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Abstract—Multi-terminal switching lattices are typically ex-
ploited for modeling switching nano-crossbar arrays that lead to
the design and construction of emerging nanocomputers. In this
paper we propose a switching lattice optimization method for a
special class of “regular” Boolean functions, called autosymmetric
functions. Autosymmetry is a property that is frequent enough
within Boolean functions to be interesting in the synthesis process.
Each autosymmetric function can be synthesized through a new
function (called restriction), depending on less variables and with
a smaller on-set, which can be computed in polynomial time.
In this paper we describe how to exploit the autosymmetry
property of a Boolean function in oder to obtain a smaller lattice
representation in a reduced minimization time. The original
Boolean function can be constructed through a composition
of the restriction with some EXORs of subsets of the input
variables. Similarly, the lattice implementation of the function
can be constructed using some external lattices for the EXORs,
whose outputs will input the lattice implementing the restriction.
Finally, the output of the restriction lattice corresponds to the
output of the original function. Experimental results show that
the total area of the obtained lattices is often significantly reduced.
Moreover, in many cases, the computational time necessary to
minimize the restriction is smaller than the time necessary to
perform the lattice synthesis of the entire function.

I. INTRODUCTION

Behind standard CMOS networks representing Boolean
functions, the interest on new circuit models has been grown in
the recent literature. In this framework, the logic optimization
of switching lattices for emerging nanoscale technologies have
been proposed and discussed in [4], [23].

A switching lattice is a two-dimensional network of four-
terminal switches. Each switch is linked to the four neighbors
of a lattice cell, so that these are either all connected or
disconnected. A Boolean function can be represented using
a switching lattice associating each four-terminal switch to a
Boolean literal: if the literal has value 1 the corresponding
switch is connected to its four neighbors, otherwise it is not
connected. In this model, the Boolean function evaluates to 1 if
and only if there exists a connected path between two opposing
edges of the lattice, e.g., the top and the bottom edges (see
Figure 2 for an example). The synthesis problem on a lattice
thus consists in finding an assignment of literals to switches
in order to implement a given target function with a lattice
of minimal size. The idea of using regular two-dimensional
arrays of switches, to implement Boolean functions, is first
proposed in a paper by Akers in 1972 [1]. Recently, with
the advent of a variety of emerging nanoscale technologies,

synthesis methods targeting lattices of multi-terminal switches
have found a renewed interest [2], [3], [4], [20], [23].

Previous studies on this subject [8], [9] have shown how the
cost of implementing a four-terminal switching lattice could
be mitigated by exploiting Boolean function decomposition
techniques. The basic idea of this approach is to first de-
compose a function into some subfunctions, according to a
given functional decomposition scheme, and then to implement
the decomposed blocks with physically separated regions in a
single lattice. Since the decomposed blocks usually correspond
to functions depending on fewer variables and/or with a smaller
on-set, their synthesis should be more feasible and should pro-
duce lattice implementations of smaller size. In the framework
of switching lattice synthesis, where the available minimization
tools are not yet as developed and mature as those available
for CMOS technology, we are interested in reducing the size
of the function to be minimized with a preprocessing phase. A
smaller input function to a minimization algorithm can imply
a smaller area circuit and a reduced synthesis time.

In this paper we study the lattice synthesis of a special
class of regular Boolean functions, called Autosymmetric
functions. Thus, the regularity of a function f of n variables
is expressed by an autosymmetry degree k (with 0 ≤ k ≤ n),
computed in polynomial time. While the extreme value k = 0
means no regularity, for k ≥ 1 the function f is said to be
autosymmetric, and a new function fk, called the restriction
of f , is identified in polynomial time. In a sense, fk is
“equivalent” to, but smaller than f , depends on n−k variables
(y1, . . . , yn−k) only, and the number of points of fk is equal
to the one of f divided by 2k. Therefore, the minimization
of fk is naturally easier than that of f . The new variables
y1, . . . , yn−k are built as EXOR combinations of the original
variables, that is yi = EXOR(Xi), with Xi ⊆ {x1, . . . , xn}.
These EXOR equations are called reduction equations.

Although autosymmetric functions form a subset of all pos-
sible Boolean functions, a great amount of standard functions
of practical interest fall in this class. For istance, the 24% of the
functions from a classical collection of benchmarks [25] have
at least one non-degenerated autosymmetric output, and their
minimization time is critically reduced in the frameworks of
SOP and SPP synthesis [10], [11], [12]. While the total number
of Boolean functions of n variables is 22

n

, the number of
autosymmetric functions is (2n−1)22n−1

, which is much larger
than the number of the classical symmetric functions, i.e., the
ones invariant under any permutation of their variables, that
is 2n+1 [10]. Note that an autosymmetric function f depends
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Fig. 1. Synthesis of an autosymmetric function f through the
synthesis of its restriction fk.

in general on all the n input variables, however we are be
able to study f in a n − k dimensional space; i.e., f is in
general non-degenerated, whereas all degenerated functions are
autosymmetric.

In [9] we studied a different kind of lattice decomposition,
based on the concept of “D-reducibility”. D-reducible func-
tions, similarly to autosymmetric functions, exhibit a regular
structure that can be described using the EXOR operation.
However, D-reducibility and autosymmetry are different regu-
larities: autosymmetric functions can be studied in a new space
whose variables are EXOR combinations of the original ones,
while D-reducible functions are studied in a projection space
producing an expression where the EXOR gates are in AND
with a SOP form. There are examples of autosymmetric func-
tions that are not D-reducible, and of D-reducible functions
that are not autosymmetric.

