A remark on generalized complete intersections

Alice Garbagnati *, Bert van Geemen
Dipartimento di Matematica, Università di Milano, via Saldini 50, 20133 Milano, Italy

Received 27 August 2017; accepted 10 October 2017
Available online 14 October 2017
Editor: Leonardo Rastelli

Abstract

We observe that an interesting method to produce non-complete intersection subvarieties, the generalized complete intersections from L. Anderson and coworkers, can be understood and made explicit by using standard Cech cohomology machinery. We include a worked example of a generalized complete intersection Calabi-Yau threefold. © 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP ${ }^{3}$.

0. Introduction

Calabi-Yau varieties, in particular those of dimension three, are of great interest in string theory. Since there are not many general results yet on their classification, but see [14], the explicit construction of CY threefolds is a quite important enterprise. For example, Kreuzer and Starke classified the toric fourfolds which have CY threefolds as (anticanonical) hypersurfaces [11], [3]. Besides generalizations to complete intersection CYs in certain ambient toric varieties, like products of projective spaces, there are various other examples of CY threefolds constructed with more sophisticated algebro-geometrical methods. Recent examples include [9], [7], [10].

In the recent paper [1], L. Anderson, F. Apruzzi, X. Gao, J. Gray and S-J. Lee found a very nice method to construct many more CY threefolds. The basic idea is to take a hypersurface Y in an ambient variety P and to consider hypersurfaces X in Y. These hypersurfaces need not be complete intersections in P, that is, there need not exist two sections of two line bundles on P

[^0]whose common zero locus is X. There are various generalizations of this method, but we will stick to this basis case. As in [1], we refer to these varieties as generalized complete intersections (gCIs).

A particularly interesting and accessible case that was found and studied by Anderson and coworkers is when the ambient variety is a product of two varieties, one of which is \mathbf{P}^{1}, so $P=P_{2} \times \mathbf{P}^{1}$. The variety P_{2} they consider is a product of projective spaces, but this is not essential, one could consider any toric variety or even more general cases. The factor \mathbf{P}^{1} is important since there are line bundles on \mathbf{P}^{1} with non-trivial first cohomology group and this is essential to find generalized complete intersections. We review this construction in Section 1.1.

We provide a proposition, proven with standard Cech cohomology methods, that allows one, under a certain hypothesis, to find three equations (more precisely, three sections of three line bundles on P) that define X. In Section 2 we work out a detailed example, with explicit equations, of a CY threefold which was already considered in [1]. The explicit example X has an automorphism of order two and the quotient of X by the involution provides, after desingularization, another CY threefold. More generally, we think that among the gCIs found in [1] one could find more examples of CY threefolds with non-trivial automorphisms. It might be hard though to implement a systematic search as was done in [6] for complete intersection CY threefolds in products of projective spaces. We did not find new CY threefolds with small Hodge numbers (see [5] for an update on these), but the gCICY seem to be a promising class of CYs to search for these. The recent paper [4] by Berglund and Hübsch provides further techniques to deal with gCICYs whereas [2] explores string theoretical aspects of gCICYs.

1. The construction of generalized complete intersections

1.1. The general setting

Let P_{2} be a projective variety of dimension n and let $P:=P_{2} \times \mathbf{P}^{1}$. We denote the projections to the factors of P by π_{1}, π_{2} respectively. For a coherent sheaf \mathcal{F} on P_{2} and an integer d we define a coherent sheaf on P by:

$$
\mathcal{F}[d]:=\pi_{1}^{*} \mathcal{F} \otimes \pi_{2}^{*} \mathcal{O}_{\mathbf{P}^{1}}(d) .
$$

The Künneth formula gives

$$
H^{r}(P, \mathcal{F}[d])=\oplus_{p+q=r} H^{p}\left(P_{2}, \mathcal{F}\right) \otimes H^{q}\left(\mathbf{P}^{1}, \mathcal{O}_{\mathbf{P}^{1}}(d)\right)
$$

Recall that the only non-zero cohomology of $\mathcal{O}_{\mathbf{P}^{1}}(d)$ is: $h^{0}\left(\mathcal{O}_{\mathbf{P}^{1}}(d)\right)=h^{1}\left(\mathcal{O}_{\mathbf{P}^{1}}(-2-d)\right)=d+1$ for $d \geq 0$ and a basis for $H^{0}\left(\mathcal{O}_{\mathbf{P}^{1}}(d)\right)$ is given by the monomials $z_{0}^{i} z_{1}^{d-i}, i=0, \ldots, d$, where $\left(z_{0}: z_{1}\right)$ are the homogeneous coordinates on \mathbf{P}^{1}.

Let L be a line bundle on P_{2} and assume that $L[d]$, for some $d \geq 1$, has a non-trivial global section F. Using the Künneth formula, we can write $F=\sum_{i} f_{i} z_{0}^{i} z_{1}^{\bar{d}-i}$ for certain sections $f_{i} \in$ $H^{0}\left(P_{2}, L\right)$. Let $Y=(F)$ be the zero locus of F in P. We assume that Y is a (reduced, irreducible) variety, although this will not be essential in this section.

