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Abstract 1 

Despite the nutritional and sensory improvements associated with sprouted grains, 2 

their use in baking has been limited until recently. Indeed, severe and uncontrolled 3 

grain sprouting induces high accumulations of enzymatic activities that negatively 4 

affect dough rheology and baking performance. In this study, wheat was sprouted 5 

under controlled conditions and the effects of enrichment (i.e. 15%, 25%, 33%, 50%, 6 

75% and 100%) of the related refined flour (SWF) on dough rheological properties, 7 

baking performances and starch digestibility were assessed. Adding SWF to flour 8 

significantly decreased dough water absorption, development time, and stability 9 

during mixing, which suggests a weakening of the gluten network. However, no 10 

significant changes in mixing properties and gluten aggregation kinetics were 11 

measured from 25 to 75% SWF. Regardless of the amount added, SWF improved 12 

dough development and gas production during leavening. Decreases in gas retention 13 

did not compromise bread-making performances. The best result – in terms of bread 14 

volume and crumb porosity – was obtained with 50% SWF instead of using SWF 15 

alone. Interestingly, in 100 % SWF bread the slowly digestible starch fraction 16 

significantly increased. 17 

Keywords: sprouting; dough rheology; bread- making; starch digestibility 18 

19 
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1. Introduction 20 

Sprouts from cereals and pulses have been used as food sources for centuries, 21 

especially in Africa and Asia, where sprouting (or germination) is mainly carried out 22 

in households to improve the sensory quality (Bellaio, Kappeler, & Zamprogna 23 

Rosenfeld, 2013). Moreover, germination is also associated with the improvement of 24 

the nutritional values of the grains, as recently reviewed by several authors (Hübner & 25 

Arendt, 2013; Omary, Fong, Rothschild, & Finney, 2012). The nutritional benefits 26 

promoted by germination include: (i) an increase in the bioavailability of several 27 

minerals and vitamins; (ii) an increase in antioxidant activity; (iii) a decrease in anti-28 

nutrients, such as enzyme inhibitors and metal-chelating species (i.e. phytates) 29 

(Mäkinen & Arendt, 2015; Singh, Rehal, Kaur, & Jyot, 2015). Therefore, using 30 

sprouted grains in food formulations is becoming increasingly popular in the 31 

marketplace and represents an emerging trend in health foods. Downside of sprouted 32 

grains is starch digestibility, that generally increases significantly after germination, 33 

due to the increased α-amylase activity induced by the treatment (Dhital, Warren, 34 

Butterworth, Ellis, & Gidley, 2017). Unlike pulses (Hoover & Zhou, 2003), less work 35 

has been done to evaluate the effect of germination on the starch digestibility of 36 

cereals and their products (e.g. bread). Moreover, differences in types of cereal, flour 37 

refinement level, and methodology might account for contrasting results (Cornejo, 38 

Caceres, Martínez-Villaluenga, Rosell, & Frias, 2015; Świeca, Dziki, & Gawlik-39 

Dziki, 2017). 40 

As regards functionality, the hydrolytic enzyme activities induced by 41 

germination such as amylases and proteases – if excessive - negatively affect the 42 

technological performances of wheat, which thus becomes unsuitable for baked foods 43 

(Morris & Rose, 1996). This might occur directly in the field (i.e. pre-harvest 44 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 4

sprouting) - when grains are exposed to prolonged wet or foggy conditions - or when 45 

the germination process is carried out under uncontrolled conditions of moisture, 46 

temperature and/or time (Nielsen, McCrate, Heyne, & Paulsen, 1984). 47 

Germination under controlled conditions has been proposed at an industrial scale to 48 

determine the extent of the modifications occurring in germinated grains. Besides the 49 

improvement in sensory attributes of bread (Richter, Christiansen, & Guo, 2014), the 50 

native enzymes present in sprouted wheat could help decrease or substitute the use of 51 

commercially enzymes, such as flour improvers that are commonly present in the 52 

formulation of baked products (Marti, Cardone, Nicolodi, Quaglia, & Pagani, 2017). 53 

The effects of high percentages (>10%) of refined flour from germinated wheat on 54 

bread-making performances have not been investigated yet. In food formulations, 55 

balancing nutritional and/or sensory improvements while maintaining technological 56 

quality is a challenge. Therefore, the aim of this study was to investigate how gluten 57 

aggregation kinetics, dough formation, leavening performance and bread 58 

characteristics are affected by blending commercial wheat flour with refined flour 59 

from sprouted wheat. This study also aimed at determining the maximum level of 60 

sprouted wheat enrichment suitable for obtaining a product with enhanced sensory 61 

and nutritional benefits, without compromising the bread-making performance and 62 

the in vitro starch digestibility.  63 

 64 

2. Materials and methods 65 

2.1 Materials 66 

Refined flour from sprouted wheat (SWF; starch: 79 g/100 g db; protein: 12 g/100 g db; 67 

lipid: 1.5 g/100 g db; ash: 0.5 g/100 g db) was kindly provided by Molino Quaglia 68 

