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Abstract. Real-life processes are typically less structured and more
complex than expected by stakeholders. For this reason, process discov-
ery techniques often deliver models less understandable and useful than
expected. In order to address this issue, we propose a method based on
statistical inference for pre-processing event logs. We measure the dis-
tance between different segments of the event log, computing the prob-
ability distribution of observing activities in specific positions. Because
segments are generated based on time-domain, business rules or business
management system properties, we get a characterisation of these seg-
ments in terms of both business and process aspects. We demonstrate the
applicability of this approach by developing a case study with real-life
event logs and showing that our method is offering interesting properties
in term of computational complexity.

Keywords: Process Mining, Event-log Clustering, Pre-processing, Lightweight
Trace Profiling

1 Introduction

The well-known idiomatic expression “garbage in, garbage out” applies well to
Process Mining (PM), because significant results can be achieved only if the
event logs fed into PM algorithms are good examples of execution for all the
relevant variants in a business process [?].

This problem is already recognised by the literature and many contributions
underline that before running process discovery it is required to pre-process
event logs [?,?]. Clustering is considered one of the most relevant pre-processing
tasks as grouping similar event logs can radically reduce the complexity of the
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discovered models [?,?,?,?,?]4. Despite this attention, the methods proposed
in the literature are only partially tailored to the specific needs of Business
Process Management (BPM) [?], where business goals and rules [?] are tailored
on each specific business process then monitoring or discovery should be tailored
accordingly [?].

Few existing process mining techniques are equipped with means for uncov-
ering differences among event logs. Moreover, with the notable exception of [?],
little attention has been devoted to the development of a comprehensive method
for coping with the entire work-flow that guides pre-processing tasks. This work-
flow includes at least the following steps: (i) characterisation of events logs, (ii)
computation of a similarity measure and finally (iii) evaluation on the business
relevance of the divergences or convergences of the characteristics considered.
These tasks cannot be considered in isolation and multiple iterations over them
may be required to get significant results.

Differently from the currently adopted log pre-processing practises, the ap-
proach we propose in this paper introduces the notion of segment that is a sub
set of the event log that conforms to some specific business goals or business
rules. Statistical inference-based analysis allows to characterise the distribution
of activities in segments, providing an explanation of their similarities or dissim-
ilarities. More specifically the paper is organized as follows: we start introducing
the related works in Sect. 2. We then present an overview on our method in Sect.
35. In particular, in Sect. 3.1 we provide preliminary definitions and explain how
event logs can be segmented; in Sect. 3.2 we introduce a new trace profiling
method that can be exploited in comparing and clustering traces; in Sect. 3.3 we
illustrate distance metrics based on inferential statistics; in Sect. 3.4 we discuss
how to use our results to characterise segments and evaluate if they are suitable
to input process discovery. In Sect. 4 we demonstrate the applicability of our
method using a case study with real-life event log from an Italian manufacturing
company6. In Sect. 5 we compare our method to the state of the art via a time
complexity analysis and finally in Sect. 6 we draw our conclusions.

2 Related Work

Just like Data Transformation [?] and Data Cleansing [?], Trace Clustering [?] is
a crucial step in pre-processing event logs, as it can radically reduce the inherent
complexity of discovered models. Song et al., in [?], present an introduction to

4 Some works, such as for instance [?], define as “Clustering” the identification of
similar activities, this is also a pre-processing task relevant to our discussion, however
in this paper we are using “Clustering” for referring uniquely to the process of
segmenting event logs.

5 The Python implementation of the algorithms adopted to implement and test our
method is available at http://www.uel.br/grupo-pesquisa/remid/wp-content/

uploads/LightPMClustering.rar
6 The event log is available at http://www.uel.br/grupo-pesquisa/remid/

wp-content/uploads/EventLogDatasetAnon.csv



Title Suppressed Due to Excessive Length 3

trace clustering algorithms with trace profiling. A profile is a set of related items
that describe a trace from a specific perspective. These perspectives usually rely
on derived information, such as the number of events in a trace or the resources
consumed during execution. A profile with n items is a function, which assigns
to a trace a vector with n elements. Encoding a trace into a vector space model
makes possible to compute distance metrics and perform cluster analysis.

