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1. Introduction 
The study of the barrier function of the skin is relevant to a wide range of applications including, 

in particular, transdermal delivery of drugs and risk assessment of hazardous exposure to 

chemicals. The skin’s barrier capacity, generally ascribed to the outer layer of the skin, the stratum 

corneum (SC) (Lian et al., 2008), is a function of the molecular organization of the lipids in the 

extracellular space of the SC (Bouwstra et al., 1991). This lipid matrix is a heterogeneous mixture 

mainly composed of long-chain ceramides (CERs), free fatty acids (FFAs) - ceramide 2 and FFA 

24:0 being the most abundant -  and cholesterol (CHOL) in a 1:1:1 molar ratio (Wertz and Norle´n, 

2003).  

A large number of permeability studies have appeared over the last 60 years, addressing the 

prediction of skin permeability using mathematical models, in particular semi-empirical or 

mechanistic models, among which the equations proposed by Potts and Guy (Potts and Guy, 1992) 

and by Mitragotri (Mitragotri, 2002) are the most cited. Among the physicochemical properties 

considered as descriptors are the molecular weight and the molecular volume, the octanol/water 

partition coefficient (Mitragotri, 2002; Potts and Guy, 1992), the molecular radius (Mitragotri, 

2002) and the solvation enthalpies (Minghetti et al., 2000).  

Along with mathematical modelling, Molecular Dynamics (MD) can be a useful tool to perform 

permeability studies, with the added benefit that this affords a greater understanding of the 

permeation process at a molecular level allowing the role of different parts of the SC in determining 

permeability to be identified. Since the time scales of MD simulations are still orders of magnitude 

lower than the time scales of the most complex biological events, the atomistic details obtained 
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with simulations have to be included in the framework of macroscopic mathematical models 

(Scott, 2002). 

In this work, Steered Molecular Dynamics (SMD) simulations are carried out to investigate the 

dynamic behaviour of a given permeant when crossing an ideal SC lipid matrix composed of a 

heterogeneous mixture of long-chain ceramides (CERs), free fatty acids (FFAs), and cholesterol 

(CHOL) in a 1:1:1 molar ratio. The use of MD simulations to study solute diffusion through lipid 

bilayer membranes was developed in the 1990s for phospholipid bilayers, starting with early 

studies on passive diffusion (Alper and Stouch, 1995; Bassolino-Klimas et al., 1995, 1993) moving 

on to the systematic studies of permeation by Marrink and Berendsen, which took into account 

diffusion and solubility of permeants into the membrane (Marrink and Berendsen, 1996, 1994), 

and were then extended to the study of SC permeation by Das and colleagues (Das et al., 2009a, 

2009b). The approach used here, though, differs from those of previous works. To allow the 

screening of 80 molecules, a more indirect method has been attempted, not involving free energy 

calculations, Instead, only the diffusion coefficient and the conformational space explored by the 

solute within the different microenvironments inside the SC have been directly derived from the 

MD simulations.  

The performed SMD runs were utilized to derive physicochemical and structural descriptors,  

while free energy calculations were not considered, especially because such an analysis, using 

SMD runs and Jarzynski equality (Jarzynski, 1997), would require multiple trajectories for every 

solute, and this is unfeasible when screening large datasets of permeants. The computed descriptors 

were correlated to the experimental permeation coefficients contained in a subset of Flynn’s set 

(Flynn, 1990), yielding encouraging predictive models which confirm the fruitfulness of MD 

simulations to analyse complex biological systems such as the SC at a molecular level. It should 



 4 

be noted that any equation obtained by semi empirical models is affected by the experimental error 

in the database, as better investigated in the Appendix. 

2. Materials and methods 

2.1 Set-up of the membrane model 

An ideal SC lipid matrix model has been generated according to the model proposed by Iwai et 

al. (Iwai et al., 2012), which proved to be the most stable upon equilibration. It is composed by a 

heterogeneous mixture of long-chain ceramides (CERs), free fatty acids (FFAs), and cholesterol 

(CHOL) in a 1:1:1 molar ratio (Wertz and Norle´n, 2003). Starting with a basic unit composed of 

one molecule each of CER 2 in extended conformation, 24:0 FFA and CHOL, a minimization by 

NAMD2 (Phillips et al., 2005) and subsequent optimization by the PM7 semi-empirical method 

as implemented in MOPAC 2012 (Stewart, 2013, 2012) are performed followed by a 1 ns 

molecular dynamics at 300 K. All lipid molecules are in neutral form. 4 basic units (4 CER 2, 4 

FFA, 4 CHOL) are assembled to form a monolayer unit. In each monolayer unit, one CER 2 was 

replaced by one CER 1 (thus giving a 25% of CER 1 in the ceramide component of the membrane), 

and the system undergoes a 1 ns MD simulation after that an energy minimization was performed. 

