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Abstract

Adaptive randomly reinforced urn (ARRU) is a two-color urn model where the updating process is defined by

a sequence of non-negative random vectors {(D1,n, D2,n);n ≥ 1} and randomly evolving thresholds which utilize

accruing statistical information for the updates. Let m1 = E[D1,n] and m2 = E[D2,n]. In this paper we undertake

a detailed study of the dynamics of the ARRU model. First, for the case m1 6= m2, we establish L1 bounds on the

increments of the urn proportion, i.e. the proportion of ball colors in the urn, at fixed and increasing times under

very weak assumptions on the random threshold sequences. As a consequence, we deduce weak consistency of the

evolving urn proportions. Second, under slightly stronger conditions, we establish the strong consistency of the urn

proportions for all finite values of m1 and m2. Specifically we show that when m1 = m2, the proportion converges

to a non-degenerate random variable. Third, we establish the asymptotic distribution, after appropriate centering

and scaling, for the proportion of sampled ball colors and urn proportions for the case m1 = m2. In the process,

we resolve the issue concerning the asymptotic distribution of the proportion of sampled ball colors for a randomly

reinforced urn (RRU). To address the technical issues, we establish results on the harmonic moments of the total

number of balls in the urn at different times under very weak conditions, which is of independent interest.

Keywords: generalized Pólya urn, reinforced processes, strong and weak consistency, central limit theorems,

crossing times, harmonic moments.
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1 Introduction

In recent years, randomly reinforced urn (RRU) has been investigated in statistical and probability literature as

a model for clinical trial design, computer experiments, and in the context of vertex reinforced random walk (see

Hu and Rosenberger (2006); Mahmoud (2008); Pemantle and Volkov (1999)). Introduction of accruing information

in designing the reinforcement mechanism leads to an adaptive version of an RRU model, which we refer to as an

adaptive randomly reinforced urn (ARRU). In this paper, we study the properties concerning the urn proportions

and the proportion of sampled ball colors of an ARRU. We now turn to a precise description of the ARRU.

A randomly reinforced urn (RRU) model (see Muliere et al. (2006)) is characterized by a pair (Y1,n, Y2,n) of real

random variables representing the number of balls of two colors, red and white. The process is described as follows:

at time n = 0, the process starts with (y1,0, y2,0) balls. A ball is drawn at random. If the color is red, the ball is

returned to the urn along with the random numbersD1,1 of red balls; otherwise, the ball is returned to the urn along

with the random numbers D2,1 of white balls. Let Y1,1 = y1,0 +D1,1 and Y2,1 = y2,0 denote the urn composition

when the sampled ball is red; similarly, let Y1,1 = y1,0 and Y2,1 = y2,0 + D2,1 denote the urn composition when
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the sampled ball is white. The process is repeated yielding the collection {(Y1,n, Y2,n);n ≥ 1}. The quantities

{D1,n;n ≥ 1} and {D2,n;n ≥ 1} are independent collections of independent and identically distributed (i.i.d.)

non-negative random variables.

The urn model can be also described using its replacement matrix Dn, where [Dij,n] indicates the number of

balls of color j that are replaced in the urn when a balls of color i is sampled. In the RRU model, since the

off-diagonal elements are 0, we simplify the notation Dii,n to Di,n. Hence, the RRU model is characterized by the

replacement matrix

Dn =





D1,n 0

0 D2,n



 . (1.1)

Let m1 := E[D1,n] and m2 := E[D2,n].

Since the replacement matrix in (1.1) is diagonal, the RRU model is not a particular case of class of Generalized

Pólya Urns (GPU) whose replacement matrix (or an almost sure limit of certain “conditional” replacement matrices)

is assumed to be irreducible. For a review on the literature on GPUs, see for instance Athreya and Karlin (1968);

Smythe (1996); Bai and Hu (1999, 2005); Zhang et al. (2006); Laruelle and Pagès (2013); Aletti and Ghiglietti

(2017).

The asymptotic properties of the urn proportions in an RRUmodel were investigated by Durham et al. (1998) for

binary reinforcements, and extended to the continuous case by Muliere et al. (2006); Aletti et al. (2009). Specifically,

they established that

Zn =
Y1,n

Y1,n + Y2,n

a.s.→























1 if m1 > m2,

Z∞ if m1 = m2,

0 if m1 < m2,

(1.2)

where
a.s.→ stands for almost sure convergence and Z∞ is a random variable supported on (0, 1). The rate of

convergence and the limit distribution of Zn when m1 6= m2 has been established in May and Flournoy (2009).

For the case m1 = m2, the properties of the distribution of Z∞ were studied in Durham et al. (1998); Aletti et al.

(2009, 2012). Specifically, the distribution of Z∞ when D1,n and D2,n are Bernoulli random variables with the

same success probability, has been established in Durham et al. (1998). In the more general case where D1,n and

D2,n have the same expectations, it has been proved in Aletti et al. (2012) that the distribution of Z∞ is the unique

continuous solution of a functional equation satisfying certain boundary conditions. Additionally, it is shown in

Aletti et al. (2009) that P (Z∞ = x) = 0 for any x ∈ [0, 1]. Denoting {(N1,n, N2,n);n ≥ 1} the number of balls of

red and white colors sampled from the urn, one can deduce from (1.2) that N1,n/n converges to the same limit as

Zn.

Notice that for an RRU, the limit in (1.2) is always 1 or 0 in the case m1 6= m2. This asymptotic behavior can be

very attractive in applications such as clinical trials, where the response-adaptive designs based on an RRU model

achieve the ethical goal of assigning most subjects to a better performing treatment (see Durham et al. (1998);

Muliere et al. (2006)). However, from an inferential perspective, it is common to target a specific value ρ ∈ (0, 1)

(see Hu and Rosenberger (2006) for applications in clinical trials). To perform clinical experiments with such a

goal, a variant of RRU is needed. This was achieved in Aletti et al. (2013), where the modified randomly reinforced

urn (MRRU) model was introduced. The MRRU model is an RRU with two fixed thresholds 0 < ρ2 ≤ ρ1 < 1, such

that: (i) if a white ball is sampled and Zn < ρ2, no balls are replaced in urn, and (ii) if a red ball is sampled but

Zn > ρ1, no balls are replaced in the urn. Hence, the replacement matrix (1.1) in this case becomes

Dn =





D1,n · 1{Zn−1≤ρ1} 0

0 D2,n · 1{Zn−1≥ρ2}



 .

A more precise description of the MRRU model is provided in Section 2 Remark 2.1.

The strong consistency of Zn in the case m1 6= m2 was established in Aletti et al. (2013), i.e. they showed that

Zn
a.s.→











ρ1 if m1 > m2,

ρ2 if m1 < m2.
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An efficient test based on the MRRU was implemented in Ghiglietti and Paganoni (2016), while a second order

result for Zn (again when m1 6= m2), namely the asymptotic distribution of Zn after appropriate centering and

scaling, was derived in Ghiglietti and Paganoni (2014). We emphasize here that the rate of convergence in this case

is not the usual
√
n but n and the limit distribution is not Gaussian.

In applications, especially in clinical trials (see Hu and Rosenberger (2006)), ρ1 and ρ2 are unknown and depend

on the parameters of the distributions of D1,1 and D2,1. Let Fn−1 be the σ-algebra generated by the information

up to time n − 1 and let ρ̂1,n−1 and ρ̂2,n−1 be two random variables that are Fn−1-measurable. Ghiglietti et al.

(2017) proposed an adaptive randomly reinforced urn model that uses accruing information to construct random

thresholds ρ̂1,n−1 and ρ̂2,n−1 which converge a.s. to specified targets ρ1 and ρ2. Thus, using the replacement matrix

Dn =





D1,n · 1{Zn−1≤ρ̂1,n−1} 0

0 D2,n · 1{Zn−1≥ρ̂2,n−1}



 ,

an MRRU becomes an Adaptive Randomly Reinforced Urn (ARRU). It is worth mentioning here that the random

thresholds ρ̂1,n−1 and ρ̂2,n−1 depend on the adaptive estimators of the parameters of the distributions of D1,1 and

D2,1.

Ghiglietti et al. (2017) studied the asymptotic properties of an ARRU when m1 6= m2 under various conditions

on the rate of convergence of adaptive thresholds. Specifically, they established a strong consistency of (i) the

proportion of sampled balls of each color and (ii) the urn proportions, under the assumption that the thresholds

converge almost surely and that the limits of the thresholds are different from 0 and 1. Furthermore, they also

establish the asymptotic normality for the number of sampled ball colors, under an exponential rate of convergence

assumption on the adaptive thresholds and an additional condition that the thresholds are updated at exponential

times. Additionally, they provided heuristics as to why the proportion of balls of each color in the urn (urn

proportions) may not have a limiting Gaussian distribution, without further hypotheses.

In this manuscript, the first significant contribution concerns weak consistency results for the urn proportions

when m1 6= m2 under the assumption that the threshold sequence {ρ̂i,n, n ≥ 1} converges in probability to ρi, for

i = 1, 2. The hypothesis that the thresholds converge only in probability (and not a.s.) brings in subtle challenges

which necessitate understanding the dynamics of the ARRU model. More precisely, our proofs involve obtaining

L1 bounds on (i) the increments of the distance ∆n = |Zn − ρ1|, viz. ∆n+1 −∆n and (ii) the increments at linearly

increasing times ∆n+nc −∆n, where c > 0. These results are then combined with a judicious choice of c and using

comparison arguments with a specifically designed RRU model, weak consistency is established. The above results

are presented in Section 4; specifically, Theorem 4.2, Theorem 4.5 , and Theorem 4.6. The proofs of these theorems

rely on the estimates concerning the harmonic moments of the total number of balls in the urn. This result, of

independent interest, is established in Theorem 4.1 where even the convergence of thresholds is not required.

The second significant contribution of this manuscript concerns the strong consistency of the urn proportions for

all values ofm1 andm2 under the assumption that the thresholds converge almost surely but without any restriction

on their limiting values. As a consequence, we obtain the strong consistency of the proportion of sampled ball colors

thus completing Corollary 2.1 in Ghiglietti et al. (2017) for the case m1 = m2. It is important to notice that in

the case m1 = m2, the urn proportion converges to a proper random variable Z∞ which is different from the case

m1 6= m2. As a consequence, we obtain the strong consistency of the proportion of sampled balls of both the colors,

thus completing Theorem 2.1 in Ghiglietti et al. (2017) for the case m1 = m2.

The third significant contribution concerns second order results for the urn proportions and the proportion

of sampled ball colors for the case m1 = m2. Specifically, we establish that, the quantities (Zn − Z∞) and

(n−1N1,n − Z∞) converge stably at the rate
√
n to a distribution which is a continuous mixture of a centered

Gaussian distribution and the distribution of Z∞. The proof involves decomposing (n−1N1,n − Z∞) into a sum

of two terms, one involving comparison of n−1N1,n with the cumulative proportion of red balls up to time n and

the other involving the deviation of the cumulative proportion up to time n from Z∞. The second term is then

carefully investigated by invoking the Doob’s decomposition theorem and some delicate estimates. In the process,

we explicitly identify the variance of the conditional Gaussian distribution. This result also resolves a long-standing
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open problem in the well-investigated RRU model concerning the limiting distribution of the proportion of sampled

ball colors for the case m1 = m2. Additionally, the results also settle the open problem concerning the urn

proportions and proportion of sampled ball colors for the MRRU model when m1 = m2.

The rest of the paper is structured as follows: Section 2 contains the model, assumptions, and main results;

Section 3 is concerned with preliminary estimates and results on the urn process. Sections 4 and 5 are concerned

with the proofs of the consistency of the urn proportion and Section 6 is concerned with the proof of the limit

distribution of the proportion of sampled balls of both the colors.

2 Model Assumptions, Notations, and Main Results

We begin by describing our model precisely. Let ξ1 = {ξ1,n;n ≥ 1} and ξ2 = {ξ2,n;n ≥ 1} be two sequences of

i.i.d. random variables. Without loss of generality (wlog), assume that the support S of ξ1,n and ξ2,n to be the

same. Additionally, let U = {Un;n ≥ 1} denote a sequence of i.i.d. uniform random variables in (0,1) independent

of ξ1 and ξ2.

Consider an urn containing y1,0 > 0 red balls and y2,0 > 0 white balls, and define y0 = y1,0 + y2,0 and

z0 = y−1
0 y1,0. We note here that y1,0 and y2,0 may not assume integer values. At time n = 1, a ball is drawn at

random from the urn and its color is observed. Let the random variable X1 be such that

X1 =











1 if the extracted ball is red,

0 if the extracted ball is white.

Then one can express X1 = 1{U1≤z0}. Note that X1 is a Bernoulli random variable with parameter z0 and is

independent of ξ1 and ξ2.

Let ρ̂1,0 and ρ̂2,0 be two constants in [0, 1] and ρ̂1,0 ≥ ρ̂2,0. Let u : S → [a, b], 0 < a ≤ b < ∞. (We mention

here that it is possible to allow a = 0. The case a > 0 makes calculations transparent and hence we make this

simplifying assumption throughout the manuscript. However, we add remarks on how to get rid of this assumption

in various estimates that explicitly use a > 0). If X1 = 1 and z0 ≤ ρ̂1,0, we return the extracted ball to the urn

together with D1,1 = u (ξ1,1) new red balls. While, if X1 = 0 and z0 ≥ ρ̂2,0, we return it to the urn together with

D2,1 = u (ξ2,1) new white balls. If X1 = 1 and z0 > ρ̂1,0, or if X1 = 0 and z0 < ρ̂2,0, the urn composition is not

modified. To ease notations, we set w1,0 = 1{z0≤ρ̂1,0} and w2,0 = 1{z0≥ρ̂2,0}. Formally, the extracted ball is always

replaced in the urn together with

X1D1,1w1,0 + (1−X1)D2,1w2,0

new balls of the same color; now, the urn composition becomes














Y1,1 = y1,0 +X1D1,1w1,0

Y2,1 = y2,0 + (1−X1)D2,1w2,0.

Set Y1 = Y1,1 + Y2,1 and Z1 = Y −1
1 Y1,1. Now, by iterating the above procedure we define ρ̂1,1 and ρ̂2,1 to

be two random variables, with ρ̂1,1, ρ̂2,1 ∈ [0, 1] and ρ̂1,1 ≥ ρ̂2,1 a.s., measurable with respect to the σ-algebra

F1 ≡ σ(X1, ξ̃1), where ξ̃1 = X1ξ1,1 +(1−X1)ξ2,1. At the end of time n, let (Y1,n, Y2,n) denote the urn composition

and Zn =
Y1,n

Y1,n+Y2,n
.

Now to define the model at time (n+ 1), let ρ̂1,n and ρ̂2,n be two random variables with ρ̂1,n, ρ̂2,n ∈ (0, 1) and

ρ̂1,n ≥ ρ̂2,n a.s., measurable with respect to a σ-algebra Fn, where,

Fn = σ
(

Fn−1, Xn, ξ̃n
)

,

and ξ̃n = Xnξ1,n + (1−Xn)ξ2,n. We will refer to ρ̂j,n j = 1, 2 as threshold parameters.

At time (n+ 1), a ball is extracted and let Xn+1 = 1 if the ball is red and Xn+1 = 0 otherwise. Equivalently,

we can define Xn+1 = 1{Un+1≤Zn}. Then, the ball is returned to the urn together with

Xn+1D1,n+1W1,n + (1−Xn+1)D2,n+1W2,n
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balls of the same color, where D1,n+1 = u (ξ1,n+1), D2,n+1 = u (ξ2,n+1), W1,n = 1{Zn≤ρ̂1,n}, W2,n = 1{Zn≥ρ̂2,n}

and Zn+1 = Y1,n+1/Yn+1 for any n ≥ 1, where















Y1,n+1 = y1,0 +
∑n+1

i=1 XiD1,iW1,i−1

Y2,n+1 = y2,0 +
∑n+1

i=1 (1−Xi)D2,iW2,i−1

(2.1)

and Yn+1 = Y1,n+1 + Y2,n+1. If Xn+1 = 1 and Zn > ρ̂1,n, i.e. W1,n = 0, or if Xn+1 = 0 and Zn < ρ̂2,n, i.e.

W2,n = 0, the urn composition does not change at time n+ 1. Note that condition ρ̂1,n ≥ ρ̂2,n a.s., which implies

W1,n + W2,n ≥ 1, ensures that the urn composition can change with positive probability for any n ≥ 1, since

the replacement matrix is never a zero matrix. Since, conditionally on the σ-algebra Fn, Xn+1 is assumed to be

independent of ξ1 and ξ2, it follows that Xn+1 is Bernoulli distributed with parameter Zn.

Remark 2.1. Setting ρ̂1,n = 1 and ρ̂2,n = 0 for any n ≥ 0, which implies W1,n =W2,n = 1, equation (2.1) expresses

the dynamics of an RRU, i.e.














Y1,n+1 = y1,0 +
∑n+1

i=1 XiD1,i

Y2,n+1 = y2,0 +
∑n+1

i=1 (1−Xi)D2,i.

Setting ρ̂1,n = ρ1 and ρ̂2,n = ρ2 for any n ≥ 0, which impliesW1,n = 1{Zn≤ρ1} andW2,n = 1{Zn≥ρ2}, equation (2.1)

expresses the dynamics of a MRRU, i.e.