(Molino Qualia S.p.A., Vighizzolo d'Este, Italy). Wheat kernels were sprouted in an 69 
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industrial sprouting plant (Bühler AG, Uzwil, Switzerland) and milled as described in 70 

a previous work Marti et al. (2017a) with few modifications. Briefly, wheat was 71 

soaked in water (kernels:water ratio of 1:2) for 24h at 20 °C, germinated for 48 h at 72 

20 °C, dried at 60 °C for 12 h.  73 

SWF was used alone (100%) or blended with a commercial wheat flour (CTRL; 74 

Molino Quaglia S.p.A., Vighizzolo d'Este, Italy) characterized by the following 75 

alveographic indices: W (dough strength) = 280 * 10-4 J; P/L (tenacity:extensibility 76 

ratio) =1.16. In details, 15 g, 25 g, 33 g, 50 g, and 75 g of SWF were added to 85 g, 77 

75 g, 67 g, 50 g, and 25 g of CTRL, respectively. 78 

2.2 Gluten aggregation properties 79 

Gluten aggregation properties were measured at least in triplicate with the GlutoPeak 80 

device (Brabender GmbH & Co. KG, Duisburg, Germany) as reported by Marti et al. 81 

(2017a). The following indices were automatically recorded by the software provided 82 

with the device (GlutoPeak version 2.0.1; Brabender GmbH & Co. KG, Duisburg, 83 

Germany): (i) Maximum Torque (MT, expressed in Brabender Equivalents, BE), 84 

corresponding to the peak occurring due to gluten aggregation; (ii) Peak Maximum 85 

Time (PMT, expressed in s), corresponding to the time before torque decreasing, 86 

when gluten breaks down; (iii) Energy (expressed in GlutoPeak Equivalent, GPE) 87 

corresponding to the area under the curve from the beginning of the test and 15 s after 88 

MT. 89 

2.3. Mixing properties 90 

Water absorption, development time, stability and degree of softening were measured, 91 

at least in duplicate, with the Brabender® Farinograph-E (Brabender GmbH & Co. 92 
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KG, Duisburg, Germany) equipped with a 50 g mixing bowl according to ICC 115/1 93 

Approved Method (ICC, 1992).  94 

2.4 Leavening properties 95 

Dough development during leavening and its gas production and retention were 96 

assessed on two independent dough samples. CTRL, SWF and their blends were 97 

mixed with bakers’ yeast and salt (1.5 g/100 g flour), previously dissolved in water. 98 

The required amount of water was previously determined by a farinograph until the 99 

mixing curve reached 500 BU. For each sample, the ingredients were mixed in an 100 

automatic spiral mixer (Bomann, Clatronic s.r.l., Italy) for 8 min and placed (315 g) in 101 

the Chopin Rheofermentometer F4 (Chopin, Tripette & Renaud, Villeneuve La 102 

Garenne Cedex, France) for recording changes in dough height and gas production 103 

during leavening (3 h at 30 °C). 104 

2.4 Bread-making  105 

Dough samples, which were prepared as described in the previous section, were 106 

divided into two portions of 250 g, molded into cylinder shapes, and put in tin pans 107 

(height: 8 cm; length: 15 cm; depth: 5 cm) in a proofing chamber for 60 min at 30 °C 108 

and 70% of relative humidity. Bread was baked in an oven (Self Cooking Center®, 109 

Rational International AG, Mestre, VE, Italy) for 4 min at 120 °C adding vapor until 110 

90% relative humidity was reached. Then, the oven temperature was increased up to 111 

230°C and bread was baked for 11 min. Samples were analyzed two hours after 112 

baking. Bread loaves were packaged in perforated oriented polypropylene film and 113 

stored at controlled conditions (20 °C, 60% relative humidity) for six days for texture 114 

analysis. Three central slices (15 mm thickness) were selected from each loaf and 115 

used for crumb color, porosity and texture analysis. For each flour mixture, two 116 
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experimental baking tests were performed and six loaves were obtained from each 117 

baking test. 118 

2.5 Bread properties 119 

2.5.1 Colour and specific volume 120 

Colour determination was carried out using a reflectance color meter (CR 210, 121 

Minolta Co., Osaka, Japan) to measure the lightness and saturation of the color 122 

intensity of bread crumb and crust. Results were expressed in the CIE L* a* b* colour 123 

space. Measurements of bread crust were performed in triplicate on three loaves for 124 

each bread-making process (n=18). Measurements of bread crumbs were performed 125 

on three bread slices of one loaf from each bread-making test (n=6).  126 

The volume of three loaves from two independent baking tests (n=6) was evaluated 127 

by using the sesame displacement method after mechanically compacting the bread to 128 

exclude all empty spaces. Weight was assessed using a technical scale (Europe 1700, 129 

