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ABSTRACT 

The possibility to obtain chemicals and/or fuels from renewable sources is an attractive option in 

order to develop an integrated biorefinery concept. Bioethanol can be a suitable starting material 

for the production of H2 as fuel or syngas. Hydrogen is considered as future energy vector that 

can meet the ever growing world energy demand in a clean and sustainable way. Moreover, it 

can be used as a green chemical for several other processes. 

In this work, the centralized production of pure hydrogen from bioethanol was investigated using 

the process simulation software AspenONE Engineering Suite
®

. After designing the process and 

the implementation of kinetic expressions based on experimental data collected in our lab and 

derived from the literature, an economic evaluation and sensitivity analysis were carried out, 

assessing conventional economic indicators such as the net present value (NPV), internal rate of 

return (IRR) and pay-out period of the plant. In particular, three scenarios were studied by 
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changing the fuel of the furnace that heats up the ethanol steam reformer, i.e. using methane, 

ethanol or part of the produced hydrogen. Heat integration was also optimised for the best 

scenario.  

Sensitivity analysis was applied to investigate the economic performance of bioethanol steam 

reforming under different circumstances, changing feedstock cost, hydrogen selling price, taxes 

and capital expenditure (CAPEX). The results highlight the advantages and drawbacks of the 

process on a large scale (mass flow rate of bioethanol 40,000 ton year
-1

) for pure hydrogen 

production from bioethanol. The higher return is achieved when using methane as auxiliary fuel. 

The process was strongly OPEX sensitive and very tightly correlated to the bioethanol cost and 

hydrogen selling price. 

 

Keywords: Hydrogen Production; Bio-ethanol Steam Reforming; Economic evaluation; 

Biomass-derived Ethanol; Process Simulation; Heat Integration.  

 

1 - Introduction 

The integrated biorefinery concept was introduced to match the future energy and environmental 

goals of our society. Renewable feedstocks are increasingly exploited for fuels and/or chemicals 

production 
1
. Examples of biofuels are biodiesel 

2
 and bioethanol 

3
, whereas key biomass-derived 

chemicals are furans and polymers 
4
. Moreover, the production of typical refinery products, e.g. 

bioethylene from the catalytic dehydration of bioethanol, can be implemented in an integrated 

biorefinery 
5
. In addition, the interest on waste-based bio-refineries or waste-to-energy (WTE) is 

continuously on the raise as a solution to landfill waste problems, such as the case study reported 

by Nizami et al. for Saudi Arabia 
6
. Sustainable hydrogen production is considered as one of the 
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most promising solutions to reduce the emissions in the automotive and industrial sectors, in 

some cases even being more energy efficient than traditional technologies 
7,8

. Many scientific 

articles were published on the bio-ethanol steam reforming (BESR) process for hydrogen and 

syngas production, studying the catalyst 
9,10

, kinetic modeling 
11–13

 and technical feasibility for a 

large scale implementation 
14

. However, only few studies on the cost-benefit analysis can be 

found in the open literature, which represents a limit to attract investments for deployment.  

The operating pressure of BESR represents a first critical factor. The steam reforming reaction 

leads to an increase in the total number of moles; therefore, the higher is the pressure the lower is 

the advancement of the reaction at equilibrium (Le Chatelier principle). However, industrial 

natural gas steam reforming units conventionally operate at relatively high pressure (15-30 bar), 

because they supply hydrogen or syngas to processes operated at high pressure, e.g. ammonia, 

methanol, hydroformylation, Fischer-Tropsch synthesis, and it is more convenient to operate the 

steam reformer at a higher pressure than compressing the resulting syngas. Higher reformer 

pressure decreases the capital costs due to smaller reformer size and to lower compression costs 

to meet the specifications of the downstream processes 
15–17

. Also when the process aims at 

centralized hydrogen production as fuel, the end user will need tank refill at high pressure, so 

that operating BESR at high pressure is advantageous. Thus, in this work a high-pressure reactor 

was designed, at difference with most literature on the topic.  

Another critical point is the choice of the fuel for the furnace that supplies the energy needed by 

the reformer. In traditional methane steam reformers (MSR) the fuel is natural gas itself. 

