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Abstract (ENG) 
 

The reproductive success of plants depends on their developmental plasticity that is the 

ability to modulate their growth in response to exogenous and endogenous stimuli. Plants 

efficiently integrate these signals to coordinate their life cycle according to the best 

conditions to increase their fitness. Light and water availability is a limiting factor for plants 

sustenance and growth. In Arabidopsis thaliana day length (photoperiod) and water status 

influence flowering time. In particular, water deficit accelerates flowering thus enabling the 

drought escape (DE) responses. Interestingly, such DE responses only occurs under 

inductive long day conditions (LDs, typical of spring and summer seasons) but not short 

day conditions (SDs) highlighting a link between photoperiod perception and drought 

responses. The phytohormone abscisic acid (ABA) mediates the DE response, by 

promoting the upregulation of the florigen genes FLOWERING LOCUS T (FT) and its 

paralogue TWIN SISTER OF FT (TSF), whose expression is activated mainly by LDs. The 

role of ABA in flowering regulation is controversial as the literature describes both positive 

and negative roles for ABA in flowering. My PhD work supports the idea that ABA acts as 

florigen-stimulating molecule under LDs and its activity depends on prior activation of the 

photoperiodic pathway. I demonstrated that the ABA-dependent activation of FT requires 

GIGANTEA (GI) and CONSTANS (CO) functions, two main components of the 

photoperiodic pathway that control florigen expression. The generation of transgenic 

plants over-expressing tagged versions of GI or CO proteins in different ABA genetic 

backgrounds allowed me to directly asses their activity and measure their accumulations 

under varying levels of ABA signalling. My results indicate that ABA promotes GI and CO 

function without affecting their protein stability. An intriguing perspective of my work is that 

ABA might regulate GI and/or CO accessibility to the FT promoter. Further studies are 

however necessary to test this hypothesis and to decipher the molecular mechanism by 
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which ABA allow plants to coordinate flowering time according to the prevailing watering 

conditions. 
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Abstract (ITA) 
	

Il successo riproduttivo delle piante è da ascrivere alla plasticità del loro sviluppo ovvero la 

capacità di modulare la propria crescita in risposta a stimoli esogeni ed endogeni. Le 

piante sono in grado di integrare questi segnali coordinando il loro ciclo vitale e 

sincronizzando la fioritura in corrispondenza delle migliori condizioni al fine di garantire la 

conservazione della specie. La disponibilità di luce e acqua è un fattore limitante per la 

sopravvivenza e la crescita delle piante. In Arabidopsis thaliana la lunghezza del giorno 

(fotoperiodo) e la quantità d’acqua a disposizione della pianta influenzano il tempo di 

fioritura, nello specifico giorni lunghi (16 ore di luce e 8 ore di buio, condizione tipica della 

stagione primaverile ed estiva) e siccità accelerano la fioritura. È interessante notare che 

la fioritura anticipata causata dallo stress idrico (denominata drought escape, DE, 

letteralmente “fuga dalla siccità”) avviene solo quando le piante sono sottoposte a 

fotoperiodo lungo ma non a fotoperiodo corto (8 ore di luce e 16 ore di buoi). Questo 

evidenzia che nelle piante esiste un’interazione tra la percezione del fotoperiodo e la 

risposta alla siccità. Il fitormone acido abscissico (ABA) media l’accelerazione della 

fioritura in risposta alla siccità promuovendo l’up-regolazione dei geni florigenici 

FLOWERING LOCUS T (FT) e il suo paralogo TWIN SISTER OF FT (TSF), la cui 

espressione è indotta nei giorni lunghi. Il ruolo dell’ABA nella regolazione della fioritura è 

tuttavia controverso; in letteratura l’ABA è descritto sia come promotore che come 

repressore della fioritura. Il lavoro di ricerca svolto durante il dottorato supporta la tesi 

secondo cui l’ABA è una molecola florigenica, la cui attività dipende dall’attivazione del 

pathway fotoperiodico. Ho dimostrato che l’aumento ABA-dipendente della trascrizione di 

FT richiede la funzione di GIGANTEA (GI) e CONSTANS (CO), due componenti essenziali 

del pathway fotoperiodico che controllano l’espressione del florigeno. La generazione di 
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piante transgeniche in grado di over-produrre le proteine GI o CO fuse ad un epitopo mi 

ha permesso di studiare l’effetto di tale sovra-espressione di misurare tramite western blot 

il loro accumulo in risposta all’ABA. I miei risultati indicano che l’ABA promuove l’attività di 

GI e CO senza alterare la stabilità della proteina. Una prospettiva interessante è che 

L’ABA potrebbe altresì regolare l’accessibilità di GI e CO al promotore di FT. Ulteriori studi 

sono tuttavia necessari per verificare questa ipotesi e per comprendere il meccanismo 

molecolare con cui l’ABA permette alle piante di coordinare la fioritura in funzione della 

condizione idrica.  
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 1 Introduction 
 

The ability to adapt life cycle and development programs in response to environmental 

changes and endogenous stimuli is at the base of plants survival. In this context, 

coordination of flowering time with the best seasonal cues is crucial to ensure high fitness. 

Accordingly, in agriculture, crop varieties have been genetically selected all over the world 

in order to maximize their yield at specific latitudes and local environmental conditions 

(Purugganan and Fuller, 2009).  

 

1.1 The floral transition in Arabidopsis thaliana 
	
Arabidopsis thaliana, a flowering plant belonging to the Brassicaceae family, is the model 

species in which the mechanisms underlying the floral transition (the transition from the 

vegetative phase to the reproductive phase) have been characterized more extensively. In 

Arabidopsis, the floral transition consists of a molecular reprogramming of the shoot apical 

meristem (SAM). During the vegetative phase, the vegetative SAM produces leaves that 

are organized in a rosette attached to the soil. After the floral transition, the SAM turns into 

an inflorescence meristem (IM), it stops producing rosette leaves, the stem elongates 

(bolts) and the IM generates floral meristems (FMs), which will originate flowers, fruits and 

seeds (Huala and Sussex, 1993; Sussex, 1989). This transition is irreversible; 

consequently, the number of rosette leaves produced by the plant before the appearance 

of floral meristems can be used to evaluate in developmental terms when the floral 

transition took place in a particular plant or genotype.  
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1.2 The regulation of the floral transition 
	
Both exogenous and endogenous signals provide plants with information to determine 

when the floral transition has to take place. The number of hours of light during the day 

(photoperiod) and experience of cold (vernalization) are the two major environmental cues 

that trigger the floral transition (Amasino, 2010; Andrés and Coupland, 2012). In parallel, 

the autonomous and the gibberellic acid (GAs) pathways represent key signalling 

components conveying endogenous cues (Blazquez et al., 1998; Galvão et al., 2015, 

2012; Mutasa-Gottgens et al., 2009; Porri et al., 2012; Simpson, 2004; Wang et al., 2016; 

Wilson et al., 1992). Additionally, ambient temperature, plant age, biotic and abiotic 

stresses are other relevant flowering regulators (Huijser and Schmid, 2011; Kazan and 

Lyons, 2016; Samach and Wigge, 2005; Takeno, 2016). Furthermore, not only GAs but 

also other phytohormones such as abscisic acid (ABA), jasmonate (JA), brassinosteroids 

(BRs), ethylene (ET), salicylic acid (SA), cytokinin (CKs) and nitric oxide (NO) participate 

to regulate flowering in Arabidopsis (Achard et al., 2007; Barrero et al., 2005; Conti, 2017; 

Conti et al., 2014; He et al., 2004; Li et al., 2010; Martínez et al., 2004; Riboni et al., 2016, 

2014, 2013; Robson et al., 2010; Y. Wang et al., 2013; Zhai et al., 2015). Interestingly 

these hormonal signalling pathways seem to converge to a very limited number of floral 

genes (Davis, 2009; Kazan and Lyons, 2016). Here I will focus my attention on the 

interaction between the photoperiodic pathway and the role of the phytohormone abscisic 

acid (ABA) in the regulation of the flowering time (Riboni et al., 2016, 2014, 2013). 

 

1.3 The photoperiodic pathway 
	
Day length perception (photoperiod) has been identified as a crucial environmental 

stimulus that regulates plant reproductive development since the beginning of the 20th 

century (Garner and Allard, 1922). Photoperiod is perceived in the leaves where it 
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promotes the production of mobile signals (the florigens), which are able to move through 

the vasculature from the leaves to the SAM where they finally trigger the floral transition 

(Evans, 1971). Depending on the photoperiodic condition that stimulates the floral 

transition, plants can be divided in three categories: long-day plants, which preferentially 

flower in spring-summer at temperate latitudes, when the hours of light exceeds a certain 

threshold (> 14 h); short-day plants that flower under long nights, typical of the tropical and 

sub-tropical area; day-neutral plants, whose flowering is independent of photoperiod. 

Arabidopsis is a facultative long-day plant, meaning that it flowers earlier under long day 

(LDs) compared to short day conditions (SDs) (Mozley and Thomas, 1995). 

Comprehensive genetic screens in the last decades allowed the identification of mutants in 

the photoperiodic response. Photoperiod-insensitive mutants are late flowering compared 

to the wild type under LDs but show no or little flowering time defects under SDs (Fowler et 

al., 1999; Koornneef et al., 1998, 1991; Putterill et al., 1995). Epistasis analysis 

demonstrate that photoperiodic flowering mutants can be assigned to the same signalling 

pathway, which is active under LDs and not under SDs (Kobayashi et al., 1999; Koornneef 

et al., 1998; Mizoguchi et al., 2005; Suarez-Lopez et al., 2001).  GIGANTEA (GI), 

CONSTANS (CO) and FLOWERING LOCUS T (FT) constitute the core genes of the 

photoperiodic pathway. GI and CO are responsible for photoperiod perception and LDs-

dependent activation of the florigenic stimulus whereas FT, together with its paralogue 

TWIN SISTER OF FT (TSF), represents the mobile florigen that triggers the floral 

transition at the shoot apex (Corbesier et al., 2007; Golembeski and Imaizumi, 2015; 

Kobayashi and Weigel, 2007). The photoperiodic pathway is active only under LDs 

because light-stabilized GI, in complex with FLAVIN-BINDING, KELCH REPEAT, F BOX 1 

(FKF1), enables the transcriptional activation of CO (Imaizumi et al., 2005; Sawa et al., 

2007). Crucially, a peak of CO transcripts occurs at dusk, in correspondence with the light 

phase under LDs conditions. In this temporal window, a series of light-stimulated receptor 
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promote the stabilization of CO protein, which is otherwise fated for proteasome-mediated 

degradation (Jang et al., 2008; Song et al., 2012b; Valverde et al., 2004; Zuo et al., 2011). 

Conversely, under SDs, CO transcript peaks in the dark when CO protein stabilization 

cannot occur (Sawa et al., 2007). A huge number of molecular events regulate 

photoperiodic signalling via transcriptional and post-transcriptional mechanisms (Andrés 

and Coupland, 2012; Golembeski and Imaizumi, 2015; Priyanka Mishra, 2015; Song et al., 

2014b). Because of this complexity, I will now focus on some key components which are 

most related to the effects exerted by ABA and drought signals in Arabidopsis.  

 

1.4 GI is regulated transcriptionally and post-transcriptionally 
	
GI is a key component of the Arabidopsis photoperiodic pathway and is emerging as an 

important regulator of several plant environmental responses (Fornara et al., 2015). 

Despite its importance, it is surprising that very little is known about its molecular function.  

Both GI transcript and GI protein follow a similar pattern of diel accumulation depending on 

the photoperiod conditions. Under LDs, GI transcript and protein levels are low in the 

morning and peak 10-12 hours after dawn (zeitgeber time 10 -12, ZT10 -12) while under 

SDs, the peak is observed at ZT8 (David et al., 2006; Fowler et al., 1999).  

It has been demonstrated that components of the circadian clock regulate the transcription 

of GI. CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED 

HYPOCOTYL (LHY) are responsible for GI transcript accumulation in a specific time 

window under LDs thereby cca1 lhy double mutants show anticipated GI expression  

(Mizoguchi et al., 2002). As CCA1, other clock proteins, such as LIGHT-REGULATED WD 

1 and 2 (LWD1, LWD2) and TIME OF COFFEE (TIC), regulate the rhythmicity of GI 

expression (Hall et al., 2003; Wu et al., 2008). Similar to cca1 lhy mutants, lwd1 lwd2 and 

tic mutants show a peak of GI transcript advanced from ZT10 to ZT6. In addition to the 



Alice Robustelli Test The role of ABA in the floral transition: site and mechanism of action 

	 10 

circadian clock, light quality also regulates GI expression. For example, under LDs, far-red 

light delays GI transcript accumulation (Wollenberg et al., 2008). Moreover, when 

Arabidopsis plants enter the dark phase, GI transcript abundance halves in one hour 

regardless of their prior photoperiod condition of growth (Fowler et al., 1999). This night 

time-dependent repression is mediated by the complex EARLY FLOWERING 3 and 4 

(ELF3, ELF4) and LUX ARRHYTHMO (LUX) and seems to be associated to a drop in 

evening temperature (Mizuno et al., 2014).  

Although less studied, GI protein also follows a specific pattern of accumulation with a 

peak at ZT12 under LDs and at ZT8 under SDs (David et al., 2006). In the dark, GI is 

ubiquitinated by the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENESIS 1 

(COP1) and ELF3 acts as protein adaptor to tether COP1 onto GI (Yu et al., 2008). 

Conversely, heat shock triggers GI SUMOylation, which prevents GI degradation and 

consequently promotes flowering acceleration (López-Torrejón et al., 2013).  

In the context of flowering time, GI links circadian clock outputs with the photoperiodic 

pathway by promoting in a specific temporal window the proteasome-mediated 

degradation of a set of transcriptional repressors that normally occupy the promoter of CO 

and prevent its transcriptional activation (Fornara et al., 2009; Sawa et al., 2007). In line 

with this model, gi loss of function mutants show much reduced CO transcript 

accumulation and undetectable FT expression compared to the wild type. However, 

overexpression of CO largely confers early flowering even if GI is not functional (Suarez-

Lopez et al., 2001). While these genetic studies helped elucidate the important role of GI 

upstream of CO, other studies show that GI can activate flowering independent of CO. For 

example, GI stimulates the expression of microRNA 172 which targets the APETALA2 

factor TARGET OF EAT 1, a repressor of FT. Moreover, ectopic expression of GI can 

partially recover the late flowering of CO mutants, through restoring in part the 

transcriptional activation of FT (Jung et al., 2007; Sawa and Kay, 2011). Sawa et al. 
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demonstrated through chromatin immunoprecipitation experiments that GI binds to FT 

promoter regions in proximity to those bound by three FT repressors: SHORT 

VEGETATIVE PHASE, TEMPRANILLO (TEM)1, and TEM2 (Sawa and Kay, 2011). 

Interestingly, GI physically interact with these factors suggesting a role for GI in altering 

the competence of the FT promoter to receive positive transcriptional regulation through 

an unknown mechanism.   

 

1.5 The transcriptional and post-transcriptional regulation of CO 
	
In Arabidopsis CO constitutes the main activator of the florigen genes expression in LDs 

photoperiod (Suarez-Lopez et al., 2001). CO induces FT transcription by binding directly 

the FT promoter and acting as a transcriptional regulator (Cao et al., 2014; Tiwari et al., 

2010).  

Several layers of transcriptional and post-transcriptional regulation determine how CO 

protein accumulates under LDs, which is crucial for its role in triggering the transcription of 

the florigens. CO transcription is indirectly activated by the GI-FKF1 complex. The GI-

FKF1 complex assembles only under LDs when GI and FKF1 expression overlap between 

ZT10 and ZT12 (Imaizumi et al., 2005, 2003; Sawa et al., 2007). FKF1 is a ubiquitin ligase 

and a blue light photoreceptor (Imaizumi et al., 2003), which forms a complex with GI in a 

blue light-dependent manner. The GI-FKF1 complex targets the CYCLING DOF 

FACTORS (CDFs) for their proteasome-dependent degradation (Fornara et al., 2009; 

Sawa et al., 2007). Because the CDFs are transcriptional repressors of CO, their 

destruction allows for recruitment of other positive regulators onto the CO promoter. The 

transcription factors FLOWERING BHLH 1, 2, 3, 4 (FBH1, FBH2, FBH3, FBH4) bind to the 

CO promoter and stimulate its upregulation at the end of a long day (Ito et al., 2012). 

Recently, the CINCINNATA (CIN) clade of class II TEOSINTE BRANCHED 
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1/CYCLOIDEA/PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR (TCP) proteins 

were shown to act as CO activators, by binding to the CO promoter. It is interesting to note 

that TCP4 interacts with GI and that its ability to induce CO expression is GI-dependent. 

GI may thus enhance the DNA-binding ability of TCP4 (Kubota et al., 2017).  

The described complex array of transcriptional regulations confer a robust diel pattern of 

high levels of CO transcript accumulation at dusk. Coincidence of high levels of CO 

transcript in the light phase of a LD is essential for the CO protein stabilization and the 

consequent activation of flowering under LDs. The ubiquitin-ligase complex 

CONSTITUTIVE PHYTOMORPHOGENIC 1 (COP1) – SUPPRESSORS OF 

PHYTOCHROME A (SPAs) is responsible for the proteasomal degradation of CO in the 

dark (Jang et al., 2008; Laubinger et al., 2006). COP1-SPAs activity is repressed by blue 

light (BL) through the BL photoreceptor CRYPTOCHROME 2 (CRY2) (Zuo et al., 2011). In 

addition to CRY2 activity, the other BL-photoreceptor FKF1 favours CO protein 

accumulation in the afternoon (Song et al., 2012b). In this part of the day, 

PHYTOCHROME A (PHYA), a red/far-red receptor, also participates to stabilize CO 

(Valverde et al., 2004).  Unlike the end of the day, in the morning HIGH EXPRESSION OF 

OSMOTICALLY RESPONSIVE GENE 1 (HOS1), an E3 ubiquitin ligase, and 

PHYTOCHROME B (PHYB), a red light receptor, destabilize CO (Lazaro et al., 2012; 

Valverde et al., 2004). It has been recently demonstrated that the PSEUDO RESPONSE 

REGULATORS (PRRs), besides regulating CO transcription (Nakamichi et al., 2007), also 

participate to regulate CO protein accumulation during the day (Hayama et al., 2017). All 

these post-transcriptional events define a coordinated interplay between the endogenous 

clock and light-activated signals and converge to the stabilization of CO, thus ensuring that 

its peak of protein accumulation occurs at the end of the day. In addition to CO protein 

stability control, CO activity and/or degradability may also depend on its phosphorylation 
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status which varies during the day, thereby the phosphorylated form of CO is more 

abundant in the light (Sarid-Krebs et al., 2015). 

 

1.6 The transcriptional regulation of FT 
	
The access of CO to the CO Responsive Element (CORE) of the FT promoter (Cao et al., 

2014; Tiwari et al., 2010) is emerging as another layer of control of photoperiodic 

flowering. In addition to the CORE motifs, which are proximal to the transcription start site, 

distal cis-elements are required for the transcriptional activation of FT by CO. It has been 

demonstrated that the trimeric NUCLEAR FACTOR - Y (NF-Y) complex binds to a 

CCAAT-motif 5 kb upstream of the CORE regions (Cao et al., 2014). The formation of a 

chromatin loop in the FT promoter favours CORE and CCAAT motifs juxtaposition; In this 

way the NF-Y complex can be placed in the vicinity of CO protein to boost its function (Cao 

et al., 2014). The CORE element (CCACA) is similar but not identical to the well-

established NF-Y recognition motif sequence CCAAT (which is not present in the proximal 

FT promoter region). CO protein has been shown to form a non-canonical NF-Y complex 

which allows CO to divert the NF-YB and C subunits to the CORE sequence (Gnesutta et 

al., 2017). Formation of this heterogeneous CO/NF-Y complex is functionally relevant 

since double mutants of nf-yb nf-yc subunits phenocopy mutants of co. Furthermore, 

overexpression of CO cannot complement the late flowering phenotype of nf-yb nf-yc 

mutants (Tiwari et al., 2010).  

Many other proteins cooperate with CO to stimulate FT expression. Among these factors is 

ASYMMETRIC LEAVES 1 (AS1), which promotes CO-dependent FT activation (Song et 

al., 2012a) and the PHYTOCHROME INTERACTING FACTORS (PIFs) which convey 

ambient temperature –dependent information onto the FT promoter in cooperation with CO 

(Fernández et al., 2016; Kumar et al., 2012).  
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Following the transcriptional activation of FT in the leaves, FT protein moves through the 

vasculature to the shoot apex where it forms a complex with FLOWERING LOCUS D (FD), 

which coordinates the expression of a complex web of floral integrators responsible for the 

floral specification of lateral primordia (Abe et al., 2005; Corbesier et al., 2007). Moreover, 

besides FT, Arabidopsis has other florigen genes including TWIN SISTER OF FT (TSF) 

(an FT paralogue) (Jang et al., 2009; Yamaguchi et al., 2005) and MOTHER OF FT (MFT) 

(W. Kim et al., 2013), which have redundant FT function.  

 

1.7 Drought stress and flowering time 
	
As already anticipated, both biotic and abiotic stress influence the time to flowering (Kazan 

and Lyons, 2014; Takeno, 2016). Among the different environmental factors that influence 

plant development, the effects of water scarcity are extremely relevant in today’s science 

for their implications with the ongoing climate change. Plants respond to drought stress 

with three main strategies (Blum, 2005): drought tolerance, dehydration avoidance and 

drought escape. The drought tolerance response allows plant cells to enter a dormant or 

semi-dormant state during extremely arid period. However, under mild drought stress, 

plants tend to minimize water loss and maximize water uptake with a series of 

physiological strategies globally referred to as dehydration avoidance. Finally, plants can 

escape from water deficit conditions by synchronising the onset of reproductive 

development with the rainy season. In temperate climates, characterised by dry summers 

(e.g. the Mediterranean basin), this usually entails the selection of early flowering 

genotypes that can effectively escape the summer drought. In some cases, such drought 

escape strategy (DE) can be adaptive. This means that upon drought stress some plants 

accelerate flowering, thus ensuring the production of a progeny before the worsening of 

the environmental conditions. In this adaptive connotation, a DE response strategy has 
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been described in different species including Arabidopsis, Rice, Mimulus, Avena barbata 

and Brassica rapa (Franks, 2011; Ivey and Carr, 2012; Riboni et al., 2013; Sherrard and 

Maherali, 2006; Xu et al., 2005).  

 

1.8 The drought escape (DE) response in Arabidopsis 
	
Previous work in our lab and others have shown a close interaction between DE response 

and photoperiodic signalling. In particular, the DE occurs only under LDs and not under 

SDs suggesting that drought signals are somehow integrated with photoperiod perception 

(Riboni et al., 2013). Indeed, independent genetic and molecular works highlight a clear 

interaction between drought stress and photoperiodic signalling genes. In essence, the 

drought-dependent acceleration of flowering is caused by upregulation of the florigen 

genes FT and TSF under drought conditions and LDs, but not SDs (Riboni et al., 2016, 

2013). GI plays a key role in this response. First, because gi mutants cannot generate a 

DE under LDs. Secondly, because the overexpression of GI can restore DE under SDs. 

Thirdly, without GI, water deficit cannot reactivate FT and TSF expression (Riboni et al., 

2013). My published data demonstrate that CO is also essential for the drought-dependent 

boost of FT transcript levels, but not TSF (Riboni et al., 2016) indicating that GI can have 

CO-independent functions in DE.  

Besides requiring an activated photoperiodic pathway, the DE response depends on the 

hormone ABA (Riboni et al., 2016, 2013). Mutants deficient in ABA production or signalling 

cannot activate DE under LDs and this is accompanied with highly diminished upregulation 

of the florigen genes in response to drought. Not only these observations indicate ABA as 

a critical component of the DE response, but they also imply a general involvement of ABA 

signalling in the control of flowering via regulation of the florigen genes, which has not 

been previously characterised.  
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1.9 ABA and flowering 
	
ABA is the key drought stress-related hormone (Shinozaki and Yamaguchi-Shinozaki, 

2007). However, ABA controls several plant developmental processes also in the absence 

of stress (Barrero et al., 2005; Liu et al., 2016). The ABA signalling pathway has been 

recently characterized and consists of three main components: the ABA receptors 

PYRABACTIN RESISTANCE (PYR)/REGULATORY COMPONENT OF ABA RECEPTOR 

(RCAR); a group of PP2C phosphatases of group A that act as ABA-signalling repressors 

(PROTEIN PHOSPHATASE 2Cs, PP2Cs); the kinases SNF1-RELATED PROTEIN 

KINASES 2 (SnRK2s), which act as ABA-signalling promoter of downstream responses 

(Cutler et al., 2010). In the presence of ABA, ABA-bound PYR/PYL/RCAR receptors 

interact with PP2Cs proteins (such as ABI1, ABI2, HAB1, PP2CA) repressing their activity, 

thus releasing the function of downstream SnRK2 kinases. As a consequence, the kinases 

autophosphorylate and phosphorylate their targets, among which several transcription 

factors (Furihata et al., 2006; Umezawa et al., 2013; P. Wang et al., 2013; Y. Wang et al., 

2013; Yoshida et al., 2014). The diagram in Fig. 1 illustrates key events of ABA 

biosynthesis and signalling. 
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Fig. 1. ABA biosynthesis and ABA signalling. The upper part of the diagram illustrates the ABA 
biosynthesis. Highlighted in red are two genes that I included in my genetic analysis (ABA1 and ABA2) and 
the respective reactions, which are compromised in aba1 and aba2 mutants. The lower part depicts the 
phosphorylation cascade of the ABA signalling pathway, which starts when ABA binds to the 
PYR/PYL/RCAR receptors. Following ABA-induced conformational changes, the receptors sequestrate the 
PP2Cs phosphatase blocking their activity; consequently, SnRK2s kinase are free to autophosphorylate and 
phosphorylate their targets. 
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The role of ABA in the control of the floral transition is twofold as positive and negative 

effects were reported (Domagalska et al., 2010; Riboni et al., 2016, 2013; Y. Wang et al., 

2013). In line with the idea of ABA acting as floral promoter, Arabidopsis mutants defective 

in ABA production are late flowering compared with the wild type under LDs but show no 

defect under SDs (Riboni et al., 2016, 2013). Root applications of ABA promote flowering 

under LDs (Koops et al., 2011; Riboni et al., 2016) and rescue the delay in flowering of 

aba1 and aba2 mutants in Arabidopsis (Riboni et al., 2016). Such positive effect of ABA on 

flowering is likely mediated by the canonical ABA signalling pathway. First, because triple 

pp2ca mutants, characterised by hyper activated ABA responses, are early flowering 

compared to the wild type under LDs (Riboni et al., 2013). Secondly, because higher order 

mutants of ABA-related bZIP transcription factors are late flowering under LDs (Yoshida et 

al., 2014). Thirdly, because ABA promotes the degradation of ABSCISIC ACID 

INSENSITIVE 3 (ABI3) transcription factor, which is a flowering repressor (Kurup et al., 

2001; Zhang et al., 2009). Besides activating flowering, ABA has been described in the 

literature as a floral repressor. For example, drought stress delays flowering under SDs 

(Riboni et al., 2013) and in the same photoperiodic conditions mutants with an enhanced 

or repressed ABA signalling are late and early flowering, respectively (Riboni et al., 2016, 

2013). Such negative effect of ABA in flowering might be exerted through downregulation 

of SOC1 expression, independent of FT (Riboni et al., 2016). Moreover, ABSCISIC ACID 

INSENSITIVE 5 (ABI5), an ABA-related bZIP transcription factor, represses flowering 

through upregulation of the flowering repressor FLOWERING LOCUS C (FLC) (Y. Wang 

et al., 2013). It has been proposed that this double effect of ABA on flowering could be 

related to tissue specificity, whereby ABA has a positive role in the leaf under inductive 

LDs via boosting florigen expression and a negative role in the shoot apex via SOC1 
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which is always present but clearly emerges under non photo-inductive conditions (Riboni 

et al., 2016). 