To define a codimension two subvariety of P, we consider another line bundle M on P_{2}. The Künneth formula shows that $M[-e]$ has no global sections if $e \geq 1$. But upon restricting to Y, the vector space $H^{0}\left(Y, M[-e]_{\mid Y}\right)$ could still be non-trivial. In fact, from the exact sequence

$$
\begin{equation*}
0 \longrightarrow\left(L^{-1} \otimes M\right)[-d-e] \xrightarrow{F} M[-e] \longrightarrow M[-e]_{\mid Y} \longrightarrow 0 \tag{1}
\end{equation*}
$$

we deduce the exact sequence

$$
\begin{equation*}
0 \longrightarrow H^{0}\left(Y, M[-e]_{\mid Y}\right) \xrightarrow{d^{0}} H^{1}\left(P,\left(L^{-1} \otimes M\right)[-d-e]\right) \xrightarrow{F_{1}} H^{1}(P, M[-e]) \tag{2}
\end{equation*}
$$

thus $H^{0}\left(Y, M[-e]_{\mid Y}\right) \cong \operatorname{ker}\left(F_{1}\right)$, where we denote by F_{1} the map induced by multiplication by F on the first cohomology groups. Since now

$$
H^{1}\left(P,\left(L^{-1} \otimes M\right)[-d-e]\right) \cong H^{0}\left(P_{2}, L^{-1} \otimes M\right) \otimes H^{1}\left(\mathbf{P}^{1}, \mathcal{O}_{\mathbf{P}^{1}}(-d-e)\right) \quad(d+e \geq 2)
$$

the domain of F_{1} is non-trivial if and only if $h^{0}\left(P_{2}, L^{-1} \otimes M\right) \neq 0$. So for suitable choices of line bundles on P_{2} we might find interesting, non-complete intersection, codimension two subvarieties of P in this way. In the proof of Proposition 1.4 we explain how to compute F_{1}.

1.2. Example

Let $P_{2}=\mathbf{P}^{n}, L=\mathcal{O}_{\mathbf{P}^{n}}(k), M=\mathcal{O}_{\mathbf{P}^{n}}(k+l)$ with $l \geq 0$, let $d \geq 1$ and $e=1$. Then $h^{0}\left(\mathbf{P}^{n}, L^{-1} \otimes M\right)=h^{0}\left(\mathcal{O}_{\mathbf{P}^{n}}(l)\right) \neq 0$ so $h^{1}\left(P,\left(L^{-1} \otimes M\right)[-d-e]\right) \neq 0$, but $h^{1}(P, M[-e])=0$ since $\mathcal{O}_{\mathbf{P}^{1}}(-1)$ has no cohomology. Thus $H^{0}\left(Y, M[-e]_{\mid Y}\right) \cong H^{1}\left(P,\left(L^{-1} \otimes M\right)[-d-e]\right)$ is indeed non-trivial.

1.3. Generalized complete intersections

Given a variety $Y \subset P$ that is the zero locus of $F \in H^{0}(L[d])$ as in Section 1.1, and given a global section $\tau \in H^{0}\left(M[-e]_{\mid Y}\right)$, its zero locus $X:=(\tau) \subset Y$ is called a generalized complete intersection.

The scheme X may not be defined by two global sections σ_{1}, σ_{2} of line bundles L_{1}, L_{2} on P. However in certain cases we can find three sections of line bundles on P which define X :

1.4. Proposition

Let $F \in H^{0}(P, L[d])$, let $Y=(F)$, let $\tau \in H^{0}\left(Y, M[-e]_{\mid Y}\right)$ with $d, e \geq 1$ be as above and assume that $H^{1}\left(P_{2}, L^{-1} \otimes M\right)=0$.

Then there are two global sections $G, H \in H^{0}(P, M[d-1])$ such that the generalized complete intersection subscheme X of P defined by τ in Y can also be defined as

$$
X=\{x \in P: F(x)=G(x)=H(x)=0\}
$$

(the equality is of schemes). Moreover, there is a global section $A \in H^{0}\left(P,\left(L^{-1} \otimes M\right)[d+e-\right.$ 2]) such that $A F=z_{1}^{d+e-1} G+z_{0}^{d+e-1} H$, so that on the open subset of $P_{2} \times \mathbf{P}^{1}$ where $z_{0} \neq 0$ the subscheme X of P is defined by the two equations $F=G=0$.

Proof. We use Cech cohomology to make the isomorphism $H^{0}\left(Y, M[-e]_{\mid Y}\right) \cong \operatorname{ker}\left(F_{1}\right)$, see exact sequence (2), explicit. Let $U_{i} \subset \mathbf{P}^{1}$ be the open subset where $z_{i} \neq 0$. For a coherent sheaf \mathcal{G} on \mathbf{P}^{1} we have the exact sequence

$$
0 \longrightarrow H^{0}\left(\mathbf{P}^{1}, \mathcal{G}\right) \longrightarrow \mathcal{G}\left(U_{0}\right) \oplus \mathcal{G}\left(U_{1}\right) \xrightarrow{\delta} \mathcal{G}\left(U_{0} \cap U_{1}\right) \longrightarrow H^{1}\left(\mathbf{P}^{1}, \mathcal{G}\right) \longrightarrow 0,
$$

where $\delta\left(t_{0}, t_{1}\right)=t_{0}-t_{1}$. The cohomology groups we consider are computed with the Künneth formula. Note that after tensoring this exact sequence by a vector space W, we obtain that $W \otimes$ $H^{0}\left(\mathbf{P}^{1}, \mathcal{G}\right)=\operatorname{ker}\left(1_{W} \otimes \delta\right)$ and $W \otimes H^{1}\left(\mathbf{P}^{1}, \mathcal{G}\right)=\operatorname{coker}\left(1_{W} \otimes \delta\right)$.