Y1,n+1 = y1,0 +
∑n+1

i=1 XiD1,i1{Zn≤ρ1}

Y2,n+1 = y2,0 +
∑n+1

i=1 (1−Xi)D2,i1{Zn≥ρ2}.

Notice that in the MRRU ρ1 and ρ2 are known, while in the ARRU they are unknown and typically estimated

using the data.

Before we state our results, we recall that m1 = E[D1,1] and m2 = E[D2,1].

2.1 Weak Consistency of the Urn Proportions

One of the main results of this paper is concerned with the consistency of the urn proportion Zn when the random

thresholds ρ̂1,n and ρ̂2,n converge in probability to some constants in ρ1, ρ2 ∈ (0, 1). To obtain this result, we need

to assume that the sequences of the thresholds are bounded away from 0 and 1 with exponentially high probability,

which is expressed in the following condition: there exist two constants 0 < ρmin ≤ ρmax < 1 and 0 < cρ <∞ such

that

P (ρmin ≤ ρ̂2,n ≤ ρ̂1,n ≤ ρmax) ≥ 1− exp (−cρn) (2.2)

for large n. The result is described below:

Theorem 2.2. Assume (2.2) and there exist two constants ρ1, ρ2 ∈ (0, 1), with ρ1 ≥ ρ2, such that

ρ̂1,n
p→ ρ1 ρ̂2,n

p→ ρ2. (2.3)

Then, when m1 6= m2,

Zn
p→











ρ1 if m1 > m2,

ρ2 if m1 < m2.
(2.4)

We present the proof of Theorem 2.2 in Section 4.

Remark 2.3. The strong consistency of the urn proportion presented in Ghiglietti et al. (2017, Theorem 2.1), i.e.

ρ̂1,n
a.s.→ ρ1 implies Zn

a.s.→ ρ1, may suggest to prove Theorem 2.2 by applying subsequence arguments. Specifically,

Zn
p→ ρ1 in (2.4) implies that for any subsequence {nk; k ≥ 1} there exists a further subsequence {nkj

; j ≥ 1}
such that Znkj

a.s.→ ρ1. Moreover, assumption ρ̂1,n
p→ ρ1 in (2.3) guarantees the existence of {nkj

; j ≥ 1} such

that ρ̂1,nkj

a.s.→ ρ1. Nevertheless, the strong consistency result in Ghiglietti et al. (2017, Theorem 2.1) does not
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prove that Znkj

a.s.→ ρ1 with the only assumption that ρ̂1,nkj

a.s.→ ρ1, because this condition does not provide any

information on the behavior of ρ̂1,i at times i /∈ {nkj
; j ≥ 1}. Hence, the convergence of ρ̂1,nkj

would imply the

convergence of Znkj
only if the urn composition was updated exclusively at times {nkj

; j ≥ 1}.

2.2 Strong Consistency of the Urn Proportions

The following theorem states the consistency of the urn proportion Zn for all finite values of m1 and m2, when the

random thresholds ρ̂1,n and ρ̂2,n converge with probability one.

Theorem 2.4. Assume there exist two constants ρ1, ρ2 ∈ [0, 1], with ρ1 ≥ ρ2, such that

ρ̂1,n
a.s.→ ρ1 ρ̂2,n

a.s.→ ρ2. (2.5)

Then,

Zn
a.s.→























ρ1 if m1 > m2,

Z∞ if m1 = m2,

ρ2 if m1 < m2,

(2.6)

where Z∞ is a random variable such that P (Z∞ ∈ [ρ2, ρ1]) = 1.

Remark 2.5. As an immediate corollary of the above theorem, it can be seen that the proportion of sampled ball

colors, n−1N1,n, converges to the same limit as in (2.6).

We present the proof of Theorem 2.4 in Section 5. When the limit of the urn proportion is different from 1 or

0, the following convergence result holds.

Lemma 2.6. Assume (2.5) with ρ1 > ρ2. Then, on the set {limn→∞ Zn 6= {0, 1}},
Yn

n
a.s.→ min{m1, m2}.

The above lemma can be applied for the RRU model only when m1 = m2. For the case m1 6= m2 in an RRU

model, May and Flournoy (2009) showed that Yn

n

a.s.→ max{m1;m2}. In the case m1 = m2, we are able to establish

that the limiting proportion Z∞ has no point mass of positive probability within the open interval (ρ2, ρ1). This is

stated in the following lemma.

Lemma 2.7. Assume (2.5) with ρ1 > ρ2 and m1 = m2. Then, for any x ∈ (ρ2, ρ1), we have P (Z∞ = x) = 0.

Point masses of positive probability are possible at values ρ1 and ρ2.

2.3 Asymptotic Distribution of the Sampled Ball Colors

The second order asymptotic results concerning the proportion of sampled ball colors involve the concept of stable

convergence (see Hall and Heyde (1980)). Formally, let {Xn;n ≥ 1} be a random sequence on a probability space

(Ω,F ,P ); we say that Xn
d→ X (stably) if, for every point x of continuity for the cumulative distribution function

of X and for every event E ∈ F ,

lim
n→∞

P ( Xn ≤ x,E ) = P ( X ≤ x,E ) .

We now present the asymptotic distribution for the proportion of sampled ball colors in an RRU model. Let us

denote by N1n :=
∑n

i=1Xi and N2n :=
∑n

i=1(1 −Xi) = n −N1n the number of red and white balls, respectively,

sampled form the urn up to time n. Moreover, let σ2
1 := V ar[D1,1] and σ

2
2 := V ar[D2,1]. The result is stated in

the following Theorem:

Theorem 2.8. Consider an RRU model and assume m1 = m2 = m. Then,

√
n

(

N1n

n
− Z∞

)

d→ N (0,Σ), (stably)

where

Σ :=

(

1 +
2Σ̄

m2

)

Z∞(1− Z∞), Σ̄ := (1− Z∞)σ2
1 + Z∞σ

2
2 . (2.7)
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Remark 2.9. In the special case of binary reinforcements with the same mean, i.e. D1,n ∼ Be(p) and D2,n ∼ Be(p)

with p ∈ (0, 1], Theorem 2.8 expresses a Central Limit Theorem with stable convergence for the RRU model studied

in Durham et al. (1998), in which Σ in (2.7) reduces to
(

1 + 2
(

1−p
p

))

Z∞(1− Z∞). Then, combining Theorem 2.8

with the exact distribution of Z∞ established in Durham et al. (1998), it is possible to obtain an analytic expression

of the asymptotic distribution of
√
n
(

N1n
n

− Z∞
)

in this special case. A similar calculation also holds for more

general binary schemes considered in Aletti et al. (2012, Section 6.2).

It is known that when D1,n = D2,n = 1 for any n ≥ 1, the random variable Z∞ is Beta-distributed with

parameters (y1,0, y2,0) (see e.g. Athreya and Karlin (1968)). Furthermore, in this case Theorem 2.8 provides a CLT

with stable convergence for the standard Pòlya’s urn, in which Σ = Z∞(1−Z∞). Now, combining Theorem 2.8 with

the Beta-distribution, it is possible to obtain an analytic expression of the asymptotic distribution of
√
n
(

N1n
n

− Z∞
)

for the Pòlya urn case.

We now present the asymptotic distribution for the proportion of sampled ball colors in an ARRU model. This

result can be derived using Theorem 2.8 on the set of trajectories that do not cross the thresholds ρ̂1,n and ρ̂2,n

infinitely often, and hence {Z∞ 6= {ρ2, ρ1}}. To this end, we introduce a sequence of random sets {An;n ≥ 1} such

that An ∈ Fn and An ⊂ An+1 for any n ≥ 1, and ∪n≥1An = (ρ2, ρ1). In particular, we fix 0 < α < 1/2 and we

define An as follows:

An :=
(

ρ2 + CY −α
n , ρ1 −CY −α

n

)

, (2.8)

where 0 < C < ∞ is a positive constant. The choice of {An;n ≥ 1} in (2.8) allows us to apply the estimates of

Lemma 3.4 in the proof of the limit distribution, in order to obtain the equivalence: {Zn ∈ An, ev.} = {Z∞ ∈
(ρ2, ρ1)} a.s., where ev. stands for eventually, which means for all but a finite number of terms. The limit distribution

for the ARRU model is expressed in the following result.

Theorem 2.10. Assume (2.5) with ρ1 > ρ2 and m1 = m2 = m. Then,

limn{Zn ∈ An} = limn{Zn ∈ An} = {Z∞ ∈ (ρ2, ρ1)},

and, on the sequence of sets ({Zn ∈ An}, n ≥ 1), we have

√
n

(

N1n

n
− Z∞

)

d→ N (0,Σ), (stably)

where, as in (2.7),

Σ :=

(

1 +
2Σ̄

m2

)

Z∞(1− Z∞), Σ̄ := (1− Z∞)σ2
1 + Z∞σ

2
2 .

It is worth noticing that the limiting distribution obtained in Theorem 2.8 and Theorem 2.10 is not Gaussian

but a mixture distribution.

As a corollary of the methods of proof of Theorem 2.8 and Theorem 2.10 one can obtain the asymptotic

distribution of
√
n(Zn − Z∞). We state this result without proof.

Theorem 2.11. Assume (2.5) with ρ1 > ρ2 and m1 = m2 = m. Then, conditionally on Fn, on the sequence of

sets ({Zn ∈ An}, n ≥ 1), we have

√
n (Zn − Z∞)

d→ N (0,ΣZ), (stably)

where

ΣZ :=

(

1 +
Σ̄

m2

)

Z∞(1− Z∞), Σ̄ := (1− Z∞)σ2
1 + Z∞σ

2
2 .

3 Preliminary Results

In this section, we present some preliminary estimates that are required to understand the dynamics of the ARRU

model and to prove the main results of the paper. Most of the proofs of the results gathered by the literature are

omitted, since the original proofs hold for all values of m1 and m2.

We start by presenting some basic properties of the ARRU dynamics. Specifically, we provide a useful expression

of the excepted increments (Zn+1 − Zn) conditioned on Fn, which is required to prove the consistency result and
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in particular in the proofs of Theorem 4.2 in Section 4 and of Theorem 2.8 in Section 6. Moreover, we show that

the number of balls of both the colors sampled from the urn, namely N1,n and N2,n, and the total number of balls

in the urn Yn, increase to infinity almost surely. To do that, we establish a lower bound for the increments of the

process Yn. These results are established in Ghiglietti et al. (2017, Lemma 4.1 and 4.2), and we state the proof

below for completeness.

Lemma 3.1. We have the following results:

(a) For any n ≥ 0,

E [Zn+1 − Zn|Fn] = Zn(1− Zn)Bn,

where

Bn := E

[

D1,n+1W1,n

Yn +D1,n+1W1,n
− D2,n+1W2,n

Yn +D2,n+1W2,n
|Fn

]

; (3.1)

(b) for any n ≥ 0, we have that

E [Yn+1 − Yn|Fn] ≥ min{m1, m2} ·
(

min{y1,0; y2,0}
y0 + bn

)

;

(c)

Yn
a.s.→ ∞;

(d)

min{N1,n;N2,n} a.s.→ ∞.

Proof. The proof of result (a) is based on a modification of the proof in Muliere et al. (2006, Theorem 2). First,

note that, by definition

Zn+1 = Xn+1
Y1,n +D1,n+1W1,n

Yn +D1,n+1W1,n
+ (1−Xn+1)

Y1,n

Yn +D2,n+1W2,n

and since Xn+1 is conditionally on Fn independent of D1,n+1 and D2,n+1, we can get that

E[Zn+1|Fn] = ZnE

[

Y1,n +D1,n+1W1,n

Yn +D1,n+1W1,n
|Fn

]

+ (1− Zn)E

[

Y1,n

Yn +D2,n+1W2,n
|Fn

]

= ZnE

[

Y1,n +D1,n+1W1,n

Yn +D1,n+1W1,n
+

Y2,n

Yn +D2,n+1W2,n
|Fn

]

Analogously, we have that

E[1− Zn+1|Fn] = (1− Zn)E

[

Y2,n +D2,n+1W2,n

Yn +D2,n+1W2,n
+

Y1,n

Yn +D1,n+1W1,n
|Fn

]

.

Therefore,

E[Zn+1 − Zn|Fn] = E[(1− Zn)Zn+1 − Zn(1− Zn+1)|Fn]

= Zn(1− Zn)E

[

Y1,n +D1,n+1W1,n

Yn +D1,n+1W1,n
+

Y2,n

Yn +D2,n+1W2,n

−Y2,n +D2,n+1W2,n

Yn +D2,n+1W2,n
− Y1,n

Yn +D1,n+1W1,n
|Fn

]

= Zn(1− Zn)E

[

D1,n+1W1,n

Yn +D1,n+1W1,n
− D2,n+1W2,n

Yn +D2,n+1W2,n
|Fn

]

.

This concludes the proof of result (a).

Concerning the proof of result (b), first note that

Yn+1 − Yn = Xn+1D1,n+1W1,n + (1−Xn+1)D2,n+1W2,n.

Since Xn+1 and D1,n+1 are conditionally independent given Fn, and W1,n is Fn-measurable, we have that

E [Yn+1 − Yn|Fn] = (m1ZnW1,n +m2 (1− Zn)W2,n)

≥ min{m1,m2} · (ZnW1,n + (1− Zn)W2,n) .
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We recall that the variables W1,n and W2,n can only take the values 0 and 1, and by construction we have that

(W1,n +W2,n) ≥ 1 for any n ≥ 0; then, we can give a further lower bound

E [Yn+1 − Yn|Fn] ≥ min{m1,m2} · (min {Zn; 1− Zn}) .

Finally, the result follows by noting that

min {Zn; 1− Zn} =
min {Y1,n;Y2,n}

Yn
≥ min{y1,0; y2,0}

y0 + bn
.

This concludes the proof of result (b).

We now focus on the proof of result (c). First, notice that Yn =
∑n−1

i=0 (Yi+1 − Yi) + y0. Then, by Chen (1978,

Theorem 1), it is sufficient to show that

P
(

∞
∑

i=0

E [Yi+1 − Yi|Fi] = ∞
)

= 1.

To this end, we will now use the lower bound given by result (b), so obtaining

n
∑

i=0

E [Yi+1 − Yi|Fi] ≥ min{m1,m2}
(

n
∑

i=0

min{y1,0; y2,0}
y0 + bi

)

→ ∞.

Hence, we have that Yn
a.s.→ ∞.

Finally, we present the proof of result (d). We will show that N1,n
a.s.→ ∞, since the proof for N2,n is analogous.

Since N1,n =
∑n

i=1Xi, by Chen (1978, Theorem 1), it is sufficient to show that

P
(

∞
∑

i=1

E [Xi|Fi−1] = ∞
)

= 1.

Now,
n
∑

i=1

E [Xi|Fi−1] =
n
∑

i=1

Zi−1 ≥
n
∑

i=1

y1,0
y0 + (i− 1) b

→ ∞.

Hence, we have that N1,n
a.s.→ ∞.

The following result is needed in the proof of Theorem 2.4 and it is taken from Aletti et al. (2013, Theorem

2.1). This result provides multiple equivalent ways to establish the almost sure convergence of a general real valued

process in [0,1], that we will apply to the process {Zn;n ≥ 0} of the urn proportion in an ARRU model. For this

result, we let d (down) and u (up) be two real numbers such that 0 < d < u < 1, and we consider two sequences of

times tj(d, u) and τj(d, u) defined as follows: for each j ≥ 0, tj(d, u) represents the time of the first up-cross of u

after τj−1(d, u), and τj(d, u) represents the time of the first down-cross of d after tj . Note that tj(d, u) and τj(d, u)

are stopping times, since the events {tj(d, u) = k} and {τj(d, u) = k} depend on {Zn;n ≤ k}, which are measurable

with respect to Gk = σ (Zn : n ≤ k).

Lemma 3.2 (Aletti et al. (2013, Theorem 2.1)). Let τ−1(d, u) = −1 and define for every j ≥ 0 two stopping times

tj(d, u) =











inf{n > τj−1(d, u) : Zn > u} if {n > τj(d, u) : Zn > u} 6= ∅;

+∞ otherwise.

τj(d, u) =











inf{n > tj(d, u) : Zn < d} if {n > tj−1(d, u) : Zn < d} 6= ∅;

+∞ otherwise.

(3.2)

Then, the following three events are a.s. equivalent

(a) Zn converges a.s.;

(b) for any 0 < d < u < 1,

lim
j→∞

P (tj(d, u) <∞) = 0;
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(c) for any 0 < d < u < 1,
∑

j≥1

P (tj+1(d, u) = ∞|tj(d, u) <∞) = ∞;

using the convention that P (tj+1(d, u) = ∞|tj(d, u) < ∞) = 1 when P (tj(d, u) = ∞) = 1.

We now present a lemma that provides lower bounds for the total number of balls in the urn at the times of

up-crossings, Ytj . The lemma gets used in the proof of Theorem 2.4, where conditioning on a fixed number of

up-crossing ensures to have at least a number of balls Yn determined by the lower bounds of this lemma. This

result has been taken by Aletti et al. (2013, Lemma 2.1) and the proof is omitted since the adaptive thresholds and

the values of m1 and m2 do not play any role during up-crossings. Hence, the proof reported in Aletti et al. (2013,

Lemma 2.1) carries over to our model, with Dn replaced by Yn.