If we consider ABA as floral promoter, this activity is highly interconnected with photo 

stimulated photoperiodic signalling (Riboni et al., 2016, 2013). Indeed, there is a clear 

genetic interaction between ABA production and the florigen genes since without GI or CO 

the drought-dependent upregulation of FT cannot occur and both gi and co mutations are 

epistatic to ABA deficiency (Riboni et al., 2016, 2013). Also, impairing ABA signalling 

suppresses the strong activation of FT and TSF conferred by overexpression of GI (Riboni 

et al., 2016, 2013). ABA production is highly active in the phloem companion cells (where 

CO is usually active) (Kuromori et al., 2014). This might indicate a general interaction 

between ABA and the photoperiodic genes in the control of different drought-dependent 

responses. The emerging role of GI, FT and TSF in promoting stomata aperture, which is 

related to transpiration, supports this general idea (Ando et al., 2013). 
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2 Motivation and objectives of my PhD: revealing the mode of 
interaction between ABA and photoperiod signalling  
 

Although data indicate that ABA acts upstream of the florigen genes, it is not clear how it 

interacts with CO and GI. My published data demonstrate that ABA mainly promotes GI 

and CO functions rather than their transcriptional activation (Riboni et al., 2016). Several 

lines of evidence support this conclusion. First, although my study and data elsewhere 

support a positive role for ABA in the transcriptional activation of CO (Riboni et al., 2016, 

2013; Yoshida et al., 2014), in my experience the positive effect of ABA on CO 

transcriptional activation is particularly evident only in mutant plants with enhanced ABA 

signalling under drought stress (Riboni et al., 2016). Conversely, no clear CO upregulation 

is observed in ABA hypersensitive mutants under normal watering conditions, which 

instead show highly increased levels of FT transcript relative to the wild type (Riboni et al., 

2016). Moreover, plants defective in ABA production or signalling have lower levels of 

florigen transcript compared with the wild type, whereas the expression of GI and CO is 

only mildly affected (Riboni et al., 2016, 2013). Secondly, in mutant backgrounds 

characterised by high levels of CO, water deficit can further boost FT and TSF 

transcription at dusk without causing a correspondent increment in CO (Riboni et al., 

2016). Despite the key role of CO in regulating FT expression high levels of CO are not 

sufficient to activate the florigen genes under drought stress conditions, as this requires 

functional GI protein (Riboni et al., 2016). ABA-derived signals thus appear to be largely 

integrated in the photoperiodic pathway primarily through GI and downstream of CO 

transcriptional regulation. This observation adds to the increasing number of post-

transcriptional regulatory mechanisms of GI and CO functions that contribute to the 

transcriptional regulation of the florigen genes (Cao et al., 2014; David et al., 2006; 

Hayama et al., 2017; Lazaro et al., 2015; Sarid-Krebs et al., 2015; Song et al., 2014a, 
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2012a, 2012b; Valverde et al., 2004; Yu et al., 2008; Zuo et al., 2011). Based on these 

observations, my current hypothesis is that ABA exerts a post-transcriptional regulatory 

role in photoperiod signalling, thus explaining the ABA-mediated FT upregulation that 

cannot be justified solely by CO transcriptional changes. 

During my PhD work I contributed to substantiate the idea that ABA regulates GI and CO 

functions, through a blend of genetic and biochemical approaches (Riboni et al. 2014; 

Riboni et al. 2016, Unpublished data). Based on published data, in Fig. 2 I illustrate a 

hypothetical model of interaction between ABA and the photoperiodic pathway whereby 

ABA mainly regulates GI and CO activities upstream of FT. A second aim of my PhD 

project was to decipher the molecular mechanism by which ABA promotes florigen genes 

expression through the analysis of CO and GI protein functions and accumulations in vivo.  
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Fig. 2. ABA regulates GI and CO functions rather than their transcriptional activation. Under LDs 
activation of the photoperiodic pathway depends on the GI/FKF1-mediated degradation of CDFs, which are 
repressors of CO. CO protein is stabilized at dusk, and this promotes florigen genes upregulation. Blue 
arrows indicate two possible modes of ABA regulation of GI and CO functions. Dashed lines represent 
transcriptional regulation events, whereas solid lines indicate post-transcriptional controls. Arrows and blunt 
lines indicate promotive and repressive effects, respectively. 
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3 Unpublished data 
 

3.1 Main Results 
 

Genetic interactions between ABA production and photoreceptors signalling 
	
A hallmark of photoperiodic signalling is the coincidence between high levels of CO 

transcript and the presence of light in the late afternoon (Suarez-Lopez et al., 2001). This 

overlap allows for CO protein stabilization and transcriptional activation of FT (Jang et al., 

2008; Liu et al., 2008; Song et al., 2012b; Valverde et al., 2004; Zuo et al., 2011). In this 

context, light quality plays a major role in the regulation of CO stability during the day. Red 

light (RL) destabilises CO in the morning whereas blue (BL) and far-red light (FRL) 

promote CO accumulation at dusk (Liu et al., 2008; Song et al., 2012b; Valverde et al., 

2004; Zuo et al., 2011). To understand which photoreceptor could mediate ABA function 

upstream of CO I used a genetic approach to combine mutants deficient in ABA 

production with mutants defective in photoreceptor function. In this set of experiments, I 

used phyB and phyA mutants defective in RL and FRL perception, respectively, and fkf1 

and cry2 mutants deficient in BL sensing. I then analysed the flowering time of the different 

double mutants in several independent experiments under LDs. As expected, mutants of 

aba1-6 were late flowering compared to the wild type (Fig. 3A and 3B). PhyB negatively 

affects CO accumulation in the morning (Valverde et al., 2004). phyB-9 were indeed earlier 

flowering compared to the wild type (Fig. 3A). In two independent experiments aba1-6 

phyB-9 double mutants flowered with a similar number of rosette leaves of phyB-9 single 

mutant plants (Fig. 3A and 3C). I excluded that the early flowering conferred by phyB-9 

could mask the effect of aba1-6 in flowering because in other experiments the aba1-6 

mutation could significantly rescue the early flowering conferred by the elf3-1 mutation, 

which is even more severely early flowering compared with phyB (Riboni et al., 2016). This 
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data indicates that phyB is epistatic to aba1-6, pointing to possible negative role for ABA in 

the red light-mediated degradation of CO (Lazaro et al., 2015).   

To further test the interaction between ABA and red light I analysed mutants of phyA, a 

phytochrome which is more specific for FRL (Neff et al., 2000). PhyA contributes to the CO 

stabilisation in the late afternoon, when ABA is predicted to act (based on the effect on FT 

accumulation) and phyA mutants are late flowering under LDs compared with the wild-type 

(Johnson et al., 1994; Valverde et al., 2004). I used the phyA-501 null allele for my 

experiments (Ruckle et al., 2008) and I consistently observed a significant delay in 

flowering compared with the wild type (Fig. 3B and 3C). aba1-6 phyA-501 double mutants 

were later flowering compared with phyA-501 (Fig. 3B and 3C). I obtained similar results in 

repeat experiments, in which aba1-6 phyA-501 generated approximately 32% (n=3 

independent experiments) leaves more compared with phyA-501. The additive effect of 

aba1-6 and phyA-501 mutations suggests that FRL and ABA promote flowering through 

independent mechanisms. 

Similar to FRL, BL stabilises CO at dusk (Song et al., 2012b; Valverde et al., 2004; Zuo et 

al., 2011). Because the effects of varying ABA levels on FT transcription were limited to 

dusk (Riboni et al., 2016, 2013), I focused my analysis on the role of BL-dependent 

signals. BL is involved in the transcriptional activation of CO through the FKF1 

photoreceptor (Imaizumi et al., 2005). BL also promotes CO stabilization through FKF1 

and CRY2 functions (Song et al., 2012b; Zuo et al., 2011). fkf1-10 and aba1-6 fkf1-10 

double mutants were similarly late flowering in all the experiments performed (Fig. 3A and 

3C). This data is consistent with ABA acting through CO, upstream of the florigen genes. 

However, I interpret this result with caution since without FKF1 function the accumulation 

of CO transcript is compromised, which may mask the putative effect of the deficit in ABA 

production on CO protein function (Imaizumi et al., 2005). In this respect, a more 

informative BL photoreceptor could be CRY2, which affects CO protein function by 
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regulating its rate of turnover (Zuo et al., 2011). To test the role of CRY2 in the ABA-

dependent activation of CO function, I have generated double mutants of aba1-6 cry2-1. 

This genotype produced highly conflicting results, which precluded a clear definition about 

the interaction between ABA and CRY2. In three independent experiments, I have 

observed contrasting phenotypes for aba1-6 cry2-1 as compared with cry2-1 single 

mutants. These fluctuations of flowering time were in both directions (later and earlier) and 

highly significant (10% or 15% increase or decrease in leaf number, respectively). In one 

case, I observed no variations, which could be interpreted in terms of an epistatic 

interaction between CRY2 and ABA production. I also noticed that aba1-6 cry2-1 mutants 

were extremely susceptible to diseases (powdery mildew) and pathogen attacks which 

compromised plant development and growth. Besides generating the aba1-6 cry2-1 I also 

produced the aba1-6 cry2-1 cry1-2 triple mutants but flowering time data have not been 

obtained yet (also because of the above reasons). However, although CRY1 acts 

redundantly with CRY2 with respect to a subset of BL–mediated responses, the literature 

suggests that its role in flowering time regulation is marginal as compared with CRY2 

(Bagnall et al., 1996; Guo et al., 1998).  

In conclusion, my genetic analysis pointed to a possible interaction between ABA and RL 

and also between ABA and BL. In contrast, FRL signals seem to act additively to ABA.  
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Fig. 3. Blue/Red/Far-Red photoreceptors are differentially involved in the ABA–dependent regulation 
of flowering. (A-B) Tukey boxplot of the distribution of the rosette leaves numbers of the indicated 
genotypes grown under LDs (n= 15-17 plants for each genotype). Box extends from the 25th to 75th 
percentiles and the horizontal line is the median value. Whiskers and dots are calculated following the Tukey 
method: if the highest value in the data set is lower than (or equal to) the 75th percentile plus 1.5IQR (IQR is 
the interquartile difference, the difference between 75th and 25th percentiles), the upper whisker represents 
the maximum value, otherwise the upper whisker stops to the highest value less than 75th percentile plus 
1.5IQR and all other values greater than this are drawn as dots (outliers). The opposite is true for the lower 
whisker: if the lowest value in the data set is higher than (or equal to) the 25th percentile minus 1.5 IQR, the 
lower whisker represents the minimum value, otherwise the lower whisker stops to the lowest value greater 
than 25th percentile minus 1.5IQR and all other values lower than this are represented as dots. Multiple 
comparisons were performed with one-way ANOVA with Tukey’s Post Hoc test, P-values ≤0.05 (*), ≤0.001 
(***), >0.05 not significant (NS). Experiment (A) and experiment (B) were performed in different growth 
chambers and in (A) the aba1-6 mutants had milder late flowering phenotypes compared with the wild type 
(Col-0). (C) Images of representative plants of the indicated genotypes grown under LDs. Col-0, aba1-6, 
phyB-9 and aba1-6 phyB-9 are four weeks old, phyA-501 and aba1-6 phyA-501 are 5-week-old and fkf1-10 
and aba1-6 fkf1-10 are seven weeks old. Inset pictures show visible inflorescences. Scale bars= 1cm 
 

 

Reduced ABA accumulation impairs the function of CO upstream of FT 
	
Published data support both transcriptional and post-transcriptional effects for ABA in the 

activation of CO under LDs (Riboni et al., 2016, 2013; Yoshida et al., 2014). However, our 

data argue in favour of a major post-transcriptional effect of ABA on CO protein.  
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To prove that ABA promotes CO function and to identify the potential post-transcriptional 

regulation mechanism exerted by ABA on CO, I decided to generate transgenic plants 

constitutively expressing CO in different mutant backgrounds characterised by different 

degrees of ABA content and ABA signalling. If the post-transcriptional activity of ABA is 

crucial as initially hypothesised, a deficit in ABA production would compromise FT 

expression despite overexpression of CO. Using the gateway system, I first cloned CO 

under the Cauliflower Mosaic Virus (CaMV) 35S promoter, for its ectopic expression in the 

plant, and with a fluorescent tag at the C-terminus to allow for detection of CO protein (Fig. 

4A). With this construct I transformed wild-type plants and aba1-6 mutants (deficient in 

ABA production), hereafter referred to as 35S::CO:CFP and aba1-6 35S::CO:CFP, 

respectively. As a control, I used wild-type plants transformed with the empty gateway 

(GW) destination vector 35S::GW:CFP (referring to them as Col-0 35S::vector). Basta-

resistant T1 plants were selected under standard LD conditions and these were scored for 

flowering time by counting the number of rosette leaves (26-28 plants for each genotype). 

This allowed me to accurately evaluate the effect of the overexpression of CO on flowering 

time depending on the ABA background and (given the high number of T1 events) to 

control for insertional position effects across the different transgenic events. Although I 

observed high phenotypic variability, 35S::CO:CFP plants were significantly earlier 

flowering compared to Col-0 35S::vector control plants. In contrast, aba1-6 35S::CO:CFP 

were later flowering either than Col-0 35S::vector and 35S::CO:CFP (Fig. 4B). Therefore, 

the over expression of CO cannot rescue the delay in flowering caused by reduced ABA 

production. To ensure that the phenotypes observed did not derive from varying levels of 

transgene-dependent overexpression of CO, I measured the transcript levels of CO:CFP in 

around half of the 35S::CO:CFP plants both in the Col-0 and aba1-6 backgrounds. Since 

the flowering time was highly variable within the same genotype, I analysed plants with 

different rosette leaves number to exclude any bias. I sampled the fourth leaf of bolted 
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plants at ZT12, when CO normally peaks to trigger FT expression. Real time qPCR 

analysis confirmed that the CO overexpression (as shown by CFP expression) was similar, 

independent of the ABA content of the plants (Fig. 4C). This pattern of accumulation of 

CO:CFP was confirmed when using CO-specific primers in a subset of lines (data not 

shown). Despite there were no obvious alterations in CO:CFP transcript accumulation, 

aba1-6 35S::CO:CFP showed a general strong reduction in FT transcript accumulation 

compared with 35S::CO:CFP in almost every single transformation event (Fig. 4D). In a 

subset of individuals, I evaluated the expression values of CO:CFP and FT with two 

additional housekeeping reference genes, ACTIN 2 (ACT2) and IRON-SULFUR 

CLUSTER ASSEMBLY PROTEIN 1 (ISU1) (Kaiserli et al., 2015) and I obtained 

comparable results to IPP2, thus reinforcing my gene expression analysis (data not 

shown). I did not observe any clear correlation between CO and FT transcript levels, 

neither in the wild type nor in aba1-6 backgrounds. Instead I observed a correlation 

between the levels of FT transcript accumulation and the genotype, thereby active ABA 

production, as in the Col-0 wild-type background, conferred high FT transcript levels. This 

was apparent when plotting FT as a function of CO:CFP expression; two clusters of T1 

plants appeared, corresponding to the wild-type and the ABA-deficient backgrounds (Fig. 

4E). Such highly clustered distribution of gene expression supports the hypothesis that 

reduced levels of ABA compromise FT upregulation even when CO is constitutively 

expressed.  
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Fig. 4. Reduced ABA impairs FT activation even when CO is overexpressed. (A) Diagram illustrating 
the main regulatory elements and tags in the constructs used for Agrobacterium-mediated transformation of 
Arabidopsis. (B) Scatter plot representing the rosette leaves number of transgenic T1 plants grown under 
LDs. Each dot represents an independent T1 plants. Error bars are SD, n = 26-28. Multiple comparisons 
were performed with one-way ANOVA with Tukey’s Post Hoc test, P-values ≤0.05 (*), ≤0.01 (**), ≤0.001 
(***). (C-D-E) Real-Time qPCR of CO:CFP and FT transcripts in mature (bolted) T1 plants sampled at ZT12. 
Each column or dot represents gene expression levels of independent T1 plants. IPP2 expression was used 
for normalization. (C and D) Values represent fold change variations of CO:CFP and FT transcripts 
normalized relative to a 35S::CO:CFP line with low CO:CFP expression. For each sample, two technical 
replicates were performed and the associated standard deviation was omitted for graphic clarity. Inset shows 
FT values lower than 0.03. (E) The same values shown in (C-D) are represented in a scatter (XY) plot where 
FT transcript levels are compared with CO:CFP. Each dot corresponds to independent T1 plants and error 
bars represent the standard deviation of two technical replicates. 
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I next aimed to confirm these results in the subsequent generations. To obtain stable T3 

lines I preferentially selected T1 plants with a single transgene insertion, on the basis of 

the appropriate 3:1 (resistant vs. sensitive) Mendellian segregation of Basta resistance in 

the T2 generation. However, I also decided to move forward lines with multiple insertions 

which showed an early flowering phenotype. This was done because of the paucity of very 

early flowering individuals in T1. Secondly, it is very well established in the literature that 

the over-expression of CO causes early flowering, which excluded any bias in my choice 

(An et al., 2004; Jang et al., 2009; Onouchi et al., 2000). I then analysed the flowering time 

of these segregating (or not) T2 lines (17 plants for each line) to confirm the inheritance of 

the phenotypes conferred by the transgene. Independent aba1-6 35S::CO:CFP lines were 

still consistently later flowering compared with 35S::CO:CFP although a great variability in 

flowering within each line and across genetic backgrounds was observed. In most cases, 

T2 35S::CO:CFP plants were earlier flowering compared with aba1-6 35S::CO:CFP but no 

dramatic early flowering phenotype was observed (Fig. 5A). After confirmation that the 

CO:CFP transgene was still detectable, I also confirmed overexpression of CO with gene-

specific primers (relative to a non-transgenic wild-type at a similar stage)  (Fig. 5B and 

5C). In the T3 generation, I decided to focus my attention on two particular lines, 

35S::CO:CFP #6 (harbouring multiple insertions) and aba1-6 35S::CO:CFP #3 (single 

insertion). This choice was guided by two factors. First, amongst the lines analysed, these 

showed the earliest flowering (Fig. 5A). Secondly, they had similar levels of CO:CFP 

overexpression (Fig. 5B). In the T3 generation, 35S::CO:CFP(#6) plants were significantly 

earlier flowering compared with wild-type Col-0 and aba1-6 35S::CO:CFP (#3), producing 

20-25% fewer rosette leaves, respectively (Fig. 5D). In good agreement with the flowering 

time data observed in the T1 generation, reduced ABA production caused a delay in the 

floral transition in plants overexpressing CO (Fig. 5D and 5E). Such delay in flowering was 

well correlated with impaired FT transcriptional activation: At ZT12, aba1-6 
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35S::CO:CFP(#3) showed 7.5 fold reduction in FT transcript accumulation compared with 

35S::CO:CFP(#6), despite showing similar levels of CO:CFP accumulation  (Fig. 5E and 

5F). Taken together these data continue to support my hypothesis that ABA is required for 

proper CO function on FT expression under inductive LD photoperiod. 

 

 

Fig. 5. Overexpression of CO produces heritable but not extreme early flowering phenotypes. (A) 
Scatter plot representing fluctuation in the flowering time, under LDs, of 35S::CO:CFP T2 lines both in Col-0 
and aba1-6 backgrounds. Each dot represents a single Basta resistant T2 plant belonging to the segregating 
line indicated (each number represent a segregating T2 transgenic line). Error bars = SD, n=13-23. Red and 
green arrows indicate the T2 lines chosen for the further analysis in the T3 generation. (B-C) Real-Time 
qPCR of CO:CFP  and CO transcript in two-week-old T2 seedlings grown under LDs following Basta 
selection at ZT12. Two Col-0 wild type plants were grown in parallel to evaluate transgene-derived CO 
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overexpression. Error bars are SD of two technical replicates. IPP2 expression was used for normalization. 
(B) CO:CFP transcript levels were undetectable in wild-type non–transgenic plants. I thus used aba1-6 
35S::CO:CFP (#1) for normalization. (C) Fold change variations of CO transcript levels of T2 transgenic 
plants relative to a wild type non-transgenic plant. (D) Tukey boxplot of the distribution of the number of 
rosette leaves of the indicated genotypes grown under LDs (n=17-20). 35S::CO:CFP (#6) and aba1-6 
35S::CO:CFP (#3) are non-segregating plants in T3 generation. Multiple comparisons were performed with 
one-way ANOVA with Tukey’s Post Hoc test, P-values ≤0.01 (**), ≤0.001 (***). (E-F) Real-Time qPCR of 
CO:CFP and FT transcripts in wild-type Col-0, aba1-6 and T3 35S::CO:CFP (#6) and aba1-6 35S::CO:CFP 
(#3) 2-week-old seedlings grown under LDs and sampled at ZT12. Error bars = SD of two technical 
replicates. IPP2 expression was used for normalization. (E) Values represent fold change variations relative 
to 35S::CO:CFP (#6). ND = not detectable (F) Values represent fold change variations relative to aba1-6. 
Inset shows lower level of FT transcript in aba1-6 mutants compared to the wild type. 
 

ABA signalling stimulates the function of CO upstream of FT 
	
The canonical ABA signalling mediates the upregulation of the florigen genes (Riboni et 

al., 2016, 2013). The triple phosphatase mutant hab1-1 abi1-2 abi2-2 has sensitised ABA 

signalling and an early flowering phenotype, which is correlated with increased levels of FT 

accumulation (Riboni et al., 2016, 2013). However, such increased levels of FT are not 

reflected in clear higher levels of CO under normal watering conditions (Riboni et al., 

2016). Based on these data and the demonstrated effect of ABA in potentiating CO 

function (Fig. 4 and Fig. 5), I predicted that this background should be very sensitive to 

variations in CO protein accumulation. I therefore decided to transform hab1-1 abi1-2 abi2-

2 mutants (hereafter referred to as 3xabi) with the previously described 35S::CO:CFP 

construct and compared these plants to the wild type. In the T1 generation, more than half 

of the 3xabi 35S::CO:CFP plants were extremely early flowering, producing between 4 and 

6 leaves (Fig. 6A). Under similar conditions, the expression of 35S::CO:CFP in the wild-

type background produced such extreme early flowering phenotype in only 2 plants out of 

28 T1 events. Furthermore, early flowering 3xabi 35S::CO:CFP plants were semi-sterile, 

producing very few seeds. Because of this, 3xabi 35S::CO:CFP lines were subsequently 

analysed as T2 segregating lines. Of two lines for which seeds were available, only one 

successfully germinated and after BASTA selection healthy seedlings we obtained. These 

were compared to T3 plants (subject to Basta selection) of 35S::CO:CFP (#6), 

representing the earliest and most stable line I managed to isolate. The phenotypic 
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differences between these transgenic lines are described in Fig. 6B and 6C. As compared 

with the wild-type background, overexpression of CO in 3xabi plants conferred an extreme 

early flowering phenotype, which was accompanied by a strong reduction in plant size, 

effectively mimicking the previously described over-expression of FT or CO under the 

phloem companion cell-specific promoter SUC2 (An et al. 2004; Jang et al. 2009 and 

below). I carried out expression analysis to compare the levels of accumulation of 

transgene-derived CO and to see how this was correlated with FT expression. Since I had 

very few plants of 3xabi 35S::CO:CFP (T2), and because of the small size of individual 

plants I decided to pool together the third expanded leaf from 5-7 3xabi 35S::CO:CFP (T2) 

plants at ZT12. A similar amount of tissues and using the same pooling strategy was 

collected from 35S::CO:CFP (#6). I did not observe differences in the accumulation of 

CO:CFP transcript between 3xabi 35S::CO:CFP (T2) and 35S::CO:CFP (#6). However, FT 

expression was highly upregulated in 3xabi 35S::CO:CFP (T2) as compared with the 

35S::CO:CFP (#6) (Fig. 6D and 6E). Although, as observed above, the CaMV 35S is not 

the most suitable promoter to overexpress CO and obtain extreme early flowering effects, 

these results strongly indicate that activated ABA signalling is sufficient to promote 

upregulation of FT under LDs, downstream of the transcriptional activation of CO. 
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Fig. 6. The canonical ABA signaling promotes CO functions. (A-B) Scatter plot (A) and Tukey boxplot 
(B) of the distribution of rosette leaves number in the indicated genotypes grown under LDs. Multiple 
comparisons were performed with one-way ANOVA with Tukey’s Post Hoc test, P-values ≤0.001 (***). (A) 
Error bars = SD, n=16-17. (B) 35S::CO:CFP (#6) is in the T3 generation. n=15, except for 3xabi 
35S::CO:CFP (T2) n=7. (C) Images of representative plants of 35S::CO:CFP in the wild-type or 3xabi 
backgrounds after 4 weeks from sowing. White arrow indicates a visible inflorescence. Scale bars= 1cm. (D-
E) Real-Time qPCR of CO:CFP (D) and FT (E) transcripts in 3xabi 35S::CO:CFP (T2) compared to 
35S::CO:CFP (#6). The fourth leaves of 6-7 independent plants (included in the flowering time analysis 
shown in B) were harvested 20 days after sowing at ZT12 and pooled together. Error bars = SD of two 
technical replicates. IPP2 expression was used for normalization.  
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ABA stimulates the function of CO in the phloem companion cells 
	
As already discussed from other groups of the field, the ectopic expression of CO via the 

35S promoter in all the tissues of the plant might produce confounding effects, mainly as 

CO is only active in a particular cell–type, the phloem companion cells (An et al., 2004; S.-

K. Kim et al., 2013; Song et al., 2012b). Unfortunately, the 35S promoter might not ensure 

sufficiently high enough levels of CO transcript in the phloem companion cells. Based on 

these concerns and considering my difficulties in obtaining stable and early flowering 

35S::CO:CFP lines, I decided to generate another set of expression vectors where CO is 

under the control of the SUC2 promoter. In this way, I could be able to confine CO 

overexpression in the phloem companion cells, and more precisely assess the role of ABA 

in the tissue where CO usually acts. Another potential problem of the 35S::CO:CFP 

transgene might be the size and position of the tag at the C-terminal position. To exclude 

this possible artefact, I kept a GFP-like tag (CITRINE) fused at the C-terminus of CO. With 

the new construct, SUC2::CO:CITRINE (Fig. 7A), I transformed wild-type (Col-0) and two 

different ABA-deficient backgrounds (aba1-6 and aba2-1) impaired at different steps of the 

ABA biosynthetic pathway (Finkelstein, 2013). A negative control was also used, 

consisting of the SUC2::GW construct (Fig. 7A). I then carried out a phenotypic study, by 

analysing the flowering time in more than 100 independent T1 plants for each transgenic 

line SUC2::CO:CITRINE, aba2-1 SUC2::CO:CITRINE and aba1-6 SUC2::CO:CITRINE, as 

well as vector-control transformations. In general, expression of CO:CITRINE in the 

phloem companion cells conferred a strong early flowering phenotype independent of the 

ABA content when these plants were compared with the SUC2::GW empty vector controls 

(SUC2::vector, Fig. 7B). Nevertheless, aba1-6 SUC2::CO:CITRINE and aba2-1 

SUC2::CO:CITRINE plants showed a significant delay in flowering compared with 

SUC2::CO:CITRINE (Fig. 7B and 7C). Thus, unlike 35S::CO:CFP, SUC2::CO:CITRINE 

conferred a much more dramatic early flowering phenotype in the T1 generation, ruling out 
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an impairment of CO function caused by the C-terminal fusion. In the light of this 

observation, I interpret the delay of flowering observed in the ABA-deficient T1 plants as 

extremely significant from the biological point of view (Fig. 7B). To easily illustrate this 

point, I grouped individual T1 plants based on phenotypic classes depending on the 

number of rosette leaves at bolting. The phenotypic distributions of aba1-6 

SUC2::CO:CITRINE and aba2-1 SUC2::CO:CITRINE were highly overlapping and strongly 

shifted towards the higher number of leaves compared with the wild type background 

(which was highly skewed between 6-7 leaves) (Fig. 7D). To rule out a general effect of 

ABA on SUC2 promoter activity, I carried out expression analysis on random independent 

T1 plants. Because of their particularly small size, I sampled the entire rosette of 

SUC2::CO:CITRINE plants (in the different genotypes), grown for 20 days under LDs, at 

ZT12. Expression from the SUC2::CO:CITRINE transgene produced similar levels of 

CO:CITRINE in the wild-type, aba2-1 and aba1-6 backgrounds (Fig. 7E). However, the 

strong FT upregulation (relative to Col-0 SUC2::vector) that I observed in 

SUC2::CO:CITRINE plants was nearly absent in the aba2-1 and aba1-6 backgrounds (Fig. 

7E). As illustrated in 35S::CO:CFP transgenic plants, I did not observe a clear correlation 

between CO:CITRINE expression and FT transcriptional activation. Rather, a clear trend 

was visible between FT transcript levels and the ABA status of the plants (Fig. 7E). Both 

the phenology and expression data obtained with the SUC2::CO:CITRINE construct 

confirmed what previously described for the 35S::CO:CFP experiments. This allowed me 

to confidently conclude that ABA positively regulates flowering by promoting CO protein 

function.  
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Fig. 7. ABA promotes CO functions in the phloem companion cells. (A) Diagram illustrating the main 
regulatory elements and tags in the constructs used for Agrobacterium-mediated transformation of 
Arabidopsis. (B) Tukey boxplot of the distribution of the rosette leaves numbers of T1 transgenic lines in the 
Col-0, aba2-1 and aba1-6 backgrounds grown under LDs. N = 16 for SUC2::vector controls. n= 70-100 for 
SUC2::CO:CITRINE transgene. Even if each plant analyzed represented independent insertion events, I 
preferred Tukey boxplot to scatter plot for graph clarity. Multiple comparisons were performed with one-way 
ANOVA with Tukey’s Post Hoc test, P-values ≤0.01 (**), ≤0.001 (***), >0.05 not significant (NS). (C) Image of 
Basta resistant T1 plants (included in the flowering time analysis shown in B). Inset shows aba2-1 
SUC2::CO:CITRINE visibly later flowering compared to SUC2::CO:CITRINE. Bar scale = 1cm. (D) Number 
of T1 plants with the same rosette leaves number. Different colors indicate different genotypes (reported in 
the legend). (E) Scatter (XY) plot where FT transcript levels are compared to CO:CITRINE. The entire 
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rosette of 20-day-old T1 transgenic plants was harvested at ZT12, except for Col-0 SUC2::vector for which I 
sampled only expanded leaves. Values represent fold change variations relative to one wild-type T1 
transformed with SUC2::vector (I chose this plant as normalizer, even if CO:CITRINE transcript was basically 
undetectable, for a better graphic clarity). Each dot corresponds to an independent T1 plant. Inset shows 
independent T1 plants with FT transcript levels lower than 1.5. Error bars represent the SD of two technical 
replicates. IPP2 expression was used for normalization.  
 