For an affine open subset $V \subset \mathbf{P}^{1}$, the cohomology of the exact sequence (1) on $P_{2} \times V$ gives the exact sequence, where we extend $M[-e]_{\mid Y}$ by zero to $P_{2} \times V$,

$$
H^{0}\left(P_{2} \times V, M[-e]\right) \longrightarrow H^{0}\left(P_{2} \times V, M[-e]_{\mid Y}\right) \longrightarrow H^{1}\left(P_{2} \times V,\left(L^{-1} \otimes M\right)[-d-e]\right)
$$

The Künneth formula, combined with the assumption $H^{1}\left(P_{2}, L^{-1} \otimes M\right)=0$ and the fact that $H^{1}(V, \mathcal{F})=0$ for any coherent sheaf \mathcal{F} since V is affine, implies that the last group is zero.

Taking $V=U_{0}, U_{1}$, the exact sequence (1) on $P_{2} \times V$ thus gives two exact sequences whose sum (term by term) is

$$
\begin{gather*}
0 \longrightarrow \oplus_{i=0}^{1} H^{0}\left(L^{-1} \otimes M\right) \otimes\left(\mathcal{O}_{\mathbf{P}^{1}}(-d-e)\left(U_{i}\right)\right) \xrightarrow{F} \tag{3}\\
\oplus_{i=0}^{1} H^{0}(M) \otimes\left(\mathcal{O}_{\mathbf{P}^{1}}(-e)\left(U_{i}\right)\right) \longrightarrow \oplus_{i=0}^{1}\left(M[-e]_{\mid Y}\right)\left(P_{2} \times U_{i}\right) \longrightarrow 0
\end{gather*}
$$

Similarly taking $V=U_{0} \cap U_{1}$ one has the exact sequence:

$$
\begin{gather*}
0 \longrightarrow H^{0}\left(L^{-1} \otimes M\right) \otimes\left(\mathcal{O}_{\mathbf{P}^{1}}(-d-e)\left(U_{0} \cap U_{1}\right)\right) \xrightarrow{F} \tag{4}\\
H^{0}(M) \otimes\left(\mathcal{O}_{\mathbf{P}^{1}}(-e)\left(U_{0} \cap U_{1}\right)\right) \longrightarrow\left(M[-e]_{\mid Y}\right)\left(P_{2} \times\left(U_{0} \cap U_{1}\right)\right) \longrightarrow 0 .
\end{gather*}
$$

Next we use the Cech boundary map δ to map sequence (3) to sequence (4) and we obtain a commutative diagram with three complexes as columns. The first two columns are Cech complexes for the covering $\left\{U_{i}\right\}_{i=0,1}$ of \mathbf{P}^{1}, their cohomology groups are respectively

$$
\begin{aligned}
H^{0}\left(L^{-1} \otimes M\right) \otimes H^{q}\left(\mathcal{O}_{\mathbf{P}^{1}}(-d-e)\right) & \cong H^{q}\left(P,\left(L^{-1} \otimes M\right)[-d-e]\right) \\
H^{0}(M) \otimes H^{q}\left(\mathcal{O}_{\mathbf{P}^{1}}(-e)\right) & \cong H^{q}(P, M[-e]), \quad(q=0,1)
\end{aligned}
$$

The zero-th cohomology group of the last column is $H^{0}\left(Y, M[-e]_{\mid Y}\right)$. So we conclude that the map F_{1} can be computed with the long exact cohomology sequence associated to this diagram.

We observe, but will not use, that the Künneth formula implies that $H^{2}\left(P,\left(L^{-1} \otimes M\right)[-d-\right.$ $e])=0$ and thus the cohomology sequence of (1) gives a six term exact sequence with the zero-th and first cohomology groups. The first 5 terms are the same as those of the long exact sequence associated to the diagram, so we conclude that the first cohomology group of the last column is $H^{1}\left(Y, M[-e]_{\mid Y}\right)$.

Given $\tau \in H^{0}\left(Y, M[-e]_{\mid Y}\right)$, let $q:=d^{0}(\tau) \in \operatorname{ker}\left(F_{1}\right)$. Since the first row (3) of the complex is exact, the section τ is locally given by restricting sections $\tau_{i} \in M[-e]\left(P_{2} \times U_{i}\right)$ to Y. By the snake lemma, they satisfy $\tau_{0}-\tau_{1}=F q$ on $P_{2} \times\left(U_{0} \cap U_{1}\right)$, in particular $\tau_{0}=\tau_{1}$ on $Y \cap\left(P_{2} \times\right.$ $\left(U_{0} \cap U_{1}\right)$) since $F=0$ on Y.