In [?], authors use a trace clustering approach based on edit distance7, where
profiles are obtained by listing the activities into a trace (bag-of-activities). This
is a straightforward approach that offers linear computational complexity when
computing a distance measure between traces, but loses all information on the
trace structure.

To incorporate information about trace structure, it is possible to adopt
contextual approaches. These approaches generate vectors using k-grams [?], i.e.
representing each activity in the trace as a sub-sequence of length k. Even though
it has been shown that techniques that take into account context perform better
than those that do not, the high complexity of k-gram, O(nk), is an obstacle
respecting most of the state of art methods with linear complexity.

Recent research focuses on extracting multiple trace profiles to exploit multi-
criteria clustering techniques. In [?] the authors proposed a framework to deal
with the more general correlation problem by a tool that merges previous ap-
proaches in the literature. Appice and Malerba, in [?], proposed co-training clus-
tering as a pre-processing step. The output is a trace clustering pattern, obtained
by clustering the traces across multiple profiles inputted. The co-training idea is
based on iterative modification of a similarity matrix extracted from the trace
profile. The time complexity of such an algorithm depends on the cost of com-
puting the similarity and clustering matrices which are respectively O(n2M) and
O(d), where n is the number of traces, M the average number of features per
trace profile and d the cost of the distance-based algorithm used.

When computing the similarity between two activities most methods do not
deal with semantics, e.g. cannot capture tasks that are expressed using different
abstraction levels but refer to the same business activity. Chen et al. proposed
in [?] a method which can address semantic aspects as well as structural features
of the event log. Their pre-processing method is based on k-means clustering,
whose cost is O(ndk+1) over vectors that encode both structure and semantic fea-
tures, where n is the number of traces, d the cost of distance function and k the
number of compared traces. Structure information is derived from control-flow
representations such as loops, branches and sequences. It is however important
to note that the proposed solution can extract control-flow and semantics fea-
tures only if a deep pre-processing analysis is performed, thus the challenges we
outlined in the introduction are moved rather than solved.

7 The edit distance between two strings is the minimum number of operations required
to transform one string into the other.
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3 Overview on the Proposed Method

An high-level overview of the method proposed in this paper is shown in Fig. 1.
Our starting point is an event log that collects a set of cases, i.e. instances of
business process execution. To select sets of cases that can meaningfully be fed
to process discovery we propose a method organised in four steps. A criteria for
segmenting the event log is first identified; segments are then represented based
on a trace profile, where a trace is a unique sequence of events generated in
executing a business process, which is adopted to compute a similarity measure;
finally the adopted segmentation is assessed and characterised. In the following
we describe each step providing a formalisation of the operations implemented
and related examples to clarify the details.

segment #1         position profile #1

segment #2         position profile #2

segment #n         position profile #n

step 1

event log statistical hypothesis test segment characterization

step 2 step 3 step 4

Fig. 1. Overview of method proposed in this research

3.1 Step 1: Segmenting the Event Log

The first step is splitting the event log into group of cases called segments. We
rely on the event log description standard proposed by the IEEE Task Force
on Process Mining. The eXtensible Event Stream (XES) [?] defines a grammar
for a language capturing information systems’ behaviors. In this framework, an
event stream describes a set of events that can be ordered in a sequence using
their execution timestamps. More specifically an event can be defined according
to Definition 1.

Definition 1. Event. An event is a quadruple e = (c, a, r, t) ∈ E, denoting the
occurrence of an activity a in a case c, using the resource r at time t. The event
universe can be indicated as the Cartesian product: E = C × A×R× T .
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As stated in Definition 2, each event reports on the execution of an activity
within a specific instance of the business process, usually called case.

Definition 2. Case. Let E be a finite set of events. A case σ ∈ E∗ is a finite
sequence of events belonging to E and related to a same process execution.

All cases characterised by the same sequence of events are represented by the
same trace, as stated in Definition 3.

Definition 3. Trace. Let A be a finite set of activities. A trace θ ∈ A∗ is a
finite sequence of activities belonging to A.