Protein studies in N. bethamiana suggest a role for ABA in the stabilization of CO  
	
The early flowering observed under LDs compared to SDs depends on the light-mediated 

stabilisation of CO protein in the late afternoon (Song et al., 2012b; Valverde et al., 2004; 

Zuo et al., 2011). Based on the demonstration that ABA promotes CO function and since 

ABA affect the expression of FT and TSF at the end of a long day, when CO accumulates, 

(Riboni et al. 2013; Riboni et al. 2016; Unpublished data, Fig. 4-7), I wondered if the post-

transcriptional effect of ABA might involve CO protein stabilisation.  

Before testing this hypothesis in Arabidopsis, using CO-tagged isogenic lines in different 

ABA backgrounds, a rapid approach to verify if ABA had any roles on CO protein 

stabilization was through transient expression in N. benthamiana. I thus infiltrated leaves 

with Agrobaterium tumefaciens carrying the 35S::CO:CFP construct (the same construct 

used to generate transgenic plants in Arabidopsis) or the 35S::GFP construct which 

afforded a negative control (Fig. 8A). After three days under LDs, infiltrated leaves were 

harvested and immediately processed for ABA treatments and protein extraction. Because 

the level of expression of the transgene might change depending on the infiltrated leaves, I 

tried to randomize my sampling strategy as much as possible (see Materials and 

Methods). Leaf disks (n = 12-20 or more in the time course experiment) were incubated in 

petri dishes containing liquid MS supplemented with different concentrations of phyto-

hormones or an appropriate diluent (mock). I then monitored the amount of 

immunologically detectable CO:CFP protein at different time points following the 

application of various phyto-hormones by western blot. Fig. 8B shows that CO:CFP protein 

was readily detectable at all time points in the absence of ABA in the medium, with some 



Alice Robustelli Test The role of ABA in the floral transition: site and mechanism of action 

	 39 

variability occurring between the different time points. However, in the presence of 

exogenous ABA, CO:CFP levels were generally higher compared with the untreated 

control. Although this suggests that ABA reduces the endogenous turnover of CO, no 

obvious increase in CO:CFP protein level was observed as a result of longer incubations 

with ABA. In the same experiment I included a negative control 35S::GFP construct to 

demonstrate that the stabilising effect of ABA on CO:CFP was specific for CO and not 

depending on the GFP-like tag (although some aminoacid vary between GFP and CFP) 

(Fig. 8C). These experiments were replicated twice and gave similar results, thereby a 

strong CO:CFP stabilization occurred within 15 minutes following ABA applications. To 

understand if the ABA-dependent CO stabilization was dose-dependent I repeated the 

experiment with different amounts of ABA in the medium (0.1-1-10-100 µM). I could 

confirm that ABA stabilised CO:CFP, but after 30 minutes of treatment I did not observe 

any dose dependency in the stabilization of CO:CFP (Fig. 8D). To test for the potential 

hormone-specificity of the observed effect I performed the same assay with other 

hormones involved in flowering time regulation and more specifically known to affect CO 

function at different levels, including gibberellic acid (GAs) and jasmonic acid (JA) (Hou et 

al., 2010; Porri et al., 2012; Xu et al., 2016; Zhai et al., 2015). Neither GA4 10 µM nor JA 1 

mM caused a stabilization of CO, suggesting that this ability was peculiar for the ABA 

hormone (Fig. 8D).   
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Fig. 8. ABA stabilizes CO when transiently expressed in N. benthamiana leaves. (A) Diagram 
illustrating the main regulatory elements and tags in the constructs used for Agrobacterium-mediated 
transient transformation of N. benthamiana (B) Western blot on total protein extracts of 15-20 disks from 
Agrobacterium – infiltrated leaves. Disks were made three days after infiltration and subjected to different 
ABA/Mock treatments for 0 to 120 minutes. The negative control (-) represents disks derived from non-
infiltrated leaf submerged in mock solution before sampling. UGPase was used as loading control. Anti-GFP 
antibodies were used to detect CO:CFP. (C) N. benthamiana leaves were infiltrated with Agrobacterium 
containing 35S::GFP vector. Western blot with Anti-GFP antibodies were used to detect GFP. Ponceau red 
staining of Rubisco Large subunit was used as loading control. (D) N. benthamiana leaves were infiltrated 
with Agrobacterium transformed with 35S::CO:CFP vector. ABA, gibberellic acid (GA4, 10 µM), jasmonic acid 
(JA, 1mM) and Mock solution were applied for 30 minutes. Black triangle shows increasing ABA 
concentrations (1-10-100-1000 µM). Table indicates presence “+” or absence “-” of the indicated hormone.  
 

 

No evidence for an ABA-dependent stabilization of CO in Arabidopsis  
	
To verify if ABA stabilises CO also in Arabidopsis I compared the abundance of CO in 

available T2 35S::CO:CFP lines. I tried different protein extraction protocols, both for 

nuclei isolation and total protein preparations. I could not obtain reliable results with none 

of the conditions tested because I always detected non-specific bands at the expected 
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tested different commercial anti-GFP antibodies but without any significant improvement. 

Because these antibodies could clearly detect CO:CFP in N. benthamiana experiments, I 

attributed these negative results to the low levels of CO:CFP protein being expressed in 

the transgenic lines. In Fig. 9 I illustrate a typical western blot result obtained with nuclei 

extracts with a commercial anti-Goat GFP antibody (Abcam). Even with the assumption 

that the CO:CFP signal is that indicated by the red arrow, I observed huge variability in its 

levels across the different transgenic lines (as observed for flowering time, Fig. 5A). If 

instead I consider the upper band as the specific signal, besides confirming the variability, 

I did not observe significant differences in the levels of CO:CFP accumulation between 

35S::CO:CFP (#6) and aba1-6 35S::CO:CFP (#3) (the most comparable lines, as 

discussed above).  

 

 

Fig. 9. CO:CFP detection in Arabidopsis transgenic plants. Western blot was performed on nuclear 
extracts of 11-day-old seedlings of different T2 lines 35S::CO:CFP in Col-0 and aba1-6 backgrounds grown 
under LDs. Col-0 plants transformed with the 35S::GW:CFP empty vector (Col-0 35S::vector) were used as 
negative control. Anti-GFP antibodies detect a band of the predicted size of CO:CFP also in the negative 
control. Histone H3 detection was used as loading control.  
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SUC2::HA:CO isogenic line. Plants of SUC2::HA:CO were extremely early flowering, 

similar to the SUC2::CO:CITRINE plants (Fig. 7B-C and 10A). aba1-6 SUC2::HA:CO 

plants were consistently and significantly later flowering than the parental SUC2::HA:CO 

line, producing on average 14.8 % +/- 5.4 more leaves (n = 3 independent experiments, 17 

plants each) (Fig. 10A). At ZT12, aba1-6 SUC2::HA:CO had similar levels of CO transcript 

accumulation compared to the SUC2::HA:CO line but much reduced FT expression 

(approximately 50%) (Fig. 10B). These results are fully consistent with my previous 

observations about the role of ABA on CO activity in 35S::CO:CFP and 

SUC2::CO:CITRINE transgenic lines. However, contradicting the results obtained in N. 

benthamiana transient assays, in Arabidopsis the levels of HA:CO nuclear protein were 

similar in SUC2::HA:CO and aba1-6 SUC2::HA:CO (Fig. 10C). To further test for the effect 

of ABA on CO protein stability I used the ABA root application protocol (Riboni et al., 

2016), which mimics a drought escape signal and thus likely to promote CO function. I fed 

SUC2::HA:CO plants daily for 12 days with ABA at three different concentrations (0.25 -2.5 

-25 µM) and on the 13th day I harvested tissues at ZT4 and ZT12 for nuclei isolation. After 

testing that this protocol could effectively trigger an upregulation of the florigen genes (Fig. 

11A-H), I monitored the accumulation of nuclear HA:CO abundance. Also under these 

conditions I did not observe obvious changes in HA:CO at any of the concentration tested, 

either in the morning (when CO protein levels are low) or in the late afternoon (Fig. 10D). 

Because these data were obtained in stable CO overexpressing Arabidopsis plants, my 

conclusions are that ABA promotes CO function without altering its stability and care 

should be exercised in interpreting the protein accumulation data obtained in experiments 

of transient expression in N. benthamiana. 
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ABA does not alter the phosphorylation status of CO 
	
ABA signalling is based on a phosphorylation cascade raising the possibility that it might 

affect CO activity by modifying its phosphorylation status in vivo (Hubbard et al., 2010; 

Sarid-Krebs et al., 2015). In line with this hypothesis, the phosphorylated form of CO 

accumulates at dusk (Sarid-Krebs et al., 2015) when ABA-dependent signals are predicted 

to potentiate CO function and FT transcriptional activation. Although HA:CO protein was 

detected as a doublet, consistent with previous reports, the upper band (the 

phosphorylated one) was as intense as the lower band and I saw no alterations in the CO 

phosphorylation status between aba1-6 SUC2::HA:CO and SUC2::HA:CO (Fig. 10E). 

Similarly, exogenous ABA applications did not significantly affect the relative intensity of 

the two bands at any time point (Fig. 10F). These results argue against ABA being 

involved in modulating CO phosphorylation in vivo.  
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Fig. 10. ABA regulates CO function without altering its accumulation in Arabidopsis. (A) Tukey 
boxplot of the distribution of the rosette leaves numbers of SUC2::HA:CO isogenic lines and Col-0 wild-type 
plants grown under LDs (n = 17). Multiple comparisons were performed with one-way ANOVA with Tukey’s 
Post Hoc test, P-values ≤ 0.05 (*). (B) Real-Time qPCR of CO and FT transcripts in seedlings of 
SUC2::HA:CO lines grown for eleven days under LDs and harvested at ZT12. Error bars represent SD of two 
technical replicates. Values represent fold change variations relative to SUC2::HA:CO. ACT2 expression 
was used for normalization. (C-D) HA:CO detection in nuclei extract by western blot. Anti-HA High Affinity 
antibodies were used to detect HA:CO and anti-H3 antibodies to detect H3 as loading control. Col-0 WT 
plants were used as negative control. (C) Plants were grown under LDs and 11-day-old seedlings were 
harvested at ZT12. (D) ABA soil applications to SUC2::HA:CO seedlings grown under LDs. A mock solution 
was used as a control. After germination, 12 days of ABA treatment were performed and seedlings were 
harvested at ZT4 and ZT12 on the 13th day. (E-F) Column (G) and dots (H) represent the ratio between the 
intensity of the upper and lower bands visible in (E) and (F), respectively. (E) Quantification of non-
phosphorylated CO, relative to the upper band of SUC2::HA:CO. (F) Quantification of non-phosphorylated 
CO relative to the upper band of SUC2::HA:CO, ZT4, ABA 0 µM. 
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ABA promotes florigen expression without modifying the stability of GI protein  
	
GI function has been described as key in drought escape response (Riboni et al., 2013). 

Our data also indicate that the drought-dependent upregulation of FT and TSF cannot 

occur if GI is absent, even when CO is highly expressed (Riboni et al., 2016). Furthermore, 

impaired ABA signalling blocks some aspects of GI function (e.g. the activation of FT and 

TSF) without altering CO expression (Riboni et al., 2016). These observations opened the 

new perspective that ABA activates GI signalling at the post-transcriptional level. The 

nature of this ABA-dependent posttranscriptional control on GI is however unknown. 

Similar to CO, GI protein abundance oscillates during the day, increasing during the day 

reaching a peak at ZT12 under LDs (David et al., 2006). The first hypothesis tested was if 

ABA may influence GI protein accumulation in gi-2 35S::HA:GI (David et al., 2006) using 

the ABA root application protocol (as described for SUC2::HA:CO) to induce ABA 

responses. The use of the CaMV 35S allowed me to separate confounding transcriptional 

effects from potential variations of HA:GI protein stability in response to ABA.  

I initially tested whether continuous ABA applications could boost FT expression in wild-

type plants or when GI is constitutively expressed. Since the treatment continued for 

several days, I followed the pattern of a well-known ABA marker (RESPONSIVE TO ABA 

18, RAB18) (Lang et al., 1994; Lång and Palva, 1992; Mantyla et al., 1995) to identify 

which concentration was most effective in eliciting ABA responses. After 12 days of 

treatment RAB18 expression increased when ABA was applied at a concentration of 2.5 

µM, and sharply decreased at 25 µM (Fig. 11A and 11E). This suggests that prolonged 

ABA applications might eventually de-sensitise ABA signalling and shut down downstream 

transcriptional responses. As expected, the overexpression of GI caused an increase in 

the levels of CO transcript accumulation (between 2 and 3 times) compared with the wild 

type (Fig. 11B and 11F). However, I did not observe any further significant change in CO 

accumulation in response to any of the ABA concentration used (Fig. 11B and 11F). In gi-2 
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35S::HA:GI, ABA applications caused an increase in FT accumulation at the same 

concentration which was most effective for RAB18 induction (2.5 µM) (Fig. 11G). Another 

florigen gene, TSF, was even more responsive to ABA soil applications, displaying a more 

pronounced increase compared to FT at lower concentrations of ABA (Fig. 11H). These 

data confirm that ABA activates the florigen genes downstream of GI transcriptional 

activation. Similar observations were made in the wild-type background where the CO 

transcriptional activation was not modified by exogenous ABA and FT expression was 

mildly increased at 0.25 µM ABA and fell at higher concentrations. The patter of TSF was 

highly variable and only partially followed that of FT (Fig. 11A-D).  

As previously observed for RAB18, applications of ABA 25 µM caused downregulation of 

FT expression in both wild type and gi-2 35S::HA:GI backgrounds but, interestingly, not 

CO (Fig. 11A-H). This suggests that the florigen genes (particularly FT) are subject to a 

similar regulatory mechanism that controls ABA transcriptional responses, and this 

regulation does not affect CO transcript levels. Since plants of gi-2 35S::HA:GI were highly 

sensitive to exogenous ABA, I also monitored the pattern of expression of RAB18, CO, FT 

and TSF at ZT4. ABA-dependent responses were active at this time of the day (as inferred 

by RAB18 expression), but much reduced compared to ZT12. CO expression was 

generally comparable to ZT12 and did not show variations in response to increasing levels 

of exogenous ABA. Transcript levels of FT and TSF were generally much lower compared 

to ZT12. ABA did not affect the expression of FT in the morning but did cause a small 

increase in TSF (ABA 2.5 µM treatment) (Fig. 11E-H). The fact that RAB18 is more 

responsive to ABA at ZT12 compared to ZT4 (Fig. 11E), may suggest a broader 

interaction between ABA signalling and photo stimulated GI in the context of ABA 

transcriptional responses. Although it is well known that FKF1 stimulates GI function at this 

time of the day (Sawa et al., 2007), this data could suggest that GI is also sensitive to 

external ABA in a similar temporal window. However, at ZT12 no increased levels of 
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RAB18 expression were observed in gi-2 35S::HA:GI compared with the wild-type, 

suggesting that GI accumulation is not limiting in this process. 

To test if ABA could promote GI function by increasing its stability, total proteins were 

isolated from gi-2 35S::HA:GI plants with the aim to monitor the levels of HA:GI protein at 

ZT12 (when I observed an ABA-dependent florigen upregulation) by western blot. I could 

easily detect the HA:GI band migrating at the predicted molecular mass as shown in Fig. 

11I, but I did not observe significant changes in HA:GI protein levels upon any of the ABA 

treatments tested.  

 

Fig. 11. ABA applications promote florigens expression without changes in GI protein accumulation. 
(A-H) Real-Time qPCR of RAB18, CO, FT and TSF transcripts in wild type (A-D) or gi-2 35S::HA:GI (E-H) 
seedlings grown under LDs and treated with ABA soil applications for 12 days. Seedlings were harvested at 
ZT4 and ZT12 on the 13th day. Mock solution was used as a control. Values represent fold change variations 
relative to Col-0 untreated control. Error bars represent SD of two technical replicates. ACT2 expression was 
used for normalization. Similar results were obtained with GI::GI:HA transgenic plants (I) Detection of HA:GI 
at ZT12 in total protein extracts of gi-2 35S::HA:GI seedlings grown and treated as previously described. Col-

150	KDa

Col-0	WT

RA
B1
8/
AC

T2

0

2

4

CO
/A
CT
2

0

1

2

FT
/A
CT
2

0

1

2

3

TS
F/
AC

T2

A B C D

RA
B1
8/
AC

T2

ABA	μM
0 0.25 2.5 25

CO
/A
CT
2

ABA	μM
0 0.25 2.5 25

FT
/A
CT
2

ABA	μM
0 0.25 2.5 25

ABA	μM
0 0.25 2.5 25

TS
F/
AC

T2

E F G H

HA:GI

Ponceau

ABA	μM 0 0.25 2.5 25

I

0

2

4

0

5

10

15

0
5

10
15
20

gi-2	35S::HA:GI

Col-0	WT Col-0	WT Col-0	WT

gi-2	35S::HA:GI gi-2	35S::HA:GI gi-2	35S::HA:GI

ZT	4
ZT	12

ABA	μM
0 0.25 2.5 25

ABA	μM
0 0.25 2.5 25

ABA	μM
0 0.25 2.5 25

ABA	μM
0 0.25 2.5 25

0

2

4

0

2

4

50	KDa

gi-2	35S::HA:GI

ZT	12

0



Alice Robustelli Test The role of ABA in the floral transition: site and mechanism of action 

	 48 

0 wild type plants were used as negative control. Ponceau red staining of Rubisco large subunit afforded a 
loading control. No changes in GI:HA accumulation were observed in GI::GI:HA transgenic plants.   
 

To further support these results, I compared the amount of GI:HA protein in two isogenic 

lines obtained by crossing a publicly available gi-2 GI::GI:HA with aba1-6. Three aba1-6 gi-

2 GI::GI:HA lines (#2, #11, #16) were isolated in the fourth generation as detailed in 

Materials and Methods. After 12 days under LDs, I collected tissues for both GI expression 

studies and protein analysis. Although the transgenic gi-2 GI::GI:HA plants showed higher 

levels of GI transcript compared with the wild type (which might be due to the contribution 

of the gi-2-derived endogenous transcript or to a more active GI promoter cloned in the 

transgene), I observed similar high levels of GI transcript in the three aba1-6 gi-2 

GI::GI:HA lines (Fig. 12A) compared with gi-2 GI::GI:HA. The levels of GI:HA protein were 

also unchanged in aba1-6 gi-2 GI::GI:HA lines as compared with gi-2 GI::GI:HA (Fig. 12B), 

indicating that impaired ABA production does not affect the stability of GI in the late 

afternoon.  

gi-2 GI::GI:HA plants flowered earlier compared with the wild type, a phenotype 

presumably derived from imprecise incorporation of all the regulatory elements required for 

GI transcriptional regulation in the original promoter construct (Kim et al., 2007). However, 

despite no changes in GI protein accumulation were apparent in aba1-6 gi-2 GI::GI:HA 

across independent experiments, I clearly observed a consistent and significant 

suppression of the early flowering phenotype conferred by GI::GI:HA in aba1-6 gi-2 

GI::GI:HA lines (Fig. 12C). This result underscores the post-transcriptional effect of ABA 

on GI protein signalling in the context of the floral activation, although this post-

transcriptional effect cannot be explained in terms of variations in GI protein accumulation. 
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Fig. 12. Lack of ABA does not alter GI protein accumulation. (A) Real-Time qPCR of GI transcript in 12-
day-old seedlings grown under LDs and harvested at ZT12. gi-2 GI::GI:HA and aba1-6 gi-2 GI::GI:HA are 
isogenic lines obtained by genetic crossing. Values represent fold change variations relative to Col-0 WT. 
Error bars represent SD of two technical replicates. ACT2 expression was used for normalization. (B) 
Western blot detection of GI:HA in total protein extracts of 12-day-old seedlings grown under LDs and 
harvested at ZT12. Monoclonal Anti-HA antibodies were used to detect GI:HA and anti-H3 antibodies to 
detect H3 as loading control. (C) Tukey boxplot represents the distribution of the rosette leaves numbers of 
indicated genotypes grown under LDs (n= 15-17). Multiple comparisons were performed with one-way 
ANOVA with Tukey’s Post Hoc test, P-values ≤0.001 (***).  
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promoter of FT? I started to address these questions by generating fluorescently-labelled 

versions of CO and GI and use these constructs in transient expression assays in N. 

benthamiana. I then deployed laser scanning confocal microscopy to visualize CO and GI 

localisation in plant nuclei. Each image reported in Fig. 13 is representative of three 

independent experiments in which I monitored 4/5 different cells. I first analysed GI and 

CO localisations in single transformation events. CO protein was localised in very small 

nuclear bodies, evenly distributed in the nucleus. This punctuate pattern unlikely derived 

from an artefact of the fusion protein (citrine) since similar observations were made with 

different fluorescently-tagged versions of CO, indicating that the signal localisation 

depended on the protein rather than the tag used (Fig. 13A). Also GI:cherry was localised 

in nuclear bodies. However, these were larger and fewer compared to those observed in 

CO transformations (Fig. 13A and 13B). In double infiltration experiments I aimed to verify 

how CO and GI might localise in plant nuclei. I compared the fluorescent signals derived 

from cherry and CFP because their spectral emissions do not overlap, thus excluding mis-

interpretations. I also used a positive control, FKF1:cherry, to validate my experimental 

settings since FKF1 is a well-established interactor of GI (Sawa et al., 2007). In 

FKF1:cherry single infiltrations I observed a fluorescent signal which was evenly 

distributed in the nucleoplasm, with poorly defined speckles which were not consistently 

observed in all the cells analysed (Fig. 13C). However, in combination with GI, FKF1 

totally changed its localisation by relocating in the pattern of GI, suggesting that the re-

localisation of FKF1 was driven by protein-protein interactions (Fig. 13F). When I co-

infiltrated leaves with 35S::GI:cherry and 35S::CO:CFP, GI re-localized in the pattern of 

distribution of CO as the two fluorescent signals overlapped into the CO-specific nuclear 

bodies (Fig. 13D). FKF1:cherry also co-localised with CO:CFP even if FKF1 did not 

change its nuclear distribution so dramatically as when in presence of GI (Fig. 13E and 

13F). I excluded that CO:CFP could cause re-localisation of every co-expressed protein 
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because when I co-infiltrated leaves with 35S::CO:CFP and 35S::TZP:cherry (Kaiserli et 

al., 2015) the two proteins maintained their original pattern of distribution in the nuclei with 

no or very poor overlap of their fluorescence signals (Fig. 13G). As my results indicate that 

CO can trigger re-localization of GI and (to a lesser extent FKF1) to specific nuclear 

bodies, I wanted to test whether all these proteins could be found in the same speckles at 

the same time. Co-expression of GI:cherry, FKF1:CFP and CO:CITRINE showed that the 

different fluorescent signals overlapped in most (but not all) of the nuclear bodies which 

were similar in size and distribution to the ones characteristic of CO:CITRINE (Fig. 13H). 

Interestingly also the pattern of FKF1 protein became much sharper in nuclear bodies, 

suggesting a stronger re-localization from the nucleosol to the speckles, possibly mediated 

by the presence of GI. Although the precise nature and significance of the CO speckles 

remain to be investigated, my confocal microscopy data suggest that CO recruits GI to 

precise locations, perhaps through direct protein-protein interactions. FKF1, through its 

tight interaction with GI is also tethered at these locations where a more stable protein 

complex with CO might be formed. It remains to be evaluated if ABA has a role in this 

postulated complex formation and CO-mediated recruitments. However, with the genetic 

tools I have generated (e.g. SUC2:CO:CITRINE) I shall be able to confirm these results 

directly in Arabidopsis.  
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Fig. 13. CO recruits GI and FKF1 in nuclear bodies. (A-C) Representative images of bright field and 
fluorescence signals in nuclei of N. benthamiana leaves transiently transformed with 35S::CO:CITRINE, 
35S::CO:cherry, 35S::CO:CFP (A), 35::GI:cherry (B), 35S::FKF1:cherry, 35S::FKF1:CFP (C). Bars scale= 20 
µm. (D-H) Representative images of bright field, single channel fluorescence signals and merge of 
fluorescence in co-transformed nuclei of N. benthamiana leaves. Combinations of constructs used for the 
transient expression are listed in the figure. Bars scale= 20 µm. 
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Future perspective: ChIP and CoIP experiments will help decipher the role of ABA in 
modulating GI and CO function  
	
Recent data indicate that nuclear bodies may represent chromatin regions of intense 

transcriptional activity in flowering time regulation (Kaiserli et al., 2015). Because unlike 

previously thought (Wigge et al., 2005), CO protein appears to regulate a much larger 

number of target genes (Gnesutta et al., 2017), my data may point to a possible role of CO 

in recruiting higher order complexes at different genomic locations to initiate transcriptional 

events. The role of ABA in this context could be analysed using isogenic lines gi-2 

GI::GI:HA and aba1-6 gi-2 GI::GI:HA with which one can investigate the occupancy of GI 

protein at the FT promoter according to varying levels of endogenous ABA. I propose 

similar experimental approaches for CO protein, in the different ABA-related backgrounds. 

However, due to time constraints I could not take these ideas any further.  

Since GI and CO physically interact in Yeast and in Planta (Song et al., 2014a) one might 

ask whether this complex formation is ABA dependent. Because a CO antibody is not 

available to us, and because the generation of double transgenic plants with tagged CO 

and GI would be time consuming, I started to explore alternative ways to understand if 

ABA modulates the GI-CO interaction. I optimised a heterologous FLAG:CO production 

system using in vitro transcription/translation. I tested whether the heterologous CO could 

be subject to proteasome-dependent degradation in a cell-free assay (Valverde et al., 

2004). When FLAG:CO was incubated with total protein extracts of wild type plants without 

the MG132 proteasome inhibitor, the FLAG:CO signal decreased over time, with a half-life 

of 15 minutes of incubation (+PIC, Fig. 14A and 14B). In contrast, in the presence of 

MG132, FLAG:CO was stable showing no obvious decay for two hours after incubation 

(+MG132, Fig. 14A and 14B). In the future I plan to use this protein for incubation with 

affinity purified GI:HA protein derived from wild-type or aba1-6 backgrounds in CoIP 
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experiments. My work thus contributes to address these points in vivo by providing several 

useful genetic tools for both confocal imaging and molecular studies. 

 

 

Fig. 14. Heterologous FLAG:CO is subject to proteasome-dependent degradation. (A) Western blot 
detection of FLAG:CO produced with the TNT transcription/translation system and incubated with total 
protein extracts from Col-0 wild-type plants for a cell free degradation assay. Aliquots of the reaction were 
sampled at indicated time points. The negative control (-) represents the total protein extract without 
FLAG:CO. MG132 was used as proteasome inhibitor; Protease inhibitor cocktail (PIC) was used as a control 
for nonspecific degradation. (B) Quantification performed with Image Lab and relative to T0 (0 minutes) of 
each experimental condition.  
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3.2 Side Project 
 

Role of the ABA-related bZIPs in flowering 
	
ABA signalling is connected to transcriptional events through a class of bZIP transcription 

factors (Cutler et al., 2010; Yoshida et al., 2014). Interestingly, the ABA-related bZIPs are 

structurally similar to FLOWERING D (FD), the main interactor of FT and a key flowering 

regulator in the SAM (Abe et al., 2005). While I was generating genetic crosses between 

ABA deficient and the different photoperiodic signalling mutants (Riboni et al., 2016) I 

included in my analysis also the fd mutants. Unexpectedly, aba1-6 fd-4 double mutants 

produced a strong delay of flowering compared with their parental lines (Fig. 15A). In one 

interpretation, the effect might derive from ABA acting through FT thereby the mutant 

phenotype might depend on combined decreased FT levels (as a result of reduced ABA 

accumulation) and loss of FD function in the apex. However, previous data showed that 

combinations of aba1 or abi1-1 with soc1 (an important gene acting in the SAM, partially 

downstream of FD) caused only a small delay of flowering compared to soc1 (Riboni et al., 

2016, 2013). Therefore, another interpretation would be that, in the absence of FD, a 

reduction in ABA might expose other FD-like functions that require ABA. FD is a Basic 

Leucine Zipper Domain (bZIP) transcription factor, in a side project I thus started to 

characterise additional mutants in the ABA-related bZIP factors. I focused my genetic 

analysis on ABRE-BINDING FACTORS (ABFs) and ABA-RESPONSIVE ELEMENT 

BINDING PROTEIN 3 (AREB3) that belong to the bZIPs clade A as FD (Choi et al., 2000). 

