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The current gold standard for diagnosis of attention deficit/hyperactivity disorder (ADHD) 
includes subjective measures, such as clinical interview, observation, and rating scales. 
The significant heterogeneity of ADHD symptoms represents a challenge for this assess-
ment and could prevent an accurate diagnosis. The aim of this work was to investigate 
the ability of a multi-domain profile of measures, including blood fatty acid (FA) profiles, 
neuropsychological measures, and functional measures from near-infrared spectroscopy 
(fNIRS), to correctly recognize school-aged children with ADHD. To answer this question, 
we elaborated a supervised machine-learning method to accurately discriminate 22 chil-
dren with ADHD from 22 children with typical development by means of the proposed 
profile of measures. To assess the performance of our classifier, we adopted a nested 
10-fold cross validation, where the original dataset was split into 10 subsets of equal 
size, which were used repeatedly for training and testing. Each subset was used once 
for performance validation. Our method reached a maximum diagnostic accuracy of 
81% through the combining of the predictive models trained on neuropsychological, 
FA profiles, and deoxygenated-hemoglobin features. With respect to the analysis of a 
single-domain dataset per time, the most discriminant neuropsychological features were 
measures of vigilance, focused and sustained attention, and cognitive flexibility; the most 
discriminating blood FAs were linoleic acid and the total amount of polyunsaturated 
fatty acids. Finally, with respect to the fNIRS data, we found a significant advantage 
of the deoxygenated-hemoglobin over the oxygenated-hemoglobin data in terms of 
predictive accuracy. These preliminary findings show the feasibility and applicability of 
our machine-learning method in correctly identifying children with ADHD based on multi- 
domain data. The present machine-learning classification approach might be helpful for 
supporting the clinical practice of diagnosing ADHD, even fostering a computer-aided 
diagnosis perspective.

Keywords: attention deficit/hyperactivity disorder, machine learning, support vector machines, near-infrared 
spectroscopy, fatty acids
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inTrODUcTiOn

Attention deficit/hyperactivity disorder (ADHD) is among the 
most common neurodevelopmental disorders, affecting 7.2% 
of children worldwide (1), with a significant impact on familial, 
relational, and school functioning in more than one setting. 
ADHD is a highly heterogeneous condition with manifold causes, 
progressions and a broad range of symptom manifestations. The 
diagnostic criteria for ADHD include purely behavioral descrip-
tions of symptoms, which often overlap with the manifestations 
of many other psychopathologies. Currently, despite the fact 
that brain structural and functional deficits have been proven 
in subjects with ADHD, the gold standard for diagnosis consists 
of subjective measures, such as a clinical interview, observation, 
and rating scales. These procedures are long term and are heav-
ily based on experiences and practical knowledge of clinicians. 
The limited reliability of this assessment has led to diagnostic 
variability across different clinicians and cultures (2). This also 
contributes to social concerns about the possible harms of mis-
diagnosing (3, 4).

For these reasons, the diagnosis of ADHD still represents a 
challenge, and clinicians highly demand the availability of more 
objective and reliable measures for diagnosing subjects with 
ADHD. Recent studies have explored the value of behavioral as 
well as neurophysiological measures for automatically discrimi-
nating between children with ADHD and typically developing 
(TD) peers, possibly fostering a computer-aided diagnosis per-
spective. These studies typically make use of machine-learning 
algorithms to distinguish the subjects of different groups by 
maximizing the distance between datasets. Machine learning com-
monly refers to all procedures that train a computer algorithm 
to automatically extract meaningful information from the data 
and to use it to make predictions about the group membership 
of new individuals (e.g., patients vs. controls). Machine-learning 
methods are multivariate analysis methods that also offer the 
advantage of identifying complex patterns of differences that uni-
variate statistical methods do not efficiently recognize. Thus, the 
use of these methods should not be simply considered a potential 
“diagnostic” tool but also a useful procedure for identifying objec-
tive measures at an individual level from a larger dataset to be 
used for single-subject diagnosis. A number of studies recently 
indicated that the machine-learning classification approach 
may lead clinicians toward an efficient and accurate diagnosis 
of ADHD using behavioral/cognitive measures (5) or neuro-
physiological techniques, such as electroencephalography (6),  

structural magnetic resonance imaging (MRI) (7), and resting-
state functional MRI (8).