Based on this monolayer unit, membrane models of increasing sizes are built, up to a bilayer 

consisting of 868 lipid molecules (Figure 1a). Then, two layers of 54 Å containing about 8000 

water molecules each were added to the model to account for solvation effects in the donor and 

acceptor phases, and a 10 ns MD simulation was performed (Figure 1b) to allow for a better 

relaxation of the bilayer molecules. The MD runs had the same general characteristics as described 

below. 
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Figure 1. The final 868 molecules bilayer before (a) and after (b) a 10 ns equilibration molecular 

dynamics in presence of explicit solvent (water, not shown). Apolar hydrogen have been removed 

from the picture. Images obtained with Qutemol (Tarini et al., 2006). 

2.2 Set-up of the permeants  

The below described SMD simulations were performed on a set of 80 permeants common to 

both Flynn's set and the Fully Validated set (Supplementary Material), hereinafter named the 

reduced set. This allowed us to avoid data in Flynn's set that do not meet validation criteria exposed 

in (Vecchia and Bunge, 2003a), while still being able to compare our results with existing models. 

In detail, the 80 molecules were simulated in their neutral form since it is reasonably involved in 

permeation processes. A correction has been applied to the experimental Kp of molecules that are 

partially ionized at experimental conditions, based on the estimate of the non-ionized fraction 

(Vecchia and Bunge, 2003a). The conformational profile was explored by a quenched Monte Carlo 

procedure which produced 1000 conformers by randomly rotating the flexible torsions. For each 
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considered permeant, the so obtained lowest energy conformer was further optimized by PM7 

semi-empirical calculations (also to derive more precise atomic charges) and underwent SMD 

simulation.     

 

 

Figure 2. The solute (circled in red) SMD path through the bilayer before. Snapshots taken 

every 0.5 ns. Images obtained with Qutemol (Tarini et al., 2006). 

2.3 Steered MD (SMD) simulations  

As a preamble, it should be emphasized that the limited time period under investigation does not 

allow the spontaneous transport of molecules across the membrane to be simulated. Instead, 
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steered molecular dynamics (SMD) simulations are used, where solute molecules are dragged from 

water into and through the bilayer at a constant velocity in the direction perpendicular to the bilayer 

surface. As depicted in Figure 2, the permeant is initially placed in the water layer at 69 Å above 

the bilayer's mid plane and the so obtained system underwent a preliminary minimization to 

optimize the relative position of the molecules. SMD runs were performed on the 80 permeants 

with the following characteristics: (a) periodic boundary conditions (108 Å x 108 Å x 162 Å) were 

applied to stabilize the simulation space; (b) Newton's equation was integrated using the r-RESPA 

method (every 4 fs for long-range electrostatic forces, 2 fs for short-range non-bonded forces, and 

1 fs for bonded forces); (c) the long-range electrostatic potential was computed by the Particle 

Mesh Ewald summation method (108 × 108 × 160 grid points), the chosen cut-off length was 12 

Å for both the Van der Waals and electrostatic potentials, with a switching function starting a 8 Å;  

(d) the temperature was maintained at 300 ± 10 K by Langevin’s algorithm; (e) Lennard-Jones (L-

J) interactions were calculated with a cut-off of 10 Å and the pair list was updated every 20 

iterations; (e) a frame was memorized every 3 ps, thus generating 833 frames; and (f) no constraints 

were imposed to the systems. The simulations were carried out in two phases: an initial period of 

heating from 0 K to 300 K over 300000 iterations (300 ps, i.e. 1 K/ps) and the monitored phase of 

2.5 ns. During this time, the solute molecule was forced to cover a distance of 50 Å at a speed of 

0.02 Å/ps by applying a harmonic constraint force equal to 5 kcal/mol/Å2.  