Gibertini, Novate, Italy). The specific volume (n=6) was determined by the 130 

volume/mass ratio and expressed in mL/g. 131 

2.5.2 Crumb moisture and water activity 132 

Crumb moisture was evaluated using a moisture analyzer (MA 210.R, Radwag Wagi 133 

Elektroniczne, Poland) drying the sample at 130 °C until the weight did not change by 134 

1 mg for 120 s. Crumb water activity (aw) was measured by an electronic hygrometer 135 

(Acqua Lab, CX-2 – Decagon Devices, Pullman, WA). Both crumb moisture and aw 136 

were measured on three central slices of one loaf from each bread-making trials 137 

(n=6). 138 

2.5.3 Crumb porosity 139 
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Crumb porosity was evaluated as described in Marti et al. (2017a). Images of three 140 

central slices (15 mm thick) of one loaf from each bread-making trial were acquired 141 

with a flatbed scanner (Epson Perfection 3170 Photo, Seiko Epson Corp., Japan) at a 142 

resolution of 600 dpi (dots for inch). For each image, a single square field of view 143 

(49.5 mm x 49.5 mm) was selected. The images were calibrated, standardized and 144 

optimized by applying appropriate filters to evaluate the morphological 145 

characterization of the bubble area (mm2) and porosity (%) using Image-Pro Plus 6.0 146 

software (Media Cybernetics Inc., USA). 147 

Moreover, bubbles, were classified into four different size classes according to their 148 

surface: class 1: bubble area between < 0.99 mm2; class 2: bubble area between 1.00 149 

and 4.99 mm2; class 3: bubble area between 5.00 and 49.99 mm2; class 4: bubble area 150 

greater than 50.00 mm2. Porosity (i.e. the area of pores over the total area), and the 151 

area occupied by each class of pores (i.e. area of each dimensional class of pores over 152 

the total pore-area) were also calculated. 153 

2.5.4 Texture 154 

Crumb texture characteristics were analyzed by using a texture analyzer (Z005, Zwick 155 

Roell, Ulm, Germany), equipped with a 100 N load cell as described by Marti et al. 156 

(2017a). To evaluate crumb hardness, three central slices (15 mm thick) of one loaf 157 

from each bread-making trial were compressed (speed: 2 mm/s) to 30% of their height 158 

by using a 30 mm diameter cylindrical aluminum probe. Crumb hardness (n=6) was 159 

measured after 0 (two hours after baking), 1, 3 and 6 storage days and expressed as 160 

the load (N) at 30% strain. 161 

2.6 In vitro starch digestibility of the bread 162 
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According to the method described by Englyst et al. (2000), in vitro starch 163 

digestibility was assessed by the estimation of rapidly (RDS) and slowly (SDS) 164 

digestible starch fractions that are likely to become available for rapid or slow 165 

absorption by the small intestine, thus modulating glycemic response. Bread was 166 

minced to simulate mastication (particle size less than 0.9 cm) and treated as reported 167 

in Marti et al. (2017b). Duplicates from two independent baking trials were averaged 168 

(n=4). Rapidly (RDS) and slowly (SDS) digestible starch fractions were calculated 169 

from the glucose-released data at 20 min and between 20 and 120 min of incubation 170 

with a mixture of hydrolytic enzymes. RDS and SDS fractions were expressed as the 171 

percentage of digested starch per 100 g of bread portion. Glucose, fructose and 172 

maltose concentrations were evaluated (in samples before digestion) by HPLC Anion 173 

Exchange Chromatography with Pulsed Amperometric Detection (HPAEC-PAD) 174 

(Marti et al., 2017a). 175 

2.7 Statistics 176 

The data was subjected to analysis of variance (ANOVA) to determine significant 177 

(p≤0.05) differences among the samples. ANOVA analysis was performed by 178 

utilizing Statgraphics XV version 15.1.02 (StatPoint Inc., Warrenton, VA, USA). 179 

Different dough, bread, or cells were considered as factors. When a factor effect was 180 

found to be significant (p≤0.05), significant differences among the respective 181 

averages were determined using Fisher’s Least Significant Difference (LSD) test. 182 

3. Results and discussion 183 

3.1 Gluten aggregation properties 184 

The GlutoPeak device has been proposed as a rapid and reliable method for 185 

evaluating gluten aggregation kinetics in wheat samples (Marti, Augst, Cox, & 186 
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Koehler, 2015; Marti, Ulrici, Foca, Quaglia, & Pagani, 2015; Melnyk, Dreisoerner, 187 

