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Abstract 

The role of the substrate topography in phenotypes expression of in-vitro cultured cells has 

been widely assessed. However, the production of nanostructured interface via deposition of sol-

gel synthetized nanoparticles has not yet fully exploited. This is also argued by the limited 

number of studies correlating the morphological, structural and chemical properties of the grown 

thin films with those of the sol-gel “brick” within the framework of the bottom-up approach. Our 

work intends to contribute to go beyond this drawback presenting an accurate investigation of 

sol-gel TiO2 nanoparticles shaped as spheres and rods. They have been fully characterized by 

complementary analytical techniques both suspended in apolar solvents, by dynamic light 

Page 1 of 26 AUTHOR SUBMITTED MANUSCRIPT - NANO-115764.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t

mailto:daniela.maggioni@unimi.it


 2 

scattering (DLS) and nuclear magnetic resonance (NMR) and after deposition on substrates 

(solid state configuration) by transmission electron microscopy (TEM) and powder x-ray 

diffraction (PXRD). In the case of suspended anisotropic rods, the experimental DLS data, 

analyzed by Tirado-Garcia de la Torre model, present the following ranges of dimensions: 4-5 

nm  diameter (∅) and 11-15 nm length (L). These results are in good agreement with what 

obtained by the two solid state techniques, namely 3.8(9) nm ∅ and 13.8(2.5) nm L from TEM 

and 5.6(1) ∅ and 13.3(1) nm L from PXRD data. 

To prove the suitability of the supported sol-gel NPs for biological issues, spheres and rods 

have been separately deposited on cover-slips. The cell response has been ascertained by 

evaluating the adhesion of the epithelial cell line Madin-Darby Canine Kidney. The cellular 

analysis showed that titania films promote cell adhesion as well the clustering organization, 

which is a distinguishing feature of this type of cell line. Thus the use of nanostructured 

substrates via sol-gel could be considered a good candidate for cell culture with the further 

advantages of likely scalability and interfaceability with many different materials usable as 

supports. 

 

Keywords: titanium dioxide, nanoparticles, sol-gel, thin film, MDCK cells 

 

1. Introduction 

Nowadays biomimetic research is widespread and this indicates that many natural phenomena 

are related to the micro and nano-structures present on the biosurfaces [1,2]. In the last years 

many works focused on the role of substrate topography in cellular proliferation and 

differentiation, as well as on the possibility to manufacture biocompatible interfaces able to 

mimic the physiological conditions of the extracellular environment [2]. Moreover, the cellular 
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behaviour, both in vivo and in vitro, is influenced by mechanical, biochemical and topographic 

properties of the extracellular microenvironment [3]. 

In particular, the biochemical composition and the mechanical behavior of the extracellular 

matrix play an important role in many processes like morphogenesis [4], differentiation [5], 

development of tumors [6,7], etc. Cells can actively adapt to the adhesion surface and activate 

specific intracellular signals, which affect their behavior and survival [8,9].  In vivo, cellular 

adhesion is the consequence of the binding to extracellular matrix through cellular specific-

adhesion proteins. The protein binding is intrinsically affected by mechanical and chemical 

signals deriving from topography of external environment which is characterized by objects of 

different size scale, from the nano to the mesoscale [10,11]. On the other hand, in vitro cells 

establish a complex network of interactions both with the artificial surface and the secreted 

proteins as well as with the serum proteins of extracellular matrix. The optimization of the cell-

substrate interactions can consequently open new perspectives in the design of biomimetic 

supports [12,13]. 

In this work we focused our attention on titanium dioxide as substrate material for cell culture 

studies. TiO2 nanoparticles are a very valuable functional material, with properties strongly 

depending on the crystalline phase (anatase, rutile or brookite) afforded by the synthetic 

procedures. Nanocrystalline TiO2 is used in photocatalysis [14–17], dye-sensitized solar cells 

and electronic devices [18,19]. Among many materials, titania has also been studied in several 

works on cellular proliferation due to its peculiar properties. Many efforts have been devoted on 

the study of the topographic modifications of titania surfaces, since TiO2 is among the most 

studied biomaterials [20]. It has already been shown how stem cells answer differently to 

different extracellular matrixes with relevant consequences on their differentiation and self-

renewal [21,22]. More recently it has been reported that, independently from the employed cell 

types, a nanostructured topography constituted by anatase phase TiO2 nanotubes (produced by 

anodization of Ti sheets in a phosphate-fluoride electrolyte) with a 15-20 nm diameter induces 
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stronger stimulation on differentiation, cell adhesion, proliferation, and motility, than amorphous 

TiO2 and/or nanotubes with greater diameters [23]. 

Often, top-down methods are used to obtain micro and nanostructured substrates, like the hard 

or the soft lithography [24], nevertheless these techniques are not usually able to produce 

substrates with morphology and hierarchical organization like in extracellular matrix is [25].  

