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“Non esistono condizioni ideali in cui scrivere,  
studiare, lavorare o riflettere, ma è solo la  

volontà, la passione e la testardaggine a  
spingere un uomo a perseguire il proprio  

progetto.”  
Konrad Lorenz (1903-1989), scienziato austriaco.  

 

“There are no ideal conditions to write,  
study, work or think, rather,  

it is just will, passion and stubbornness  
that push a man to pursue  

his own project”.  
Konrad Lorenz (1903-1989), Austrian scientist. 
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Sommario 
 

Molti studi hanno rivelato l'importanza dei mitocondri come organelli cellulari 
significativamente coinvolti nell'insorgenza o nella progressione di malattie 
neurodegenerative, il cui principale fattore di rischio è l’invecchiamento. I protocolli 
attuali per l'isolamento dei mitocondri cerebrali sono stati sviluppati per preservarne la 
vitalità, sacrificando la purezza necessaria per eseguire analisi biochimiche ad alta 
prestazione. Il mio progetto di dottorato si è concentrato sullo sviluppo di una nuova 
procedura, al fine di ottenere una frazione mitocondriale altamente purificata, a partire da 
tessuti congelati post-mortem di corteccia cerebrale umana di soggetti sani. La valutazione 
dell'arricchimento mitocondriale e di altri contaminanti cellulari è stata eseguita 
attraverso diversi saggi enzimatici, analisi di western blot e microscopia elettronica a 
trasmissione. Questi esperimenti di convalida hanno dimostrato la purezza dei mitocondri e 
la loro integrità, nonché la conservazione delle membrane associate ai mitocondri. Il 
processo di invecchiamento cerebrale è ritenuto responsabile della modifica chimica di 
lipidi e di cambiamenti nella composizione lipidica delle membrane cellulari. In questo 
contesto, non esistono studi precedenti sui lipidi di mitocondri cerebrali umani. Pertanto, 
questo nuovo metodo è stato applicato per studiare la composizione lipidica di mitocondri 
puri mediante cromatografia su strato sottile. Inoltre, abbiamo indagato se ci fossero 
cambiamenti correlati all'invecchiamento nella composizione lipidica in questi organelli 
essenziali alla vita e alla morte cellulari, in quanto ciò potrebbe portare a una riduzione 
della funzionalità della membrana mitocondriale stessa.  
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Abstract 

 

Many studies have revealed the importance of mitochondria as cellular organelles 
decisively involved in the onset or progression of neurodegenerative diseases, whose main 
risk factor is aging. Current protocols for brain mitochondria isolation have been 
developed to preserve viability, sacrificing the purity that is required to perform high-
throughput biochemical analyses. My Phd project focused on the development of a new 
procedure to obtain a highly pure mitochondrial fraction starting from post mortem frozen 
tissues of human brain cortex of healthy subjects. The evaluation of mitochondrial 
enrichment and other cellular contaminants has been performed through different enzyme 
assays, western blot analyses and transmission electron microscopy. These validation 
experiments demonstrated the purity of mitochondria and their integrity, as well as the 
preservation of mitochondria-associated membranes. The brain aging process is allegedly 
responsible for chemical modification of lipids and changes in the lipid composition of cell 
membranes. In this scenario, there are no previous studies on human brain mitochondria 
lipids. Thus, this new method has been applied to investigate lipid composition of pure 
mitochondria by means of thin layer chromatography. Furthermore, we investigated if 
there were aging related changes in the lipid composition of these organelles essentials to 
cell life and death, since that could produce an impairment of the membrane function. 
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1. Introduction 

1.1 The origin of mitochondria 

The discovery of mitochondria occurred in the middle of the nineteenth century 

and, although it derived from the contributions of several scientists, it should be 

attributed to the former who has detected mitochondria, the Swiss anatomist and 

physiologist Rudolf Albert von Kölliker, who described granular structures in 

muscle tissue cells [1]. These structures were then better described by the German 

pathologist Richard Altmann, who observed particular granules in almost all 

cellular types and called them “bioblasts” (life germ) (Fig.1).  

 

 

Figure 1. Histological drawings of “bioblasts” in flight muscle (right) and liver cells (left) 

as described by Altmann [2]. 
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Altmann explained in his book that these “bioblasts” were elementary organisms 

with genetic and metabolic autonomy, suggesting that they could have been 

symbionts as well as the fundamental units of cellular activity [2]. Unfortunately, 

Altmann's theories were not accepted by his colleagues, although in the 1960s the 

American scientist Lynn Margulis Sagan would have resumed his speculations by 

suggesting that mitochondria derived from certain bacteria endocyted by host cells, 

becoming endosymbionts [3].  

Eight years later, thanks to the microscope, the microbiologist Carl Benda noticed 

particular bodies during insect spermatogenesis in both filamentous and granular 

form, so he gave them the current name mitochondrion, referring to the appearance 

of these organelles [4]. Indeed, the etiology of the word “mitochondrion” comes 

from the fusion of two terms in ancient Greek: the words “µἴτος” (mitos) meaning 

thread and “χόνδρος” (chondros) meaning granule.  

1.2 The morphology and structure of mitochondria 

In the 20th century, the knowledge about mitochondria increased exponentially due 

to the advancement of biochemical, genetic and instrumental techniques, such as 

the use of electron microscopy. What do we know now about these intriguing 

organelles? They are present in the cytoplasm of all aerobic eukaryotic cells and 

have a spherical or elongated shape that is nearly the size of a bacterium, being 

correlated both from a structural and an evolutionary point of view [5].  

Mitochondria have a diameter of about 0.5 μm and a length of about 1-2μm, but 

they can reach a size up to 10 μm in length. Their number can vary from only one 

mitochondrion in some unicellular algae to tens of thousands in oocytes but, in 
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most cases, they are on average 500-1000. Their shape and volume may be 

modified due to osmotic and chemical changes, in fact, mitochondria swell and 

contract after metabolic processes or in relation to changes of osmotic pressure in 

the cellular environment [6]. Although the external form of mitochondria is 

variable, their internal structural organization is highly conserved [7].  

Mitochondria move freely in the cytoplasm and tend to thicken where the demand 

for energy is greater (i.e, in fibers muscles surrounding myofibrils or in synapses of 

nervous system). The movement of mitochondria has been recognized as a result of 

intricate interactions between proteins on the outer surface and various components 

of the cytoskeleton, which include actin filaments, microtubules, and intermediate 

filaments [8]. With the advent of the electron microscope it was possible to study 

the ultrastructural organization of mitochondria. It is delimited by a double 

membrane: an external membrane in contact with the cytoplasm and an internal 

membrane that folds over many times and creates layered structures called 

“cristae”. Both membranes have a thickness of about 5-6 nm and delimit a volume 

of about 8-20 nm called compartment or intermembrane space. The internal 

membrane encloses the mitochondrial matrix (Fig. 2).  

The outer membrane is smooth and rather elastic, has a relatively simple 

constitution, with about 50% of lipids and 50% of proteins and with reduced 

transport functions. Its structure is very similar to that of plasma membrane and 

other cellular compartments but, a unlike these, it has a great permeability [9, 10]. 

Indeed, mitochondria contain the voltage-dependent   anion   channel (VDAC) 

(also known as mitochondrial porin), which polymerizes and forms pores (aqueous 

transmembrane channels) in the mitochondrial outer membrane, making it freely 
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permeable to ions and molecules with a molecular weight of less than 5000 Dalton 

[11]. Such permeability is confirmed by the biochemical composition of 

intermembrane space, which is similar to that of cytoplasm.  

The inner membrane is structurally and functionally much more complex than the 

outer membrane. Approximately 80 % consists of proteins and the remaining 20 % 

of lipids [9]. The inner membrane differs from all other cellular membrane systems 

for the absence of cholesterol in its lipid skeleton and for having a high content of 

cardiolipin [12], an acidic phospholipid. Moreover, the inner membrane contains 

most of the enzymes involved in the transport of electrons and oxidative 

phosphorylation, various dehydrogenases and different transport systems that 

catalyze the transfer of substrates, metabolic intermediates and adenyl nucleotides 

between the cytosol and the matrix [9].   

 

Figure 2. Ultrastructural mitochondrial organization. A) Electron micrograph. B) Schematic 

representation (Source: http://book.bionumbers.org/how-big-are-mitochondria/) 
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Little is known about the intermembrane space, but electron microscopy 

demonstrated the presence of contact sites between membranes, thus forming 

contiguous zones between the outer and inner membranes [13]. This space also 

contains proteins, such as cytochrome, that play major roles in mitochondrial 

energetic metabolism and apoptosis [14].   

The matrix is a gel-like material that contains ribosomes, most of the enzymes that 

are responsible for the citric acid cycle reactions and the enzymes involved in fatty 

acid oxidation. Through electron tomography of neuronal mitochondria Perkins 

and colleagues found out that a specific subdomain of the inner membrane called 

“cristae membrane” form invaginations that protrude into matrix space through 

narrow, tubular openings they called “cristae junctions” [15] (Figure 3). The 

attachments of cristae to the inner boundary membrane is not described as 

infoldings but as small tubes with the diameter of 30 nm [16]. This new 

information about the mitochondrial structure can have important functional 

implications: it is assumed that "cristae junctions" can be a barrier to the free 

diffusion of ions and metabolites like ADP (adenosine diphosphate) between the 

intercristal and intermembrane spaces [16]. Moreover, inside the matrix, there are 

several copies of the mitochondrial chromosome.  

The human mitochondrial DNA (mtDNA) is relatively small (16569 bp), circular, 

double-stranded and contains 37 genes coding for two rRNAs, 22 tRNAs and 13 

polypeptides, which are all subunits of enzyme complexes of the oxidative 

phosphorylation system [17]. The other proteins required for the respiratory chain 

are coded by nuclear DNA, which implies a close complementation between the 
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two genetic systems. The mtDNA is transmitted through maternal line, since 

mitochondria are almost exclusively inherited by the zygote from the oocyte [18]. 

 

 

Figure 3. Model of mitochondria based on EM tomography. Mitochondria have three 

distinct compartments separated by two membrane systems. The inner membrane consists 

of two parts, the cristae membranes and the inner boundary membrane. These junctions 

have been proposed to regulate the dynamic distribution of proteins, lipids, and metabolites 

between mitochondrial compartments. A) A surface-rendered view of an isolated liver 

mitochondrion generated from an electron tomographic volume. Scale = 100 nm. (B) A 

model of the crista junction in relation to mitochondrial compartments. Reproduced by 

Yamaguchi et al. 2009 [19]. 
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1.3 Endosymbiosis hypothesis 

About 1.5 billion years ago the very first nucleated cell appeared on the earth. Lynn 

Margulis Sagan proposed that, during the transition to the oxidizing atmosphere, 

eukaryotes originated from the survival of a heterotrophic anaerobe that ingested 

an aerobic prokaryotic microbe [3]. As stated above, this is supported by many 

existing analogies between mitochondria and bacteria. They have similar size and 

both have one single circular chromosome, which retains genes encoding rRNAs, 

tRNAs, proteins involved in redox reactions, and proteins required for 

transcription, translation, and replication [17]. Respiratory chain enzymes are 

present in the membrane of bacteria and in the mitochondrial internal membrane. 

In addition, the bacterial membrane has introflexions (mesosomes) similar to 

mitochondrial cristae. Like bacteria, mitochondria have no histones and their 

ribosomes are sensitive to certain antibiotics such as chloramphenicol [20]. 

Moreover, mitochondria are formed only through binary fission, the form of cell 

division used by bacteria and archaea [21]. Transport proteins called porins are 

found in the outer membranes of mitochondria and as well as in bacterial cell 

membranes [22]. Cardiolipin is found only in the inner mitochondrial membrane 

and bacterial cell membranes [23].  From all these circumstances, it has been 

hypothesized that the inner membrane and the mitochondrial matrix represent the 

symbiont which was originally enveloped by the plasma membrane and embedded 

in the eukaryotic cell. 
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1.4 Mitochondrial Functions 
Mitochondria are involved in many and important cellular processes (Table 1) and 

in particular they play the fundamental function of recovering the energy contained 

in the foods, converting it into chemical energy in the form of ATP (adenosine 

triphosphate). As a matter of fact, despite differing in structure and function in 

different cells, mitochondria are always "closed spaces" where most of the energy 

metabolism takes place [24]. Among scientific milestones, the early studies on cell 

respiration and oxidative phosphorylation were performed by Battelli and Stern, 

who studied biological oxidation [25], and by Warburg who reported that 

respiration was linked to particles [26], later called “grana”, involved in 

strengthening of “respiratory enzymes” [27].  In 1948, Eugene Kennedy and Albert 

Lehninger identified mitochondria as the cell compartment where oxidative 

phosphorylation occurs [28]: this process satisfies about 90 % of the energetic need 

of cells, through the reoxidation of reduced pyridinic and flavinic coenzyme 

(NADH and FADH2 respectively), catalyzed by the redox complexes of respiratory 

chain leading to ATP synthesis.  