Marcone, & Seetharaman, 2012). Typical GlutoPeak curves for a wheat flour (CTRL) 188 

and a sprouted wheat flour (SWF) are shown in Fig. S1. During the test, the sample 189 

slurry is subjected to intense mechanical action promoted by the speed of the rotating 190 

element, which facilitates the formation of gluten. Thus, a rapid increase in torque is 191 

registered until the maximum value (i.e. MT) is reached. Further mixing breaks the 192 

network, with a concomitant decline in torque (Marti et al., 2015a). Generally, flours 193 

for bread-making showed higher peaks and faster gluten aggregation than flours for 194 

cakes or biscuits (Lu & Seetharaman, 2014; Marti et al., 2015b; Quayson, Atwell, 195 

Morris, & Marti, 2016). 196 

Results suggest a weakening of the gluten network (Table 1). Indeed, germination 197 

promoted the hydrolysis of gluten forming proteins by proteases and the formation of 198 

soluble peptides (Koehler, Hartmann, Wieser, & Rychlik, 2007), compromising 199 

gluten aggregation properties. In particular, replacing wheat flour with SWF 200 

significantly decreased MT, and a linear response was observed with the enrichment 201 

level (R2=0.80).  202 

As regards the time at which maximum aggregation occurred, a no linear response 203 

was found for SWF blends. PMT did not change when up to 25% SWF was used. 204 

However, the PMT value significantly decreased when the level of SWF was 205 

increased, except for 50% level. A maximum PMT seemed to exist when SWF was 206 

blended with control bread flour in equal portions (i.e., 50:50).  207 

A similar trend in GlutoPeak test has been shown when soft and hard wheat flours 208 

were blended in equal portions (Lu and Seetharaman, 2014). This phenomenon – 209 

which was not observed in any other rheological test - may be related to differences in 210 

interactions between gluten proteins from SWF and CTRL, similar to that observed 211 
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for soft wheat and hard wheat gluten proteins (Melnyk et al., 2012; Quayson, Marti, 212 

Bonomi, Atwell, & Seetharaman, 2016). This hypothesis will need to be investigated 213 

further before any definitive conclusions can be drawn.  214 

One of the most suitable parameters for predicting conventional parameters 215 

related to dough strength, beside PMT and MT, is found in the area under the curve 216 

which takes into account both maximum torque and PMT (Marti et al., 2015b; 217 

Quayson et al., 2016a). The presence of SWF significantly decreased this parameter, 218 

which yielded a linear response (R2=0.85). The results suggest that SWF has a 219 

negative effect on gluten aggregation properties, likely due to the action of proteases, 220 

thus confirming previous findings (Marti et al., 2017a). However, SWF enrichment at 221 

25, 50, and 70% did not significantly affect the energy value (p≤0.05).  222 

Finally, on the basis on previous works (Marti et al., 2015a,b), the mixtures with 223 

SWF – regardless of how much was added – show a gluten aggregation kinetic 224 

similar to that of a flour with good bread-making qualities. 225 

3.2 Mixing properties 226 

The effects of incorporation of germinated wheat flour on dough mixing 227 

characteristics are shown in Table 1. Dough from CTRL was characterized by high 228 

water absorption (57.8%) and very high stability (18.8 min) (Table 1), which are 229 

typical of strong wheat flour (Fig. S2). 230 

Replacing CTRL with SWF brought about a significant (p≤0.05) decrease in water 231 

absorption (Table 1) and resulted in a linear response (R2=0.96). According to 232 

Dojczew & Sobczyk (2007), decrease in water absorption could mainly be due to 233 

proteins de-polymerization as a consequence of the intense protease activity in 234 

germinated wheat. Dough development time and dough stability sharply decreased up 235 

to 15% SWF enrichment (Table 1), indicating dough weakening. Interestingly, these 236 
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two parameters did not further decrease with increasing amounts of SWF (>15%), 237 

with the exception of 25% SWF. The reduced development time and stability could 238 

be due to the disruption of the gluten matrix by enzymes (i.e. proteases).  239 

3.3 Leavening properties 240 

Rheofermentometer analysis provides information on dough leavening performance 241 

(i.e. dough height, CO2 production and retention). Table 1 shows the data obtained 242 

from this test carried out on the different mixtures. Adding SWF to wheat flour 243 

increased both dough height (up to 75%) and leavening time (Table 1). The results 244 

confirmed the positive effect of α-amylase activities on dough leavening properties 245 

(Marengo et al., 2016; Marti et al., 2017a; Sanz Penella, Collar, & Haros, 2008). In 246 

fact, high levels of sugars - which result from starch hydrolysis by α-amylase – are 247 

used from the yeast during leavening, resulting in greater dough development in a 248 

shorter time, compared to CTRL. No linear response was detected for dough height, 249 

since no significant differences were observed from 15% to 75% SWF enrichment. 250 