Lemma 3.3 (Aletti et al. (2013, Lemma 2.1)). For any 0 < d < u < 1, we have that

Ytj(d,u) ≥
(

u (1− d)

d (1− u)

)

Ytj−1(d,u) ≥ ... ≥
(

u (1− d)

d (1− u)

)j

Yt0(d,u).

The following lemma provides a uniform bound for the generalized Pólya urn with same reinforcement means,

which is needed in the proof of Theorem 2.4.

Lemma 3.4 (Aletti et al. (2013, Lemma 3.2)). Consider an RRU with m1 = m2. If Y0 ≥ 2b, then

P

(

sup
n≥1

|Zn − Z0| ≥ h

)

≤ b

Y0

(

4

h2
+

2

h

)

for every h > 0.

Finally, we present an auxiliary result that provides an upper bound on the increments of the urn process Zn,

by imposing a condition on the total number of balls in the urn Yn.

Lemma 3.5 (Ghiglietti et al. (2017, Lemma 3.1)). For any ǫ ∈ (0, 1), we have that
{

Yn > b

(

1− ǫ

ǫ

) }

⊆ { |Zn+1 − Zn| < ǫ } .

4 Proof of Weak Consistency and Related Results

In this section, we prove the weak consistency for the urn proportion of the ARRU model, which is established in

Theorem 2.2. This proof requires some probabilistic results concerning the ARRU model, which have been gathered

in different subsections. The proof of the weak consistency based on these results is then provided in Subsection 4.4.

Let us start by describing the general structure of the proof. The weak consistency is proved by showing that

the process {∆n;n ≥ 1}, defined as

∆n := |ρ1 − Zn|, ∀ n ≥ 0, (4.1)

converges to zero in probability. To prove this, we want to exploit the fact that, unless ∆n is arbitrarily close to

zero, the conditional expected increments of ∆n are negative. This result is obtained in Subsection 4.2 by studying

the conditional expected increments of Zn. Hence, to show that ∆n is asymptotically close to zero, we need to

investigate the expected increments of the process {∆n;n ≥ 1}. Since the increments of ∆n are at the same order

of Y −1
n , we first determine how fast the total number of balls in the urn, Yn, increases to infinity. This is addressed

in Theorem 4.1, where we show that the total number of balls in the ARRU model increases linearly with the

number of extractions from the urn. For this reason, the increments of ∆n are of the order of n−1; hence, we

consider differences of ∆n evaluated at linearly increasing times, i.e. G(n, c) := (∆n+nc − ∆n), such that the L1

bounds obtained for such differences do not vanish as n goes to infinity. More specifically, we provide a negative

upper bound for the expected differences G(n, c), which is not negligible unless ∆n is asymptotically close to zero.

Formally, for any δ > 0, we show that for some 0 < C <∞

E [G(n, sδ)] ≤ −CP (Q(δ, n)) + o(1), (4.2)
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where 0 < sδ < ∞ is an appropriate constant and Q(δ, n) := {∆n > δ}. To obtain (4.2), we prove that the expected

differences G(n, sδ) are: (i) negative for moderate values of ∆n (see Theorem 4.5) and (ii) negligible for small values

of ∆n (see Theorem 4.6). These results are derived using comparison arguments with specific auxiliary urn models.

Finally, in Subsection 4.4 we use (4.2) and other preliminary results to establish the weak consistency.

4.1 Harmonic Moments of Y
n

In this subsection, we establish that the total number of balls in the ARRU model increases linearly with the

number of extractions from the urn. Moreover, this result ensures uniform bounds for the harmonic moments of

the total number of balls.

Before presenting the main result, we introduce some notation. For any 0 < c ≤ C < ∞ and for all n ≥ 0, let

Fn(c, C) ∈ Fn be the set defined as follows

Fn(c, C) := {y0 + cn ≤ Yn ≤ y0 + Cn}.

Here, we show that, for some c and C, P (Fn(c, C)) converges to one with a sub-exponential rate (a sequence of

constants an is said to converge at a sub-exponential rate to 1 (resp. 0) if an ≥ 1−exp(−cnp) (resp. an ≤ exp(−cnp))

for some 0 < p < 1), which implies P (F c
n(c, C), i.o.) = 0. Moreover, this result provides uniform bounds for the

moments of n/Yn. The following theorem makes this result precise.

Theorem 4.1. Under assumption (2.2), there exist two constants 0 < zmin < ρmin and ρmax < zmax < 1 such that,

for some ǫz > 0, depending on zmin and zmax, we have for large n that

P (zmin ≤ Zn ≤ zmax) ≥ 1− exp(−ǫz
√
n). (4.3)

Moreover, there exist two constants 0 < c1 < C1 < ∞ such that, for some ǫy > 0, depending on y0, we have for

large n that

Fn(c1, C1) ≡ P (y0 + c1n ≤ Yn ≤ y0 + C1n) ≥ 1− exp(−ǫy
√
n). (4.4)

As a consequence, for any j ≥ 1

sup
n≥0

{

E

[

(

n

Yn

)j
]}

< ∞. (4.5)

Proof. This proof has a general structure similar to the proof in Ghiglietti et al. (2017, Theorem 3.1).

Let cmin := min{ρmin; 1 − ρmax} and p0 := ( y0
y0+b

)cmin < cmin. Fix an arbitrary 0 < c < p0 and consider the

following sets

Ad,n :=
⋃

n/2≤i≤n

{Zi < c} ,

Ac,n :=
⋂

n/2≤i≤n

{c < Zi < 1− c} ,

Au,n :=
⋃

n/2≤i≤n

{Zi > 1− c} .

Note that by choosing 0 < zmin ≤ c and 1 − c ≤ zmax < 1 we have Ac,n ⊂ {zmin ≤ Zn ≤ zmax}. Then, since

Ad,n ∪Ac,n ∪Au,n = Ω, result (4.3) can be established by proving that P (Ad,n)+P (Au,n) ≤ exp(−ǫz
√
n) for large

n. We will focus on the set Ad,n, since the arguments to deal with Au,n are analogous. First, define ǫ > 0 and, for

any n ≥ 1, the following sets:

A1,n :=

{

sup
i≥ǫ

√
n

{ρ̂1,i} > 1− cmin

}

,

A2,n :=

{

inf
i≥ǫ

√
n
{ρ̂2,i} < cmin

}

,

A3,n :=

{

inf
i≥ǫ

√
n
{min{1− ρ̂1,i; ρ̂2,i}} ≥ cmin

}

.

Note that A1,n ∪ A2,n ∪A3,n = Ω, and hence we have that

P (Ad,n) ≤ P (A1,n) + P (A2,n) + P (A3,n ∩ Ad,n) .
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First, we prove that P (A1,n) and P (A2,n) converge to zero with a sub-exponential rate. Consider the term

P (A1,n). From the definition of A1,n, we obtain

P (A1,n) = P





⋃

i≥ǫ
√

n

{ρ̂1,i > 1− cmin}



 ≤
∑

i≥ǫ
√

n

P (ρ̂1,i > 1− cmin) .

Since, (1− cmin) ≥ ρmax, from (2.2) we have that for large i

P (ρ̂1,i > 1− cmin) ≤ exp (−cρi) ,

with 0 < cρ <∞. Hence, we have that

P (A1,n) ≤
∑

i≥ǫ
√

n

P (ρ̂1,i > 1− cmin)

≤
∑

i≥ǫ
√

n

exp (−cρi)

≤ exp
(

−ǫz
√
n
)

,

for some constat ǫz > 0. Similar arguments can be applied to prove P (A2,n) → 0 with a sub-exponential rate.

Finally, we need to show that P (A3,n ∩ Ad,n) converges to zero with a sub-exponential rate. First, define the

set Ãd,n as follows:

Ãd,n :=
⋂

ǫ
√

n≤i≤n/2

{Zi < c} .

We now show that, since 0 < c < p0 = cmin(
y0

b+y0
), it follows that on the set A3,n we have {Zi ≥ c} ⊂ {Zi+1 ≥ c}

for any i ≥ ǫ
√
n, and hence

(A3,n ∩ Ad,n) ⊂
(

A3,n ∩ Ãd,n

)

, (4.6)

for any n ≥ 1. First, note that on the set A3,n, {ρ̂2,i ≥ cmin} for any i ≥ ǫ
√
n. Hence for any 0 < c < p0 < cmin,

since {Zi ≥ c} = {c ≤ Zi < cmin} ∪ {Zi ≥ cmin}, we have

(1) if {c ≤ Zi < cmin} we have W2,i = 0, which implies Zi+1 ≥ Zi and so Zi+1 ≥ c;

(2) if {Zi ≥ cmin}, the event {Zi+1 ≤ Zi} is possible but using Xi+1 ≥ 0, W2,i ≤ 1, D2,i+1 ≤ b and Yi ≥ y0 we

obtain

Zi+1 =
ZiYi +Xi+1D1,i+1W1,i

Yi +Xi+1D1,i+1W1,i + (1−Xi+1)D2,i+1W2,i
≥ Ziy0
y0 + b

≥ cmin
y0

y0 + b
= p0 > c.

This guarantees that (4.6) holds for any n ≥ 1.

We now show that P (A3,n ∩ Ãd,n) converges to zero with a sub-exponential rate. To this end, first note that

on the set A3,n, we have ρ̂2,i ≥ cmin for any i = ǫ
√
n, .., n/2; moreover, on the set Ãd,n, we have Zi < p0 for any

i = ǫ
√
n, .., n/2. These considerations imply that

W2,i = 0 and W1,i = 1 for any i = ǫ
√
n, .., n/2, on the set A3,n ∩ Ãd,n. (4.7)

Hence, we can write

Zn/2 =
Y1,ǫ

√
n +

∑n/2

i=ǫ
√

n
XiD1,i

Yǫ
√
n +

∑n/2

i=ǫ
√
n
XiD1,i

≥
a
∑n/2

i=ǫ
√

n
Xi

(y0 + bǫ
√
n) + a

∑n/2

i=ǫ
√

n
Xi

, (4.8)

where the inequality follows since 0 ≤ Y1,ǫ
√

n < Yǫ
√
n ≤ y0 + bǫ

√
n, D1,i ≥ a a.s. for any i ≥ 1 and the function

c+x
C+x

is increasing for x > 0 and c < C. Now, define for any n ≥ 1 the set A4,n as follows:

A4,n :=







n/2
∑

i=ǫ
√

n

Xi >
p0

a(1− p0)

(

y0 + bǫ
√
n
)







,

and consider the set A3,n ∩ Ãd,n ∩ A4,n. On the set A3,n ∩ Ãd,n we can use the definition of A4,n in (4.8), so

obtaining
(

A3,n ∩ Ãd,n ∩A4,n

)

⊂
(

{

Zn/2 > p0
}

∩ Ãd,n

)

.
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However,
{

Zn/2 > p0
}

∩ Ãd,n = ∅. Hence, P (A3,n ∩ Ãd,n ∩ A4,n) = 0 and it is sufficient to show that P
(

A3,n ∩
Ãd,n ∩AC

4,n

)

converges to zero with a sub-exponential rate.

To this end, by (4.7), note that on the set A3,n ∩ Ãd,n we have Zi+1 ≥ Zi for any i = ǫ
√
n, .., n/2. Hence, on

the set A3,n ∩ Ãd,n, {Xi, i = ǫ
√
n, .., n/2} are conditionally Bernoulli with parameter pi ≥ Zǫ

√
n a.s. Now, let us

denote with {̺i,n; i = 1, .., n/2− ǫ
√
n} a sequence of i.i.d. Bernoulli random variable with parameter z0,n, defined

as

z0,n :=
y1,0

y0 + bǫ
√
n

≤ Zǫ
√

n a.s.;

it follows that

P
(

A3,n ∩ Ãd,n ∩AC
4,n

)

≤ P

( n/2−ǫ
√

n
∑

i=1

̺i,n ≤ p0
a(1− p0)

(

y0 + bǫ
√
n
)

)

. (4.9)

Finally, we use the following Chernoff’s upper bound for i.i.d. random variables in [0, 1] (see Dembo and Zeitouni

(1998))

P (Sn ≤ c0 ·E[Sn]) ≤ exp

(

− (1− c0)
2

2
·E[Sn]

)

, (4.10)

with c0 ∈ (0, 1) and Sn =
∑n

i Xi. In our case, we have that RHS of (4.9) can be written as P (Sn ≤ cn ·E[Sn]),

where Sn =
∑n/2−ǫ

√
n

i=1 ̺i,n,

E [Sn] =
(n

2
− ǫ

√
n
) y1,0
(y0 + bǫ

√
n)

and cn =
p0

a(1− p0)

(y0 + bǫ
√
n)2

y1,0(n/2− ǫ
√
n)

;

since ǫ > 0 can be chosen arbitrary small, we can define an integer n0 ≥ 1 and a constant c0 ∈ (0, 1) such that

cn < c0 for any n ≥ n0, so that

P (Sn ≤ cn ·E[Sn]) ≤ P (Sn ≤ c0 ·E[Sn]) .

Hence, by using (4.10), for any n ≥ n0 we have that

P
(

A3,n ∩AC
4,n

)

≤ exp

(

− (1− c0)
2

2
·E[Sn]

)

,

which converges to zero with a sub-exponential rate since

E[Sn] =
y1,0(n/2− ǫ

√
n)

y0 + bǫ
√
n

∼ n√
n

=
√
n.

This concludes the proof of (4.3).

Now, we prove (4.4). Since the reinforcements are a.s. bounded, i.e. |Dj,n| < b for any n ≥ 1 and j = 1, 2, we

trivially have that P (Yn ≥ y0 + nb) = 0. Thus, we will show that P (Yn − y0 ≤ c1n) converges to zero with a sub-

exponential rate. Moreover, since in the proof of (4.3) we established that for any 0 < c < p0 there exists ǫz such

that P (Ac,n) ≥ 1− exp(−ǫz
√
n), then to prove (4.4) we can focus on the probability P ({Yn − y0 ≤ c1n} ∩ Ac,n).

First, consider the following relation on the increments of the total number of balls

Yi − Yi−1 = D1,iXiW1,i−1 +D2,i (1−Xi)W2,i−1 ≥ a [XiW1,i−1 + (1−Xi)W2,i−1]

Then, note that, on the set Ac,n, the random variables

XiW1,i−1 + (1−Xi)W2,i−1, i = n/2, .., n

are, conditionally on the σ-algebra Fi−1, Bernoulli with parameter greater than or equal to c. Hence, if we introduce

{Bi; i ≥ 1} a sequence of i.i.d. Bernoulli random variables with parameter c, using that Yn is increasing we have

P ({Yn − y0 ≤ c1n} ∩Ac,n) ≤ P
({

Yn − Yn/2 ≤ c1n
}

∩Ac,n

)

≤ P











a
n
∑

i=n/2

Bi ≤ c1n







∩Ac,n





≤ P





n
∑

i=n/2

Bi ≤ c1
a
n



 . (4.11)
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Now, we want to use the Chernoff’s bound for i.i.d. random variables in [0, 1] expressed in (4.10), with Sn =
∑n

i=n/2Bi. In our case, we have E[Sn] = nc/2 and so c0 = 2c1/(ac). Hence, by choosing c1 small enough we can

obtain c0 < 1 which let us apply Chernoff’s bound. This implies (4.4).

Finally, we get the harmonic moments as follows

E

[

(

n

Yn

)j
]

= E

[

(

n

Yn

)j

1Fn(c1,C1)

]

+E

[

(

n

Yn

)j

1F c
n(c1,C1)

]

≤ E

[

(

n

y0 + c1n

)j

1Fn(c1,C1)

]

+

(

n

y0

)j

E
[

1F c
n(c1,C1)

]

≤ c−j
1 + y−j

0 nj exp(−ǫy
√
n).

We notice here that the above proof also works for the case a = 0 by directly working with
∑n

i=1XiD1,i and

using general large deviation estimates in (4.9) and (4.11).

4.2 L1 Bound for the Increments of ∆
n

To ease notation in the rest of paper, we will refer to Fn(c1, C1) as

Fn := {y0 + c1n ≤ Yn ≤ y0 + C1n}, (4.12)

where 0 < c1 < C1 < ∞ are the constants determined in Theorem 4.1 to obtain (4.4). Also, for any ε > 0, let

R(ε, n) := {|ρ̂1,n−ρ1| < ε} and Q(ε, n) := {∆n > ε}, where we recall from (4.1) that ∆n = |ρ1−Zn|. The following
result provides an upper bound on the increments of ∆n.

Theorem 4.2. Let m1 > m2 and assume (2.2) and (2.3). For any ε > 0, there exists 0 < c2 <∞ and a sequence

of random variables {ψn;n ≥ 0} with E[|ψn|] = o(n−1), such that

E
[

G(n, n−1)1Q(ε,n)|Fn

]

≤ −n−1 · c21Q(ε,n) + ψn, (4.13)

where we recall G(n, n−1) = (∆n+1 −∆n).

The behavior and the sign of the excepted increments of the urn proportion G(n, n−1) required to prove The-

orem 4.2 depend on the position of Zn respect to ρ1. For this reason, we study separately the cases when Zn is

above or below ρ1. Formally, we define

Q−(ε, n) := {Zn < ρ1 − ε}, Q+(ε, n) := {Zn > ρ1 + ε}, (4.14)

so that Q(ε, n) = Q+(ε, n)∪Q−(ε, n). Specifically, we present Lemma 4.3 and Lemma 4.4 that provide bounds for

the expected increments G(n, n−1) on the sets Q−(ε, n) and Q+(ε, n), respectively. The proof of Theorem 4.2 is

presented after the proofs of Lemma 4.3 and Lemma 4.4.