Process Mining algorithms interpret an event log as a multi-set of traces and
infer models comparing these sequences of events. We argue that this notion is
not necessarily capturing the business goals of the organisation in addressing a
case. For this reason, our pre-processing analysis starts by segmenting the event
log base on business goals. This way, segments can be compared to relevant
business requirements and further steps of refinement can be oriented based
on a specific maximisation criteria. Given our definition of case, we can now
formalise the definition of segment, according to Definition 4.

Definition 4. Segment. Given n cases, a segment s is a union of cases: s =
(c1 ∪ c2∪, . . . , cn) where s is a subset of an Event Log: s ⊆ L.

A variety of criteria can be used to segment event logs [?], including temporal
constraints, case type, business rule compliance, performance result, resources
involved in the execution and others. In the rest of this paper we will generically
refer to these criteria as business rules. From an operational point of view, a
segment can be identified by a query over a set of predicates that can be joined
with one of the elements composing an event, as proposed in [?]. Table 1 shows
an excerpt of a real-life event log. Segmenting by the values in the field Customer

we get three segments: s1 = {Case1, Case5}, s2 = {Case2, Case4, Case6}, and
s3 = {Case3}.

3.2 Step 2: Trace Profiling

Following [?], profiling a log can be described as the aggregation in a vector of a
set of measures on the events composing a trace. These vectors can be used to
calculate the distance between any two traces, using a suitable distance metric.
In this work, we are proposing a new method for profiling traces that can be
extended to segments and that offers a good trade-off between computational
complexity and context aware encoding, as discussed in Sect. 5.

The basic idea is that the structure of the event log is reduced to a list of
activities and each activity has a vector of positions. This vector is defined as
a list of ordinal positions with corresponding frequency. With this definition,
the set of elements representing an event is extended from a binary relation
{case × activity} to a ternary relation {case × activity × position}, as stated in
Definition 5. Nevertheless, the representation format is kept bi-dimensional by
creating an element in the vector for each couple { activity × position}.
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Table 1. An example of real-life event log.

Case ID Activity Customer Case ID Activity Customer

1 process creation Gng inc. 4 process creation MAS spa.
1 configuration manager Gng inc. 4 configuration manager MAS spa.
1 weight Gng inc. 4 me fabrication checker MAS spa.
1 m p Gng inc. 4 weight MAS spa.
1 stress Gng inc. 4 stress MAS spa.
1 me assembly checker Gng inc. 4 m p MAS spa.
1 me fabrication checker Gng inc. 4 me assembly checker MAS spa.
1 design checker Gng inc. 4 design checker MAS spa.
1 design leader Gng inc. 4 design leader MAS spa.
2 process creation MAS spa. 5 process creation Gng inc.
2 configuration manager MAS spa. 5 configuration manager Gng inc.
2 me fabrication checker MAS spa. 5 weight Gng inc.
2 weight MAS spa. 5 m p Gng inc.
2 stress MAS spa. 5 me assembly checker Gng inc.
2 m p MAS spa. 5 stress Gng inc.
2 me assembly checker MAS spa. 5 me fabrication checker Gng inc.
2 design checker MAS spa. 5 design checker Gng inc.
2 design leader MAS spa. 5 design leader Gng inc.
3 process creation Herw inc. 6 process creation MAS spa.
3 configuration manager Herw inc. 6 configuration manager MAS spa.
3 weight Herw inc. 6 me fabrication checker MAS spa.
3 m p Herw inc. 6 weight MAS spa.
3 me assembly checker Herw inc. 6 stress MAS spa.
3 stress Herw inc. 6 m p MAS spa.
3 me fabrication checker Herw inc. 6 me assembly checker MAS spa.
3 design checker Herw inc. 6 design checker MAS spa.
3 design leader Herw inc. 6 design leader MAS spa.
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Table 2. Position profile of event log in Table 1 using a simplified view where letters
a-i in the trace represent activities in the following order: [’Process Creation’, ’Config-
uration Manager’, ’Weight’, ’M P’, ’Stress’, ’ME Assembly Checker’, ’ME Fabrication
Checker’, ’Design Checker’, ’Design Leader’]

activity \ position p(1) p(2) p(3) p(4) p(5) p(6) p(7) p(8) p(9)

a 6 0 0 0 0 0 0 0 0
b 0 6 0 0 0 0 0 0 0
c 0 0 3 3 0 0 0 0 0
d 0 0 0 3 0 3 0 0 0
e 0 0 0 0 4 2 0 0 0
f 0 0 0 0 2 1 3 0 0
g 0 0 3 0 0 0 3 0 0
h 0 0 0 0 0 0 0 6 0
i 0 0 0 0 0 0 0 0 6

Definition 5. Position profile. A position profile is a triple apf = (a, p, f) ∈ E,
denoting the occurrence of an activity a at the position p with the frequency f .
The event universe can be indicated as the Cartesian product: E = A×P × N.