Despite the positive effect of germination on dough development, adding SWF to 251 

common bread flour decreased height at the end of the leavening step, suggesting the 252 

collapse of the dough structure when the leavening time lasts more than 2h. This is 253 

due to the decrease in the ability of the gluten structure to withstand the physical 254 

stresses as a result of proteolytic activity.  255 

The indices obtained from the gas release curves are summarised in Table 1. 256 

These results indicated that doughs with increasing amount of SWF had a higher 257 

volume of CO2 release than CTRL. If gas is efficiently retained in the dough, an 258 

optimal final bread volume can be expected (Huang, Kim, Li, & Rayas-Duarte, 2008). 259 

The increasing availability of mono- and disaccharides as substrates promoted the 260 

carbon dioxide production during fermentation (Verheyen, Jekle, & Becker, 2014). In 261 
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addition, in the presence of SWF from 33% to 100%, high amounts of retained and 262 

lost carbon dioxide resulted (Table 1) and no linear response was found for these 263 

parameters. The coefficient of retention - which is defined as the ratio expressed as 264 

percentage between the volume retained in the dough and the total volume of gas 265 

produced during the test - decreased from 94.6% (CTRL) to about 89% for 50% SWF 266 

and 100% SWF. Enzymatic activity that developed during germination might have 267 

negatively affected the gas retention capacity, which is associated with an increase of 268 

dough permeability due to dough weakening by the increased hydrolysis of starch 269 

chains (Sanz Penella et al., 2008). In addition, protease hydrolyses peptide linkages, 270 

which might have induced a partial destruction of the protein network and thus 271 

lowered the capacity of the dough to enclose air compared to CTRL sample.  272 

3.4 Bread properties 273 

Based on the dough mixing and leavening properties (Table 1), blends enriched with 274 

SWF at 50% and 75% level did not show significant differences. Only their gluten 275 

aggregation properties differed (i.e. PMT), suggesting peculiar protein interactions in 276 

50% SWF. Thus, bread-making performance of 50% SWF was compared to that of 277 

CTRL and 100% SWF.  278 

As shown in Figure 1, SWF did not lead to a worsening of bread-making 279 

performance. Moreover, 50% SWF enriched-bread, produced greater volume and 280 

more porosity than CTRL and 100% SWF samples (Table 2). 281 

Adding SWF to CTRL resulted in a darker (decrease in L*) and redder crust 282 

(higher a*) (Table 2). Changes in crust might be associated with Maillard reactions 283 

(Hefni & Witthöft, 2011), which can be expected to be more intense in SWF-enriched 284 

samples. Indeed, amylases and proteases affect the Maillard reaction, the former by 285 

degrading starch to reducing sugars, whereas the latter increase the amount of free 286 
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peptides and amino acids (Goesaert et al., 2005). As regards crumbs, an important 287 

difference in both redness and yellowness was observed when sprouted wheat flour 288 

was added (Table 2). These changes were also probably due to the increase in the 289 

Maillard reaction.  290 

Specific bread volume significantly differed for the three samples (Fig. 1, Table 2), 291 

with 50% SWF having the highest specific volume. The amount of α-amylase 292 

developed during germination could have played a key role in increasing loaf volume. 293 

At the same time, sprouting under controlled conditions limited the proteases activity 294 

and its dramatic effects on the gluten network (Marti et al., 2017a) that are generally 295 

observed in pre-harvest sprouted wheat grains. 296 

3.4.1 Crumb porosity 297 

Using SWF sample significantly increased the area of porosity from 45.82% (CTRL) 298 

to 49.09% (50% SWF), which was similar to that of bread with 100% SWF (46.14%) 299 

(Table 2). This result is obviously related to the increase in volume associated with 300 

the addition of SWF and can be related to the amylase activity developed during 301 

wheat germination, whose effect on crumb porosity has been observed elsewhere 302 

(Goesaert, Slade, Levine, & Delcour, 2009). As for cells, although the number of each 303 

class was very similar for all the samples (data not shown), differences in cell area 304 

were observed (Fig. 2). A significantly larger area of small pores (<5 mm2) was 305 

present in CTRL samples than in 50% and 100% samples. In fact, the small cell area 306 

represented around 60% of the total pore area in CTRL bread and only about 40% for 307 

50% and 100% SWF. An opposite trend was observed for pore area in the medium 308 

dimensional class (5.00 - 49.99 mm2), as the area occupied by this class of pores was 309 

higher in both SWF samples than CTRL samples. Moreover, larger pores (>50 mm2) 310 
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were found only in bread with SWF, whose area accounted for the about 20% of the 311 

total porosity. From these results, it can be deduced that enzymes produced by 312 

germination, especially α-amylases, favor gas cell coalescence (Lagrain, Leman, 313 