The autosymmetry of a function f can be exploited in
the minimization process, according to the strategy shown in
Figure 1. First detect the autosymmetry degree k of f . If k > 0,
derive the restriction fk of f and the corresponding reduction
equations. Second, minimize fk with any standard method: two
level logic as SOP [17], Reed Muller [24]; three-level logic as
SPP [5], [14], [21] (OR of ANDs of EXORs), EXSOP [18],
[19] (EXOR of ORs of ANDs), or switching lattices, as
proposed in this paper. We note that, in the worst case, the
lattice minimization requires time exponential in the number
of points of the function, however, this number is strongly
reduced for fk if compared to f . We can finally construct
a lattice for f from the one of fk and from the reduction
equations, whose computation requires some EXORs. This
approach is convenient because: (i) fk can be computed more
efficiently; (ii) the number of points of fk is |f |/2k and fk
depends only on n− k variables; (iii) the lattice minimization
of fk is naturally easier than that of f ; and (iv) the number of
EXORs that we add to the logic is at most 2(n − k). On the
other hand, we require a second lattice containing the EXORs
whose outputs are the input variables (i.e., y1, . . . , yn−k) of the
lattice for fk. However, the reduction equations are in general
EXORs of a very reduced number of variables and their lattices
implementations have limited size. Experimental results show
that by applying the proposed method we obtain more compact
lattices and, in many cases, the computational time necessary
to minimize the restriction is smaller than the time necessary
to perform the lattice synthesis of the entire function.

The paper is organized as follows. Preliminaries on switch-
ing lattices and autosymmetric Boolean functions are described
in Section II. Section III discusses the problem of lattice
composition, while Section IV discusses the lattice imple-
mentation of autosymmetric functions. Section V provides the

experimental results and Section VI concludes the paper.

II. PRELIMINARIES

In this section we briefly review some basic notions and
results on switching lattices [1], [4], [20] and autosymmetric
Boolean functions [6], [7], [10], [11], [12], [13], [21].

A. Switching Lattices

A switching lattice is a two-dimensional array of four-
terminal switches. The four terminals of the switch link to
the four neightbours of a lattice cell, so that these are either
all connected (when the switch is ON), or disconnected (when
the switch is OFF).

A Boolean function can be implemented by a lattice in
terms of connectivity across it:

• each four-terminal switch is controlled by a Boolean
literal;

• each switch may be also labelled with the constant 0,
or 1;

• if the literal takes the value 1, the corresponding
switch is connected to its four neightbours, else it is
not connected;

• the function evaluates to 1 if and only if there exists
a connected path between two opposing edges of the
lattice, e.g., the top and the bottom edges;

• input assignments that leave the edges unconnected
correspond to output 0.

For instance, the 3 × 3 network of switches in Figure 2
(a) corresponds to the lattice form depicted in Figure 2 (b),
which implements the function f = x1x2x3 + x1x2 + x2x3.
If we assign the values 1, 1, 0 to the variables x1, x2, x3,
respectively, we obtain paths of gray square connecting the
top and the bottom edges of the lattices (Figure 2 (c)), indeed
on this assignment f evaluates to 1. On the contrary, the
assignment x1 = 0, x2 = 0, x3 = 1, on which f evaluates
to 0, does not produce any path from the top to the bottom
edge (Figure 2 (d)).

The synthesis problem on a lattice consists in finding an
assignment of literals to switches in order to implement a
given target function with a lattice of minimal size. The size
is measured in terms of the number of switches in the lattice.

A switching lattice can similarly be equipped with left edge
to right edge connectivity, so that a single lattice can implement
two different functions. This fact is exploited in [3], [4] where
the authors propose a synthesis method for switching lattices
simultaneously implementing a function f according to the
connectivity between the top and the bottom plates, and its
dual function fD according to the connectivity between the
left and the right plates. Recall that the dual of a Boolean
function f depending on n binary variables is the function

fD such that f(x1, x2, . . . , xn) = fD(x1, x2, . . . , xn). This
method produces lattices with a size that grows linearly with
the number of products in an irredundant sum of product (SOP)
representation of f , and consists of the following steps:

1) find an irredundant, or a minimal, SOP representation
for f and fD: SOP (f) = p1 + p2 + . . . ps and
SOP (fD) = q1 + q2 + . . . qr;
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Fig. 2. A four terminal switching network implementing the function
f = x1x2x3+x1x2+x2x3 (a); its corresponding lattice form (b); the
lattice evaluated on the assignments 1,1,0 (c) and 0, 0, 1 (d), with grey
and white squares representing ON and OFF switches, respectively.

2) form a r×s switching lattice and assign each product
pj (1 ≤ j ≤ s) of SOP (f) to a column and each
product qi (1 ≤ i ≤ r) of SOP (fD) to a row;

3) for all 1 ≤ i ≤ r and all 1 ≤ j ≤ s, assign to the
switch on the lattice site (i, j) one literal which is
shared by qi and pj (the fact that f and fD are duals
guarantees that such a shared literal exists for all i
and j).