The images of the $z_{0}^{-j} z_{1}^{-d-e+j} \in \mathcal{O}_{\mathbf{P}^{1}}(-d-e)\left(U_{0} \cap U_{1}\right), j=1, \ldots, d+e-1$, form a basis of $H^{1}\left(\mathbf{P}^{1}, \mathcal{O}(-d-e)\right)$. A cohomology class $q \in H^{1}\left(P,\left(L^{-1} \otimes M\right)[-d-e]\right) \cong$ $H^{0}\left(P_{2}, L^{-1} \otimes M\right) \otimes H^{1}\left(\mathbf{P}^{1}, \mathcal{O}(-d-e)\right)$ can thus be represented by $q=\sum_{j} q_{j} z_{0}^{-j} z_{1}^{-d-e+j}$ with $q_{i} \in H^{0}\left(P_{2}, L^{-1} \otimes M\right)$. Let $F=\sum_{i} f_{i} z_{0}^{i} z_{1}^{d-i}$, where $f_{i} \in H^{0}\left(P_{2}, L\right)$, then $F q$ is homogeneous of degree $d-(d+e)=-e$ and it is a sum of terms $r_{k} z_{0}^{k} z_{1}^{-e-k}$ with $r_{k} \in H^{0}\left(P_{2}, M\right)$. Writing

$$
\begin{aligned}
F q & =\sum_{k=-d-e+1}^{d-1} r_{k} z_{0}^{k} z_{1}^{-e-k} \\
& =\left(\sum_{k=-d-e+1}^{-e} r_{k} z_{0}^{k} z_{1}^{-e-k}\right)+\left(\sum_{k=-e+1}^{-1} r_{k} z_{0}^{k} z_{1}^{-e-k}\right)+\left(\sum_{k=0}^{d-1} r_{k} z_{0}^{k} z_{1}^{-e-k}\right)
\end{aligned}
$$

the first summand lies in $M[-e]\left(P_{2} \times U_{0}\right)$ (where $\left.z_{0} \neq 0\right)$ and the last summand lies in $M[-e]\left(P_{2} \times U_{1}\right)$, we denote these summands by τ_{0} and $-\tau_{1}$ respectively. The middle summand has monomials $z_{0}^{a} z_{1}^{b}$ with both $a, b<0$. Thus $F q$ represents a class in $q^{\prime} \in H^{1}(P, M[-e])$, which is the same as the class represented by the middle summand. By definition, one has $q^{\prime}=F_{1}(q)$ and thus $q \in \operatorname{ker}\left(F_{1}\right)$ when all coefficients $r_{k}, k=-e+1, \ldots,-1$, are zero.

Since $q \in \operatorname{ker}\left(F_{1}\right)$ this middle summand is zero, so that $F q=\tau_{0}-\tau_{1}$ as desired. Now we define $G:=z_{0}^{d+e-1} \tau_{0}$ and $H:=-z_{1}^{d+e-1} \tau_{1}$ so that all their monomials $z_{0}^{a} z_{1}^{b}$ have $a, b \geq 0$ and $a+b=d-1$, thus both $G, H \in H^{0}(P, M[d-1])$. Then $\left(z_{0} z_{1}\right)^{d+e-1} F q=z_{1}^{d+e-1} G+z_{0}^{d+e-1} H$ and with $A:=\left(z_{0} z_{1}\right)^{d+e-1} q \in H^{0}\left(P,\left(L^{-1} \otimes M\right)[d+e-2]\right)$ we find the desired relation.

1.5. Example

With the choices of P_{2}, L, M as in Example 1.2, and if X is a smooth variety (of dimension $n-1)$, then $H^{1}\left(P_{2}, L^{-1} \otimes M\right)=H^{1}\left(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{n}}(l)\right)=0$, for any l, if $n>1$. The adjunction formula implies that X has trivial canonical bundle if we choose $l=n+1-2 k$ and $d=3$. In that case $P=$ $\mathbf{P}^{n} \times \mathbf{P}^{1}$ and F is homogeneous of bidegree ($k, 3$) whereas G, H have bidegree $(n+1-k, 2)$.

1.6. A fibration on X

Given X as in the proposition, the projection $\pi_{2}: P_{2} \times \mathbf{P}^{1} \rightarrow \mathbf{P}^{1}$ restricts to X to give a fibration denoted by $\pi_{2}: X \rightarrow \mathbf{P}^{1}$. For a point $p=\left(z_{0}: z_{1}\right) \in \mathbf{P}^{1}$, we denote by $F_{p} \in H^{0}\left(P_{2}, L\right)$, $H_{p} \in H^{0}\left(P_{2}, M\right)$ the restrictions of F and H to the fiber X_{p}. The equation $A F=z_{1}^{d+e-1} G+$ $z_{0}^{d+e-1} H$ shows that if $z_{1} \neq 0$ then F_{p} and H_{p} define the fiber X_{p}, which is thus a complete intersection in P_{2}.

1.7. Example

This example illustrates that X, as in Proposition 1.4, might be reducible, even if $h^{0}\left(Y, M[-e]_{\mid Y}\right)$ is rather large. The example is taken from [1, Table 4], third item (with $i=2$) where it is in fact observed that no smooth varieties arise in that case. We take

$$
P_{2}:=\mathbf{P}^{2} \times \mathbf{P}^{1} \times \mathbf{P}^{1}, \quad L:=\mathcal{O}(0,1,1), \quad M:=\mathcal{O}(3,1,1), \quad d=4, e=-2
$$

Notice that $H^{1}\left(P_{2}, L^{-1} \otimes M\right)=H^{1}\left(\mathbf{P}^{2} \times \mathbf{P}^{1} \times \mathbf{P}^{1}, \mathcal{O}(3,0,0)\right)=0$ by the Künneth formula, so we can, but will not, apply Proposition 1.4. Since $h^{1}\left(\left(L^{-1} \otimes M\right)[-d-e]\right)=$ $h^{1}(\mathcal{O}(3,0,0)[-6])=10 \cdot 1 \cdot 1 \cdot 5=50$ and $h^{1}(M[-e])=10 \cdot 2 \cdot 2 \cdot 1=40$, we find $h^{0}\left(M[-e]_{\mid Y}\right) \geq 10$. We will show that, for general $Y, h^{0}\left(M[-e]_{\mid Y}\right)=10$ but that all sections of $M[-e]_{\mid Y}$ define reducible subvarieties of Y.