In this work, we developed a supervised machine-learning 
method to recognize school-age children with ADHD and to 
correctly separate them from TD peers, by using, for the first 
time, a multi-domain dataset comprising blood fatty acid (FA) 
profiles, neuropsychological measures, and functional measures 
obtained from near-infrared spectroscopy (fNIRS). We included 
these measures based on both the extant literature and on our 
previous findings. With respect to blood FAs, we followed the 
suggestion that polyunsaturated fatty acids (PUFAs) shortage 
could be one of the various etiological factors of ADHD (9), and 
we recently reported an abnormal FA profile in children with 
ADHD (10). Furthermore, given the abovementioned work of 
Bledsoe and colleagues (5) that applied pattern classification 
methods to behavioral/cognitive measures with promising 
results, we included the neuropsychological tests of vigilance, 
attention, and flexibility. Because some debate has occurred in 
the literature over the use of neuropsychological tests for the 
diagnosis of ADHD, we were interested in understanding in the 
present wok the possible predictive value for these measures. 
Indeed, it was suggested that no psychometric test can be used 
with confidence for the purposes of diagnostic decision (11, 12) 
and previous studies demonstrated low to moderate correlations 
between scores on these tests and other assessment measures for 
ADHD (13, 14). Finally, such tests do not correlate significantly 
with parent and teacher ratings of executive functioning (EF) in 
the child’s daily life activities (15). However, it is worth mention-
ing that more “ecological” measures of EF could describe differ-
ent cognitive profiles in children with ADHD-only, ADHD and 
comorbid disorders, and healthy controls, with a good correlation 
with parent ratings of EF in everyday activities (16). Finally, we 
introduced a non-invasive method of functional neuroimaging, 
fNIRS, to measure the hemodynamic responses to neuronal 
activation during a spatial working memory task. Near-infrared 
spectroscopy (NIRS) was chosen among the neuroimaging 
techniques because it imposes fewer environmental constraints, 
and due to the low cost of scanning. In addition, previous evi-
dence showed that NIRS could be useful for identifying children 
with ADHD (17, 18). We included, as stimulation paradigm, a 
visuospatial N-back working memory task consisting of three 
tasks with increasing difficulty: baseline, 1-back, and 2-back. The 
choice of such a task was based on the suggestion that a deficit 
in working memory could be a core cognitive impairment of 
ADHD (19).

Given that the ADHD etiology is generally considered multi-
factorial, our hypothesis was that the integration of information 
from the different sources and levels of analysis would lead to a 
significantly more effective identification of children with ADHD, 
compared with using a single-domain dataset per time. Indeed, 
following a multifactorial etiological model, the emergence of 
the disorder could be related to the simultaneous malfunction 
of mechanisms interacting at multiple levels, with each resulting 
in a different degree of impairment across children. Moreover, 
our method could support the clinicians’ decision on the tests 
to be included in the ADHD diagnostic process. In fact, as Kim 
and colleagues (20) recently proposed in their study predicting 

Abbreviations: PUFA, polyunsaturated fatty acid; TD, typically developing chil-
dren; DSM-IV TR, Diagnostic and Statistical Manual of Mental Disorders Fourth 
edition, text revised; DAWBA, Development and Well-Being Assessment; FSIQ, 
Full Scale Intelligence Quotient; ANT, Amsterdam Neuropsychological Tasks; FA, 
fatty acid; AA, arachidonic acid; EPA, eicosapentaenoic acid; DHA, docosahexae-
noic acid; SFA, saturated fatty acid; MUFA, monosaturated fatty acid; C, control; 
1B, 1-back; 2B, 2-back; F, frontal; Oxy-Hb, oxygenated-hemoglobin; Deoxy-Hb, 
deoxygenated-hemoglobin; PCA, principal components analysis; FDR, Fisher’s 
discriminant ratio; NPS, neuropsychological features; BIO, fatty acid profile fea-
tures; NIRS OXY, Oxy-Hb NIRS features; NIRS DEOXY, Deoxy-Hb NIRS features; 
CV, cross validation; RT, reaction time; AUC, area under the curve; SVM, support 
vector machine; BOLD, blood oxygenation level dependent.
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methylphenidate response in ADHD via the machine-learning 
approach, we could investigate whether the use of several meas-
ures is worth the additional costs of collecting more data, based 
on any increase in the classification accuracy.

