study on O. illyricum samples from 443 

Sardinia (Verotta et al., 2008). 444 



  

 

IL-8 inhibition by pure compounds suggests that 3,5 dicaffeoylquinic acid may contribute, 445 

at least in part, to the anti-inflammatory activity elicited by O. illyricum, which reports high 446 

levels of this compound. However, other compounds, still unidentified, may be responsible 447 

for the anti-inflammatory activity of O. horridum extract. Previous works report the anti-448 

inflammatory activity of caffeoylquinic acids derivatives, including chlorogenic acid and 449 

3,5 dicaffeoylquinic acid, against several pro-inflammatory molecules and in different cell 450 

models (Chen et al., 2015; Han et al., 2015; Hong et al., 2015; Liu et al., 2015; Znati et al., 451 

2014). To our knowledge no data on the inhibitory activity of these molecules against the 452 

TNFα-induced IL-8 secretion in AGS cells are currently available. 453 

 454 

 455 

5. Conclusion 456 

This work reports the anti-inflammatory activity of two Onopordum species traditionally 457 

used in Sardinia. These findings support the traditional use of Onopordum species for 458 

medicinal and food purposes, and make these plants exploitable as preventive or co-459 

adjuvant agents in gastric diseases. Since caffeoylquinic acid derivatives are commonly 460 

present in botanical supplements on the market, these extracts may be considered as new 461 

sources of compounds active against gastric inflammation. 462 
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Abbreviations 479 

IL-8 Interleukin 8 

NF-κB Nuclear factor κB 

WHO World Health Organization 

TNFα Tumour necrosis factor alpha   

IL-1β Interleukin 1β 

VCAM-1 Vascular cell adhesion protein 1 

ICAM-1 Intercellular Adhesion Molecule 1 

TNF-R1 Tumor necrosis factor receptor 1  

IL-4 Interleukin 4 

IFN-γ Interferon γ 

STAT3 Signal transducer and activator of transcription 3 

Nrf2 Nuclear factor (erythroid-derived 2)-like 2 

COX-1 Cyclooxygenase-1 

COX-2 Cyclooxygenase-2 

NO Nitric oxide 

5-LOX 5-lipoxygenase 

AGS Human gastric adenocarcinoma AGS cells 

DMEM 

F12 

Dulbecco’s Modified Eagle Medium F12   

MTT 3,4,5-dimethylthiazol-2-yl-2-5-diphenyltetrazolium bromide  

ELISA Enzyme-linked immunosorbent assay 

FBS Foetal bovine serum 

s.d. Standard deviation 

EGCG Epigallocatechin-3-gallate 

DMSO Dimethyl sulfoxide 

LUC Luciferase 

HPLC High-performance liquid chromatography 

HRP Horseradish peroxidase 

TMB 3,31 ,5,51 -tetramethylbenzidine 

LDH Lactate dehydrogenase 

ANOVA Analysis of Variance 

IC50 Half maximal inhibitory concentration 



  

 

THP-1 Human monocytic leukaemia derived cells 

PDA Photodiode Array Detector  

MS/MS Tandem mass spectrometry 

UV Ultraviolet 

MRM Multiple reaction monitoring 
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