The 2.5 ns SMD runs were performed using NAMD 2.10 and generally completed in 30÷32 

hours depending on the solute, on a Microsoft Windows® PC assembled with off the shelf 

components, including 1 Xeon® 6-core E5-2620v2 processor and 1 Nvidia® GeForce GTX 780 

graphic card. The force fields used are CHARMM 36 (Klauda et al., 2010) for the lipids, and the 

SPC potential (Berendsen et al., 1981) for water. In the CHARMM force field all atoms are 
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described explicitly. CHARMM parameters for lipids, optimized on the condensed phase 

properties of alkanes (Siu et al., 2008), were introduced in CHARMM22 (Feller et al., 1997), and 

are periodically updated. 

Notably, the trajectory imposed on the solute in the SMD simulations, in which the permeant is 

made to follow the transversal route through the polar head groups, doesn't necessarily follow the 

same tortuous path as in the physical system (Mitragotri, 2002), which should instead involve the 

least dense region. Nevertheless, the simulated trajectory allows for an investigation of the 

behaviour of the permeants along the whole double layer, through all the possible 

microenvironments, without prejudice about which one is the path of least resistance, thus taking 

into account the entire conformational and physicochemical property space (Vistoli et al., 2005) 

which a permeant explores when moving through the bilayer. 

With regard to physicochemical properties, polar surface area (PSA), surface, and Virtual log P 

as computed by MLP approach (Gaillard et al., 1994) were considered by averaging them in the 

different zones of the bilayer. To avoid the issues involved with filtering the data from MD 

simulations, the median of the raw data was used instead of the average. The automatic linear 

regression script in VEGA ZZ (Pedretti et al., 2002) was used to develop correlations between the 

physicochemical properties and the permeation coefficient for the set of solutes.  

Other descriptors that can be derived directly from the SMD simulations, such as the force acting 

on the solute molecule, have proved of little value. Improvements for the estimation of the 

molecule behaviour, such as Free Energy calculations (Marrink and Berendsen, 1994) could not 

be applied here, since they would require multiple trajectories for every solute, and this is in 
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contrast with the primary objective of the study, which is intended as a screening methodology for 

large sets of molecules. 

3. Results and discussion 

3.1 Theoretical background 

The flux J of a given solute across a homogeneous membrane can be written as: 

 

Eq. 1 

 

where K is the water/membrane partition coefficient, D the diffusion coefficient, ∆C the 

concentration gradient of the solute molecule across the membrane and h the membrane thickness.  

 Even though the SC is a non-homogeneous anisotropic medium, and the route of the permeants 

is a combination of motions running parallel and perpendicular to the bilayer's normal (Mitragotri, 

2003), Eq. 1 may represent a simplified approach to the description of the flux across SC. The 

quantity h, though, should be considered not as the SC thickness, but as the effective path length 

of the solute inside the SC, which can be expressed as the product of tortuosity, τ and membrane 

thickness, δ, namely h = τ·δ  (Mitragotri, 2003). By replacing the water/SC partition coefficient K 

with the octanol/water partition coefficient P, the permeation coefficient Kp can be defined as the 

flux normalized by the concentration gradient: 

 

/hDJ CK 
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The structure of Eq. 2 reveals a first theoretical limit of the semi empirical methods based upon 

it. Experimental values of Kp are calculated measuring the flux J and the concentration gradient 

ΔC, whereas theoretical predictions are based on estimation of the quantity PD/h. An issue arises 

since the stratum corneum thickness δ, and hence h, may not only vary in different experiments, 

as well as pH and temperature, but is also unknown, representing an unavoidable source of 

variability in experimental data. If δ values were known for each Kp measurement, variability 

would be reduced and only estimates of the tortuosity τ would be necessary. 

 

In logarithm form, Eq. 2 becomes: 

 

 loglog)log(log)log()/log(log  PDhPDhPDKp                Eq. 3 

 

As mentioned in the Introduction, the diffusion coefficient D, the octanol/water partition 

coefficient P and the path length h were here derived, directly or indirectly, from the performed 

SMD simulations. The local diffusion coefficient D(z) can be calculated in different ways from 

Molecular Dynamics trajectories, the simplest method being based on the mean square 
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displacement (MSD). For diffusion in the z direction (but the reasoning can be extended to 

calculation in the xy plane, Dxy):  
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where the average  is, theoretically computed over different system replicas but is replaced, 

for our purposes, by the time average, a procedure that would be rigorous only if the ergodic 

hypothesis could be verified. Dxy was calculated from the MSD in the xy plane obtained from the 

simulations, using the algorithm proposed by Abrams (Abrams, 2015). The octanol-water partition 

coefficient P was predicted by using the average Virtual Log P, as calculated during the simulation 

(so reflecting the conformational fluctuations of molecules during the simulations) as 

P=10VirtualLogP.  