MaTerials anD MeThODs

Participants
Twenty-two children with ADHD were compared with 22 TD 
children matched by gender, age, and intelligence quotient (IQ). 
All participants in the clinical group were previously diagnosed 
according to the Diagnostic and Statistical Manual of Mental 
Disorders Fourth Edition, text revised (DSM-IV TR) (21) cri-
teria by a medical doctor specialized in child neuropsychiatry 
with expertise in ADHD (Antonio Salandi and Sara Trabattoni).  
A child psychologist (Alessandro Crippa) confirmed indepen-
dently the clinical diagnoses using the semi-structured interview 
Development and Well-Being Assessment (DAWBA) (22). 
According to interviews, 18.2% of children in the ADHD group 
met criteria for the inattentive subtype, 36.4% met criteria for the 
hyperactive–impulsive subtype, and 45.5% met criteria for the 
combined subtype. The TD group consisted of children recruited 
by local pediatricians and from schools in the vicinity of our 
institute, with no history of medication treatment. Signs of social/
communicative disorders and other possible DSM-IV TR diag-
noses were excluded in TD children through the administration 
of the DAWBA interview to parents. To match the two groups, 
the estimated Full Scale Intelligence Quotient (FSIQ) was meas-
ured in TD participants using the Block Design and Vocabulary 
subtests of the Wechsler Intelligence Scale for Children—III 
(WISC-III) (23). These two WISC subtests have a correlation 
of 0.93–095 with the FSIQ (24). Children in both groups were 
required to have FSIQ or estimated FSIQ scores of higher than 
80 on the WISC-III or WISC-IV scales (23, 25). All participants 
were Caucasian, had normal or corrected-to-normal vision, and 
were not taking any medication. The study was explained to both 
children and their parent(s) or caregivers, and all of the partici-
pants’ legal guardians signed the informed written consent before 
the children’s participation. The research received approval from 
the ethic committee of our institute and was therefore performed 
in accordance with the ethical standards set forth in the 1964 
Declaration of Helsinki and its later amendments.

Measures
Cognitive Profile
The executive function profile of each participant was assessed 
through a selected battery of cognitive tests from the Amsterdam 
Neuropsychological Tasks (26). All children completed four 
computerized tasks, administered in the following order: Base-
line speed, Focused attention four letters, Shifting attentional 
set–visual, and Sustained attention. Baseline speed consisted of a 
simple reaction time (RT) task. During the Focused attention test, 
participants had to selectively respond to one target letter among 
four, when it was presented in the relevant diagonal position, and 
to ignore it when it was displayed in the irrelevant axis. The Visual 
set-shifting task was used to investigate three different cognitive 

dimensions: vigilance, inhibition, and cognitive flexibility. Finally, 
the Sustained attention was used to assess the fluctuation of atten-
tion over time. For further details about the dependent measures 
considered for these tasks, see Crippa et al. (10).

FA Profile
Blood samples were taken from all participants to assess the FA 
profiles. Samples of blood were directly subjected to transmeth-
ylation for gas chromatography analysis, using a well-validated 
protocol (27). FAs from 14 to 24 carbons were detected. In this 
study, we reported the percentages of single FAs only for main 
omega-3 and omega-6. Furthermore, we calculated ratios as ara-
chidonic acid (AA)/eicosapentaenoic acid (EPA) and AA/doco-
sahexaenoic acid (DHA), as they have been pointed out as reliable 
indexes of the functional effects of long-chain PUFAs (28). 
Finally, we calculated the sum of EPA and DHA (the “omega-3 
index”) (29), and of saturated fatty acid (SFA), monounsaturated 
fatty acid (MUFA), and PUFA. For further details about the FA 
profile analysis, see Crippa et al. (10).

Features accounting for both the cognitive and the FA profiles 
were Z-scored according to zi = (xi − mx)/sx, where xi is the value 
of a given feature x for the ith subject, mx and sx are the mean 
value and the SD, respectively, of feature x over the considered 
population, and zi is the resulting Z-scored feature.

Neurophysiological Profile
Stimulation Protocol
The stimulation protocol was developed with the Presentation® 
software (Neurobehavioral Systems Inc.), and stimuli were dis-
played using a computer screen. The task was a modified version 
of the visuospatial N-back working memory task that Cui and 
colleagues (30) set up and that lasted approximately 15  min. 
The paradigm consisted of three tasks—control (C), 1-back 
(1B), and 2-back (2B)—always presented in this order: rest–C–
1B–2B–rest–1B–C–2B–rest–2B–1B–C–rest. The first rest epoch 
was 60 s long, and the other three rests were 30 s long. During 
the rest, children passively viewed an image on a black screen. 
Experimental epochs began with a 3 s display of the instruction: 
“Repeat” in the 1-back task and “Return” in the 2-back task. 
Control epochs each began with a 2-s display of the instruction, 
“Center.” Each control and experimental epoch included 32 
stimuli shown for 0.5 s each, with a 1.5 s interstimulus interval. 
The stimulus was a clown’s face displayed in one of nine locations 
in a 3 × 3 matrix. In the 1-back task, children were required to 
respond if the stimulus remained in the same position of the 
previous trial (“Repeat”). In the 2-back task, participants had to 
respond whether the stimulus recurred in the same location as 
it did in the two previous trials (“Return”). In the control task, 
children were instructed to respond only when the clown’s face 
was presented in the center of the screen. Practice trials, the 
number of which varied individually, were given to participants 
before NIRS recording.

NIRS Data Acquisition and Optode Localization
A commercial continuous wave NIRS device (DYNOT Compact, 
NIRxBerlin) was employed for NIRS recordings. An elastic cap 
of the proper head size was fitted on the subject’s head. The cap 
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according to the International 10–20 system. The distance between the fibers was set at 2.7 cm.