Mitochondria functions include other essential metabolic pathways, such as the 

citric acid cycle, fatty acid oxidation, the synthesis and degradation of aminoacids 

(urea cycle), and the synthesis of iron–sulfur clusters and heme. Mitochondria can 

work as temporary calcium deposits considering their ability to store it rapidly; this 

contributes to the overall homeostasis of this ion, which is involved in various 

cellular reactions such as signal transduction. Calcium is imported into the matrix 

through a uniport driven by the membrane potential on the inner membrane and 

released through Na+/Ca2+ transporter or a Ca2+-induced release pathway [29, 30]. 
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Mitochondria therefore function as an intracellular calcium reserve along with the 

endoplasmic reticulum, with which there is close communication [31].  

 

Table 1. Functions of mitochondria (Source: https://universe-review.ca/F11-

monocell11a.htm) 

Moreover, mitochondria are of cardinal relevance not only in maintaining cellular 

life but also in controlling programmed cell death (apoptosis) through complex 

mechanisms that can culminate with the opening of the mitochondrial permeability 

transition pore (MPTP), that it is a transmembrane channel voltage-dependent, 

belonging to the inner membrane. Its irreversible opening causes uncoupling of the 

respiratory chain with loss of the electrochemical gradient, cessation of ATP 
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synthesis, release of mitochondrial proteins from intermembrane space (i.e., 

cytochrome c, Smac / Diablo and AIF), and Ca2+ outflow from the matrix [32]. 

Many of these events favor in turn the opening of the pore causing the 

amplification of the process. The final result is a massive osmotic swelling of the 

mitochondria with subsequent mitochondrial membrane rupture and complete 

depolarization.  

1.4.1 Fusion and fission 

Mitochondrial fusion and fission processes are closely related to major events in 

the apoptosis process. Indeed, in most cell types, mitochondria are organized 

within a network of organelles, but at the beginning of the apoptotic process the 

network tends to fragment [33]. The term mitochondrial fission means the 

breakdown of the mitochondrial network in small isolated organelles. It is a typical 

process that manifests during cell division in order to assure the inheritance of the 

mtDNA. This process also occurs during differentiation in response to changes in 

the cell energy need or to toxic stress. Mitochondrial fission is essential for 

providing the growing and dividing cells with an adequate number of 

mitochondria. The mitochondrial fusion process is needed to maintain the network 

of mitochondria and for the correct functioning of these organelles. Indeed, a 

network densely interconnected, can mitigate the effects of environmental damage 

through the exchange of proteins and lipids with other mitochondria. The fusion-

fission cycle is therefore a balance of two concurrent processes: one redeems the 

damage, while the other eliminates it [34]. 
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1.4.2 The electron transport chain 

Through the electron transport chain, the mitochondria fulfill the ATP cell demand 

by performing oxidative phosphorylation. This process consists of a series of 

electron transporters (complexes), most of which are embedded in the inner 

membrane, containing prosthetic groups able to accept and donate one or two 

electrons. The electron transporters complexes originally described are four; 

Complex I, Complex II, Complex III and Complex IV. Additionally, two moving 

electron carriers are needed: coenzyme Q (CoQ or Q) and cytochrome c (Cyt c).  

 

Figure 5. Representation of complexes embedded in the inner membrane with electron flow 

leading to O2 and production of ATP. (Source: 

https://www.boundless.com/biology/textbooks/boundless-biology-textbook/cellular-

respiration-7/oxidative-phosphorylation-76/electron-transport-chain-362-11588/) 
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Our knowledge on ATP synthesis is mainly based on the hypothesis proposed by 

Peter Mitchell in 1961, in which energy translation occurs through the creation of 

transmembrane protonic gradients associated with electronic transfer: the 

chemiosmotic theory [28]. The outer membrane is permeable, in contrast to the 

internal one, even against small molecules and almost all ions including protons 

(H+); the only chemical species that can cross the membrane are those that possess 

a specific transporter inserted into the membrane itself. These are the key features 

for the creation and maintenance of the protonic gradient. The respiratory chain 

receives electrons coming from different pathways by reducing equivalents 

(NADH and FADH2). Electrons derived from NADH are transferred to Complex I 

and then to CoQ, while those derived from succinate are transferred to FADH2 and 

then to Complex II, hence to CoQ. From CoQ the electrons pass to Complex III, to 

Cyt c, then to Complex IV and finally to molecular oxygen to give H2O (Figure 5). 

The free energy released by the electron flow is coupled to the endoergonic 

transport of protons through the inner mitochondrial membrane. This proton 

transport produces both a chemical gradient (ΔpH) and an electrical gradient (ΔΨ), 

generating a protonic electromotive force that drives the protons from the 

intermembrane space to the matrix; as the inner membrane is impermeable to the 

protons, these, in order to return, must pass through the specific domain F0 of the 

transmembrane channel called ATP synthase (or Complex V). The driving force 

that pushes the protons into the matrix provides the energy required for ATP 

synthesis, catalyzed by the F1 domain of ATP synthase. Part of the ATP is used for 

the mitochondrial needs, but the majority is transported out of the organelle 

through the adeninucleotide transporter (ANT) and used for different cellular 

functions. 
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1.4.3 Reactive oxygen species (ROS) 

Mitochondria are considered the largest source of reactive oxygen species (ROS) 

[35] whose production is inevitable during normal oxidative metabolism and 

increases considerably in pathological conditions [36]. Oxygen is a highly 

oxidizing molecule, so it easily accepts electrons from other molecules, producing 

partially reduced products, known as ROS. Since these species have one or more 

free electrons (free radicals), they are unstable and particularly reactive, so they 

tend to pair the electrons by yielding or receiving an opposite spin electron from 

other molecules, to achieve a stable conformation. These partially reduced species 

can react with other radicals, but also with non-radical organic molecules such as 

carbohydrates, nucleic acids, lipids and proteins, generating a series of chain 

reactions damaging biological systems [37].  

The ROS include superoxide anion (O2
.-) and its radical conjugated acid (HO2

.); the 

hydroxyl radical (OH.), carbonate (CO3
.-), peroxyl (RO2

.) and alkoxyl (RO.). Even 

some neutral, non-radical species are considered ROS, among them hydrogen 

peroxide (H2O2), HOCl, reactive aldehydes, singlet oxygen and lipid 

hydroperoxides (LOOH) [38,39]. Similarly, reactive nitrogen species (RNS) 

includes both radical species such as nitrogen monoxide (NO.) and non-radical 

species, such as nitrous acid (HNO2), nitrosyl cation (NO+), nitroxyl anion (NO−), 

dinitrogen trioxide (N2O3), dinitrogen tetraoxide (N2O4), nitronium (nitryl) cation 

(NO2
+), organic peroxides (ROOH), aldehydes (HCOR) and peroxynitrite 

(ONOOH) [40].  
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Increased concentration of ROS and reactive nitrogen species (RNS) causes 

"oxidative stress". This phenomenon is the result of a disequilibrium in the 

homeostasis of reactive species: in normal cells, excess ROS or RNS is prevented 

by scavenging systems and by the ability of some of these species (H2O2) to 

permeate the mitochondrial membrane freely in cytosol, where they play 

physiological roles and are detoxified [41].  

The mitochondrial respiratory chain is the main source of reactive oxygen species 

in a cell, particularly superoxide anion. Mitochondrial O2
•− production takes place 

at redox-active prosthetic groups within proteins, or when electron carriers such as 

reduced-CoQ are bound to proteins. The kinetic factors favor or prevent the one-

electron reduction of O2 to O2
•− , that determine mitochondrial O2

•− production [42].  

O2
•−  released into the matrix is detoxified by a specific superoxide 

intramitochondrial dismutase (MnSOD), which catalyzes the following reaction: 2 

O2
•−  + 2H+ = O2 + H2O2.   Then, the reduction of H2O2, is performed by the enzyme 

glutathione peroxidase, responsible for most detoxification of intracellular 

hydrogen peroxide; the reaction needs glutathione, whose deficiency is associated 

to mitochondrial dysfunction and consequent cell damage [43]. 

1.4 Cardiolipin 

Cardiolipin (CL) is the signature phospholipid of the mitochondria and has a 

pleiotropic function inside the organelle. Its primary function is associated with 

ATP production along with the electron transport chain, suggesting a fundamental 

role in the bioenergetic process. CL interacts with several inner membrane proteins 

and enzymes, acting as a co-factor for optimal activity [44]. Among these, all the 
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electron transport chain complexes and ADP/ATP carrier (AAC) have shown to be 

tightly bound to CL molecules [45-53]. The AAC allows the ATP to pass across 

the inner membrane to intermembrane space, after oxidative phosphorilation. 

Claypool asserted that, although it is unknown how CL facilitates normal AAC 

physiology, the high affinity between AAC and CL is strongly implicated in full 

AAC function [54]. Indeed, Imai and colleagues showed that, in rat brain 

mitochondria, AAC activity requires either CL or phosphatidylglycerol [55]. Alike, 

CL binding to Complex I, or Cytochrome c oxidase, stabilizes all subunits 

interactions to regulate the electron activity of the enzyme [56] and its binding to 

Complex III is required for the enzyme maintenance and stability, as well as its 

functional and structural integrity [57].  

Furthermore, CL is involved in apoptosis process through the interaction with Cyt 

c; CL bound to Cyc c and act as a peroxidase, catalyzing CL peroxidation which is 

required for release of Cyt c during apoptosis [58]. It must be underlined that CL is 

a phospholipid easily susceptible to ROS attack because particularly rich in 

unsaturated fatty acids and because of its location in the inner membrane, near to 

the site of ROS generation [59]. For these reasons, it is easy to perceive how 

oxidative damage may have deleterious effects on mitochondrial function. 

Moreover, Petrosillo and colleagues showed that exogenous added oxidized CL 

sensitized isolated mitochondria to Ca2+-induced MPTP opening and release of 

cytochrome c [60], and also oxidation of endogenous CL resulted in MPTP 

opening [61].  
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1.5 The role of mitochondria in brain aging 

In the central nervous system, the importance of mitochondrial bioenergy lies in 

the fact that neurons require high ATP consumption to perform their functions. The 

loss of the complex dynamic balance of the mitochondria is an alarm bell for 

cellular damage and can drive to cell death. Brain energy metabolism declines with 

age [62], and mitochondria can be involved in cellular mechanisms that can be 

impaired both in physiological and pathological aging, such as chronic 

neurodegenerative diseases of the senile brain [63]. It is well known that brain 

synapses are the core components of the central nervous system: they allow a 

signal (electrical or chemical) to pass from one neuron to another. Mitochondria 

are concentrated in presynaptic terminals by active transport to provide energy 

supply for information transfer [64]. Despite the well documented plasticity of the 

synaptic junction areas, these peculiar zones of the neuronal membrane undergo 

serious deteriorative events during aging. Indeed, Bertoni-Freddari and co-workers 

carried out a morphometric study on the ultrastructural features of synaptic 

mitochondria in cerebellar glomeruli of adult and old patients, and found a 

significant impairment in the mitochondrial dynamic morphology [65].  

1.5.1 The “mitochondrial theory of aging” 

In 1956 the biogerontologist Denham Harman published a theory, known as the 

“free radical theory of aging”, based on the belief that damage by ROS is critical in 

determining life span [66]. When the free radical theory of aging is focused on 

mitochondria, it emerges as the “mitochondrial theory of aging” [67]. As 

mitochondria continue to generate ROS throughout the cell life, a chronic oxidative 



17 
 

stress is produced and this phenomenon increases oxidation of mitochondrial 

proteins, lipids and DNA. ROS also inhibits aconitase activity and thereby affects 

the tricarboxylic acid cycle [68]. A proteomic analysis in rat cerebellum showed an 

increased protein nitration during aging [69]. The MnSOD activity is inhibited by 

nitration and, not surprisingly, it decreases linearly in aged mice brain 

mitochondria [70]. This means that, inside mitochondria, a powerful antioxidant 

defense is overwhelmed during aging. Moreover, it should be stressed that the 

brain is highly vulnerable to oxidative damage because of a relative lack of anti-

oxidant enzymes, an abundance of oxidizable substrates like polyunsaturated fatty 

acids, catecholamines, a high content of redox-active transition metals in certain 

brain regions and a high rate of oxygen utilization per gram weight of tissue 

[71,72].  