As pointed out before, δ is an unknown experimental value, while hypotheses can be made on 

the value of τ. Mitragotri (Mitragotri, 2003) proposes that the value of τ depends not only on  the 

structure of the SC, but also on the physicochemical properties of the solute, in particular its radius. 

We consider here that properties of the solute, such as molecular dimensions and polarity, 

influence the path taken by the solute inside the SC, along with structural characteristic of the 

membrane and temperature. Although lipophilicity and molecular size of the permeant, are already 

taken into account with the term log(PD), we can tentatively introduce a linear or exponential 

dependence of τ on molecular volume (MV), e.g. τ =MVζ in Eq. 3, obtaining the equation: 
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  log)/log(log '

10  MVPDKp
                           Eq. 4 

 

where P is the octanol/water partition coefficient, D the diffusion coefficient, MV the molecular 

volume, while a value of 1 or 2 is proposed for ζ' for simplicity. Eq. 4 will be used in the subsequent 

paragraph as a starting point for the development of predictive equations, dropping the term log δ, 

since no assumptions can be made about it. 

3.2 Steered Molecular Dynamics simulations 

As a preamble, it should be remembered that the simulated trajectory is not intended to mimic 

the physical system but was chosen to avoid any biasing assumption on the possible permeation 

path, thus allowing an extended exploration of the entire conformational and physicochemical 

property space (Vistoli et al., 2005) the molecule experiences when moving through the bilayer.  

To this end, the model membrane was subdivided into 18 regions along the z direction. A thickness 

of 4 Å was chosen by considering that a region should not be so large that the calculated descriptors 

(permeability and diffusion coefficients) vary significantly, while being large enough to allow a 

significant diffusion coefficient to be calculated from the RMSD values. Since the permeant’s 

trajectories is, on average, from z = 60 Å (measured from the membrane mid plane) to z = 20 Å, 

the analyses were performed on the above described regions from z = 59 Å to z = 21 Å by moving 

the frame window by 2 Å at a time.  

Eq. 4 was then utilized to develop the corresponding predictive models as generated using the 

descriptors derived from the 18 so considered regions with ζ' = 1.  The reliability of these models 
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is represented in Figure 3 which suggests that optimal statistics are obtained when considering the 

regions corresponding to the water-phospholipids interface. Then they worsen in the regions 

substantially characterized by the sole phospholipidic heads to somewhat re-improve in the regions 

where phospholipidic heads and lipid tails coexist, and finally drop in the pure lipidic regions.  

These results suggest that promising models can be obtained when considering heterogeneous 

regions containing molecules or moieties of different polarity, while more homogeneous regions 

appear to be less performing regardless of their polarity. In particular, Figure 3 reveals that the 

water/bilayer interface is the primary target to be taken into consideration when studying the 

behaviour of permeants.  

 

Figure 3. Reliability of the obtained models (expressed by their r2) based on Eq.4 and computed 

using the parameters derived by the 18 different regions in which the in silico membrane was 

subdivided. 
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The so obtained best model is reported in Eq. 5: 

 

)/log(72.043.1log MVPDKp                    Eq. 5 

                  n = 80; r2 = 0.71; q2 = 0.70; SE = 0.65; F = 193.62 

where P, D and MV are the octanol/water partition coefficient, the diffusion coefficient and the 

molecular volume as calculated in region around z = 53 Å, respectively.  

Such a preliminary equation appears to be promising since it affords results which are roughly 

comparable to those of the model of Potts and Guy which correlates log Kp to lipophilicity and 

molecular weight and is one of the most cited semi-empirical equations. Even though the 

improvement in Eq. 5 seems to be unable to justify the time-demanding use of MD simulations, 

the beneficial role of the here performed MD simulations is clearly witnessed by the marked 

worsening of the resulting models in which the MD-derived diffusion coefficients are removed (r2 

= 0.63 for the region around z = 53 Å) thus inviting further investigations of their predictive role 

as described below.  