In the literature there exist several examples of studies on cell interaction with nanostructured 

materials obtained with a bottom-up approach [26], but among them only a few are based on sol-

gel nanoparticles deposition [27]. For this reason, in this work we have prepared, characterized 

and tested two different types of substrate, obtained by a wet-chemical method, by using spheres 

or rods as precursor bricks deposited on coverslips. 

The assessment of a nano-object size and shape has been achieved by solid state techniques; 

however, the results provided by deposited samples could be biased by aggregation processes, 

resulting in size and/or shape modifications. On the other hand, while many applications require 

NPs in the liquid state or as a heterogeneous stable suspension, solution approaches are not 

always informative as far as NPs’ shape is concerned. Therefore, the use of a single technique 

either in the solid state or in solution cannot be completely satisfactory for the determination of 

size and shape of nanoparticles.  

Concerning the sol-gel method, we prepared both TiO2 nanospheres and nanorods [28], and 

studied them through the complementary role of solution (DLS and NMR) and solid state (TEM 

and PXRD) analytical techniques. These sol-gel materials have been then employed to produce 

drop casted thin films of nanostructured TiO2 supported on round glass coverslips as substrates 

for epithelial cells (MDCK, Madin-Darby Canine Kidney) adhesion and proliferation studies. 

For comparison the same set of biological experiments have been performed on nanostructured 

TiO2 thin films produced by supersonic beam deposition of clusters, whose use as titania 

substrates for cell growth has been widely assessed [29,30]. 
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2. Experimental section 

2.1. Sample preparation 

2.1.1. Synthesis of spherical TiO2@OA nanoparticles.  The synthesis of spherical and rod-like 

TiO2@OA was derived from a literature procedure [28]. Briefly, triethylamine (TEA) and 

ethylenglycole (EG) were treated with 4 Å molecular sieves for 24 h and then distilled (the first 

one from P2O5, the second one in reduced pressure). Technical oleic acid (OA, 90%) was dried 

under vacuum heating at 120 °C for at least 1 h under vigorous stirring. Typically, 40 mL of 

dried OA were warmed at 100 °C and added with 4.5 mL of titanium tetraisopropoxide (TTIP, 

1.5 mmol), then a solution of TEA (0.42 mL, 3 mmol) in anhydrous EG (2.2 mL) was added and 

the sol-gel reaction left to proceed for more than 60 h at 100 °C. The solution remained clear and 

no precipitate was observed. Part of the solution (2 mL) was then treated with 6 mL of ethanol or 

methanol under stirring and immediately a white precipitate formed. The suspension was 

centrifuged for 10 min at 3500 rpm, discarded the supernatant, re-dissolved in 2 mL of CHCl3 

and repeated the precipitation until a white and powdery precipitate was obtained. 

2.1.2. Synthesis of rod-like TiO2@OA nanoparticles. Anhydrous OA was warmed at 100 °C, 

added with 2.25 mL of TTIP (0.75 mmol) under stirring. Then 3.75 mL of an aqueous solution 2 

M of tetraethylammonium hydroxide was rapidly added. The solution was left under stirring and 

mild reflux at 100 °C for 6 h. The solution became turbid, also after removing the water excess 

under vacuum. Similarly, to what done in the case of the spherical TiO2@OA nanoparticles 

synthesis, the nanorod particles were recovered by treating 2 mL of suspension with 8 mL of 

ethanol or methanol, centrifuged at 3600 rpm for 20 min, repeating the procedure twice in order 

to remove the OA excess. Both spheres and rods were completely soluble in CHCl3, giving 

colorless and stable suspensions. 

2.1.3. Sol gel-based thin films preparation. Round glass coverslips with a diameter of 13 nm 

were sonicated (Branson 5510 working at 42 kHz) in different solvents by following subsequent 

washing cycles which employed acetone, ethanol, milliQ water and isopropanol, 10 min for each 

Page 5 of 26 AUTHOR SUBMITTED MANUSCRIPT - NANO-115764.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 6 

solvent. Afterward, the coverslips have been dried by using a gentle nitrogen flux. Then, in a 

typical preparation, 10 mg of TiO2 nanospheres or nanorods were suspended in 5 mL of CHCl3, 

and 1 mL was further diluted adding 24 mL of CHCl3. The diluted suspension was sonicated for 

15 min, immediately after, by using a 0.2 μm PTFE (polytetrafluoroethylene) syringe frit, 30 μL 

were drop-casted on a glass coverslip completely and uniformly covering the entire surface. The 

solvent was then made slowly evaporate. Finally, the covered glass coverslips were calcined at 

450 °C reaching the final temperature at a rate of 10.6 °C/min, leaving the coverslip for 2 h at 

450 °C, then pulling them out of the oven to let them slowly cool down to room temperature. 