4

Crippa et al. Classification of Multi-Domain Measures

Frontiers in Psychiatry | www.frontiersin.org October 2017 | Volume 8 | Article 189

had 32 channels, with 8 emitters and 24 detectors; it was placed 
on the child’s scalp at the bilateral frontotemporal areas, centered 
at F3 and F4 according to the International 10–20 system (31), 
as shown in Figure 1.

Near-infrared spectroscopy recording was performed at two 
wave lengths (760 and 830 nm) to probe oxygenated-hemoglobin 
and deoxygenated-hemoglobin (Deoxy-Hb), respectively, in the 
brain. The measurement principles were based on the modi-
fied Beer–Lambert law, for which oxygenated-hemoglobin and 
Deoxy-Hb changes are calculated from the change in light attenu-
ation at a given measured point (32).

NIRS Preprocessing
First, we visually inspected individual NIRS data to remove obvi-
ous artifacts; then, we filtered the signals with a low-pass filter 
at 0.3 Hz, to respect the task/rest frequency that the stimulation 
protocol induced. Continuous signals were then divided into 
epochs starting 14  s before the onset of each task block, and 
ending 14 s after the end of the blocks. In doing so, nine epochs, 
lasting 92  s each, were extracted. Epochs were first averaged 
on the basis of the stimulation type (C, 1B, and 2B) and then 
grouped, to obtain a grand average. Because the raw NIRS data 
represented relative values and could not be directly compared 
across subject or channels, we standardized the raw data into 
Z-scores based on a “baseline” period immediately ahead of the 
task epoch. In this manner, we could depict the relative change 
in oxygenated-hemoglobin and Deoxy-Hb concentrations that 
the visuospatial N-back working memory task induced. As 
Ichikawa and colleagues (11) previously suggested, we selected 
as “baseline” for standardizing the raw data a period of 3 s just 
before the beginning of each stimulation period. The Z-scores 
were calculated for each subject i using the following formula:

 z x m si i i i= −( ) ,, , ,task baseline baseline/  (1)

where xi,task is the raw data (mM mm) of the ith subject at each 
time point during the task period and mi,baseline and si,baseline are the 
mean value and the SD, respectively, of the raw data of the ith 
subject during the baseline period.

Data analysis
First, data were visually and statistically inspected to verify that 
the assumptions were not violated. A chi-square analysis was then 
carried out to assess group differences in gender distribution and 
fish consumption. An independent-samples t test was used to 
individually examine group differences in age, IQ, and socioeco-
nomic status. The alpha level was set to 0.05 for all data analyses.

Feature extraction and selection
To reduce the features to the most relevant ones for the classifica-
tion, we performed feature extraction and selection on Z-scored 
data. Feature extraction and selection were applied only to NIRS 
data.

Feature extraction was performed through principal compo-
nents analysis (PCA) (33), a technique that has been widely used 
in the literature across different automatic-classification tasks 
(34). PCA is able to extract a smaller set of features from the 
original set of observed data, with these features being referred to 
as PCA coefficients. PCA coefficients are uncorrelated and sorted 
according to the maximum-explained-variance criterion.

Extracted PCA coefficients were then ranked according to 
their Fisher’s discriminant ratios (FDRs); the FDR is an index 
that measures the binary-class discriminatory power for each 
feature as follows:

 
FDR ADHD TD

ADHD TD

=
µ −

σ
( ) ,µ
σ

2

2 2+  
(2)

where μ and σ are the mean and the variance, respectively, of 
the given feature on the whole ADHD or TD dataset. The top 
60% PCA coefficients with the highest FDRs were selected and 
retained for automatic classification.

The classifier
A support vector machine (SVM) (35) was used to automati-
cally classify ADHD and TD.

Support vector machines are machine-learning algorithms 
that able to (1) generate a predictive model by learning how to 
separate a set of binary-labeled data, called a training set, and 
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(2) use this predictive model to automatically classify unlabeled 
data in one of the two classes of the training set (in our case, 
ADHD and TD). The training set consists of (1) a matrix of 
samples belonging to two different classes, with each sample 
being represented by a set of selected features, and (2) the cor-
responding vector of binary labels. Automatic classification was 
performed using the following features individually: neuropsy-
chological features accounting for the cognitive profile (NPS), 
features accounting for the FA profile (BIO), features obtained 
from the oxygenated-hemoglobin NIRS spectra (NIRS OXY), 
and features obtained from the Deoxy-Hb NIRS spectra (NIRS 
DEOXY). A classification using NIRS OXY and NIRS DEOXY 
data taken together was also performed. For each subject, the 
clinical diagnosis (ADHD and TD) was used as a label for the 
training of the classifier. The classification system was previously 
validated in a clinical setting (36). Because we chose to employ a 
linear kernel (which ensures better computational efficiency in 
comparison to other kernels), we did not perform any optimiza-
tion of the SVM regularization hyper parameter.