As evidenced in Table 3, temperature represents the factor which most markedly influences the 

variability of the experimental Kp values. Hence, one may hypothesize that improvements on Eq. 

5 can be obtained by including parameters which take into account the different temperatures at 

which the experimental measurements of Kp were performed. In fact, the use of MD runs allows 

the effects of temperature to be parameterized by two different approaches. In a direct approach, 

these effects can be considered by performing the simulations at the same temperature as the 

experiments. This procedure has been avoided so far due to the added computational costs of 
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equilibrating the membrane at different temperatures, but will be explored in future studies. In an 

indirect approach, the effects of temperature can be described by including in the predictive models 

a specific temperature-dependent parameter as described below. 

According to free-volume theory, the dependence of the diffusion coefficient D on absolute 

temperature T can be expressed by Eq. 6 (strictly valid for small molecules in rubbery polymers) 

[Errore. Il segnalibro non è definito.]: 

 

                                                    
TMVeDD /

0


                                          Eq. 6 

 

where MV is the molecular volume, D0 is the diffusion coefficient for MV  0 (constant for a 

given molecule), and γ is a constant. Eq. 6 can be written in logarithm form to give Eq. 6a: 

 

                                             
TMVDD /loglog 0 

                                           Eq. 6a 

 

Thus and as already pointed out by Vecchia and Bunge (Vecchia and Bunge, 2003a), a term 

proportional to MV/T (or MW/T where MW is molecular weight) can be used to account for the 

effect of temperature. Since the simulations were here performed at 300 K, the term log(PDT) at 

temperature T can be expressed in terms of the quantities calculated at 300 K, as 
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         Eq. 7 

 

Substituting Eq. 7 for log(PD) in Eq. 5, the latter assumes the form of Eq. 8  

 

*)/log(log 2

/

30010
1 TMVMVPDKp   

          Eq. 8 

 

where T* = (T-300)/T. P, D300 and MV are calculated in region around z = 53 Å . It should be 

noted that the last term in Eq. 8 has the meaning of a correction factor on the experimental log Kp. 

It equals zero when experimental values of Kp have been measured at 300 K, being negative when 

T < 300 K and positive when T > 300 K, in accordance with the average behaviour of residuals 

(experimental logKp - predicted logKp) observed by Vecchia and Bunge (there centred on 30 C) 

(Vecchia and Bunge, 2003b).  

When ζ' = 2, Eq. 8 becomes:  

 

*')/log(log 2

300 TMVMVPDKp  
       Eq. 9 
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Although the inclusion of MV in two terms of Eq. 9 may seem questionable, the two terms show 

a Variance Inflation Factor (VIF) of 1.21, and should be considered as non-collinear independent 

variables. The coefficients of Eq. 9 can be determined by linear regression analysis, so generating 

Eq. 10: 

 

*066.0)/log(75.021.0log 2

300 TMVMVPDKp 
           Eq. 10 

n = 80; r2 = 0.78; q2 = 0.77; SE = 0.58; F = 136.46 

 

where P, D300 and MV are calculated in region around z = 53 Å . The scatter plot of Eq. 10 is 

shown in Figure 4. Notably, the analysis of the residuals evidences that they are greater than 1 

only for 8 molecules, and the residual is lower than 0.5 for 51 molecules. Finally, there is no 

relation between residuals and experimental log Kp, thus suggesting that Eq. 10 is similarly 

predictive for good and poor permeants.  

To avoid the double inclusion of the MV variable in the generated equations, a linear dependence 

on temperature T can introduced, yielding: 

 

TMVPDKp 072.0)/log(75.021.21log 2

300 
                    Eq. 11 

n = 80; r2 = 0.76; q2 = 0.74; SE = 0.61; F = 119.94 



 18 

 

The reported statistics confirm the critical role of the temperature in accounting for the 

variability of the experimental Kp values and emphasize that the inclusion of temperature-related 

parameters yield a notable improvement of the reliability of the so obtained models which seems 

to justify the time-demanding use of MD simulations.   