This synthesis algorithm thus produces a lattice for f whose
size depends on the number of products in the irredundant
SOP representations of f and fD, and it comes with the
dual function implemented for free. For instance, the lattice
depicted in Figure 2 has been built according to this algorithm,
and it implements both the function f = x1x2x3+x1x2+x2x3

and its dual fD = x1x2x3 + x1x2 + x2x3.

The time complexity of the algorithm is polynomial in the
number of products. However, the method does not always
build lattices of minimal size for every target function, since
it ties the dimensions of the lattices to the number of products
in the SOP forms. In particular this method is not effective for
Boolean functions whose duals have a a very large number of
products. Another reason that could explain the non-minimality
of the lattices produced in this way is that the algorithm does
not use Boolean constants as input, i.e., each switch in the
lattice is always controlled by a Boolean literal.

In [20], the authors have proposed a different approach to
the synthesis of minimal-sized lattices, which is formulated
as a satisfiability problem in quantified Boolean logic and
solved by quantified Boolean formula solvers. This method
uses the previous algorithm to find an upper bound on the
dimensions of the lattice. It then searches for successively
better implementations until either an optimal solution is
found, or a preset time limit has been exhausted. Experimental
results show how this alternative method can decrease lattice
sizes considerably. In this approach the use of fixed inputs (i.e.,
constant values 0 and 1) is allowed.

B. Autosymmetric Boolean functions

In this section we briefly review autosymmetric functions
that are introduced in [21] and further studied in [6], [7], [10],
[11], [12], [13]. For the description of these particular regular
functions we need to summarize several concepts of Boolean
algebra [16].

Given two binary vectors α and β, let α⊕β be the
elementwise EXOR between α and β, for example 11010 ⊕
11000 = 00010. We recall that ({0, 1}n,⊕) is a vector space,
and that a vector subspace V is a subset of {0, 1}n containing
the zero vector 0, such that for each v1 and v2 in V we have
that v1⊕v2 ∈ V . The vector subspace V contains 2k vectors,
where k is the dimension of V , and it is generated by a basis
B containing k vectors. Indeed B is a minimal set of vectors
of V such that each point of V is an EXOR combination of
some vectors in B.

Let us consider a completely specified Boolean function
f : {0, 1}n → {0, 1}, recalling that f can be described as the
set of binary vectors in {0, 1}n for which f takes the value
1 (i.e., the ON-set of f ). Using this notation we can give the
following definition. The function f is closed under a vector
α ∈ {0, 1}n, if for each vector w ∈ {0, 1}n, w ⊕ α ∈ f if
and only if w ∈ f .

For example, the function f = {0000, 0001, 0010, 0011,
0100, 0101, 0110, 0111, 1000, 1011, 1101, 1110} is closed un-
der α = 0011, as it can be easily verified.

It is easy to observe that any function f is closed under
the zero vector 0. Moreover, if a function f is closed under
two different vectors α1, α2 ∈ {0, 1}n, it is also closed under
α1⊕α2. Therefore, the set Lf = {β: f is closed under β}
is a vector subspace of ({0, 1}n,⊕). The set Lf is called the
vector space of f . For instance, the function f of our previous
example is closed under the vectors in the vector space Lf =
{0000, 0011, 0101, 0110}.

For an arbitrary function f , the vector space Lf provides
the essential information for the definition of the autosymmetry
property:

Definition 1 ([11]): A completely specified Boolean func-
tion f is k-autosymmetric, or equivalently f has autosymmetry
degree k, 0 ≤ k ≤ n, if its vector space Lf has dimension k.

In general, f is autosymmetric if its autosymmetry degree is
k ≥ 1. For instance, the function f of our running example is
2-autosymmetric since its vector space Lf has dimension 2.

We now define a special basis, called canonical, to repre-
sent Lf . Consider a 2k ×n matrix M whose rows correspond
to the points of a vector space V of dimension k, and whose
columns correspond to the variables x1, x2, . . . , xn. Let the
row indices of M be numbered from 0 to 2k − 1. We say that
V is in binary order if the rows of M are sorted as increasing
binary numbers. We have:

Definition 2 ([11]): Let V be a vector space of dimension
k in binary order. The canonical basis BV of V is the
set of points corresponding to the rows of M with indices
20, 21, . . . , 2k−1. The variables corresponding to the first 1
from the left of each row of the canonical basis are the
canonical variables of V , while the other variables are non-
canonical.
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It can be easily proved that the canonical basis is indeed a
vector basis [15]. The canonical variables of Lf are also called
canonical variables of f .

Example 1: Consider the vector space Lf of the function
f of our running example. We can arrange its vectors in a
matrix in binary order:

x1 x2 x3 x4

0 0 0 0 0
1 0 0 1 1
2 0 1 0 1
3 0 1 1 0

The canonical basis is composed of the vectors in position
1 and 2, that are the vectors 0011 and 0101. The canonical
variables of f are x2 (corresponding to the first 1 in 0101)
and x3 (corresponding to the first 1 in 0011). The remaining
variables x1 and x4 are non-canonical.