Lemma 4.3. Let An ∈ Fn be such that An ⊂ Q−(ε, n). Then, we have that

E [(Zn+1 − Zn) 1An ] ≥ n−1 · c2P (An) − o(n−1). (4.15)

Proof. Let In := E [(Zn+1 − Zn) 1An ] and, since An ∈ Fn, we can use result (a) of Lemma 3.1 obtaining

In = E [E [Zn+1 − Zn|Fn] 1An ] = E [Zn(1− Zn)Bn1An ] , (4.16)

where we recall that Bn is defined in (3.1) as follows

Bn := E

[

D1,n+1W1,n

Yn +D1,n+1W1,n
− D2,n+1W2,n

Yn +D2,n+1W2,n

∣

∣Fn

]

.

Now, note the following relation

{Zn ≤ ρ̂1,n} ⊃
(

Q−(ε, n) ∩R(ε, n)
)

14



where R(ε, n) = {|ρ̂1,n − ρ1| < ε}. Since An ⊂ Q−(ε, n), on the set An the previous relation becomes {Zn ≤
ρ̂1,n} ⊃ R(ε, n), which implies W1,n ≥ 1R(ε,n). Combining this argument with W2,n ≤ 1, we obtain on the set An

the following inequality

Bn ≥ E

[(

D1,n+11R(ε,n)

Yn +D1,n+11R(ε,n)

− D2,n+1

Yn +D2,n+1

)

∣

∣Fn

]

.

Then, by using D2,n+1 ≥ 0 and D1,n+11R(ε,n) ≤ b a.s., we obtain that, on the set An,

Bn ≥ E

[(

D1,n+11R(ε,n)

Yn + b
− D2,n+1

Yn

)

∣

∣Fn

]

= E1n − E2n,

where

E1n :=
m11R(ε,n) −m2

Yn + b
, and E2n :=

m2b

Yn(Yn + b)
.

First, note that

E [Zn(1− Zn)E2n1An ] ≤ E [E2n] ≤ m2b sup
k≥1

E

[

(

k

Yk

)2
]

n−2.

Now, using (4.5) it follows that

E [Zn(1− Zn)E2n1An ] = O(n−2).

Thus, from (4.16) we have

In ≥ E [Zn(1− Zn)E1n1An ]− o(n−1). (4.17)

Now, consider the set Fn defined in (4.12) as

Fn = { c1n ≤ Yn − y0 ≤ C1n } ,

where we recall that, by (4.4) in Theorem 4.1, P (F c
n) ≤ exp (−ǫy

√
n). Moreover, let 1An = J1n + J2n, where

J1n := 1An∩Fn and J2n := 1An∩F c
n
. Thus, concerning J2n we have that

|E [Zn(1− Zn)E1nJ2n] | ≤ max
n≥0

{|E1n|}P (F c
n) = o(n−1),

since maxn≥0{|E1n|} ≤ b/y0 a.s. Thus, returning to (4.17) we have that

In ≥ E [Zn(1− Zn)E1nJ1n]− o(n−1). (4.18)

Now, consider the further decomposition J1n = J11n+J12n, where J11n := 1An∩Fn∩{E1n≥0} and J12n := 1An∩Fn∩{E1n<0}.

Thus, concerning J12n we have that

E [Zn(1− Zn)E1nJ12n] ≥ −
(

m2

y0 + c1(n+ 1)

)

P (An ∩ {E1n < 0}) ;

moreover, since P (Zn < zmin) and P (Zn > zmax) converge to zero with a sub-exponential rate by (4.3), in

Theorem 4.1, we obtain

E [Zn(1− Zn)E1nJ11n] ≥
(

zmin (1− zmax) (m1 −m2)

y0 +C1(n+ 1)

)

P (An ∩ {E1n > 0}) − o(n−1)

Therefore, from (4.18) we have

In ≥ n−1c2P (An) − O(n−1)P (E1n < 0) − o(n−1),

where 0 < c2 < ∞ is an appropriate constant. Hence, since from m1 > m2 we have {E1n < 0} ≡ Rc(ε, n),

result (4.15) is obtained by establishing P (E1n < 0) → 0. To this end, note that

P (E1n < 0) = 1− P (R(ε, n)) → 0,

where P (R(ε, n)) → 1 follows from ρ̂1
p→ ρ1, which is stated in (2.3) since m1 > m2.

Let us recall that from (4.14) Q+(ε, n) = {Zn > ρ1 + ε}. We have the following result

Lemma 4.4. Let An ∈ Fn be such that An ⊂ Q+(ε, n). Then, we have that

E [(Zn+1 − Zn)1An ] ≤ −n−1 · c2P (An) + o(n−1). (4.19)
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Proof. The proof of this Lemma is obtained by following analogous arguments of the proof of Lemma 4.3. In fact,

we can first apply result (a) of Lemma 3.1, then note that

{Zn ≤ ρ̂1,n} ⊂
(

Q+c(ε, n) ∪Rc(ε, n)
)

,

and

{Zn ≥ ρ̂2,n} ⊃
(

Q+(ε, n) ∩ R(ε, n)
)

,

where we recall that R(ε, n) := {|ρ̂1,n − ρ1| < ε}. Hence, since An ⊂ Q+(ε, n), on the set An we have that

W1,n ≤ 1Rc(ε,n) and W2,n ≥ 1R(ε,n), which lead to the following inequality

Bn ≤ E

[(

D1,n+11Rc(ε,n)

Yn +D1,n+11Rc(ε,n)

− D2,n+11R(ε,n)

Yn +D2,n+11R(ε,n)

)

|Fn

]

.

Then, by applying some standard calculations, we obtain that, on the set A+
n ,

Bn ≤ E

[(

D1,n+11Rc(ε,n)

Yn
− D2,n+11R(ε,n)

Yn + b1R(ε,n)

)

|Fn

]

=
m11Rc(ε,n)

Yn
− m21R(ε,n)

Yn + b1R(ε,n)

=
m11Rc(ε,n) −m21R(ε,n)

Yn + b1R(ε,n)

.

Now, we can go through the same previous calculations using the results of Theorem 4.1 and P (Rc(ε, n)) → 0, in

order to prove (4.19).

Proof of Theorem 4.2. First, note that establishing (4.13) is equivalent to proving that for any An ∈ Fn and letting

An := An ∩Q(ε, n):

E
[

G(n, n−1)1An

]

≤ −n−1 · c2P (An) + o(n−1),

where we recall that G(n, n−1) = (∆n+1 −∆n). Hence, consider A+
n := An ∩Q+(ε, n) and A−

n := An ∩ Q−(ε, n).

Since A+
n ∩A−

n = ∅ and A+
n ∪A−

n = An, we have the following decomposition

E
[

G(n, n−1)1An

]

= I+n − I−n ,

where

I+n := E
[

(Zn+1 − Zn) 1
A+

n

]

, I−n := E
[

(Zn+1 − Zn) 1
A−

n

]

.

By applying Lemmas 4.3 and 4.4 to I−n and I+n , respectively, we obtain











I−n ≥ n−1 · c2P (A−
n ) − o(n−1),

I+n ≤ −n−1 · c2P (A+
n ) + o(n−1).

This concludes the proof.

4.3 L1 Bound for ∆
n
at Linearly Increasing Times

In this subsection, we provide an upper bound for the increments of ∆n evaluated at linearly increasing times, i.e.

G(n, c) = (∆n+nc −∆n) and c > 0, where we recall from (4.1) that ∆n = |ρ1 −Zn|. To this end, we claim that, for

any fixed δ > 0, there exists a value c > 0 such that for all n ≥ 0

P ( {|Zn+nsδ − Zn| > δ/2} ∩ Fn ) = 0,

where we recall from (4.12) that Fn := {y0 + c1n ≤ Yn ≤ y0 +C1n}. We will denote by sδ one of these values of c.

We can compute precisely the range of values admissible for sδ: on the set Fn, we obtain

|Zn+nc − Zn| ≤ b

n+nc
∑

i=n

1

Yi
≤ b

c1

n+nc
∑

i=n

1

i
≤ b

c1
log (1 + c) ,
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where we recall that b is the maximum value of the urn reinforcements, i.e. D1,n, D2,n ≤ b a.s. for any n ≥ 1.

Then, imposing |Zn+nc − Zn| < δ/2, we obtain

sδ ∈
(

0 , exp
( c1
2b
δ
)

− 1
)

. (4.20)

This ensures that P ({|Zn+nsδ − Zn| > δ/2} ∩ Fn) = 0 for all n ≥ 0.

The next theorem provides an L1 upper bound for the difference G(n, sδ) = (∆n+nsδ −∆n) on the set Q(δ, n) =

{∆n > δ}. An L1 upper bound on the set Qc(δ, n) is presented in Theorem 4.6.

Theorem 4.5. Let m1 > m2, (2.2) and (2.3). Then, for any δ > 0 there exists a constant 0 < C <∞ such that

E
[

G(n, sδ)1Q(δ,n)

]

≤ −CP (Q(δ, n)) + o(1).

Proof. First, note that using (4.4) in Theorem 4.1, we have

∣

∣E
[

G(n, sδ)1Q(δ,n)∩F c
n

]∣

∣ ≤ P (F c
n) → 0.

Hence, define

Gn := E
[

G(n, sδ)1Q(δ,n)∩Fn

]

,

and consider the following expression

Gn =

n+nsδ−1
∑

i=n

E
[

G(i, i−1)1Q(δ,n)∩Fn

]

, (4.21)

where we recall that G(i, i−1) = (∆i+1 −∆i). From the definition of sδ in (4.20), on the set Fn we have that for

all i ∈ {n, .., n+ nsδ}
Q(δ, n) ⊂ Q(δ/2, i),

where we recall that Q(δ, n) = {∆n > δ} and Q(δ/2, i) = {∆i > δ/2}. Hence, by applying Theorem 4.2 to each

term of the sum in (4.21), since Q(δ, n) ∩ Fn ∈ Fi for all i ∈ {n, .., n+ nsδ}, we obtain

E
[

G(i, i−1)1Q(δ,n)∩Fn

]

= E
[

E
[

G(i, i−1)1Q(δ/2,i)|Fi

]

1Q(δ,n)∩Fn

]

≤ E
[(

−i−1 · c21Q(δ/2,i) + ψi

)

1Q(δ,n)∩Fn

]

= − i−1 · c2P (Q(δ, n) ∩ Fn) + E
[

ψi1Q(δ,n)∩Fn

]

.

Now, note that from (4.4) in Theorem 4.1 we have that P (Q(δ, n) ∩ Fn) = P (Q(δ, n)) − o(i−1); moreover, from

Theorem 4.2, |E
[

ψi1Q(δ,n)∩Fn

]

| ≤ E [|ψi|] = o(i−1). Thus, from (4.21) we have that

Gn ≤ −
n+nsδ−1
∑

i=n

i−1 · c2P (Q(δ, n)) +

n+nsδ−1
∑

i=n

o
(

i−1
)

≤ − log (1 + sδ) · c2P (Q(δ, n)) + o(1).

The result follows after calling C := c2 log (1 + sδ).

Now, we show that the expected difference G(n, sδ) is asymptotically non-positive on the set Qc(δ, n), for any

δ > 0, where we recall that G(n, sδ) = (∆n+nsδ − ∆n), Q(δ, n) = {∆n > δ} and ∆n = |ρ1 − Zn|. The result is

stated precisely in the following theorem.

Theorem 4.6. Let m1 > m2, (2.2) and (2.3). Then, for any δ > 0,

limnE
[

G(n, sδ)1Qc(δ,n)

]

≤ 0. (4.22)

To prove Theorem 4.6, we need to compare the ARRU model with two new urn models: {Z̃+
n ;n ≥ 1} and

{Z̃−
n ;n ≥ 1}. The dynamics of these processes is based on a sequence of random times {tn;n ≥ 1} which describes

relation between the process {∆n;n ≥ 1} and an arbitrary fixed value ν > 0. Specifically, fix ν > 0 and, for any

n ≥ 0, define the set

Tn := {0 ≤ k ≤ n : Qc(ν, n− k)} ,
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where we recall Qc(ν, n− k) = {∆n−k ≤ ν}. Let {tn;n ≥ 1} be the sequence of random times defined as

tn =











inf{Tn} if Tn 6= ∅;

∞ otherwise.
(4.23)

The time (n− tn) indicates the last time up to n the urn proportion is in the interval (ρ1 − ν, ρ1 + ν).

First, let us describe the urn model {Z̃−
n ;n ≥ 1}. Let Ĩ− = 1, ỹ0 ∈ (0, y0) and z̃−0 ∈ (0, ρ1 − ν). The process

{Z̃−
n ;n ≥ 1}, Z̃−

n = Ỹ1,n/(Ỹ1,n + Ỹ2,n), evolves as follows: if tn−1 = 0, i.e. ∆n−1 ≤ ν, or tn−1 = ∞, then

X̃n = 1{Un<z̃−0 } and














Ỹ1,n = z̃−0 · ỹ0 + X̃nD1,nĨ
−,

Ỹ2,n =
(

1− z̃−0
)

· ỹ0 +
(

1− X̃n

)

D2,n;

(4.24)

if tn−1 = k ≥ 1, i.e. ∆n−1 > ν, then X̃n = 1{Un<Z̃n−1} and















Ỹ1,n = Ỹ1,n−1 + X̃nD1,nĨ
−,

Ỹ2,n = Ỹ2,n−1 +
(

1− X̃n

)

D2,n

(4.25)

then, Ỹn := Ỹ1,n + Ỹ2,n and Z̃n := Ỹ1,n/Ỹn. The urn model is well defined since tn−1 is Fn−1-measurable.

Analogously, the urn model {Z̃+
n ;n ≥ 1}, Z̃+

n = Ỹ1,n/(Ỹ1,n + Ỹ2,n), is defined by the same equations (4.24)

and (4.25), with Ĩ− and z̃−0 are replaced by Ĩ+ = 0 and z̃+0 ∈ (ρ1 + ν, 1), respectively.

In the next lemma, we state an important relation among the processes {Z̃−
n ;n ≥ 1}, {Z̃+

n ;n ≥ 1} and the urn

proportion of the ARRU model {Zn;n ≥ 1}. This result is needed in the proof of Theorem 4.6. To ease calculations,

let h > 0 and fix the initial proportions z̃−0 and z̃+0 as follows:

ρ1 − z̃−0 = z̃+0 − ρ1 = ν + h. (4.26)

Let Mn :=
∑n+nsδ

i=n 1Rc(ν,n) and, for any ǫ > 0 define the set

Mǫ
n := {Mn < nsδǫ}, (4.27)

where we recall that R(ν, n) = {|ρ̂1,n − ρ1| ≤ ν}, sδ is such that P ({|G(n, sδ)| > δ/2} ∩ Fn) = 0, with Fn =

{y0 + c1n ≤ Yn ≤ y0 + C1n} from (4.12). Moreover, for any n ≥ 1 and k ∈ {n, .., n+ nsδ} let us define the set

E(n, k) := ∪k
j=nQ

c(ν, j) ≡ { ∃j ∈ {n, .., k} : {∆j ≤ ν} } . (4.28)

We also introduce the following notation: ∆̃−
l := |ρ1 − Z̃−

l |, ∆̃+
l := |ρ1 − Z̃+

l | and ∆̃∗
l := max

{

∆̃−
l , ∆̃

+
l

}

. Thus, we

have the following result:

Lemma 4.7. Let m1 > m2, (2.2) and (2.3). Fix n ≥ 1, ỹ0 ∈ (0, y0 + c1n), z̃
−
0 and z̃+0 as in (4.26). Consider the

set Mǫ
n as defined in (4.27) with

0 < ǫ <
c1h

bsδ
. (4.29)

Then, for any n ≥ 1 and ln ∈ {n+ 1, .., n+ nsδ}, on the set Mǫ
n ∩ Fn we have that

E(n, ln) ⊂ Qc(∆̃∗
l , l) a.s., (4.30)

for all l ∈ {ln + 1, .., n+ nsδ}.

Proof. First, fix l ∈ {ln + 1, .., n + nsδ} and note that, from the definition of {tn;n ≥ 1} in (4.23) and E(n, k)

in (4.28), we always have

{tl−1 = ∞} ∩ E(n, ln) = ∅.

Hence, we never consider in this proof the set {tl−1 = ∞}.
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Then, consider the set {tl−1 = 0} and note that, from the definition of tn in (4.23), {tl−1 = 0} ≡ Qc(ν, l − 1),

which implies that, on the set {tl−1 = 0} ∩ {Xl = 0},

Zl ≥ (ρ1 − ν)Yl−1

Yl−1 +D2,lW2,l−1
≥ z̃−0 ỹ0

ỹ0 +D2,l
= Z̃−

l a.s., (4.31)

and, on the set {tl−1 = 0} ∩ {Xl = 1},

Zl ≤ (ρ1 + ν)Yl−1 +D1,lW1,l−1

Yl−1 +D1,lW1,l−1
≤ z̃+0 ỹ0 +D1,l

ỹ0 +D1,l
= Z̃+

l a.s. (4.32)

From (4.31) and (4.32) we have Z̃−
l ≤ Zl ≤ Z̃+

l a.s., that ensures that (4.30) is verified whenever {tl−1 = 0}.
To prove (4.30) on the set {1 ≤ tl−1 < ∞}, we will show that, defining Ã−

l :=
{

Z̃−
l ≤ Zl

}

, Ã+
l :=

{

Zl ≤ Z̃+
l

}

and B := Mǫ
n ∩ Fn ∩ {1 ≤ tl−1 <∞},

(

B ∩Q−(ν, l − tl−1)
)

⊆
(

Ã−
l ∩Q−(ν, l − tl−1)

)

,
(

B ∩Q+(ν, l − tl−1)
)

⊆
(

Ã+
l ∩Q+(ν, l − tl−1)

)

.
(4.33)

Moreover, from the definition of {tn;n ≥ 1} in (4.23), on the set {1 ≤ tl−1 <∞}, we note that

{Xl−tl−1
= 0} ≡ {Zl−tl−1

≤ ρ1 − ν} = Q−(ν, l − tl−1).