Optimization of Features and Performance 
evaluation
To find the optimal combination of features for the automatic-
classification task, we used a wrapper approach, in which 
optimization is seen as a search problem. Specifically, different 
combinations of features were prepared, evaluated through the 
machine-learning classifier, and assigned a score based on model 
accuracy. Once all combinations of features were evaluated, the 
optimal combination was chosen as the one able to return the 
highest accuracy of classification.

The optimization of features and performance evaluation were 
accomplished through a nested 10-fold cross validation (nested 
CV). The original dataset was split into 10 subsets of (possibly) 
equal size. Nine out of 10 subsets were used in an inner loop to 
perform the optimization of features, and the held-out subset was 
used in an outer loop to evaluate the performance of the clas-
sification of the optimal combination of features. This process 
was repeated 10 times, to use all subsets once for performance 
evaluation. For each of the 10 rounds, the accuracy, sensitivity, and 
specificity of classification in the outer loop were evaluated, and 
the results were averaged across all rounds. The flowchart of the 
nested CV of the proposed machine-learning method for the NIRS 
features is depicted in Figure 2A as a representative example.

For cognitive and FA profile data, we were interested in 
determining which features were the most important for the 
classification. As mentioned earlier, for each of the 10 rounds of 
the nested CV, we obtained an optimal combination of features 
from the inner loop. The importance of features for classification 
was defined as the occurrence frequency of each feature in the 
optimal combinations.

ensemble of classifiers
To improve the performance of the single classification systems, 
we designed an ensemble of classifiers by combining the differ-
ent predictive models mentioned earlier. Specifically, we trained 
four different classifiers on independent datasets (NPS features, 

BIO features, NIRS OXY features, and NIRS DEOXY features, 
respectively) thus obtaining four independent predictive models, 
namely the “Predictive model #1” trained on NPS features, the 
“Predictive model #2” trained on BIO features, the “Predictive 
model #3” trained on NIRS OXY features, and the “Predictive 
model #4” trained on NIRS DEOXY features. The predicted 
outputs were then combined through the majority-vote rule. 
This procedure allowed us to examine whether the decision of 
including any additional measure along the diagnostic process 
is worth the costs, based on any increase in the classification 
accuracy. Accordingly, given a new (unlabeled) subject, each 
binary classifier predicts a label for that subject, corresponding 
to a class. Predicted labels of each binary classifier are then treated 
as votes for the corresponding class, and the class with the largest 
number of votes is chosen as the class that the ensemble predicts. 
A flowchart illustrating this approach is depicted in Figure 2B. 
The ensemble of classifiers was obtained through the combina-
tion of three or four of these predictive models, which led to the 
following ensembles:

 1. NPS + BIO + NIRS OXY
 2. NPS + BIO + NIRS DEOXY
 3. NPS + NIRS OXY + NIRS DEOXY
 4. BIO + NIRS OXY + NIRS DEOXY
 5. NPS + BIO + NIRS OXY + NIRS DEOXY

Finally, the proposed classification algorithm was translated 
into a final software tool that could allow clinicians, by means 
of a graphic interface, to upload the profile of measures col-
lected from each patient/participant (the blood FA profile, the 
neuropsychological measures, and the fNIRS spectrum) and to 
obtain an automatically predicted diagnosis.

resUlTs

Participants and Measures
Data on the demographic characteristics of the participants are 
summarized in Table  1. The statistical analyses confirmed the 
validity of gender, age, and full-scale IQ matching (all p > 0.05). 
Further, socioeconomic status and weekly fish consumption as 
referred to by parents were also balanced between groups (both 
p > 0.05).

Feature extraction and selection
This process was applied only to NIRS data. Feature extraction 
through PCA resulted in the extraction of N − 1 PCA coefficients, 
where N is the number of subjects in the training set (N = 20 or 
21 depending on the particular round of the 10-fold nested CV).

Extracted PCA coefficients were then ranked according to 
their FDRs. The top 60% (i.e., 12) PCA coefficients with the high-
est FDRs were selected and retained for automatic classification.

Optimization of Features and Performance 
evaluation
Retained features were fed into the 10-fold nested-CV process for 
optimization and performance evaluation. Specifically, all NPS 
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TaBle 1 | Sociodemographic characteristics of the participants.

aDhD TD p

N 22 22
Females:males 0:22 1:21 1.023a 0.312
Age 11.5 ± 1.5 11.4 ± 1.9 −0.220b 0.827
IQ 102.7 ± 11.1 109.6 ± 19.5 1.453b 0.154
SES 53.2 ± 20.6 56.1 ± 18.3 0.504b 0.617

ADHD, children with attention deficit/hyperactivity disorder (ADHD); TD, typically 
developing children; SES, socio economic status; IQ, intelligence quotient.
aChi-square test.
bStudent’s t-test.