Since the ABFs are functionally redundant (Yoshida et al., 2014), I generated double and 

triple mutants before analysing the flowering time under LDs. Mutants of abf3 abf4 did not 

show clear flowering time defects compared to the wild type (Fig. 15B). However, the triple 

mutant abf1 abf3 abf4 had a significantly delayed flowering compared with the wild type 

and also to the double mutant of abf3 abf4. Since triple mutants of abf1 abf3 abf4 are late 
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flowering, an interesting point would be to understand if the positive role of ABA on 

flowering depends on the ABFs. However, previous reports have shown that the ABFs 

positively regulate flowering through the transcriptional activation of CO (Yoshida et al., 

2014). Thus, it is unlikely that ABA affects CO function through the ABFs. Additional 

molecular work aimed at deciphering the role of the ABF genes in flowering is ongoing in 

collaboration with the G. Couplands’ lab (MPI, Cologne).   

As the closest related bZIPs to ABFs, AREB3 and its homologue ENHANCED EM LEVEL 

(EEL) (Choi et al., 2000) may have similar positive effects on flowering. In contrast to my 

expectations, in independent experiments areb3 knock out mutants produced slightly 

fewer rosette leaves compared with the wild type (Fig. 15A and 15B). These data suggest 

that bZIPs have separate functions in the regulation of the floral transition. I generated the 

double mutant areb3 eel and preliminary results argue against a redundant role between 

these genes, as I observed no further acceleration of flowering time compared with areb3 

(data not shown). To further extend this genetic analysis, I crossed areb3 and aba1-6 

plants to obtain the double mutants of aba1-6 areb3. Plants of aba1-6 areb3 generated a 

dramatic late flowering phenotype compared to aba1-6, effectively mimicking the 

phenotype of aba1-6 fd double mutants (Fig. 15A). More molecular work is required to 

interpret this phenotype, as AREB3 might have FD-like function in the SAM, but this 

molecular activity is only apparent under low ABA conditions. Another hypothesis is that 

AREB3 is required for florigen genes expression, although this does not account for the 

mild early flowering phenotype of areb3 mutants. In this perspective, the analysis of the 

site of expression of the different bZIPs and their mis-expression in plants will be crucial to 

distinguish between the two models. 
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Fig. 15. ABA-related bZIP are involved in flowering time control under LDs. (A-B) Tukey boxplots of the 
distribution of the rosette leaves numbers of the wild type (Col-0) and ABA-related bZIP mutants grown 
under LDs (n=15-17 plants for each genotype). Multiple comparisons were performed with one-way ANOVA 
with Tukey’s Post Hoc test, P-values ≤0.05 (*), ≤0.01 (**), ≤0.001 (***), >0.05 not significant (NS). 

Col-0	
WT

areb3 abf3	
abf4

abf1	
abf3	
abf4

* NS

***

**

A B

NS

***

**
***

NS



Alice Robustelli Test The role of ABA in the floral transition: site and mechanism of action 

	 58 

3.3 Discussion and Future Perspectives 
 

In Arabidopsis ABA-stimulated acceleration of flowering depends on upregulation of the 

florigen genes at the end of a long day. My published data demonstrate that this event 

requires functional GI and CO. ABA regulates GI and CO functions mainly at the post-

transcriptional levels, but this does not involve changes in their protein accumulation. My 

work thus offers new ground for investigating possible molecular mechanisms that could 

explain the ABA-dependent level of regulation of photoperiodic flowering.  

 

Genetic interaction between ABA and photoperiodic flowering 
	
Attempts were made to pinpoint a molecular interaction between ABA and photoperiodic 

flowering through genetic crossing of ABA-deficient and photoreceptors mutants. I 

detected an epistatic effect of phyB on ABA-defective mutants in flowering, which could 

suggest an interaction between ABA and red light signalling (Fig. 3A). In this context, ABA 

might affect CO function via negative modulation of PhyB function. The early flowering 

phenotype of phyB mutants depends on increased accumulation of CO protein in the 

morning (Valverde et al., 2004), pointing to a role for ABA action in this temporal window. 

However, CO:HA accumulation in response to ABA applications revealed no evident 

changes at ZT4 (Fig. 10D), thus weakening this hypothesis. Interestingly, besides 

mediating RL signals, PhyB (along with other phytochromes) has been recently described 

as a thermosensor (Jung et al., 2016; Legris et al., 2016). Mutants of PhyB show a 

constitutive warm-temperature response, which may contribute to their early flowering 

phenotype. Clearly more work is needed to establish how ABA and PhyB signalling 

interact and whether this epistatic interaction underlies a common target or rather derived 

from PhyB deregulating several flowering pathways during the day (light and temperature-

related), which could mask the ABA effects on flowering. 
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ABA promotes CO functions in the vascular tissue 
	
My attempts to over-express CO under the 35S promoter revealed that although 

35S::CO:CFP could not confer a robust early flowering phenotype in transgenic plants, this 

phenotype was much more attenuated in the aba1 background (Fig. 4B and Fig. 5A, 5D). 

A clear trend of FT expression emerged when comparing 35S::CO:CFP transgenic lines in 

the wild type or ABA-deficient backgrounds, which I could not clearly relate to variations in 

CO transcript accumulations (Fig. 4C-E and Fig. 5E, 5F). Thus, the delay in flowering in 

aba1-6 35S::CO:CFP compared to 35S::CO:CFP could depend on impaired ability of CO 

to upregulate FT, which strongly indicates that CO function requires ABA production (Fig. 

4C-E and Fig. 5E,5F).  

The mild and variable early flowering phenotype observed across different 35S::CO:CFP 

transgenic lines opens a question about the activity of CO when over-expressed in tissues 

others than the phloem companion cells. Such high variability in flowering time may have 

different explanations: first, CO could have negative/interfering effects on the floral 

transition outside of its tissue of competence; secondly, the 35S promoter might not 

ensure sufficiently high enough levels of CO transcript in the phloem companion cells. 

Previous mis-expression data do not support the first hypothesis, but do suggest that the 

site of CO expression is key for its function (An et al., 2004). Interestingly, while 

35S::CO:CFP conferred an extremely variable flowering phenotype in wild-type plants, in 

3xabi mutants it caused a highly stable and extreme early flowering (Fig. 6A-C). 

Hypersensitivity to ABA thus alleviates the above-discussed problems associated with 

ectopic expression with the 35S. Since ABA production and signalling is highly active in 

the phloem companion cells of the leaf (Endo et al., 2008; Kuromori et al., 2014; Mustilli et 

al., 2002), low levels of CO transcript in the phloem companion cells might be 

compensated by post-transcriptional effects on CO protein as a result of enhanced ABA 

signalling in those cell-types. In support of the important role of ABA in affecting CO 
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function in the phloem, the robust early flowering phenotype conferred by 

SUC2:CO:CITRINE expression was significantly attenuated in independent ABA-deficient 

backgrounds, which was reflected in severely diminished levels of FT transcript 

accumulation (Fig. 7). The results obtained with aba1-6 SUC2::HA:CO and SUC2::HA:CO 

isogenic lines further demonstrate the promotive effect of ABA on CO function in the 

phloem companion cells of plants that differ only in the ABA content (and without 

confounding background effects) (Fig. 10A-D).  

 

ABA-dependent activation of photoperiodic signalling unlikely involves CO protein 
stabilization  
	
Initial transient expression experiments in N. benthamiana have led me to hypothesise a 

direct role for ABA on CO protein stability (Fig. 8), which I excluded afterwards in 

Arabidopsis (Fig. 10C and 10D). These contrasting results are probably ascribed to the 

exogenous ABA treatment performed on N. benthamiana leaves. Because CO:CFP 

expression occurs in all the Agro-transformed cells, it is possible that ABA causes non-

specific changes in its stability. While it is interesting to note that the observed effects were 

ABA-specific, their precise cause was not investigated further. As discussed earlier, the 

site of CO expression may affect its function and possibly its mode of accumulation. For 

example, 35S::3HA:CO and SUC2::HA:CO transgenic lines do not show a complete 

overlap in their pattern of accumulation of CO protein during the day (Hayama et al., 2017; 

Song et al., 2012b). Moreover, mutants of fkf1 impair CO protein accumulation much more 

clearly in 35S::3HA:CO lines compared with SUC2::HA:CO suggesting that tissue 

specificity affects key aspects of CO protein post-transcriptional regulation. These 

considerations led me to optimise conditions to monitor variations in CO protein levels in 

Arabidopsis where, unlike N. benthamiana, ABA does not affect its abundance (Fig. 10C 

and 10D). I finally found the right combination of nuclei extraction protocol/antibody to 
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detect CO. The newly developed SUC2::CO:CITRINE lines in the wild-type and ABA-

related backgrounds will allow me to confirm that ABA does not affect CO protein 

abundance or phosphorylation status in many more independent transgenic lines other 

than SUC2::HA:CO (since I started to notice a high degree of co-suppression of CO 

expression in aba1-6 SUC2::HA:CO lines in the latest generation) (Fig. 10C-F). 

 

Alternative scenarios for the ABA-dependent activation of photoperiodic signalling  
	
My cumulated results point to other molecular mechanisms through which ABA affects 

photoperiodic flowering upstream of FT. Because drought stress cannot stimulate the 

transcriptional activation of FT in the absence of functional CO, CO must be a limiting 

factor in the drought/ABA-dependent activation of FT (Riboni et al., 2016). The fact that 

under SDs neither drought stress nor hyper activation of ABA signalling (e.g. the 3xabi 

mutant background) is sufficient to re-activate FT expression, suggests that ABA must act 

after or in coincidence with photoperiod-stimulated CO expression. I cannot ignore that 

ABA contributes to the transcriptional activation of CO, but my data also corroborate a 

posttranscriptional effect (Riboni et al., 2016).   

In Arabidopsis CO is the key activator of FT (Suarez-Lopez et al., 2001); CO directly binds 

DNA at the CO-responsive elements (CORE) in the FT promoter (Cao et al., 2014; 

Gnesutta et al., 2017; Tiwari et al., 2010); additionally, CO recruits several other proteins 

(ASYMETTRIC LEAVES 1, AS1, and members of the NUCLEAR FACTOR Y family, NF-

Y) that collectively act as trans-acting factors, boosting FT transcriptional activation (Ben-

Naim et al., 2006; Cao et al., 2014; Kumimoto et al., 2008; Song et al., 2012a). ABA might 

affect how CO binds to the CORE elements and/or how CO recruits other factors, through 

different (but not necessarily incompatible) mechanisms. 

ABA might generally regulate chromatin changes at the FT promoter. Increased levels of 

H3K4me3 and H3K9ac, representing active markers of gene expression (van Dijk et al., 
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2010), and decrease nucleosome density occur in upregulated genes in response to 

drought stress. More specifically, both drought and ABA inducible genes, RAB18, 

RESPONSIVE TO DESICCATION 20, 29A and 29B (RD20, RD29A, RD29B), show 

increased H3K4me3 and H3K9ac modifications under drought (Ding et al., 2012; Kim et 

al., 2012, 2008). Nucleosome density decrease has been described for RD29A and RD20 

(Kim et al., 2012). Also, H3K4me3 modifications are higher in the ABA biosynthetic gene 

NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3) in response to drought 

(Ding et al., 2011). Direct links between ABA signalling and chromatin regulation are also 

emerging whereby SWI2/SNF2 chromatin remodelling ATPase BRAHMA (BRM) 

inactivation causes ABA hypersensitivity and ABA-related kinases SnRK2- dependent 

phosphorylation of BRM leads to its inhibition (Han et al., 2012). Interestingly, brm mutants 

display increased expression of FT (but also CO) suggesting a possible link between ABA 

and FT chromatin remodelling through regulation of BRM proteins (Farrona et al., 2004). In 

one possible model, ABA primes events at the FT chromatin (e.g. by modifying the 

chromatin status) to indirectly increase accessibility of CO to the CORE elements and 

promote FT transcriptional activation. The study of global and local changes in histone 

marks for active or inactive chromatin in the different ABA mutant backgrounds might help 

reveal whether ABA play any role in the remodelling of FT chromatin. However, as 

previously noted (Adrian et al., 2010), changes in chromatin marks may not provide causal 

indications about transcriptional regulatory events and rather be consequential to 

transcription factor binding activity at specific sites. In this respect, the use of CO-tagged 

transgenic lines in the different ABA backgrounds may be extremely informative to reveal if 

ABA facilitates the recruitment of CO to the CORE sites. This would be interesting in the 

light of recent reports describing how gibberellic acid, an important flowering hormone, 

regulates photoperiodic flowering through modulating the CO accessibility to the FT 
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promoter (Wang et al., 2016). This might point to a novel ABA-GA interplay in FT 

regulation. 

It is important to consider that ABA alone is not sufficient to achieve high levels of FT 

activation, as our experiments indicate that CO requires GI for the ABA/drought-dependent 

activation of FT (Riboni et al., 2016, 2013). Thus, a more complex model (which is not 

necessarily incompatible with the one above) might be that ABA favours direct GI/CO 

protein interaction, thereby potentiating CO transcriptional activity through an unknown 

mechanism. This model might account for the reduced FT upregulation under drought 

stress of 4xcdf gi mutants compared with 4xcdf (Riboni et al., 2016). Furthermore, this 

mechanism might generally affect how CO and GI interact to activate gene expression. 

Several independent observations support this. First, lower levels of FT transcript were 

observed in 4xcdf gi compared to 4xcdf under normal watering conditions and such 

reduction cannot be fully explained in terms of diminished CO expression (Riboni et al., 

2016). Secondly, the overexpression of CO cannot fully recuperate the late flowering of gi 

mutants nor 35S::CO can confer high levels of FT expression in the absence of functional 

GI in LDs (Song et al., 2014a). Song and co-workers have shown that GI affects CO 

function by controlling its protein accumulation. Because I found no evidence of ABA 

controlling CO accumulation in Arabidopsis, and because my results indicate that ABA 

affects GI protein function (rather than its accumulation), I theorise that GI might have 

additional positive regulatory roles on CO action, and ABA might participate in these 

processes. A hypothetical model is represented in Fig. 16. 

My confocal microscopy data indicate a role for CO in recruiting GI in nuclear speckles 

(Fig. 13D), in agreement with the reported physical interaction between CO and GI (Song 

et al., 2014a). CO is less efficient in re-localising FKF1 whereas GI promotes efficient re-

localization of FKF1 from the nucleoplasm to GI-specific nuclear bodies, which are 

qualitatively and quantitatively different from those produced by CO (Fig. 13D-F). 
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Interestingly, in the presence of CO and GI, FKF1 becomes localised in the CO nuclear 

speckles (Fig. 13H). These data suggest sequential events for CO activation whereby CO 

acts as pull factor for the GI-FKF1 complex. Although my analysis cannot prove direct 

protein interactions, some evidences for the functional relevance of these putative protein 

complexes are beginning to emerge. GI directly binds to the FT promoter (Sawa and Kay, 

2011) and interacts with CO in vivo (Song et al., 2014a). Similarly, FKF1 binds to the FT 

promoter near the CORE region (Song et al., 2012b) and also interacts with CO in vivo 

(Song et al., 2012b). If ABA had any role in GI-CO hetero-dimerization (Song et al., 

2014a), recruitment of the FKF1-GI complex at positions occupied by CO might favour the 

proteasome degradation of repressor complexes like the CDFs at the FT promoter (Song 

et al., 2012b), thus boosting CO occupancy at the CORE elements. According to this 

model either lack of GI or reduced ABA would be limiting during FT activation.  

Nuclear bodies in different eukaryotic systems are emerging as chromatin sites with active 

transcriptional activity (Kaiserli et al., 2015; Spector and Lamond, 2011). It is tempting to 

speculate that GI and ABA might cooperate in the regulation of CO (and perhaps CO-like 

proteins) to modulate gene expression. ABA might promote the activity of other proteins 

that bridge together CO and GI functions. For example, CO promotes FT transcription also 

through recruiting distal enhancer elements (Ben-Naim et al., 2006; Cao et al., 2014; 

Kumimoto et al., 2008; Song et al., 2012a). ABA-related transcription factors may facilitate 

favourable chromatin architecture for FT transcriptional activation. If demonstrated, it is 

also possible that such interplay between GI and ABA signalling on CO function can be 

extended to many other targets. Several deregulated genes in co mutants contain the 

CORE element, suggesting that the number of direct CO target genes is much higher than 

previously anticipated and that CO has role beyond photoperiodic flowering (Gnesutta et 

al., 2017; Wigge et al., 2005). Similarly, recent reports indicate that the GI-CDF is 

implicated in the regulation of different stress response genes (cold) (Fornara et al., 2015). 
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It is also worth noticing that GI also controls the ABA-dependent upregulation of the other 

florigen TSF but this does not seem to require CO function (Riboni et al., 2016). Thus, the 

postulated regulatory role of ABA on GI is not necessarily only connected to CO function 

and/or the photoperiodic pathway.  

 

 

Fig. 16. Hypothetical mechanisms for the ABA-dependent activation of FT. Numbers represent three 
hypothetical roles of ABA on GI and CO functions. 1. ABA might promote chromatin modifications, which 
facilitate CO accessibility to the FT promoter. 2. ABA might stabilize the CO binding to the FT promoter 
through an unknown mechanism. 3. ABA may enhance the CO-GI interaction, thus potentiating recruitment 
of FKF1 and reduction of repressive activity (e.g. by CDFs) at the FT promoter. 
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Multiple levels of ABA regulation of flowering through bZIPs transcription factors  

	
The late flowering phenotype of abf plants (Fig. 15B) reveals that the canonical ABA 

signalling pathway is involved in regulating the floral transition. Interestingly, this result 

indicates that the ABFs are floral promoters confirming previous observation obtained with 

the abf1 abf2 abf3 abf4 quadruple mutant (Yoshida et al., 2014). In that study, Yoshida 

and collaborators showed that CO expression is impaired in abf1 abf2 abf3 abf4 quadruple 

mutants compared with the wild type both under drought stress and ABA treatment 

(Yoshida et al., 2014). To determine what proportion of the ABA positive role on flowering 

depends on the ABFs, I plan to analyse the effects of ABA deficit in triple mutants of abf1 

abf3 abf4 by generating aba1 abf1 abf3 abf4 quadruple mutants. If ABA contributes to the 

floral network with both transcriptional and post-transcriptional effects on CO, I predict to 

observe an aggravation of the flowering phenotype of aba1 abf1 abf3 abf4 quadruple 

mutants as compared with abf1 abf3 abf4.  

Mutants in another ABA-related bZIP, AREB3, showed a mild flowering repressor activity 

(Fig. 15A and 15B) suggesting a more complex scenario in which different bZIPs affect the 

floral transition in opposite manners. However, the dramatic delay in flowering of aba1-6 

areb3 double mutants point to yet separate effects of AREB3 in flowering, which are ABA-

dependent (Fig. 15A). One could speculate that in the aba1-6 background, lower levels of 

FT transcription highlight the role of AREB3 as floral promoter which is usually masked by 

high FT transcript levels. Interestingly, aba1-6 areb3 and aba1-6 fd-4 double mutants 

show similar late flowering phenotypes compared to the wild type indicating that AREB3 

might have FD-like function in the SAM (Fig. 15A). However, this molecular activity is only 

apparent under low ABA conditions. Another hypothesis is that AREB3 is required for 

florigen genes expression, although this does not account for the mild early flowering 

phenotype of areb3 mutants. In this perspective, the analysis of the site of expression of 
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the different bZIPs and their mis-expression in plants will be crucial to distinguish between 

the two models.  
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3.4 Conclusions 
 

My PhD work contribute to provide a molecular foundation for the interaction between ABA 

signalling and the photoperiodic pathway and generate the tools to address this at a 

deeper level. Although GI and CO are essential components of photoperiod flowering, the 

current view is that they form a transcriptional network of gene regulation. My data 

highlight the posttranscriptional control of this genetic pathway, and how this can be 

modulated by water inputs through ABA production. My published and unpublished data 

further point to a complex layer of flowering time regulation conferred by ABA, possibly in 

the shoot apical meristem. A positive role might be exerted through modulation of the FD-

related bZIP factors. As a whole, my experiments highlight different roles of ABA in 

conveying water status information to modulate reproductive development. 
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3.5 Materials and Methods 

 

Plant material and growing conditions 
	
Arabidopsis thaliana plants used in this study are of ecotype Col-0. Mutant and transgenic 

lines were obtained from Nottingham Arabidopsis Stock Centre (NASC) or other 

laboratories or generated in this study as detailed in Table 1. Seeds were stratified and 

plants grown under long day conditions (LDs, 16 h light / 8 h dark), under controlled-

environment cabinet, as previously described (Riboni et al., 2016). Temperature was set at 

23 °C during the day and 19 °C in the night and air humidity was 60%. Two different 

growth chambers were used in this study, differing by light conditions. One chamber was 

fitted with fluorescent lamp (Philips, cool white) at an approximate fluency of 60 micro 

Einstein whereas in the other light was provided by a mix of cool white fluorescent tubes 

and Metal Halide high-intensity discharge 400W lamps (fluency was 250 micro Einstein). 

Because the penetrance of the aba1 mutation in the flowering phenotype was reduced in 

the second chamber, I suspect an interaction might exist between light intensity and / or 

quality and ABA signaling in flowering time (which I could not investigate fully, due to 

inability to modifying light conditions in the same chamber). 

ABA application experiments were performed following the procedure detailed previously 

(Riboni et al., 2016). Treatments were performed for 12 days and three different 

concentration of ABA were used: 0.25, 2.5 and 25 µM. A mock solution (0.025% v/v 

ethanol) afforded a negative control. For in vitro Arabidopsis growth Murashige and Skoog 

(MS) medium was prepared dissolving MS salt mix (Duchefa) and sucrose (1% w/v) in 

distilled water. The pH solution was adjusted to 5.8 and 0.8% w/v agar (Duchefa) was 

added. After autoclaving, the medium was mixed with Basta (50 µM final concentration) 

and poured into Petri plates. Sterilized seeds (70% v/v ethanol and 1% Sodium Dodecyl 

Sulphate, SDS for 10 minutes) were spread onto solidified agar plates, stratified for 2 days 
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(4°C and dark) and then moved to a growth chamber set as LDs. Nicotiana benthamiana 

plants used for transient expression experiments were grown under LDs in a greenhouse 

with semi-controlled climate.  

 

Isolation of double mutants and genotyping 
	
Double and triple mutants were generated by crossing. aba1-6, phyA-501 and phyB-9 

mutations were genotyped as previously described (Martínez-García et al., 2014; Riboni et 

al., 2013; Strasser et al., 2009). The cry2-1 allele was selected based on its late flowering 

phenotype and on the deletion present at the 5’ of the gene (the primer couple indicated in 

Table 2 was generated on the deletion, so that annealing only occurs in the wild type 

allele, in absence of the deletion). fd-4 and fkf1-10 mutants were selected based on their 

late flowering phenotypes. abf1, abf3, abf4 and areb3 are T-DNA insertional mutations and 

the genotyping primers are listed in Table 2.  

 

Molecular cloning 
	
All full-length genes were cloned using the Gateway and Multi-Site Gateway (Three-

fragment vector) cloning technology (Invitrogen) with primers listed in Table 2. The AttB1-

AttB2 sites were added in two steps. A first PCR was performed using primers 

incorporating half of the nucleotide sequence complementary to the beginning/end of the 

gene of interest and the other half corresponding to half of the AttB1-AttB2 sites. PCR 

products were gel purified (Qiaquick Gel Extraction Kit, Qiagen) and used as templates for 

a second round of PCR with oligonucleotides with the complete AttB1-AttB2 sites. The 

Phusion High Fidelity DNA polymerase (New England Biolabs) was used for all the PCR 

reactions. Once the genes were cloned into the pDONR221 entry vectors (Invitrogen), an 

aliquot of the plasmid was sent for Sanger sequencing to ensure that no errors were 
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incorporated in the cloned sequence. The expression vector constructs generated in this 

study are listed in Table 3. The 5’ and 3’ elements and destination vectors were previously 

described; SUC2 promoter / pDONR221 P4-P1r (Marquès-Bueno et al., 2016), 2x35S / 

pDONR221 P4-P1r and mCITRINE / pDONR221 P2r-P3 (Jaillais et al., 2011), 2xmCherry-

4xmyc / pDONR221 P2r-P3 (Simon et al., 2014), pB7m34GW and pH7m34GW (Karimi et 

al., 2017), pGBPGWC (Zhong et al., 2008), pEarleyGate 102 (Earley et al., 2006). All the 

recombinant destination vectors were transformed into Agrobacterium cells, strain GV3101 

(Koncz and Schell, 1986), for Arabidopsis transformation or N. benthamiana leaves 

infiltrations (see below). For CO heterologous production (see below Cell Free 

Degradation Assay), the full length CO (with stop codon) was expressed from an SP6 

promoter and fused to N-terminus FLAG tag for expression with a transcription/translation 

TnT in vitro system compatible vector (the destination vector SP6::FLAG:GW was kindly 

provided by Kaiserli Lab (Kaiserli et al., 2015).  

 

Plants transformation and BASTA selection 
	
Destination vectors (Table 3), as well as controls pGWB6 (Nakagawa et al., 2007) and 

pSUC2::GW (An et al., 2004), were introduced into Agrobacterium by electroporation. 

Transformed Agrobacterium were used to generate Arabidopsis transgenic plants via the 

floral dip technique (Clough and Bent, 1998). Transgenic plants were selected on the 

basis of Basta resistance conferred by the bar gene present in the destination vectors. 

Single insertion events were selected on Basta containing MS plates in which a 

Mendellian 3:1 ratio in T2 generation was observed. T3 homozygous lines were selected 

on MS+Basta plates, according to the absence of Basta resistance segregation.  
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Flowering time measurement 
	
The number of rosette leaves produced by the plant was used to measure flowering time. 

To avoid flowering time alterations associated to MS-soil transfer, Basta resistance 

selection in T1 generation was performed directly on soil (and the same was done for 

informative T2 and T3 lines isolated from the analysis on MS plates with Basta). After 

germination, plants were sprayed with 100 µM Basta solution every other day until death 

of non-transgenic plants was observed.  

 

Statistical analysis 
	
Multiple comparisons among different genotypes were done with one-way ANOVA with 

Tukey’s Post Hoc test, P-values ≤0.05 (*), ≤0.01 (**), ≤0.001 (***) to understand if 

differences in flowering time were statistically significant. Statistical analysis and plotting of 

the results were preformed using the GraphPad software. 

 

Generation of isogenic lines 
	
SUC2::HA:CO and aba1-6 SUC2::HA:CO isogenic lines were obtained by crossing a 

published SUC2::HA:CO line (Jang et al., 2009) with aba1-6 mutants. In segregating F2 

plants I selected homozygous aba1-6 showing an early flowering phenotype (thus 

homozygous or heterozygous for the SUC2::HA:CO transgene). In the F3 generation, I 

screened lines that did not show segregation for the early flowering phenotype, and one 

was used for subsequent analysis. The gi-2 GI::GI:HA and aba1-6 gi-2 GI::GI:HA isogenic 

lines were generated by crossing the gi-2 GI::GI:HA line (Kim et al., 2007) with aba1-6 

mutants. In the F2 generation I selected aba1-6 homozygous plants, which were not as 

late flowering time as gi-2. This flowering phenotype could correspond to different GI 

genotypes. Therefore, in the same generation, I selected gi-2/gi-2 plants using primers 
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listed in Table 2. At this point individual aba1-6 gi-2 double homozygous individuals could 

be either homozygous or heterozygous for the GI::GI:HA transgene. 15 F3 families were 

tested for the presence of the GI::GI:HA transgene in a homozygous state, based on lack 

of flowering time segregation. These corresponded to aba1-6 gi-2 GI::GI:HA triple 

homozygous and three independent F3 lines were in this way analysed in Figure 12.  

 

RNA extraction, cDNA retrotranscription and real-time qPCR 
	
Total RNA was extracted with QIAzol reagent (Invitrogen) and suspended in RNase-free 

milliQ dH2O. RNA concentration was measured with a UV spectrophotometer and 500-750 

ng aliquots were used for cDNA synthesis with the High Capacity RetroTranscriptase kit 

(Applied Biosystems). Quantitative real-time qPCR was performed as previously detailed 

(Riboni et al., 2013). Primers used to amplify GI, CO, FT and TSF were described in 

(Riboni et al., 2013), while those for IPP2 and ISU1 refer to (Kaiserli et al., 2015). eGFP 

and RAB18 transcripts were amplified with the primers listed in Table 2.  