Due to the first zero in $L=\mathcal{O}(0,1,1)$, the variety Y is a product, $Y=\mathbf{P}^{2} \times S \subset P$, with $S \subset\left(\mathbf{P}^{1}\right)^{3}$ the surface defined by a section of $\mathcal{O}(1,1,4)$. Then we have $h^{0}\left(M[-e]_{\mid Y}\right)=$ $h^{0}\left(\mathbf{P}^{2} \times S, \pi_{1}^{*} \mathcal{O}_{\mathbf{P}^{2}}(3) \otimes \pi_{2}^{*} \mathcal{O}_{S}(1,1,-2)\right)$ and using the Künneth formula we find $h^{0}\left(M[-e]_{\mid Y}\right)=$ $h^{0}\left(\mathcal{O}_{\mathbf{P}^{2}}(3)\right) h^{0}\left(\mathcal{O}_{S}(1,1,-2)\right)=10 h^{0}\left(\mathcal{O}_{S}(1,1,-2)\right.$. The exact sequence

$$
0 \longrightarrow \mathcal{O}_{\left(\mathbf{P}^{1}\right)^{3}}(0,0,-6) \xrightarrow{f} \mathcal{O}_{\left(\mathbf{P}^{1}\right)^{3}}(1,1,-2) \longrightarrow \mathcal{O}_{S}(1,1,-2) \longrightarrow 0
$$

where f is the equation of S, shows that (with f_{1} the map induced by f on H^{1}):

$$
h^{0}\left(\mathcal{O}_{S}(1,1,-2)\right)=\operatorname{dim} \operatorname{ker}\left(f_{1}: H^{1}\left(\mathcal{O}_{\left(\mathbf{P}^{1}\right)^{3}}(0,0,-6)\right) \rightarrow H^{1}\left(\mathcal{O}_{\left(\mathbf{P}^{1}\right)^{3}}(1,1,-2)\right)\right)
$$

Since these spaces have dimensions $1 \cdot 1 \cdot 5=5$ and $2 \cdot 2 \cdot 1=4$ respectively, one expects $h^{0}\left(\mathcal{O}_{S}(1,1,-2)\right)=1$. In that case any section $\tau \in H^{0}\left(M[-e]_{\mid Y}\right)$ would be the product $\tau=g s$ with $g \in H^{0}\left(\mathcal{O}_{\mathbf{P}^{2}}(3)\right)$ and $s \in H^{0}\left(\mathcal{O}_{S}(1,1,-2)\right)$ the unique (up to scalar multiple) section, hence X would be reducible.

To see that indeed $h^{0}\left(\mathcal{O}_{S}(1,1,-2)\right)=1$ for a general equation f, take a smooth (genus one) curve C of bidegree (2,2) in $\mathbf{P}^{1} \times \mathbf{P}^{1}$ and choose eight distinct points on C which are not cut out by another curve of bidegree (2,2). As curves of bidegree $(1,4)$ depend on $2 \cdot 5=10$ parameters, we can find two polynomials g_{0}, g_{1} of bidegree $(1,4)$ such that $g_{0}=g_{1}=0$ consists of these eight points on C. Take $f=x_{0} g_{0}+x_{1} g_{1}$ with $\left(x_{0}: x_{1}\right) \in \mathbf{P}^{1}$, the first copy of \mathbf{P}^{1} in $\left(\mathbf{P}^{1}\right)^{3}$, and the g_{i} on the last two copies of \mathbf{P}^{1}. The surface $S \subset\left(\mathbf{P}^{1}\right)^{3}$ defined by f is thus the blow up of $\mathbf{P}^{1} \times \mathbf{P}^{1}$ in the eight points where $g_{0}=g_{1}=0$. The adjunction formula shows that the line bundle $\mathcal{O}_{S}(1,1,-2)$ is the anticanonical bundle of S. The effective anticanonical divisors are the strict transforms of bidegree $(2,2)$-curves on passing through these eight points. Hence the strict transform of C in S will be the unique effective anticanonical divisor on S and therefore $h^{0}\left(\mathcal{O}_{S}(1,1,-2)\right)=1$.

2. An example: a generalized complete intersection Calabi-Yau threefold

2.1. Introduction

We illustrate the use of Proposition 1.4 (and its proof) for the generalized complete intersection Calabi Yau discussed in [1, Section 2.2.2]. We also consider an explicit example which has a non-trivial involution and we compute the Hodge numbers of a desingularization of the quotient threefold which is again a CY.