As an example, we convert Table 1 adopting the definition above and obtain-
ing the representation shown in Table 2. Activities a,b,h and i are always at a
fixed position, namely 1st, 2nd, 8th, and 9th. On the other hand, activity c is
3 times 3rd position and 3 times in 4th position. We call this table a position
profile. More formally, a position profile can be encoded as an integer matrix via
a two-dimensional function f(x, y), where y is the temporal occurrence order of
an activity x. The amplitude f of any pair (x, y) represents the number of oc-
currences of activity x at position y. Acyclic processes are represented by square
binary matrices. In the case of processes containing cycles an activity can occurs
in multiple positions8.

Our encoding of the event log as an integer matrix allows us to perform
several types of distance analysis, from simple matrix distance to neighbour-
hood evaluation. In other words, our matrix offers a novel computation-friendly
representation for business processes event logs.

3.3 Step 3: Compute a Similarity Measure

Based on the matrix introduced above we are able to compute a degree of sim-
ilarity between two different matrices. This similarity can distinguish different
traces, segments or event logs, leading to results that naturally encode the con-
trol flow of a trace. Thus, given two matrices A and B, the similarity function

8 Clearly, by generating segments the information on the control-flow encoded in ma-
trices is aggregated using a compensative approach that can bias the comparisons.
We plan to address this problem in future studies by using intra- and inter-segment
similarity metrics.
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can be defined as a generic norm n(A,B). For example, one could simply sub-
tract the number of occurrences reported in matrix A from the one in B, or
compute edit distance [?] or cosine distance [?], as discussed in Sect. 2. However,
in this work we want to propose an original approach for comparing trace pro-
files. The motivating idea is to identify a method that is not biased by a specific
probability distribution. As discussed in [?], cosine similarity and other common
similarity metrics are designed to work with normal distribution only, while this
assumption is not made explicit in most of the approaches that adopt them.

Definition 6. Hypothesis Testing. Let H0 and Halt denote the null and the
alternative hypothesis respectively. Given two segments si and sj, {si, sj} ⊂
s,∀a ∈ A, a statistical test ST (si, sj , a) confirms H0 when ∀p from a it holds
(pi, fi) = (pj , fj); otherwise Halt is confirmed.

In Definition 6, ST is a statistical hypothesis test from parametric or nonpara-
metric methods, a is an activity and p is its position, in accordance to Definition
5. In this research, after some trial-and-error on various tests, we focused on
Jensen-Shannon divergence test and on a group of non-parametric statistical
two-sample hypothesis tests based on correlation, namely the Spearman’s and
Kendall’s rank correlation coefficient. The results returned by correlation test
are expressed in term of a p-value, or calculated probability, that is the probabil-
ity of finding the observed, or more extreme, values when H0 is true. To make a
decision of either accept or reject null hypothesis we should define a preset value
called significance level or α for estimating the p-value. If p-value < α then we
have sufficient evidence to reject H0 and Halt may be accepted. Otherwise, if
p-value > α, there is not sufficient evidence to conclude that the Halt may be
correct 9.

The Jensen-Shannon divergence is closely related to the KullbackLeibler dis-
tance (KL) which in turn can be approximated by the classic Chi-Square test.
Given two vectors A and B, KL(A,B) is calculated as

∑
ai ln ai

bi
. The Jensen-

Shannon divergence compares two vectors V and U by averaging their proba-
bility distributions in a new vector M = 1

2 (V + U). For each vector, it is com-
puted a pair of values describing this divergence through the pair KL(V,M)
and KL(U,M). To obtain a final distance metric, it is required to average the
resulted divergence values and re-size the final result computing the square root.
We can formalise this as the formula in Equation 1.