 

Protein extraction and detection 
	
50-80 mg of gi-2 35S::HA:GI, gi-2 GI::GI:HA and aba1-6 gi-2 GI::GI:HA seedlings grown 

on soil (under LDs) were harvested and immediately frozen in liquid nitrogen. Tissues 

were ground using glass beads with the TissueLyser II (Qiagen, 30 s at 28Hz shaking). 1 

volume (100 µl per 100 mg) of Buffer E (Martínez-García et al., 1999) containing 0.1% 

(v/v) plant protease inhibitor cocktail (SIGMA) was added to each sample and mixed. After 

10 min of centrifugation at maximum speed (18,000 x g), the supernatant was recovered 

and an aliquot was used to measure the concentration of the protein extracts with the 

Bradford reagent. Bovine Serum Albumin (BSA) at known concentrations were used as a 

standard reference. Proteins were mixed with Laemmli Buffer 4X (Invitrogen) and 
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incubated for 10 minutes at 75°C. The same amount of proteins was loaded onto a 7% 

SDS-PAGE gel. For Western blot analysis, monoclonal Anti-HA antibody (SIGMA) was 

used to detect HA:GI signal. Ponceau red staining of Rubisco large subunit or Anti-H3 

antibody (Agrisera) for Histone H3 signal detection were used as loading controls. 

Chemiluminescent signals were detected through ChemiDoc Touch Imaging System 

(BIORAD).  

 

Nuclei isolation and CO protein detection in Arabidopsis 
	
Several attempts were made to detect CO:CFP and HA:CO protein in Arabidopsis 

transgenic plants. Total protein extraction with the Buffer E protocol, previously described 

for GI and optimal to detect CO:CFP when transiently expressed N. benthamiana leaves, 

did not work in Arabidopsis. I also tried different nuclei isolation protocols described in the 

literature that yielded unsatisfactory results with and non-specific signals. After different 

trials I realized that the isotype of Anti-GFP or Anti-HA antibody was crucial to obtain 

results, and I finally set up a working protocol to detect CO:CFP and HA:CO in my 

transgenic plants (although in general CO:CFP plants yielded much reduced signal). 

According to my optimized procedure, approx. 100 mg of Arabidopsis seedlings were 

harvested and immediately frozen in liquid nitrogen. Tissue samples were ground by 

shaking with glass beads in a TissueLyser II (Qiagen, 2 pulses of 30 s each at 28Hz 

shaking). Leaf powder was suspended in 1.2 ml of cold nuclear isolation buffer (20 mM 

Tris-HCl, pH = 8.8, 25 mM NaCl, 5 mM MgCl2, 30% (v/v) glycerol, 5% (w/v) sucrose, 0.5% 

(v/v) Triton X-100, 0.08% (v/v) β-mercaptoethanol, 0.2% (v/v) SIGMA plant protease 

inhibitor, 1mM DTT, 1.3 mM PMSF). The samples were filtrated trough two layers of 

Miracloth (Millipore) and centrifuged at 5,000 x g, at 4 °C, for 10 minutes. The supernatant 

was removed and the pellet was washed four times with 1 ml of nuclear isolation buffer 
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and, after each wash, pelleted at 4 °C at decreasing speed: 5,000 x g, 2,700 x g, 2,200 x g 

and 2,200 x g, 8 minutes each time. Nuclei were suspended in 30 µl of nuclear isolation 

buffer, mixed with 10 µl of Laemmli Buffer and heated 10 minutes at 95 °C. Samples were 

centrifuged for 1 minute at 3,000 x g to pellet all nuclear membranes, and the 

supernatants (enriched in soluble nuclear proteins) were recovered and 20 µl were loaded 

onto a 10% SDS-PAGE gel. For Western blot analysis, anti-HA-Peroxidase, High Affinity 

antibody (Roche) was used to detect HA:CO protein signal and anti-GFP antibody (Abcam 

ab6556) was used to detect the CO:CFP protein signal. Chemiluminescent signals were 

detected through a ChemiDoc Touch Imaging System (BIORAD) and measured by Image 

Lab software.  

 

Transient expression in N. benthamiana 
	
4-5 week-old N. benthamiana leaves were infiltrated with different combinations of 

transformed Agrobacterium as described in (Sparkes et al., 2006). 10mM MgCl2 solution 

was used as infiltration medium and Agrobacterium transformed with P19 plasmid was 

added to the final infiltration mixture to suppress gene silencing. Infiltrated N. benthamiana 

plants were grown under LDs for three more days before proceeding with ABA treatment 

experiments or confocal microscopy analysis. 

 

ABA treatment and CO:CFP protein detection in N. benthamiana 
	
Agrobacterium carrying the 35S::CO:CFP or 35S::GFP:GW expression constructs were 

infiltrated in N. benthamiana leaves as previously described. At least 6 independently 

infiltrated leaves were piled up together and leaf punches of 5 mm in diameter were 

collected on a petri dish containing liquid MS medium supplied with 0.01% (v/v) Silwet L-

77 detergent. Leaf disks were then randomly divided in petri dishes containing liquid MS (+ 
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0.01% (v/v) Silwet L-77 detergent) supplemented with different concentrations of phyto-

hormones (ABA, GA4 or JA) or an appropriate diluent (mock = 0.025% (v/v) ethanol). 

Depending on the experiment, at each time point 12-20 leaf disks were harvested and 

immediately frozen in liquid nitrogen. Frozen tissues were ground using glass beads in the 

TissueLyser II bead beater (Qiagen, 2 pulses of 30 s each at 30Hz shaking) and total 

proteins were extracted with the buffer E protocol as previously described. Equal amounts 

of proteins were loaded onto a 10% SDS-PAGE gel. For Western blot analysis, anti-GFP 

antibody (Abcam ab6556) was used to detect CO:CFP or GFP protein signal. Ponceau red 

staining of Rubisco large subunit or Anti-UGPase antibody (Agrisera) for UGPase signal 

detection were used as loading controls. Chemiluminescent signals were captured on 

western blot compatible films.  

 

Confocal microscopy 
	
Fluorescence signals from N. benthamiana infiltrated leaves were imaged with a Leica 

FRET-FLIM confocal microscope. CFP (Cerulean) was exited at 405 nm and its emission 

was collected between 405 and 550 nm; mCITRINE was exited at 488 nm and its emission 

was collected between 488 and 520 nm; mCherry was exited at 552 nm and its emission 

was collected between 600 and 780 nm. To avoid the overlap between CFP and CITRINE 

fluorescence signals, when CO:CITRINE, FKF:CFP and GI:CHERRY were co-expressed 

in the same cell CFP was exited at 405 nm and its emission was collected between 405 

and 500 nm, while CITRINE was exited at 488 nm and its emission was collected between 

510 and 530 nm; All the confocal microscopy work was performed at Kaiserli Lab at the 

University of Glasgow during my Erasmus+ project. Agrobacterium-containing infiltration 

mixtures were prepared combining differently transformed Agrobacterium according to the 

co-localization I wanted to monitor. The expression constructs used are listed in Table 3. 

35S::TZP:cherry construct was kindly provided by Kaiserli Lab. For all the combinations 
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tested, three independent transient expression experiments were performed in which I 

monitored the fluorescence signals in 4/5 different cells.  

 

Cell Free Degradation Assay 
	
1g of 10 day-old wild type Arabidopsis seedlings grown on non-selective MS solid medium 

under LDs were harvested and immediately frozen in liquid nitrogen. Frozen tissues were 

ground in liquid nitrogen with mortar and pestle and total proteins were extracted in 

degradation buffer as described in (Wang et al., 2009). Equal amounts of heterologous 

FLAG:CO produced with the TNT SP6 High-Yield Wheat Germ protein expression system 

was mixed with 200 µg of soluble plants proteins (around 100 µl) supplemented with 

proteasome inhibitor (50 µM MG132) or 0.1% (v/v) SIGMA plant protease inhibitor (PIC). 

The degradation reactions were incubated at 22 °C and samples collected after 5-15-30-

60-120 minutes. 20 µl of the reaction was mixed with Laemmli Buffer 4X and heated at 75 

°C for 10 minutes. An aliquot of total protein extract before and immediately after the 

addiction of FLAG:CO was used as negative control and starting condition (T0), 

respectively. Equal volumes were loaded onto a 10% SDS-PAGE gel. For Western blot 

analysis, anti-FLAG antibody (Abcam ab49763) was used to detect FLAG:CO protein 

signal through a ChemiDoc Touch Imaging System (BIORAD). Chemiluminescent signals 

were measured by Image Lab software.  
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Table 1 

Allele Reference 
aba1-6 (Niyogi et al., 1998) 
aba2-1 (Léon-Kloosterziel et al., 1996) 
phyA-501 (Ruckle et al., 2008) 
aba1-6 phyA-501 This work 
phyB-9 (Reed et al., 1993) 
aba1-6 phyB-9  This work 
fkf1-10 (Riboni et al., 2013) 
aba1-6 fkf1-10 This work 
cry2-1 (Guo et al., 1999) 
aba1-6 cry2-1 This work 
hab1-1 abi1-2 abi2-2 (Rubio et al., 2009) 
areb3 SALK_061079C (NASC) 
aba1-6 areb3 This work 
abf1 SALK_132819C (NASC) 
abf3 SALK_096965 (NASC) 
abf4 SALK_069523 (NASC) 
abf1 abf3 abf4 This work 
fd-4 (Riboni et al., 2013) 
aba1-6 fd-4 This work 
Col-0 35S::GW:CFP This work 
35S::CO:CFP This work 
aba1-6 35S::CO:CFP  This work 
hab1-1 abi1-2 abi2-2 35S::CO:CFP  This work 
Col-0 SUC2::GW This work 
aba1-6 SUC2::GW This work 
aba2-1 SUC2::GW This work 
SUC2::CO:CITRINE This work 
aba1-6 SUC2::CO:CITRINE  This work 
aba2-1 SUC2::CO:CITRINE  This work 
SUC2::HA:CO (Jang et al., 2009) 
aba1-6 SUC2::HA:CO  This work 
gi-2 GI::GI:HA  (Kim et al., 2007) 
aba1-6 gi-2 GI::GI:HA   This work 
gi-2 35S:HA:GI (David et al., 2006) 
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Table 2 

 

 

Table 3 

 

Target Forward primer Reverse primer Application
cry2-1 CTGGAGGAGGTTGAGGTCTG CCAAGAGCCTTCAAGGATTG Genotyping
GI GTACAGCAAGGAAGCTCATCC CAGTTTTATAAATGGGACGGTT Genotyping
gi-2 CGCATTTTGACTCATTACAATT CATAGACCTCAGCAGAGAGACC Genotyping
ABF1 AGAGGGAATGAGTCAAAGCC TTGCCTTCTCTCAACAACCT Genotyping
abf1 AGAGGGAATGAGTCAAAGCC TGGTTCACGTAGTGGGCCATCG Genotyping
ABF3 TTGCCTCGGACGATTAGTCA GGAACAGGGGACAAAGATGC Genotyping
abf3 TGGTTCACGTAGTGGGCCATCG GGAACAGGGGACAAAGATGC Genotyping
ABF4 CGCACGCATTTATGTGGTTTG GTTTCCGTTGACCTGACCCA Genotyping
abf4 CGCACGCATTTATGTGGTTTG TGGTTCACGTAGTGGGCCATCG Genotyping
AREB3 TGATGAGCAGGCTTACACTC GCCTACAAGAAGAAGGCTTTGC Genotyping
areb3 TGGTTCACGTAGTGGGCCATCG GCCTACAAGAAGAAGGCTTTGC Genotyping
eGFP ACGTAAACGGCCACAAGTTC AAGTCGTGCTGCTTCATGTG qPCR
RAB18 TCGGTCGTTGTATTGTGCTTTTT CCAGATGCTCATTACACACTCATG qPCR
CO (with STOP) AAAAAGCAGGCTTCACCATGTTGAAACAAGAGAGTAAC AGAAAGCTGGGTTTCAGAATGAAGGAACAATCC Cloning
CO AAAAAGCAGGCTTCACCATGTTGAAACAAGAGAGTAAC AGAAAGCTGGGTTGAATGAAGGAACAATCC Cloning
FKF1 AAAAAGCAGGCTTCACCATGGCGAGAGAACATGCGATC AGAAAGCTGGGTTCAGATCCGAGTCTTGCCGG Cloning
GI AAAAAGCAGGCTTCACCATGGCTAGTTCATCTTCATCTGAG AGAAAGCTGGGTTTTGGGACAAGGATATAGTACAGC Cloning
Adapter AttB1/AttB2 GGGGACAAGTTTGTACAAAAAAGCAGGCT GGGGACCACTTTGTACAAGAAAGCTGGGT Cloning

Expression construct Entry clone 1 (5' element) Entry clone 2 Entry clone 3 (3' element) Destination vector Applications
35S::CO:CFP CO / pDONR207 P1-P2 pGBPGWC Arabidopsis transformation & N. benthamiana  transient expression
SUC2::CO:CITRINE SUC2 promoter / pDONR221 P4-P1r  CO / pDONR207 P1-P2 mCITRINE / pDONR221 P2r-P3 pB7m34GW Arabidopsis  transformation
35S::CO:CITRINE 2x35S / pDONR221 P4-P1r CO / pDONR207 P1-P2 mCITRINE / pDONR221 P2r-P3 pH7m34GW  N. benthamiana transient expression
35S::CO:cherry 2x35S / pDONR221 P4-P1r CO / pDONR207 P1-P2 2xmCherry-4xmyc / pDONR221 P2r-P3 pH7m34GW  N. benthamiana  transient expression
35S::GI:cherry 2x35S / pDONR221 P4-P1r GI / pDONR221 P1-P2 2xmCherry-4xmyc / pDONR221 P2r-P3 pH7m34GW  N. benthamiana  transient expression
35S::FKF1:cherry 2x35S / pDONR221 P4-P1r FKF1 / pDONR207 P1-P2 2xmCherry-4xmyc / pDONR221 P2r-P3 pH7m34GW  N. benthamiana transient expression
35S::FKF1:CFP FKF1 / pDONR207 P1-P2 pEarleyGate 102  N. benthamiana  transient expression
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Photoperiodic-Dependent Activation of Flowering

After the f loral transition the shoot apical meristem (SAM) 
changes its identity switching from vegetative to reproductive. 
In annual Arabidopsis ecotypes, the transition to f lowering 
is strongly promoted by variations in day length (photope-
riod). The photoperiodic pathway promotes f lowering when 
Arabidopsis plants are exposed to long days (LDs) conditions 
(typical of spring and summer). Photoperiodic f lowering is the 
result of complex interactions between the circadian clock (an 
endogenous timekeeping mechanism) and external cues, which 
ultimately results in the activation of a set of f loral genes.1 Central 
to photoperiod-dependent f lowering is the pattern of accu-
mulation of the f lowering protein CONSTANS (CO).2-4 CO 
expression is regulated transcriptionally by the circadian clock 
through the GIGANTEA (GI)-FLAVIN-BINDING, KELCH 
REPEAT, F-BOX (FKF1) complex.5,6 LDs also promote the sta-
bilization of CO protein at the end of a LD via activation of 
the photoreceptors PHYTOCROME A, CRYPTOCHROME 
1 and 2 (CRY1 and 2).3 CO protein promotes the transcrip-
tional activation of the f lorigen genes FLOWERING LOCUS 

T (FT ) and TWIN SISTER OF FT (TSF ) in the phloem com-
panion cells.7-10 FT and FT-likes proteins encode small proteins 
with similarity to the Raf Kinase Inhibitor Proteins (RKIP). 
They usually act as systemic signals, since these proteins are 
able to move between cells.11 FT protein moves from the leaves 
to the SAM where it interacts with the SAM-specific bZIP 
transcription factors FLOWERING LOCUS D (FD) and FD 
PARALOG (FDP) to initiate the f loral transition.12-16 Here, the 
FT/FD heterodimer activates several MADS box-type transcrip-
tion factors, namely SUPPRESSOR OF OVEREXPRESSION 
OF CONSTANS 1 (SOC1), APETALA1, and FRUITFUL, 
responsible for triggering the f loral transition.17,18

Florigen gene expression has been demonstrated to play a 
pivotal role in photoperiodic f lowering in different plants 
including Arabidopsis, a facultative LD plant and Rice (Oryza 
sativa), a facultative short day (SD) plant.19 However, f lorigen 
expression is not always dependent upon photoperiod variations 
as in the case of the day neutral plant Tomato (Solanum lycoper-
sicum).20 This implies that f lorigen upregulation can also occur 
in response to internal or external stimuli other than variations 
in day length. The data reviewed here reinforces the idea that 
the photoperiodic pathway and the f lorigen genes are central 
nodes of a wider network receiving a multitude of external 
inputs. Furthermore, mechanisms that couple photoperiodic 
f lowering with stress acclimation are emerging.

Stress-Dependent Activation of FT Expression

LDs promote f lowering via activation of the f lorigen genes in 
Arabidopsis. However, it is now apparent that the FT promoter 
conveys several environmental information, in some cases inde-
pendent of day length. Many plant species are induced to f lower 
following drought stress which results in a drought escape 
response - DE -.21-27 The onset of DE maximizes the chances 
to set seeds, thus “escaping” from a potentially lethal drought 
condition.28 We have recently shown that in Arabidopsis DE 
occurs under LDs but not SDs, thus revealing a strong interde-
pendence of certain drought responses on photoperiod. Genetic 
screens showed that photoperiod-stimulated GI activity is nec-
essary and sufficient to trigger a drought dependent activation 
of the f lorigen genes FT and TSF.29

The phytohormone ABA plays a pivotal role in mediating 
several drought adaptive mechanisms although its precise role 
in f lowering is still poorly understood.30 Genetic and expression 
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Plants maximize their chances to survive adversities by 
reprogramming their development according to environ-
mental conditions. Adaptive variations in the timing to flow-
ering reflect the need for plants to set seeds under the most 
favorable conditions. A complex network of genetic pathways 
allows plants to detect and integrate external (e.g., photope-
riod and temperature) and/or internal (e.g., age) information 
to initiate the floral transition. Furthermore different types 
of environmental stresses play an important role in the flo-
ral transition. The emerging picture is that stress conditions 
often affect flowering through modulation of the photoperi-
odic pathway. In this review we will discuss different modes 
of cross talk between stress signaling and photoperiodic 
flowering, highlighting the central role of the florigen genes 
in this process.
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data suggest a role for ABA in DE response, through the activa-
tion of the f lorigen genes.29 aba1 mutants are impaired in ABA 
biosynthesis and display reduced accumulations of FT and TSF 
transcripts, especially under drought conditions. In addition 
to FT and TSF another FT-like genes MOTHER OF FT AND 
TFL1 (MFT ) all appear to be positively regulated by ABA.31,32 
Taken together these data argue in favor for a positive role for 
endogenous ABA in f lowering via potentiation of f lorigen-like 
genes in a photoperiodic manner.

Some plants use drought stress as a primary cue to f lower-
ing. Recent studies suggest that drought stress is involved in the 
upregulation of the f lorigen genes in the tropical tree Shorea 
beccariana.33 Moderate increases in drought index promote an 
increase of SbFT transcript accumulations early in bud develop-
ment, preceding f lower morphological changes. Shorea beccari-
ana grows at the equator where day length and temperature are 
constant throughout the year. It is thus plausible that drought 
spells could represent a major external cue to trigger mass f low-
ering in this species via direct activation of FT independent 
of photoperiod. Photoperiod-independent modes of activation 
of FT exist also in Arabidopsis where an increase in ambient 
temperature is reflected in augmented FT transcript accumu-
lation.34 A key component of this mechanism is the bHLH 
transcription factor PHYTOCHROME INTERACTING 
FACTOR 4 (PIF4) directly activating FT expression largely 
independent of CO.35 It is intriguing to note that occurrence 
of drought episodes often coincides with an increase in ambient 
temperature, at least in temperate climates. Whether ambient 

temperature also plays a regulatory role in DE response is thus 
an interesting question.

Unlike the thermosensory pathway, the mechanism through 
which drought stimuli affect FT activation is unknown. 
Drought stress results in an increase in FT expression with 
no evident effect on the physiological circadian oscillation 
of FT.29,36 Because the pattern of FT transcript accumulation 
depends on variations in CO protein, drought might directly 
affect CO expression. FLOWERING BHLH 1 (FBH1), a CO 
positive activator, is phosphorylated in vivo following ABA sig-
naling activation.37,38 Although the precise role of phosphoryla-
tion on FBH1 protein function is still unknown, this finding 
could support a role for ABA in CO transcription under drought 
conditions. Also, EID1-like protein 3 (EDL3), a positive regu-
lator of ABA signaling is an activator of CO. EDL3 transcript is 
upregulated following ABA applications.39 Although these find-
ings point to a link between ABA and photoperiodic f lower-
ing via CO transcript accumulations we could find only minor 
variations in CO transcript in wild-type or aba1 mutant plants 
subjected to drought stress (Fig. 1A).

Drought (via ABA) could affect CO protein activity or sta-
bility. For example, besides the well-established role in seed 
germination the ABA signaling protein ABA INSENSITIVE 3 
(ABI3) is involved in the control of f lowering time. abi3 mutants 
are early f lowering under both SDs and LDs while ABI3 over-
expression results in an increased vegetative phase under LDs.40 
ABI3 binds to the CO CCT (CO, CO-like, TOC1) domain 
involved in the recruitment of the CO protein to the promoter 

Figure 1. Real-time qPCR of CO (A) or BFT (B) transcripts in 3 wk-old wild-type (Col-0), aba1-6 or gi-2 seedlings. Plants were subjected to normal water-
ing (black lines) or reduced watering (gray lines) regimes and harvested at the indicated time points in coincidence with the light phase (open bar) 
or in the dark (black bar) during a SDs to LDs shift. At each time point, values represent fold change variations of CO or BFT transcript levels relatively 
to Col-0 under NW. ACT2 expression was used for normalization; error bars represent SD of 2 technical replicates. A representative experiment of 2 
biological replicates is shown.
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of FT.41,42 Thus, interaction with ABI3 may interfere with CO 
(and perhaps other CCT domain - containing proteins) bind-
ing to DNA. Intriguingly, following spray with ABA, abi3 
mutants display high levels of TSF, suggesting a repressive role 
for ABI3 on TSF expression.43 In germinating seeds, the expres-
sion of MFT is downregulated by ABI3.31 ABI3 may thus act 
as a negative regulator of f lowering through downregulation of 
f lorigen-like genes.

Despite the GI-CO module being responsible for most of 
the activation of FT, FT upregulation may occur independently 
of either CO or GI. For example, warm temperatures results 
in an acceleration of f lowering in the absence of GI and CO 
activities.34 In contrast, a DE response can be induced in co 
but not gi mutants, although it is unknown whether drought 
can stimulate FT upregulation in the absence of CO activity.29 
Nonetheless this observation suggests that drought signals can 
overcome CO action to trigger f lowering, provided that GI is 
photoperiod-stimulated. In support of the key role of GI in DE, 
ABA hypersensitive mutants are early f lowering under LDs, but 
not under SDs. Thus ABA hyper-activation cannot override 
the requirement of photoperiod-stimulated GI in f lowering.29 
Examples of GI dependent but CO-independent mechanisms 
for FT activation have been described.35,44-48 However it is cur-
rently unclear how drought might affect GI-derived signals 
upon the FT promoter. Other pathways could facilitate the 
responsiveness of FT to photoperiod-stimulated GI. For exam-
ple, similarly to gi, cry2 mutants have a defective DE response, 
despite constitutively accumulating increased ABA levels com-
pared with wild type.29,49 Therefore, one could speculate that 
also CRY2 may participate in the GI- and ABA-dependent acti-
vation of FT.

Arabidopsis has 3 f lorigen genes, of which 2 (FT and TSF ) 
act redundantly to mediate photoperiodic f lowering.8,50,51 
Despite this functional redundancy, FT and TSF transcripts are 
found in a non-overlapping pattern of expression.8 Also, TSF 
expression (but not FT ) can be activated under SDs following 
exogenous applications of a synthetic Cytokinin (CK).52 Thus, 
unlike ABA, CKs do not require a photoperiodic input for the 
activation of TSF. Because of this reduced dependence on pho-
toperiod, TSF upregulation might also occur in the absence of 
CO (although still in a GI-dependent manner) under drought 
conditions and contribute to the DE response observed in co 
mutants. In conclusion, more work is needed to clarify the 
mode of FT and FT-like genes activations under drought condi-
tions and their specific interdependence with the photoperiodic 
pathway machinery.

Stress Dependent Downregulation of FT Expression

Not all abiotic stresses are interpreted as an escape signal. 
For example, cold stress delays f lowering and alters the diur-
nal oscillation of FT expression even under inductive photo-
periodic conditions. It has been shown that cold temperatures 
induce the degradation of CO protein via an ubiquitin/pro-
teasome pathway that involves the E3 ubiquitin ligase HIGH 

EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 
1 (HOS1).53 Under normal growth temperature HOS1 acts as 
a general component of photoperiodic f lowering by destabiliz-
ing CO protein in response to daylight signals.54 Modulation 
of HOS1 activity by light and cold temperature plays a crucial 
role in the daily pattern of CO accumulation, thus revealing yet 
another example of interplay between environmental cues and 
day length perception via f lorigen regulation.

A different osmotic stress, salinity, delays f lowering in 
Arabidopsis by interfering with the photoperiodic pathway. 
Interestingly salt affects FT at 2 different levels, transcriptional 
and post-transcriptional. Salt stress promotes GI protein degra-
dation through an unknown ubiquitin/proteasome pathway.55 
Consequently, salt negatively regulates CO and FT transcripts 
accumulation. Salt stress delays f lowering by activating the 
f loral repressor BROTHER OF FT (BFT ), a f lorigen-like pro-
tein with opposite function to FT.56 BFT competes with FT 
for the binding to FD, thus delaying the switch to f lowering. 
BFT is strongly responsive to drought stress and ABA.57 We also 
confirmed that BFT can be transcriptionally activated under 
drought conditions in an ABA dependent manner and this reg-
ulation is dependent on GI (Fig. 1B). Thus, BFT expression is 
subject to a similar regulatory mechanism that orchestrates the 
activation of FT and TSF and is responsible for the DE response. 
However, the physiological role of BFT in DE is unclear since 
under drought conditions the positive regulation of f lowering 
(i.e., via FT and TSF ) clearly prevails over BFT. One could 
hypothesize that the balance between florigen and anti-f lorigen 
proteins is necessary to generate an optimal duration of repro-
ductive development according to environmental stress. In this 
sense BFT may buffer FT action and prevent a premature inter-
ruption of inflorescence development. Deciphering the regula-
tory logic of the different f lorigen genes is thus an important 
goal to gain insights into the different f lowering adaptations 
to stress as well as the mechanisms that govern crop seed yield 
under adverse conditions.

Future Challenges:  
Coordination of Escape and Tolerance Strategies

A question arise as to how plants might coordinate f lower-
ing networks with tolerance responses, which allow individual 
cells to survive under stress conditions. GI is emerging as a 
key node connecting different abiotic responses with f lower-
ing time. gi mutants display different phenotypes including an 
increased salt tolerance.55 GI directly binds to SALT OVERLY 
SENSITIVE 2 (SOS2) protein and prevents its action under 
normal growth condition. Salt stress triggers the degradation 
of GI, thus releasing SOS2 and activating a salt-stress tolerance 
pathway. Besides salt, GI affects several developmental transi-
tions (e.g., seedling photomorphogenesis and flowering time) 
as well as different environmental responses (starch accumu-
lation, sucrose metabolism, sensitivity to light and oxidative 
stress).48,58-62 Furthermore GI controls guard cell activity.63 
GI could coordinate different responses through a process of 
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sequestration and release of interacting partners.55 In this model 
GI stability plays a key role through which plants can coordi-
nately regulate independent processes with f lowering.

In conclusion, plant adaptation to stress is complex and 
involves different strategies. In Arabidopsis the escape strat-
egy requires a positive integration between photoperiodic and 
drought-dependent signals. A f loral delay strategy takes place 
upon conditions where growth restraint provides an adaptive 
advantage over an escape, namely on salt.64 In all these cases, 
modulation of f lorigen genes represents the common central 
thread for how differential f lowering strategies are enacted.
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Abstract
One strategy deployed by plants to endure water scarcity is to accelerate the transition to flowering adaptively via 
the drought escape (DE) response. In Arabidopsis thaliana, activation of the DE response requires the photoperiodic 
response gene GIGANTEA (GI) and the florigen genes FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF). The 
phytohormone abscisic acid (ABA) is also required for the DE response, by promoting the transcriptional up-regula-
tion of the florigen genes. The mode of interaction between ABA and the photoperiodic genes remains obscure. In 
this work we use a genetic approach to demonstrate that ABA modulates GI signalling and consequently its ability to 
activate the florigen genes. We also reveal that the ABA-dependent activation of FT, but not TSF, requires CONSTANS 
(CO) and that impairing ABA signalling dramatically reduces the expression of florigen genes with little effect on 
the CO transcript profile. ABA signalling thus has an impact on the core genes of photoperiodic signalling GI and 
CO by modulating their downstream function and/or activities rather than their transcript accumulation. In addition, 
we show that as well as promoting flowering, ABA simultaneously represses flowering, independent of the florigen 
genes. Genetic analysis indicates that the target of the repressive function of ABA is the flowering-promoting gene 
SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), a transcription factor integrating floral cues in the 
shoot meristem. Our study suggests that variations in ABA signalling provide different developmental information that 
allows plants to co-ordinate the onset of the reproductive phase according to the available water resources.