2.2. The varieties P_{2} and Y

We consider the case that $P_{2}=\mathbf{P}^{4}$, we choose the line bundle $L:=\mathcal{O}_{\mathbf{P}^{4}}(2)$ and we let $d=3$. Then the line bundle $L[d]=\mathcal{O}_{P}(2,3)$ is very ample on $P=\mathbf{P}^{4} \times \mathbf{P}^{1}$ and thus a general section F will define a smooth fourfold Y of P. To obtain a CY threefold in Y, we consider global sections of the anticanonical bundle of Y. By adjunction, $\omega_{Y}=\left(\mathcal{O}_{P}(-5,-2) \otimes \mathcal{O}_{P}(2,3)\right)_{Y}=$ $\mathcal{O}_{Y}(-3,1)$. Thus we take $M=\mathcal{O}_{\mathbf{P}^{4}}(3)$ and $e=1$, so that $M[-e]_{\mid Y}=\mathcal{O}_{Y}(3,-1)=\omega_{Y}^{-1}$. As the H^{1} of any line bundle on \mathbf{P}^{4} is trivial, we can use (the proof of) Proposition 1.4 to find polynomials $G, H \in H^{0}\left(P, \mathcal{O}_{P}(3,2)\right)$ which together with F define a generalized complete intersection X.

As in Example 1.2, we get

$$
H^{0}\left(\mathcal{O}_{Y}(3,-1)\right) \stackrel{\cong}{\cong} H^{1}\left(\mathcal{O}_{P}(1,-4)\right)
$$

To find explicit elements of $H^{0}\left(\mathcal{O}_{Y}(3,-1)\right)$, we write the defining equation of Y as

$$
F=P_{0} z_{0}^{3}+P_{1} z_{0}^{2} z_{1}+P_{2} z_{0} z_{1}^{2}+P_{3} z_{1}^{3} \quad\left(\in H^{0}\left(P, \mathcal{O}_{P}(2,3)\right)\right)
$$

with $P_{i} \in H^{0}\left(\mathbf{P}^{4}, \mathcal{O}(2)\right)$ homogeneous polynomials of degree two in $y=\left(y_{0}: \ldots: y_{4}\right)$. As $H^{1}\left(\mathcal{O}_{P}(1,-4)\right) \cong H^{0}\left(\mathcal{O}_{\mathbf{P}^{4}}(1)\right) \otimes H^{1}\left(\mathcal{O}_{\mathbf{P}^{1}}(-4)\right)$, a basis of this $5 \cdot 3=15$ dimensional vector space are the products of one of y_{0}, \ldots, y_{4} with one of $z_{0}^{-3} z_{1}^{-1}, z_{0}^{-2} z_{1}^{-2}, z_{0}^{-1} z_{1}^{-3}$. Thus any class $q \in H^{1}\left(\mathcal{O}_{P}(1,-4)\right)$ has a representative

$$
q=Q_{0} z_{0}^{-3} z_{1}^{-1}+Q_{1} z_{0}^{-2} z_{1}^{-2}+Q_{2} z_{0}^{-1} z_{1}^{-3} \quad\left(\in H^{1}\left(\mathcal{O}_{P}(1,-4)\right)\right)
$$

with linear forms $Q_{i} \in H^{0}\left(\mathbf{P}^{4}, \mathcal{O}(1)\right)$. As in the proof of Proposition 1.4 we must write:

$$
F q=\tau_{0}-\tau_{1}, \quad G:=z_{0}^{3} \tau_{0}, \quad H:=-z_{1}^{3} \tau_{1},
$$

with $\tau_{i} \in \mathcal{O}_{P}(3,-1)\left(\mathbf{P}^{4} \times U_{i}\right)$. So we find

$$
\begin{aligned}
G & =z_{0}^{2}\left(P_{1} Q_{0}+P_{2} Q_{1}+P_{3} Q_{2}\right)+z_{0} z_{1}\left(P_{2} Q_{0}+P_{3} Q_{1}\right)+z_{1}^{2} P_{3} Q_{0} \\
H & =z_{0}^{2} P_{0} Q_{2}+z_{0} z_{1}\left(P_{0} Q_{1}+P_{1} Q_{2}\right)+z_{1}^{2}\left(P_{0} Q_{0}+P_{1} Q_{1}+P_{2} Q_{2}\right)
\end{aligned}
$$

2.3. The base locus of $\left|-K_{Y}\right|$

In Section 2.2 we showed how to find the global sections of $\omega_{Y}^{-1}=\mathcal{O}_{Y}(3,-1)$ explicitly, locally such a section is given by the polynomials G and H. From the formula for F we see that if $x \in \mathbf{P}^{4}$ and $P_{0}(x)=\ldots=P_{3}(x)=0$, then the curve $\{x\} \times \mathbf{P}^{1}$ lies in Y. This curve also lies in the zero loci of G and H, for any choice of $Q_{0}, Q_{1}, Q_{2} \in H^{0}\left(\mathcal{O}_{\mathbf{P}^{4}}(1)\right)$, hence it lies in the base locus of anticanonical system $\left|-K_{Y}\right|$. Since the four quadrics $P_{i}=0$ in \mathbf{P}^{4} intersect in at least 2^{4} points, counted with multiplicity, we see that this base locus is non-empty. Thus we cannot use Bertini's theorem to guarantee that there are smooth CY threefolds $X \subset Y$, but we resort to an explicit example, see below.

2.4. The CY threefold X

To obtain an explicit example, we choose

$$
\begin{aligned}
& P_{0}:=y_{0}^{2}+y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}, \quad P_{1}:=y_{0}^{2}+y_{4}^{2}, \\
& P_{2}:=y_{1}^{2}+y_{3}^{2}, \quad P_{3}:=y_{0}^{2}+y_{1}^{2}-y_{2}^{2}-y_{3}^{2}-y_{4}^{2},
\end{aligned}
$$

and

$$
Q_{0}:=y_{0}, \quad Q_{1}:=y_{1}, \quad Q_{2}:=y_{2} .
$$

Using a computer algebra system (we used Magma [12]), one can verify that $Y:=(F=0)$ and $X:=(F=G=H=0)$ are smooth varieties in P. The variety X is a Calabi-Yau threefold since it is an anticanonical divisor on Y. In [1, (2.27), (2.28)] one finds that the Hodge numbers of X are $\left(h^{1,1}(X), h^{2,1}(X)\right)=(2,46)$, in particular, $h^{2}(X)=2, h^{3}(X)=94$.