{Xl−tl−1
= 1} ≡ {Zl−tl−1

≥ ρ1 + ν} = Q+(ν, l − tl−1),

Hence, showing (4.33) is equivalent to establish the following

(

B ∩ {Xl−tl−1
= 0}

)

⊆
(

Ã−
l ∩ {Xl−tl−1

= 0}
)

,
(

B ∩ {Xl−tl−1
= 1}

)

⊆
(

Ã+
l ∩ {Xl−tl−1

= 1}
)

.
(4.34)

To this end, we will prove by induction on j ∈ {l − tl−1 + 1, .., l} the following results:

(

B ∩ {Xl−tl−1
= 0}

)

⊆
((

j
⋂

i=l−tl−1

Ã−
i

)

∩ {Xl−tl−1
= 0}

)

, (4.35)

(

B ∩ {Xl−tl−1
= 1}

)

⊆
((

j
⋂

i=l−tl−1

Ã+
i

)

∩ {Xl−tl−1
= 1}

)

. (4.36)

First, note that by (4.31) it follows that condition (4.35) is verified for j = l− tl−1. Hence, the result is achieved

by establishing (4.35) for j ∈ {l − tl−1 + 1, .., l}, assuming that (4.35) holds for (j − 1).

To this end, consider

Zj =
Zl−tl−1−1Yl−tl−1−1 +

∑j
i=l−tl−1

XiD1,iW1,i−1

Yl−tl−1−1 +
∑j

i=l−tl
XiD1,iW1,i−1 +

∑j
i=l−tl−1

(1−Xi)D2,iW2,i−1

.

Now, note that by (4.35) we have Xi = 1{Ui<Zi−1} ≥ 1{Ui<Z̃−

i−1}
= X̃−

i for any (i − 1) = l − tl−1, ..., (j − 1),

and since Zl−tl−1−1 ≥ ρ1 − ν ≥ z̃−0 we also have that Xl−tl−1
≥ X̃−

l−tl−1
. Moreover, since Yl−tl−1−1 ≥ ỹ0 and

Xl−tl−1
= 0, it follows that

Zj ≥
(ρ1 − ν)ỹ0 +

∑j
i=l−tl−1+1 X̃

−
i D1,iW1,i−1

ỹ0 +
∑j

i=l−tl+1 X̃
−
i D1,iW1,i−1 +

∑j
i=l−tl−1

(

1− X̃−
i

)

D2,iW2,i−1

.

Note that, letting n0 such that P (R(ν, n0)) > η > 0, for any n ≥ n0 we have the following relation

{Zn ≤ ρ̂1,n} ⊃
(

Q−(ν, n) ∩R(ν, n)
)

,

where we recall that R(ν, n) = {|ρ̂1,n − ρ1| < ν} and Q−(ν, n) = {Zn < ρ1 − ν}. Hence, by definition of tl−1

in (4.23), we have Q−(ν, i) for any i = l − tl−1, ..., j − 1, and {Zi ≤ ρ̂1,i} ⊃ R(ν, i), which implies W1,i ≥ 1R(ν,i).

Combining this argument with W2,i ≤ 1, we have that

Zj ≥
(ρ1 − ν)ỹ0 +

∑j
i=l−tl−1+1 X̃

−
i D1,i1R(ν,i−1)

ỹ0 +
∑j

i=l−tl−1+1 X̃
−
i D1,i1R(ν,i−1) +

∑j
i=l−tl−1

(

1− X̃−
i

)

D2,i

.
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In addition, on the set Mǫ
n we have that

j
∑

i=l−tl−1+1

X̃−
i D1,i1R(ν,i−1) ≥

j
∑

i=l−tl−1+1

X̃−
i D1,i − bMn

≥
j
∑

i=l−tl−1+1

X̃−
i D1,i − nbsδǫ.

Moreover, condition (4.29) ensures that

(ρ1 − ν)ỹ0 − nbsδǫ ≥ z̃−0 ỹ0,

which implies Ã−
l = {Zj ≥ Z̃−

j }.
Analogous arguments can be followed to establish (4.36) for any j ∈ {l− tl−1+1, .., l}. Finally, combining (4.35)

and (4.36), we obtain (4.34). This concludes the proof.

In the next lemma, we show an important result required in the proof of Theorem 4.6, concerning the probability

that Z̃n exceeds an arbitrary threshold l > 0. This result is obtained by using comparison arguments between

the process {∆̃∗
n;n ≥ 1} and the urn proportion of an RRU model, where we recall that ∆̃∗

n = max{∆̃−
l , ∆̃

+
l },

∆̃−
l := |ρ1 − Z̃−

l | and ∆̃+
l := |ρ1 − Z̃+

l |. The result is the following,

Lemma 4.8. Let m1 > m2, and

T̃n := {kn < tn <∞} , Hn :=
{

∆̃∗
n > ν

}

, (4.37)

where {kn;n ≥ 1} is a deterministic sequence such that kn → ∞. Fix 0 < ỹ0 < ∞ and define z̃−0 and z̃+0 as

in (4.26). Then,

lim
n→∞

P
(

Hn ∪ T̃n

)

= 0. (4.38)

Proof. Since Hn = H−
n ∪H+

n where

H−
n :=

{

Z̃−
n < ρ1 − ν

}

, and H+
n :=

{

Z̃+
n > ρ1 + ν

}

,

equation (4.38) is established by proving

lim
n→∞

P
(

H−
n ∪ T̃n

)

+P
(

H+
n ∪ T̃n

)

= 0.

We will show that P
(

H−
n ∪ T̃n

)

→ 0, since the proof of P
(

H+
n ∪ T̃n

)

→ 0 is analogous.

First, we recall that tn, defined in (4.23), satisfies that Qc(ν, n − tn) = {∆n−tn ≤ ν} and when tn > 0,

Q(ν, i) = {∆i > ν} for any n− tn < i ≤ n. Hence, on the set T̃n the process Z̃−
i evolves at times n− tn < i ≤ n as

described in (4.25), yielding X̃i = 1{Ui<Z̃−

i−1}
and















Ỹ −
1,n = z̃−0 ỹ0 +

∑n
i=n−tn+1 X̃iD1,i,

Ỹ −
2,n = (1− z̃−0 )ỹ0 +

∑n
i=n−tn+1

(

1− X̃i

)

D2,i.

(4.39)

Now, consider an RRU model {ZR
j ; j ≥ 1} with initial composition (ỹR1,0, ỹ

R
2,0) = (z̃−0 ỹ0, (1 − z̃−0 )ỹ0); the re-

inforcements are defined as DR
1,j = D1,n−tn+j and DR

2,j = D2,n−tn+j for any i ≥ 1 a.s.; the sampling process is

modeled by XR
j := 1{UR

j
<ZR

j−1}
and UR

j = Un−tn+j a.s., Hence, the composition of the RRU model at time j ≥ 1

can be expressed as follows:

Y R
1,j = ỹR1,0 +

j
∑

i=1

Xn−tn+iD1,n−tn+i

= z̃−0 ỹ
−
0 +

n−tn+j
∑

i=n−tn+1

XiD1,i,

Y R
2,j = ỹR2,0 +

j
∑

i=1

(1−Xn−tn+i)D2,n−tn+i

= (1− z̃−0 )ỹ0 +

n−tn+j
∑

i=n−tn+1

(1−Xi)D2,i.

(4.40)
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Hence, combining (4.39) and (4.40) with j = tn, we have that on the set T̃n

(Ỹ −
1,n, Ỹ

−
2,n) = (Y R

1,tn , Y
R
2,tn).

Now, from the asymptotic behavior of the RRU studied in Muliere et al. (2006, Theorem 8) we have that (since

m1 > m2) P (limn→∞ ZR
n = 1) = 1. Thus, on the set T̃n we have {limn→∞ ZR

n = 1}, which implies P
(

H−
n ∪ T̃n

)

→
0. This concludes the proof.

Proof of Theorem 4.6. First, consider the set Fn = {y0+ c1n ≤ Yn ≤ y0+C1n} defined in (4.12) and by using (4.4)

in Theorem 4.1 we have

limnP (F c
n) = 0.

Hence, since |G(n, sδ)| ≤ max{Zn+nsδ ;Zn} < 1 a.s., to prove (4.22) it is enough to show that for any 0 < h < 1/2

E
[

Gn,sδ1Qc(δ,n)∩Fn

]

≤ h + o(1), (4.41)

where we recall that G(n, sδ) = (∆n+nsδ −∆n) and Q(δ, n) = {∆n > δ}. Now, define H := [δ/h] and note that

[0, δ] ⊂ [0, (H + 1)h] = ∪H
i=0[ih, (i+ 1)h];

then, calling

Q̄((i+ 1)h, n) := Qc((i+ 1)h, n) \Qc(ih, n) = {ih < ∆n < (i+ 1)h},

(where for any two sets A and B, A \B = A ∩Bc), we have Qc(δ, n) = ∪H
i=0Q̄((i+ 1)h, n) and hence the left-hand

side of (4.41) can be written as

E
[

G(n, sδ)1Qc(δ,n)∩Fn

]

=

H
∑

i=0

E
[

G(n, sδ)1Q̄((i+1)h,n)∩Fn

]

;

thus, result (4.41) can be achieved by establishing the following

E
[

G(n, sδ)1Q̄((i+1)h,n)∩Fn

]

≤ h · P
(

Q̄((i+ 1)h, n)
)

+ o(1), (4.42)

for any i ∈ {1, .., H}. Now, fix i ∈ {0, .., H}, call ν := (i + 1)h and consider the set Mǫ
n := {Mn < nsδǫ}

defined in (4.27), where we recall that Mn =
∑n+nsδ

i=n 1Rc(ν,n). The left-hand side of (4.42) can be so decomposed

E
[

G(n, sδ)1Q̄(ν,n)∩Fn

]

= G1n + G2n, where

G1n := E
[

G(n, sδ)1Q̄(ν,n)∩Fn∩Mǫ
n

]

, and G2n := E
[

G(n, sδ)1Q̄(ν,n)∩Fn∩Mǫc
n

]

.

Since P (R(ν, n)) → 1 from (2.3), and by using Markov’s inequality we have that

P (Mǫc
n ) ≤ ǫ−1 1

nsδ

n+nsδ
∑

i=n

P (Rc(ν, n)) → 0;

thus, since |G(n, sδ)| ≤ max{Zn+nsδ ;Zn} < 1 a.s., we have G2n → 0 and hence result (4.42) can be achieved by

establishing the following

G1n = E
[

G(n, sδ)1Q̄(ν,n)∩Fn∩Mǫ
n

]

≤ h · P
(

Q̄(ν, n)
)

+ o(1), (4.43)

where we recall that Q̄(ν, n) = {ν − h < ∆n < ν}.
Now, following the same arguments used to determine sδ in (4.20), we can fix a value sh such that

P ( {|G(n, sh)| > h/2} ∩ Fn ) = 0,

where we recall that G(n, sh) = (∆n+nsh −∆n). Analogously to (4.20), the range of values admissible for sh is

sh ∈
(

0 , exp
( c1
2b
h
)

− 1
)

,

where we recall that c1 > 0 is a constant introduce in (4.12) to define Fn.
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Now, consider the random time tj defined in (4.23) as the smallest time k such that Qc(ν, n − k) occurs, i.e.

n− tn indicates the last time up to n the urn proportion is in the interval (ρ1 − ν, ρ1 + ν). Then, call τn := tn+nsδ

and note that, since Q̄(ν, n) ⊂ Qc(ν, n) by definition of Q̄(ν, n), we have that

P
(

τn ≤ nsδ | Q̄(ν, n)
)

= 1.

Hence, define SH := [sδ/sh] and, assuming wlog that sδ = SHshh + 1, on the set Q̄(ν, n), consider the partition

{0, .., nsδ} = ∪SH
k=0T n

k , where T n
k := {nksh, .., n(k + 1)sh}; thus, the left-hand side of (4.43) can be decomposed as

G1n =
∑SH

k=0 T
n
k , where for any k ∈ {0, .., SH}

Tn
k := E

[

G(n, sδ)1Q̄(ν,n)∩Fn∩Mǫ
n∩{τn∈T n

k
}

]

. (4.44)

Hence, equation (4.43) can be achieved by establishing the following

Tn
k ≤ h · P

(

Q̄(ν, n) ∩ {τn ∈ T n
k }
)

+ o(1), ∀k ∈ {0, .., SH}. (4.45)

First, consider k = 0 in (4.45). From the definition of τn, we have

{τn ∈ T n
0 } ⊂ Qc(ν + h, n+ nsδ), (4.46)

where we recall that Qc(ν + h, n + nsδ) = {∆n+nsδ < ν + h}. Hence, using (4.46) in (4.44), it is immediate to

obtain (4.45).

For k ∈ {1, .., SH} in (4.45), from the definition of τn and En,k in (4.28), we have that

{τn ∈ T n
k } ⊂ E(n, n+ n(sδ − ksh)),

where we recall E(n, k) = ∪k
j=nQ

c(ν, j). Hence, we can use Lemma 4.7 with ln = n + n(sδ − ksh), to obtain, on

the set Mǫ
n ∩ Fn, for any j ∈ {n+ n(sδ − ksh) + 1, .., n+ nsδ}

Qc(ν, n+ n(sδ − ksh)) ⊂ Qc(∆̃∗
j , j) a.s., (4.47)

where we recall that Qc(ν, j) = {∆j < ν} and Qc(∆̃∗
j , j) = {∆j < ∆̃∗

j}, ∆̃∗
j = max

{

∆̃−
j , ∆̃

+
j

}

, ∆̃−
j = |ρ1 − Z̃−

j |
and ∆̃+

j = |ρ1 − Z̃+
j |. In particular, by using (4.47) and since Q̄(ν, n) ⊂ Q(ν − h, n) = {∆n > ν − h}, from (4.44)

we obtain

Tn
k ≤ E

[

(∆̃∗
n+nsδ

− ν + h)1Q̄(ν,n)∩Fn∩Mǫ
n∩{τn∈T n

k
}

]

. (4.48)

Note that, from the definition of τn and T n
k , we have

{τn ∈ T n
k } ⊂ {nksh < tn+nsδ < n(k + 1)sh}.

Hence, we can apply Lemma 4.8 with kn+nsδ = nksh, T̃j :=
{

∆̃∗
j > ν

}

and Hj := {kj < tj < ∞} as defined

in (4.37), so obtaining

E
[

(∆̃∗
n+nsδ

− ν)+1{τn∈T n
k

}

]

≤ P
(

Hn+nsδ ∪ T̃n+nsδ

)

→ 0.

Hence, applying these results to (4.48), we obtain

Tn
k ≤ h · P

(

Q̄(ν, n) ∩ {τn ∈ T n
k }
)

+ o(1),

that corresponds to (4.45). This concludes the proof.

4.4 Proof of Weak Consistency

Proof of Theorem 2.2. The result is established by proving that, for any l > 0 and any ǫ > 0, there exists n0 ∈ N

such that

P (Q(l, n)) < ǫ, (4.49)

for any n ≥ n0, where we recall that Q(l, n) = {∆n > l} and ∆n = |ρ1 − Zn|. To this end, fix 0 < ǫ′ < lǫ
3

and

0 < δ < ǫ′ to define the conditions

An := {P (Q(δ, n)) < ǫ′}, Bn := {E[∆n] < 2ǫ′}.

It is immediate to see that Bn implies (4.49). Thus, (4.49) can be established by proving that
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(a) for any N ≥ 1 there exists n0 ≥ N such that An0 occurs;

(b) there exists n0 ≥ 1 such that for any n ≥ n0 An ⊂ Bk for all k ∈ {n+ 1, .., n(1 + sδ)};

(c) there exists n0 ≥ 1 such that for any n ≥ n0 Bn ⊂ Bk for all k ∈ {n(1 + sδ), .., (n+ 1)(1 + sδ)}.

For part (a), we will show that there cannot exist N ≥ 1 such that

Ac
n := {P (Q(δ, n)) ≥ ǫ′}, (4.50)

occurs for all n ≥ N . First, we combine Theorem 4.5 and Theorem 4.6 to obtain

E [G(n, sδ)] ≤ −C
(

P (Q(δ, n)) − ǫ′

2

)

, (4.51)

with 0 < C < ∞, where we recall that G(n, sδ) = (∆n+nsδ − ∆n). Now, if (4.50) holds, then there exists a

subsequence {kn;n ≥ 1} such that, k1 = N and kn = kn−1(1 + sδ) for all n ≥ 2, and by (4.51)

E [∆kn ] =

n
∑

i=1

E [G(ki−1, sδ)] ≤ −
n
∑

i=1

C
ǫ′

2
= −∞,

where G(ki−1, sδ) = (∆ki
−∆ki−1), which is a contradiction and hence part (a) holds. For part (b), consider the

time n at which An occurs. Fix k ∈ {n+ 1, .., n+ nsδ} and note that E[∆k] ≤ J1n + J2n,k where

J1n := E[∆n], and J2n,k := E[|∆k −∆n|].