Key words:  Abscisic acid (ABA), adaptation, drought stress, florigen expression, flowering, photoperiod.

Introduction
Water deprivation triggers several physiological adjustments 
at the cellular and organ levels (Shinozaki and Yamaguchi-
Shinozaki, 2007). Depending on the intensity and duration 
of drought episodes, some plants can also respond adaptively, 

by activating the drought escape (DE) response (Franks, 
2011; Riboni et al., 2013, 2014; Kazan and Lyons, 2016). DE 
allows plants to accelerate the floral transition and set seeds 
before drought conditions become too severe. While escaping 
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the potentially lethal effects of drought, plants undergoing 
DE usually produce fewer fruits and seeds, indicating a trade-
off  between plant survival and successful seed set (Su et al., 
2013; Kenney et al., 2014). Therefore, a more precise under-
standing of the mechanisms leading to DE is of fundamen-
tal importance to assess the diverse modes of adaptations of 
natural plant populations as well as to produce crops with 
increased productivity under water deprivation (Lovell et al., 
2013; Kooyers, 2015).

Arabidopsis thaliana is a facultative long-day (LD) plant, 
flowering much earlier under LDs, typical of  spring/sum-
mer compared with short days (SDs). The DE response 
occurs under LDs, but not SDs, indicating an interdepend-
ence between DE and photoperiod signalling in Arabidopsis 
(Han et al., 2013; Riboni et al., 2013). The photoperiodic 
pathway comprises three key genes, whose regulation 
and activity are required for the correct interpretation of 
day length: GIGANTEA (GI), CONSTANS (CO), and 
FLOWERING LOCUS T (FT) (Putterill et al., 1995; Fowler 
et al., 1999; Kardailsky et al., 1999; Kobayashi et al., 1999; 
Park et al., 1999). CO encodes a nuclear protein (Putterill 
et  al., 1995; Samach et  al., 2000) able to induce the tran-
scriptional activation of  the florigen genes FT and TWIN 
SISTER OF FT (TSF) (An et al., 2004; Yamaguchi et al., 
2005; Jang et al., 2009). Accumulation of  the CO transcript 
during the day depends on LIGHT OXYGEN VOLTAGE 
(LOV) domain-containing, blue light receptor FLAVIN-
BINDING, KELCH REPEAT F-BOX 1 (FKF1), and GI 
(Imaizumi et  al., 2003, 2005; Sawa et  al., 2007; Fornara 
et al., 2009; Song et al., 2012). Formation of  a GI–FKF1 
complex is stimulated by blue light and leads to degrada-
tion of  the CO transcriptional repressors CYCLING DOF 
FACTORs (CDFs) (Imaizumi et  al., 2005; Fornara et  al., 
2009), allowing CO transcription. While CO transcript 
accumulation broadly occurs under both LDs and SDs, CO 
protein is activated to promote flowering only under LDs 
when CO mRNA peaks in the light phase at the end of  the 
day (Suarez-Lopez et  al., 2001). Such a daily pattern of 
CO protein accumulation is controlled by several types of 
photoreceptors, which generate a peak of  CO abundance 
in coincidence with dusk under LDs (Valverde et al., 2004; 
Jang et al., 2008; Liu et al., 2008; Zuo et al., 2011; Lazaro 
et al., 2012; Song et al., 2012).

CO promotes FT transcription in the phloem compan-
ion cells (Adrian et al., 2010). However, FT protein acts as 
a florigenic signal, moving long distance to the shoot api-
cal meristem (SAM), where it interacts with the bZIP tran-
scription factors FLOWERING LOCUS D (FD) and FD 
PARALOGUE (FDP) to orchestrate the floral transition 
(Abe et al., 2005; Wigge et al., 2005; Corbesier et al., 2007; 
Jaeger and Wigge, 2007; Mathieu et al., 2007; Jaeger et al., 
2013). Amongst the early targets of the FT–FD complex is 
SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 
1 (SOC1), a MADS box transcription factor, which integrates 
several floral pathways in the SAM (Borner et al., 2000; Lee 
et al., 2000; Samach et al., 2000; Moon et al., 2003; Searle 
et al., 2006; Jang et al., 2009; Wang et al., 2009; Lee and Lee, 
2010).

Besides photoperiod, FT activation is modulated by several 
environmental cues (Pin and Nilsson, 2012), including drought 
stress (Riboni et al., 2013). The activation of FT by drought 
requires abscisic acid (ABA), a key hormone mediating water 
stress stimuli (Riboni et al., 2013). ABA derives from the carot-
enoid zeaxanthin synthetized in chloroplasts. Here, different 
enzymes, including ABA1, transform zeaxanthin into xanth-
oxin prior to its translocation to the cytoplasm where another 
set of enzymes, namely ABA2, complete the last biosynthetic 
steps leading to bioactive ABA (Nambara and Marion-Poll, 
2005). Three signalling proteins form the core ABA signal-
ling, including the PYRABACTIN RESISTANCE (PYR)/
REGULATORY COMPONENT OF ABA RECEPTOR 
(RCAR), the PROTEIN PHOSPHATASE 2Cs (PP2Cs), and 
SNF1-RELATED PROTEIN KINASE 2s (SnRK2s) (Cutler 
et al., 2010). The PYR/RCARs are the ABA receptors, the 
PP2Cs [e.g. the ABA INSENSITIVE 1 (ABI1) gene] act as 
negative regulators of the pathway, and the SnRK2s act as 
positive regulators of downstream signalling (Ma et al., 2009; 
Park et al., 2009).

ABA-deficient mutants aba1 and aba2 display a general 
delay in flowering in LDs, which is more evident under drought 
conditions as well as reduced florigen transcript accumula-
tion. Similar to aba1, mutants of GI are impaired in DE, and 
display no florigen up-regulation under drought conditions 
(Riboni et al., 2013). The nature of GI signalling upstream of 
the florigen activation during DE is however unclear. Because 
no DE occurs in wild-type plants under SDs, one can conclude 
that GI activates DE by mediating photoperiodic signals. 
However, such a mechanism does not appear to require CO 
activity, since co mutants display a normal DE response (Han 
et al., 2013; Riboni et al., 2013). Modes of GI-dependent but 
CO-independent pathways include the activation of a class 
of miRNA, the miR172, which targets the APETALA 2-like 
factors that repress FT and other flowering genes (Jung et al., 
2007; Mathieu et al., 2009). The role of GI in DE may also be 
indirect and/or biochemically distinct from its role in photo-
periodic flowering. For example, GI affects phytochrome sig-
nalling (Huq et al., 2000; Martin-Tryon et al., 2007; Oliverio 
et al., 2007), clock function (Park et al., 1999; Fowler et al., 
1999; Mizoguchi et al., 2005), and several plant–environment 
responses, namely salinity and freezing tolerance (Han et al., 
2013; Kim et al., 2013b; Fornara et al., 2015; Xie et al., 2015), 
through mechanisms which cannot be fully ascribed to the 
canonical photoperiodic signalling cascade.

In this study, tests were carried out to elucidate the role of GI 
signalling in the DE response. We analysed the DE response 
and patterns of florigen accumulation in Arabidopsis mutant 
backgrounds with varying levels of CO and in the presence or 
absence of GI. To assess the role of ABA in the GI-mediated 
pathway, we combined mutants impaired in ABA signal-
ling with transgenic plants overexpressing GI. We show that 
impaired ABA signalling affects GI downstream functions 
and/or activity, thus causing reduced accumulation of florigen 
genes, but no effects on CO accumulation. Our results also 
clarify the relationship between GI and CO in the context of 
DE response by showing that the drought/ABA-dependent 
activation of FT requires CO. In contrast, up-regulation of 
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TSF under drought stress can occur without CO, thus expand-
ing the repertoire of regulatory mechanisms of florigen gene 
activation in plants. Alongside these results, we also demon-
strate a florigen-independent floral repressive role for ABA in 
flowering, which requires SOC1. The transition to flowering 
under drought conditions thus depends on activation of sepa-
rate ABA-dependent developmental programmes.

Materials and methods
Plant materials and growing conditions
In this study, we used wild-type Arabidopsis thaliana plants, ecotype 
Columbia (Col-0) or Landsberg erecta (Ler). Mutant or transgenic 
lines were obtained from the Nottingham Arabidopsis Stock Centre 
or other laboratories as detailed in Supplementary Table S3 at JXB 
online. Seeds were stratified in the dark at 4 °C for 2 d before sow-
ing, and plants grown in a controlled-environment cabinet at a 
temperature of 18–23 °C, 65% relative humidity, under either LD 
(16 h light/8 h dark) or SD (8 h light/16 h dark) photoperiods. Light 
was provided by cool white fluorescent tubes (Philips Lighting, 
F36W/33-640 36W) at a fluence of 120–150 μmol m−2 s−1 (photo-
synthetically active radiation). The procedures to impose drought 
stress, and perform photoperiod shift experiments were previously 
detailed (Riboni et al., 2013).

Experiments in Fig.  1B were performed in a greenhouse, with 
a semi-controlled climate. Temperature was 19–23  °C and relative 
humidity was set at 65%. Natural light was supplemented by incan-
descent (metal halide) lamps when external light was <150 μmol m−2 
s−1 (photosynthetically active radiation) in an LD photo cycle. Two 
independent greenhouse experiments were performed (autumn 2015 
in Milan). ABA application experiments were performed by daily 
supplying 2 ml of ABA (25 μM) or mock solutions (0.025% v/v eth-
anol) 7 h after dawn. ABA applications started 3 d after germination 
and continued for 21 d. Each Arabasket pot was fitted with a pipette 
tip to facilitate the application of the solutions directly in the soil 
and thus in contact with roots (Supplementary Fig. S1).

Isolation of double mutants and genotyping
Mutant combinations were generated by crossing. The aba1-6 
mutation was genotyped as described in Riboni et al. (2013). ft-10 
mutants were selected on Murashige and Skoog plates containing 
Sulafadiazide as described (Rosso et al., 2003). abi1-1 mutants were 
selected by genomic PCR amplification with primers flanking the 
abi1-1 polymorphism followed by digestion with NcoI. Genotyping 
primers for tsf1-1, co-10, and abi1-1 are listed in Supplementary 
Table S4. Plants carrying the gi-2 and soc1-1 alleles were selected 
based on their late flowering phenotype, while elf3-1 mutants were 
selected on the basis of their early flowering and long hypocotyl.

RNA extraction and real-time qPCR
Total RNA was extracted with TRIzol reagent (Invitrogen). A 1.5 µg 
aliquot of total RNA was used for cDNA synthesis with the 
SuperScript VILO cDNA Synthesis Kit (Invitrogen). Quantitative 
real-time PCR was performed as previously detailed (Riboni et al., 
2013) and PCR primers are provided in Supplementary Table S4.

Molecular cloning and plant transformation
A 2.2 kbp promoter region upstream of the ABI1 coding sequence 
was cloned using the Gateway cloning technology (Invitrogen) with 
specifics primers (Supplementary Table S4). The promoter was 
cloned into the pDONR207 entry vector (Invitrogen) and moved 
into the pBGWFS7 destination vector (Karimi et  al., 2002). The 
resulting plasmid was introduced into Agrobacterium strain GV3101 

(pMP90RK) (Koncz and Schell, 1986) and transformed in wild-type 
Col-0 plants by floral dip (Clough and Bent, 1998). Six independent 
transgenic plants were selected based on the segregation of Basta 
resistance in a Mendellian 3:1 ratio in the T2 generation and ana-
lysed for β-glucuronidase (GUS) staining.

GUS assay
Plants were grown under LDs and sampled at the indicated Zeitgeber 
time (ZT) time. Tissue was fixed for 30 min at 0 °C with 90% (v/v) 
acetone. After being washed in 50  mM sodium phosphate buffer, 
pH 7.0 they were incubated for 14 h at 37 °C in staining solution 
[0.5 mg ml–1 X-Gluc (5-bromo-4-chloro-3-indolyl-β-D-glucuronide), 
50 mM sodium phosphate buffer, pH 7.0, 0.5 mM potassium fer-
rocyanide, 0.5  mM potassium ferricyanide, and 0.1% (v/v) Triton 
X-100]. Samples were cleared with a chloral hydrate:glycerol:water 
solution (8:1:2, v/v/v) for 3  h and then stored in 70% (v/v) etha-
nol before GUS histochemical reactions were visualized under a 
stereomicroscope.

Results
ABA promotes FT expression through CO

Mutants of aba1-6 were later flowering compared with the 
wild type under LDs (Fig. 1A–C). We confirmed a similar late 
flowering phenotype in aba2-1 mutants, defective in the final 
steps of ABA biosynthesis (Finkelstein, 2013). Soil applica-
tions of ABA could accelerate flowering in wild-type plants, 
reminiscent of DE response (Fig. 1A; Supplementary Table 
S1) (Koops et al., 2011). Using this experimental set-up, we 
could also largely rescue the late flowering of aba1-6 and 
aba2-1 mutants, indicating a role for ABA as an activator of 
flowering (Fig. 1A, B).

We have previously demonstrated that ABA activates flow-
ering under LDs but not SDs and that ABA affects photo-
periodic signalling upstream of FT expression (Riboni et al., 
2013). To understand how ABA interacts with photoperiod 
signalling to affect flowering, we generated combinations of 
ABA-deficient (aba1-6) and photoperiodic pathway mutants 
(Fig. 1C, D; Supplementary Table S1). Consistent with lack 
of flowering defects of aba1-6 under SDs (Riboni et al., 2013), 
double mutants of gi-2 aba1-6 displayed a similar flowering 
time compared with gi-2 single mutants under LDs (Fig. 1C, 
F). Since double mutants of ft-10 aba1-6 were later flowering 
than ft-10 single mutants, ABA could affect flowering time 
via other florigen genes, namely TSF (Fig. 1C, F). The tsf-1 
ft-10 aba1-6 triple mutants were slightly later flowering than 
tsf-1 ft-10 double mutants (Fig.  1C, F). TSF thus contrib-
utes to the late flowering phenotype of ft-10 aba1-6 plants 
although ABA also appears to have an effect on other floral 
pathways, independent of FT and TSF. Interestingly, double 
mutants of co-10 aba1-6 were similar to co-10 single mutants, 
indicating that CO is also required for the late flowering phe-
notype of aba1-6 mutants (Fig. 1D).

Unlike gi, co mutants generate a DE response, indicating 
that high levels of ABA accumulation, as a result of drought 
stress, may eventually overcome CO function to activate flow-
ering (Riboni et  al., 2013). To test whether drought could 
activate the florigen genes in the absence of a functional CO 
protein we grew wild-type and co-10 mutant plants under 
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control or water stress conditions in SDs before shifting 
to LDs to induce a photoperiodic response. As expected, 
in wild-type plants FT expression was strongly up-regu-
lated during the photo-extension period and even further 
increased under low watering conditions (Fig. 2A). In the co-
10 mutants, the levels of FT transcripts were barely detect-
able at any time point, independent of the watering regime, 
indicating that drought stress cannot cause FT up-regulation 
in the absence of a functional CO (Fig. 2B). The pattern of 

accumulation of TSF showed diurnal oscillations similar 
to those of FT in wild-type plants, peaking at dusk during 
the photo-extension period (Fig. 2A, B). Similar to FT, TSF 
expression was increased in coincidence with the photo-
extension period under drought conditions. Furthermore in 
co-10 mutants, TSF levels were much lower compared with 
the wild type under normal watering conditions, confirming 
a role for CO in TSF transcriptional activation (Yamaguchi 
et  al., 2005; Jang et  al., 2009). Surprisingly, drought stress 

Fig. 1. ABA activates flowering through GI, CO, and the florigen genes. (A) Mean number of rosette leaves of the wild type (Col-0) and ABA-deficient 
mutant plants grown under LDs and treated with ABA or mock treated. Error bars represent ±SE, n=15. Student’s t-test P-values ≤0.001 (***) compared 
with mock treatment. (B) Images of representative 24-day-old plants of the indicated genotypes grown under LDs and treated with ABA or mock treated. 
Inset of aba1-6 shows a visible inflorescence. (C and D) Mean number of rosette leaves of the wild type (Col-0) and flowering time mutants grown 
under LDs. Error bars represent ±SE, n=15. Student’s t-test P-values ≤0.05 (*), ≤0.001 (***), >0.05 not significant (NS) are shown to indicate differences 
between mutants and the corresponding mutant containing the aba1-6 allele. The experiment in (D) was performed under semi-controlled greenhouse 
conditions. (E) and (F), Images of representative plants of the indicated genotypes grown under LDs. (E) Wild-type Col-0 and aba1-6 mutant plants are 
4 weeks old, (F) ft-10, ft-10 aba1-6, ft-10 tsf-1, ft-10 tsf-1 aba1-6, gi-2, and gi-2 aba1-6 mutant plants are 14 weeks old. The arrow indicates the visible 
bolt in ft-10 tsf-1 aba1-6. Scale bars=1 cm. (This figure is available in colour at JXB online.)
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caused TSF up-regulation in the co-10 background, partially 
resuming its diurnal cycle with peaks at ZT8 under the SD 
part of the experiment and at ZT15 following a photo-exten-
sion. Slightly increased TSF levels were observed during SDs 
under drought conditions (on average 3.8 ± 1.6-fold) but this 
was not correlated with a DE phenotype under SDs in co-10 
mutants (Fig. 2B, D). Thus, unlike FT, TSF can be up-regu-
lated under drought conditions in a CO-independent manner.

GI is required for DE downstream of CO transcriptional 
activation

Our experiments indicate that ABA promotes FT transcript 
accumulation through CO. However, CO transcript levels 
are not greatly affected by drought stress or when ABA level 
are reduced (Han et al., 2013; Riboni et al., 2014). Here we 
wanted to test whether drought could affect flowering down-
stream of CO transcriptional activation events, by analysing 
mutants of cdf1-R cdf2-1 cdf3-1 cdf5-1, hereafter referred to 
as cdf1235, characterized by constitutively elevated CO lev-
els (Fornara et al., 2009). The cdf1235 mutants flowered early 
and produced a DE response quantitatively similar to that of 
the wild type under LDs (Fig. 3A). Despite their early flow-
ering phenotype under SDs, cdf1235 plants did not produce 
any DE response (Fig. 3B), suggesting a requirement for LDs 
in DE response, even when CO levels are elevated (Fornara 
et al., 2009) (Fig. 3C). We therefore compared the flowering 
time and DE response of the quadruple cdf1235 mutant with 
that of gi cdf1235 quintuple mutants under LDs (Fig. 3A). 

As previously shown, mutants of cdf1235 are slightly earlier 
flowering than gi cdf1235 under normal watering conditions 
(Fornara et al., 2009). However, while the cdf1235 mutants 
produced a DE response, the gi cdf1235 did not (Fig. 3A). 
We next sought to ascertain if  the lack of DE response in 
the gi cdf1235 mutants was correlated with impaired tran-
scriptional up-regulation of the florigen genes under drought 
stress. Control and water-stressed wild-type, cdf1235 and gi 
cdf1235 plants were grown under SD conditions for 2 weeks 
before shifting to LDs, and transcript levels were analysed at 
ZT8 (corresponding to dusk in the SDs) and ZT12 (4 h after 
the photo-extension) (Fig. 3C–E). As expected, the levels of 
CO transcript were generally higher in cdf1235 and gi cdf1235 
mutants as compared with the wild type. Under drought 
conditions, we observed a small increase in CO transcript 
abundance in all the genotypes analysed at any time point, 
suggesting a contribution of drought stress in CO transcript 
accumulation (Fig. 3C). We finally determined how different 
patterns of CO transcript were correlated with accumulation 
of florigen genes (Fig. 3D, E). Under well-watered conditions, 
mutants of cdf1235 showed the largest FT and TSF transcript 
accumulations before and after the photo-extension period. 
Mutants of gi cdf1235 displayed levels of FT and TSF inter-
mediate between the wild type and the cdf1235 mutants. This 
is probably as a result of residual CDF-mediated repression 
in cdf1235 on both CO and FT promoters (Fornara et  al., 
2009; Song et al., 2012). However, while both the wild type 
and the cdf1235 mutants showed a significant and similar up-
regulation of FT and TSF under drought stress conditions 

Fig. 2. CO is required for the activation of FT under drought stress. (A–C) Real-time qPCR of CO, FT, and TSF transcripts in 3-week-old wild-type (Col-
0) (A), co-10, (B) and hab1-1 abi1-2 pp2ca-1 (C) seedlings. Plants were subject to normal watering (NW; black lines) or low watering (LW; grey lines) 
regimes and harvested at the indicated time points in coincidence with the light phase (open bar) or in the dark (black bar) during an SD to LD shift. At 
each time point, values represent fold change variations of CO, FT, and TSF transcript levels relative to Col-0 under NW. ACT2 expression was used for 
normalization; error bars represent the SD of two technical replicates. A representative experiment of two biological replicates is shown. 
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Fig. 3. ABA promotes GI and CO functions to activate the florigen genes. (A and B) Mean number of rosette leaves of the wild type (Col-0) and flowering 
time mutants subject to normal watering (NW; black bars) or low watering (LW; grey bars) regimes grown under LDs (A) and SDs (B). Error bars represent 
±SE n=15. Student’s t-test P values ≤0.001 (***), >0.05 not significant (NS) compared with NW. (C–E) Real-time qPCR of CO (C), TSF (D), and FT (E) 
transcripts in 2-week-old wild-type (Col-0), cdf1-R cdf2-1 cdf3-1 cdf5-1, and cdf1-R cdf2-1 cdf3-1 cdf5-1 gi-100 seedlings. Plants were subject to NW 
(black columns) or LW (grey columns) regimes and harvested at the indicated Zeitgeber time during a shift from SDs to LDs. ZT8 represents dusk in SDs 
and ZT12 represents 4 h of photo-extension. At each time point, values represent fold change variations of CO, FT, and TSF transcript levels relative to 
the wild type at ZT8 under NW. ACT2 expression was used for normalization; error bars represent the SD of two technical replicates. A representative 
experiment of two biological replicates is shown. (F) Images of representative plants grown under LDs for 27 d. Insets shows a visible inflorescence in 
elf3-1 aba1-6 double mutants, which is not visible in the wild type. (G) Mean numbers of rosette leaves of the wild type (Col-0) and mutants under LDs. 
Error bars represent ±SE, n=5–12. Student’s t-test P-values ≤0.001 (***) are shown to indicate differences between mutants and the corresponding 
mutant containing the aba1-6 allele. (H–K) Real-time qPCR of GI (H), CO (I), FT (J), and TSF (K) transcripts in 12-day-old seedlings grown under LDs and 
sampled at ZT16. Data shown are from 5–6 biological replicates. Error bars represent ±SD. Differences between the wild type versus aba1-6 and elf3-1 
versus elf3-1 aba1-6 double mutants are here highlighted with P-values ≤0.01 (**), ≤0.05 (*), >0.05 not significant (NS), one-way ANOVA with Tukey’s 
HSD (honestly significant difference) test. (This figure is available in colour at JXB online.)
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at ZT12 (2- to 4-fold, respectively), no such up-regulation 
occurred in the gi cdf1235 mutants (Fig. 3D, E).

In a complementary approach, we asked whether ABA pro-
duction might be required for FT transcriptional activation 
when GI levels are increased. Mutants of early flowering 3 (elf3) 
are extremely early flowering, accumulate high levels of FT, 
and present increased accumulation of GI transcript and GI 
protein (Fowler et al., 1999; Kim et al., 2005; Yu et al., 2008). 
This early flowering phenotype requires ABA since elf3-1 aba1-
6 double mutants were significantly later flowering compared 
with elf3-1 single mutants (Fig. 3F, G). FT and TSF transcript 
levels were slightly but not significantly reduced in aba1-6 
mutants compared with the wild type at this early developmen-
tal stage (Fig. 3J, K; Supplementary Table S2). However, dou-
ble mutants of elf3-1 aba1-6 had a significant reduction in both 
FT and TSF levels compared with the elf3-1 single mutants 
(Fig. 3J, K; Supplementary Table S2). The reduced levels of FT 
and TSF in elf3-1 aba1-6 compared with elf3-1 mutants were 
not caused by diminished GI or CO transcript accumulations 
(Fig.  3H, I; Supplementary Table S2), indicating that ABA 
might be required for the activation of GI and CO signalling.

ABA signalling genes control FT transcript 
accumulation with little effect on CO

We analysed ABA-hypersensitive mutants plants hab1-1 
abi1-2 pp2ca-1, impaired in three ABA-related PP2C phos-
phate genes, under different watering and photoperiodic 
conditions (Rubio et  al., 2009). Consistent with previous 
observations, mutants of  hab1-1 abi1-2 pp2ca-1 had much 
increased (up to 6-fold) levels of  FT compared with the wild 
type under LDs (Riboni et al., 2013) (Fig. 2C). The experi-
ment in Fig. 2C also shows that FT expression was even fur-
ther activated under drought conditions compared with the 
wild type (up to 13.3-fold). In contrast, TSF expression was 
not clearly increased in hab1-1 abi1-2 pp2ca-1 plants com-
pared with the wild type under any watering condition. No 
FT or TSF up-regulation occurred under SDs in the hab1-1 
abi1-2 pp2ca-1 mutants under any watering condition.

Under control conditions the strong up-regulation of FT 
in hab1-1 abi1-2 pp2ca-1 plants was not caused by increased 
CO levels, which were comparable with those observed in the 
wild type (Fig.  2C). Increased levels of CO were, however, 
observed in the hab1-1 abi1-2 pp2ca-1 mutants under drought 
stress, indicating that high levels of ABA signalling can ulti-
mately induce the transcriptional activation of CO (Koops 
et al., 2011; Yoshida et al., 2014).

To explore further the role of ABA signalling in the tran-
scriptional control of FT, we analysed abi1-1 mutant plants 
(Ler background), carrying a dominant mutation in the PP2C 
phosphatase ABI1 (Koornneef et  al., 1984) which results 
in severely reduced ABA responses. abi1-1 mutant plants 
did not show flowering defects under LDs, but exhibited an 
early flowering phenotype under SDs, consistent with previ-
ous observations (Martínez-Zapater et  al., 1994; Chandler 
et al., 2000) (Fig. 4A, B). Ruling out an ecotype-specific effect 
for ABA action in flowering, the ABA biosynthetic mutants 
aba1-1 and aba1-3 (Ler background) showed a marginal late 

flowering phenotype compared with the wild type under LDs 
(ANOVA P<0.01 and P<0.05, respectively), but no defects 
under SDs (Fig.  4A, B). The late flowering phenotype of 
these aba1 mutants was more pronounced under drought 
conditions and LDs, indicative of a reduced DE response 
(Fig. 4A). Mutants of abi1-1 were even more impaired in the 
DE response compared with the aba1 alleles, producing on 
average 14 ± 2% more leaves (n = 8 independent experiments, 
15 plants each), relative to the untreated control.

We next analysed the pattern of accumulation of the flo-
rigen genes in abi1-1 plants. As expected, in wild-type plants, 
the accumulation of FT was strongly induced under drought 
conditions in a photoperiod-dependent manner (Fig.  5A). 
TSF expression was instead down-regulated under drought 
conditions in the Ler background, revealing an ecotype-
specific effect for TSF regulation under drought (Fig.  5A). 
Lower levels of FT and TSF were observed in the aba1-1 
mutants compared with the wild type under both normal 
watering (TSF) and drought conditions (FT and TSF), con-
firming the contribution of ABA in both FT and TSF regula-
tion (Fig. 5B) (Riboni et al., 2013). Strikingly, in abi1-1 plants 
the levels of FT were dramatically reduced compared not 
only with the wild type but also with aba1-1 plants, under any 
watering condition analysed (Fig. 5C). Such low expression 
of the florigen genes did not depend on reduced CO tran-
script accumulation in abi1-1 which was, if  anything, up-reg-
ulated (Fig. 5C). Taken together, our data point to a model 
where ABA affects accumulation of florigen genes without an 
effect on CO expression.

Loss of  PP2C function (as in hab1-1 abi1-2 pp2ca-1) results 
in increased FT transcript accumulation, while expression 
of  a gain-of-function form of ABI1 (as in abi1-1) leads to 
reduced FT activation. To determine whether the negative 
regulation of  ABI1 on FT expression could be exerted in 
the cells expressing FT, we fused a 2.2 kb promoter region 
of  ABI1 to the GUS reporter. We detected GUS staining in 
several independent transgenic T2 plants (n = 6) with com-
parable results, at ZT8, where ABI1 transcript accumulation 
is highly abundant according to a publicly available data 
set (http://diurnal.mocklerlab.org; Mockler et  al., 2007). 
For comparison, we also studied the pattern of  GUS activ-
ity in Arabidopsis transgenic lines marking the FT expres-
sion domain; the ABA2 (Lin et  al., 2006; Kuromori et  al., 
2014) and the FT promoter itself  (Notaguchi et al., 2008). 
Histochemical detection in young seedlings revealed that 
ABI1 expression (Fig.  4E) occurred in the vasculature of 
cotyledons in a pattern similar to ABA2 and FT (Fig.  4C, 
D), demonstrating an overlap between ABA biosynthesis 
and signalling genes in the tissue known to be the source of 
FT protein production. Broadly distributed GUS staining 
was also observed in the apical region of  ABI1::GUS trans-
genic plants (Fig. 4H). This pattern of  expression may also 
indicate a role for ABA signalling in the shoot apex.