Goesaert, & Delcour, 2008).  314 

3.4.2 Texture 315 

SWF addition had also a positive effect on crumb firmness (Table 2). 316 

Decrease in firmness in the presence of SWF cannot be related to differences in 317 

crumb moisture, since SWF-enriched bread showed low firmness and low crumb 318 

moisture. Unlike the Scanlon & Zghal (2001) study, crumb firmness did not increase 319 

with increasing density (Table 2). 320 

Indeed, even during storage, bread containing either 50% or 100% SWF 321 

exhibited lower firmness than the control (Fig. 3). As observed on fresh bread (t0, 2h 322 

after baking), differences in firmness during storage were not related to either crumb 323 

moisture or water activity, (data no shown). On the other hand, several works 324 

demonstrated that production of hydrolytic enzymes during germination were 325 

responsible for improving crumb softness up to six days of storage (De leyn, 2006; 326 

Goesaert et al., 2005, 2009). In particular, α-amylase decreases amylopectin 327 

retrogradation and the firming rate of wheat bread crumb (Champenois, Della Valle, 328 

Planchot, Buleon, & Colonna, 1999). In addition, the firmness of 50% SWF bread 329 

after three days of storage was similar to that shown by CTRL bread after just one day 330 

of storage, whereas 100% SWF sample after six days exhibited firmness values 331 

similar to those of CTRL bread after just one day of storage. A similar effect was 332 

detected when SWF was included at low levels (<2%) in bread formulation (Marti et 333 

al., 2017a). 334 
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3.5. In vitro starch digestibility 335 

The effects of refined flour from sprouted wheat on starch digestibility was 336 

assessed by a well-established in vitro assay, which allows the determination of both 337 

rapidly and slowly digestible starch fractions (RDS and SDS, respectively). By 338 

measuring the susceptibility of starch to digestive enzymes, this assay is 339 

internationally endorsed to estimate the potential glycaemic response of foods (EFSA, 340 

2011). Significant differences in starch susceptibility to digestive enzymes were 341 

observed in bread samples (Fig 4). In particular, in 100% SWF bread the RDS and 342 

SDS fractions were significantly (p≤0.05) lower and higher, respectively, than those 343 

determined in CTRL and 50% SWF bread. These data partially agree with those 344 

reported by Świeca et al. (2017), which evidenced a decrease in starch digestibility in 345 

bread with 20% of sprouted wheat. This result was attributed to an increase in the 346 

aliquot of resistant starch and/or to a high phenolics content of sprouted wheat 347 

(Świeca et al., 2017). A comparison of our results with those of Świeca et al. (2017) is 348 

difficult, since different in vitro methods were used. Secondly, sprouting conditions 349 

and percentages of flour enrichment were different. The differences in starch 350 

digestibility (RDS) measured between CTRL and 50% SWF suggest that differences 351 

in chemical composition did not play a key role in starch digestibility. It is likely that 352 

the different starch digestibility (i.e. increase in SDS) assessed in 100% SWF was 353 

related to differences in bread structure, consequent to modification to wheat flour 354 

promoted by germination, that become evident only when native wheat flour was 355 

absent. This feature may be of interest from a nutritional point of view, since it could 356 

reduce the glycemic potential of this new bread formulation. Indeed, the glycaemic 357 

response appears to be directly related to the amount of RDS while insulin demand is 358 

inversely correlated to the SDS fraction (Garsetti, Vinoy, Lang, Holt, Loyer, Brand-359 
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Miller, 2005). The effects of germination on protein structure and its impact on starch 360 

digestibility needs further investigation. 361 

In contrast, the total number of free “glycemic” sugars significantly and non-362 

linearly increased with SWF substitution (3.0% in CRTL vs 7.3% in 50% SWF vs 363 

8.3% in 100% SWF), with maltose increase as the main determinant (Table 3). This 364 

trait, probably attributable to α-amylase developed during germination, could be of 365 

interest from a sensory point of view (i.e. sweet flavour note) but may promote an 366 

increased glycemic response. Further in vivo studies are needed to assess how the rate 367 

of starch digestibility and the increase in free “glycemic” sugars in 100% SWF bread 368 

impact on post-prandial glycemic response. 369 

4. Conclusions 370 

Flour from sprouted wheat has always been considered to be of poor baking quality. 371 

Indeed, the relevant amylase and protease activities accumulated into the grain during 372 

germination are responsible for intense hydrolytic phenomena at the expense of gluten 373 

and starch, the holding-structure macromolecules in the dough. The hydrolysis of 374 

these macromolecules is clearly highlighted by the rheological tests conventionally 375 

used for predicting flour baking behavior.  376 

Although we are aware that uncontrolled wheat sprouting, in the field during wheat 377 

growing is a phenomenon associated with a sharp deterioration of dough consistency 378 

and handling and bread characteristics, our results show that controlled (i.e. in an 379 

industrial factory) sprouted wheat flour could be used as new ingredient in bread 380 

making. Gluten proteins, though weakened by proteolytic activity, do not lose their 381 

ability to aggregate and form a network suitable for leavening, as the GlutoPeak test 382 

indicated. The molecular changes associated with this behavior need to be carefully 383 

understood, evaluated and quantified, together with the actual impact of these 384 
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potential functional breads on glucose metabolism. In particular, the effect of 385 

sprouting on quality-related protein fractions, starch and lipid molecules and their 386 

potential interactions should be taken into consideration as a molecular explanation 387 

for the positive effects of sprouting on bread properties. 388 
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Fig. 1. Pictures of the bread prepared from commercial wheat flour (CTRL), with 501 

either 50% level of sprouted wheat flour (50% SWF), or 100% sprouted wheat flour 502 