2.1.4. Cluster-assembled nanostructured substrates. Nanostructured ns-TiOx films were 

produced by supersonic cluster beam deposition (SCBD) using an apparatus equipped with a 

pulsed microplasma cluster source (PMCS) [31]. The PMCS operation principle is based on the 

ablation of a target titanium rod by pulsed argon plasma ignited by an electric discharge. The 

ablated titanium atoms thermalize in the quenching gas and aggregate to form clusters. The 

mixture of clusters and inert gas is then extracted into an expansion chamber through an 

aerodynamic filter and forms a seeded supersonic beam. 

A glass coverslip placed on a manipulator intersects perpendicularly the beam trajectory 

allowing the deposition of the clusters (rate of about 0.5–2.5 nm/min). The nanostructured film is 

grown under ballistic deposition regime. The clusters partially oxidize in the source and in the 

deposition chamber due to the presence of oxygen in trace. The oxidation further proceeds upon 

exposure to air resulting in a ns-TiOx (x ≤ 2) film, as assessed via electron spectroscopy [32]. 

The roughness was determined by means atomic force microscopy (AFM) and, for the used 

deposition parameters, results to be 20 ± 0.5 nm [30]. 

2.2. Characterization experiments 

2.2.1 NMR. 1H Pulsed field Gradient Spin Echo (PGSE) NMR experiments were on a Bruker 

400DRX spectrometer equipped with a BBI probe and z-gradients, at 300 K in CHCl3/CDCl3 

(9/1) or in CDCl3, on diluted samples (typically NMR samples were prepared dissolving 3 mg of 
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 7 

surfacted TiO2 nanoparticles in 500 µL of protio or deuterated solvent). A 3 mm ID capillary 

tube was always used in order to minimize convective motions. 

Chloroform was chosen as solvent since it has the advantage to well dissolve the 

nanoparticles giving clear solutions and also because, among the apolar deuterated solvents 

available, it had the right properties, as relaxation time not too long (as benzene and toluene) in 

order to be used as internal standard too, one single resonance not overlapping with oleate 

resonances (as hexane, cyclehexane and so on). Finally, CD2Cl2 was discarded because of the 

presence of severer convective motions. The gradient strength (G) was linearly incremented in 

16 steps, from 5% to 95% of its maximum value (Gmax= 53.5 G/cm). The gradient pulses used 

were sine shaped. Diffusion time (∆) = 200-600 ms and gradient pulse duration (δ) = 2.4 ms 

were normally used. The gradient strength was varied from 30 % to 95 % in order to have a 

minor contribution of OA free in the case of a ligand excess, and recovery delay was left longer 

than 12 s. Standard deviations of the diffusion coefficients were obtained from the linear fitting 

of equation S2 (where γ is the gyromagnetic ratio of 1H and τ represents the time between 

bipolar gradients) [33], and the standard deviations of the hydrodynamic radii were computed 

accordingly, using Origin data analysis software package. 

2.2.2. DLS. The Dynamic Light Scattering analysis of diluted samples (ca 1 mg/mL or less) were 

recorded on Malvern Zetasizer Nano instrument, equipped with a 633 nm He/Ne laser, with the 

detector at an angle of 173.0°. The experiments were performed at a controlled temperature of 

25°C. The viscosity, the refractive index and dielectric constant of CHCl3 were taken as 0.542 

mPa s, 1.446 and 4.81, respectively, and the refractive index and absorbance index of TiO2 were 

taken as 2.49 and 0.01, respectively. All the measurements were performed scanning 10 times 

per experiment and repeating the measurement 5 times. 

2.2.3. TEM. The samples suspended in CHCl3 (ca 0.4 mg/mL) were deposited by drop casting 

onto a 300 mesh Formvar/Carbon coated copper grid, and left to go naturally to dryness for one 

night. The transmission electron microscopy images were obtained on the Energy Filtering TEM 
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LEO 912AB (Zeiss) operating at 120 kV and acquired using a CCD-BM/1K and the ESI vision 

software AnalySIS (Soft Imaging Systems, Muenster, Germany). The statistics has been 

obtained using the free software Image-J 1.37v. 

2.2.4. PXRD. Gently ground powders of the samples were deposited in the, 2 mm deep, hollow 

of an aluminum sample holder. Diffraction experiments were performed using Cu-Kα radiation 

(λ = 1.5418 Å) on a vertical-scan Bruker AXS D8 Advance diffractometer in θ:θ mode, equipped 

with a Goebel Mirror and a linear Position Sensitive Detector (PSD), with the following optics: 

primary and secondary Soller slits, 2.3° and 2.5°, respectively; divergence slit, 0.1°; receiving 

slit, 2.82°. Generator setting: 40 kV, 40 mA. The nominal resolution for the present set-up is 

0.08° 2θ (FWHM of the α1 component) for the LaB6 peak at about 21.3° (2θ).  