1.5.2 Oxidative phosphorylation and aging 

Aging can damage oxidative phosphorylation through various mechanisms. For 

example, decreasing the enzymatic activity of one of the electron transport chain 

complexes can slow the oxidative phosphorylation rate. However, the maximum 

enzymatic activity expressed by the complexes of the electron transport chain 

seems to be in excess respect to phosphorylation, so that a 30-50% decrease in its 

activity is necessary to achieve a real reduction in the maximum phosphorylation 

speed [73]. However, disparate experimental systems have shown an impairment of 

electron transfer complexes in old rat brains [74,75] and in old mice brains [76,77].  
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1.5.3 Mutations of the mitochondrial genome 

The accumulation of somatic mtDNA mutations and the subsequent cytoplasmic 

segregation of these mutations have been shown to contribute to aging process in 

human brain areas such as putamen and cortex [78]. Besides, it has been 

demonstrated that brain mtDNA from elderly individuals had a higher aggregate of 

mutations than brain mtDNA from younger individuals. The average aggregate 

mutational burden in elderly subjects was 2 x 10(-4) mutations/bp [79]. The 

mutation mtDNA4977 is a 4,977 bp deletion of the mitochondrial genome usually 

found in patients with Kearns-Sayre disease, a genetic mitochondrial myopathy. 

Through PCR analysis, Soong and co-workers measured in 12 brain regions of 6 

normal adults (humans) the levels of mtDNA4977 and presented interesting data: a 

comparison of the same region between subjects showed an increase of mtDNA4977 

with age. Particularly, the highest levels were in regions characterized by a high 

dopamine metabolism: caudate, putamen and substantia nigra, while cerebellum 

showed no age-related increase [80]. A possible explanation of the elevated rate of 

mutations observed in the mtDNA (much higher than for nuclear DNA) may be 

explained by the fact that mtDNA is highly exposed to ROS: 1) it is located very 

near the inner mitochondrial membrane where ROS are produced, 2) it is not 

excessively condensed or protected by histones and 3) it has limited repair activity. 

1.5.4 Mitophagy  

In order to maintain a proper cellular bioenergetic status, several quality control 

mechanisms are implemented to eliminate damaged or misfolded mitochondrial 

proteins [81]. Malfunctioning organelles can accumulate through aging, and so it is 
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important to entirely degrade damaged mitochondria. In this case, the cell activates 

a mechanism called mitophagy, which is a selective form of macroautophagy, 

fundamental for cellular homeostasis and implicated in several disease [82].  

Various papers have showed that the depolarization of the mitochondrial 

membrane leads to stabilization of PINK1 (PTEN-induced kinase 1), that in turn 

recruits the E3 ubiquitin ligase Parkin to mitochondria which can trigger 

mitophagy [83-85] (Figure 6). Since the PINK1-parkin pathway is known to be 

involved in the hereditary form of Parkinson’s disease [86], alterations in 

mitophagy machinery may be linked to aging and age-related diseases [87]. 

Although the details of this process need to be further investigated, it seems that 

the regulation of mitophagy shares primary steps with the macroautophagy 

pathway, while displaying different regulatory steps specific for mitochondrial 

autophagic turnover [89].  

Nutrient starvation is a well-established mechanism of increased longevity among 

species because it activates autophagy by inhibiting the Insulin/PI3K/TOR 

signalling pathway [90]. The removal of damaged mitochondria through mitophagy 

could be one of the contributing factors of increased life span by caloric restriction. 

Moreover, it has been reported that low levels of ROS act as signal for mitophagy 

[91]. For example, Kirkland and colleagues found that nerve growth factor (NGF)-

deprived rat sympathetic neurons revealed cardiolipin loss and mitochondrial mass 

decline together with increased production of ROS species and increased lipid 

peroxidation. They were able to block peroxidation, loss of cardiolipin, and the 

decrease of mitochondrial mass with the use of antioxidant agents. So they 

suggested that this decline, caused by autophagy of damaged mitochondria, derived 



20 
 

from augmentation of ROS production [92]. On the other side, high ROS levels 

mediate p53 activation that induces autophagy inhibition [93] and exhibits 

prooxidative activities that further increase the stress level, leading to cell death 

[94]. 

 

 

Figure 6. Mechanism of PINK1 and parkin-induced mitophagy. (A) If the mitochondrial 

membrane potential is high, PINK1 is imported into mitochondria, proteolytically 

processed and rapidly degraded. (B) If mitochondria are depolarized, PINK1 accumulates 

on the mitochondrial surface, recruits parkin, which ubiquitinates mitochondrial proteins. 

This process is followed by the recruitment of the adaptor protein (p62), which link 

ubiquitinated cargo to the autophagic machinery. The organelle is engulfed by phagophore, 

which mature into autophagosome, fuse with lysosome to form autolysosome, and finally 

digest its content by mitophagy. Reproduced from Exner et al. 2012 [88].  
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1.6 Mitochondria and age-related diseases 

It is interesting to note that brain mitochondrial dysfunctions and oxidative stress 

have a pivotal role in the pathogenesis of both Parkinson’s Disease (PD) and 

Alzheimer’s Disease (AD), although the molecular link between these age-related 

diseases and the physiological brain aging is still obscure [95]. 

1.6.1 Mitochondria involvement in Alzheimer’s Disease 

AD is the most common form of degenerative dementia and begins predominantly 

in the senile age permanently affecting many cognitive faculties [96]. As the 

average life expectancy progressively increases, the proportion of patients affected 

continuously heightens, becoming a priority for public health. There are currently 

no preventive therapies, but only therapeutic interventions to mitigate the 

symptoms. Many factors contribute to the difficulty of the study approach: the lack 

of information on the pathophysiology of the disease, the lack of an animal model 

to study the pathological processes and evaluate the efficacy of therapies, and the 

absence of a definite biomarker for early stage diagnosis [97].  

At histological level AD brain shows a strong protein accumulation: β-amyloid 

peptide (Aβ) is the major component of the extracellular neuritic plaques, while 

hyperphosphorylated tau protein is the major component of intracellular 

neurofibrillary tangles. The molecular events leading to the development of 

sporadic late-onset AD have not been settled. As aging is the greatest risk factor for 

AD, and energy metabolism is reduced, it has been proposed that mitochondrial 

dysfunction could be the primary event that causes Aβ deposition, synaptic 

degeneration, and formation of neurofibrillary tangles [98,99]. In fact, Bubber and 
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coworkers found in AD brains a significant decrease in the activities of three TCA 

cycle enzymes: pyruvate dehydrogenase complex, isocitrate dehydrogenase and 

alpha-ketoglutarate dehydrogenase complex [100]. Moreover, there is also a 

diminished activity of COX in platelets and hippocampus from AD patients 

compared to controls [101] and an impairment of mitochondrial biogenesis thus 

suggesting and involvement of mitochondrial abnormalities during the disease 

[102]. 

1.6.2 Mitochondria involvement in Parkinson’s disease 

After AD, PD is the most common neurodegenerative disorder in individuals over 

the age of 65. The most common symptoms of the disease are: “resting tremor, 

plastic rigidity, paucity or delayed initiation of movement, slowness and impaired 

postural and righting reflexes” [103]. The fundamental macroscopic 

anatomopathological alteration in PD brain is the loss of pigmented neurons in the 

pars compacta of the substantia nigra with the microscopic presence of inclusion 

bodies called "Lewy bodies" in surviving neurons [104]. PD and parkinsonism 

become clinically appreciated only when about 50-70% of dopaminergic cells is 

lost [105]. This cell loss results in reduced dopaminergic projection to putamen and 

therefore a dysfunction of the basal ganglia [106].  

In the last few decades, mitochondrial dysfunction has been strongly associated 

with PD: indeed, complex I activity was reported to be significantly reduced in 

mitochondria of substantia nigra [107] and in frontal cortex from post mortem 

brain of PD subjects [108]. Besides, Bender and colleagues showed how levels of 

deleted mtDNA were higher in dopaminergic neurons from PD patients in 
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comparison to age-matched controls [109]. Since complex I is considered one of 

the major producer of ROS [110], it is not surprising that dopaminergic neurons, 

which are exposed to a high oxidative burden, are particularly vulnerable to 

mtDNA damages. Looking at familial PD, there are several mutated genes linked 

to mitochondria. PINK 1 and parkin, both described above for their fundamental 

role in mitophagy, are associated with autosomal recessive PD [111,112].  

Additionally, mutations in the DJ-1 gene, encoding a protein whose function is still 

largely unknown, is associated with early onset autosomal recessive PD [113]. 

There is some demonstration that DJ-1 might play a role in preventing cell death as 

antioxidant defense [114], and that its loss leads to reduced mitochondrial 

membrane potential [115]. Furthermore, Irrcher and coworkers reported that DJ-1 

deficient cultured neurons, mouse brain and lymphoblast cells derived from 

patients displayed aberrant mitochondrial morphology, which is a sign of 

perturbation of their dynamic [116]. Finally, mutations in leucine-rich repeat kinase 

2 (LRRK2) gene remain the most common cause of late onset autosomal dominant 

familial PD and some case of sporadic PD [117]. LRRK2 is present mainly in 

cytoplasm, but is also linked to outer mitochondrial membrane, similar to the 

localization of Parkin. In PD, the critical feature of LRRK2 is its enhanced kinase 

activity, so it might be a target of therapeutic intervention [118]. 
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1.7 Human brain lipids 

1.7.1 Lipid composition of human brain 

The primary biological functions of lipids in the body are the following: deposit of 

chemical energy in storage fat (triglycerides), and structural constituents of cell 

membranes. Lipids are the most common biomolecules present in the brain (12 %) 

and account for 50 % of its dry weight [119], suggesting an elemental role. The 

lipid composition of the whole human brain is chiefly formed by: 1) phospholipids 

which include ethanolamine glycerophospholipids (PE), serine 

glycerophospholipids (PS), choline glycerophospholipids (PC), inositol 

glycerophospholipids (PI), glycerol glycerophospholipids (PG), phosphatidic acid 

(PA); 2) sphingolipids (SL), which includes sphingomyelin (SM), ceramide and 

glycolipids (i.e. gangliosides, galactocerebrosides); 3) cholesterol and free fatty 

acids [120]. Table 2 reports the lipid composition of normal human brain tissue, 

displaying differences between gray and white matter (table 2).  

The various glycerophospholipid species, along with cholesterol and sphingolipids, 

represent the greatest components of cell membranes generating the structure and 

fluidity of somatodendritic and axonal membranes of neurons, and also of those of 

the glia and other cell types, as well as various intracellular organelles [121]. 

Glycerophospholipids are a family of amphipathic molecules distributed 

asymmetrically across the plasma membrane and are composed by a polar head 

group with a glycerol backbone and a phosphobase (ethanolamine, inositol, 

choline, etc.), and a non-polar tail group consisting of two fatty acid chains [122]. 

As all membrane possess a typical composition with more or less the same classes 
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of glycerophospholipids, the ratio between these classes and their molecular 

species are unique and provide membranes from different cellular organelles with 

specific characteristics [123].  

Sphingolipids are amphipatic membrane lipids, which share the same double tailed 

hydrophobic moiety, ceramide, responsible for their insertion in the glycerolipid 

bilayer of biological membranes [124].  

 

Table 2. Percentages of total lipid composition distinguished in white and gray matter of 

human brain tissue. Gangliosides could belong to the unidentified species. Reproduced 

from Krafft et al. 2005 [125]. 

Ceramide is composed by a long-chain amino alcohol, known as sphingosine, 

linked via an amide bond with a variable length fatty acid chain. The term 

“sphingosine” is also used to identify uncommon structures with shorter and longer 
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alkyl chain [126]. Sphingomyelin belongs to the group of sphingophospholipids. It 

is composed of a ceramide backbone with a PC residue attached.  

Among glycosphingolipids, the hydrophilic moiety is represented by an 

oligosaccharide chain, whose structure can range from a very simple one, such as 

galactose in galactosylceramide, to a higher degree of complexity such as sialic 

acids (sugar residues containing a carboxyl group) in gangliosides. Due to their 

highly hydrophilic and bulky saccharidic head group, gangliosides have a strong 

polar character and they are present at elevated levels in neurons [127]. Since they 

are heterogeneous molecules, both in the oligosaccharide and ceramide portions, 

gangliosides are classified according to the oligosaccharide sequence and the 

number of sialic acid residues bound to it by an α-glycosidic bond. In the 

Svennerholm classification for brain gangliosides, letter G denotes ganglioside, 

letter M is a mono-sialic acid residue, D is for di- , T for tri- , and Q indicates 

tetrasyalic acid phosphingolipids [128,129]. A number is then assigned to the 

individual compound, which was initially referred, to its migration into a particular 

chromatographic system.  