(100% SWF). 503 

Fig. 2. Area of each dimensional class of pores. Colors used: black: CTRL; light grey: 504 

50% SWF; dark grey: 100% SWF. Different letters indicate significant differences 505 

(one-way ANOVA, LSD test, p≤0.05). 506 

Fig. 3. Crumb firmness of bread prepared from commercial wheat flour (CTRL – 507 

black circle), blend with 50% of sprouted wheat flour (50% SWF – white circle), 508 

100% sprouted wheat flour (100% SWF – black triangle) during storage. Different 509 

letters indicate correspond significant differences (one-way ANOVA, LSD test, 510 

p≤0.05). 511 

Fig. 4. Rapidly (RDS, black bars) and Slowly (SDS, grey bars) digestible starch 512 

fractions of bread prepared from commercial wheat flour (CTRL), blend with 50% of 513 

sprouted wheat flour (50% SWF) and 100% sprouted wheat flour (100% SWF). 514 

Different letters (lowercase letters refer to RDS; capital letters refer to SDS) indicate 515 

significant differences (one-way ANOVA, LSD test, p≤0.05).516 
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Table 1. Gluten aggregation, mixing and leavening properties of commercial wheat flour (CTRL), with increasing amount of germinated wheat  

flour (15%, 25%, 33%, 50%, 75%) or 100% germinated wheat flour (SWF). 

 

Different letters in the same row indicate significant differences (one-way ANOVA, LSD test, p≤0.05). 

   CTRL 15% SWF 25% SWF 33% SWF 50%SWF 75% SWF 100% SWF 

GLUTEN  

AGGREGATION 

 PROPERTIES 

(GlutoPeak Test) 

Peak maximum time (s) 186±1c,d 191±1d 182±3b,c 172±2a 197±6e 177±3a,b 181±2b,c 

Maximum torque (BE) 39±1d 37±1c 35.7±0.6b,c 37±1c,d 34±1a,b 35±1b 32±1a 

Energy (GPE) 3293±76e 2993±47d 2845±98c 2752±142b,c 2722±65b,c 2682±76b 2408±33a 

MIXING 

PROPERTIES 

(Farinograph Test) 

Water absorption  (%) 57.8±0.1d 57.4±0.3c,d 56.9±0.2c 57.3±0.1c,d 55.3±0.1b 54.8±0.3b 54±1a 

Development time (min) 8.4±1.2b 1.9±0.2a 2.0±0.2a 1.8±0.1a 1.8±0.3a 2.3±0.4a 2.1±0.4a 

Stability (min) 18.8±0.1d 5±1b,c 7±2c 3.4±0.5a 5.1±0.2a,b,c 4.6±0.2a,b 3.6±0.4a,b 

ICC Degree of softening (FU) 9±8a 67±8b 67±9b 83±1b 92±5b 114±11b 75±12b 

LEAVENING  

PROPERTIES 

(Rheofermentometer 

Test) 

Maximum dough height (mm) 39±1a 48.8±0.5b 50±2b 51±6b 50±3b 50±1b 40±2a 

Final dough height (mm) 39±5b 41.9±0.4b 46±5b 39.3±0.5b 45.5±0.1b 46±1b 23±6a 

Leavening Time (min) 172±6b 143±7a,b 152±12a,b 126±1a 128±1a 169±37b 117±5a 

Total CO2 (mL) 1200±29a 1465±9b,c 1402±80b 1566±51d 1556±1c,d 1597±43d 1537±17c,d 

CO2 retained (mL) 1135±25a 1329±15b,c 1290±59b 1388±13c,d 1382±7c,d 1398±1d 1365±4c,d 

CO2 released (mL) 65±5a 136±5b,c 111±21a,b 179±37c,d 174±8c,d 199±42d 172±13c,d 

CO2 retention coefficient (%) 94.6±0.3d 90.8±0.4b,c 92±1c,d 89±2a,b 88.8±0.6a,b 88±2a 88.8±0.7a,b 

Porosity time (h) 1.69±0.09a 1.44±0.02a 1.54±0.05a 1.43±0.11a 1.46±0.09a 1.41±0.19a 1.44±0.19a 
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CTRL, control wheat flour; SWF, flour from sprouted wheat 

Peak maximum time:  time before torque decreased due to gluten break down; Maximum torque: peak occurring as gluten aggregates; Energy: 

area under the curve until 15s after the maximum torque; Water absorption: amount of water needed to reach the optimal consistency (500±20 