Different options can be available for BESR, since bioethanol or part of the produced 

hydrogen/reformate can be used as fuels as well 
18

.  
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Several research groups investigated hydrogen combustion. Gallucci et al. studied the application 

of a dual fluidized-bed membrane reactor for hydrogen production via autothermal reforming of 

methane 
19

. Part of the ultrapure hydrogen produced was sent to a burner to supply the energy 

required. Unfortunately, no economic assessment was proposed by the authors in order to 

establish the profitability of such choice. On the other hand, also the use of ethanol as fuel is 

feasible from the technical point of view 
20

. The latter two approaches allow to avoid the carbon 

tax, because burning carbon-neutral bioethanol or green-hydrogen is considered neutral from the 

point of view of CO2 emissions.  

Nevertheless, the economic assessment of renewable hydrogen production units is insufficiently 

addressed in the literature. Indeed, even if some papers propose scale up and technical 

assessment of H2 production units from renewables 
17,21–23

, solely one paper was focused on a 

techno-economic analysis of the simulated process 
24

 and none of them is related to the use of 2
nd

 

generation bioethanol.  

For instance, Oakley et al. technically discussed the feasibility of BESR, but no economic 

analysis or process optimization were reported 
14

. By contrast, Song et al. carried out an 

economic analysis about hydrogen production from bioethanol based on two plants of different 

sizes in the United States 
24

. However, no pressure was specified for the process although this 

information is critical, as mentioned above.  

A techno-economic analysis for the centralized hydrogen production from bioethanol can be an 

interesting case study to be compared with other emerging technologies, such as biomass 

gasification 
8,25

. 
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Therefore, the aim of this work is the techno-economic evaluation of a large scale bioethanol-

steam-reforming plant for the production of pure hydrogen. The latter is intended for whichever 

use, as fuel or chemical. This step is a milestone to assess the feasibility of hydrogen production 

from bio-ethanol on a large scale, targeting the petroleum industry customers and large producers 

of bioethanol in the world.  

 

2. Process Design and Modelling 

2.1 – Process layout 

The feasibility of power cogeneration through fuel cells using bioethanol at different 

concentration was already studied by us through an experimental apparatus for the combined 

heat and power cogeneration (5 kWelectrical + 5 kWthermal). The system was constituted by several 

reactors in series for hydrogen production (BESR), purification through High-Temperature 

Water Gas Shift (HT-WGS) + Low-Temperature Water Gas Shift (LT-WGS) + Methanation 

(Met) and by a fuel cell with the given power capacity 
26

.  

In previous investigations 
21,18,27

 the process efficiency and the use of diluted bioethanol feeds 

were evaluated, considering different process configurations. However, the size of the fuel 

processor was suitable for a small-scale hydrogen production (6.5 Nm
3
/h), needing proper 

upscaling in the present case. The same process layout was used, except that the fuel cells are not 

included here because not available commercially for a large power output. The big scale power 

generation using a gas-turbine or other types of fuel cells 
23

 was not considered, not to restrict the 

economic considerations. Indeed, the use of sustainable hydrogen for other chemical processes 

can be an intriguing alternative, as recently remarked by Schüth 
4
: he underlined the use of 
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“renewable” hydrogen not only as energy vector, but also as a feedstock for the chemical 

industry, for oil refineries (hydro-treating processes), or in bio-refineries.  

The fuel processor here proposed is constituted of a BESR steam reformer, a HT-WGS, a LT-

WGS and a Met. Although in the literature CO-purification reactors are commonly simulated as 

Gibbs or equilibrium reactors, in this work we simulated them as fixed-bed reactors, by selecting 

and implementing kinetic expressions based on commercial catalysts, whereas for the BESR 

reactor a home developed kinetic model was used, relying on a proprietary catalyst. This allows 

the correct sizing of each reactor and, consequently, appropriate costing of each item.   

The scheme of the process is sketched in Fig. 1. The feed for the steam reforming line is 

considered as a parallel alternative to the production of ethanol 99.5 Vol% (fuel grade, gray path 

in the Figure). 

The BESR steam reformer was designed as a multitubular shell and tube reactor constituted by 

100 tubes, 1 m long. In the tube side, an internal coating of active phase is loaded and the 

average temperature of the catalyst bed was 650°C. The shell side hosts the furnace flue gases. 

The high- and low-temperature water gas shift reactors are modelled as fized bed reactors, 

working at 350 and 280°C, respectively. The former converts ca. 90% of the CO outflowing the 

reformer, whereas the remaining portion is effectively removed by decreasing the temperature, 

so to favour the reaction thermodynamically. In order to deal with slower kinetics, a more active 

catalyst is selected for the low temperature stage (vide infra). The methanator accomplishes final 

CO removal below 20 ppm, operating at 210°C. This stage can be removed as redundant, if 

relying on CO separation in the following PSA unit is possible, i.e. whenever residual CO or 

improper purification is not too critical. 
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2.2 Modeling of the Reactors 

The problem was assessed using the AspenONE Engineering Suite
®

 (v. 8.6), in particular the 

flowsheet has been designed and optimized using the Aspen Plus
®

 process simulator, whereas 

the economic analysis was carried out using the Aspen Process Economic Analysis module.  