For a vector α ∈ {0, 1}n and a subset S ⊆ {0, 1}n,
consider the set α⊕S = {α⊕ s | s ∈ S}. In a sense, the
vector α is used to “translate” the subset S. If the set S is a
vector space, then its “translations” are called affine spaces:

Definition 3: Let V be a vector subspace of ({0, 1}n,⊕).
The set A = α⊕V , α ∈ {0, 1}n, is an affine space over V
with translation point α.

Note that α ∈ A, because S contains the zero vector 0, hence
α = α⊕ 0 ∈ A. Moreover, any other vector of A could be
chosen as translation point α, thus generating the same affine
space.

There is a simple formula that characterizes the vector
space associated to a given affine space A, namely [16]:

V = α ⊕A, with α any point in A.

That is, given an affine space A there exists a unique vector
space V such that A = α⊕V , where α is any point of A.

As proved in [6], the points of a k-autosymmetric function
f can be partitioned into � = |f |/2k disjoint sets, where |f |
denotes the number of points of f ; all these sets are affine
spaces over Lf . I.e., S = α⊕Lf , where S is any such a
space and α∈ f . Thus:

f =
�⋃

i=1

(αi ⊕ Lf )

and for each i, j, i �= j, (αi ⊕ Lf ) ∩ (αj ⊕ Lf ) = ∅. The
vectors α1, . . ., α� are chosen as all the points of f where all
the canonical variables have value 0.

Example 2: Consider the function f = {0000, 0001, 0010,
0011, 0100, 0101, 0110, 0111, 1000, 1011, 1101, 1110} of our
running example. By Example 1 the canonical variables of
f are x2 and x3. Thus, if we take the points of f with all
canonical variables set to 0, i.e., α1 = 0000, α2 = 0001, and
α 1 = 1000, we have

f = (0000⊕ Lf ) ∪ (0001⊕ Lf ) ∪ (1000⊕ Lf ),

where Lf = {0000, 0011, 0101, 0110}.

Autosymmetric functions can be reduced to “equiva-
lent, but smaller” functions; in fact, if a function f is k-
autosymmetric, then there exists a function fk over n − k
variables, y1, y2, . . ., yn−k, such that

f(x1, . . . , xn) = fk(y1, . . . , yn−k) ,

where each yi is an EXOR combination of a subset of xi’s.
These combinations are denoted EXOR(Xi), where Xi ⊆
X , and the equations yi = EXOR(Xi), i = 1, . . . , n − k,
are called reduction equations. The function fk is called a
restriction of f ; indeed fk is “equivalent” to, but smaller than
f , and has |f |/2k points only.

The restriction fk can be computed from f and its vector
space Lf by first identifying the canonical variables, and then
deriving the cofactor of f where all the canonical variables
are set to 0 (see [6] and [11] for more details). The reduction
equations correspond to the homogeneous system of linear
equations whose solutions define the vector space Lf , and they
can be derived applying standard linear algebra techniques as
shown in [6], [11].

Example 3: Consider the 2-autosymmetric function f in
our running example, with Lf = {0000, 0011, 0101, 0110} and
canonical variables x2 and x3. We can build f2 by taking the
cofactor fx2=0,x3=0 = {00, 01, 10}, that contains only 3 points
and corresponds to the function f2(y1, y2) = y1y2. The homo-
geneous system whose solutions are {0000, 0011, 0101, 0110}
is: {

x1 = 0
x2 ⊕ x3 ⊕ x4 = 0

Thus the reduction equations are given by

y1 = x1 (1)

y2 = x2 ⊕ x3 ⊕ x4 . (2)

Finally, the function f can be represented as:

f(x1, x2, x3, x4) = f2(y1, y2) = y1y2 = x1(x2 ⊕ x3 ⊕ x4) .

We can note that f is indeed a composition of f2 and the
reduction equations (1) and (2).

III. LATTICE COMPOSITION

First of all, we recall from [20] that given the switching
lattices implementing two functions f and g, we can easily
construct the lattices representing their disjunction f + g and
their conjunction f · g composing the two lattices for f and
g and using a padding column of 0s and a padding row of
1s, respectively, as shown in Figure 3. In particular, for the
disjunction, the column of 0s separates all top-to-bottom paths
in the lattices for f and g, so that the accepting paths for
the two functions never intersect; this, in turn, implies that
there exists a top-to-bottom connected path in the lattice for
f + g if and only if there is at least one connected path for
f or for g. If the lattices for f and g have a different number
of rows, we add some rows of 1s to the lattice with fewer
rows, so that each accepting path can reach the bottom edge.
Similarly, for the conjunction the padding row of 1s allows to
join any top-to-bottom accepting path for the function f with
any top-to-bottom accepting path for g, so that the overall
lattice evaluates to 1 if and only if both f and g evaluate to 1.
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Fig. 3. Lattice implementation of f ∨ g (a) and of f ∧ g (b).

As before, if the lattices for f and g have a different number
of columns, we add some columns of 0s to the lattice with
fewer columns, so that an accepting path for one of the two
functions can never reach the opposite edge of the lattice if
the other function evaluates to 0.

More in general, these simple composition rules can be
used to implement a switching lattice for a function f starting
from a decomposition of f into subfunctions. The basic idea
of this approach is to first decompose f according to a given
functional decomposition scheme, then generate the lattices for
each component function, and finally implement the original
function by a single composed lattice obtained by gluing
together appropriately the lattices of the component functions.
Previous studies on this subject [8], [9] demonstrated that
lattice synthesis benefits from this decomposition-based ap-
proach: since the decomposed blocks usually correspond to
functions depending on fewer variables and/or with a smaller
on-set, their synthesis should produce lattice implementations
of smaller size, yielding an overall lattice of smaller dimension
in an affordable computation time.