Rietveld refinement profile fitting have been done, with the use of the software TOPAS-R, 

[34], on the two samples, assuming the anatase structure. For the nanosphere sample, the best 

fitting has been obtained through the description of the peak broadening with the TOPAS CS_L 

function [34]. However, this approach cannot be applied for anisotropic peak broadening that has 

been described, for the nanorod sample, through the usage of 4th order spherical harmonics.  

It should be noted that, in the collected powder patterns (see supporting information Figure 

S2), some peaks related to the aluminum of the sample holder can be observed. However, the 

regions of the patterns that include these peaks have been excluded from the Rietveld refinement, 

thus not affecting the goodness of the fitting. The refinements converged to Rwp = 4.27 and RBragg 

= 2.94 for the nanospheres and to Rwp = 3.73 and RBragg = 1.89 for the nanorods. 

The Scherrer CS of both samples were determined on 004 and 020 reflections from their 

fwhm values either measured on the experimental profile (by using the DIFFRAC.EVA software 

[35], vide infra) or calculated from the fitted profile, converging to 13.3(1) and 5.6(1) nm for 004 

and 020, respectively. For the nanosphere sample, the CS_L crystallite size was refined to 

14.0(1) nm. 
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2.2.5. FTIR. Infrared spectra were acquired on a Bruker Vector22 instrument. Samples were 

dispersed in KBr and pressed in a pellet, recording the spectra between 4000 and 400 cm-1. 

2.2.6. Contact angle measurements. The film static contact angles were measured by the sessile-

drop method [36]. The measurements were performed using an FTA100 (First Ten Ångstroms 

Inc.) instrument. The drop of 0.5-1 mm diameter was released from a tip of syringe on the 

sample surface at 20 ± 1 °C. Each measurement was recorded in 150 images taken within 5 s 

with a Pelco Model PCHM 575-4 camera (standard deviation ~2°). The image analysis was 

performed by the FTA Windows Mode 4 software.  

2.3. Cell culture and cell adhesion assays.  

Immortalized Madin-Darby Canine Kidney epithelial cell line (MDCK) were cultured in 

Dulbecco's Modified Eagle's Medium (DMEM), supplemented with 10% Fetal Bovine Serum 

(FBS), 2 mM L-Glutamine, 0.1 mM non-essential amminoacid, 1.5 g/L sodium bicarbonate, 1 

mM sodium pyruvate, 100 units/mL penicillin and 100 μg/mL streptomycin. Cells were grown in 

tissue culture flasks at 37 °C in controlled atmosphere (5% CO2) until they reached the 70% 

confluence, then by using a solution of tripsine/EDTA (Sigma) they were seeded in the multiwell 

plates. For cell adhesion and proliferation MDCK cells were seeded at a concentration of 104 

cells per well to 13 mm diameter round glass coverslips drop-casted with sol-gel TiO2 

nanospheres or TiO2 nanorods, covered with ns-TiOx, not functionalized glass, and to TCPS 

(tissue culture plate surfaces, multiwell 24, TPP- Zellkultur und Labortechnologie, Switzerland). 

MDCK adhesion was studied by comparing the behavior of cells on the different substrates over 

time. Cells were observed each hour for the first four hours after cell plating, by taking four 

random fields pictures for each well with a Power Shot G6 Canon digital camera mounted on a 

Zeiss Axiovert 40 CFL inverted optical microscope using 10x objective lens. Each thin film 

layer was monitored in triplicate. Cells were also monitored each 24 h after the first 4 h, until 

confluence was achieved by cells. Cells were counted as adhesive cells whenever the typical 

polygonal-like shape was observed, while round and pearl-color cells were counted as detached 
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cells. Percentage of adhesion was then calculated as the ratio between the adherent cells and the 

total cell number for each picture (4 x well; at least 3 wells per tested material), then the 

arithmetic media was finally calculated. 

 

3. Results and Discussion 

3.1. Study of the size of spheres and rods-like TiO2@OA NPs in the colloidal and in the 

solid phase forms synthesized with a wet bottom-up method.  

TiO2 NPs have been prepared according to a sol-gel method [28], which produces at first TiO2 

NPs capped with oleic acid as a surfactant (TiO2@OA) that makes spheres and rods soluble in 

CHCl3, giving colorless and stable suspensions. The interest toward this particular synthesis is 

due to several factors: a) the synthesis is conducted at relatively low temperatures compared to 

hydrothermal methodologies (vide infra); b) NPs are formed in the anatase phase; c) NPs can be 

obtained in two different forms: nanorods or nanospheres, in dependence of the tunable reaction 

conditions. The possibility to test the same material with a different shape and verify how it can 

influence the cellular behaviour has been taken into account. 

The 1H NMR spectra of free oleic acid and of TiO2@OA nanospheres and nanorods are 

reported in Figure 1. 