The chemical process design was performed using the traditional hierarchical method (onion 

model) 
28

. The reactor was the starting point of the design, followed sequentially by the 

separation and purification units.  

The kinetic expression for the steam reforming reaction was already presented in a previous 

work 
18

. The kinetic model here used was originally developed for a Rh/MgAl2O4/Al2O3 catalyst 

29
 and includes 14 elementary steps, 4 of which were proposed as rate determining ones: ethanol 

decomposition (ED), ethanol steam reforming (SRE), methane steam reforming (SRM) and 

water gas shift (WGS). The kinetic equations were based on a Langmuir Hinshelwood approach, 

where all the species concurring for adsorption over the active sites appear in the denominator of 

the rate expressions and are included in the overall balance on the active sites. This model has 

been adapted by us 
27

 to a full set of experimental data collected for a commercial Ni/Al2O3 

sample 
30

 and later to our home-developed catalyst 
12,31

. In the present work we preferred to deal 

with the kinetic model detailed in 
27

 because it is specifically used to describe the commercial 

Ni-based catalyst, which is more pertinent for the present application.  

For the HT-WGS step the kinetics proposed by Hla et al. 
32

 was selected. The power-law reaction 

rate expressions were proposed for a commercial Fe2O3/Cr2O3/CuO catalyst.  
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The catalytic fixed-bed reactor for the LT-WGS step was simulated selecting the work of Choi et 

al. 
33

. A Commercial Cu/ZnO/Al2O3 catalyst was employed and, also in this case, the authors 

applied a power-law reaction rate expression.  

For the CO methanator, the article of Zhang et al. 
34

 reported the use of a commercial Ni/Al2O3 

catalyst, following a Langmuir-Hinshelwood-Hougen-Watson kinetic expression (LHHW). The 

reactions considered, model adopted and references are summarised in Table 1. The parameters 

to calculate the equilibrium constants were obtained following Bartholomew and Farrauto 
35

.  

The experimental steam reformer tested in-house 
18,27

 was configured as a shell and tubes heat-

exchanger, where the steam reforming catalyst was located in tube side and a commercial 

combustion catalyst in the shell side. The catalysts can be present as coating to optimize the 

thermal coupling 
26

 or alternatively as particles in fixed-bed 
10

.  

However, this configuration was changed in this case due to the unproven commercial feasibility 

of this thermally optimized approach for larger design and the reactor was sized based on the 

industrial terrace wall steam reforming reactor 
36

. The sizing parameters are reported in Table 2. 

For the main steam reforming unit the particle size and pressure drop were simulated in detail 

considering the shape factor (0.58), Sauter particle diameter (12.5 mm) and an overdesign factor 

of 20%. The same number of tubes and length/internal diameter ratio of the experimental 

configuration were adopted 
37

. Particle shape was simulated as a single-channel cylinder (ring 

shape). The pressure profile along the catalyst bed has been calculated according to the Ergun 

equation. The water gas shift reactors and methanator were simulated considering their typical 

commercial features 
38,39

, in adiabatic configuration which is the more acceptable for industrial 

applications compared to the isothermal one 
35

. A scale-up ratio of 1800 based on the ethanol 

stream was used assuming a capacity of 40,000 ton/y of bioethanol. This productivity has been 
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9 

 

chosen based on a commercial examples of second generation bioethanol production plant 

currently commercialized by the Biochemtex group 
40

. The vaporized feed was simulated by 

feeding high pressure liquid ethanol and water mixture into a vaporizer. 

Usually, hydrogen production by steam reforming of ethanol is experimentally investigated at 

pressures below 10 bar 
10,41,42

. However, the implementation for large scale production must be 

explored in the pressure range at which steam reforming of natural gas for syngas generation is 

economically viable, which is higher than 10 bar 
14

. Thus, a pressure of 20 bar was here chosen 

in order to match the balance between compression cost, equipment volume and thermodynamic 

conversion. In addition, further increasing pressure can lead to inconsistent results based on low 

pressure kinetics. Thermal gradient through the catalytic bed was simulated as for the 

experimental unit.  