From definition of sδ in (4.20) we have

J2n,k ≤ E[|∆k −∆n|1Fn ] + E[|∆k −∆n|1F c
n
]

≤ δ + P (F c
n),

and using P (F c
n) → 0 from (4.4) in Theorem 4.1 we have that limn→∞ J2n,k ≤ δ. Thus, there exists n0 ≥ 1 such

that J2n,k < 2δ for any n ≥ n0. Then, note that J1n = J3n + J4n where

J3n := E[∆n1Qc(δ,n)], and J4n := E[∆n1Q(δ,n)].

Notice that J3n ≤ δP (Qc(δ, n)) < δ and J4n ≤ P (Q(δ, n)) < ǫ′, and hence we have J1n < δ + ǫ′. Thus, combining

J1n and J2n, since δ < ǫ′/3, we obtain for any n ≥ n0

E[∆k] ≤ J1n + J2n,k < δ + ǫ′ + 2δ < 2ǫ′,

that implies (b). For part (c), for any k ∈ {n(1 + sδ), .., (n+ 1)(1 + sδ)} consider

E[|∆k −∆n+nsδ |] ≤ E[|∆k −∆n+nsδ |1Fn ] + E[|∆k −∆n+nsδ |1F c
n
].

First, note that P (F c
n) → 0 from (4.4) in Theorem 4.1. Then, since |k−(n+nsδ)| ≤ (1+sδ) and |Zn+1−Zn| < b/Yn

a.s., we have that

P

( {

|Zk − Zn+nsδ | >
(

b

y0 + c1n

)

(1 + sδ)

}

∩ Fn

)

= 0.

Thus, for any k ∈ {n(1 + sδ), .., (n+ 1)(1 + sδ)} we have

E[|∆k −∆n+nsδ |] ≤
(

b(1 + sδ)

y0 + c1n

)

+ P (F c
n) → 0. (4.52)

Now, since Bn ⊂ An ∪ Cn, where Cn = (Bn ∩ Ac
n), part (c) is established by proving that there exists n0 ≥ 1 such

that, for any n ≥ n0,

(c1) An ⊂ Bk for all k ∈ {n(1 + sδ), .., (n+ 1)(1 + sδ)};

(c2) Cn ⊂ Bk for all k ∈ {n(1 + sδ), .., (n+ 1)(1 + sδ)};
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For part (c1), we can follow the same arguments of part (b), except for J2n,k since here k ∈ {n(1 + sδ), .., (n +

1)(1 + sδ)} and hence

J2n,k ≤ E[|∆k −∆n|1Fn ] + E[|∆k −∆n|1F c
n
]

≤ E[|∆k −∆n+nsδ |1Fn ] + E[|∆n+nsδ −∆n|1Fn ] + P (F c
n)

≤ E[|∆k −∆n+nsδ |1Fn ] + δ + P (F c
n);

However, by using (4.52), we still have limn→∞ J2n,k ≤ δ and so, analogously to part (b), there exists n0 ≥ 1 such

that Jn2 < 2δ for any n ≥ n0. Since J1n does not depend on k, (c1) follows. For part (c2), we combine (4.51) and

Ac
n to obtain

E [G(n, sδ)] ≤ −C ǫ
′

2
(4.53)

where we recall that G(n, sδ) = (∆n+nsδ − ∆n). Moreover, by (4.52) there exists n0 ≥ 1 such that E[|∆k −
∆n+nsδ |] ≤ C ǫ′

2
for any n ≥ n0. Hence, (c2) follows by combining (4.52), (4.53) and Bn as follows:

E[∆k] ≤ E[|∆k −∆n+nsδ |] + E[G(n, sδ)] + E[∆n] = 2ǫ′.

Remark 4.9. It is possible to present a modification of the current arguments along the traditional probabilistic

lines. We chose to present the above alternative logical argument.

Remark 4.10. An anonymous referee raised the issue of relaxing the hypothesis concerning the boundedness of

u(·). While such condition has been used in several estimates, we notice that it is not required in the proof of the

Theorem 4.1. In this case, under weak additional conditions on the tails of u(ξ1,1) and u(ξ2,1) one can modify the

arguments to obtain an analogous version of Theorem 4.1. The challenge however is to establish the comparison

arguments between various urns without this hypothesis. This seems to be a challenging task at this moment even

though the authors believe that the results should hold without the boundedness assumption. It is worth pointing

out that even for the MRRU model, the limit theorems without the boundedness condition are not known.

5 Proof of Strong Consistency

In this section, we provide the proof of the strong consistency of the urn proportion Zn for any values of m1 and

m2, when the random thresholds ρ̂1,n and ρ̂2,n converge with probability one.

Proof of Theorem 2.4. We divide the proof into three steps:

(a) P
(

ρ2 ≤ limnZn ≤ limnZn ≤ ρ1
)

= 1,

(b)










P (limnZn ≥ ρ1) = 1 if m1 > m2,

P (limnZn ≤ ρ2) = 1 if m1 < m2.

(c) P ( limn Zn exists ) = 1.

For part (a), firstly note that, when ρ1 = 1 and ρ2 = 0, result (a) is trivially true, hence consider 0 < ρ2 ≤ ρ1 < 1.

We show that P (limnZn ≤ ρ1) = 1, since the proof of P (limnZn ≥ ρ2) = 1 is completely analogous. To this end,

we show that there cannot exist ǫ > 0 and ρ′ > ρ1 such that

P
(

limnZn > ρ′1
)

≥ ǫ > 0. (5.1)

We prove this by contradiction using a comparison argument with an RRU model. The proof involves last exit

time arguments. Now, suppose (5.1) holds and let A1 := {limnZn > ρ′1}. Let

R1 :=

{

k ≥ 0 : ρ̂1,k ≥ ρ′1 + ρ1
2

}

,
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and denote the last time the process {ρ̂1,n;n ≥ 1} is above (ρ′1 + ρ1) /2 by

t ρ′1+ρ1
2

=











sup{R1} if R1 6= ∅;

0 otherwise.

Since ρ̂1,n
a.s.→ ρ1 by (2.5), then we have that P

(

t ρ′1+ρ1
2

<∞
)

= 1. Hence, there exists nǫ ∈ N such that

P

(

t ρ′1+ρ1
2

> nǫ

)

≤ ǫ

2
. (5.2)

Setting B1 :=

{

t ρ′
1
+ρ1
2

> nǫ

}

and using (5.2), it follows that

ǫ ≤ P (A1) ≤ ǫ/2 + P (A1 ∩Bc
1) .

Now, we show that P (A1 ∩ Bc
1) = 0. Setting

C1 =

{

limnZn <
ρ′1 + ρ1

2

}

,

we decompose P (A1 ∩Bc
1) as follows:

P (A1 ∩Bc
1) ≤ P (E1) + P (E2) ,

where E1 = A1 ∩Bc
1 ∩ C1 and E2 = A1 ∩Bc

1 ∩ Cc
1 .

Consider the term P (E2). Note that on the set Cc
1 , we have

{

limnZn ≥ ρ′1+ρ1
2

}

and on the set Bc
1 we have

{ρ̂1,n ≤ ρ′1+ρ1
2

} for any n ≥ nǫ. Hence, since (Bc
1 ∩Cc

1) ⊃ E2, on the set E2 we have that W1,n = 1{Zn≤ρ̂1,n}
a.s.→ 0.

Then, letting τW := sup{k ≥ 1 : W1,k = 1} we have P (E2 ∩ {τW < ∞}) = P (E2) and, on the set E2, for any

n ≥ τW the ARRU model can be written as follows:















Y1,n+1 = Y1,τW

Y2,n+1 = Y2,τW +
∑n+1

i=τW
(1−Xi)D2,i,

where W1,i−1 = 0 for any i ≥ τW , and W2,i−1 = 1 because W2,i−1 +W2,i−1 ≥ 1 by construction. Now, consider an

RRU model {ZR
i ; i ≥ 1} with initial composition (Y R

1,0, Y
R
2,0) = (Y1,τW , Y2,τW ) a.s.; the reinforcements are defined

as DR
1,i = 0 and DR

2,i = D2,τW +i for any i ≥ 1 a.s.; the drawing process is modeled by XR
i+1 := 1{UR

i+1<ZR
i

} and

UR
i = UτW +i a.s., where {Un;n ≥ 1} is the sequence such that Xn+1 = 1{Un<Zn} for any n ≥ 1. Formally, this

RRU model can be described for any n ≥ 1 as follows:















Y R
1,n+1 = Y R

1,0 = Y1,τW

Y R
2,n+1 = Y R

2,0 +
∑n+1

i=0

(

1−XR
i

)

DR
2,i = Y2,τW +

∑n+τW+1
i=τW

(1−Xi)D2,i.

Hence, on the set E2 we have that for any n ≥ τW

(Y1,n, Y2,n) = (Y R
1,n−τW , Y R

2,n−τW ).

Since from Muliere et al. (2006, Theorem 8) P (limnZ
R
n = 0) = 1, on the set E2 we have that {limnZn = 0}. This

is incompatible with the set A1 which includes E2. Hence P (E2) = 0.

We now turn to the proof that P (E1) = 0. To this end, let

τǫ := inf

{

k ≥ nǫ :

{

Zk <
ρ′1 + ρ1

2

}

∩
{

Yk >
b

(ρ′1 − ρ1)/2

} }

and note that, since by result (c) of Lemma 3.1 Yn
a.s.→ ∞, P (C1 ∩ {τǫ < ∞}) = P (C1). Moreover, on the set

Bc
1 we have that {ρ̂1,n ≤ ρ′1+ρ1

2
} for any n ≥ nǫ. We now show by induction that on the set Bc

1 ∩ C1 we have

{Zn < ρ′1 ∀n ≥ τǫ}. By definition we have Zτǫ <
ρ′1+ρ1

2
, and by Lemma 3.5 this implies Zτǫ+1 < ρ′1; now,

consider an arbitrary n > τǫ; if Zn <
ρ′1+ρ1

2
, then by Lemma 3.5 we have Zn+1 < ρ′1; if

ρ′1+ρ1
2

< Zn < ρ′1 we have
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W1,n = 0 and so Zn+1 ≤ Zn < ρ′1. Hence, since (Bc
1 ∩ C1) ⊂ E1, on the set E1 we have {Zn < ρ′1 ∀n ≥ τǫ}.

This is incompatible with the set A1 which also includes E1. Hence P (E1) = 0. Combining all together we have

ǫ ≤ ǫ/2 +P (E1) +P (E2) = ǫ/2, which is impossible. Thus, we conclude that P (Ac
1) = P (limnZn ≤ ρ1) = 1.

For part (b), wlog we assumem1 > m2 to show that P (limnZn ≥ ρ1) = 1, since the proof of P (limnZn ≤ ρ2) = 1

when m1 < m2 follows the same arguments. To this end, we now show that there cannot exist ǫ > 0 and ρ′ < ρ1

such that

P
(

limnZn < ρ′1
)

≥ ǫ > 0. (5.3)

We prove this by contradiction, using a comparison argument with an RRU model. Now suppose (5.3) holds and

let A2 := {limnZn < ρ′1}. Let
R2 :=

{

k ≥ 0 : ρ̂1,k <
ρ′1 + ρ1

2

}

,

and define the last time the process {ρ̂1,n;n ≥ 1} is less than (ρ′1 + ρ1) /2 by

τ ρ′1+ρ1
2

=











sup{R2} if R2 6= ∅;

0 otherwise.

Since ρ̂1,n
a.s.→ ρ1, then we have that P

(

τ ρ′1+ρ1
2

< ∞
)

= 1. Hence, there exists nǫ ∈ N such that

P

(

τ ρ′1+ρ1
2

> nǫ

)

≤ ǫ

2
. (5.4)

Setting B2 :=

{

τ ρ′1+ρ1
2

> nǫ

}

and using (5.4), it follows that

ǫ ≤ P (A2) ≤ ǫ/2 + P (A2 ∩Bc
2) .

Let E3 := A2 ∩ Bc
2. We now show that P (E3)=0. On the set A2, we have

{

limnZn ≤ ρ′1
}

and on the set Bc
2, we

have {ρ̂1,n ≥ ρ′1+ρ1
2

} for any n ≥ nǫ. Hence, on the set E3 we have that W1,n = 1{Zn≤ρ̂1,n}
a.s.→ 1. Then, letting

τW := sup{k ≥ 1 :W1,n = 0} we have P (E3 ∩ {τW <∞}) = P (E3). Now, analogously to the proof of P (E2) = 0,

we can use comparison arguments with an RRU model to show that on the set E3 we have {limnZn = 1}. This

is incompatible with the set A2, which also includes E3. Hence P (E3) = 0. Combining all together we have

ǫ ≤ ǫ/2+P (E3) = ǫ/2, which is impossible. Thus, we conclude that the event Ac
2 = {limnZn ≥ ρ1} occurs with

probability one.

For part (c), note that, combining (a) and (b), we have shown that























P (limnZn = ρ1) = 1 if m1 > m2,

P (ρ2 ≤ limnZn ≤ limnZn ≤ ρ1) = 1 if m1 = m2,

P (limnZn = ρ2) = 1 if m1 < m2.

Therefore, if the process {Zn;n ≥ 1} converges almost surely, we obtain (2.6). Wlog, assume m1 ≥ m2, since the

proof of the case m1 ≤ m2 is completely analogous.

First, let d, u, γ and ρ′1 (d < u < γ < ρ′1 < ρ1) be four constants in (0, 1). Let {τj(d, u); j ≥ 1} and

{tj(d, u); j ≥ 1} be the sequences of random variables defined in (3.2). Since d and u are fixed in this proof, we

sometimes denote τj(d, u) by τj and tj(d, u) by tj . It is easy to see that τn and tn are stopping times with respect

to {Fn;n ≥ 1}.
Recall that, by Lemma 3.2, we have that for every 0 < d < u < 1

Zn converges a.s. ⇔ P (tn(d, u) <∞) → 0,

⇔
∞
∑

n=1

P (tn+1(d, u) = ∞|tn(d, u) <∞) = ∞.

Now, to prove that Zn converges a.s., it is sufficient to show that

P (tn(d, u) <∞) → 0,
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for all 0 < d < u < 1. Suppose Zn does not converges a.s.. This implies that P (tn <∞) ↓ φ1 > 0, since P (tn <∞)

is a non-increasing sequence. We will show that for large j there exists a constant φ < 1 dependent on φ1, such

that

P (tj+1 <∞|tj <∞) ≤ φ. (5.5)

This result implies that
∑

n P (tn+1 = ∞|tn <∞) = ∞, establishing by Lemma 3.2 that P (tn <∞) converges to

zero as n goes to infinity, which is a contradiction.

Consider the term P (ti+1 <∞|ti <∞). First, let us denote by τρ′1 the last time the process ρ̂1,n is below ρ′1,

i.e.

τρ′1 =











sup{n ≥ 1 : ρ̂1,n ≤ ρ′1} if {n ≥ 1 : ρ̂1,n ≤ ρ′1} 6= ∅;

0 otherwise.

Since ρ̂1,n
a.s.→ ρ1, we have that P

(

τρ′1 <∞
)

= 1. Hence, for any ǫ ∈
(

0, 1
2

)

there exists nǫ ∈ N such that

1

φ1
P
(

τρ′1 > nǫ

)

≤ ǫ. (5.6)

By denoting Pi (·) = P (·|ti <∞) and using ti ≤ τi ≤ ti+1 we obtain

P (ti+1 <∞|ti <∞) ≤ Pi (τi <∞) .

Hence

Pi (τi <∞) ≤ Pi

(

{τi <∞} ∩ {τρ′1 ≤ nǫ}
)

+ Pi

(

τρ′1 > nǫ

)

. (5.7)

We start with the second term in (5.7). Note that

Pi

(

τρ′1 > nǫ

)

≤
P
(

τρ′1 > nǫ

)

P (ti <∞)
≤

P
(

τρ′1 > nǫ

)

φ1
≤ ǫ,

where the last inequality follows from (5.6).

Now, consider the first term in (5.7). Since the probability is conditioned on the set {ti <∞}, in what follows

we will consider the urn process at times n after the stopping time ti. Since we want to show (5.5) for large i, we

can choose an integer i ≥ nǫ and

i > log u(1−d)
d(1−u)

(

b

Y0 (γ − u)

)

,

so that

(i) ti ≥ i ≥ nǫ a.s.;

(ii) from Lemma 3.3, we have that Yτi > b/ (γ − u) a.s.

These two properties imply respectively that, on the set {n ≥ ti}

(i) ρ̂1,n ≥ ρ′1, since from {τρ′1 ≤ nǫ} we have that n ≥ τρ′1 ;

(ii) Zti ∈ (u, γ), since Zti−1 ≤ u and Zti > u and from Lemma 3.5 we have that |Zn − Zn−1| < (γ − u).