2.5. Parameters

The CY threefold X is defined by a section $F \in H^{0}\left(P, \mathcal{O}_{P}(2,3)\right)$ and a section $\tau \in$ $H^{0}\left(Y, \mathcal{O}_{Y}(3,-1)\right)$. The first is a vector space of dimension

$$
h^{0}\left(P, \mathcal{O}_{P}(2,3)\right)=h^{0}\left(\mathbf{P}^{4}, \mathcal{O}_{\mathbf{P}^{4}}(2)\right) \cdot h^{0}\left(\mathbf{P}^{1}, \mathcal{O}_{\mathbf{P}^{1}}(3)\right)=15 \cdot 4=60,
$$

whereas the second has dimension 15 . The group $G L(5, \mathbf{C}) \times G L(2, \mathbf{C})$ acts on $H^{0}\left(\mathcal{O}_{P}(2,3)\right)$ and has dimension $5^{2}+2^{2}=29$. The subgroup of elements $\left(\lambda I_{5}, \mu I_{2}\right)$ with $\lambda^{2} \mu^{3}=1$ acts trivially, so we get $60-28=32$ parameters for P and next $15-1=14$ parameters for τ, so we do get $32+14=46=h^{2,1}(X)$ parameters for X. So the general deformation of X seems to be again a gCICY of the same type as X. (In [1], just below (2.28), the dependence of X on \mathcal{P}, which gives 32 parameters, seems to have been overlooked.)

2.6. A CY quotient

A well-known method to obtain Calabi-Yau threefolds is to consider desingularizations of quotients of such threefolds by finite groups, see for example [6]. In the example above, we see that $X \subset \mathbf{P}^{4} \times \mathbf{P}^{1}$ has a subgroup $(\mathbf{Z} / 2 \mathbf{Z})^{2} \subset \operatorname{Aut}(X)$ given by the sign changes of y_{3} and y_{4}. We consider the involution

$$
\iota: X \longrightarrow X, \quad\left(\left(y_{0}: \ldots: y_{4}\right),\left(z_{0}: z_{1}\right)\right) \longmapsto\left(\left(y_{0}: y_{1}: y_{2}:-y_{3}:-y_{4}\right),\left(z_{0}: z_{1}\right)\right) .
$$

Its fixed point locus has two components, one defined by $y_{3}=y_{4}=0$ and the other by $y_{0}=y_{1}=$ $y_{2}=0$ in X. The first is a curve in $\mathbf{P}^{2} \times \mathbf{P}^{1} \subset P$, which is smooth, irreducible and reduced of genus 8 according to Magma. Similarly, the other component is a genus 2 curve in $\mathbf{P}_{\left(y_{3}: y_{4}\right)}^{1} \times$ $\mathbf{P}_{\left(z_{0}: z_{1}\right)}^{1} \subset P$. In fact, only $F=0$ provides a non-trivial equation for this curve since $y_{0}=y_{1}=$ $y_{2}=0$ implies $Q_{0}=Q_{1}=Q_{2}=0$ and hence $G=H=0$ on this $\mathbf{P}^{1} \times \mathbf{P}^{1}$. As $F=0$ defines a smooth curve of bidegree $(2,3)$ in $\mathbf{P}^{1} \times \mathbf{P}^{1}$, this curve has genus $(2-1)(3-1)=2$.

In particular, the singular locus of the quotient X / ι consists of two curves of A_{1}-singularities. Since the fixed point locus X^{ι} consists of two curves, we conclude that locally on X the involution is given by $\left(t_{1}, t_{2}, t_{3}\right) \mapsto\left(-t_{1},-t_{2}, t_{3}\right)$ in suitable coordinates. Hence ι acts trivially on the nowhere vanishing holomorphic 3-form on the CY threefold X. Thus the blow up Z of X / ι in the singular locus will again be a CY threefold.

We determine the Hodge numbers of Z. To do so, it is more convenient to consider the blow up \tilde{X} of X in the fixed point locus X^{ι}. The involution extends to an involution $\tilde{\iota}$ on \tilde{X}, the fixed point set of $\tilde{\imath}$ consists of the two exceptional divisors and the quotient $\tilde{X} / \tilde{\imath}$ is the same Z. Moreover, $H^{i}(Z, \mathbf{Q}) \cong H^{i}(\tilde{X}, \mathbf{Q})^{\tilde{\imath}}$, the $\tilde{\imath}$-invariant subspace.

