# AMINO ACID-DERIVING CHIRAL POLYMERS WITH POTENTIAL FOR BIOTECHNOLOGICAL APPLICATIONS

Lazzari Federica,<sup>a</sup> Mauro Nicolò,<sup>b</sup> Terenzi Alessio,<sup>c</sup> Manfredi Amedea,<sup>a</sup> Alongi Jenny,<sup>a</sup> Ranucci Elisabetta,<sup>a</sup> Ferruti Paolo<sup>a,d</sup>

<sup>a</sup>Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano (Italy) <sup>b</sup>Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, viale delle Scienze, 90128 Palermo (Italy) <sup>c</sup>Institut für Anorganische Chemie, University of Vienna, Austria

<sup>d</sup>Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, via Giusti 9, 50121 Firenze (Italy)

federica.lazzari@unimi.it



## INTRODUCTION

The Michael-type polyaddition of  $\alpha$ -amino acids with bisacrylamides in pH > 9 aqueous solutions leads to polyamidoaminoacids (PAACs) that maintain the amphoteric properties and configuration of the amino acid precursors. In particular, the PAAC obtained from the reaction of L-arginine and N,N'-methylenebisacrylamide (L-ARGO7), proved highly citycompatible with  $IC_{50} \ge 8$  mg/mL.<sup>[1]</sup> Cell internalization studies in Balb/3T3 cells demonstrated its preferential localization in the perinuclear region.

The interest in ARGO7 isomers is manifold:

- They retain the water solubility and acid/basic properties of arginine isomers, thus being only moderately basic and non-cytotoxic;
- They bear one guanidine pendant per repeating unit, thus mimicking, in this respect, the arginine-rich cell permeating peptides;
- They may display well-defined pH-dependent conformations associated to the configuration of the repeating units. This latter feature may, in turn, affect the biological properties of ARGO7 isomers.

#### SYNTHESIS



#### Synthesis

(D,L)-Arginine were added to a (D)-,(L)suspension methylenebisacrylamide and lithium hydroxide in water under vigorous stirring. The reaction mixture was heated to 50°C for 5 days.

#### Work-up

- Quenching by adding diluited HCl to reach pH = 4;
- Ultrafiltration through 100 and 3kDa membranes;
- Freeze-drying.

| Sample    | Yield (%) | $M_{w}$ | PDI  | vPSD (nm) |
|-----------|-----------|---------|------|-----------|
| D-ARGO7   | 88        | 7700    | 1.54 | 2.42±0.79 |
| L-ARGO7   | 92        | 6500    | 1.43 | 3.11±0.61 |
| D,L-ARGO7 | 90        | 6800    | 1.48 | 1.33±0.36 |

**Table 1.** Molecular weights, yield and volume particle size distribution (vPSD) of ARGO7.





#### TITRATIONS

0.1 M NaCl solutions of ARGO7 isomers were potentiometrically titrated with 0.1 M NaOH and then back-titrated with 0.1 M HCl at 25°C under inert atmosphere.

pKa values for the different groups, namely pKa<sub>1</sub> (COOH), pKa<sub>2</sub> (main chain tert-amine) and pKa<sub>3</sub> (guanidine) were first obtained from the half-neutralization pHs.

 $\beta$  parameters for  $pKa_1$  and  $pKa_2$  (table 2) were then introduced in the generalized Henderson Hasselbach equation (eq. 1) to ascertain the presence of interactions between ionizable groups on adjacent monomeric units.

$$pH = pKa - \beta * Log(\frac{1-\alpha}{\alpha})$$
 (1

| Sample    | e pKa <sub>1</sub> | pKa <sub>2</sub> | pKa <sub>3</sub> | β1   | β2   | IP    |
|-----------|--------------------|------------------|------------------|------|------|-------|
| L-Arginir | ne 2.17            | 9.04             | 12.48            |      |      | 10.76 |
| L-ARGO    | 7 2.31             | 6.43             | >12              | 0.60 | 1.14 | 9.7   |
| D-ARGO    | 2.24               | 6.41             | >12              | 0.60 | 1.12 | 9.7   |
| D,L-ARG   | 2.34               | 6.39             | >12              | 0.57 | 1.25 | 9.7   |

**Table 2.** pKa values and  $\beta$  parameters of L-, D- and D,L-ARGO7.

- No significant differences were detected among the ARGO7 isomers' *pKa* values (table 2).
- Both  $pKa_1$  and  $pKa_2$  exhibit deviations from ideal behaviour, ( $\beta = 1$ ), more pronounced in case of the carboxyl group.

### SPECIATION CURVE

Following the De Levie approach (eq. 2), a theoretical titration curve is modeled (figure 3).

$$V_T = \frac{V_0[C_0(\alpha_0 - \alpha_2 - 2\alpha_3) + C_A - \Delta] + N}{\Delta + C_T}$$
 (2)

From these results speciation curves, i.e. distribution diagrams of ionic species with pH (figure 4), were obtained considering  $\beta$  corrected pKa values.



Figure 3. Theoretical curve modeled by De Levie approach



Figure 4. Speciation diagram of L-ARGO7

# CIRCULAR DICHROISM

The secondary structure of D-, L- and D,L-ARGO7 was investigated in aqueous solution by circular dichroism (CD) spectroscopy at 25°C and pH values ranging from 2.1 to 12.1.

D,L-ARGO7 gave only a noisy baseline, whereas the CD spectra of L- and D-ARGO7 reflected pH-dependent conformational changes (figure 5).



Figure 5. pH dependence of CD spectra of L-ARGO7

At pH > 5 the L-ARGO7 spectra

band at 228 nm, whose value

were characterized by a positive

increased by increasing pH up to a

maximum at pH ~ 8.1, and then

remained constant up to pH 12.1

[1] P. Ferruti, N. Mauro, L. Falciola, V. Pifferi, C. Bartoli, M. Gazzarri, F. Chiellini, E. Ranucci, Macromol. Biosci., 2014, 14, 390.

REFERENCES

## CONCLUSIONS

- 1. Amphoteric polyamidoaminoacids were obtained by polyaddition in aqueous solution of (D)-, (L) and (D,L)-arginine with N,N'-methylenebisacrylamide.
- 2. Their  $pKa_1$  (COOH) values resembled that of arginine, whereas  $pKa_2$  (main chain tert-amine) decreased by two units due to the electron withdrawing effect of the acrylamide groups. Both constants exhibit deviations from ideal behaviour, more pronounced for the carboxyl group.
- 3. β dependent speciation curves were obtained by applying the De Levie approach, accounting for the whole titration curve without approximations.
- 4. D- and L-ARGO7 gave, in the pH range 3-10, CD spectra consistent with pHdependent conformation transitions.