In all these examples, from the simple cases of f + g and
f · g, to the decomposition schemes described in [8], [9], the
lattice for the original function has been obtained implement-
ing the decomposed blocks with physically separated regions
in a single overall lattice. We will refer to this approach as
internal composition.

However, there are situations where this kind of internal
composition cannot be directly applied. For instance, consider
a function f depending on n binary variables defined as

f(x1, . . . , xn) = g(y1, . . . , yk) ,

where (i) g is a Boolean function depending on k < n
variables; (ii) for any i, yi = hi(Si), Si ⊆ {x1, . . . , xn},
and hi is a Boolean function depending on |Si| variables.
Ideally, we would like to derive a lattice implementation
for f substituting in a lattice implementation for g each
occurrence of a variable yj with a lattice implementation of the
corresponding function hj . This task, however, requires some
care to be performed correctly.

Consider a very simple case: f(x1, x2, x3, x4) = (x1 ⊕
x2)(x3 ⊕ x4), that can be seen as a functional composition
f = g(y1, y2) where g is simply a conjunction of two variables,
and y1 and y2 are EXORs of two variables. Then, we can build
a lattice for f (Figure 4(c)) starting from the very simple 2×1
lattice representation of g (Figure 4(a)), and substituting y1 and
y2 with the lattice representations of (x1⊕x2) and (x3⊕x4),
which are shown in Figure 4(b). Note that we need to insert a
row of 1s between the two sublattices, so that we can extend
any accepting path in the sublattice on top, with any accepting
path in the bottom sublattice. The overall lattice for f has size
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Fig. 4. (a) Lattice implementation of g = y1y2; (b) lattices for y1 =
x1⊕x2 and y2 = x3⊕x4; (c) final lattice for f = (x1⊕x2)(x3⊕x4)
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Fig. 5. (a) Lattice implementation of g = y1y3 + y2y4; (b)
lattices for y1 = x1 ⊕ x2 and y2 = x2 ⊕ x5; (c) final lattice for
f(x1, x2, x3, x4, x5) = (x1 ⊕ x2)x3 + (x2 ⊕ x5)x4.

5×2. Notice that using the lattice synthesis method presented
in [4] directly on f , we would get a lattice of size 4× 4.

Now, consider the function f(x1, x2, x3, x4, x5) = (x1 ⊕
x2)x3 + (x2 ⊕ x5)x4. Given a lattice for the function g =
y1y3 + y2y4, we could try to build a lattice for f by simply
substituting the occurrences of y1 and y2 with sublattices for
(x1⊕x2) and (x2⊕x5), and the occurrences of y3 and y4 with
x3 and x4, respectively. Note that we need to duplicate some
variables in order to get a rectangular lattice, besides inserting
a padding column of 0, as shown in Figure 5. Indeed, without
the padding column, the lattice would contain a top-to-bottom
path on the assignment 11100, whereas f(1, 1, 1, 0, 0) = 0.

As a final example, let us consider the parity function of 4
variables, f(x1, x2, x3, x4) = x1 ⊕ x2 ⊕ x3 ⊕ x4, that can be
interpreted as f = g(y1, y2) = y1 ⊕ y2, where y1 = x1 ⊕ x2

and y2 = x3 ⊕ x4. If we derive a lattice for f using this
decomposition, we need to appropriately insert padding rows
and columns as depicted in Figure 6: the padding rows of 1s
are needed to join the accepting paths in the sublattices on top,
implementing y1 and y1 with the accepting paths in the bottom
sublattices for y2 and y2; while the column of 0s is needed
to avoid intersections between accepting paths on the left and
on the right side of the overall lattices. Without the column of
0s, the lattice in Figura 6 would contain a top-to-bottom path
e.g., on the input assignment 0110. With the padding rows and
columns, the size of the overall lattice becomes 5× 5, that is
not competitive with the size of an optimal lattice for the parity
of 4 variables, which is 3× 5 [22].

A possible strategy to overcome some of these problems
could be a different lattice composition technique1, that we
could call external composition. The idea is simply to use
multiple nanoarrays, i.e., multiple lattices and to connect the
output of a lattice with one or more literals occurring in another
lattice as depicted in Figure 7. Observe that the overall lattice

1M. Altun and M. C. Morgul, personal communication, 2017
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Fig. 6. (a) Lattice implementation of g = y1⊕y2; (b) lattices for y1 =
x1⊕x2 and y2 = x3⊕x4; (c) final lattice for f(x1, x2, x3, x4, x5) =
x1 ⊕ x2 ⊕ x3 ⊕ x4.

x2

x1

x2

x1

x4

x3

x4

x3

y1 y1

y2 y2

Fig. 7. Multiple lattice implementation of f(x1, x2, x3, x4, x5) =
x1 ⊕ x2 ⊕ x3 ⊕ x4.

composition in this picture implements the parity function of 4
variables as a 2×2 lattice representing g = y1⊕y2, connected
to two external lattice implementations for y1 = x1 ⊕ x2

and y2 = x3 ⊕ x4. In this way, we get a multiple lattice
implementation of overall size 12, smaller than an optimal
standard lattice for the parity of four variables, whose size is
15 [22]. As this simple example clearly shows, multiple lattices
allow to reduce the number of switches and thus the overall
dimension of the lattice. However, the gain in the dimension
comes at the expense of an increase in the interconnection cost.