Upon binding to NPs, the 1H NMR OA signals are broadened due to the shortening of T2 in 

dependence to the increase of the correlation time, experienced by OA molecules when 

interacting with the NPs, the chemical shifts remaining unchanged. This broadening is more 

pronounced for the protons closer to the nanoparticle surface (see the barely observable CH2 in 

position 2 and 3), in line with the view that as the distance from the surface increases local 

segmental mobility increases as well. 
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Figure 1. 1H NMR spectra (298 K, CDCl3) of (a) oleic acid; (b) TiO2@OA nanospheres and (c) 

TiO2@OA nanorods (asterisk marks CH2 and CH3 of ethanol). 

 

The shorter T2 can give rise to a significant loss of magnetization during the pulse sequences 

used for diffusion measurements; therefore, not all the resonances of the surfactant molecules 

can be equally useful in NMR diffusion experiments.  

In order to minimize the effects of T2 shortening and of possible convective motions, a 

double stimulated echo (DSTE) NMR pulse sequence (supporting information Scheme S1) 

has been used. Indeed, in spite of its intrinsic poor sensitivity, (only a quarter of the signal is 

retained), in this sequence (see Ref. [37]) the observed echo attenuation is coupled with the 

spin-lattice relaxation T1 rather than the spin-spin relaxation T2, (allowing measurements 

with longer diffusion times, ∆), and the double stimulated echo compensate the possible 

effects of convective motions. In any case, since it is essential to get fixed information about 

the nanoparticle shape for the analysis of the diffusion data both from NMR and DLS, a TEM 

analysis was preliminarily performed (Figure 2). Figure 2 shows the micrographs of spherical 

nanoparticles (a), and of nanorods (c), while the analyses of the distribution sizes (b, d) showed 

that the diameter of the spherical NPs was centered at 6.5(1.1) nm and that the diameter and 
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 12 

length of the nanorods were 3.8(9) nm and 13.8(2.5) nm, respectively. 

 

Figure 2. a) TEM image of a sample of TiO2 spheres, capped with oleic acid, deposited from a 

chloroform suspension; b) histogram distribution of the diameters; c) TEM image of a sample of 

TiO2nanorods, capped with oleic acid, deposited from a chloroform suspension; d) histogram distribution 

of the rod length. 
 

1H DSTE NMR experiments were performed at 300 K in CDCl3 where TiO2 NPs suspension 

appeared transparent and colorless. Figure 3 shows the gradient dependence, according to 

Equation S2, of the intensities of the CH3 signals of OA free and bound to TiO2@OA 

nanospheres. Two different monoexponential slopes of the attenuation profiles were obtained, as 

expected due to the difference of size for the two entities, and therefore to the difference of 

diffusion coefficients Dt. 

Three DSTE NMR experiments were performed on TiO2@OA nanospheres using 

different ∆ values. Only the slopes of the decays of the two most intense resonances CH2 (4-

7, 12-17) at 1.28 ppm and the one of CH3 (18) at 0.90 ppm were used to estimate the 

diffusion coefficient, being the intensities of the other resonances too low for a meaningful 
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 13 

analysis. The mean value of Dt resulted 1.42·10-10 m2 s-1 (± 6·10-12), which corresponds to a 

hydrodynamic diameter of 5.8(3) nm, value in agreement with the mean diameter of the 

inorganic core of nanospheres estimated by TEM analysis (6.5(1.1) nm, see Figure 2 panel 

b). 

 

 

Figure 3. Comparison of the CH3 resonance echo attenuation for a sample of free OA, TiO2@OA 

nanospheres and of a mixture of TiO2@OA nanoshperes and free OA (300 K, CDCl3, ∆ = 200 ms, 

δ = 2.4 ms). 

 

In principle, when dealing with polydispersed systems, the extent of polydispersion must be 

taken into account. Equation S2 can be modified in the empirical Kohlrausch-Williams-Watts 

(KWW) distribution function or stretched exponential [38,39], introducing a parameter β 

(Equation 1) that describes the width of the distribution of the diffusion coefficients. β values are 

in the range 0<β≤1, the lower the β value the higher the polydispersion. 

ln
𝐼𝐼
𝐼𝐼0

= −[(𝛾𝛾𝛾𝛾)2𝐷𝐷𝑡𝑡(𝛥𝛥 −
𝛾𝛾
3
−
𝜏𝜏
2

)𝐺𝐺2]𝛽𝛽 Eq. 1 

Nevertheless, the fitting of the attenuation profiles through Equation 1 of both TiO2@OA 

spheres and rods brought always to an estimation of the parameter β ≥ 0.95, indicating a low 

polydispersion.1H PGSE NMR experiments are sensitive to the presence of surfactant excess. In 

Figure 3 it is also shown the attenuation profile of a sample of TiO2@OA treated by the addition 
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of an OA drop. While in the absence of an excess of free OA, the attenuation profile follows a 

mono-exponential decay, in the presence of free OA, the attenuation profile becomes bi-

exponential, with a fast decay behaviour that overlaps the decay of the free OA at low gradient 

intensities, and a slow decay at high gradient intensities with the same slope as the TiO2@OA 

sample. 