Jensen-Shannon Distance =

(
KL(V,M) +KL(U,M)

2

) 1
2

(1)

In Table 3 we compare two position profiles showing the results returned by the
different metrics we considered. Note that for the Jensen-Shannon divergence
the metric reports on the distance between two vectors, while when we use the

9 Note that, when we do not reject H0, it does not mean that H0 is true. It means
that the sample data have failed to provide sufficient evidence to cast serious doubt
about the truthfulness of H0.
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Table 3. Table of position profiles of two segments and Jensen-Shannon distance (JS),
Spearman’s rank test (SR) and Kendall’s rank test (KR)

activity \position P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 JS SR KR
(p-value) (p-value)

act a in s4 15914 377 0 0 0 0 0 0 0 0 0
0.0899 0.0061 0.00105

act a in s8 5418 0 0 0 0 0 0 0 0 0 0
act b in s4 1 4959 0 18 2357 8 306 1 0 0 0

0.3752 0.0986 0.04297
act b in s8 0 4022 0 0 0 0 0 0 0 0 0
act c in s4 0 0 1060 756 516 1002 690 308 187 121 0

0.2330 0.0000 0.00009
act c in s8 0 0 833 558 359 239 159 95 2 0 0
act d in s4 0 130 671 830 712 870 833 509 245 164 0

0.2277 0.0008 0.00185
act d in s8 0 0 433 576 459 319 241 217 0 0 0
act e in s4 0 36 314 491 653 892 761 998 414 385 2

0.2498 0.0000 0.00018
act e in s8 0 0 174 228 330 404 329 772 8 0 0
act f in s4 0 29 323 382 526 959 1209 525 400 315 1

0.2472 0.0000 0.00010
act f in s8 0 0 207 299 408 481 528 320 2 0 0
act g in s4 0 26 162 329 351 448 683 748 344 363 0

0.2817 0.0014 0.00137
act g in s8 0 0 129 264 325 464 569 491 3 0 0
act h in s4 0 1 725 543 602 468 447 274 0 0 0

0.0860 0.0001 0.00052
act h in s5 0 0 469 320 364 337 419 336 0 0 0
act i in s4 0 0 50 0 11 307 18 1272 1739 230 1332

0.5396 0.0165 0.00555
act i in s5 0 0 0 0 0 1 0 14 2198 0 0

compare(s4, s8) 0.2592 0.88 0.88

p-values the metric reports about the probability that the two vectors were gen-
erated by distributions sharing same characteristics. We do not provide here a
full explanation on how the Spearman’s and Kendall’s rank correlation coeffi-
cients were calculated. The interested reader can refer to [?] for details. To return
an overall value about the comparison of the two segments we adopt different
approaches in case the ST is returning a p-value or not. When ST returns a
distance measure we simply average the results obtained for each activity (third
to last column in Table 3). While dealing with p-values, we compute an index
stating how many times the calculated probability is less than the significance
level α (second to last and last columns in Table 3, taking α = 0.01).

3.4 Step 4: Characterise Segments

We have now a measure of the dissimilarity level of two probability distributions
of the activities’ position in segments. Using this dissimilarity metrics we can
cluster segments as illustrated in Fig. 4. An assessment criterion for validating
a segment is obtained by imposing a minimum dissimilarity value in comparison
to the others segments in the event log. Clearly, this procedure can be applied
with different metrics looking for at least one metric where the criterion is met.
Any segment that is not compliant with assessment criteria need to be re-sized.
Moreover, our method provides us with a measure of the specific contribution
that each activity has provided in characterising a segment. For example, using
the Jensen-Shannon divergence test we can identify activity b, g, and i as those
that are introducing most divergence.

If our interest is not particularly related to measuring a distance we can
exploit the non-parametric tests that provide us with a measure of the correla-
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tion of two distributions. In modern use, “correlation” refers to a measure of a
linear relationship between variables, while “measure of association” is usually
referred to a measure of a monotone relationship between them. Two well-know
examples that measure the latter type of relation are Kendall’s tau and the
Spearman rho metrics. Differently to the Jensen-Shannon distance, these met-
rics tell us if two distributions have a similar trend, without measuring a precise
distance on frequencies. We can, in other words, detect traces or segments that
are similar because the shape of their probability distribution even in presence
of different absolute values. Fig. 2 shows the difference between monotonic and
non-monotonic relation.