Standard results on the blow up of smooth varieties in smooth subvarieties (cf. [13, Thm 7.31]) show that $h^{2}(\tilde{X})=h^{2}(X)+2=4$ (due to the two exceptional divisors over the two fixed curves) and $h^{3}(\tilde{X})=h^{3}(X)+2 \cdot 8+2 \cdot 2=114$ (the contribution of the H^{1} of the fixed curves to H^{3} of the blow up). The Lefschetz fixed point formula for $\tilde{\imath}$ gives

$$
\chi\left(\tilde{X}^{\tilde{\imath}}\right)=\sum_{i=0}^{6}(-1)^{i} \operatorname{tr}\left(\tilde{\imath}^{*} \mid H^{i}(\tilde{X}, \mathbf{Q})\right) .
$$

Notice that $\tilde{\imath}^{*}$ is the identity on $H^{0}, H^{2}, H^{4}, H^{6}$, in particular $h^{2}(Z)=\operatorname{dim} H^{2}(\tilde{X}, \mathbf{Q})^{\tilde{\imath}}=4$. The fixed points of $\tilde{\imath}$ are the two exceptional divisors, these are \mathbf{P}^{1}-bundles over the exceptional curves hence

$$
2(2-2 \cdot 2)+2(2-2 \cdot 8)=1-0+4-t_{3}+4-0+1 \quad \Longrightarrow \quad t_{3}=42
$$

If the,+- eigenspaces of $\tilde{\imath}$ on $H^{3}(\tilde{X}, \mathbf{Q})$ have dimensions a, b respectively, then $a+b=114$ and $a-b=42$, thus $a=78$ and $a=\operatorname{dim} H^{3}(\tilde{X}, \mathbf{Q})^{\imath}=h^{3}(Z)$. As Z is a CY threefold it has $h^{3,0}(Z)=1$ and thus $h^{2,1}(Z)=(78-2) / 2=38$. Other examples of CY threefolds with $\left(h^{1,1}, h^{2,1}\right)=(4,38)$ are already known.

2.7. A (singular) projective model of Z

The fibers of $\pi_{2}: X \rightarrow \mathbf{P}^{1}$ are K3 surfaces, complete intersections of a quadric and a cubic hypersurface in \mathbf{P}^{4}. The involution ι on X restricts to a Nikulin involution on each smooth fiber. The quotient of such a fiber by the involution will in general be isomorphic to a K3 surface in
$\mathbf{P}^{2} \times \mathbf{P}^{1}$, defined by an equation of bidegree (3,2) (see [8, Section 3.3]). Using the same method as in that reference, we found that the rational map

$$
\begin{aligned}
& \mathbf{P}^{4} \times \mathbf{P}^{1}--\rightarrow \mathbf{P}^{2} \times \mathbf{P}^{1} \times \mathbf{P}^{1} \\
& \left(\left(y_{0}: \ldots: y_{4}\right),\left(z_{0}: z_{1}\right)\right) \longmapsto\left(\left(y_{0}: y_{1}: y_{2}\right),\left(y_{3}: y_{4}\right),\left(z_{0}: z_{1}\right)\right)
\end{aligned}
$$

factors over X / ι and the image, defined by an equation of multidegree $(3,2,2)$, is birational with Z. Using the explicit equation for the image and Magma, we found that the image has 38 singular points.

References

[1] L.B. Anderson, F. Apruzzi, X. Gao, J. Gray, S-J. Lee, A new construction of Calabi-Yau manifolds: generalized CICYs, Nucl. Phys. B 906 (2016) 441-496, arXiv:1507.03235.
[2] L.B. Anderson, F. Apruzzi, X. Gao, J. Gray, S-J. Lee, Instanton superpotentials, Calabi-Yau geometry, and fibrations, Phys. Rev. D 93 (8) (2016) 086001, arXiv:1511.05188.
[3] R. Altman, J. Gray, Y-H. He, V. Jejjalaf, B.D. Nelson, A Calabi-Yau database: threefolds constructed from the Kreuzer-Skarke list, J. High Energy Phys. (2) (2015) 158.
[4] P. Berglund, T. Hübsch, On Calabi-Yau generalized complete intersections from Hirzebruch varieties and novel K3-fibrations, arXiv:1606.07420.
[5] P. Candelas, A. Constantin, C. Mishra, Calabi-Yau threefolds with small hodge numbers, arXiv:1602.06303.
[6] A. Constatin, J. Gray, A. Lukas, Hodge numbers for all CICY quotients, J. High Energy Phys. 01 (2017) 001, arXiv:1607.01830.
[7] S. Coughlan, L. Golebiowski, G. Kapustka, M. Kapustka, Arithmetically Gorenstein Calabi-Yau threefolds in P^{7}, Electron. Res. Announc. Math. Sci. 23 (2016) 52-68.
[8] B. van Geemen, A. Sarti, Nikulin involutions on K3 surfaces, Math. Z. 255 (2007) 731-753.
[9] A. Ito, M. Miura, S. Okawa, K. Ueda, Calabi-Yau complete intersections in G_{2}-Grassmannians, arXiv:1606.04076.
[10] G. Kapustka, M. Kapustka, Calabi-Yau threefolds in P^{6}, Ann. Mat. Pura Appl. 195 (2016) 529-556.
[11] M. Kreuzer, H. Skarke, Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys. 4 (2002) 1209.
[12] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language, J. Symb. Comput. 24 (1997) 235-265.
[13] C. Voisin, Hodge Theory and Complex Algebraic Geometry I, Cambridge University Press, 2002.
[14] P.M.H. Wilson, Boundedness questions for Calabi-Yau threefolds, arXiv:1706.01268.

[^0]: * Corresponding author.

 E-mail addresses: alice.garbagnati@unimi.it (A. Garbagnati), lambertus.vangeemen@unimi.it (B. van Geemen).