Now, let us define two sequences of stopping times {t∗n;n ≥ 1} and {τ∗n ;n ≥ 1}, where t∗n represents the first time

after τ∗n−1 the process Zti+n up-crosses ρ′1, while τ
∗
n represents the first time after t∗n the process Zti+n down-crosses

γ. Formally, let τ∗0 = 0 and define for every j ≥ 1 two stopping times

t∗j =











inf{n > τ∗j−1 : Zti+n > ρ′1} if {n > τ∗j : Zti+n > ρ′1} 6= ∅;

+∞ otherwise.

τ∗j =











inf{n > t∗j : Zti+n ≤ γ} if {n > t∗j−1 : Zti+n ≤ γ} 6= ∅;

+∞ otherwise.

Note that, since Zti+τ∗

j
−1 ≥ γ and Zti+τ∗

j
< γ, from (ii) we have that Zti+τ∗

j
∈ (u, γ).

For any j ≥ 0, let {Z̃j
n;n ≥ 1} be an RRU model defined as follows:
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(1)
(

Ỹ j
1,0, Ỹ

j
2,0

)

=
(

Y1,ti+τ∗

j
, Y1,ti+τ∗

j

u+d
2−u−d

)

a.s., which implies that Z̃j
0 = u+d

2
;

(2) the drawing process is modeled by X̃j
n+1 = 1{Ũj

n+1<Z̃
j
n}, where Ũ

j
n+1 = Uti+τ∗

j
+n+1 a.s. and Un is such that

Xn = 1{Un<Zn−1};

(3) the reinforcements are defined as D̃j
2,n+1 = D2,ti+τ∗

j
+n+1 + (m1 −m2), D̃

j
1,n+1 = D1,ti+τ∗

j
+n+1 a.s.; this

means E[D̃j
1,n] = E[D̃j

2,n] for any n ≥ 1;

(4) the urn process evolves as an RRU model, i.e. for any n ≥ 0































Ỹ j
1,n+1 = Ỹ j

1,n + X̃j
n+1D̃

j
1,n+1,

Ỹ j
2,n+1 = Ỹ j

2,n +
(

1− X̃j
n+1

)

D̃j
2,n+1,

Ỹ j
n+1 = Ỹ j

1,n+1 + Ỹ j
2,n+1,

Z̃j
n+1 =

Ỹ
j
1,n+1

Ỹ
j
n+1

.

We will compare the process {Z̃j
n;n ≥ 1} with the ARRU process {Zti+n;n ≥ 1}. Note that at time n, we have

defined only the processes Z̃j such that τ∗j < n.

We will prove, by induction, that on the set {τρ′1 ≤ nǫ}, for any j ∈ N and for any n ≤ t∗j+1 − τ∗j

Z̃j
n < Zti+τ∗

j +n, Ỹ j
2,n ≥ Y2,ti+τ∗

j +n, Ỹ j
1,n < Y1,ti+τ∗

j +n. (5.8)

In other words, we will show, provided that ti > τρ′1 , that for each j ≥ 1 the process Z̃j
n is always dominated by

the original process Zti+τ∗

j
+n, as long as Zti+τ∗

j
+n is dominated by ρ′1 (i.e. for n ≤ t∗j+1 − τ∗j ). By construction we

have that

Z̃j
0 =

d+ u

2
< u < Zti+τ∗

j
, Ỹ j

1,0 = Y1,ti+τ∗

j

which immediately implies Ỹ j
2,0 > Y2,ti+τ∗

j
. To this end, we assume (5.8) by induction hypothesis. First, we will

show that Ỹ j
2,n+1 > Y2,ti+τ∗

j
+n+1. Since from (5.8) Z̃j

n < Zti+τ∗

j
+n for n ≤ t∗j+1 − τ∗j , by construction we obtain

that

X̃j
n+1 = 1{Ũj

n<Z̃
j
n} ≤ 1{Uti+τ∗

j
+n+1<Zti+τ∗

j
+n} = Xti+τ∗

j
+n+1.

As a consequence, since Wn ≤ 1 for any n ≥ 1, we have that

(

Y2,ti+τ∗

j
+n+1 − Y2,ti+τ∗

j
+n

)

=
(

1−Xti+τ∗

j
+n+1

)

D2,ti+τ∗

j
+n+1W2,ti+τ∗

j
+n

≤ (1− X̃j
n+1)D̃

j
2,n+1

=
(

Ỹ j
2,n+1 − Ỹ j

2,n

)

,

which, using hypothesis (5.8), implies Ỹ j
2,n+1 > Y2,ti+τ∗

j
+n+1. Similarly, we now show that Ỹ j

1,n+1 ≤ Y1,ti+τ∗

j
+n+1.

We have
(

Y1,ti+τ∗

j
+n+1 − Y1,ti+τ∗

j
+n

)

= Xti+τ∗

j
+n+1D1,ti+τ∗

j
+n+1W1,ti+τ∗

j
+n.

From (i) we have that, as long as Z remains below ρ′1, Z is also above the process ρ̂1,n. Since we consider the

behavior of Zti+τ∗

j
+n when it is below ρ′1, i.e. n ≤ τ∗j+1 − t∗j , we have that W1,ti+τ∗

j
+n = 1. Thus,

(

Y1,ti+τ∗

j +n+1 − Y1,ti+τ∗

j +n

)

≥ X̃j
n+1D̃

j
1,n+1 =

(

Ỹ j
1,n+1 − Ỹ j

1,n

)

,

which using hypothesis (5.8) implies Ỹ j
1,n+1 ≤ Y1,ti+τ∗

j
+n+1. Thus, we have shown that, on the set {τρ′1 ≤ nǫ}, for

any n ≤ t∗j+1 − τ∗j , Z̃
j
n+1 < Zti+τ∗

j
+n+1, Ỹ

j
1,n+1 ≤ Y1,ti+τ∗

j
+n+1 and Ỹ j

2,n+1 > Y2,ti+τ∗

j
+n+1 hold.

Now, for any j ≥ 1, let Tj be the stopping time for Z̃j
n to exit from (d, u), i.e.:

Tj =











inf{R3} if R3 6= ∅;

+∞ otherwise,
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where R3 := {n ≥ 1 : Z̃j
n ≤ d or Z̃j

n ≥ u}. Note that, on the set {τρ′1 ≤ nǫ},

{τi <∞} =

{

inf
n≥1

{Zti+n} < d

}

⊂
(

∪j:τ∗

j
≤n

{

inf
n≥1

{

Z̃j
n−τ∗

j

}

< d

})

⊂
(

∪∞
j=0 {Tj <∞}

)

.

Hence, by denoting Pi (·) = P (·|ti <∞) and Ei [·] = E [·|ti <∞], we have that

Pi

(

{τi <∞} ∩ {τρ′1 ≤ nǫ}
)

≤ Pi

(

{

∪∞
j=0 {Tj <∞}

}

∩ {τρ′1 ≤ nǫ}
)

≤
∞
∑

j=0

Pi

(

{Tj <∞} ∩ {τρ′1 ≤ nǫ}
)

,

and, by setting h = u−d
2

, each term of the series is less or equal than

Pi

({

sup
n≥1

|Z̃j
n − Z̃j

0 | ≥ h

}

∩ {τρ′1 ≤ nǫ}
)

≤ Pi

(

sup
n≥1

|Z̃j
n − Z̃j

0 | ≥ h

)

.

Note that {Z̃j
n;n ≥ 1} is the proportion of red balls in an RRU model with same reinforcement means. Then, by

using Lemma 3.4 we obtain

Pi

(

sup
n≥1

|Z̃j
n − Z̃j

0 | ≥ h

)

= Ei

[

P

(

sup
n≥1

|Z̃j
n − Z̃j

0 | ≥ h

∣

∣

∣

∣

Fτi+t∗j

)]

≤ Ei

[

b

Yt∗j

]

(

4

h2
+

2

h

)

.

Moreover, by using Lemma 3.3, the right hand side can be expressed as

Ei

[

b

Yti

](

ρ′1 (1− γ)

γ (1− ρ′1)

)j (
4

h2
+

2

h

)

.

Since by result (c) of Lemma 3.1 Yn converges a.s. to infinity, and since τi → ∞ a.s. because τi ≥ i, we have that

Ei

[

Y −1
ti

]

tends to zero as i increases. As a consequence, we can choose an integer i large enough such that

Ei

[

b

Yti

](

4

h2
+

2

h

)(

1− ρ′1
1− ρ′1/γ

)

<
1

2
,

which by setting φ = 1/2 + ǫ implies (5.5), i.e.

P (ti+1 <∞|ti <∞) ≤ φ < 1.

This concludes the proof.

Proof of Lemma 2.6. We divide the proof in two parts:

(i) m1 6= m2 and 0 < ρ2 < ρ1 < 1;

(ii) m1 = m2 and 0 ≤ ρ2 < ρ1 ≤ 1, on the set {Z∞ 6= {0, 1}};

For part (i), assume m1 > m2, since the proof in the case m1 < m2 follows the same arguments. In this case

min{m1,m2} = m2 and, by using Theorem 2.4, we have Zn
a.s.→ ρ1; thus, since ρ̂2,n

a.s.→ ρ2 and ρ1 > ρ2, denoting

by τ ∈ N the last time Zn crosses ρ̂2,n, i.e. τ := sup{k ≥ 1, Zk < ρ̂2,k}, we have that P (τ < ∞) = 1. Then, since

{τ ≤ n} ⊂ {W2,k = 1,∀k ≥ n}, we use the following decomposition, on the set {τ ≤ n},

Y2,n

n
=

1

n

n
∑

i=1

(1−Xi)D2,iW2,i−1 = W0,n +W1,n,

where

W0,n :=
1

n

τ
∑

i=1

(1−Xi)D2,i(W2,i−1 − 1),

W1,n :=
1

n

n
∑

i=τ

(1−Xi)D2,i.

Since P (τ <∞) = 1, we have W0,n
a.s.→ 0, while since

E[(1−Xi)D2,i|Fi−1] = (1− Zi−1)m2
a.s.→ (1− Z∞)m2,
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we have that W1,n
a.s.→ (1− Z∞)m2. Finally, since Yn = (1− Zn)

−1Y2,n, we have Yn

n

a.s.→ m2 = min{m1,m2}.

For part (ii), since m1 = m2 = m, by using Theorem 2.4 we have Zn
a.s.→ Z∞ ∈ [ρ2, ρ1]; then, on the set

{Z∞ ∈ (0, 1)}, we can follow the arguments of part (i), so obtaining

Y2,n

n
a.s.→ (1− Z∞)m,

Y1,n

n
a.s.→ Z∞m.

Thus, Yn

n
=

Y1,n

n
+

Y2,n

n

a.s.→ m.

The proof of Lemma 2.7 is based on comparison arguments between the ARRU and RRU model. Specifically,

for any n0 ≥ 1, we consider an RRU process {Z̃k(n0); k ≥ 0} coupled with the ARRU process {Zn0+k; k ≥ 0} as

follows: the initial composition is (Ỹ1,0(n0), Ỹ2,0(n0)) = (Y1,n0 , Y2,n0) and for any k ≥ 1






Ỹ1,k(n0) = Ỹ1,k−1(n0) + X̃1,k(n0)D1,k

Ỹ2,k(n0) = Ỹ2,k−1(n0) +
(

1− X̃k(n0)
)

D2,k,
(5.9)

where X̃k(n0) = 1{Uk≤Z̃k−1(n0)}. The relation between Z̃k(n0) and Zn0+k required in the proof of Lemma 2.7 is

expressed in the following result.

Lemma 5.1. For any n0, n1 ≥ 1, we have that

(

∩n1
k=1 {ρ̂2,n0+k ≤ Zn0+k ≤ ρ̂1,n0+k }

)

⊂
(

∩n1
k=1 { Zn0+k = Z̃k(n0) }

)

. (5.10)

Proof. First, consider the dynamics of the RRU process {Z̃k(n0); k ≥ 0} expressed in (5.9) and the dynamics of

the ARRU process {Zn0+k; k ≥ 0} expressed as follows:






Y1,n0+k = Y1,n0+k−1 +X1,n0+kD1,n0+kW1,n0+k−1

Y2,n0+k = Y2,n0+k−1 + (1−X1,n0+k)D2,n0+kW2,n0+k−1,
(5.11)

where Xn0+k = 1{Uk≤Zn0+k−1}. Hence, (5.10) follows by noticing that for any 1 ≤ k ≤ n1

{ρ̂2,n0+k ≤ Zn0+k ≤ ρ̂1,n0+k } ⊂ {W1,n0+k−1 =W2,n0+k−1 = 1}.

Proof of Lemma 2.7. The proof is structured as follows: we assume there exist x ∈ (ρ2, ρ1) and p > 0 such that

P (Z∞ = x) = p and we show that this assumption leads to a contradiction. To this end, fix ǫ > 0 such that

ρ2 < x− ǫ < x+ ǫ < ρ1 and denote by τ ∈ N the last time Zn exceeds Iǫ := (x− ǫ, x+ ǫ): formally,

τ =











sup{k > 1 : Zk /∈ Iǫ, } if {k > 1 : Zk /∈ Iǫ} 6= ∅;

−∞ otherwise.

Since {Z∞ = x} ⊂ {τ <∞} and by (2.5) ρ̂j,n
a.s.→ ρj /∈ Iǫ, j ∈ {1, 2}, there exists an integer k0 ∈ N such that,

P ( {ρ̂j,n /∈ Iǫ,∀n ≥ k0} ∩ {τ ≤ k0} ∩ {Z∞ = x} ) ≥ p

2
. (5.12)

Now, by using Lemma 5.1, we have that

(

{ρ̂j,n /∈ Iǫ,∀n ≥ k0} ∩ {τ ≤ k0}
)

⊂
{

Zk0+n = Z̃n(k0),∀n ≥ k0
}

,

and hence (5.12) is equivalent to

P
(

{ρ̂j,n /∈ Iǫ,∀n ≥ k0} ∩ {τ ≤ k0} ∩ {Z̃∞(k0) = x}
)

≥ p

2
.

Finally, the contradiction follows by noticing that by Aletti et al. (2009, Theorem 2), for an RRU model, we have

P (Z̃∞(k0) = x) = 0.

Remark 5.2. As described in Remark 4.10, the boundedness of u(·) plays a critical role in the proofs. Additionally,

when m1 = m2 the weak law of large numbers (even for a bounded u(·)) is unclear. Here, the behavior of the

thresholds ρ̂1,n and ρ̂2,n is much more erratic and linking this behavior with the tail conditions of u(ξ1,1) and u(ξ2,1)

remains a challenge.
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6 Proofs of Limit Distribution of the Proportion of Sampled Ball

Colors

We start by presenting the limit distribution of the proportion of sampled ball colors for the RRU model.

Proof of Theorem 2.8. Note that
√
n

(

N1n

n
− Z∞

)

= T1n + T2n,

where

T1n := n−1/2

(

N1n −
n
∑

i=1

Zi−1

)

, T2n := n−1/2
n
∑

i=1

(Zi−1 − Z∞) .

Now, calling ∆Zj = Zj − Zj−1 and (j ∧ n) := min{j, n}, we have that

T2n = n−1/2
n
∑

i=1

∞
∑

j=i

(−∆Zj) = −n−1/2
∞
∑

j=1

j∧n
∑

i=1

∆Zj

= − n−1/2
∞
∑

j=1

(j ∧ n)∆Zj = −(T3n + T4n),

where, since (j ∧ n) = n for all j ≥ n+ 1, we have

T3n := n−1/2
n
∑

j=1

j∆Zj , T4n := n1/2(Z∞ − Zn).

Now, by using the Doob’s decomposition ∆Zj = ∆Mj +∆Aj (see Durrett (2010)), where E[∆Mj |Fj−1] = 0 and

Aj ∈ Fj−1, we have T3n = T5n + T6n, where

T5n := n−1/2
n
∑

j=1

j∆Mj , T6n := n−1/2
n
∑

j=1

j∆Aj .

Then, recalling that
√
n

(

N1n

n
− Z∞

)

= T1n − T4n − T5n − T6n,

the limit distribution is established by proving the following results:

(a) T4n|Fn
d→ N (0,Σa) (stably), where Σa = Z∞(1− Z∞)(1 + Σ̄

m2 );

(b) T6n
p→ 0;

(c) (T1n − T5n)
d→ N (0,Σc) (stably), where Σc = Z∞(1− Z∞) Σ̄

m2 ;

(d) T4n + (T1n − T5n)
d→ N (0,Σa + Σc) (stably).

Part (a) follows from Aletti et al. (2009, Theorem 1), Crimaldi et al. (2007); Crimaldi (2009).

For part (b), by using result (a) of Lemma 3.1, for any j ≥ 0, we have that

∆Aj = E [∆Zj |Fj−1] = Zj−1(1− Zj−1)Bj−1,

with W1,j−1 = W2,j−1 = 1 (since for any j ≥ 1, the process is an RRU model). By using Aletti et al. (2009, Lemma

2), we have |Bj−1| < c1Y
−2
j−1 a.s. for some constant c1 > 0, and hence

T6n ≤ n−1/2
n
∑

j=1

j|∆Aj | ≤ c1n
−1/2

n
∑

j=1

jY −2
j−1;

in addition, by using Aletti et al. (2009, Lemma 3), we have E[Y −2
j−1] ≤ c2(j − 1)−2 for some constant c2 > 0 and

hence

E[T6n] ≤ c1c2n
−1/2

n
∑

j=1

j(j − 1)−2 = O
(

n−1/2 log(n)
)

.