FigUre 2 | (a) Flowchart of the nested cross validation of the proposed machine-learning method for the near-infrared spectroscopy (NIRS) features  
(as a representative example). The figure shows the different steps of our method, including preprocessing, feature extraction and selection, and classification.  
(B) Flowchart of the ensemble-of-classifiers approach applied to NPS, BIO, and NIRS data.
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(18) and BIO (10) features were used, whereas NIRS features 
(both NIRS OXY and NIRS DEOXY) were reduced to 12 after 
feature extraction and selection. Considering that the process 
was used to evaluate all possible combinations of features, the 
number of evaluated combinations was as follows:

•	 NPS: 18 features → 2.6 × 105 combinations
•	 BIO: 10 features → 1,023 combinations
•	 NIRS: 12 features → 4,095 combinations

The performances of the machine-learning method for auto-
matically classifying ADHD versus TD are reported in Table 2. 
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TaBle 2 | Performance of the machine-learning method (accuracy, sensitivity, 
and specificity) in the automatic classification of attention deficit/hyperactivity 
disorder vs. typically developing.

Features accuracy 
(mean ± sD)

sensitivity 
(mean ± sD)

specificity 
(mean ± sD)

NPS 62 ± 17 70 ± 27 57 ± 24
BIO 66 ± 21 58 ± 40 73 ± 29
NIRS OXY 57 ± 27 48 ± 47 67 ± 33
NIRS DEOXY 78 ± 22 72 ± 34 82 ± 24
NIRS OXY + NIRS 
DEOXY

72 ± 32 73 ± 29 68 ± 43

Classification was performed for cognitive profile (NPS), fatty acid profile (BIO), features 
obtained from the oxygenated-hemoglobin NIRS spectra (NIRS OXY), and features 
obtained from the deoxygenated-hemoglobin NIRS spectra (NIRS DEOXY) taken 
individually, or NIRS OXY and NIRS DEOXY features taken together. Values of mean 
and SD were calculated across all the possible folds and round of the cross  
validation process.

TaBle 3 | Performance of the ensemble of classifiers [accuracy, sensitivity, specificity, and area under the curve (AUC)] in the automatic classification of attention deficit/
hyperactivity disorder vs. typically developing.

Features accuracy (mean ± sD) sensitivity (mean ± sD) specificity (mean ± sD) aUc

NPS+ BIO+ NIRS OXY 71 ± 10 70 ± 27 73 ± 24 0.70
NPS+ BIO+ NIRS DEOXY 81 ± 15 73 ± 24 87 ± 22 0.80
NPS+ NIRS OXY+ NIRS DEOXY 78 ± 18 70 ± 36 87 ± 22 0.77

BIO+ NIRS OXY+ NIRS DEOXY 77 ± 21 63 ± 31 90 ± 21 0.77
NPS+ BIO+ NIRS OXY+ NIRS DEOXY 76 ± 16 83 ± 22 68 ± 23 0.75
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Classification was performed using NPS, BIO, NIRS OXY, and 
NIRS DEOXY features taken individually, as well as NIRS OXY 
and NIRS DEOXY features taken together. The classification 
accuracy reached a maximum of 78% (sensitivity 72%, specific-
ity 82%) using NIRS DEOXY features. When using NPS or BIO 
features taken individually, accuracy resulted in 62 and 66%, 
respectively.

Besides calculating the performance for the automatic classifi-
cation of ADHD versus TD, for neuropsychological and biological 
data, we were interested in determining which features occurred 
the most in the optimal combinations across the 10 rounds of 
the nested CV. This provided information about the importance 
of each feature for the classification. The most discriminant NPS 
features between the two groups, ranked by occurrence frequency 
in the optimal combinations, are reported here in descending 
order: Sustained attention–False alarms, Visual set-shifting–RT 
inhibition, Sustained attention–Coefficient of variation, Visual 
set-shifting–Number of inhibition errors, Focused attention–RT 
correct responses, Focused Attention–Correct rejections target 
non-relevant positon, Focused attention–SD of correct responses 
RT, Focused attention–Misses, Sustained attention–Misses, 
Baseline speed–SD of RT, Visual set-shifting–Number of errors 
flexibility, Sustained attention–Tempo  ×  Series, Sustained 
attention–SD, Baseline speed–RT, Focused attention–Correct 
rejections non-target relevant position, Focused attention–False 
alarms target non-relevant position, Focused attention–False 
alarms irrelevant target, Visual set-shifting–RT flexibility. The 
most discriminant BIO features between the two groups, ranked 
by occurrence frequency in the optimal combinations, were in 

descending order: linoleic acid, PUFA, AA, EPA, omega-3 index, 
AA/DHA, AA/EPA, and MUFA. DHA and SFA were never 
selected as optimal discriminant features.