In order to assess the predictive power of the above reported equations (namely Eqs. 5, 10 and 

11), the reduced dataset (n = 80) was split into training (n = 53) and test (n = 27) sets. The 

correlation equations were generated using only the training set and then used to predict the Kp 

values for the test set. Such a validation was repeated 20 times randomly subdividing the dataset 

to render the obtained results reasonably unbiased by the composition of the sets. The correlations 

for the test set are given in Table 1, while the corresponding statistics for the models generated for 

the training and test sets are compiled in Table 2. For a comprehensive comparison, Tables 1 and 

2 also include the corresponding results as obtained when applying the Potts and Guy equation 

(shown as P&G) to the reduced set of permeants as used for Eqs. 5, 10 and 11.  

As a trend, Table 1 shows satisfactory relations between experimental and predicted log Kp 

values in all the reported equations, as assessed by slopes very close to 45° and intercept values 

close to 0. Again, the modest standard deviations emphasize the stability of these equations which 

are substantially independent on the composition of the test sets.  

Eq. P&G  log Kpexp = 0.990(±0.210) log Kppred - 0.031(±0.473) 

Eq. 5 log Kpexp = 0.986(±0.172) log Kppred - 0.017(±0.404) 
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Eq. 10 log Kpexp = 1.054(±0.141) log Kppred - 0.182(±0.387) 

Eq. 11 log Kpexp = 0.989(±0.135) log Kppred - 0.006(±0.384) 

Table 1.  Equations correlating the predicted log Kp (log Kppred) with the experimental log Kp 

(log Kpexp) for the test sets as derived by utilizing the here reported best equations plus the Potts 

and Guy  equation as a reference. The standard deviation of the coefficients are obtained by 

considering the 20 equations as computed in this analysis. 

 

Equation 

(n=80) 

r2  

(training set) 

SE 

(training set) 

r2  

(test set) 

SE 

(test set) 

P&G 0.720,04 0.640,04 0.710,08 0.700,08 

Eq. 5 0.730.02 0.640.02 0.660.07 0.670.04 

Eq. 10 0.790.03 0.580.03 0.750.07 0.570.06 

Eq. 11 0.760.02 0.600,04 0.770.05 0.610.08 

Table 2. Statistical parameters (r2 and standard error, SE) for training and test set as derived for 

the best equations plus the Potts and Guy equation as a reference.   

 

The statistics reported in Table 2 confirm that Eq. 5 yields no significant improvements with 

respect to Potts and Guy equation, while Eq. 10 which takes into account the effect of temperature 

reveals statistical parameters of both the training and the test sets which are clearly improved 

compared to both Potts and Guy model and Eq. 5. Notably, the greater simplicity of Eq. 11 
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compared to Eq. 10, due to removal of the double inclusion of the volume descriptor, positively 

impacts on the test sets which show statistics even better than Eq. 10. 

When considering the overall statistics reported in Table 2 and the enhancements in the 

predictive power exerted by using MD simulations, one may wonder which effect the variability 

which unavoidably affect all skin permeability data can have on these enhancements. Answering 

to this basic question can provide a genuine evaluation of the relevance of the improvements 

gained by Eqs. 10 and 11 and can reveal whether there is still room for improvements, for example, 

by extracting additional descriptors from MD runs or the reported models are approaching the best 

achievable predictive power. To this end, the relations between data variability and predictive 

power are here in depth investigated by targeted numerical simulations as discussed in the 

Appendix (see below). Notably, such an analysis is here applied to skin permeability data, but the 

results and the methods reported below have a general applicability.  

In detail, the numerical analyses reported in the Appendix estimate how much the maximum 

achievable r2 value decreases when the data uncertainty increases and calculate the corresponding 

r2 confidence interval (see Table A1).  Thus, these results can be conveniently applied to the 

specific case of the here utilized skin permeability data.  To get an idea of the typical uncertainty 

of the pKp values in the existing datasets, compounds for which multiple (more than 2) 

measurements are included in the FV data set are compiled in Table 3 which reports the standard 

deviation of pKp normalized by the pKp average (ε). The actual value for ε for the entire Flynn's 

set or for the Fully Validated data set is unknown. As it can be seen from Table 3, ε can 

significantly vary among the reported compounds with a quite large range from 0.03 up to 0.44. 

By considering that an intermediate value (ε = 0.25) can represent a fair estimation of the overall 
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uncertainty, Table A1 shows that the maximum theoretical value for r2 is 0.74 with a confidence 

interval of 0.69 - 0.80.  