IV. LATTICE REPRESENTATION OF AUTOSYMMETRIC

FUNCTIONS

The lattice implementation of autosymmetric functions can
be derived exploiting the external lattice composition discussed
in the previous Session III. Recall from Section II-B, that a
k-autosymmetric function f can be decomposed as

f(x1, . . . , xn) = fk(y1, . . . , yn−k) ,

where (i) the restriction fk depends on n−k binary variables,
and has |f |/2k points only; and (ii) each yi is defined by
a reduction equation, i.e., an EXOR of a subset of the
original variables xi’s: yi = EXOR(Xi), Xi ⊆ {x1, . . . , xn}.
Therefore, we can build a multiple lattice implementing f
composing a lattice L(fk) for the restriction fk with n − k
sublattices representing the reduction equations: for each i,
1 ≤ i ≤ n−k, the output of the sublattice L(yi) implementing
yi is connected, possible through an inverter, to all occurrences
of the literal yi in L(fk) (see Figure 8). Of course, for all
variables yj whose associated reduction equation is a single
variable, e.g., xt, there is no need to connect the switch to an
external lattice, but just to xt.

fk

yj

 

y1 = EXOR ( X1 )
y1

y1

yi

y2 = xt 

 

yi

y1

(a) (b)

...

...

yi = EXOR ( Xi )

...
yj = xt  

xt

...

Fig. 8. Multiple lattice implementation of an autosymmetric function:
(a) lattice implementation of the reduction equations; (b) lattice
implementation of the restriction fk.

Since fk depends on fewer variables, and has a smaller
on-set with respect to f , its lattice synthesis should be an
easier task, and should produce a lattice of reduced size.
Notice that, to further reduce the total area, one could also
apply the decomposition methods presented in [8] and [9]
to the lattice for fk. Moreover, the reduction equations are
in general EXORs of a very reduced number of variables
and their lattices implementations have limited size. For these
reasons, the overall multiple lattice representing f should be
smaller that a standard lattice for f , derived with the synthesis
methods presented in [4] and in [20], and possibly even smaller
than an optimal size lattice for f . This expectation has been
confirmed by our experimental results.

V. EXPERIMENTAL RESULTS

In this section we report the experimental results obtained
applying the multiple lattice implementation of autosymmetric
functions described in Section IV. Since a k-autosymmetric
function fk(y1, . . . , yn−k) depends on fewer variables w.r.t.
the corresponding original function f(x1, . . . , xn), our aim is
to obtain lattices of reduced size.

The algorithms have been implemented in C. The experi-
ments have been run on a machine with two AMD Opteron
4274HE for a total of 16 CPUs at 2.5GHz and 128GByte
of main memory, running Linux CentOS 6.6. The benchmarks
are taken from LGSynth93 [25]. We considered each output
as a separate Boolean function, for a total of 607 functions,
including 53 autosymmetric functions on which we applied the
lattice implementation described in the previous section.

To evaluate the utility of our approach, in Table I we
compare the lattice synthesis results obtained applying the
decomposition scheme based on autosymmetry, with the results
obtained with the standard synthesis methods presented in [4]
and in [20], without exploiting the autosymmetry property. To
simulate the results reported in [20], we used a collection of
Python scripts for computing minimum-area switching lattices,
by transformation to a series of SAT problems.

Each row of the table lists the results for each separate
autosymmetric output function of the benchmark circuit. More
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TABLE I. PROPOSED LATTICE SIZES FOR STANDARD BENCHMARK CIRCUITS: A COMPARISON OF THE PROPOSED METHOD WITH THE

RESULTS PRESENTED IN [4] AND IN [20]. WHEN THE SYNTHESIS OF A LATTICE IS STOPPED, THERE IS NO LATTICE (−). RESULTS ARE

MARKED WITH
�

WHEN SAT IS STOPPED.

# yi

[4] [20]
Std. Synthesis Decomposed Synthesis Std. Synthesis Decomposed Synthesis

col×row Area fk
col×row

fk Area XOR
Area

tot.
Area

inv. col×row Area time fk
col×row

fk Area fk
Time

XOR
Area

XOR
Time

tot.
Area

tot.
time

inv.