Cholesterol is a lipid with a unique structure consisting of four linked hydrocarbon 

rings forming the bulky steroid structure. There is a hydrocarbon tail linked to one 

end of the steroid and a hydroxyl group linked to the other end. The hydroxyl 

group is able to form hydrogen bonds with nearby carbonyl oxygen of 

glycerophospholipid and sphingolipid head groups.  
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1.7.2 Lipids functions in human brain 

Neurochemists initially thought that the absence of triglycerides in the brain meant 

that lipids had only a mere structural function in the central nervous system. 

Subsequent studies revealed that non-membrane lipids are also bioactive 

compounds (i.e. steroid hormones and eicosanoids) and, later, that membrane 

lipids, which were previously believed to have only a structural role, also have 

crucial functions in signal transduction across biological membranes [130].  

1.7.2.1 Glycerophospholipids 

In neural membranes, several glycerophospholipids influence the fluidity, 

permeability, balance of hydrophilic and hydrophobic membrane components, 

charge, reactivity to regulate membrane-bound enzyme activity and ion-channels 

[131,132]. Moreover, glycerophospholipids have other crucial functions in brain 

metabolism as second messenger reservoir. After phospholipase stimulation by 

different agonist, such as hormones or neurotransmitter, an intricate signalling 

cascade activates different metabolic pathways. For example, phospholipase A2 

produces arachidonate, eicosanoids and platelet activating factor (PAF) starting 

from PC, PE and PI, while phospolipase C produces diacylglycerol and IP3 starting 

from PI [133]. PAF has many important roles in brain tissue: it is a retrograde 

messenger in memory formation [134], activates protein kinase c, modulates the 

levels of neuropeptides and regulates neuronal differentiation [135]. 

 Glycerophospholipids that contain alk-1-enyl groups are called plasmalogens and 

are major components of the phospholipids of the mammalian brain [136]. 

Plasmalogens may function like a natural antioxidant because their vinyl ether 
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linkages display reactivity with ROS [137] and may be involved in membrane 

fusion during synaptic transmission thanks to the higher capacity of PE 

plasmalogens to form non-lamellar lipid structures [138].  

1.7.2.2 Sphingolipids and cholesterol 

Ceramide is a cell membrane component involved in the neobiosynthesis and 

catabolism of both sphingomyelin and glycosphingolipids [139](Fig. 7). Ceramides 

and other intermediates of sphingolipid metabolism are key players in intracellular 

signaling and are involved in apoptosis, cell senescence, proliferation, cell growth 

and differentiation [140]. The biosynthetic pathway of sphingolipids first leads to 

ceramide, which generates sphingomyelin and glycosphingolipids. The processing 

of these molecules can produce a range of bioactive lipid species which includes 

ceramide-1-phosphate (C1P), ceramide, sphingosine and sphingosine-1-phosphate 

(S1P) [141]. S1P is essential for development of the brain [142], calcium 

homeostasis [143], cellular growth [144], inhibition of apoptosis [145, 146], 

histone modifications [147], and nuclear factor-κB signalling [148]. While S1P and 

C1P have antiapoptotic effects and favour cell survival, the corrispectives 

sphingosine and ceramide are proapoptotic and associated with growth arrest [149, 

150].  
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Figure 7. Schematic biosynthetic pathway of glycosphingolipids. 
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Within the membrane ocean there are lipid structures of elevated cholesterol and 

glycosphingolipid content named “lipid rafts” [151] (Fig. 8). Lipid rafts incorporate 

also different proteins involved in various aspects of nervous system function: a 

variety of receptor systems, such as G protein-coupled receptors [152] and 

neurotransmitter receptors [153, 154]. Acting as signaling platforms, lipid rafts are 

involved in many events in the development and maintenance of neuronal 

functions, as well as in the interactions between neurons and glial cells [155]. In 

addition to provide correct membrane fluidity and permeability, cholesterol and 

sphingolipids can interact with acetylcholine and serotonin receptors through 

typical binding sites located in both their transmembrane helices and the 

extracellular loops. Therefore, these lipids regulate neurotransmitter binding and 

signal transducing functions by altering the conformation of the receptors [156].  

Furthermore, slight variation in membrane cholesterol content can dramatically 

impair the function of nearby proteins [157]. The dysregulation of cholesterol 

metabolism in the brain has been linked to age-associated neurodegenerative 

disorders such as AD. It has been recently reviewed that microRNAs (miRNAs) 

are implicated as novel regulators of cholesterol metabolism in several tissues: 

indeed, ABCA1, an important membrane-associated lipid pump that plays a key 

role in maintaining cholesterol homeostasis, is negatively regulated by miR106b 

[158]. Kim and colleagues have shown that miR-106b significantly decreased 

ABCA1 levels and impaired cellular cholesterol efflux resulting in increasing Aβ 

production and preventing Aβ clearance in neuronal cells [159]. The interaction 

between SM and cholesterol has many important functions within cell 

compartments, such as the recruitment of integral protein to the lipid bilayer and 

the involvement in caveolae formation during endocytosis [160].  



31 
 

 

 

 

 

Figure 8. Schematic structure of plasma membrane (white bilayer) with lipid rafts (blue 

bilayer). This composition results in lateral phase separation and the generation of a liquid-

ordered domain. Cholesterol, sphingomyelin, and gangliosides, are enriched in lipid rafts. 

As shown, Raft 1 and Raft 2 differ in protein and lipid composition. 

Glycosylphosphatidylinositol-anchored proteins (GPI); transmembrane proteins (TM); 

dually acylated proteins (Acyl). Reproduced from Pike 2003 [151]. 
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1.7.2.3 Gangliosides  

Gangliosides play a key role in the formation and stabilization of specific cell lipid 

membrane domains (glycolipids-rich domains) through their oligosaccaridic 

moieties protruding on the outer membrane surface. Acting as modulators of cell 

recognition, signaling and adhesion, gangliosides are considered functional 

molecules of biological relevance [161]. They also have been indicated to be 

present in nuclear membranes, where GM1 modulates intracellular and intranuclear 

calcium homeostasis and the ensuing cellular functions [162].   

An involvement of gangliosides during brain development underline an additional 

tissue-specific task: indeed, the ganglioside pattern sustains a decisive changing 

during neural growth. At the beginning there is a predominance of GD3 and GM3, 

while later in the development there is an increase in more complex gangliosides 

such as GM1, GD1a, GD1b and GT1b [163].  

Glycosphingolipids are also known to play a role in the regulation of axonal 

growth. For example, gangliosides GD1a and GT1b, enriched in axonal rafts, act as 

myelin-associated glycoprotein (MAG) receptors in MAG-induced inhibition of 

axonal growth [164]. 
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1.8 Lipids of mitochondria 

Each cellular organelle has its own distinctive membrane lipid composition, that 

produces a characteristic structure, shape and specific functions [165]. As the 

mitochondria possesses two biochemically different membranes, the complexity of 

their lipid composition can influence structure and morphology. Furthermore, it has 

been reported that mitochondrial membrane lipids support different mitochondrial 

enzyme activities such as voltage-dependent ion channel and respiratory chain 

complexes [166, 167]. The stability of TOM (translocase of the outer membrane) 

and SAM (sorting and assembly machinery) complexes requires the dimeric form 

of CL to correctly import and assembly α-elical and β-barrel proteins, while PE 

maintains the function of TOM only for the biogenesis of β-barrel proteins [168]. 

Kiebish and co-workers recently examined the mouse brain mitochondrial lipidome 

through mass spectrometry. As shown in table 3, the main lipid species represented 

in mitochondria are PE, PC and cholesterol. Next, the signature lipid of 

mitochondria CL, which is enriched in the inner membrane, followed by 

glycerophospholipid minor classes PI, PG, SM, PS, LysoPC and ceramide in traces 

[169].  
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Table 3. Lipid composition of C57BL/6J mouse brain mitochondria. Reproduced from 

Kiebish et al. 2009 [169]. 
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1.9 First steps toward mitochondria isolation 

The first attempt of subcellular fractionation to isolate mitochondria has to be 

attributed to the Nobel Prize Albert Claude, who was engaged from the late 1930s 

in this detailed study [170] basing on the previous procedure of Bensley and Hoerr 

[171]. His contributions introduced the differential centrifugation as fundamental 

tissue fractionation technique [172], as well as the study of chemical composition 

and biochemical activities of the obtained fractions. Moreover, he was the first 

scientist who establish the importance of using an homogenization isotonic 

medium, that would prevent osmotic changes potentially damaging the organelle 

morphology. Claude’s procedure provided four fractions: a heavy fraction of nuclei 

and cell debris, an intermediate fraction consisting of mitochondria, a light fraction 

containing “microsomes” (endoplasmic reticulum fragments) and a soluble 

cytosolic fraction [173]. Few years later, Hogeboom, Schneider, and Palade [174] 

modified Claude's procedure by replacing the isotonic salt solution used as 

homogenization medium with a hypertonic (0.88 M) sucrose solution. This 

substitution eliminated aggregation of the different particles, improving the purity 

of the fractions and the quality of the isolated mitochondria. The homogenization 

medium was further modified [175] by employing isotonic (0.25 M) rather than 

hypertonic sucrose improving the sedimentation of different fractions and also 

avoiding the inhibitory effect of high concentrations of sucrose on certain enzymes. 

This procedure became the routine method for preparing mitochondria. Many steps 

forward have been made since then, in fact the protocols have been developed and 

diversified depending on the specific properties of tissue or cell types involved and 

its successive application.  
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1.9.1. Isolation of mitochondria from brain samples  

Nowadays there are numerous methods for the isolation of mitochondria from 

brain tissue, based on gentle cell breakage, differential centrifugation and disparate 

density gradients [176-184]. Most of these procedures utilize a rapid isolation of 

mitochondria for enzymatic studies, sacrificing their purity for viability required 

for functional (respiration) based studies. On the contrary, the emergence of high-

throughput “omics” technologies demanded an optimization of purity, because 

other contaminants, even in scarce amounts, would affect results of the analyses. 

Therefore, equilibrium centrifugation in density gradients is the preferred technique 

to separate mitochondria from other cell components. The principle on which it is 

based on concerns the differences in densities of single organelles, influenced 

substantially by their different ratios of protein to lipid species. Mitochondrial inner 

membranes consist of 70–80 % of protein and hence tend to have a higher density 

than, for instance, endosomal membranes, which have higher lipid content. The 

most widely used medium for density gradient centrifugation of proteins is sucrose, 

but Percolltm (a colloidal suspension of tiny silica particles coated with 

polyvinylpyrrolidone or PVP) is more frequently used for the isolation of brain 

mitochondria. Indeed, mitochondria from mammalian brain tissues were routinely 

prepared for proteomics by density gradient centrifugation using Percoll [185, 

186]. Finally, there is also a relatively new approach used to isolate functional 

mitochondria from brain tissue, that is based on superparamagnetic microbeads 

conjugated to anti-TOM22 (translocase of outer mitochondrial membrane 22  

homolog) antibody, which specifically bind to mitochondria outer membrane [187, 

188]. 
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 2. Aim of the study 

Mitochondria are the main energy providers of the cell. Many studies have 

demonstrated the importance of mitochondria as cellular organelles decisively 

involved in brain aging mechanisms. Moreover mitochondrial membrane lipids do 

not only have a structural role, but also sustain different mitochondrial enzyme 

activities such as voltage-dependent ion channel and respiratory chain complexes. 

For these reasons, the aim of the project is the investigation of the lipid 

composition of human brain mitochondria and its changes in physiological aging. 

Since information about lipid composition of human brain mitochondria are 

extremely poor, a full characterization needs to be performed first. Furthermore, in 

order to obtain reliable data, mitochondria must be highly purified. Current 

protocols for brain mitochondria isolation are more developed to preserve viability 

at the expense of the purity that is required by detailed biochemical techniques and, 

commonly, they are optimized on mouse or rat brain tissues. To our knowledge, 

protocols for isolation of human brain mitochondria have been developed 

modifying Sims and Anderson isolation protocol of rat brain mitochondria. The 

preliminary step of this study was the application of this method to isolate 

mitochondria from post mortem human frontal cortex: since results did not fulfill 

requirements, the first aim of this study was to develop a new satisfying method to 

obtain a highly purified mitochondrial fraction. For this purpose, validating 

biochemical assays such as enzymatic assays had to be defined to assess 

mitochondria purity and integrity, in addition to information obtained by 

transmission electron microscopy. Furthermore, this newly developed method was 

applied for the analysis of  mitochondria lipid molecular species and for the 
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investigation of their age-related changes, thus providing a basis for better 

understanding of their role in this physiological process.   
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3. Materials and methods 

3.1. Materials 

3.1.1. Human samples 

Brain samples were obtained during autopsies of male (n=5) and female (n=2) 

subjects (average age 58 years old) who died without evidence of neuropsychiatric 

and neurodegenerative disorders. Informed consents for using brain samples for 

research purposes were obtained from closest relatives and are stored at the Section 

of Legal Medicine and Insurances, Department of Human Biomedical Sciences for 

Health, University of Milan. Final approval was given by the pathologist executing 

the autopsy. Samples of premotor (frontal) cortex were carefully dissected into 

white and grey matter and then stored at -80°C until use for the isolation of 

mitochondria. All tissues samples were analyzed anonymously.  