This result emphasizes that the here reported equations are really approaching the best 

theoretically obtainable results for the used experimental Kp values especially considering that the 

employed descriptors, despite being richly informative, are far from producing an ideal estimator 

as supposed in the Appendix. 

Moreover, the notable correlation (r2 = 0.64) between the normalized standard deviation of 

experimental pKp and the normalized standard deviation of experimental temperatures emphasizes 

the crucial role of temperature which should be taken into consideration to enhance the predictive 

models for pKp, either in the form of a correction factor (as done here) or performing MD 

simulations at the same temperature as the experiment. 
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Figure 4. Scatter plot of Eq. 10 showing experimental log Kp (x axis) vs predicted log Kp (y axis).  
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Corticosterone (n=4) pKp t (C)   Phenol (n=3) pKp t (C) 

Average 3.67 29.25   Average 2.53 28.00 

St. Dev. 0.94 6.55   St. Dev. 1.12 7.94 

St. Dev./Average (ε) 0.26 0.22   St. Dev./Average (ε) 0.44 0.28 

              

Estradiol (n=5) pKp t (C)   Ethanol (n=3) pKp t (C) 

Average 2.52 31.00   Average 3.37 25.67 

St. Dev. 0.58 4.00   St. Dev. 0.24 4.04 

St. Dev./Average (ε) 0.23 0.13   St. Dev./Average (ε) 0.07 0.16 

              

Mannitol (n=4) pKp t (C)   Water (n=8) pKp t (C) 

Average 4.09 31.50   Average 2.96 29.88 

St. Dev. 0.12 5.20   St. Dev. 0.20 2.10 

St. Dev./Average (ε) 0.03 0.16   St. Dev./Average (ε) 0.07 0.07 

              

Salicylic acid (n=3) pKp t (C)   Octanol (n=3) pKp t (C) 

Average 1.72 34.67   Average 1.26 25.67 

St. Dev. 0.43 4.04   St. Dev. 0.04 4.04 

St. Dev./Average (ε) 0.25 0.12   St. Dev./Average (ε) 0.03 0.16 

 

Table 3. Average, Standard Deviation (St. Dev.) and St. Dev. normalized by average for 

experimental pKp and temperature (t, C) based on multiple data for the same compound included 

in the Fully Validated data set (Vecchia and Bunge, 2003a). 
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4. CONCLUSIONS 
After building a stable and equilibrated model for the stratum corneum lipid bilayer, steered 

molecular dynamics simulations have been performed using molecules in the common subset 

between Flynn's set and the Fully Validated set as permeants. The equation obtained compares 

well with the Potts and Guy equation. 

Molecular dynamics has been used in an indirect way as a mean to explore the conformational 

and property space of the solute molecules in the different microenvironments of the stratum 

corneum. Since the work was meant to be a first screening of a large set of solutes, the approach 

developed (for plasma membranes) by Marrink and Berendsen for the prediction of permeability 

was not applied due to the added computational cost of Free Energy calculations from SMD 

simulations for 80 permeants. Instead, a mixed approach could be used where only the averaged 

diffusion coefficient in the plane parallel to the bilayer surface is extracted by MD runs by using 

the method of Marrink and Berendsen, and then used together with the physicochemical properties 

in the correlative equation. It should be noted that, due to the parallel nature of the task, running 

multiple simultaneous simulations (on the same solute to perform Free Energy calculations, on 

different solutes to cover a larger data set) is possible and only a matter of dedicating additional 

processing units to the job. 

However, the considered approach has allowed us to correlate the permeability coefficient to 

averaged (or median) physicochemical properties, improving on existing semi-empirical methods 

(employing the same quantities determined experimentally). Further improvement of the 

correlation coefficient seems difficult, considering the heterogeneity of the experimental dataset 

and the error involved in the measurement of the permeability coefficients. As a matter of fact, the 

statistics of the generated equations are unavoidably affected by the average error included in the 
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experimental data and this poses the problem concerning the optimal r2 value which can be reached 

starting from a given set of experimental data. Since such a problem particularly affects the 

prediction of the transdermal permeation, it was in depth treated in the following appendix by 

taking into consideration the here utilized dataset, even though the obtained results are of general 

applicability.  