ensemble of classifiers
The performances of the ensemble of classifiers for automatically 
classifying ADHD vs. TD are reported in Table 3. The classifi-
cation accuracy reached a maximum of 81% [sensitivity 73%, 
specificity 87%, area under the curve (AUC) 0.80] by combin-
ing the predictive models trained on the NPS, BIO, and NIRS 
DEOXY features. The ensemble of classifiers obtained combining 
the predictive models trained on the NPS, BIO, NIRS OXY, and 
NIRS DEOXY features resulted in an accuracy of 76% (sensitivity 
83%, specificity 68%, AUC 0.75).

In Figure 3A, a screenshot of the graphic interface developed 
for a possible clinical use of the proposed method is shown. 
Specifically, as it can be seen, the tool allows one to upload the 
required data via a user-friendly interface. Required data are 
the blood FA profile, the neuropsychological measures, and the 
fNIRS spectrum of the single patient. After the data are uploaded, 
the results of the automatic single-subject classification are shown 
in a new screen, together with some notes about the clinical use 
of the tool and the privacy (Figure 3B).

DiscUssiOn

In the actual practice, ADHD is diagnosed on the basis of symp-
toms as judged by clinicians and using qualitative measures, such 
as a structured interview, rating scales, and neuropsychological 
tests. The vast heterogeneity of ADHD manifestations represents 
a challenge for this assessment, potentially leading to misdiagno-
sis. The goal of this work was to investigate the ability of a multi-
domain dataset, including blood FA profiles, neuropsychological 
measures, and fNIRS measures, to automatically discriminate 
school-aged children with ADHD from TD peers. To achieve 
this purpose, we applied for the first time, to our knowledge, a 
supervised machine-learning method for the analysis of biologi-
cal, cognitive, and neurophysiological data together to identify 
children with ADHD. We hypothesized that the integration of 
information between different levels would increase the classifica-
tion accuracy of ADHD, as compared with using a single-domain 
dataset per time. Moreover, we were interested in understanding 
whether our method could aid in the clinician’s decision about 
which tests to include in the diagnostic process, based on the 
trade-off “increase of accuracy/cost.”

With respect to the analysis of a single-domain dataset 
per time, our machine-learning method reached the lowest 
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FigUre 3 | (a) Screenshot of the graphic interface developed for the clinical use of the proposed machine-learning method. The tool allows one to upload the 
expected data via a user-friendly interface. Required data are the blood fatty-acid profile, the neuropsychological measures, and the from near-infrared spectroscopy 
(fNIRS) spectrum of the single patient. (B) After uploading the data, the results of the automatic single-subject classification are shown in a new screen, together 
with some notes about the clinical use of the tool and the privacy.
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individual classification (62%), in the comparisons between 
children with ADHD and healthy controls, using the neuropsy-
chological data derived from tests of vigilance, focused and 
sustained attention, and cognitive flexibility. This result was not 
directly comparable with the previous findings of Bledsoe et al. 
(5), as the best accuracy reached by the authors and derived 
from an SVM method also included the behavioral measures of 
ADHD symptoms, along with the measure of sustained selective 
attention. Nevertheless, the present result extends the previous 
findings, suggesting a possible executive/cognitive dysfunction 
in only 35–50% of children with ADHD (37), and supporting the 
claim no cognitive test at this time can be used with confidence 
for diagnostic decision by itself (11, 12). Moreover, the neuropsy-
chological measures that were used to best predict ADHD in our 
study—false alarms and the intra-subject variability of responses 
during a sustained attention task, the number of errors, and 
the response time in a test assessing cognitive inhibition—are 
among the most frequently reported core cognitive features of 
ADHD (38, 39). The accuracy of our machine-learning method 
slightly improved (67%) when we included blood FA values only. 
Even though the level of classification was still moderate, we 
believe that this finding could be quite promising if confirmed 
with larger sample, given the fact that the procedure for col-
lecting these data was fast and minimally invasive and could 
offer insight on the possible biological signature of ADHD. The 
present results extend the previous findings of abnormal FA 
percentages reported in a recent meta-analysis (40), and our 
previous findings from a clinical study involving a school-aged 
sample of children with ADHD (10). The FAs that are used to best 
identify ADHD seem to be linoleic acid, AA, EPA, EPA + DHA, 
and the total amount of PUFA. All of these components were 
extensively linked to ADHD in previous studies (40, 41). Our 
machine-learning method reached greater accuracy (72%) when 
we used, as a single-domain dataset, the cerebral hemodynamic 