The water/ethanol ratio was thoroughly optimized recently 
43

: the higher the ratio, the higher is 

the hydrogen yield due to promotion of the WGS reaction, with consequent mitigation of the 

impact of the hydrogen purification sequence. Excess water also prevents effectively catalyst 

deactivation by coking 
44

. As a counterbalance, increasing heat input is required to vaporize 

additional water. In this work, an optimal steam-to-ethanol molar ratio equal to 5 was selected 

(40 vol% Ethanol, 60 vol% Water). This composition is easily achievable either by partially 

purifying the bioethanol raw beer by flash or by using a feed split approach as extensively 

described elsewhere 
45,46

. in order to use a feasible bioethanol stream. Finally, we compared the 

present results with those reported by Oakley et al., who simulated the process on an industrial 

scale, but without implementing kinetic expressions 
14

.  
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2.3 - Modelling the Process 

The flowsheet is reported in Fig. 2. Heaters and coolers were simulated by setting the utilities 

and surface area reported in Table 3.  

The furnace coupled to the steam reformer, was simulated in Aspen Plus
®

 using a Gibbs reactor. 

The mass flowrates of air and fuel where adjusted so to generate the heat duty needed by the 

reactor with an air flowrate leading to 2% excess oxygen with respect to the stoichiometric 
47

. A 

firebox reformer heater (rectangular shape) without catalyst was selected for the economic 

evaluation, with walls externally lined by refractory material. 

The compressors for air and fuel were simulated in accordance with the Gas Processors Suppliers 

Association (GPSA) standards. The reciprocating configuration coupled with gas engine was 

chosen. The pumps were simulated using centrifugal configuration.  

The Pressure Swing Adsorption (PSA) unit was simulated in accordance with a traditional H2 

recovery unit typically used for refinery off-gas streams 
48

. This reference work was chosen 

based on the similar pressure range (20 bar) and temperature (308 K), although a higher steam 

molar flow was used in our case. The amount of zeolite was scaled up accordingly. The four 

units of PSA were considered operating in parallel as detailed by Mivechian et al. 
48

. The storage 

tanks and other offsite equipment were not included in the assessment. The plant flowsheet was 

established based on experiments in a 13.9 kg/d pilot plant, including purification steps of WGS 

and methanation, but without a PSA unit. 

 

2.4 - Modeling the Heat-Exchangers Network 
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The heat integration was implemented using the Aspen Energy Analyzer
®

 tool using the pinch 

analysis methodology. This technique analyses all the thermal flows within the process 

boundaries, identifying the most economical ways to maximize the heat recovery and minimise 

the demand for external utilities. Heat exchangers were sized calculating the heat exchange 

surface area using conventional industrial considerations in order to properly choose the location 

of the fluids (shell or tube side) and the other critical parameters such as fouling, phase change, 

erosion and corrosion. The flowsheet after the heat integration is detailed in Fig. 3, whereas the 

specifications of the heat exchangers used for process and relative diagram are shown in the 

Supporting Information file (Table S1 and Fig. S1).  

 

3. Economic Performance Analysis  

The simulated process flowsheet was used to estimate the Total Capital Investment (TCI) and the 

OPerating EXpenditures (OPEX) of the hydrogen production and purification sections. Different 

scenarios and price sensitivity analyses were defined to highlight the dependence of CAPEX and 

OPEX on different economic parameters. 

 

3.1. Economic Assumptions  

The economic assumptions are listed in Table 4. A rate of return of 10 was chosen as 

profitability factor. A 30 year plant life was assumed, based on similar steam reforming 

technologies 
24,49

. The working capital was assumed as 15% of the TCI as conventionally used 

for traditional chemical plants 
28

. The salvage value was evaluated as a fraction of the initial 

capital cost. The straight-line method was adopted as depreciation method (the difference 
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12 

 

between the salvage value and the initial capital was divided by the economic life of the project, 

so that the project depreciates evenly through all its economic life).  

For both the product and the raw materials we considered the same escalation value (= 5), as 

reasonable because these compounds pertain to the commodity market. The stream factor was set 

to 96% (8406 operating hours per year).  

The choice of raw materials costs, utility cost and product selling price is always a critical point 

for the economic evaluation of a project, because it heavily influences the outputs of the analysis. 

This point is a minor issue when the scope is the internal comparison of different scenarios under 

the same assumptions. On the contrary, it is important for the comparison with literature data or 

with existing plants. The price of bioethanol was estimated considering a commercial selling 

price of pure bioethanol 
40

 diminished by 50% due to savings in the purification by flash or feed 

split with respect to the azeotropic distillation 
18,27,46,37

. Indeed, the purification of bioethanol can 

affect up to 50-80 % its production price, at least for the first generation biofuel 
46,50

.  