Fig. 2. A comparison between a monotonic and non-monotonic relationship (red
color lines). From left to right: increasing monotonic, decreasing monotonic and non-
monotonic relationship.

Figure 3 displays two activities from Table 2 and provides an interpretation
of the p-value of each segment. The red and blue line describe the distribution
of these activities in segment 4 and 8, respectively. The pairwise comparison
of activities in the left figure shows a similar monotonic behavior. On the other
hand, the right figure shows different behavior for the two activities. Even though
both start with similar behavior, the 2nd halves of behavior are quite different.
Indeed the applied test correctly assigns a lower p-value to the right figure.
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Fig. 3. Comparison between p-value of activities f(left) and b(right). In the picture on
the left the probability distribution is monotonic, in the picture on the right it is not.
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4 Case study

The method we described in the previous sections was applied to a real-life case
study involving a manufacturing company in Italy. The event log collected by
this company includes different business process related to product life-cycle
management. Table 4 lists some descriptive statistics about this event log. The
aim of the company was to discover real-life models that can be then used as a
reference to identify cases that are deviating from the norm. In order to iden-
tify significant segments in the event log we considered Business Rules (BR) as
criteria to construct segments. Each segment only includes cases consistent to a
specific business rule. Then we used the Kendall’s test as a metric for clustering
segments.

Table 4. Descriptive Statistics of the event log

#events #cases mean case duration median case duration min duration max duration

94622 24858 61 hrs 7 secs 0 mills 300 days

A comparison of the results is shown in Fig. 4 where a dendrogram, or tree
diagram, is used to illustrate the hierarchical arrangement of the clusters ob-
tained. The thick red line in the figure helps to cut the dendrogram and returns
the group of samples that belongs to the same cluster. By adjusting the assess-
ment criterion, we can have more or less detailed group of segments in each
cluster.

The next step is to perform process discovery for each cluster, as shown in Fig.
5. Significance of discovered model has been tested by asking to three managers of
this company to rate in a Likert scale their agreement with the following sentence
“Do you think the model discovered improves your understanding of this business
process ?”. According to these managers, the models discovered using BR=(6,8)
and BR=(9,10) are significant, corroborating with the discovered clusters 10. On
the other hand, the model discovered by BR=(1,2,3,4,5,7) did not improve their
understanding of the business process, when compared to the model obtained
from the entire event log 11. Therefore, additional analysis is required for this
cluster. Indeed, to fit the assessment criterion, quite a number of segments were
included in this cluster, indicating that the applied segmentation was not really
able to characterise a model.

5 Time Complexity Analysis

In this section we provide an evaluation of our method in terms of time com-
plexity, and we compare it to other techniques available in the literature. As

10 The rates provided are 3 “Neither agree nor disagree” , 4 “Agree”, and 4 “Agree ”.
11 The rates provided are 1 “Strongly disagree” , 2 “Disagree”, and 2 “Disagree ”.
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Fig. 4. Comparison table obtained with Kendall’s Tau hypothesis test with
p-value=0.05. The red line shows the cut line we applied for obtaining clusters com-
pliant to the adopted assessment criteria. The clusters discovery were BR=(6,8),
BR=(9,10) and BR=( 1,2,3,4,5,7). Colours represent similarity values, as reported in
the legend on top left size.

discussed in Sect. 2 naive solutions implies computational costs that are lin-
ear in the log size. In comparison to these solutions our approach has a higher
complexity. Nevertheless, naive models do not account the trace structure [?]
while our technique encode structural information in trace profiling. Indeed the
time complexity we achieve is less than the one of other solutions taking into
account the structure of the event log that, as already reported in Sect. 2, have
to introduce some exponential factor.