3.1.2 Materials 

Sucrose, d-Mannitol, Hepes, Tris(hydroxymethyl)aminomethane, Optipreptm, 

Bovine serum albumin (BSA), Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-

tetraacetic acid (EGTA), Protease Inhibitor Cocktail (PIC), all reagents to set up 

enzyme assay reactions and solvent systems for thin layer chromatography were 

purchased from Sigma-Aldrich Co. Sodium Hydroxide and 

Ethylenediaminetetraacetic acid disodium (EDTA) were purchased from Carlo 

Erba Reagents. Pure galactosylceramide (GalCer), sulfatides, and lyso PC were 

purchased from Avanti Polar Lipids; phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), 
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sphingomyelin (SM), and phosphatidic acid (PA) were purchased from Sigma-

Aldrich Co. Ceramide, gangliosides (GM3, GM2, GM1, GD3, GD1a, GD1b, 

GT1b, GQ1b), glucosylceramide (GlcCer), and lactosylceramide (LacCer) were 

synthesized or purified in Prof. Prinetti laboratories (Department of Medical 

Biotechnology and Translational Medicine, University of Milan, Segrate Milano, 

Italy). 

3.1.3. Equipment 

Potter-Elvehjem PTFE pestle and glass tube (Sigma-Aldrich Co.). Benchtop 

refrigerated high speed centrifuge Thermo Scientific MR23i with swinging bucket 

rotor (SWM 180.5) and angle fixed rotor (AM 100.13). Ultracentrifuge Optima 

XE-90 (Beckman Coulter) with swinging bucket rotor (SW41Ti Beckman Coulter). 

Centrifuge tubes: 15-ml glass round bottom tubes (Corning cod. 8441), 10/11-ml 

polystyrene conical bottom tubes (Nunc cod. 347856), 13.2-ml Ultra-Clear tubestm 

(Beckman Coulter cod. 344059). Laboratory filters for liquids (Euroclone) with 

vacuum pump. Plastic Petri dishes 60x15mm (Greiner cod.628161). Disposable 

plastic and glass Pasteur pipettes. Adjustable volumetric pipettes: 20µl, 200µl and 

1ml total volume.  
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3.2. Methods 

3.2.1. Reagent setup 

• Mitochondria Isolation Buffer (MIB): 75 mM sucrose, 225 mM d-mannitol, 1 

mM EGTA, 1 mM EDTA, 5 mM HEPES, pH 7.40 in ultra-pure water. The pH 

was adjusted to 7.4 with NaOH. The solution was then filtered and stored at -

20°C for up to 3 months. 

• Optipreptm Diluent (OD): 250mM sucrose, 2mM EGTA, 2mM EDTA, 35mM 

Hepes, pH 7.4 in ultra-pure water. The pH was adjusted to 7.4 with NaOH. The 

solution was then filtered and stored at -20°C for up to 3 months. 

• Optipreptm Diluent 2 (OD2): 75 mM sucrose, 225 mM d-mannitol, 1 mM 

EGTA, 1 mM EDTA, 20 mM HEPES, pH 7.40 in ultra-pure water. The pH 

was adjusted to 7.4 with NaOH. The solution was then filtered and stored at -

20°C for up to 3 months. 

• 20% (vol/vol) Optipreptm solution: 2 ml of OD2 were mixed with 1 ml of 60% 

Optipreptm solution. This solution was freshly prepared and stored on ice. 

• 30% (vol/vol) Optipreptm solution: 1.5 ml of OD2 was mixed with 1.5 ml of 

60% Optipreptm solution. This solution was freshly prepared and stored on ice. 

3.2.2 Isolation Protocol 

Mitochondria were isolated from frozen post-mortem human prefrontal cortex. We 

used exclusively grey matter from premotor cortex since it contains more cell 

bodies, while white matter contains almost exclusively fibers. All equipment and 
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reagents were placed on ice and all the centrifuge steps were executed at 4°C. 

Figure 9 shows a schematic diagram of all the protocol steps.  

 

Figure 9: Diagram of the mitochondria isolation protocol. For explanation see description in 

the text. 

3.2.2.1. Preparation of crude heavy mitochondrial fraction (HMF) 

The preparation of the crude fraction containing heavy mitochondria is 

schematically described as follows. 

• A solution containing 1mg/ml of BSA and 1% (v/v) of PIC was added to 

MIB only before use.  
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• The brain tissue (1g of wet weight tissue) was placed in a small Petri dish. 

• The tissue was transferred into the glass potter and 2 ml of MIB were 

added. 

• The tissue was gently homogenized using 13 up-and-down strokes of a 

glass/Teflon pestle while rotating it.  

• The homogenate was placed in a 10-ml conical bottom centrifuge tube and 

5 ml of MIB were added. The tube was gently mixed by inversion. 

• A sample of 100 µl was collected for subsequent evaluation of total tissue 

enzymes or proteins. 

• The homogenate was centrifuged at 800 x g at 4°C for 5 min using a 

swinging-bucket rotor (SWM 180.5).  The supernatant (S1) was 

withdrawn, without collecting the pellet (P1), and retained on ice.  

• 2 ml of MIB were added to the tube and the pellet (P1) was gently 

resuspended with a plastic Pasteur pipette.  

• The suspension was poured in the pestle and homogenized again with 6 

slow up-and-down strokes. The homogenate was transferred in a new tube 

and fresh 4 ml of MIB were added. 

• The homogenate was centrifuge again at 800 x g at 4°C for 5 min using a 

swinging-bucket rotor (SWM 180.5), the supernatant (S2) was withdrawn 

by suction, without transferring the pellet (P2), and pooled with S1.  

• The pooled supernatants (S1+S2) were centrifuged at 800 x g at 4°C for 10 

min using a swinging-bucket rotor (SWM 180.5). The small pellet (P3) 

formed was the proof that it was necessary to further remove contaminants. 
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• The supernatant (S3) was then collected and centrifuged in a round bottom 

glass tube at 3000 x g at 4°C for 10 min using a fixed angle rotor (AM 

100.13). 

• The supernatant (S4) was transferred into a new tube (B) and the 

mitochondrial pellet (P4) gently resuspended with 1 ml of MIB. Then, 5 ml 

of MIB were added and the suspension poured in a different tube (A).  

• Both tubes were centrifuged at 3000 x g at 4°C for 10 min using a fixed 

angle rotor (AM 100.13). 

• From tube B the supernatant (S5B) was collected and stored separately. 

The pellet (P5B) was resuspended with 1 ml of MIB. From tube A the 

supernatant (S5A) was discarded and the pellet (P5A) resuspended with 

1ml of MIB. Then, P5A and P5B were pooled.  

• About 4 ml of MIB were added to the suspension, which was then 

centrifuged at 3000 x g at 4°C for 10 min using a fixed angle rotor (AM 

100.13). 

• The supernatant (S6) was discarded and the pellet (P6) resuspended with 

1ml of OD.  

3.2.2.2 Fractionation of crude HMF 

The fractionation of the crude HMF obtained is schematically described  as 

follows. 

• In a Ultra-clear centrifuge tube (14x89 mm) 3 ml of 30% Optipreptm 

solution were layered with a glass Pasteur pipette; 3 ml of 20% Optipreptm 

solution were slowly layered above the 30% Optipreptm keeping the tube at 
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45° and loading the sample by directing the flow onto the wall near the 

surface of the liquid. This procedure generated a sharp interface between 

the 30 % layer and the 20 %. 

• To produce a 15 % solution, 2 ml of OD and 1 ml of Optipreptm 60 % were 

added to the sample. The suspension was gently layer with a glass Pasteur 

pipette on the discontinuous gradient, as described before. The tube was 

then filled with 1 ml of OD.  

• The tube was centrifuged at 50.000 x g (Sw 41Ti rotor) at 4°C for 3 hours 

using slow acceleration and deceleration. This centrifugation redistributed 

the material into three major bands (Fig. 10). 

• The material accumulated on the top of the gradient was removed with a 

plastic Pasteur pipette (Band 1 in Fig. 8), and the pale band at the interface 

between 15% and 20% (Band 2 in Fig. 8) was removed with a glass 

Pasteur pipette. 

• The mitochondrial fraction at the interface between 20% and 30% (Band 3 

in Fig. 8) was removed with a glass Pasteur pipette and poured in a 15 ml 

glass round bottom tube. Then, 5 ml of MIB (without PIC and BSA) were 

added,  gently resuspending the mitochondrial fraction with a plastic 

Pasteur pipette. 

• The tube was centrifuge at 3000 x g at 4°C for 10 min using a fixed angle 

rotor (AM 100.13). 

• The supernatant was discarded and the pellet collected by resuspending it 

with 90µl of MIB.  
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Figure 10: The image shows the typical appearance of a centrifuge tube at the end of the 

density gradient ultracentrifugation step. Purified mitochondria are located in band 3. 
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3.2.3 Enzyme assays 

The activity of all maker enzymes was assayed in the initial homogenate and the 

final mitochondrial fraction. In order to measure mitochondrial enrichment, citrate 

synthase (CS) activity was measured immediately after the isolation procedure, 

adjusting the conditions reported by Morgunov and Srere [189]. The purity of the 

obtained fraction was evaluated assaying the activity of different enzymatic 

markers, as explained hereafter. Lactate dehydrogenase (LDH), as cytosolic 

marker, was estimated in both of these fractions; in fact, LDH provides a measure 

of the contamination by synaptosomes in which cytoplasm is enclosed within a 

membrane. The assay was performed using LDH activity assay kit from Sigma-

Aldrich Co. Moreover, to assess lysosomal and peroxisomal contamination, acid 

phosphatase (AP) activity and catalase (CAT) activity were quantified in the same 

previous fractions through AP assay kit and CAT assay kit respectively, both from 

Sigma-Aldrich Co.  The activities were determined using spectrophotometric 

techniques. The quantification of proteins was carried out after protein 

precipitation, through Lowry’s method [190], using BSA as protein standard. 

3.2.4 Western blotting  

Aliquots of isolated mitochondria and brain homogenates were subjected to freeze-

thaw cycles and sonication. Equal amounts of proteins were heated in reducing 

sample buffer [191] and then loaded onto 1.50 mm thick polyacrylamide mini gels 

(12%) and separated by one-dimensional sodium dodecyl sulfate-polyacrylamide 

gel electrophoresis (Mini-PROTEAN® 3 Cell; Bio-Rad Laboratories, Inc., 

Hercules, CA, USA). Prestained protein markers (New England BioLabs Inc., 
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Ipswich, MA, USA) were used as size standards in the electrophoresis. Proteins 

were transferred at 350mA for 3 hours (Mini Trans-Blot® Electrophoretic Transfer 

Cell; Bio-Rad Laboratories, Inc.) to 0.45 µm nitrocellulose membranes (Amersham 

Hybond®-ECL; GE Healthcare Life Science). Ponceau-S staining of membranes 

was performed to check the efficiency of proteins transfer.  For immunoblotting, 

membranes were blocked for 2 hours at room temperature with 5% fatty 

acid/globulin-free bovine serum albumin (Sigma-Aldrich Co.) or 5% skimmed 

milk, depending on the antibody, in phosphate-buffered saline (pH 7.4) with 0.1 % 

Tween® 20 (PBST). Then membranes were incubated overnight at 4°C in the 

primary antibody with PBST. The primary antibodies used to evaluate protein 

expression are: 

• Disulfide Isomerase (PDI) at 1:1000 (Cell Signaling);  

• Histone H3 at 1:2000 (Cell Signaling);  

• GRP75 at1:1000 (Cell Signaling);  

• PYK2 at 1:1000 (Bd Transduction); 

• Paxillin at 1:1000 (Bd Transduction). 

After overnight incubation in primary antibody, the membranes were rinsed three 

times in PBST and incubated in secondary antibody for one hour r.t. in HRP-

conjugated goat anti-rabbit IgG (1:5000) or anti-mouse IgG (1:3000). The blots 

were rinsed thoroughly in PBST and were developed using Pierce SuperSignal 

West Pico chemiluminescent substrate and then exposed to CL-XPosure film 

(Thermo Scientific).  
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3.2.5 Total lipid extraction, phase partitioning and alkali treatment 

Lipids from the lyophilized samples were extracted with 

chloroform/methanol/water 20:10:1 (v/v/v) and subjected to a modified two-phase 

Folch’s partitioning to obtain the aqueous and the organic phases [192]. Briefly, 

1240 μL of the solvent system were added to the lyophilized samples. The samples 

were then mixed, incubated at r.t. for 15 minutes and centrifuged at 16100 g, and 

finally kept at r.t. for 15 minutes. The supernatant was collected as total lipid 

extract and the extraction was repeated again twice by adding the 1550 μL of the 

solvent system to the pellets. The pellets were air dried and resuspended in 1N 

NaOH and incubated overnight at r.t. before being brought to 0.05N NaOH with 

water to allow the determination of the protein content with DC assay (Bio-Rad). 