Impaired ABA signalling negatively affects GI action

Whether impairing ABA signalling affects GI action was 
tested by generating abi1-1 35S::GI plants. As previously 
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observed, 35S::GI plants had increased levels of FT under 
both SDs and LDs compared with the wild type (Mizoguchi 
et al., 2005). Under drought conditions, FT expression was 
generally less responsive to drought in the 35S::GI back-
ground compared with the wild type (Fig.  5D). The levels 
of TSF were much more increased in 35S::GI plants com-
pared with the wild type during the SD part of the experi-
ment. However, no further up-regulation of TSF occurred 
as a result of drought stress compared with normal watering 
(Fig. 5D). The overaccumulation of FT observed in 35S::GI 
plants was strongly rescued in the abi1-1 35S::GI mutants 
under any watering conditions (Fig. 5E). The levels of TSF 
transcript fell even more severely in abi1-1 35S::GI plants 
compared with 35S::GI. Such reductions in florigen accumu-
lation in abi1-1 35S::GI plants were not related to decreased 
CO levels as these were much higher than in the wild type 
(Fig. 5A, E). Interestingly the levels of CO in abi1-1 35S::GI 
plants were only mildly reduced compared with 35S::GI, 
which could suggest that the negative role exerted by abi1-1 
protein on GI signalling is more related to FT and TSF regu-
lation rather than to CO (Fig. 5D, E).

Our data describe a regulatory role of ABA in GI signal-
ling. Such ABA-mediated post-transcriptional activation of 
GI is consistent with previous observations on 35S::GI plants 

showing a DE-responsive phenotype under SDs (Riboni 
et al., 2013). In contrast, no DE response occurred in abi1-1 
35S::GI mutants, which flowered much later compared with 
well-watered plants of the same genotype, although still ear-
lier than abi1-1 plants (Fig.  5F). Under normal watering 
conditions, double mutants of abi1-1 35S::GI had a simi-
lar flowering phenotype to 35S::GI plants, despite showing 
reduced accumulation of the florigen genes (Fig.  5E, F). 
A similar observation could be made for abi1-1 plants, which 
did not show flowering defects under LDs compared with the 
wild type, but had reduced florigen expression (Fig. 5A, C). 
We conclude that late flowering of abi1-1 or abi1-1 35S::GI 
plants under drought stress cannot be solely ascribed to 
reduced florigen up-regulation.

A negative role for ABA signalling in flowering

The early flowering of  abi1-1 plants under SDs (Fig.  4B) 
implies that ABA signalling also exerts a negative role in 
flowering, which is usually undetectable under LDs or 
in ABA biosynthetic mutants (Fig.  4A). Supporting this 
model, we have previously reported a delay of  flowering 
time under SDs in mutants of  hab1-1 abi1-2 pp2ca-1 and 
observed a similar phenotype also in hab1-1 abi1-2 abi2-2 

Fig. 4. A negative role for ABA in flowering. (A and B) Mean number of rosette leaves of the wild type (Ler) and ABA-deficient or signalling mutants 
grown under LDs and subject to normal watering (NW; black bars) or low watering (LW; grey bars) regimes (A), or under SDs in NW regime (B). Error 
bars represent ±SE n=15. Student’s t-test P-values ≤0.001 (***), >0.05 not significant (NS), compared with NW (A). One-way ANOVA with Tukey’s HSD 
(honestly significant difference) test P-values ≤0.01 (**), >0.05 not significant (NS), compared with the wild type (B). (C–H) Histochemical GUS detection 
in transgenic seedlings expressing pFT::GUS (C) and (F), pABA2::GUS (D) and (G), and pABI1::GUS (line # 1) (E) and (H) in the Col-0 background, scale 
bars=100 µm. (This figure is available in colour at JXB online.)
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plants (Riboni et al., 2013) (Supplementary Fig. S2). abi1-
1 mutants showed no increase in FT and TSF levels under 
SDs (Fig.  5B). In contrast, the accumulation of  another 
floral integrator, SOC1, was increased in abi1-1 plants 
as compared with the wild type under any photoperiodic 
condition (Fig.  6A). Mutants of  abi1-1 also had strongly 
reduced levels of  FLOWERING LOCUS C (FLC) (Fig. 6B), 
a transcriptional repressor of  SOC1 which contributes to 
delaying flowering under drought condition (Riboni et al., 
2013; Y. Wang et al., 2013; Shu et al., 2016). Since SOC1 
integrates different floral pathways in the SAM (Moon 
et al., 2003; Wang et al., 2009; Song et al., 2012, 2014) which 
promote flowering under SDs we created the abi1-1 soc1-1 
double mutants. Under SDs, these plants displayed a flower-
ing time similar to the soc1-1 single mutants. With respect to 
flowering time, soc1-1 is thus completely epistatic to abi1-1, 

indicating that SOC1 activity is required for the early flow-
ering of  abi1-1 mutants under SDs (Fig. 6C).

Under LDs, abi1-1 soc1-1 double mutants were later flow-
ering than soc1-1 single mutants (Fig. 6D). Thus, the knock-
ing out of SOC1 produces a novel flowering phenotype in the 
abi1-1 background, consistent with ABA being able to affect 
flowering differentially in different domains of the plant; by 
promoting FT expression in the leaves and negatively regulat-
ing floral stimuli in the SAM (Fig. 6E).

Discussion
A fundamental question related to the DE mechanism is 
how ABA signals are integrated in the photoperiodic flower-
ing network. Here we provide evidence for how ABA con-
trols FT gene expression under normal and drought stress 

Fig. 5. ABA activates GI signalling and florigen expression with little effect on CO transcript accumulation. (A–E) Real-time qPCR of CO, FT, and TSF 
transcripts in 2-week-old wild-type (Ler) (A), aba1-1 (B), abi1-1 (C), 35S::GI (D), and 35S::GI abi1-1 (E) seedlings. Plants were subject to normal watering 
(NW; black lines) or low watering (LW; grey lines) regimes and harvested at the indicated time points in coincidence with the light phase (open bar) or in 
the dark (black bar) during an SD to LD shift. At each time point, values represent fold change variations of CO, FT, and TSF transcript levels relative to 
Ler under NW. ACT2 expression was used for normalization; error bars represent the SD of two technical replicates. A representative experiment of two 
biological replicates is shown. (F) Mean number of rosette leaves of the wild type (Ler) and mutants grown under SDs and subject to NW (black bars) or 
LW (grey bars) regimes, Error bars represent ±SE n=15. Student’s t-test P-values ≤0.05 (*), ≤0.001 (***) compared with NW. (G) Images of representative 
5-week-old plants of the indicated genotypes grown under SDs and subject to NW or LW regimes. Scale bar=1 cm. (H) Higher magnification of LW 
35S::GI and 35S::GI abi1-1 plants shown in (G). Note the appearance of a bolt in 35S::GI but not in 35S::GI abi1-1.
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conditions by affecting photoperiodic signalling. We also 
highlight a negative effect of ABA during the floral transition 
of Arabidopsis, which is independent of the photoperiodic 
pathway.

ABA requires both GI and CO to regulate FT

Our genetic data point to a model where ABA requires both 
GI and CO to affect flowering under LDs through the tran-
scriptional activation of the florigen genes. Since mutants of 
ft-10 tsf-1 aba1-6 were still slightly later flowering than ft-10 

tsf-1, it is possible that ABA may act on other pathways or 
through activation of MFT, a third florigen gene with a mar-
ginal role in flowering (Kim et al., 2013a).

Expression and phenotypic analyses of cdf1235, gi cdf1235, 
as well as aba1 elf3 mutants collectively suggest that ABA 
promotes GI and CO signalling upstream of the florigen 
genes. CO function is essential for the drought-dependent 
activation of FT (but not TSF) as demonstrated by the lack 
of FT accumulation in co mutants under drought conditions. 
Therefore, although we could not resolve the underlying 
molecular mechanism, our data underscore a regulatory role 

Fig. 6. The inhibitory role of ABA in flowering requires SOC1. (A and B) Real-time qPCR of SOC1 (A) and FLC (B) transcripts in 2-week-old wild-type (Ler) 
and abi1-1 seedlings. The experimental conditions were described in Fig. 5. ACT2 expression was used for normalization; error bars represent the SD of 
two technical replicates. A representative experiment of two biological replicates is shown. (C and D) Mean number of rosette leaves of the wild type (Ler) 
and mutants grown under SDs (C) or LDs (D). Error bars represent ±SE n=15. Differences between the wild type versus abi1-1 and soc1-1 versus soc1-1 
abi1-1 double mutants are here highlighted with P-values ≤0.001 (***), ≤0.01 (**), >0.05 not significant (NS), one-way ANOVA with Tukey’s HSD (honestly 
significant difference) test. (E) Model summarizing the proposed modes of ABA action in flowering. In the leaves, under LDs, drought promotes ABA 
accumulation leading to enhanced GI signalling and activation of florigen genes. CO protein is required for FT up-regulation, but not TSF. At the same 
time, at the shoot apex ABA represses flowering, downplaying SOC1 signalling, independent of photoperiodic conditions.
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for ABA in stimulating photoperiodic signalling. In further 
support of this model, 35S::GI plants under SDs generate 
a DE response, suggesting drought/ABA acting indepen-
dently of GI transcript accumulation. Secondly, we observe 
a strong reduction in accumulation of florigen transcripts 
in abi1-1 35S::GI compared with 35S::GI plants. Thirdly, 
the pattern of CO accumulation in abi1-1 or abi1-1 35S::GI 
plants is unaltered compared with their respective controls, 
as opposed to the florigen levels, which are very low. In the 
light of our results, abi1-1 protein appears to affect a specific 
aspect of GI function (the activation of FT) without produc-
ing significant effects on the transcriptional profile of CO 
accumulation. Previous studies have demonstrated geneti-
cally separable roles for GI in regulating the circadian clock 
and flowering (Mizoguchi et  al., 2005; Martin-Tryon et  al., 
2007) which could reflect distinct biochemical activities for 
GI in these two pathways. ABA might thus control a novel 
biochemical function of GI.

GI is found at different promoter locations of FT in asso-
ciation with transcriptional repressors including SHORT 
VEGETATIVE PHASE and TEMPRANILLO (Sawa and 
Kay, 2011). A  substrate of the GI–FKF1 complex, CDF1, 
also binds to the FT promoter and acts as a transcriptional 
repressor (Sawa et  al., 2007). Furthermore, by activating 
miR172 expression, GI directs post-transcriptional gene 
silencing of the AP2-type transcriptional repressors of FT 
(Jung et  al., 2007). Overexpression of a miR172-related 
miRNA of soybean facilitates the DE response, promotes FT 
accumulation under drought conditions, and increases ABA 
sensitivity of Arabidopsis (Li et al., 2016). Thus, one role of 
GI could be to favour the recruitment of CO at the FT pro-
moter by promoting the proteasome-dependent degradation 
or the post-transcriptional gene silencing of transcriptional 
repressors (such as AP2-like) in an ABA-dependent manner. 
Another, not mutually exclusive, model is that the combined 
presence of GI and ABA alters the pattern of CO protein 
accumulation during the day through an unknown mecha-
nism. In addition to these post-transcriptional effects, there 
is evidence for other layers of transcriptional regulation of 
CO exerted by drought/ABA (Fig. 2C) (Koops et al., 2011; 
Ito et al., 2012; P. Wang et al., 2013; Yoshida et al., 2014). 
The contribution of these regulatory nodes to DE will require 
further studies. Regardless of the mechanisms involved and 
considering the role of the circadian clock in the control of 
ABA accumulation and response (Fukushima et al., 2009), 
our results suggest that daily variations in ABA signalling 
may represent a further layer of regulation of CO protein 
function.

Different modes of regulation of FT and TSF by 
drought

While FT and TSF share a common mechanism of tran-
scriptional regulation through the photoperiodic pathway 
(Yamaguchi et al., 2005; Jang et al., 2009), they also display 
clear differences in their pattern of expression (Yamaguchi 
et al., 2005), response to ambient temperature (Blázquez et al., 
2003), and other kinds of regulation (Michaels et al., 2005; 

D’Aloia et al., 2011; Liu et al., 2014). In this work, we report 
variations in the transcriptional activations of TSF and FT in 
response to drought. Our expression studies on co-10 mutants 
revealed that the expression of TSF, but not FT, is strongly 
induced by drought, even in the absence of functional CO. 
Previously we proposed a model whereby photoperiod-stim-
ulated GI protein triggers a DE response via activation of 
the florigen genes, independent of CO (Riboni et al., 2013). 
Based on our new results, this model only applies to TSF reg-
ulation, not FT. The DE response observed in the co mutants 
could therefore derive from residual TSF expression, which 
still depends on GI (Riboni et al., 2013). Examples of GI act-
ing independently of CO in activating the florigen genes have 
been described in the literature, but how these mechanisms 
are related to ABA signalling is unknown (Kim et al., 2005; 
Mizoguchi et  al., 2005; Sawa and Kay, 2011). Other hor-
mones modulate the expression of the florigen genes without 
an apparent contribution of CO. Cytokinin can induce the 
transcriptional activation of TSF, but not FT, irrespective of 
photoperiod conditions (D’Aloia et al., 2011). Foliar applica-
tions of gibberellins under SDs promote flowering, at least 
in part through FT ad TSF and without a clear effect on CO 
transcript accumulation (Porri et al., 2012). Similarly, there 
are examples of environmental cues activating FT, which do 
not fully require the activity of CO or GI, namely under ele-
vated ambient temperature (Balasubramanian et  al., 2006). 
Here, we demonstrate that the activation of TSF can occur 
in the absence of CO under drought conditions but, unlike 
the previous examples, such activation requires GI (Riboni 
et al., 2013).

Multiple and contrasting roles of ABA in flowering

The role of ABA during the floral transitions is contro-
versial, as both positive and negative effects of ABA have 
been reported (Domagalska et al., 2010; Conti et al., 2014). 
Depending on the site of application, ABA exerts opposite 
roles in flowering. Unlike leaf applications, we show that root 
applications of ABA promote flowering, consistent with pre-
vious data (Koops et al., 2011). Also, this treatment largely 
rescues the late flowering of ABA biosynthetic mutants. In 
the light of these results, root applications fully mimic the 
positive role of endogenous ABA in flowering.

Impairing the function of ABA-activated kinases 
SnRK2.2/2.3/2.6 results in early flowering, especially under SDs, 
supporting a negative role for ABA in flowering (P. Wang et al., 
2013). Arguing against a direct negative role of the SnRK2s 
in the flowering network, overexpression of SnRK2.6/OST1 
causes a small flowering acceleration under LDs, not a delay 
(Zheng et al., 2010). The negative role of ABA in flowering has 
been linked to the direct activation of FLC by ABA-stimulated 
bZIP transcriptional factor ABSCISIC ACID-INSENSITIVE 
5 (ABI5) and AP2/ERF domain-containing transcription fac-
tor ABSCISIC ACID-INSENSITIVE 4 (ABI4) (Y. Wang et al., 
2013; Shu et al., 2016). Such activation of FLC may account for 
the general reduction in FT transcript accumulation following 
exogenous ABA applications on leaves (Hoth et al., 2002). The 
study of abi1-1 plants under SDs supports this negative effect 
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of ABA in flowering. ABA-deficient mutants do not produce 
similar flowering alterations under SDs, which could depend on 
ABA biosynthetic mutants still producing a sufficient amount 
of biologically active ABA (Léon-Kloosterziel et  al., 1996). 
The early flowering of abi1-1 plants in SDs can be completely 
suppressed by mutations in SOC1, a floral integrator activat-
ing flowering in the SAM (Searle et al., 2006). Elevated levels 
of SOC1 transcript in abi1-1 mutants also suggest a negative 
role for ABA in SOC1 expression, perhaps mediated by FLC 
(Fig.  6A, B). The proposed positive role of ABA-activated 
ABI5 on FLC transcriptional activation is consistent with this 
model (Y. Wang et al., 2013).

abi1-1 plants do not present obvious flowering phenotypes 
under LDs despite impaired photoperiod-dependent accumu-
lation of FT. We thus propose that the abi1-1 mutants compen-
sate for their defects in FT up-regulation with increased SOC1 
signalling. The late flowering phenotype of abi1-1 soc1-1 com-
pared with soc1-1 under LDs is consistent with ABA playing 
antagonistic and spatially distinct roles in flowering, through 
the transcriptional activation of the florigen genes in the leaves 
and the repression of SOC1 action in the shoot.

In addition to the ABA-dependent negative regulation 
of flowering, an ABA-independent floral repression mecha-
nism emerged from the study of abi1-1 plants. Under LDs, 
mutants of abi1-1 exhibit a late flowering phenotype under 
drought stress, which is even more severe than aba1 plants. We 
observed an even more pronounced delay in flowering under 
SDs in abi1-1 35S::GI plants upon drought stress compared 
with 35S::GI. We interpret these results to indicate that the 
defects in florigen up-regulation of abi1-1 contribute to the 
late flowering of abi1-1 under drought stress. However, the 
levels of florigen expression in abi1-1 were generally also low 
under normal watering conditions. Therefore, we hypothesize 
a further layer of negative regulation of flowering, which is 
triggered by drought stress and is probably independent of 
ABA (as it occurs in abi1-1 plants). Both flowering-repressive 
mechanisms, the ABA-dependent and the ABA-independent 
mechanism, can be largely overcome under LDs, upon migra-
tion of the florigen protein in the SAM.

In conclusion, Arabidopsis plants have independent and 
contrasting mechanisms to modulate flowering according 
to water inputs; ABA stimulates GI and CO signalling to 
boost FT activation. Under drought conditions TSF activa-
tion is independent of CO and requires photoactivated GI. 
Simultaneously, ABA negatively regulates flowering through a 
pathway that requires SOC1 (Fig. 6E), perhaps in conjunction 
with an ABA-independent type of regulation. Integration of 
these pathways in the SAM may provide plants with a flexible 
control of reproductive development under water stress and 
maximization of reproductive success.

Supplementary data
Supplementary data are available at JXB online.

Figure S1. Method used for root applications of ABA.
Figure S2. Activated ABA signalling inhibits flowering 

under SDs.

Table S1. Flowering time of mutant and transgenic plants 
used in this study.

Table S2. Expression analysis of aba elf3 mutant plants.
Table S3. Genotypes used in this study and references.
Table S4. Primers used in this study.

Acknowledgements
We thank Drs George Coupland (Max Planck Institute for Breeding 
Research), Pedro Rodriguez (Consejo Superior de Investigaciones Científicas), 
Takashi Araki (Kyoto University), and the Nottingham Arabidopsis Stock 
Centre for providing seed lines. We also thank Dr Fabio Fornara and Dr Sara 
Castelletti (University of Milan) for insightful comments on the manuscript. 
This work was supported by Fondazione Umberto Veronesi per il Progresso 
delle Scienze (AGRISOST), Milano, Italy, Università degli Studi di Milano 
for a PhD studentship to ART, and in part by the MIUR PRIN project 
(2010–2011 prot. 2010HEBBB8_006).

References
Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda 
Y, Ichinoki H, Notaguchi M, Goto K, Araki T. 2005. FD, a bZIP protein 
mediating signals from the floral pathway integrator FT at the shoot apex. 
Science 309, 1052–1056.
Adrian J, Farrona S, Reimer JJ, Albani MC, Coupland G, Turck F. 
2010. cis-regulatory elements and chromatin state coordinately control 
temporal and spatial expression of FLOWERING LOCUS T in Arabidopsis. 
The Plant Cell 22, 1425–1440.
An H, Roussot C, Suarez-Lopez P, et al. 2004. CONSTANS acts in the 
phloem to regulate a systemic signal that induces photoperiodic flowering 
of Arabidopsis. Development 131, 3615–3626.
Balasubramanian S, Sureshkumar S, Lempe J, Weigel D. 2006. 
Potent induction of Arabidopsis thaliana flowering by elevated growth 
temperature. PLoS Genetics 2, e106.
Blázquez MA, Ahn JH, Weigel D. 2003. A thermosensory pathway 
controlling flowering time in Arabidopsis thaliana. Nature Genetics 33, 
168–171.
Borner R, Kampmann G, Chandler J, Gleissner R, Wisman E, Apel 
K, Melzer S. 2000. A MADS domain gene involved in the transition to 
flowering in Arabidopsis. The Plant Journal 24, 591–599.
Chandler J, Martínez-Zapater JM, Dean C. 2000. Mutations causing 
defects in the biosynthesis and response to gibberellins, abscisic acid and 
phytochrome B do not inhibit vernalization in Arabidopsis fca-1. Planta 
210, 677–682.
Clough SJ, Bent AF. 1998. Floral dip: a simplified method for 
Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant 
Journal 16, 735–743.
Conti L, Galbiati M, Tonelli C. 2014. ABA and the floral transition. 
In: Zhang D-P ed. Abscisic acid: metabolism, transport and signaling. 
Dordrecht, The Netherlands: Springer, 365–384.
Corbesier L, Vincent C, Jang S, et al. 2007. FT protein movement 
contributes to long-distance signaling in floral induction of Arabidopsis. 
Science 316, 1030–1033.
Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. 2010. Abscisic 
acid: emergence of a core signaling network. Annual Review of Plant 
Biology 61, 651–679.
D’Aloia M, Bonhomme D, Bouché F, Tamseddak K, Ormenese S, 
Torti S, Coupland G, Périlleux C. 2011. Cytokinin promotes flowering 
of Arabidopsis via transcriptional activation of the FT paralogue TSF. The 
Plant Journal 65, 972–979.
Domagalska MA, Sarnowska E, Nagy F, Davis SJ. 2010. Genetic 
analyses of interactions among gibberellin, abscisic acid, and brassinosteroids 
in the control of flowering time in Arabidopsis thaliana. PLoS One 5, e14012.
Finkelstein R. 2013. Abscisic acid synthesis and response. The 
Arabidopsis Book 11, e0166.
Fornara F, de Montaigu A, Sánchez-Villarreal A, Takahashi Y, Ver 
Loren van Themaat E, Huettel B, Davis SJ, Coupland G. 2015. The 



Alice Robustelli Test The role of ABA in the floral transition: site and mechanism of action 

	 113 

	

ABA signalling controls flowering time via modulation of GIGANTEA signalling | 6321

GI–CDF module of Arabidopsis affects freezing tolerance and growth as 
well as flowering. The Plant Journal 81, 695–706.
Fornara F, Panigrahi KCS, Gissot L, Sauerbrunn N, RUhl M, Jarillo 
JA, Coupland G. 2009. Arabidopsis DOF transcription factors act 
redundantly to reduce CONSTANS expression and are essential for a 
photoperiodic flowering response. Developmental Cell 17, 75–86.
Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, 
Coupland G, Putterill J. 1999. GIGANTEA: a circadian clock-controlled 
gene that regulates photoperiodic flowering in Arabidopsis and encodes a 
protein with several possible membrane-spanning domains. EMBO Journal 
18, 4679–4688.
Franks SJ. 2011. Plasticity and evolution in drought avoidance and 
escape in the annual plant Brassica rapa. New Phytologist 190, 249–257.
Fukushima A, Kusano M, Nakamichi N, Kobayashi M, Hayashi N, 
Sakakibara H, Mizuno T, Saito K. 2009. Impact of clock-associated 
Arabidopsis pseudo-response regulators in metabolic coordination. 
Proceedings of the National Academy of Sciences, USA 106, 7251–7256.
Han Y, Zhang X, Wang Y, Ming F. 2013. The suppression of WRKY44 
by GIGANTEA–miR172 pathway is involved in drought response of 
Arabidopsis thaliana. PLoS One 8, e73541.
Hoth S, Morgante M, Sanchez J-P, Hanafey MK, Tingey SV, Chua N-
H. 2002. Genome-wide gene expression profiling in Arabidopsis thaliana 
reveals new targets of abscisic acid and largely impaired gene regulation in 
the abi1-1 mutant. Journal of Cell Science 115, 4891–4900.
Huq E, Tepperman JM, Quail PH. 2000. GIGANTEA is a nuclear protein 
involved in phytochrome signaling in Arabidopsis. Proceedings of the 
National Academy of Sciences, USA 97, 9789–9794.
Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA. 2005. FKF1 
F-box protein mediates cyclic degradation of a repressor of CONSTANS in 
Arabidopsis. Science 309, 293–297.
Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA. 2003. FKF1 is 
essential for photoperiodic-specific light signalling in Arabidopsis. Nature 
426, 302–306.
Ito S, Song YH, Josephson-Day AR, Miller RJ, Breton G, Olmstead 
RG, Imaizumi T. 2012. FLOWERING BHLH transcriptional activators 
control expression of the photoperiodic flowering regulator CONSTANS in 
Arabidopsis. Proceedings of the National Academy of Sciences, USA 109, 
3582–3587.
Jaeger KE, Pullen N, Lamzin S, Morris RJ, Wigge PA. 2013. 
Interlocking feedback loops govern the dynamic behavior of the floral 
transition in Arabidopsis. The Plant Cell 25, 820–833.
Jaeger KE, Wigge PA. 2007. FT protein acts as a long-range signal in 
Arabidopsis. Current Biology 17, 1050–1054.
Jang S, Marchal V, Panigrahi KCS, Wenkel S, Soppe W, Deng X-W, 
Valverde F, Coupland G. 2008. Arabidopsis COP1 shapes the temporal 
pattern of CO accumulation conferring a photoperiodic flowering response. 
EMBO Journal 27, 1277–1288.
Jang S, Torti S, Coupland G. 2009. Genetic and spatial interactions 
between FT, TSF and SVP during the early stages of floral induction in 
Arabidopsis. The Plant Journal 60, 614–625.
Jung J-H, Seo Y-H, Seo PJ, Reyes JL, Yun J, Chua N-H, Park C-M. 
2007. The GIGANTEA-regulated microRNA172 mediates photoperiodic 
flowering independent of CONSTANS in Arabidopsis. The Plant Cell 19, 
2736–2748.
Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, 
Nguyen JT, Chory J, Harrison MJ, Weigel D. 1999. Activation tagging 
of the floral inducer FT. Science 286, 1962–1965.
Karimi M, Inzé D, Depicker A. 2002. GATEWAY™ vectors for 
Agrobacterium-mediated plant transformation. Trends in Plant Science 7, 
193–195.
Kazan K, Lyons R. 2016. The link between flowering time and stress 
tolerance. Journal of Experimental Botany 67, 47–60.
Kenney AM, McKay JK, Richards JH, Juenger TE. 2014. Direct and 
indirect selection on flowering time, water-use efficiency (WUE, δ (13)
C), and WUE plasticity to drought in Arabidopsis thaliana. Ecology and 
Evolution 4, 4505–4521.
Kim W, Park TI, Yoo SJ, Jun AR, Ahn JH. 2013a. Generation and 
analysis of a complete mutant set for the Arabidopsis FT/TFL1 family 
shows specific effects on thermo-sensitive flowering regulation. Journal of 
Experimental Botany 64, 1715–1729.