NMR measurements can give insights on many aspects. According to computer simulations 

reported in the literature [40], the attenuation profile observed for the mixture of TiO2@OA and 

OA (Figure 3) is in line with a two-site system (OA free-TiO2@OA = A-B) in slow exchange 

regime on the NMR time scale, with a ratio of the diffusion coefficients of the two species of ca 

10 (DA=10DB) and with a relative population of the two sites A:B=8:2. 

DLS measurements have been performed in the presence of free OA. Despite the capability of 

resolution of NMR to measure in a bi-exponential decay the same diffusion coefficient for 

TiO2@OA (see Figure 3) compared to the Dt before the addition of the excess of OA free, DLS 

did not show the same resolution ability. In Figure S1 of supporting information it is reported the 

autocorrelation function decay for such a sample, whose fitting by a non-linear bi-exponential 

function (Equation 2) [41] led to the estimation of Dt = 5.5 ∙ 10-11 m2 s-1 ± 2∙10-13, diameter 14.3 

± 1 nm (the second component n2 was necessary to take into account the presence of dust or 

some aggregate in the sample 5.3 ∙ 10-13 m2 s-1 ± 4∙10-14, diameter 15 µm, n1/n2 = 2.9 ∙ 1018). 

𝐺𝐺(𝑡𝑡) =  0.15��𝐴𝐴𝑖𝑖
𝑖𝑖

𝑒𝑒−𝐷𝐷𝑡𝑡𝑞𝑞𝑡𝑡�
2

 Eq. 2 

where q the wave vector = 4πn/[λ sin θ/2], λ the wavelength of the incident light (θ = 90°), n = 

refractive index of CHCl3 (n = 1.4460), i = 2, A is a pre-exponential factor that is proportional to 

the product of the square of the molecular mass times the number concentration, and with Dt is 

estimated by the iterative fitting process [41]. 
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Such an increase is likely due to the formation of many OA layers around the particles 

through apolar interactions between the linked and free aliphatic chains of OA in monomeric or 

dimeric forms. 

PXRD patterns confirmed that in both samples (rods and spheres, [42] Figure S2 and S3) 

TiO2 is present as pure Anatase. However, an anisotropic broadening of the peaks, with sharper 

00l and broader h00 (and 0k0) reflections, is observed in the PXRD pattern of the nanorods thus 

revealing the anisotropic shape of its crystallites. Crystallite sizes where determined from the 

004 and 020 reflections in this samples by applying the Scherrer equation (Eq. S3) on the fwhm 

values either measured on the experimental profile or calculated from the fitted profile. While for 

the nanosphere sample the crystal size is isotropic and equal to 14.0(1) nm (either for calculated 

and experimental fwhm), for the nanorod sample we have obtained crystal size values of 13.8(1) 

and 5.0(1) nm on the experimental profile and of 13.3(1) and 5.6(1) on the calculated one, 

obtained by Rietveld refinement. 

As to TiO2 nanorods, measures of the translational diffusion coefficient by DLS and NMR led 

almost to the same diffusion coefficient Dt, which resulted equal to 8.4 ∙ 10-11 m2 s-1 (± 1 ∙ 10-12) 

and 1.02 ∙ 10-10 m2 s-1(± 1 ∙ 10-12), respectively. Due to the anisotropy of these NPs, the values of 

Dt cannot be used directly in the Stoke-Einstein equation (Eq. S1) for the obtainment of the size, 

but suitable models must be taken into account. 

There exist many models relative to the correlation between the translational diffusion 

coefficient and dimension for rod-like nanoparticles: Tirado and Garcia de la Torre’s relations 

(TGT) [43,44] hydrodynamic stick theory (HST) [45] and the Broersma’s relations (B) [46] 

while Perrin theory [47] is applied to rotational ellipsoids (so it has not been taken into account 

in this study). Table 1 reports the size ranges compatible with the experimental Dt determined 

through NMR and DLS, according to the most accepted models cited above. 
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Models NMR DLS 

Tirado and 

Garcia de la 

Torre (TGT) 

 

 

 

 

d= 4-5 nm 

L = 11-15 nm 

d= 3-6 nm 

L = 14-21 nm 

Hydrodynam

ic Stick 

Theory (HS) 

 

 

 

 

d= 2-3 nm 

L = 11-19 nm 

d= 2-3 nm 

L = 18-26 nm 

Broersma (B) 

 

 

 

 

 

d= 2-3 nm 

L = 11-19 nm 

d= 2-4 nm 

L = 14-25 nm 

Table 1. Estimation of diameter (d) and lenght (L) by TGT, HS and B theories for TiO2@OA rod-like nanoparticles 

for NMR and DLS measurements. 