Aliquots of the total lipid extract were then subjected to phase partitioning adding 

20 % of water by volume. The samples were then mixed, incubated at r.t. for 15 

minutes and centrifuged at 16100 g, and finally kept at r.t. for 15 minutes. The 

aqueous phase were recovered, and chloroform:water 1:1 (v/v) were added to the 

organic phase before mixing the samples, incubated at r.t. for 15 minutes, 

centrifuged at 16100 g, and finally kept at r.t. for 15 minutes. The new aqueous 

phases were recovered and united to the ones previously collected. The aqueous 

phases were dried under N2 flux, and resuspended in water before undergoing 

microdialysis and lyophilization. The organic phases were dried under N2 flux and 

resupended in a known volume of chloroform/methanol 2:1. Aliquots of the 

organic phases were then subjected to alkali treatment to remove 

glycerophospholipids [192]. 
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3.2.6 Thin layer chromatography (TLC) 

To determine endogenous lipid content, the various samples were analyzed by 

monodimensional silica gel high performance TLC using different solvent systems. 

The total lipid extracts were analyzed using chloroform/methanol/0.2% calcium 

chloride 60:35:8 (v/v/v) as a solvent system, the aqueous phases were analyzed 

with chloroform/methanol/0.2% calcium chloride 50:42:11 (v/v/v), whereas the 

organic phases and the methanolyzed organic phases were analyzed using 

chloroform/methanol/water 110:40:6 (v/v/v). The organic phases were also 

analyzed by two-dimensional HPTLC using two different solvent systems: 

chloroform/methanol/water 14:6:1 (v/v/v) for the first separation and 

chloroform/methanol/acetic acid 13:5:2 (v/v/v) for the second separation. The 

cholesterol quantitation was performed using hexane/ethylacetate 3:2 (v/v), 

whereas detection of ceramide was executed with 

hexane/chloroform/acetone/acetic acid 20:70:20:4 (v/v/v/v). After separation, lipids 

were detected either by spraying the TLC plates with different colorimetric 

reagents (anisaldehyde, aniline, Ehrlich’s reagent and phospholipids-reactive) or by 

TLC immunostaining. Identification of lipids after separation and chemical 

detection was assessed by co-migration with lipid standards. 

3.2.7 TLC immunostaining 

Gangliosides were detected by TLC-immunostaining with cholera toxin after 

sialidase treatment. Samples were spotted on a silica gel TLC plate and developed 

in chloroform/methanol/0.2 % calcium chloride (50:42:11, v/v). After evaporation 

of the solvent at room temperature, the plate was dipped three times with a 
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polyisobuthylmethacrylate solution, and air dried for 1 hour before being immersed 

in blocking solution (1 % BSA in 0.1M Tris-HCl pH 8, 0.14M NaCl) for 30 

minutes. The plates were then incubated with 0.12 U/mL sialidase (Sigma-Aldrich 

Co) in 0.05 M acetate buffer, pH 5.4, containing 4mM CaCl2, at r.t. overnight. 

Thereafter the plates were overlaid with cholera toxin B subunit-HRP conjugated 

(1:200, Sigma-Aldrich Co) in phosphate-buffered saline with 1% bovine serum 

albumin at r.t. for 1 h. After few washes, plates were developed using o-

phenylenediamine (OPD)/H2O2 in 0.05 M citrate-phosphate buffer pH 5.0.   

3.2.8 Electron microscopy 

Pellets containing mitochondria were fixed for 2 hours in a mixture of 4 % 

paraformaldehyde and 2 % glutaraldehyde in cacodylate buffer (0.12 M, pH 7.4), 

washed extensively in cacodylate buffer and then post-fixed for 1 hour in 2 % 

OsO4 in cacodylate buffer. Samples were then washed with buffer and dehydrated 

in ethanol, then infiltrated in propylene oxide for 15 minutes and subsequently 

overnight in a mixture of propylene oxide and Epon (1:1). After this infiltration the 

pellet of mitochondria were embedded in Epon and following polymerization (+ 60 

°C for 24 hours) thin sections (80 nm) were prepared using an ultramicrotome 

(Leica Ultracut; Leica Microsystems GmBH, Wien, Austria). These sections were 

stained with saturated uranyl acetate for 5 minutes, washed and then stained with 3 

mM lead citrate for 5 minutes. Finally, the sections were photographed using a 

transmission electron microscope TEM LEO 912 (Advanced Light and Electron 

Microscopy BioImaging Center - San Raffaele Scientific Institute). 
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3.2.9 Statistical analysis 

Statistical significance was determined by Student's t-test, considering the data 

with p <0.05 as significant. The histograms represent the mean values obtained, 

and the bars indicate the standard deviation or standard error of the mean. Enzyme 

assays data were expressed as mean ± SEM. All the means were obtained from 

eight independent experiments with two replicas per assay. Considering that human 

brain samples were used for this study, a limited amount of samples was available 

and then has prevented us to perform a larger number of replicas. GRP75 western 

blot was expressed as mean ± SD and obtained from 3 independent experiments. 

All the values obtained from mitochondrial fractions were averaged and  

normalized on the averaged values obtained from brain homogenates. 
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4. Results 

4.1 Morphological of mitochondria isolated from post mortem 

human brain cortex by using Sims and Anderson protocol  

In order to evaluate the yield of Sims and Anderson method [180], mitochondria 

have been isolated following the same steps starting from post mortem brain tissue. 

The mitochondrial fraction was evaluated through transmission electron 

microscopy to get a rough view of their morphology and to estimate the possible 

contaminations. In figure 11 it is evident that the isolated human post mortem brain 

mitochondria are predominantly enclosed into synaptosomes together with many 

other cell components. Considering this result, which is far from the desired purity 

of mitochondria required for our purpose, the main effort of the study was to 

develop a new method to obtain a highly purified mitochondrial fraction from 

human post mortem tissues. 

  

Figure 11: Representative electron micrograph showing a mitochondrial pellet to display 

the characteristic morphology 
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4.2 Analysis of mitochondria isolated from post mortem human 

brain cortex with the new developed method 

The purity and integrity of the isolated mitochondria were analyzed using different 

techniques, as described below. The total protein content of the mitochondrial 

fraction was 377.06 µg ± 117.96 /g of tissue wet weight (mean ± SD; n= 8), as 

determined by Lowry’s assay. 

4.2.1 Enzymatic assay of mitochondrial fractions 

Firstly, several enzymatic markers were selected for the investigation of 

mitochondrial enrichment and the presence of the major contaminants (Fig.12). 

When normalized to total protein concentrations, CS activity exhibited an increase 

of 4.75 ± 0.33-fold purification (mean ± SEM; n= 8), compared with the value of 

brain homogenates. Regarding contaminants, it can be observed that LDH activity, 

used as a synaptosomal marker, was very low in the final pellets (0.03 ± 0.005-

fold) compared to LDH activity in brain homogenates. Instead, AP activity, used as 

assay for lysosomal contamination, showed a similar value in the enriched 

mitochondria fractions compared to brain homogenates (1.05 ± 0.07-fold). 

Peroxisomal contamination appears to be at low levels since CAT activity was 

sensibly diminished in the final mitochondria pellet: indeed CAT showed a 

purification fold of 0.58 ± 0.18 with respect to whole brain tissue homogenates. 

The evaluation of mitochondrial inner membrane intactness in the final fractions 

was performed by calculating the ratio between the CS activity in absence of a 

detergent buffer (Triton X-100TM) versus the activity in the same mitochondria 

preparation in presence of a detergent buffer. Indeed, the CS enzyme is localized in 
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the mitochondrial matrix and its specific activity would not be correctly measured 

if the CS were not released by the rupture of mitochondrial membranes in presence 

of the detergent. This ratio was estimated to be 29.01 ± 3.65 % (mean ± SEM), thus 

demonstrating that the majority of mitochondria remained intact at the end of the 

protocol. 

 

Figure 12. The histogram shows the mean purification fold values (mean ± SEM) of four 

different markers, normalized over brain homogenates (BH) (red dashed line). * = p value < 

0.05 vs BH; *** = p value < 0.001 vs BH    
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4.2.2 Western blot of mitochondrial fractions 

It was decided to proceed with further analysis using western blots, if no enzymatic 

assays were available. Western blots of isolated mitochondria (Fig. 13) 

demonstrated the absence of nuclear contamination (evaluated by H3 levels), while 

showed presence of the endoplasmic reticulum marker (PDI), which seems to be 

enriched in mitochondrial fractions, suggesting the presence of mitochondria-

associated membranes (MAM). To confirm this hypothesis, some of the samples in 

which PDI was detected, were subjected to a specific analysis of a MAM marker 

(GRP75) by mean of western blot (Fig 14). These experiments showed a 

statistically significant increase of GRP75 (1.57 ± 0.32; mean ± SD; n = 4; p value 

< 0.05 vs BH), thus confirming of a MAM enrichment. Additionally, to verify if 

plasma membrane was absent in our mitochondrial fraction, western blot of two 

focal adhesion proteins were measured (Paxillin and PYK2). Figure 13 shows little 

or no plasma membrane contamination in purified mitochondria (Fig.15). 

 

Figure 13. Western blot analyses of PDI and histone H3 on BH and MF obtained from six 

independent experiments. 
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Figure 14. Western blot analyses of protein GRP75 on BH MF obtained from four 

independent experiments (mean ± SD; n = 4). The histogram shows densitometry analysis 

of mean values. * = p value < 0.05 vs BH 

 

  

Figure 15. Western blot analyses of proteins Paxillin and PYK2 on BH and MF, obtained 

from two independent experiments. 
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4.2.3 Transmission electron microscopy of mitochondrial fractions 

Evaluation of ultrastructure of the isolated mitochondria is presented in Fig. 16 

(panels A, B). The presence of intact mitochondrial membranes demonstrated that 

the mitochondrial isolation procedure did not rupture or displace the membranes. 

Moreover, as it can be noticed from panel C (Fig.16), mitochondrial membranes 

bind to MAM micro domains, a further evidence of their presence in isolated 

mitochondria as demonstrated by western blots of typical MAM markers.  

 

Figure 16. Representative electron micrographs showing the morphology of isolated 

mitochondria. These mitochondria were isolated from premotor cortex of a healthy subject 

(51 y.o.). Asterisks mark MAM vesicles juxtaposed to mitochondrial membranes. (Scale 

bar = 0.5µm). 
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4.3. Application of the new developed method for mitochondrial 

lipid analyses 

4.3.1 Analysis of mitochondrial total lipid extract 

After total lipid extraction, a relatively small quantity of sample has been analyzed 

after chromatographic run. This pilot experiment allowed us to observe different 

bands positive for anisaldehyde, a reagent for the non-selective detection of lipids 

(Fig.17). In MF, two major bands correspond to PE and PC, while the darker band 

at the beginning of the chromatographic run may be attributed to sucrose and 

mannitol present in MIB. 
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Figure 17. TLC analysis before microdialysis of total lipid extracts from isolated 

mitochondria (mitochondria isolated from a healthy subject of 50 y.o.). MF and MIB were 

subjected to lipid extraction with CHCl3/CH3OH/H2O 20:10:1 (v/v/v) and loaded (40 µg of 

protein) on a silica gel TLC plate. HPTLC was performed using chloroform/methanol/0.2% 

calcium chloride 60:35:8 (v/v/v) as solvent system. The lipids were then revealed using 

anisaldehyde as colorimetric detection.   
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4.3.2 Analysis of mitochondrial organic phase 

A single mitochondria isolation did not produce sufficient amount of sample to 

perform the following analyses, so it was decided to pool multiple preparations and 

process the samples as one. After two-phase partitioning of total lipid extracts, 

samples were subjected to microdialysis to remove contaminating salts and sugars. 