In order to calculate the overall time complexity, we perform our analysis in
three steps, so that it will be easier to understand. The evaluation of the pro-
posed approach has focused on the contribution of statistical inference towards
supporting the similarity of activities. In other words, the complexity of other
involved techniques was not considered in our evaluation upon highlighting the
main contribution. After identifying the Jensen-Shannon divergence, we calcu-
late the complexity of Spearmans’s rank, our non-parametric hypothesis test
algorithm. Then we calculate the complexity of clustering method (Kendall’s
rank) and finally the final evaluation is given by higher complexity achieved.

5.1 Complexity of Jensen-Shannon divergence test

As mentioned in Sect. 3.3, the Jensen-Shannon calculation uses KL computation
to obtain an initial segment distance. KL has O(a ∗ p) where a is the number of
activities and p is the possible positions acquired by activities. The other opera-
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Fig. 5. From left to right, discovery model of BR=(6,8), BR=(9,10) and BR=(
1,2,3,4,5,7).

tions included in the Jensen-Shannon test have constant asymptotic complexity.
This way, the final complexity is O(a ∗ p+ 1) = O(a ∗ p).

5.2 Complexity of Spearman’s rank correlation test

The complexity of Spearman’s rank correlation test for two lists x1, · · · , xp and
y1, · · · , yp is calculated as follows:

1. no tied ranks: ρ = 1−
(

6
∑

d2

p(p2−1)

)
;

2. tied ranks: ρ =
∑

i(xi−x)(yi−y)√∑
i(xi−x)2

∑
i(yi−y)2

.

Where p is the maximum number of positions in a segment. The formula for
no tied ranks has fewer operations than the tied rank formula; so we calculate
only the complexity of the second formula. There are 2 averages, 2p differences,
three sums with p summands and 1 division, 1 multiplication and 1 square root.
Then the complexity will be O(2 + 2p+ 3p+ 1 + 1 + 1) = O(p).

Before applying the formula, we need to sort the variables and obtain their
ranks. Depending on the sorting algorithm, we can have different complex-
ity. Best general sorting algorithms (such as Binary Tree Sort, Merge Sort,
Heap Sort, Smooth Sort, Intro Sort, etc.) have the worst case complexity of
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O(p log(p)). The overall complexity of Spearman’s rank correlation test is the
sum of the above steps which is O(p log(p)) +O(p) = O(p log(p)).

5.3 Complexity of Kendall’s rank correlation test

In order to compute the number of concordance, discordance and ties, required
to compute this test we need to compare each position with itself in a brute-force
manner. If we consider all permutations of positions and eliminate comparison

of position with itself, we obtain p2

2 − p comparison which has the complexity of
O(p2).

In [?] were described sorting procedures that reduce this complexity. The
basic idea is to sort the observation in one dimension and then sort this sorted
values in the other dimension using a modified version of merge sort. This modi-
fied version takes advantage of having sorted values in the first dimension. As the
complexity of merge sort of the algorithm in [?] is O(n log(n)), the complexity
of Kendall’s rank correlation test can be reduced to O(p log(p)).

6 Conclusion and Future Work

In this paper we described a novel method for improving the characterisation
of event logs in preparation to PM. Our original contribution covers different
aspects:

– We highlighted the different steps that must be integrated to work out a pre-
processing task, underlining that a consistent representation of the different
elements involved in these steps is required to support multiple iterations.

– We proposed a method for trace profiling tath brings to trace clustering with
linearithmic time complexity. Comparing it with approaches with higher
complexity or similar complexity that require treatment over all activities in
the log, we claim that our method can improve process modelling without
increase the complexity of the computing effort.

– We proposed the adoption of distance metrics rooted in inferential statistics
supporting explicit assumptions on the probability distribution that are used
in tests or to get specific characterisation about the correlation between two
distributions.

– We applied the proposed methodology in a case study to demonstrate its
positive applicability.

Future work will develop along several avenues. On the one hand, the method
we adopted to generate position profile can be refined to get additional sensitivity
to structural information. For example, it is of interest to verify how duplicated or
skipped activities impact on similarity measures. In this way, we will experiment
several clustering approaches and the impact of different distance metrics on
their performances. Furthermore, additional statistical tests can be considered,
in particular for supporting multi-vector comparison. Finally, the assessment
procedure can be enriched introducing maximisation criteria insisting on inter-
and intra-cluster distances.
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