The dimensions estimated for nanorods according to the three models are not very different. 

However, taking into account the criticism to the HS theory that does not consider the “end 

effect” and to the B theory that is more reliable for very long rods (e.g filaments), we judged 

more sound the description made by the TGT model. Indeed, taking into account the OA layer 

around the nanorods, the TEM size estimation need to be increased of ca 1-2 nm depending on 

the conformation around the NP assumed by OA, and TGT theory resulted so the most 

appropriate. 

3.2 TiO2 thin films preparation methods. TiO2 films were obtained by drop casting the sol 

suspensions of TiO2 nanorods and nanospheres obtained as described in the previous paragraph. 

The nanostructured glass supports remain transparent and suitable for an optical microscope 

observation. Drop casting covering method was adopted to uniformly cover the coverslips after 

many unsuccessful trials made with spin coating. The spin-coating covering method was also 

)2ln(
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/22/37/5.13/15.0807.0
432

432
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performed, but was indeed unable to give uniform and reproducible coatings, likely due to the 

too low viscosity of the suspension and the poor weak interactions between the silica OH on the 

surface and the apolar tails of OA on the nanoparticles. Attempts to make the NPs better 

interacting with the glass surface were made by pretreating the coverslips with a silane endowed 

with an apolar chain, but this strategy was not satisfactory using n-propyltrimethoxysilane for the 

pretreatment. 

Glass coverslips obtained by drop casting were calcined (see Experimental) in order to assure 

the complete oxidation and removal of all the organic residues. The efficacy of calcination cycle 

was tested on samples of both nanorods and nanospheres TiO2 powders by analyzing the samples 

by FTIR spectroscopy. The comparison of the spectra recorded before and after calcination 

(Figure 4) well shows the completeness of the elimination of the organic surfactant and of the 

various solvents. Before the calcination process in both the spectra (a and c), several signals 

attributable to oleate capping ligand were present. The intense C-H stretching due to the 

methylene groups of the olefin tail were visible (at 2920 and 2850 cm-1, asymmetric and 

symmetric, respectively), together with the shoulder at 2960 cm-1 due to the methyl terminal 

group and the weak peak at 3008 cm-1 due to the C-H on the double bond [48–50]. 

 

Figure 4. FT-IR spectra in KBr pellets of nanorods (sx) and nanospheres (dx) before (a, c) and after (b, d) 

calcination at 450 °C. 
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The two intense and characteristic bands of the asymmetric and symmetric stretching centered 

at 1520 and 1436 cm-1 indicated that the binding to the surface of TiO2 was principally chelating 

bidentate (see scheme reported in Figure 1). In the case of TiO2 nanorods spectrum (a), a band at 

ca. 1720 cm-1 indicated the presence of oleic acid monomers, which was not detectable in the 

case of TiO2 nanospheres. Below 1000 cm-1 the Ti-O-Ti stretching bands were detectable as very 

broad bands. After the calcination process the region 400-1000 cm-1 gave a more defined peak, 

indicating a more ordered Ti-O-Ti framework. Moreover, after the calcination, only peaks due to 

coordinated surface water or superficial OH were detectable (at 3400 and 1640 cm-1), while all 

the organic component peaks disappear, confirming the efficacy of the thermal treatment. 

 

3.3 TiO2 thin films characterization. The homogeneity as well as the wettability of the thin 

films prepared with sol gel suspensions of TiO2 nanorods and nanospheres have been 

investigated through water contact angle measurements. Measurements were repeated randomly 

depositing the water droplets in three different regions of the TiO2 films resulting in contact 

angle values (25° ± 1 for nanospheres and 29° ± 1 for nanorods) lower than for the reference 

glass substrate (46° ± 1) (Figure 5), in line with the fact that contac angle usually decreases by 

increasing the roughness of the support. This means a high wettability and hydrophilicity of the 

treated supports. 
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Figure 5. Water contact angle measurements on nanosphere and nanorod thin layers, and glass (from left 

to right respectively). 

A SEM analysis was also performed on the nanorod sample. To this purpose, a silicon wafer 

was treated by drop casting with the same suspension used for the functionalization of glass 

substrates, revealing a dense covering of the nanorods (Figure 6 left). Moreover, the observation 

of the drop casted sample by zooming out the image (Figure 6 right) revealed the presence of a 

corrugated pattern formed during the withdrawal of the solvent.  

 

Figure 6. SEM images at two different magnifications of TiO2 nanorods deposited by drop-casting on a Si wafer.  

 

3.4 MDCK cells adhesion study on different TiO2 based thin films. Study on the adhesion 

and proliferation of MDCK cells has been conducted comparing nanostructured titania thin films 
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prepared by sol-gel method with plastic of multiwell plates (TCPS, tissue culture plastic 

substrate, positive control), coverslip glass (negative control) and cluster assembled titania films. 