The ASME Boiler & Pressure Vessel Code (BPVC) were chosen as the standard for the design 

of pressure vessels. Feedstock, utility and product costs are summarized in Table 5.  

Catalysts were considered in CAPEX and not in OPEX because the reactors considered to have 

fixed-bed configuration, therefore there is no need of continuous make up of fresh catalyst to the 

reactor. Catalyst deactivation issues were also computed and mainly ascribed to sintering and 

coking, with lower impact of the latter because of the high temperature of reaction 
10

. Planned 

shutdowns of the plant were predicted for the regeneration.  

 

3.2. Investment Calculation Criteria and Methodology   
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The following equations have been used for calculations: 

��� =� ���1 + ��




���
 

NPV = Net Present Value, where n is the project lifetime (or economic life of the project), CF is 

the annual cash flow and i is the interest rate (also called desired rate of return or return on 

investment, ROI). NPV measures the difference between the present value of cash inflows and 

the present value of cash outflows. It is used in capital budgeting to analyze the profitability of a 

projected investment or project. On the other hand, ROI is a performance measure to evaluate the 

efficiency of an investment or to compare the efficiency of a number of different investments. 

ROI measures the amount of return on an investment relative to the investment’s cost.  

The IRR (Internal Rate of Return) was then evaluated as the interest rate at which the present 

value in the last year of the project is zero, obtained by solving the following implicit equation.  

��� =� ���1 + ����
 = 0



���
 

The  IRR is a metric used in capital budgeting measuring the profitability of potential 

investments. It is a discount rate that makes the NPV of all cash flows from a particular project 

equal to zero. The total capital cost (CT) was evaluated using the Aspen Process Energy Analyzer 

(APEA) library at the system cost base date, adjusted to the present date using the capital 

escalation values reported in Table 4, according to the following equation.  

��� = �� ∗ �1 + �� ∗ � �100�� 
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CAT = Adjusted Total Capital cost; tD = Time difference between system cost base date and start 

date for engineering; e = Project capital escalation. The project capital escalation was chosen 

considering the chemical engineering plant cost indices during the last years. 

The economic analysis was carried out at first considering a fixed H2 selling price and a fixed 

ROI.  The operating costs were evaluated including the following items: raw materials, G&A 

expenses (general and administrative costs), operating labor costs, plant overheads, charges 

during production for services (facilities, payroll overhead, etc.), utilities, maintenance.  

The starting date for the calculation of operating costs was the day after the end of the 

Engineering-Procurement-Construction (EPC) phase. The starting date for the calculation of 

product sales was the day after the end of the EPC + start-up phases. The final cash flow at the 

end of plant life was calculated based on the salvage value and the working capital in addition to 

the total earnings.  

Aspen Process Economic Analyzer was used to identify a window of economic viability of the 

process considered. This tool enables to focus the engineering process on business priorities, 

integrating business considerations and sophisticated engineering analysis. All the results were 

checked, re-evaluated and compared with the literature 
28

 and industrial case histories.  

 

4. Results and Discussion  

4.1 Economic analysis of different scenarios 

A first economic assessment was carried out using methane as fuel for the furnace and excluding 

any heat-integration (base case). Fig. 4 shows the CAPEX evaluation for this scenario, 
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considering the capital fraction relative to the equipment. The highest issues are related to the 

heater for the vaporization of the feed, followed by the compressors and the steam reforming 

units (inluding the shell and tubes reactor plus the furnace). OPEX are shown in the same Fig. 4 

and evidence that bio-ethanol, even if diluted and less expensive than the azeotrope, still 

represents the major cost, followed by methane (fuel for the furnace). The flowrate of pure 

hydrogen at the outlet of PSA is 889 kg h
-1

. This value was obtained by feeding 4,567 kg h
-1

 

(40,000 ton year
-1

) of ethanol. 

 Three different scenarios (A, B, C) where then compared: the base case above discussed relies 

on methane as fuel for the furnace (case A), while using as fuel pure ethanol (case B) or a portion 

of the produced hydrogen-rich stream (case C) were considered as alternatives. The flowsheet for 

cases B and C are reported in the Supplementary Information for completeness (Fig. S2 and S3).  

The comparison of total CAPEX (considering working capital, direct costs and equipment costs) 

and total OPEX (considering raw materials, operating labor costs, utilities, G&A expenses) for 

the three scenarios is reported in Fig. 5.  