Thus, (b) follows

For part (c), let T1n − T5n =
∑n

j=1 ∆Sjn where

∆Sjn := n−1/2(Xj − Zj−1 − j∆Mj).

Since (T1n −T5n) is a martingale with respect to the filtration {Fn;n ≥ 1}, we apply the Martingale CLT (MCLT)

after establishing the following conditions (see Hall and Heyde (1980, Theorem 3.2)):

31



(i) max1≤j≤n |∆Sjn| p→ 0;

(ii) supn≥1 E[max1≤j≤n(∆Sjn)
2] <∞;

(iii)
∑n

j=1 E[(∆Sjn)
2|Fj−1]

p→ Σc.

For part (i), since |Xj − Zj−1| ≤ 1 a.s. and ∆Mj = (∆Zj −∆Aj), we have that

|∆Sjn| ≤ n−1/2(|Xj − Zj−1|+ |j∆Mj |) ≤ n−1/2(1 + |j(∆Zj −∆Aj)|).

Now, since |∆Zj | < bY −1
j−1 and |∆Aj | < c1Y

−2
j−1 a.s. by Aletti et al. (2009, Lemma 2), we have

|∆Sjn| ≤ n−1/2(1 + bjY −1
j−1 + c1jY

−2
j−1) a.s.

Since by Lemma 2.6 (jY −1
j )

a.s.→ m−1, we have supj≥1(jY
−1
j ) <∞ a.s., and thus |∆Sjn| a.s.→ 0.

For part (ii), using the relation E[S] =
∫∞
0

P (S > t)dt that holds for any non negative r.v. S, we obtain

E

[

max
1≤j≤n

(∆Sjn)
2

]

≤
n
∑

j=1

∫ ∞

0

P ((∆Sjn)
2 > t)dt.

By applying arguments analogous to part (i), we obtain

n(∆Sjn)
2 ≤ 2

[

(Xj − Zj−1)
2 + (j∆Mj)

2
]

≤ 2
[

1 + 2
[

(j∆Zj)
2 + (j∆Aj)

2
]]

≤ 2
[

1 + 2
[

b2(jY −1
j−1)

2 + c21(jY
−2
j−1)

2]] .

Now, by using Markov’s inequality we obtain

P ((∆Sjn)
2 > t) ≤ P

(

C

(

j

Yj−1

)2

> nt

)

≤ max

{

1 ;

(

C

nt

)2

E

[

(

j

Yj−1

)4
] }

.

Now, since by Aletti et al. (2009, Lemma 3) supj≥1 E

[

(

j
Yj−1

)4
]

< ∞, it follows that there exists a constant C

independent of j such that
∫∞
0

P ((∆Sjn)
2 > t) ≤ Cn−2 and hence

sup
n≥1

E

[

max
1≤j≤n

(∆Sjn)
2

]

≤ sup
n≥1

Cn−1 ≤ C.

For part (iii), since ∆Mj = ∆Zj − ∆Aj , ∆Aj ∈ Fj−1 and hence E[∆Zj∆Aj |Fj−1] = (∆Aj)
2, we have the

following decomposition:

E[(∆Sjn)
2|Fj−1] =

1

n
E[Q2

j |Fj−1] +
2

n
(j∆Aj)

2,

where Qj := (Xj − Zj−1 − j∆Zj). Since |∆Aj | < c1Y
−2
j−1 a.s. and by Lemma 2.6 (jY −1

j )
a.s.→ m−1, we have that

(j∆Aj)
2 a.s.→ 0. Thus, 2

n

∑n
j=1(j∆Aj)

2 a.s.→ 0 and hence (iii) is obtained by establishing that

n
∑

j=1

E[(∆Sjn)
2|Fj−1] =

1

n

n
∑

j=1

E[Q2
j |Fj−1]

p→ Σc.

To this end, we will show that E[Q2
j |Fj−1]

a.s.→ Σc. First, note that, since Xj ∈ {0, 1}, we can express ∆Zj as

follows

∆Zj = Xj

(

(1− Zj−1)
D1,j

Yj−1

)

+ (1−Xj)

(

−Zj−1
D2,j

Yj−1

)

.

As a consequence, we consider Q2
j = XjQ

2
j,1 + (1−Xj)Q

2
j,0, where, denoting by Mj−1 := Yj−1/j,

Qj,1 := (1− Zj−1)

(

1− D1,j

Mj−1

)

=

(

1− Zj−1

Mj−1

)

(Mj−1 −D1,j) ,

Qj,0 := Zj−1

(

−1 +
D2,j

Mj−1

)

=

(

Zj−1

Mj−1

)

(−Mj−1 +D2,j) .
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Then, since D1,j , D2,j and Xj are independent conditionally on Fj−1 and using

E[(Mj−1 −D1,j)
2 |Fj−1] = (Mj−1 −m)2 + σ2

1 ,

E[(−Mj−1 +D2,j)
2 |Fj−1] = (Mj−1 −m)2 + σ2

2 ,

we have that

E[Q2
j |Fj−1] = Zj−1E[Q2

j,1|Fj−1] + (1− Zj−1)E[Q2
j,0|Fj−1]

= Zj−1

(

1− Zj−1

Mj−1

)2
[

(Mj−1 −m)2 + σ2
1

]

+ (1− Zj−1)

(

Zj−1

Mj−1

)2
[

(Mj−1 −m)2 + σ2
2

]

.

Finally, since by Lemma 2.6 Mj−1
a.s.→ m and by Theorem 2.4 Zj−1

a.s.→ Z∞, it follows that

n
∑

j=1

E[(∆S̃jn)
2|Fj−1]

a.s.→ Σc = Z∞(1− Z∞)

(

Σ̄

m2

)

.

For part (d), the result follows by combining part (a), (c), Crimaldi et al. (2007), and Crimaldi (2009) and by

noticing that (T1n − T5) ∈ Fn.

We now turn to consider the ARRU model. The limit distribution for an ARRU model can be obtained using

Theorem 2.8 on the set of trajectories that do not cross the thresholds ρ̂1,n and ρ̂2,n i.o., and hence {Z∞ ∈ (ρ2, ρ1)}.
Since this set is not Fn-measurable, we consider a sequence of sets {An;n ≥ 1} such that {Zn ∈ An, ev.} = {Z∞ ∈
(ρ2, ρ1)} a.s. Specifically, we consider the sequence of sets {An;n ≥ 1} defined in (2.8) as follows:

An :=
(

ρ2 + CY −α
n , ρ1 −CY −α

n

)

, (6.1)

where 0 < C <∞ is a positive constant and 0 < α < 1
2
. Consider the partition Ω = A1 ∪ A2 ∪A3, where

A1 := {Zk ∈ Ak, ev.},

A2 := {Zk ∈ Ak, i.o.} ∩ {Zk 6∈ Ak, i.o.},

A3 := {Zk /∈ Ak, ev.}.

(6.2)

The following lemma establishes the relation between Aj , j ∈ {1, 2, 3}, and Z∞.

Lemma 6.1. Assume m1 = m2 = m and (2.5) with ρ1 > ρ2. Then,

(a) A1 = {Z∞ ∈ (ρ2, ρ1)} a.s.;

(b) P (A2) = 0;

(c) A3 = {Z∞ ∈ {ρ2, ρ1}} a.s.

The proof of Lemma 6.1 is based on comparison arguments between the ARRU and an RRU model presented

in Lemma 5.1. This relation is possible when only one random threshold modifies the dynamics of the ARRU. For

this reason, we fix ǫ ∈ (0, (ρ1 − ρ2)/2) and we introduce the following times

T1 := sup { n ≥ 1 : Zn > min{ρ̂1n; ρ1 − ǫ} } ,

T2 := sup { n ≥ 1 : Zn < max{ρ̂2n; ρ2 + ǫ} } .

Let T1 := {T1 <∞} and T2 := {T2 <∞}. Since ρ̂1n, ρ̂2n and Zn converge a.s., P (T1∪T2) = 1. Then, by comparing

the ARRU process with the RRU process defined in (5.9) we have the following result:

Lemma 6.2. On the set T1, for any n0, k ≥ 1 we have

{n0 ≥ T1} ⊂
{

Z̃k(n0) ≤ Zn0+k ≤ ρ1 − ǫ
}

. (6.3)

Analogously, on the set T2, for any n0, k ≥ 1 we have

{n0 ≥ T2} ⊂
{

ρ2 + ǫ ≤ Zn0+k ≤ Z̃k(n0)
}

. (6.4)
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Proof. Consider the dynamics of the RRU process {Z̃k(n0); k ≥ 0} expressed in (5.9) and the dynamics of the

ARRU process {Zn0+k; k ≥ 0} expressed in (5.11). Then, since {n0 ≥ T1} ⊂ {W1,n0+k−1 = 1} and W2,n0+k−1 ≤ 1

we obtain (6.3). Analogously, since {n0 ≥ T2} ⊂ {W2,n0+k−1 = 1} and W1,n0+k−1 ≤ 1 we have (6.4).

Proof of Lemma 6.1. First, let A := [ρ2, ρ1], t0 = 0 and define for every j ≥ 1

τj =











inf{k > tj−1 : Zk ∈ Ak} if {k > tj−1 : Zk ∈ Ak} 6= ∅;

+∞ otherwise.

tj =











inf{k > τj : Z̃k−τj (τj) /∈ A} if {k > τj : Z̃k−τj (τj) /∈ A} 6= ∅;

+∞ otherwise.

Denoting by T0 the last finite time in {tj , τj , j ≥ 1}, we have the following partition Ω = St ∪ S∞ ∪ Sτ , where

St := {T0 ∈ {tj , j ≥ 1}} = ∩k≥T0{Zk /∈ Ak},

S∞ := {T0 = ∞},

Sτ := {T0 ∈ {τj , j ≥ 1}} = ∩k≥T0{Z̃k−T0(T0) ∈ (ρ2, ρ1)}.

Thus, we establish the following result:

(i) P (S∞) = 0,

(ii) Sτ ⊂ A1, and

(iii) Sτ ⊂ {Z∞ ∈ (ρ2, ρ1)}.

For part (i), this result is obtained by establishing that there exists i0 ≥ 1 such that, for any i ≥ i0,

P (ti <∞|τi <∞) ≤ 1

2
.

To see this, we recall that by Lemma 3.4 we have, for any h ∈ (0, 1),

P

(

sup
k≥1

|Z̃k − Z̃0| ≥ h

)

≤ b

Y0

(

4

h2
+

2

h

)

≤ 6b

Y0
h−2.

Thus, by using Lemma 3.4 with h = C(Ỹ0(τj))
−α we obtain

P (ti <∞|τi <∞) = P
(

∪k≥1Z̃k(τi) /∈ [ρ2, ρ1]
∣

∣τi <∞
)

≤ P

(

sup
k≥1

|Z̃k(τj)− Z̃0(τj)| > C(Ỹ0(τj))
−α
∣

∣τi <∞
)

≤ E

[ (

6b

Ỹ0(τj)

)

(

C(Ỹ0(τj))
−α
)−2 ∣

∣τi <∞
]

=
6b

C2
E
[

(Ỹ0(τj))
2α−1

∣

∣τi <∞
]

,

and hence the result follows by recalling that 0 < α < 1
2
and by (c) of Lemma 3.1. For part (ii), by Lemma 6.2, we

have that
(

Sτ ∩ T1

)

⊂
(

∩k≥T0 {Z̃k−T0(T0) ≤ Zk ≤ ρ1 − ǫ}
)

,

(

Sτ ∩ T2

)

⊂
(

∩k≥T0 {ρ2 + ǫ ≤ Zk ≤ Z̃k−T0(T0)}
)

.

Thus, the result follows by P (T1 ∪ T2) = 1 and Z̃k−T0 (T0)
a.s.→ Z̃∞(T0) ∈ (ρ2, ρ1). For part (iii), from part (ii) we

have that

Sτ ⊂ {min{ρ2 + ǫ, Z̃∞(T0)} ≤ Z∞ ≤ max{ρ1 − ǫ, Z̃∞(T0)}};

thus, the result follows by noticing that

(

min{ρ2 + ǫ, Z̃∞(T0)},max{ρ1 − ǫ, Z̃∞(T0)}
)

⊂ (ρ2, ρ1).

Now, to complete the proof of Lemma 6.1, we notice that from (i), (ii) and {A3 = St}, it follows that P (A2) = 0

and {Sτ = A1}. Then, combining (iii) and A3 ⊂ {Z∞ ∈ {ρ2, ρ1}}, we obtain the result.
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We now present the proof of the limit distribution of the proportion of sampled ball colors for an ARRU model.

Proof of Theorem 2.10. First, take the sets A1, A2 and A3 defined in (6.2). Note that, since A1 = limn{Zn ∈ An}
and Ac

3 = limn{Zn ∈ An}, by Lemma 6.1 we have

limn{Zn ∈ An} = limn{Zn ∈ An} = {Z∞ ∈ (ρ2, ρ1)}.

Then, the proof is based on applying Theorem 2.8 to the ARRU model. To this end, consider the decomposition

{Zn ∈ An} = A1n ∪ A2n ∪ A3n, where Ajn = {Zn ∈ An} ∩ Aj for any j ∈ {1, 2, 3}. Since by using Lemma 6.1

P (A2) = 0, we have P (A2n) = 0 for any n ≥ 1. Moreover, by definition we have that P (A3n) → 0 and

P (A1n) → P (A1). Thus, calling Nn :=
√
n(N1n

n
− Z∞), we have

lim
n→∞

P ( Nn ≤ x , {Zn ∈ An} ) = lim
n→∞

P ( Nn ≤ x , A1 ) ,

and since by Lemma 6.1 A1 = {Z∞ ∈ (ρ2, ρ1)}, this is equivalent to

lim
n→∞

P ( Nn ≤ x , {Z∞ ∈ (ρ2, ρ1)} ) .

Now, consider the RRU model {Z̃k(n0), k ≥ 1} described in (5.9) coupled with the ARRU model {Zn0+k, k ≥ 1}.
By using Lemma 5.1, for any n0 ≥ 1, we have

(

∩∞
k=n0

{ρ̂2,k ≤ Zk ≤ ρ̂1,k }
)

⊂
(

∩∞
k=1 {Zn0+k = Z̃k(n0) }

)

.

Hence, on this set the ARRU process Zn0+k is equivalent to the RRU process Z̃k(n0); thus, we can obtain the limit

distribution for the ARRU by applying the limit distribution for the RRU expressed in Theorem 2.8 on the set

where the trajectories of the two processes are equivalent. To this end, define

T ∗ := sup { k ≥ 1 : {Zk < ρ̂2,k} ∪ {Zk > ρ̂1,k} } ,

and note that, for any n0 ≥ 1,

{T ∗ ≤ n0} ⊂
(

∩∞
k=1 {Zn0+k = Z̃k(n0) }

)

.

Let S be a r.v. with characteristic function E[exp( 1
2
Σt2)]. Thus, by applying Theorem 2.8 we have that, for any

n0 ≥ 1 and any set T ∈ F ,

lim
n→∞

P ( Nn ≤ x , T ∩ {T ∗ ≤ n0} ) = P ( S ≤ x , T ∩ {T ∗ ≤ n0} ).

Now, since {Z∞ ∈ (ρ2, ρ1)} ⊂ {T ∗ <∞}, we have

lim
n0→∞

P ({T ∗ ≤ n0} ∩ {Z∞ ∈ (ρ2, ρ1)}) = P (Z∞ ∈ (ρ2, ρ1)),

which implies that

lim
n→∞

P ( Nn ≤ x, {Z∞ ∈ (ρ2, ρ1)} ) = P ( S ≤ x, {Z∞ ∈ (ρ2, ρ1)} ).

This concludes the proof.
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XL, Springer, Berlin, vol. 1899 of Lecture Notes in Math., pp. 203–225.

Dembo, A. and Zeitouni, O. (1998), Large deviations techniques and applications, vol. 38 of Applications of Math-

ematics (New York), Springer-Verlag, New York, 2nd ed.

Durham, S. D., Flournoy, N., and Li, W. (1998), “A sequential design for maximizing the probability of a favourable

response,” Canad. J. Statist., 26, 479–495.

Durrett, R. (2010), Probability: theory and examples, vol. 31 of Cambridge Series in Statistical and Probabilistic

Mathematics, Cambridge University Press, Cambridge, 4th ed.

Ghiglietti, A. and Paganoni, A. M. (2014), “Statistical properties of two-color randomly reinforced urn design

targeting fixed allocations,” Electron. J. Stat., 8, 708–737.

— (2016), “An urn model to construct an efficient test procedure for response adaptive designs,” Stat. Methods

Appl., 25, 211–226.

Ghiglietti, A., Vidyashankar, A. N., and Rosenberger, W. F. (2017), “Central limit theorem for an adaptive ran-

domly reinforced urn model,” Ann. Appl. Probab., Forthcoming paper.

Hall, P. and Heyde, C. C. (1980), Martingale limit theory and its application, Academic Press, Inc. [Harcourt Brace

Jovanovich, Publishers], New York-London, probability and Mathematical Statistics.

Hu, F. and Rosenberger, W. F. (2006), The theory of response-adaptive randomization in clinical trials, Wiley Series

in Probability and Statistics, Wiley-Interscience [John Wiley & Sons], Hoboken, NJ.

Laruelle, S. and Pagès, G. (2013), “Randomized urn models revisited using stochastic approximation,” Ann. Appl.

Probab., 23, 1409–1436.
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