Further collection of SMD data, may still allow us to gain a better understanding of the physical 

process. In detail, the behaviour of the molecules in the different zones of the bilayer may help to 

clarify whether the dependency of permeation upon molecular weight is due to a different region 

involved as a limiting step during the permeation process. 
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APPENDIX  

Maximum theoretical value and confidence interval of the correlation 
coefficient r  

When there is great variability in the compiled experimental dataset, considerations on the 

confidence interval of r and on the maximum theoretical value achievable for r can offer interesting 

results as to what to expect from a predictive model based on that set. In this appendix, purposely 

designed numerical simulations will be utilized to reveal how much the r value is worsened by 

increasing the data uncertainty and then the corresponding confidence interval of r will be 

determined by using the Fisher r→Z transform (Fisher, 1936, 1921, 1915). 

Thus, we can assume that a perfect estimator φ for a set of experimental data yi is known (in our 

study yi would correspond to the here utilized log Kp values). The estimator φ is a mathematical 

function which correlates a set of variables {xij} with the experimental value yi, where xij represents 

the j-th molecular property of the i-th molecule (see Eq. A1). The correlation based on a perfect 

estimator yields a correlation coefficient r = 1. 

 

yi  = φ(xij) i = 1,2...n, j=1,2...     Eq. A1 

 

For every yi, we now introduce an error equal to ε∙ci∙yi, where the ci values are normally 

distributed pseudo-random numbers with zero average and unitary standard deviation as calculated 

by applying the Box-Muller transform to a set of a linearly distribute random numbers (Box et al., 

1958), and ε corresponds to the standard deviation of the errors, normalized by yi. On this basis, 

Eq. A1 becomes Eq. A2 which has necessarily a correlation coefficient r < 1. 
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yi (1εci) = φ(xij)  i = 1,2...n, j=1,2...   Eq. A2 

 

Since φ, by definition, is a perfect estimator, the r values obtained in the simulation are the 

maximum theoretical correlation coefficients achievable given the uncertainty introduced (ε). 

For different values of ε, we repeat the numerical simulation 99 times so calculating the 99 

correlation coefficients rk, as obtained by applying Eq. A2 99 times to the same set {yi, xij}, each 

time changing the set {ci}. Table A1 clearly shows how much r and r2 worsen when ε increases 

and confirms that the formula maximum r2  1 - ε is an approximate but yet reasonable way to 

quickly estimate the worsening effect of ε.    

After determining the maximum r value, the confidence interval of r can be estimated by using 

the Fisher r→Z transform. It is defined by Eq. A3 as: 

 

)]1ln()1[ln(
2

1
rrZ 

     Eq. A3 

 

The transformed variable Z has a different behaviour than r. It tends to a normal distribution as 

the number of data (n) becomes large. To get a confidence interval for r, the value of r is 

transformed into Z, a confidence interval is calculated for Z and then is transformed in the 

corresponding confidence interval of r, using the reverse transform Eq. A4: 
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Since the previously calculated rk values are not normally distributed, we apply Fisher r→Z 

transform and obtain the corresponding 99 Zk values, for which the standard deviation is calculated 

by Eq. A5: 
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              Eq. A5 

 

Once the confidence interval for Z, has been calculated as ),( zz SZSZ  , the reverse 

transform (Eq. A4) is used to derive a confidence interval for r. Results of the simulations (Table 

A1) show how the confidence interval of r enlarges when the data uncertainty increases and allows 

a reasonable estimation of the range in which r can fallow depending of the data variability while 

considering that these simulations are based on an ideal situation in which a perfect estimator is 

available.  
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 ε→ 0.1 0.15 0.2 0.25 0.3 0.4 

Maximum average r 0.973 0.94 0.90 0.86 0.82 0.73 

Confidence interval for r  0.968 - 0.979 0.93 - 0.96 0.88 - 0.83 0.83 - 0.89 0.77 - 0.86 0.66 - 0.79 

Maximum average r2  0.948 0.89 0.82 0.74 0.67 0.53 

Confidence interval for r2  0.936 - 0.959 0.87 - 0.91 0.78 - 0.86 0.69 - 0.80 0.60 - 0.74 0.44 - 0.63 

 

Table A1. Maximum theoretical average values and confidence interval for r and r2 obtained 

through numerical simulation, corresponding to different values of ε = (Std. dev. of experimental 

pKp) / (average experimental pKp) in a set of measurements for the same compound. 
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