responses (both oxygenated hemoglobin and deoxygenated 
hemoglobin) measured by NIRS during a spatial working 
memory task. Moreover, we achieved an even better accuracy of 
78% when we considered only deoxygenated hemoglobin. The 
classification accuracy that was achieved in this study is nearly 
consistent with previous SVM applications to fNIRS data (17) 
or with conservative receiver operating characteristic analysis of 
fNIRS signal (18). Interestingly, we found a significant advan-
tage of the deoxygenated-hemoglobin over the oxygenated-
hemoglobin data (78 vs. 57%) in terms of classification accuracy. 
The deoxygenated-hemoglobin variation following local neural 
activation tends to be of a smaller amplitude compared with the 
oxygenated-hemoglobin response, but it seems to be a more 
reliable indicator of neural activity, less prone to inference by 
extra-cerebral physiological noise, and more correlated with the 
blood oxygenation level dependent signal (42–44). However, 
this issue is still controversial, with some other works suggesting 
higher retest reliability for oxygenated hemoglobin (45).

Beyond this, the point of relevance of our work was that, for the 
first time, we applied a machine-learning approach using biologi-
cal, cognitive, and neurophysiological data together for automati-
cally classifying children with ADHD. Our ensemble of classifiers 
reached an accuracy of 76% when we combined the predictive 
models trained on the whole multi-domain dataset. The classifica-
tion accuracy of the ensemble reached a maximum of 81% through 
the combining of the predictive models trained on neuropsycho-
logical, FA profiles, and deoxygenated-hemoglobin features. Thus, 
the present findings clearly show the feasibility and applicability 
of machine-learning methods in correctly identifying children 
with ADHD on the basis of multi-domain data. Furthermore, 
the classification accuracy we reached, using the whole dataset, is 
consistent with the SVM application of Kim and colleagues (20) 
to a rich multi-domain dataset (including demographic, clinical, 
environmental, neuropsychological, neuroimaging and genetic 
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information) to predict the methylphenidate response in ADHD. 
The performance of the ensemble of classifiers only partially  
supported our initial hypothesis—i.e., integrating information 
from different domains would significantly increase the predictive 
value of our classification approach—as the analysis of the whole 
dataset minimally improved the classification accuracy (81% for 
the whole dataset vs. 78% using only NIRS DEOXY signal). Taken 
together, the results of the ensemble of classifiers clearly showed 
how the addition of deoxygenated-hemoglobin features increased 
the accuracy (from 71 to 76–81%). For this reason, we feel that the 
present findings do not support the decision of including all of the 
tests we used in a possible diagnostic assessment, on the basis of a 
gain of accuracy/cost trade-off. In particular, when we considered 
one domain at a time, we found a limited predictive value for the 
neuropsychological measures. On the contrary, the significant 
predictive value of our SVM classification approach of fNIRS 
data might be valuable for supporting the practice of diagnosing 
ADHD, even encouraging an fNIRS-based clinical diagnosis 
at an individual level. Indeed, two other recent studies showed 
the fNIRS feasibility in identifying children with ADHD with 
different methodological approaches (17, 18). Moreover, NIRS 
scanning is relatively low cost. It is also particularly favorable for 
measuring task-related neural activation in children with ADHD 
because NIRS requires less stabilization than other neuroimag-
ing techniques do.

Despite our promising results, this study did have some limita-
tions. The first one was that the sample sizes of participant groups 
were relatively small. To validate the proposed classification 
approach, we need to replicate the present findings with larger 
sample sizes so that we can test the computerized algorithm with  
a totally independent dataset. Another possible limitation of 
this work was that our classification algorithm was obviously 
specific to the sample used in training the classifier (i.e., school-
aged children with ADHD), so the present findings could not 
be generalized to adult patients with ADHD. Moreover, future 
extensions of this study should test the disorder specificity of the 
classifier, including also other neurodevelopmental conditions 
frequently associated or in differential diagnosis with ADHD. 
Keeping these limitations in mind, we clearly emphasize that 
the proposed technique should not be considered a potential 
ADHD marker at this time. Indeed, no automatic algorithm can 
substitute clinical diagnostic decisions based on data from several 
informants regarding the child’s everyday behavior in different 
settings. Therefore, in the actual clinical practice, our method 
should be considered only a complementary and adjunctive one 
to existent assessment measures. However, the abovementioned 

limitations should not prevent further investigations using the 
present approach. In this direction, given the spatial information 
that NIRS provides, it would be of interest to develop and refine 
our method to identify which brain regions specifically contrib-
ute to the predictive value of the classification.

In conclusion, we have provided preliminary evidence that 
school-aged children with ADHD can reliably be identified using 
a multi-domain dataset including blood FA profiles, neuropsy-
chological measures, and fNIRS. The significant predictive value 
of the present machine-learning classification approach might be 
helpful for supporting the clinical practice of diagnosing ADHD, 
even fostering a computer-aided diagnosis perspective.
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