Capital costs were slightly lower for scenario C because no compressor was needed for the 

already pressurized hydrogen when used as fuel. By contrast, OPEX assume markedly different 

values for every scenario. Scenario B has the highest OPEX, because the furnace is fed with pure 

ethanol (azeotrope), which is assumed as much more expensive than the diluted bioethanol used 

as feed. This demonstrated as a valid and less expensive alternative to anhydrous ethanol for 

steam reforming, even for the production of bioethylene 
5,43,46,51

. However, the use of the diluted 

bioethanol to feed the burner is precluded by its insufficient heating value. On the other hand, the 

lowest value for OPEX is achieved for case C, because no additional fuel is used. However, it 
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considerably shortens product sales, because part of the product is internally used for heating, 

and, thus, total plant revenues.  

The Internal Rate of Return (IRR) measures efficiently how the capital is being used, although it 

gives no indication on the profits. In this comparison, the IRR is 24.9%, 14.9% and 0% for the 

scenarios A, B and C, respectively. The possibility to use part of the hydrogen produced as fuel 

for the thermal supply of the endothermal process was investigated in a thermodynamic study by 

Giunta et al. 
22

. Although the study was not aimed to discuss the economic advantages of the 

choice, the study interestingly supported some of the conclusions achieved in our previous work, 

where the use of the produced reformate for internal heat generation was extensively investigated 

in a small scale heat and power cogeneration plant (5 kWelectrical + 5 kWthermal) 
18

. However, the 

null value of IRR here obtained means that the investment is not profitable on a large industrial 

scale to get revenues. Nevertheless, scenario C may keep its interest on a small scale for 

independent residential cogeneration, where the exploitation of other fuels may be excluded for 

different reasons.  

Additionally, scenario B was less remunerative than A, due to the higher price of ethanol than 

methane and higher energy needed to vaporize of the fuel. Moreover, in this case complications 

arise with furnace optimization when using ethanol instead of the very well assessed methane-

based technology.  

 

4.2 Thermal integration of the process 

The energy integration of the best scenario (A) was performed, at first by categorizing the hot 

and cold streams and then making a pinch analysis to design the heat exchangers network. A 

Page 16 of 33

ACS Paragon Plus Environment

Energy & Fuels

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



17 

 

first, rather conventional solution for heat integration is to thermally couple the reactor feed and 

product stream. A preheating train of heat exchangers was then designed, taking advantage of the 

fact that the whole separation unit operations operates in decreasing cascade temperature with 

respect to the reactor. The pinch point was found and several scenarios of integration were 

compared. The heat exchanger network was then designed accordingly.  

The optimal integration scenario in terms of both minimum exchanger cost and utility 

consumption was implemented in the final simulation. Nevertheless, this part of the utilities 

design can be further optimized case by case considering the context of the site, with possibly 

coexisting processes that can be also connected to a common utility system. After the heat 

integration, the new partition of CAPEX is reported in Fig. 6.  

The comparison of CAPEX and OPEX before and after heat integration is reported in Fig.7. 

CAPEX increased upon heat integration, due to additional equipment and higher system 

complexity. By contrast, OPEX were of course lower in the heat integrated case, due to lower 

external utilities. The real advantages in terms of economic expenditure after the heat integration 

were deepened by evaluating again NPV, IRR and the Pay-out period (Table 6).  

Both the NPV (absolute profit) and the IRR (efficiency of capital return) increased after heat 

integration. Of course these two parameters alone have limits, for example they do not consider 

the time value of money and are based on average operations during time, excluding important 

issues such as the variation of maintenance costs over the project life, changing sales volume and 

so on 
28

. In spite of this, they work very well for a general comparison among different projects. 

Overall, the advantage of reducing OPEX was predominant over the disadvantage of higher 

capital costs. 
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The further conversion of CO to CO2 after the HTS stage could be considered apparently 

worthless because the remaining small amount of CO is feasible for the separation with the PSA 

unit. However, this plant design choice was maintained because the integration of CO2 capture 

technologies in the process require the larger concentration possible of CO2 to enhance the 

efficiency 
8,25

.  

Finally, it should be underlined that that no CO2 selling option has been here included, that 

would add revenues, but also installation and operation costs. In case, a CO2 capture unit can be 

easily implemented because the outlet stream from the PSA unit has the 92% in mass of CO2 and 

just the 8% of methane, but it is out off-topic for this work. 

 

4.3 Sensitivity analysis 

A sensitivity analysis was performed to quantify the dependence on changes in market price of 

raw materials and products (Fig. 8).  