add6(0) 1 2×2 4 1×1 1 4 5 0 2×2 4 0.021 1×1 1 0.028 4 0.024 5 0.052 0
add6(1) 1 6×6 36 3×3 9 4 14 1 5×3 15 2.561 3×3 9 0.019 4 0.028 14 0.047 1
add6(2) 1 16×16 256 8×8 64 4 69 1 - - - 5×3 15 124 4 0.026 20 0.026 1
add6(3) 1 36×36 1296 18×18 324 4 329 1 - - - - - - 4 0.029 329� 0.029 1
add6(4) 1 76×76 5776 38×38 1444 4 1449 1 - - - - - - 4 0.035 1449� 0.035 1
add6(5) 1 156×156 24336 78×78 6084 4 6089 1 - - - - - - 4 0.026 6089� 0.26 1
adr4(1) 1 15×23 345 18×18 324 4 329 1 - - - - - - 4 0.025 329� 0.025 1
adr4(2) 1 36×36 1296 8×8 64 4 69 1 - - - - - - 4 0.027 20� 0.027 1
adr4(3) 1 16×16 256 3×3 9 4 14 1 5×3 15 2.57 3×3 9 0.019 4 0.026 14 0.045 1
adr4(4) 1 6×6 36 1×1 1 4 5 0 - - - 1×1 1 0.026 4 0.031 5 0.026 0
al2(11) 1 5×25 125 3×20 60 4 64 0 - - - - - - 4 0.021 64� 0.057 0
alcom(5) 1 4×3 12 3×2 6 4 10 0 4×3 12 0.028 3×2 6 0.025 4 0.3 10 0.325 0
b11(5) 1 2×3 6 1×2 2 4 6 0 2×3 6 0.023 1×2 2 0.025 4 0.025 6 0.05 0
b12(6) 1 9×6 54 7×5 35 4 39 0 4×5 20 918 4×5 20 1350 4 0.027 24 1350 0
dekoder(0) 1 4×2 8 3×1 3 4 7 0 4×2 8 0.027 3×1 3 0.024 4 0.022 7 0.046 0
dekoder(1) 1 3×2 6 2×1 2 4 6 0 3×2 6 0.024 2×1 2 0.023 4 0.023 6 0.046 0
dk27(8) 1 1×1 1 1×1 1 4 5 0 1×1 1 0.021 1×1 1 0.026 4 0.024 5 0.05 0
exps(18) 3 2×8 16 1×7 7 12 19 0 2×6 12 22.2 1×7 7 0.027 12 0.067 19 0.094 0
exps(19) 6 2×8 16 1×7 7 24 31 0 2×8 16 0.03 1×7 7 0.024 24 0.137 31 0.161 0
f51m(6) 1 2×2 4 1×1 1 4 5 0 2×2 4 0.03 1×1 1 0.025 4 0.026 5 0.051 0
luc(3) 1 4×4 16 3×3 9 4 13 0 4×3 12 0.861 3×3 9 0.024 4 0.031 13 0.055 0
m1(8) 1 3×5 15 2×4 8 4 12 0 3×4 12 1.65 2×4 8 0.333 4 0.024 12 0.357 0
max1024(0) 8 4×14 56 2×7 14 32 46 0 - - - 2×7 14 1.16 32 0.202 46 116 0
max1024(1) 8 18×18 324 9×9 81 32 119 6 18×18 324 0.034 6×4 24 2543 32 0.198 63 2543 7
max1024(2) 9 38×32 1216 19×16 304 36 348 8 - - - 19×16 304 0.036 36 0.23 348 0.266 8
max1024(3) 9 64×48 3072 32×25 800 36 844 8 64×48 3072 0.133 - - - 36 0.22 844� 0.22 8
max1024(4) 9 82×83 6806 43×46 1978 36 2023 9 82×83 6806 0.23 43×46 1978 0.07 36 0.218 2023 0.288 9
max1024(5) 9 122×117 14274 62×64 3968 36 4013 9 - - - - - - 36 0.221 4013� 0.221 9
newcond(1) 2 2×4 8 1×3 3 8 11 0 2×4 8 0.244 1×3 3 0.023 8 0.051 11 0.074 0
newcwp(0) 2 5×4 20 3×2 6 8 15 1 4×3 12 0.521 3×2 6 0.023 8 0.053 15 0.076 1
newcwp(1) 1 4×4 16 1×1 1 12 13 0 3×3 9 0.303 1×1 1 0.025 9 0.281 10 0.306 0
newcwp(3) 2 2×2 4 1×1 1 4 5 0 2×2 4 0.022 1×1 1 0.021 4 0.027 5 0.048 0
p82(10) 2 2×5 10 1×4 4 4 8 0 2×4 8 0.106 1×4 4 0.021 4 0.025 8 0.046 0
pope.rom(18) 3 2×6 12 1×5 5 12 17 0 2×5 10 1.45 1×5 5 0.025 12 0.07 17 0.095 0
pope.rom(32) 1 2×4 8 1×3 3 4 7 0 2×3 6 0.086 1×3 3 0.027 4 0.028 7 0.055 0
pope.rom(34) 1 4×2 8 3×1 3 4 7 0 1×4 8 1806 3×1 3 0.023 4 0.019 7 0.042 0
pope.rom(35) 1 2×3 6 1×2 2 8 10 0 2×3 6 0.077 1×2 2 0.025 8 0.05 10 0.075 0
pope.rom(41) 1 5×2 10 4×1 4 4 8 0 5×2 10 0.022 4×1 4 0.031 4 0.023 8 0.054 0
radd(0) 1 2×2 4 1×1 1 4 5 0 2×2 4 0.025 1×1 1 0.021 4 0.026 5 0.047 0
radd(1) 1 6×6 36 3×3 9 4 14 1 3×5 15 2.45 3×3 9 0.026 4 0.027 14 0.053 1
radd(2) 1 16×16 256 8×8 64 4 69 1 - - - 5×3 15 122.1 4 0.025 20 122 1
radd(3) 1 36×36 1296 18×18 324 4 329 1 - - - - - - 4 0.024 329� 0.024 1
rd53(1) 4 10×10 100 6×5 30 16 50 4 - - - 4×3 12 0.676 16 0.118 32 0.794 4
rd53(2) 1 16×16 256 1×1 1 80 81 0 - - - 1×1 1 0.022 - - 81� 0.022 0
rd73(2) 1 35×35 1225 1×1 1 448 449 0 - - - 1×1 1 0.023 - - 449� 0.023 0
risc(4) 1 2×3 6 1×2 2 4 6 0 2×3 6 0.026 1×2 2 0.027 4 0.02 6 0.047 0
sqn(0) 2 17×16 272 7×7 49 8 58 1 - - - 3×5 15 11 8 0.049 24 11.5 1
wim(2) 1 3×2 6 2×1 2 4 6 0 3×2 6 0.026 2×1 2 0.023 4 0.019 6 0.042 0
z4(1) 5 28×28 784 8×8 64 28 97 5 28×28 784 11.34 5×3 15 115 25 0.412 45 115 5
z4(2) 3 12×12 144 3×3 9 20 32 3 - - - 3×3 9 0.021 17 0.341 29 0.362 3
z4(3) 1 4×4 16 1×1 1 12 13 0 3×3 9 0.29 1×1 1 0.027 9 0.286 10 0.313 0
z5xp1(8) 1 2×2 4 1×1 1 4 5 0 2×2 4 0.027 1×1 1 0.019 4 0.026 5 0.045 0
z9sym(0) 8 86×72 6192 56×36 2016 32 2056 8 - - - - - - 32 0.217 2056� 0.276 8