The organic phase was resolved in different lipid classes and stained with two 

reagents, one for general detection of lipids (Fig. 18) and one specific for 

phospholipids (Fig. 19). In the first plate (Fig. 18) MF displays different bands 

corresponding to GalCer, PE, CL, PC, PI, PS and SM. To confirm the presence of 

phospholipids in MF, the second plate was stained for phosphorus detection 

(Fig.18): in this plate, blue specific bands appear corresponding to PE, CL, PC, PI, 

PS and SM. Beside demonstrating a considerable bandwidth for PE and PC, 

indicating a high number of phospholipids species, it should be emphasized the 

presence of CL, the signature phospholipid of mitochondria.  
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Figure 18. TLC analysis after microdialysis of organic phases from isolated mitochondria 

(9 pooled preparations, mitochondria isolated from healthy subjects with an age range 30-

77 y.o.). Mitochondrial fraction (MF) and mitochondria isolation buffer (MIB) were 

subjected to lipid extraction with CHCl3/CH3OH/H2O 20:10:1 (v/v/v) and loaded (150 µg 

of protein) on a silica gel TLC plate. HPTLC was performed using CHCl3/CH3OH/H2O 

110:40:6 (v/v/v) as solvent system. The lipids were then revealed using anisaldehyde as 

colorimetric detection.   
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Figure 19. TLC analysis after microdialysis of organic phases from isolated mitochondria 

(9 pooled preparations, mitochondria isolated from healthy subjects with an age range 30-

77 y.o.). MF and MIB were subjected to lipid extraction with CHCl3/CH3OH/H2O 20:10:1 

(v/v/v) and loaded (150 µg of protein) on a silica gel TLC plate. HPTLC was performed 

using CHCl3/CH3OH/H2O 110:40:6 (v/v/v) as solvent system. The lipids were then 

revealed using a spray specific for phosphorus containing lipids as colorimetric detection.   
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4.3.2.1 2D-TLC   

To obtain a better resolution of phospholipids classes, two-dimensional HPTLC 

was performed in two plates (Fig. 20). This approach allowed us to separate all 

spots, and make the CL more visible with respect to mono-dimensional TLC.  

 

Figure 20. 2D-TLC analyses after microdialysis of organic phases from isolated 

mitochondria (9 pooled preparations, mitochondria isolated from healthy subjects with an 

age range 30-77 y.o.). MF were subjected to lipid extraction with CHCl3/CH3OH/H2O 

20:10:1 (v/v/v) and loaded (200 µg of protein) on two a silica gel TLC plates. Two-

dimensional HPTLC were performed using two different solvent systems: 

CHCl3/CH3OH/H2O 14:6:1 (v/v/v) for the first separation and CHCl3/CH3OH/CH3COOH 

13:5:2 (v/v/v) for the second separation. The lipids were then revealed using anisaldehyde 

(panel A) and a spray specific for phosphorus containing lipids (panel B) as colorimetric 

detection.   
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4.3.2.2 Cholesterol quantitation 

A simple method for cholesterol quantitative determination in MF was developed. 

The solvent system was specific for resolving exclusively cholesterol and a set of 

standard samples of known concentration was used to plot a calibration curve (Fig. 

21). Thus, MF was loaded in double (15µg and 25µg) and bands were quantified 

through densitometric analysis. Cholesterol content was estimated to be 64.20 ± 

1.99 nmol/mg of protein (mean ± SD). 

 

Figure 21. TLC analyses after microdialysis of organic phases from isolated mitochondria 

(9 pooled preparations, mitochondria isolated from healthy subjects with an age range 30-

77 y.o.). MF were subjected to lipid extraction with CHCl3:CH3OH:H2O 20:10:1 (v/v/v) 

and loaded (30 µg of protein) on a silica gel TLC plates, along with a set of cholesterol 

standard samples of known concentration. HPTLC was performed using C6H14/C4H8O2 3:2 

(v/v), and cholesterol was then revealed using anisaldehyde as colorimetric detection. 
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4.3.3 Analysis of mitochondrial methanolyzed organic phases for 

glycolipids detection 

Aliquots of the organic phases were then subjected to alkali treatment to selectively 

remove phospholipids and observe glycolipids. Also in this case we use two 

identical plates sprayed with two different reagents, one for general detection of 

lipids and one specific for glycolipids (Fig.22). In the case of aniline (Fig. 22B), a 

reagent that detects glycolipids by staining them in blue, the analysis revealed the 

presence of faint glycolipid patterns in MF. Then, in order to discriminate between 

GalCer and GlcCer in MF, we used a TLC plate pre-treated with Na2B4O7 (4 %) 

and a specific solvent system. As it can be seen in Fig. 23, GalCer is present in MF. 
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Figure 22. TLC analyses after microdialysis of methanolyzed organic phases from isolated 

mitochondria (9 pooled preparations, mitochondria isolated from healthy subjects with an 

age range 30-77 y.o.). MF were subjected to lipid extraction with CHCl3/CH3OH/H2O 

20:10:1 (v/v/v) and loaded (250 µg of protein) on two a silica gel TLC plates. HPTLC was 

performed using CHCl3/CH3OH/H2O 110:40:6 (v/v/v) as a solvent system. The lipids were 

then revealed using anisaldehyde (panel A) and aniline (panel B) as colorimetric detection.   
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Figure 23. TLC analyses after microdialysis of methanolyzed organic phases from isolated 

mitochondria (9 pooled preparations, mitochondria isolated from healthy subjects with an 

age range 30-77 y.o.). MF were subjected to lipid extraction with CHCl3/CH3OH/H2O 

20:10:1 (v/v/v) and loaded (260 µg of protein) on two a silica gel TLC plates. HPTLC was 

performed using CHCl3/CH3OH/NH3 (2N) 70:30:3 (v/v/v) as a solvent system. The lipids 

were then revealed using and aniline as colorimetric detection. 
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4.3.3.1 Detection of ceramide 

Using a specific solvent system, we evaluated the presence of ceramide molecules 

with different chain-lengths (C-12/-14/-16/-18/-22). As shown in Fig. 24, in MF 

there is no detectable ceramide with any of the aforementioned chain lengths. 

 

Figure 24. TLC analyses after microdialysis of methanolyzed organic phases from isolated 

mitochondria (9 pooled preparations, mitochondria isolated from healthy subjects with an 

age range 30-77 y.o.).  MF were subjected to lipid extraction with CHCl3/CH3OH/H2O 

20:10:1 (v/v/v) and loaded (120 µg of protein) on two a silica gel TLC plates. HPTLC for 

detection of ceramide was executed with C6H14/CHCl3/C3H6O/CH3COOH 20:70:20:4 

(v/v/v/v). The lipids were then revealed using anisaldehyde as colorimetric detection.   
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4.3.4 Analysis of mitochondrial aqueous phases to identify gangliosides 

Following two-phase partitioning, aqueous phases were also spotted on a silica-gel 

TLC plate to obtain a proper separation of gangliosides. In a first attempt, before 

microdyalisis, we could not observe any glycosphingolipid. Indeed, Ehrlich’s 

reagent, that is used to reveal sialic acid, stained only a sucrose/mannitol non 

specific band (Fig. 25) both in MF and MIB.  After microdyalisis, the non specific 

band disappeared from MIB lane and ganglioside patterns were specifically colored 

by Ehrlich’s reagent (Fig. 26), thus demonstrating that microdialysis successfully 

removed sucrose and mannitol.  

4.3.4.1 Immunostaining with Cholera β-toxin to confirm ganglioside 

presence 

To validate that the previous observed bands were actually gangliosides, we 

decided to perform further experiment, using an immunostaining with cholera β-

toxin after sample resolution. This approach, that allows a selective detection of 

gangliosides, corroborates preceding observation of a particular ganglioside pattern 

(Fig. 27), that characterize MF aqueous phases. 
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Figure 25. TLC analysis before microdialysis of aqueous phases from isolated mitochondria 

(9 pooled preparations, mitochondria isolated from healthy subjects with an age range 30-

77 y.o.). MF and MIB were subjected to lipid extraction with CHCl3/CH3OH/H2O 20:10:1 

(v/v/v) and loaded (150 µg of protein) on a silica gel TLC plate. HPTLC was performed 

using CHCl3/CH3OH/CaCl2 (0.2 %) 50:42:11 (v/v/v) as solvent system. The lipids were 

then revealed using Ehrlich’s reagent as colorimetric detection.   
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Figure 26. TLC analysis after microdialysis of aqueous phases from isolated mitochondria 

(9 pooled preparations, mitochondria isolated from healthy subjects with an age range 30-

77 y.o.). MF and MIB were subjected to lipid extraction with CHCl3/CH3OH/H2O 20:10:1 

(v/v/v) and loaded (150 µg of protein) on a silica gel TLC plate. HPTLC was performed 

using using CHCl3/CH3OH/CaCl2 (0.2 %) 50:42:11 (v/v/v) as solvent system. The lipids 

were then revealed using Ehrlich’s reagent as colorimetric detection.   
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Figure 27. TLC analysis after microdialysis of aqueous phases from isolated mitochondria 

(9 pooled preparations, mitochondria isolated from healthy subjects with an age range 30-

77 y.o.). Mitochondrial fraction (MF) and mitochondria isolation buffer (MIB) were 

subjected to lipid extraction with CHCl3/CH3OH/H2O 20:10:1 (v/v/v) and loaded (200 µg 

of protein) on a silica gel TLC plate. HPTLC was performed using using 

CHCl3/CH3OH/CaCl2 (0.2 %) 50:42:11 (v/v/v) as solvent system. Gangliosides were 

detected by TLC-immunostaining with cholera toxin after treatment with sialidase. 
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4.4. Mitochondrial lipid analyses in physiological brain aging 

4.4.1 Analysis of mitochondrial organic phases in aging 

After developing a plan to study main lipid classes characterizing previously 

isolated mitochondria, we decided to compare mitochondrial lipid compositions of 

a young subject and of an old subject. We started with organic phases comparison 

(Fig. 28) and noticed a visible decrease of SM, neutral glycolipids and cholesterol 

in the older subject’s MF, while PE and PC remained basically constant. We also 

analyzed phospholipid species (Fig. 29) and, interestingly, we found a different 

pattern between the two subjects. Moreover, we were able to measure cholesterol 

content quantifying bands through densitometric analysis (Fig. 30) obtaining a 

value of 58.81nmol/mg protein in the young subject’s MF and a value of 

32.57nmol/mg protein. This data reveals a substantial loss of cholesterol content in 

mitochondria through human brain aging.   

 

 

 

 

 

 



75 
 

Figure 28. TLC analysis after microdialysis of organic phases from mitochondria isolated 

from two different subjects. The MF isolated from two subjects of 18 y.o. and 87 y.o. were 

subjected to lipid extraction with CHCl3/CH3OH/H2O 20:10:1 (v/v/v) and loaded (100 µg 

of protein) on a silica gel TLC plate. HPTLC was performed using CHCl3/CH3OH/H2O 

110:40:6 (v/v/v) as solvent system. The lipids were then revealed using anisaldehyde as 

colorimetric detection.   
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Figure 29. TLC analysis after microdialysis of organic phases from mitochondria isolated 

from two different subjects. The MF isolated from two subjects of 18 y.o. and 87 y.o. were 

subjected to lipid extraction with CHCl3/CH3OH/H2O 20:10:1 (v/v/v) and loaded (150 µg 

of protein) on a silica gel TLC plate. HPTLC was performed using CHCl3/CH3OH/H2O 

110:40:6 (v/v/v) as solvent system. The lipids were then revealed using a spray specific for 

phosphorus containing lipids as colorimetric detection.   
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Figure 30. TLC analysis after microdialysis of organic phases from mitochondria isolated 

from two different subjects. The MF isolated from two subjects of 18 y.o. and 87 y.o. were 

subjected to lipid extraction with CHCl3:CH3OH:H2O 20:10:1 (v/v/v) and loaded (30 µg of 

protein) on a silica gel TLC plates, along with a set of cholesterol standard samples of 

known concentration. HPTLC was performed using C6H14/C4H8O2 3:2 (v/v), and 

cholesterol was then revealed using anisaldehyde as colorimetric detection. 
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4.4.2 Analysis of mitochondrial methanolyzed organic phases for 

glycolipids detection in aging 

A comparison between the two methanolyzed organic phases was performed by 

running two identical plates sprayed with two different reagents (as previously 

explained). Figure 31 highlights a visible decrease in glycolipid classes in the old 

subject’s MF both with anisaldehyde (panel A) and aniline (panel B) (Fig.31) 

reagents.  

4.4.3 Analysis of mitochondrial aqueous phases for gangliosides detection 

in aging 

Aliquots of the aqueous phases were then spotted on two silica-gel TLC plates in 

order to evaluate possible age-related changes in gangliosides components of MF. 