The process revealed poorly sensitive to taxes and CAPEX variation, whereas changing the 

ethanol cost was very critical. Its cost strictly depends on the starting biomass and on the 

purification strategy (use of more or less diluted bioethanol). For this reason, bioethanol, as 

emerging source for energy production, may show higher price volatility than other chemicals. 

This point further stresses the need to propose cost-effective routes to diluted bioethanol. 

In our hypothesis, we used the cost of commercial 2
nd

 generation ethanol, assuming a 50% 

reduction of the diluted ethanol price with respect to the pure one. This choice can be considered 

one of the worst scenarios possible because of two main reasons: i) 2
nd

 generation bioethanol 

(obtained by lignocellulosic biomass, agricultural residues or waste) is more expensive and more 
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difficult to obtain than 1
st
 generation bioethanol (mainly produced from corn and sugar cane) 

52
; 

ii) the purification of bioethanol may affect up to 50-80% the ethanol production price 
50,53

. The 

upstream biochemical processes (e.g. enzymatic hydrolysis, microbial fermentation, biomass 

pretreatments) were not investigated in this work, making reference to existing papers on the 

topic 
54,55

. We are basing this analysis on the existing selling costs of second generation 

bioethanol, but it can be easily adapted to 1
st
 generation feedstock, with consistent savings. 

However, even if no significant cost saving would derive from the use of diluted ethanol (Fig. 

8B, case with ethanol cost +50%), the system remains profitable, with IRR after taxes still 

sufficiently higher than 15%. 

This analysis concludes that the process is not very sensitive to CAPEX, but it is instead 

markedly OPEX sensitive. Indeed, besides ethanol cost, hydrogen selling price represents the 

most critical parameter affecting both NPV and IRR.  

Finally, the process studied is totally carbon free if fuels at the furnace are ethanol or hydrogen, 

instead in the case of methane the CO2 produced by the combustion must be taken into account. 

The influence of this point on the total OPEX was evaluated considering the worst scenario 

found in literature (carbon tax equal to 10 USD/tonCO2) and revealed an influence of 1.55% on 

the total operative expenditure (19.4 kton/y of CO2 produced by the furnace). A further 

sensitivity analysis considering the variability of this tax due to the different values related to the 

country policy and regulations was avoided due to the low impact of this item on the total cost.  

At last, by selecting the optimized heat integrated process, using methane as fuel utility and 

selecting an internal rate of return of 10% (which results in a NPV of zero at the end of the 

project life), the calculated minimum hydrogen selling price would be 1.91 USD/kg, to be 
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compared with a present standard value from methane steam reforming of 1.80 USD/kg 
56

. This 

calculation was made for a system capable of producing 7,793 ton/y of H2 (9,886 Nm
3
 h

-1
) 

starting from 40,000 ton/y of bioethanol.  

 

5. Conclusions 

The exploitation of bioethanol steam reforming technology for the production of hydrogen on a 

large commercial scale was evaluated through process design and techno-economic analysis. 

This proposed process offers a novel carbon neutral technology that can be utilized in bio-

refineries. A comprehensive simulation, heat integration and equipment sizing was performed 

aiming at economic assessment of this bioethanol-to-hydrogen route.  

Three scenarios were investigated showing that hydrogen production is economically feasible 

from bioethanol. The most remunerative option was obtained using methane as a fuel for the 

reforming furnace (NPV equal to 50.8 x 10
6 

USD after 30 years, pay-back period 7.3 years, IRR 

24.9% after taxes). Also the use of azeotropic bioethanol could be considered economically 

feasible although less remunerative in terms of economic investment. Heat integration was also 

successfully applied further increasing the IRR (from 24.9% to 27.1%) and decreasing the pay-

back period (from 7.3 to 6.6 years). The economic sensitivity analysis revealed the OPEX 

sensitive nature of the process, in particular considering the feedstock cost (ethanol) and 

hydrogen selling price.  

This study wishes to fill the gap in the literature about the economic assessment of real 

bioethanol steam reforming implementation on already existing industrial fermentative plants. 

The study fixes the fundamentals to compare this option from an economic point of view other 
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technologies for bioethanol valorization in biorefineries and for hydrogen production from 

renewables. For example, the ethylene production by dehydration and subsequent 

polymerization, the use of green hydrogen for the reduction of lignin to produce aromatic 

compounds or the use of hydrogen for side hydrogenation processes. 
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TABLES 

Table 1. Kinetic expressions implemented in the fixed-bed reactors. 