After 10000 cells per well were seeded, the cell shape and color were monitored over time as 

a function of several kinds of substrates. The shape of cells passed from spherical (when not still 

attached to the substrate) to elongated, with prolongations in evidence. At the same time the 

color varied from pearly and bright to grey. 

Figure 7 reports digital photographs of the cells over time incubated on different substrates, 

qualitatively showing the cells response to the different substrates at the following time points 1, 

6 and 24 h by means the analysis of the cells morphology. 

At 6 h the images showed that cell adhesion on the different TiO2 nanostructured substrates 

were lower than that observed on TCPS and greater than the glass substrate. The cell shapes 

show a polygonal-like morphology typical of the phenotype of adhered MDCK cells. At 24 h the 

cells incubated on TCPS, sol-gel nanorods TiO2 and ns-TiOx show either good proliferation and 

clustering, while on sol-gel nanospheres TiO2 the cells to have a significant slower proliferation. 

Moreover, the appearance of the cell clusters formed on the TiO2 substrates was very similar to 

that observed on TCPS, differently from what observed on the glass substrate, where are formed 

by a very low number of cells. 

Some proliferation experiments were prolonged until 96 h (data not shown). In that case, we 

observed that while cells on TCPS had already reached the confluence and had started to die, on 

nanostructured TiO2 films the cells had just reached confluence, showing a delay of the cell 

growth on these nanostructured materials. The growth of MDCK cells on glass support was 

undoubtedly slower than that on TiO2 films. Optical images at 24 h indicate that the cells 

adhered on sol-gel nanorods are more elongated with respect to TCPS and the other 

nanostructured thin films. This behaviour could be ascribed to the occurrence of a guidance 

stimulus for the cell growth compliant with the asymmetric shape of the nanorods. This is a well-
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known effect for cells grown on aligned multiple nanogrooves or nanogratings [51,52], but not 

yet observed in randomly distributed elongated nanostructures. 

 1 h 6 h 24 h 

Glass 

substrate 

   

Nanospheres 

TiO2  

   

Nanorods 

TiO2  

   

ns-TiOx  

 

   

TCPS 

   

Figure 7. Digital photographs at different times of MDCK cells incubation on different substrates. 

 

The quantitative evaluation of the adhesion of MDCK cells on the different kinds of 

substrates over time (1-4 h) was performed using the digital photographs of the cells. The images 

were analyzed counting all the elongated cells as attached cells and discarding all the spherical 

cells, considering them as not attached cells yet. Results have been reported in Figure 8. The 
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nanostructured TiO2-based substrates show a good percentage of cellular adhesion, although 

retarded with respect to TCPS. Indeed, if we compare the number of adherent cells at fourth hour 

on the different substrate it can be concluded that the adhesion on plastic substrate was roughly 

double with respect to the TiO2-based substrates, which in turn revealed a cellular adhesion more 

than doubled with respect to the one observed on the glass coverslip.  

 

Figure 8. MDCK cell proliferation test results. 

 

4. Conclusions 

With this work we demonstrated that complementary analytical techniques (DLS, NMR, 

TEM, PXRD) can be combined for providing reliable information on the morphology and 

dimensions of two different set of apolar TiO2 nanoparticles, prepared by a sol gel method. 

Diffusion NMR experiments represent a good tool to estimate the dimensions of suspended (sol 

dispersions) spherical nano objects as well as rod shaped nanoparticles, provided the starting 

knowledge on the shape of the nano-object from other solid techniques analyses (as for example 

microscopy or PXRD analyses). The second goal of the work was the evaluation of the 
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employment of this kind of material to produce thin nanostructured films, as new substrates for 

cell culture. The sol-gel TiO2 nanoparticles thin films were compared to a ns-TiOx thin film 

produced by PMCS technology. The results of proliferation and cell adhesion tests are very 

promising. In particular, the sol-gel nanorods TiO2 films promote a good cell adhesion and 

appear to affect the cell morphology of the MDCK, which usually prefer to maintain a 

polygonal-like shape with respect to elongated one for the formation of the epithelial tissue. 

Moreover, the adhesion and clustering amount is comparable to that of ns-TiOx, whose 

effectiveness as cell culture substrates has been widely assessed [26]. 

Quantitatively the cell adhesion is lower with respect to the TCPS but almost the double with 

respect the glass. However, the confluence for titania-based substrates is reached at about 96 h.  

Our results demonstrate that the use of sol-gel nanostructured TiO2 films allows a good 

control on the morphological and structural properties at the nanoscale of titania film and favor 

the cell adhesion and clustering organization. The production of nanostructured substrates via 

sol-gel has the advantages of being easily scalable and adopted for a wide range of support 

materials. 
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