Kim W-Y, Ali Z, Park H-J, et al. 2013b. Release of SOS2 kinase from 
sequestration with GIGANTEA determines salt tolerance in Arabidopsis. 
Nature Communications 4, 1352.
Kim W-Y, Hicks KA, Somers DE. 2005. Independent roles for EARLY 
FLOWERING 3 and ZEITLUPE in the control of circadian timing, hypocotyl 
length, and flowering time. Plant Physiology 139, 1557–1569.
Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T. 1999. A pair 
of related genes with antagonistic roles in mediating flowering signals. 
Science 286, 1960–1962.
Koncz C, Schell J. 1986. The promoter of TL-DNA gene 5 controls the 
tissue-specific expression of chimaeric genes carried by a novel type 
of Agrobacterium binary vector. Molecular and General Genetics 204, 
383–396.
Koops P, Pelser S, Ignatz M, Klose C, Marrocco-Selden K, Kretsch 
T. 2011. EDL3 is an F-box protein involved in the regulation of abscisic 
acid signalling in Arabidopsis thaliana. Journal of Experimental Botany 62, 
5547–5560.
Koornneef M, Reuling G, Karssen CM. 1984. The isolation and 
characterization of abscisic acid-insensitive mutants of Arabidopsis 
thaliana. Physiologia Plantarum 61, 377–383.
Kooyers NJ. 2015. The evolution of drought escape and avoidance in 
natural herbaceous populations. Plant Science 234, 155–162.
Kuromori T, Sugimoto E, Shinozaki K. 2014. Inter-tissue signal transfer 
of abscisic acid from vascular cells to guard cells. Plant Physiology 164, 
1587–92.
Lazaro A, Valverde F, Pineiro M, Jarillo JA. 2012. The Arabidopsis E3 
ubiquitin ligase HOS1 negatively regulates CONSTANS abundance in the 
photoperiodic control of flowering. The Plant Cell 24, 982–999.
Lee H, Suh S, Park E, Cho E, Ahn J, Kim S, Lee J, Kwon Y, Lee 
I. 2000. The AGAMOUS-LIKE 20 MADS domain protein integrates 
floral inductive pathways in Arabidopsis. Genes and Development 14, 
2366–2376.
Lee J, Lee I. 2010. Regulation and function of SOC1, a flowering pathway 
integrator. Journal of Experimental Botany 61, 2247–2254.
Léon-Kloosterziel KM, Gil MA, Ruijs GJ, Jacobsen SE, Olszewski 
NE, Schwartz SH, Zeevaart JAD, Koornneef M. 1996. Isolation and 
characterization of abscisic acid-deficient Arabidopsis mutants at two new 
loci. The Plant Journal 10, 655–661.
Li W, Wang T, Zhang Y, Li Y. 2016. Overexpression of soybean miR172c 
confers tolerance to water deficit and salt stress, but increases ABA 
sensitivity in transgenic Arabidopsis thaliana. Journal of Experimental 
Botany 67, 175–194.
Lin P-C, Hwang S-G, Endo A, Okamoto M, Koshiba T, Cheng W-H. 
2006. Ectopic expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 
1 in Arabidopsis promotes seed dormancy and stress tolerance. Plant 
Physiology 143, 745–758.
Liu L, Zhang J, Adrian J, Gissot L, Coupland G, Yu D, Turck F. 
2014. Elevated levels of MYB30 in the phloem accelerate flowering in 
Arabidopsis through the regulation of FLOWERING LOCUS T. PLoS One 
9, e89799.
Liu L-J, Zhang Y-C, Li Q-H, Sang Y, Mao J, Lian H-L, Wang L, Yang 
H-Q. 2008. COP1-mediated ubiquitination of CONSTANS is implicated 
in cryptochrome regulation of flowering in Arabidopsis. The Plant Cell 20, 
292–306.
Lovell JT, Juenger TE, Michaels SD, Lasky JR, Platt A, Richards 
JH, Yu X, Easlon HM, Sen S, McKay JK. 2013. Pleiotropy of FRIGIDA 
enhances the potential for multivariate adaptation. Proceedings of the 
Royal Society B: Biological Sciences 280, 20131043.
Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill 
E. 2009. Regulators of PP2C phosphatase activity function as abscisic 
acid sensors. Science 324, 1064–1068.
Martin-Tryon EL, Kreps JA, Harmer SL. 2007. GIGANTEA acts in blue 
light signaling and has biochemically separable roles in circadian clock and 
flowering time regulation. Plant Physiology 143, 473–486.
Martínez-Zapater JM, Coupland G, Dean C, Koornneef M. 1994. 
The transition to flowering in Arabidopsis. Cold Spring Harbor Monograph 
Archive 27, 403–433.
Mathieu J, Warthmann N, Küttner F, Schmid M. 2007. Export of FT 
protein from phloem companion cells is sufficient for floral induction in 
Arabidopsis. Current Biology 17, 1055–1060.



Alice Robustelli Test The role of ABA in the floral transition: site and mechanism of action 

	 114 

	

6322 | Riboni et al.

Mathieu J, Yant LJ, Mürdter F, Küttner F, Schmid M. 2009. 
Repression of flowering by the miR172 target SMZ. PLoS Biology 7, 
e1000148.
Michaels SD, Himelblau E, Kim SY, Schomburg FM, Amasino RM. 
2005. Integration of flowering signals in winter-annual Arabidopsis. Plant 
Physiology 137, 149–156.
Mizoguchi T, Wright L, Fujiwara S, et al. 2005. Distinct roles of 
GIGANTEA in promoting flowering and regulating circadian rhythms in 
Arabidopsis. The Plant Cell 17, 2255–2270.
Mockler TC, Michael TP, Priest HD, Shen R, Sullivan CM, Givan SA, 
McEntee C, Kay SA, Chory J. 2007. The DIURNAL project: DIURNAL 
and circadian expression profiling, model-based pattern matching, and 
promoter analysis. Cold Spring Harbor Symposia on Quantitative Biology 
72, 353–363.
Moon J, Suh S-S, Lee H, Choi K-R, Hong CB, Paek N-C, Kim S-G, 
Lee I. 2003. The SOC1MADS-box gene integrates vernalization and 
gibberellin signals for flowering in Arabidopsis. The Plant Journal 35, 
613–623.
Nambara E, Marion-Poll A. 2005. Abscisic acid biosynthesis and 
catabolism. Annual Review of Plant Biology 56, 165–185.
Notaguchi M, Abe M, Kimura T, Daimon Y, Kobayashi T, Yamaguchi 
A, Tomita Y, Dohi K, Mori M, Araki T. 2008. Long-distance, graft-
transmissible action of Arabidopsis FLOWERING LOCUS T protein to 
promote flowering. Plant and Cell Physiology 49, 1645–1658.
Oliverio KA, Crepy M, Martin-Tryon EL, Milich R, Harmer SL, 
Putterill J, Yanovsky MJ, Casal JJ. 2007. GIGANTEA regulates 
phytochrome A-mediated photomorphogenesis independently of its role in 
the circadian clock. Plant Physiology 144, 495–502.
Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh M-S, Kim HJ, 
Kay SA, Nam HG. 1999. Control of circadian rhythms and photoperiodic 
flowering by the Arabidopsis GIGANTEA gene. Science 285, 1579–1582.
Park S-Y, Fung P, Nishimura N, et al. 2009. Abscisic acid inhibits type 
2C protein phosphatases via the PYR/PYL family of START proteins. 
Science 324, 1068–1071.
Pin PA, Nilsson O. 2012. The multifaceted roles of FLOWERING LOCUS 
T in plant development. Plant, Cell and Environment 35, 1742–1755.
Porri A, Torti S, Romera-Branchat M, Coupland G. 2012. 
Spatially distinct regulatory roles for gibberellins in the promotion 
of flowering of Arabidopsis under long photoperiods. Development 
139, 2198–2209.
Putterill J, Robson F, Lee K, Simon R, Coupland G. 1995. The 
Constans gene of arabidopsis promotes flowering and encodes a protein 
showing similarities to zinc-finger transcription factors. Cell 80, 847–857.
Riboni M, Galbiati M, Tonelli C, Conti L. 2013. GIGANTEA enables 
drought escape response via abscisic acid-dependent activation of the 
florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1. 
Plant Physiology 162, 1706–1719.
Riboni M, Robustelli Test A, Galbiati M, Tonelli C, Conti L. 2014. 
Environmental stress and flowering time. The photoperiodic connection. 
Plant Signaling and Behavior 9, e29036.
Rosso M, Li Y, Strizhov N, Reiss B, Dekker K, Weisshaar B. 2003. 
An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for 
flanking sequence tag-based reverse genetics. Plant Molecular Biology 53, 
247–259.
Rubio S, Rodrigues A, Saez A, Dizon MB, Galle A, Kim T-H, 
Santiago J, Flexas J, Schroeder JI, Rodriguez PL. 2009. Triple 
loss of function of protein phosphatases type 2C leads to partial 
constitutive response to endogenous abscisic acid. Plant Physiology 
150, 1345–1355.
Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer 
Z, Yanofsky MF, Coupland G. 2000. Distinct roles of CONSTANS 
target genes in reproductive development of Arabidopsis. Science 288, 
1613–1616.
Sawa M, Kay SA. 2011. GIGANTEA directly activates Flowering Locus T 
in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 
USA 108, 11698–11703.

Sawa M, Nusinow DA, Kay SA, Imaizumi T. 2007. FKF1 and 
GIGANTEA complex formation is required for day-length measurement in 
Arabidopsis. Science 318, 261–265.
Searle I, He Y, Turck F, Vincent C, Fornara F, Kröber S, Amasino 
RA, Coupland G. 2006. The transcription factor FLC confers a flowering 
response to vernalization by repressing meristem competence and 
systemic signaling in Arabidopsis. Genes and Development 20, 898–912.
Shinozaki K, Yamaguchi-Shinozaki K. 2007. Gene networks involved 
in drought stress response and tolerance. Journal of Experimental Botany 
58, 221–227.
Shu K, Chen Q, Wu Y, Liu R, Zhang H, Wang S, Tang S, Yang W, 
Xie Q. 2016. ABSCISIC ACID-INSENSITIVE 4 negatively regulates 
flowering through directly promoting Arabidopsis FLOWERING LOCUS C 
transcription. Journal of Experimental Botany 67, 195–205.
Song YH, Estrada DA, Johnson RS, Kim SK, Lee SY, MacCoss MJ, 
Imaizumi T. 2014. Distinct roles of FKF1, GIGANTEA, and ZEITLUPE 
proteins in the regulation of CONSTANS stability in Arabidopsis 
photoperiodic flowering. Proceedings of the National Academy of 
Sciences, USA 111, 17672–17677.
Song YH, Smith RW, To BJ, Millar AJ, Imaizumi T. 2012. FKF1 
conveys timing information for CONSTANS stabilization in photoperiodic 
flowering. Science 336, 1045–1049.
Su Z, Ma X, Guo H, Sukiran NL, Guo B, Assmann SM, Ma H. 
2013. Flower development under drought stress: morphological and 
transcriptomic analyses reveal acute responses and long-term acclimation 
in Arabidopsis. The Plant Cell 25, 3785–3807.
Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, 
Coupland G. 2001. CONSTANS: mediates between the circadian clock 
and the control of flowering in Arabidopsis. Nature 410, 1116–1120.
Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, 
Coupland G. 2004. Photoreceptor regulation of CONSTANS protein in 
photoperiodic flowering. Science 303, 1003–1006.
Wang J-W, Czech B, Weigel D. 2009. miR156-regulated SPL 
transcription factors define an endogenous flowering pathway in 
Arabidopsis thaliana. Cell 138, 738–749.
Wang P, Xue L, Batelli G, Lee S, Hou Y-J, Van Oosten MJ, Zhang 
H, Tao WA, Zhu J-K. 2013. Quantitative phosphoproteomics identifies 
SnRK2 protein kinase substrates and reveals the effectors of abscisic 
acid action. Proceedings of the National Academy of Sciences, USA 110, 
11205–11210.
Wang Y, Li L, Ye T, Lu Y, Chen X, Wu Y. 2013. The inhibitory effect of 
ABA on floral transition is mediated by ABI5 in Arabidopsis. Journal of 
Experimental Botany 64, 675–684.
Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, 
Weigel D. 2005. Integration of spatial and temporal information during 
floral induction in Arabidopsis. Science 309, 1056–1059.
Xie Q, Lou P, Hermand V, et al. 2015. Allelic polymorphism of 
GIGANTEA is responsible for naturally occurring variation in circadian 
period in Brassica rapa. Proceedings of the National Academy of 
Sciences, USA 112, 3829–3834
Yamaguchi A, Kobayashi Y, Goto K, Abe M, Araki T. 2005. TWIN 
SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with 
FT. Plant and Cell Physiology 46, 1175–1189.
Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, Shinozaki 
K, Yamaguchi-Shinozaki K. 2014. Four Arabidopsis AREB/ABF 
transcription factors function predominantly in gene expression 
downstream of SnRK2 kinases in abscisic acid signalling in response to 
osmotic stress. Plant, Cell and Environment 38, 35–49.
Yu J-W, Rubio V, Lee N-Y, et al. 2008. COP1 and ELF3 GI stability. 
Molecular Cell 32, 617–630.
Zheng Z, Xu X, Crosley RA, et al. 2010. The protein kinase SnRK2.6 
mediates the regulation of sucrose metabolism and plant growth in 
Arabidopsis. Plant Physiology 153, 99–113.
Zuo Z, Liu H, Liu B, Liu X, Lin C. 2011. Blue light-dependent interaction 
of CRY2 with SPA1 regulates COP1 activity and floral initiation in 
Arabidopsis. Current Biology 21, 841–847.



Alice Robustelli Test The role of ABA in the floral transition: site and mechanism of action 

	 115 

	

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure S1  

Method used for exogenous application of ABA. The ABA or mock solutions are applied in soil 
using a pipette tip as a funnel. Treatments started early in development (3 days post germination), 
thus before the floral transition.  
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Figure S2  

Activated ABA signaling inhibits flowering under SDs. Rosette leaves mean number at flowering 
of wild type (Col–0) and mutant hab1-1 abi1-2 abi2-2 grown under SDs. Student’s t test P value ≤ 
0.001 (***) compared to Wild Type.  
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Supplemental Table S1 
 
Fig  MOCK ABA 25µM  
1 A Genotype Rosette leaves SE range Rosette leaves SE range  t-test MOCK vs  

ABA 25µM 

    WT  Col–0 10.3 0.3 9-12 8.6 0.6 5-10 P< 0.001 
    aba1–6 17.8 0.7 16-22 11.9 0.9 8-17 P< 0.001 
    aba2-1 16.9 0.7 13-21 8.8 0.5 7-13 P< 0.001 
            
    One-Way ANOVA with  post-HOC Tukey HSD Test      
    MOCK Genotype pair p-value inference     
    WT Col vs aba1–6 1.01E-03 ** p<0.01     
    WT Col vs aba2–1 1.01E-03 ** p<0.01     
    aba1–6 vs aba2–1 2.77E-01 NS     

           
    Normal Watering     
  B Genotype Rosette leaves SE range t-test     

    WT  Col–0 13.9 0.5 12–16     
    aba1–6 17.1 0.3 16–18 P<0.001    
    ft–10 40.9 1.4 36–48     
    ft–10 aba1–6 53.3 1.3 40–63 P<0.001    
    ft–10 tsf–1 53.9 0.6 51–55     
    ft–10 tsf–1 aba1–6 58.4 1.4 53–64 P=0.018    
    gi–2 61.9 1.0 59–67     
    gi–2 aba1–6 62.0 1.2 54–73 P=0.945    
           
    Normal Watering     
  C Genotype Rosette leaves SE range t-test     
    WT  Col–0 6.5 0.2 5–8      
    aba1–6 7.8 0.2 7–9 P<0.001    
    ft–10 20.8 0.5 19–23     
    ft–10 aba1–6 24.9 0.5 24–28 P<0.001    
    co–10 36.0 0.7 31–40     
    co–10 aba1–6 36.5 1.0 28–43 P=0.484    

          
Fig  Normal Watering Low Watering  
3 A Genotype Rosette leaves SE range Rosette leaves SE range  t-test NW vs LW 

    WT  Col–0 15.9 0.4 14–18 11.7 0.5 9–15 P<0.001 
    cdf1–R cdf2–1 cdf3–1 cdf5–1  7.8 0.2 6–9 5.8 0.1 5–7 P<0.001 
    cdf1–R cdf2–1 cdf3–1 cdf5–1 gi–100 9.2 0.2 8–11 8.9 0.2 8–10 P=0.311 
           
    Normal Watering Low Watering  
  B Genotype Rosette leaves SE range Rosette leaves SE range  t-test NW vs LW 
    WT  Col–0 55.7 0.9 51–62 63.4 2.4 55–75 P=0.003 
    co–10 57.5 1.3 51–65 73.2 2.8 54–85 P<0.001 
    cdf1–R cdf2–1 cdf3–1 cdf5–1  10.5 0.4 8–14 10.2 0.8 7–15 P=0.729 
            
    Normal Watering     
  G Genotype Rosette leaves SE range t-test     
    WT  Col–0 14.0 0.0 14     
    aba1-6 22.7 4.0 16-27 P<0.001    
    elf3-1 4.1 0.4 4-5      
    elf3-1 aba1-6 6.5 1.6 4-9 P<0.001    
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          Fig 
 Normal Watering Low Watering  

4 A Genotype Rosette leaves SE range Rosette leaves SE range  t-test NW vs LW 
    WT  Ler 8.2 0.2 7–9 6.9 0.1 6–8 P<0.001 
    aba1–1 9.4 0.3 8–11 9.0 0.3 8–10 P=0.365 
    aba1–3 9.3 0.2 8–11 9.3 0.2 8–10 P=0.446 
    abi1–1 8.5 0.3 7–9 9.5 0.3 8–10 P<0.001 

          
    One-Way ANOVA with  post-HOC Tukey HSD Test      
    Normal Watering Genotype pair p-value inference     
    WT Ler vs aba1–1 1.01E-03 ** p<0.01     
    WT Ler vs aba1–3 3.98E-03 ** p<0.01     
    WT Ler vs abi1–1 8.56E-01 NS     
    aba1–1 vs aba1–3 9.00E-01 NS     
    aba1–1 vs abi1–1 5.83E-02 NS     
    aba1–3 vs abi1–1 1.30E-01 NS     
           
    Normal Watering     
  B Genotype Rosette leaves SE range     
    WT  Ler 37.9 0.7 33–41     
    aba1–3 37.0 1.2 27–42     
    abi1–1 27.0 1.0 20–32     
            
    One-Way ANOVA with  post-HOC Tukey HSD Test     
    Normal Watering Genotype pair p-value inference     
    WT Ler vs aba1–3 7.76E-01 NS     
    WT Ler vs abi1–1 1.01E-03 ** p<0.01     
    aba1–3 vs abi1–1 1.01E-03 ** p<0.01     

          Fig 
 Normal Watering Low Watering 

 5 F Genotype Rosette leaves SE range Rosette leaves SE range  t-test NW vs LW 

 
  WT  Ler 35.9 0.5 32–38 38.4 0.8 35–44 P=0.016 

 
  abi1–1 27.6 0.8 23–32 31.9 1.3 21–36 P=0.019 

 
  35S::GI 13.6 0.3 12–16 11.8 0.2 11–13 P<0.001 

 
  35S::GI abi1–1 12.6 0.5 10–17 17.5 0.5 15–20 P<0.001 

 
          

 
  One-Way ANOVA with  post-HOC Tukey HSD Test     

 
  Normal Watering Genotype pair p-value inference     

 
  WT Ler vs abi1–1 1.01E-03 ** p<0.01     

 
  WT Ler vs 35S::GI 1.01E-03 ** p<0.01     

 
  WT Ler vs 35S::GI abi1–1 1.01E-03 ** p<0.01     

 
  abi1–1 vs 35S::GI 1.01E-03 ** p<0.01     

 
  abi1–1 vs 35S::GI abi1–1 1.01E-03 ** p<0.01     

 
  35S::GI vs 35S::GI abi1–1 5.07E-01 NS     

          Fig 
 Normal Watering     

6 C Genotype Rosette leaves SE range     
    WT  Ler 28.9 1.4 25–37     
    abi1–1 17.0 0.4 16–19     
    soc1–1 50.3 1.9 42–59     
    abi1–1 soc1–1 53.7 1.3 39–61     
            
    One-Way ANOVA with  post-HOC Tukey HSD Test      
    Genotype pair p-value inference     
    WT Ler vs abi1–1 1.01E-03 ** p<0.01     
    WT Ler vs soc1–1 1.01E-03 ** p<0.01     
    WT Ler vs abi1–1 soc1–1 1.01E-03 ** p<0.01     
    abi1–1 vs soc1–1 1.01E-03 ** p<0.01     
    abi1–1 vs abi1–1 soc1–1 1.01E-03 ** p<0.01     
    soc1–1 vs abi1–1 soc1–1 3.25E-01 NS     
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    Normal Watering     
6 D Genotype Rosette leaves SE range     

    WT  Ler 8.3 0.2 8–9     
    abi1–1 8.4 0.2 8–9     
    soc1–1 12.5 0.2 12–13     
    abi1–1 soc1–1 15.0 0.2 14–16     
            

  One-Way ANOVA with  post-HOC Tukey HSD Test      
    Genotype pair p-value inference     
    WT Ler vs abi1–1 7.96E-01 NS     
    WT Ler vs soc1–1 5.69E-06 *** p<0.001     
    WT Ler vs abi1–1 soc1–1 6.88E-15 *** p<0.001     
    abi1–1 vs soc1–1 7.08E-05 *** p<0.001     
    abi1–1 vs abi1–1 soc1–1 2.80E-14 *** p<0.001     
   soc1–1 vs abi1–1 soc1–1 3.62E-10 *** p<0.001     
         
Fig  Normal Watering  
Supp 2 Genotype Rosette leaves SE range t-test   

 
  WT  Col–0 60.6 2.1 49-80  

 
  hab1–1 abi1–2 abi2–2 80.4 1.9 68-101 P<0.001 

 
 
 
 
Flowering time of mutant and transgenic plants used in this study. Mean values of vegetative 

leaves and standard error (SE) of plants under different watering conditions. Two tailed Student’s 

t test values (P) and One-Way ANOVA (P) are shown, NS (Not Significant).  
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Supplemental Table S2 
 
Fig  Tukey HSD  
3 H GI expression Genotype pair p-value inference 

    WT Col–0 vs aba1–6 9.00E-01 NS 
    WT Col–0 vs elf3–1 1.01E-03 ** p<0.01 
    WT Col–0 vs elf3–1 aba1–6 1.01E-03 ** p<0.01 
    aba1–6 vs elf3–1 1.01E-03 ** p<0.01 
    aba1–6 vs elf3–1 aba1–6 1.01E-03 ** p<0.01 
    elf3–1 vs elf3–1 aba1–6 9.00E-01 NS 
    

       
 

Tukey HSD  
  I CO expression Genotype pair p-value inference 
    WT Col–0 vs aba1–6 1.29E-01 NS 
    WT Col–0 vs elf3–1 8.99E-01 NS 
    WT Col–0 vs elf3–1 aba1–6 8.96E-01 NS 
    aba1–6 vs elf3–1 3.57E-02 * p<0.05 
    aba1–6 vs elf3–1 aba1–6 3.76E-01 NS 
    elf3–1 vs elf3–1 aba1–6 5.19E-01 NS 
    

       
 

Tukey HSD  
  J FT expression Genotype pair p-value inference 
    WT Col–0 vs aba1–6 9.00E-01 NS 
    WT Col–0 vs elf3–1 1.46E-02 * p<0.05 
    WT Col–0 vs elf3–1 aba1–6 9.00E-01 NS 
    aba1–6 vs elf3–1 6.89E-03 ** p<0.01 
    aba1–6 vs elf3–1 aba1–6 9.00E-01 NS 
    elf3–1 vs elf3–1 aba1–6 1.08E-02 * p<0.05 
    

       
 

Tukey HSD  
  K TSF expression Genotype pair p-value inference 
    WT Col–0 vs aba1–6 7.44E-02 NS 
    WT Col–0 vs elf3–1 4.35E-01 NS 
    WT Col–0 vs elf3–1 aba1–6 1.49E-01 NS 
    aba1–6 vs elf3–1 3.44E-03 ** p<0.01 
    aba1–6 vs elf3–1 aba1–6 9.00E-01 NS 
    elf3–1 vs elf3–1 aba1–6 7.37E-03 ** p<0.01 
 
 
 
 
One-Way ANOVA (P) for the expression analysis of Fig 3H-K are shown, NS (Not Significant). 
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Supplemental Table S3 
 
 
 
 

Allele Reference Background 
aba1-6 (Niyogi et al., 1998) Col-0 
aba2-1 (Léon-Kloosterziel et al., 1996) Col-0 
ft-10 (Yoo et al., 2005) Col-0 

ft-10 aba1-6 This Work Col-0 
ft-10 tsf-1  (Jang et al., 2009) Col-0 

ft-10 tsf-1 aba-6 This Work Col-0 
gi-2 (Fowler et al., 1999) Col-1 

gi-2 aba1-6 This Work Col-1 
co-10 (Laubinger et al., 2006) Col-0 

co-10 aba1-6 This Work Col-0 
elf3-1 (Zagotta et al., 1992) Col-0 

elf3-1 aba1-6 This Work Col-0 
cdf1-R cdf2-1 cdf3-1 cdf5-1  (Fornara et al., 2009) Col-0 

gi-100 cdf1-R cdf2-1 cdf3-1 cdf5-1 (Fornara et al., 2009) Col-0 
aba1-1 (Koornneef et al. 1982) Ler 
aba1-3 (Koornneef et al. 1982) Ler 
abi1-1 (Koornneef et al., 1984) Ler 
soc1-1 (Onouchi et al., 2000) Ler 

abi1-1 soc1-1 This Work Ler 
35S::GI  (Mizoguchi et al., 2005) Ler 

abi1-1 35S::GI This Work Ler 
hab1-1 abi1-2 pp2ca-1 (Rubio et al., 2009) Col-0 
hab1-1 abi1-2 abi2-2 (Rubio et al., 2009) Col-0 

 
Genotypes used in this study 
 
Fornara F, Panigrahi KCS, Gissot L, Sauerbrunn N, RUhl M, Jarillo JA, Coupland G 

(2009) Arabidopsis DOF Transcription Factors Act Redundantly to Reduce CONSTANS 
Expression and Are Essential for a Photoperiodic Flowering Response. Dev Cell 17: 75–86 

Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J 
(1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic 
flowering in Arabidopsis and encodes a protein with several possible membrane-spanning 
domains. EMBO J 18: 4679–4688 

Jang S, Torti S, Coupland G (2009) Genetic and spatial interactions between FT, TSF and SVP 
during the early stages of floral induction in Arabidopsis. The Plant Journal 60: 614–625 

Koornneef M, Jorna ML, Brinkhorst-van der Swan DLC, Karssen CM The isolation of 
abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating 
gibberellin sensitive lines of Arabidopsis thaliana (L.) heynh. Theoretical and Applied 
Genetics 61: 385–393 

Koornneef M, Reuling G, Karssen CM (1984) The isolation and characterization of abscisic 
acid-insensitive mutants of Arabidopsis thaliana. Physiol Plant 61: 377–383 
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Laubinger S, Marchal V, Gentilhomme J, Wenkel S, Adrian J, Jang S, Kulajta C, Braun H, 
Coupland G, Hoecker U (2006) Arabidopsis SPA proteins regulate photoperiodic flowering 
and interact with the floral inducer CONSTANS to regulate its stability. Development 133: 
3213–3222 

Léon-Kloosterziel KM, Gil MA, Ruijs GJ, Jacobsen SE, Olszewski NE, Schwartz SH, 
Zeevaart JAD, Koornneef M (1996) Isolation and characterization of abscisic acid-
deficient Arabidopsis mutants at two new loci. The Plant Journal 10: 655–661 

Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, 
Kamada H, Putterill J, et al (2005) Distinct roles of GIGANTEA in promoting flowering 
and regulating circadian rhythms in Arabidopsis. Plant Cell 17: 2255–2270 

Niyogi KK, Grossman AR, Björkman O (1998) Arabidopsis mutants define a central role for 
the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10: 
1121–1134 

Onouchi H, Igeno M, Perilleux C, Graves K, Coupland G (2000) Mutagenesis of plants 
overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-
time genes. Plant Cell 12: 885–900 

Rubio S, Rodrigues A, Saez A, Dizon MB, Galle A, Kim T-H, Santiago J, Flexas J, 
Schroeder JI, Rodriguez PL (2009) Triple loss of function of protein phosphatases type 2C 
leads to partial constitutive response to endogenous abscisic acid. Plant Physiol 150: 1345–
1355 

Yoo SK, Chung KS, Kim J, Lee JH, Hong SM, Yoo SJ, Yoo SY, Lee JS, Ahn JH (2005) 
CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through 
FLOWERING LOCUS T to promote flowering in Arabidopsis. Plant Physiol 139: 770–778 

Zagotta MT, Shannon S, Jacobs C, Meeks-Wagner DR (1992) Early-Flowering Mutants of 
Arabidopsis thaliana. Australian Journal of Plant Physiology 19: 411–418 
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Supplemental Table S4 
 
 

Gene Forward  Use 
aba1–6 GCTCGGAGTAAAGGCGGCGA Genotyping 

  CAGGAAGTCCCCGTGACGCC   
abi1–1 ATGGAGGAAGTATCTCCGGCG Genotyping 

  TCAGTTCAAGGGTTTGCTCTTGAG   
CO WT atgttgaaacaagagagtaac Genotyping 

  tcattgtgttactgttatcatctg   
co–10 atgttgaaacaagagagtaac Genotyping 

 
gccttttcagaaatggataaatagccttgcttcc 

 attb pABI1  GGGGACAAGTTTGTACAAAAAAGCAGGCTCTCTTATCCACTTTGCCCGC Cloning 
  GGGGACCACTTTGTACAAGAAAGCTGGGTGCGATCGCCGGAGATACTTC   

ACT CTCTCCCGCTATGTATGTCGCCA  qPCR 
  GTGAGACACACCATCACCAG   

CO CTACAACGACAATGGTTCCATTAAC  qPCR 
  CAGGGTCAGGTTGTTGC   

FT CTAGCAACCCTCACCTCCGAGAATA  qPCR 
  CTGCCAAGCTGTCGAAACAATATAA   

TSF CTCGGGAATTCATCGTATTG  qPCR 
  CCCTCTGGCAGTTGAAGTAA   

SOC1 ATCGAGGAGCTGCAACAGAT  qPCR 
  GCTACTCTCTTCATCACCTCTTCC   

GI AATTCAGCACGCGCCTATTG  qPCR 
  GTTGCTTCTGCTGCAGGAACTT   
 
 
Primers used in this study 
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