precisely, the first column reports the name and the number
of the considered output of each instance; the second column
reports the number of EXOR lattices used to implement the
reduction equations (yj) when the decomposition method is
applied. The following seven columns refer to the synthesis of
lattices as described in [4], with (columns 5-9) and without
(columns 3-4) the multiple lattice decomposition based on
autosymmetry. In particular, columns 3 and 4 show dimension
(X×Y ) and area (Area = X ·Y ) of lattices derived applying
the standard synthesis method (i.e., without exploiting the
autosymmetry property), columns 5 and 6 show the dimension
and the area of the lattice for the restriction fk, column 7 shows
the total area of the lattices for the EXOR terms yi, column
8 shows the total area occupied by lattices (TotalArea =
Afk+

∑
i Ayi+num.inv), and column 9 indicates the number

num.inv of inverter necessary to make the signal routing. The
synthesis in [4] is performed using ESPRESSO, and in all cases
it takes less than 0.01 s, that is the minimum time resolution of
the synthesizer; for this reason the synthesis time is omitted.

Columns 10 to 20 refer to lattices synthesized using the
methodology presented in [20], with and without decompo-
sition on multiple lattices. In particular columns 10, 11, and
12 report the dimension, the area and the synthesis time of
lattices obtained with standard synthesis; columns 13, 14 and
15 report the dimension, the area and the synthesis time of the
lattice for the restriction fk, column 16 and 17 report the total
area of the lattices for the EXOR terms yi and their synthesis
time; columns 18 and 19 show the total area occupied by
lattices (TotalArea = Afk +

∑
i Ayi

+ num.inv) and the
total synthesis time; finally, column 20 indicates the number
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num.inv of inverter necessary for signal routing.

For each function, we bolded the best areas (col. 4 vs col.
8 and col. 11 vs col. 18) and the best simulation time. In some
cases the method proposed in [20] fails in computing a result
in reasonable run time. For this reason, we set a time limit
(equal to ten minutes) for each SAT execution; if we do not
find a solution within the time limit, the synthesis is stopped.
We marked with − all cases where the synthesis of lattices has
been stopped. In the synthesis of sublattices, whenever [20] is
stopped, we use the sublattices synthesized with [4], because
without a sublattice it would be impossible to complete the
synthesis of the overall decomposed lattice. We marked these
cases with �. Note that, for many benchmarks, the method
in [20] did not find a solution within the fixed time limit for
at least one sublattice, and had to be replaced with [4].

The results are promising. Considering the methodology
presented in [4], we obtain a smaller total area w.r.t. the
standard synthesized lattices in 58% of the benchmarks, with
an average gain of 53%. Considering the methodology pre-
sented in [20], we obtain a smaller total area in 48% of the
benchmarks, with an average gain of 60%. Note that in many
cases the synthesis time necessary to decompose the function
as described in this paper (column 19) is smaller than the time
necessary to perform the standard synthesis (column 12).

Comparing the results of different types of decomposition
w.r.t. standard synthesized lattices, [8] obtains smaller area in
about 33% of cases, with an average gain of 24%, [9] obtains
smaller area in about 15% of cases, with an average gain of
24%. Note that the decomposition in [8] can be applied to all
the boolean functions and the decomposition in [9] only to the
subset of D-reducible boolean functions.

VI. CONCLUSIONS

In this paper we have shown a lattice minimization strategy
for autosymmetric functions. We have described how to exploit
an external composition for autosymmetric functions in order
to get compact area representation with switching lattices. The
experimental results have validated the approach.

As future work, it would be interesting to study other
classes of regular functions. Another interesting future di-
rection is the study of a different strategy to compose the
switching lattices in order to obtain more compact solutions.
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