In Figure 32 there is a remarkable difference between MF of different ages, since 

in the older subject no bands were colored (Fig. 32). Furthermore, with TLC 

immunostaining, which is a far more sensitive technique, a similar ganglioside 

pattern can be observed, but a lower content in all gangliosides species (GM1, 

GD1a, GD1b, GT1b, GQ1b) present in the older subject’s MF than in the young 

subject’s MF (Fig. 33).    
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Figure 31. TLC analysis after microdialysis of methanolyzed organic phases from 

mitochondria isolated from two different subjects. The MF isolated from two subjects of 18 

y.o. and 87 y.o. were subjected to lipid extraction with CHCl3/CH3OH/H2O 20:10:1 (v/v/v) 

and loaded (150 µg of protein in panel A and 200µg in panel B) on two a silica gel TLC 

plates. HPTLC was performed using CHCl3/CH3OH/H2O 110:40:6 (v/v/v) as a solvent 

system. The lipids were then revealed using anisaldehyde (panel A) and aniline (panel B) 

as colorimetric detection.   
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Figure 32. TLC analysis after microdialysis of aqueous phases from mitochondria isolated 

from two different subjects. The MF isolated from two subjects of 18 y.o. and 87 y.o. were 

subjected to lipid extraction with CHCl3/CH3OH/H2O 20:10:1 (v/v/v) and loaded (170 µg 

of protein) on a silica gel TLC plate. HPTLC was performed using CHCl3/CH3OH/CaCl2 

(0.2 %)  50:42:11 (v/v/v) as solvent system. The lipids were then revealed using Ehrlich’s 

reagent as colorimetric detection.   
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Figure 33. TLC analysis after microdialysis of aqueous phases from mitochondria isolated 

from two different subjects. The MF isolated from two subjects of 18 y.o. and 87 y.o. were 

subjected to lipid extraction with CHCl3/CH3OH/H2O 20:10:1 (v/v/v) and loaded (200 µg 

of protein) on a silica gel TLC plate. HPTLC was performed using CHCl3/CH3OH/CaCl2 

(0.2 %) 50:42:11 (v/v/v) as solvent system. Gangliosides were detected by TLC-

immunostaining with cholera toxin after treatment with sialidase. 
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 5. Discussion 

 

Mitochondria are cytoplasmic lipid-rich organelles delimited by a double 

membrane, with the external side in contact with the cytoplasm and the internal 

side that folds over many times and creates layered structures called “cristae”. 

Mitochondria do not only represent the cellular power plant but they also play a 

key role in other crucial functions, such as the intrinsic pathway of apoptosis. The 

central nervous system requires high ATP consumption to perform its characteristic 

functions, thus the loss of the mitochondria dynamic balance may lead to neuronal 

damage. Their involvement in brain aging is widely acknowledged by numerous 

studies [62, 63]. Indeed, it has been observed that energy metabolism declines with 

age due to decreased activity of the mitochondrial respiratory chain complexes. In 

addition, the mitochondrial theory of aging postulated that mitochondria continue 

to produce reactive oxygen species within the cell and that this process leads to an 

increase in protein and lipid oxidation, and to an accumulation of mtDNA 

mutations [67]. Besides, there is an alteration of mitopagy [87], a selective process 

of macroautophagy that degrades dysfunctional or structurally damaged 

mitochondria. Finally, mitochondria are considered to be involved in cellular 

mechanisms that promote alterations both in physiological and pathological aging, 

such as chronic neurodegenerative diseases of the senile brain [63].  

Mitochondria possesses two biochemically different membrane: the lipid 

components of the inner and outer mitochondrial membranes are not comparable. 

The outer mitochondrial membrane is fluid and contains higher levels of 
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cholesterol and PI. In contrast, the inner mitochondrial membrane is highly folded, 

enriched in PE and contains CL, a component synthesised and restricted to this 

membrane layer [193]. Furthermore, the actual relative ratio of various lipid 

components may vary with the age-related structural and functional changes of 

brain mitochondria [194]. For example, some factors as cholesterol/phospholipids 

molar ratio, phospholipids composition (i.e. CL), degree of fatty acid unsaturation, 

and lipid/protein ratio can affect the membrane fluidity and, consequently, protein 

activities and mitochondria functionality [195]. There is limited knowledge about 

the lipid composition of brain mitochondria compared to other tissues, such as the 

liver and the heart. In particular, the lipid composition of human brain 

mitochondria is poorly characterized. 

To characterize the lipid species within human brain mitochondria and evaluate if 

there are changes in their lipid composition through aging, we firstly had to obtain 

a reproducible and adequate isolation protocol to obtain highly purified 

mitochondria. To the best of our knowledge, present protocols for isolation of 

human brain mitochondria have been developed mainly modifying Sims and 

Anderson isolation protocol of rat brain mitochondria [180]. The preliminary study 

of the project was the application of this method to isolate mitochondria from post 

mortem human brain cortex. Unfortunately, results did not fulfil requirements since 

electron micrographs showed mitochondria encapsulated inside synaptosomes 

(structures formed at the synaptic level during homogenization after opening and 

reclosing of the plasma membrane), which is index of contamination by other cell 

components. Thus, the first aim of this study was to develop a satisfying and 

standardized method to extract highly purified mitochondria from frozen human 

brain cortex. For this purpose, validating biochemical assays such as enzymatic 
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assays had to be defined to assess mitochondria purity and integrity. To measure 

mitochondrial enrichment and integrity, CS was chosen as marker due to its 

localization inside the mitochondrial matrix. Reliable enzymatic assays of possible 

contaminants were then established according to comparable size and density of 

mitochondria. The evaluation of the contamination by synaptosomes, lysosomes 

and peroxisomes was assayed measuring respectively LDH activity, AP activity 

and CAT activity. Once the new protocol was developed, results from CS assays 

showed a 4.75-fold purification. As specific subcellular populations are purified, 

unique markers of these structures should be enriched. The enrichment from the 

total homogenate depends on the proportion of the homogenate occupied by the 

particles. For example, if 20 % of the homogenate is represented by mitochondria, 

as in the case of liver [195], a maximum enrichment of 5-fold is expected. Precise 

data are not available in the relative composition of brain homogenates, but it has 

been reported that isolated mitochondria from rat neurons (primary culture) showed 

a citrate synthase activity increased by 4-fold [197]. Considering these data, it can 

be pointed out that we obtained a satisfying enrichment.  

If we consider contaminations we found, AP showed an activity of 1.05-fold while 

CAT activity was 0.58-fold with respect to whole brain tissue homogenate. Lisman 

and colleagues reported a purification of rat brain lysosomes with 7-10-fold over 

the homogenate [198] while Kovacs and co-workers achieved a peroxisomal 

fraction purification at least 40-fold over the original mouse brain homogenate 

[199]. Comparing these values, it can be observed that peroxisomal contamination 

was definitely low, and lysosomes presence may be estimated to about 10 % of our 

mitochondrial fraction. Moreover, since LDH  value was close to zero (0.03-fold), 

a significative synaptosomal contamination can be excluded.  
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When any enzymatic assay was unavailable, contamination from other cell 

components was evaluated by using western blots. Results demonstrated there was 

not nuclear or plasma membrane contamination, but there was an endoplasmic 

reticulum marker which seemed to be enriched in mitochondrial fractions. 

Therefore, we hypothesized that MAM could have been conserved throughout the 

isolation procedure. MAM are dynamic platforms in close apposition between 

mitochondria and endoplasmic reticulum (Fig. 34), that are implicated in 

fundamental cellular processes, such as lipid biosynthesis and transport, Ca2+ 

signalling, energy metabolism, cell survival and apoptosis [31]. Electron 

microscopy results actually showed not only mitochondrial membranes integrity, 

but also the presence of MAM vesicles juxtaposed to mitochondrial membranes. 

To verify our hypothesis, we performed a western blot quantifying GRP75, a 

MAM marker protein that strengthens the functional interaction between the ER 

and mitochondria by forming a ternary bridging complex [200]. Experiments 

showed a statistically significant increase of GRP75 in mitochondrial fractions and 

a confirmation of MAM enrichment.  
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Figure 34. Schematic representation of mammalian MAM with some of the proteins 
localized at the contact site.  GRP75 (blue) bridges the gap between IP3R and VDAC [200]. 
(Source: https://frombenchtobedside.wordpress.com/2014/03/03/introduction-to-
mitochondria-part-1/) 

 

To investigate the lipid composition of highly purified mitochondria, lipid extracts 

were partitioned into organic and aqueous phases. The analysis of organic phases 

performed by HPTLC revealed the prevalence of phospholipids species (PE, PC, 

SM, CL, PI, PS), as previously demonstrated in mitochondria deriving from 

different tissue types [201]. We detected also cholesterol and glycosphingolipids 

such as GalCer and gangliosides, that are generally assumed to be localized 

primarily (approx. 80%) in the plasma membrane [202]. Since we did not find 

reliable information about lipid composition of human brain mitochondria, we 

compared our data to those obtained from mouse brain mitochondria (Tab. 3) and 

noticed that the ratio between various molecules was very similar. Nevertheless, in 
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this study [169] gangliosides were found only in trace and other glycosphingolipids 

were not detected. Instead, Gillard and co-workers reported a variable subcellular 

localization of glycosphingolipids: interestingly, both anti-GalCer and monoclonal 

antibody A2B5, which binds polysialogangliosides, localized to mitochondria 

[203] in a wide variety of cell types. Moreover, TLC analyses of rat liver 

membranes revealed that gangliosides were present in mitochondria and 

endoplasmic reticulum as well [202]. Indeed, we can assume that the amount of 

gangliosides in our mitochondrial fractions could not be explained by 

contamination by plasma membrane, since our analyses showed no significant 

contamination. Furthermore, total homogenate ganglioside compositions is not 

similar [204], on a percent basis, to the pattern we detected in  aqueous phases. 

Finally, we conducted a pilot study of how mitochondria lipid composition may 

change in human aging, and noticed relevant differences as below explained. 

Indeed, we saw a visible decrease of SM and neutral glycolipids in the older 

subject compared to younger subject. PE and PC remained basically constant, but 

we observed a different phospholipid distribution pattern between the two subjects 

and a substantial loss of cholesterol content in mitochondria through human brain 

aging. It has to be underlined that mitochondrial phospholipids are critical 

throughout the autophagic process, from initiation and phagophore formation to 

elongation and fusion with endolysosomal vesicles [205], so it is convincing that 

the alteration of phospholipids species in brain aging could lead to 

neurodegeneration. Furthermore, it is known that cholesterol plays a key role in 

maintaining the membrane lipid bilayer architecture by regulating the mobility of 

phospholipids [206], and it is important to remark that the cholesterol content in 

human gray matter was reported to decrease in the oldest age group [207]. 
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Consistently with our result, Ruggiero et al. [208] investigated the effect of aging 

on the lipid composition of rat brain mitochondria and found the same decrease in 

cholesterol content.    

Moreover, our data showed that all gangliosides species (GM1, GD1a, GD1b, 

GT1b, GQ1b) displayed a lower bandwidth in the older subject. The study of 

Segler-Stahl et al. [209] demonstrated that ganglioside concentration decreases 

considerably in human brain, but this event could be explained by the loss of 

neurons and deterioration of synapses, which are known to occur in the 

physiological process of human aging [210]. 

The data obtained showed an evident relative biological difference. To confirm the 

results, it is clearly necessary to have a population statistic that needs an increasing 

of the subjects number. 
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6. Conclusions 

Brain aging is a physiological process of structural and functional decay that occurs 

in different areas of the brain, depending on the lifestyle and predisposition of 

individuals. Major changes in the older brain include an important loss of neurons 

and dendritic trees in numerous regions of the cerebral cortex and hippocampus, a 

decrease in the volume of the gray substance, and an increase in ventricular 

volume. This process causes a cognitive decline that is more concerned with 

specific domains, such as visual and verbal memory. In the central nervous system, 

the cellular energy demand is surprisingly high, but as a person ages, his brain 

energy metabolism declines. Mitochondria are lipid-rich organelles involved in 

many and important cellular processes, but they are popularly known as the power 

house of the cell. These intriguing organelles are decisively involved in brain aging 

as well as in the onset or progression of several age-related neurodegenerative 

diseases. Thus, this project aimed to investigate the lipid composition of human 

brain mitochondria and to evaluate their changes in physiological aging, as no 

previous studies had been performed with this purpose. Firstly, in this study a new 

reliable and reproducible protocol has been developed to isolate highly pure 

mitochondria from post mortem human brain cortex; purity and integrity have been 

verified by biochemical assays and electron microscopy. Secondly, this protocol 

has been applied to study the lipid composition of mitochondrial fractions of 

human brain cortex, and finally, preliminary data have shown differences in 

mitochondria lipid composition during aging, suggesting a need of further 

investigation that will be employed by increasing the number of subjects. In 

conclusion, these data would offer a starting point for new studies, that eventually 
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will be used for the development of new pharmaceutical strategies targeted to 

decelerate aging process and prevent neurodegenerative diseases. 
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