Process Reaction  Kinetic model type Ref. 

Steam 

Reforming 

CH3CH2OH → CH4 + CO + H2                                                            

CH3CH2OH + H2O → CO2 + CH4 + 2H2                                                            

CH4 + H2O � CO + 3H2                                                                              

CO + H2O � CO2 + H2                                                                    

LHHW 
18,27

 

HT-WGS CO + H2O � CO2 + H2                                                                    Power-law 
32

 

LT-WGS CO + H2O � CO2 + H2                                                                    Power-law 
33

 

Methanation CO + 3H2 � CH4 + H2O                                                               LHHW 
34

 

 

Table 2. Design parameters of the reactors. 

Parameter SR HT-WGS LT-WGS MET 

Catalyst Ni/Al2O3 Fe2O3/Cr2O3/CuO Cu/ZnO/Al2O3 Ni/Al2O3 

GHSV (h
-1

) 7,700 10,600 6,800 3,900 

Mass of catalyst (kg) 4,078 3,197 4,984 5,406 

Particle density 

(kg/m
3
) 

2,356 1,630 1,630 1,014 

L/D 43 2.8 1.4 2.0 

Number of tubes 109 1 1 1 
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Table 3. Specifications of heat exchangers used for process before heat-integration (base case).  

Item Heater-1 Cooler-1 Cooler-2 Cooler-3 Cooler-4 Cooler-5 

Utility Fired 

Heater 

High 

Pressure 

Steam 

Generation 

Cooling 

Water 

Cooling 

Water 

Cooling 

Water 

Cooling 

Water 

Heat 

Duty 

(MW) 

12.89 -4.54 -1.35 -0.82 -4.88 -5.96 

Area 

(m
2
) 

1533.0 46.6 72.6 9.4 66.3 21.0 
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Table 4. Investment Parameters. 

Parameter  Unit of measure Value 

Corporate tax rate  % 30 

Interest rate / Desired rate of 

return  

% 10 

Economic life of the project  year 30 

Salvage Value (fraction of 

initial capital cost) 

% 20 

Capital escalation (e)  % 2 

Products escalation % 5 

Raw Materials escalation % 5 

Operating and maintenance 

labor escalation   

% 3 

Utilities escalation  % 3 

Working Capital (WC) % 15 

Start-up period  week 20 

G&A expenses % 8 

Operating hours per year  hour 8406 
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Table 5. Feedstock, utility and product costs. 

Parameter  Unit  Price 

Bioethanol (40 vol.%) USD/kg 0.211 

Methane USD/m
3 

0.177 

Water USD/kg 0.118 

Electricity  USD/kWh 0.0775 

Hydrogen  USD/kg 2.69 

 

Table 6. Economic evaluation of the scenario A before and after heat integration (HI). 

 NPV after 30 years Pay-out period IRR  after taxes 

 10
6
 USD Year % 

Before HI 50.8 7.3 24.9 

After HI 62.2 6.6 27.1 
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FIGURES 

Fig. 1. Scheme of two parallel routes to exploit bioethanol produced by fermentation. 1
st
 route: 

centralized hydrogen production; 2
nd

 route: production of 99.5 Vol.% ethanol for the liquid fuel 

market. WGS = Water Gas Shift; Met = Methanation; PSA = Pressure Swing Adsorption. 

 

 

Fig. 2. Bioethanol-to-hydrogen process flowsheet. 
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Fig. 3. Hydrogen production from bioethanol steam reforming flowsheet after heat integration (C 

and H after a given label identify the cold or hot side of the heat-exchanger). 
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Fig. 4. Equipment purchase costs as base for capital expenditure calculation (top) and Operating 

(bottom) costs summary relative to raw materials and utilities, for the bioethanol steam 

reforming process without heat-integration using methane as fuel for the furnace. Utilities not 

shown are negligible.  
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Fig. 5. Comparison of CAPEX and OPEX for the different scenarios. Values of CAPEX are 

reported as USD while OPEX and product sales as USD/year 

 

 

Fig.6. Capital cost summary for the bioethanol steam reforming process (scenario A) after heat-

integration.  
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Fig. 7. Comparison of CAPEX and OPEX for the scenario A, before and after heat integration 

(HI) Values of CAPEX are reported as USD while OPEX and product sales as USD/year. 
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Fig. 8. Economic sensitivity analysis of the scenario A after heat integration. A) NPV and B) 

IRR after taxes dependence on cost variation of the various terms listed in the legend. 
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