FU); Dough development time: time from first addition of water to the point of maximum consistency range; Stability: time difference between 

when the curve reaches (arrival time) and leaves (departure time) the 500 FU line; Degree of softening: difference between the centre of the 

curve at the end of the dough development time and the centre of the curve 12 minutes after this pint; Maximum dough height: maximum height 

achieved during the test; Final dough height: height at the end of the test; Leavening time: time required for maximum dough development; 

Maximum height: maximum height of gaseous production; Porosity time: time when the porosity of the dough developed; Total CO2:  total 

production of CO2; CO2 retained: amount of CO2 retained in the dough during the test; CO2 released: amount of CO2 released during the test; 

CO2 retention coefficient: ratio between CO2 retained and total CO2. 

BE: Brabender Equivalent; FU: Farinograph Units; GPE: GlutoPeak Equivalent 
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Table 2. Properties of fresh bread from commercial wheat flour alone (CTRL) or with 

sprouted wheat flour (50%, 100% SWF). 

 

Different letters in the same row indicate significant differences (one-way ANOVA, 

LSD test, p≤0.05). 

CTRL, control wheat flour; SWF, flour from sprouted wheat 

  

  CTRL 50% SWF 100% SWF 

Bread 
Specific volume 

(mL/g) 
2.8±0.1b 3.3±0.1c 2.5±0.1a 

Crust 

Luminosity (L*) 69.01±1.80c 63.79±4.20b 54.68±1.73a 

Redness (a*) 5.86±1.02a 9.48±1.40b 12.36±1.08c 

Yellowness (b*) 31.78±1.46a 32.84±0.92a 32.25±2.34a 

Browning (100-L*) 30.99±0.80a 36.21±4.20b 45.32±4.79c 

Crumb 

Luminosity (L*) 71.22±2.68a 72.41±2.89a 64.61±2.51b 

Redness (a*) -1.04±0.08a -0.67±0.08b -0.41±0.06c 

Yellowness (b*) 14.50±0.55c 13.04±0.71a 13.55±0.76b 

Browning (100-L*) 28.78±2.68a 27.59±2.89a 35.39±2.51b 

Porosity (%) 45.82±0.37a 49.09±0.92b 46.14±1.03a 

Moisture (%) 41.3±0.5c 37.4±0.9a 39.4±0.4b 

Water activity 0.939±0.005b 0.932±0.013b 0.917±0.006a 

Firmness (N) 4.92±0.77b 3.01±0.52a 2.65±0.53a 
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Table 3. Free sugars content of fresh bread from commercial wheat flour alone  

(CTRL) or with sprouted wheat flour (50%, 100% SWF). 

 

 

 

 

 

 

Different letters in the same row indicate significant differences (one-way ANOVA, 

LSD test, p≤0.05). 

  

 CTRL 50%SWF 100% SWF 

Total free sugars (%) 3.0±0.4b 7.0± 0.4a 8.3±1.3a 

Glucose (%) 0.1±0.0 0.2±0.1 0.3±0.1 

Fructose (%) 0.2±0.1 0.4±0.2 0.3±0.1 

Maltose (%) 2.8±0.3c 6.4±0.2b 7.8±1.1a 
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Fig. 1.  Pictures of the bread prepared from commercial wheat flour (CTRL), with 

either 50% level of sprouted wheat flour (50% SWF), or 100% sprouted wheat flour 

(100% SWF).  

CTRL 
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Fig. 2.  Area of each dimensional class of pores. Colors used: black: CTRL; light 

grey: 50% SWF; dark grey: 100% SWF. Different letters indicate significant 

differences (one-way ANOVA, LSD test, p≤0.05). 
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Fig. 3. Crumb firmness of bread prepared from commercial wheat flour (CTRL – 

black circle), blend with 50% of sprouted wheat flour (50% SWF – white circle), 

100% sprouted wheat flour (100% SWF – black triangle) during storage. Different 

letters indicate correspond significant differences (one-way ANOVA, LSD test, 

p≤0.05). 
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Fig. 4. Rapidly (RDS, black bars) and Slowly (SDS, grey bars) digestible starch 

fractions of bread prepared from commercial wheat flour (CTRL), blend with 50% of 

sprouted wheat flour (50% SWF) and 100% sprouted wheat flour (100% SWF). 

Different letters (lowercase letters refer to RDS; capital letters refer to SDS) indicate 

significant differences (one-way ANOVA, LSD test, p≤0.05). 
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Highlights:  

• Sprouting was carried out in an industrial plant under controlled conditions 

• High levels of wheat flour (SWF) enrichment affect dough rheology 

• SWF improved the dough development and gas production during leavening 

• The best bread performance was obtained with 50% SWF 

• 100 % SWF increased the slowly digestible starch fraction 


