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ABSTRACT

The eclogite facies Zermatt-Saas ophiolite in the Western Alps includes a composite chaotic unit exposed in the Lake Miserin area, in the 
southern Aosta Valley region. The chaotic unit is characterized by a block-in-matrix texture consisting of ultramafic clasts and blocks embed-
ded within a carbonate matrix. This unit overlies massive serpentinite and ophicarbonate rocks and is unconformably overlain by layered 
calcschist. Despite the effects of subduction and collision-related deformation and metamorphism, the internal stratigraphy and architecture 
of the chaotic unit are recognizable and are attributed to different types of mass transport processes in the Jurassic Ligurian-Piedmont Ocean. 
This finding represents an exceptional record of the preorogenic history of the Alpine ophiolites, marked by different pulses of extensional 
tectonics responsible for the rough seafloor topography characterized by structural highs exposed to submarine erosion. The Jurassic 
tectonostratigraphic setting envisioned is comparable to that observed in present-day magma-poor slow- and ultraslow-spreading ridges, 
characterized by mantle exposure along fault scarps that trigger mass transport deposits and turbiditic sedimentation. Our preorogenic 
reconstruction is significant in an eclogitized collisional orogenic belt in which chaotic rock units may be confused with the exclusive product 
of subduction-related tectonics, thus obscuring the record of an important preorogenic history.
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INTRODUCTION

In most orogenic belts, the temporal and spatial distributions of dif-
ferent types of mass transport deposits (MTDs) commonly document 
different tectonic stages within the Wilson cycle evolution of oceanic 
basins, from the early stages of rift drift to later subduction, collision, and 
orogenic exhumation (Festa et al., 2016, and references therein). MTDs 
therefore represent fundamental markers of most of the tectonic events, 
and the documentation and understanding of their overall architecture, 
internal fabric, composition, and mechanisms of their downslope deforma-
tion and emplacement are relevant for better understanding the character-
istics of depositional basins and the evolution of orogenic belts. However, 
in most orogenic belts and exhumed subduction-accretion complexes, a 
strong similitude of fabric exists between MTDs with a block-in-matrix 
fabric (i.e., olistostrome sensu Flores, 1955; sedimentary mélanges, e.g., 
see Raymond, 1984) and tectonic mélanges (e.g., Hsü, 1974; Raymond, 
1984; Cowan, 1985; Bettelli and Panini, 1989; Pini, 1999; Festa et al., 
2010, 2013; Dilek et al., 2012; Alonso et al., 2015; Balestro et al., 2015b; 
Platt, 2015; Wakabayashi, 2015). This similitude is the basis of a long-
lasting debate on the processes of formation of chaotic rock units (i.e., 
tectonic versus gravitational), and is strongly amplified in metamorphic 
belts, where polyphase deformation and metamorphic recrystallization to 

eclogitic conditions commonly rework and obscure the primary internal 
structure of chaotic rock units.

In the metaophiolite units of the Western Alps, different methodologi-
cal approaches (e.g., structural, petrographic, stratigraphic) adopted in the 
interpretation of the nature of chaotic rock units and mélanges led to the 
definition of different tectonic models, which are still debated. For example, 
mélanges consisting of mafic blocks tectonically incorporated in a serpen-
tinite matrix (i.e., the serpentinite mélange) were described by Guillot et al. 
(2004) and Federico et al. (2007) as remnants of an exhumed subduction 
channel (see also Blake and Jayko, 1990; Gerya et al., 2002; Guillot et al., 
2009). However, tectonostratigraphic approaches interpreted the western 
Alpine ophiolitic mélanges as the product of inherited intraoceanic defor-
mation (Balestro et al., 2015a; Lagabrielle et al., 2015), despite the rework-
ing by Alpine subduction- and exhumation-related deformation. This has 
allowed the documentation of details on the preorogenic evolution of the 
high-pressure (HP) western Alpine metaophiolites, describing the exhu-
mation of mantle rocks at the seafloor, the formation of chaotic rock units 
linked with oceanic detachment faults, and the emplacement of basaltic 
and sedimentary succession with strong lateral and vertical variations (e.g., 
Tricart and Lemoine, 1991; Festa et al., 2015a; Lagabrielle et al., 2015, and 
references therein). These different models may, however, not represent 
contrasting interpretations, but only different stages of a complex evolu-
tion from intraoceanic deformation to subduction and subsequent collision.

The application of the proper criteria to the study of mélange rock units 
together with detailed structural and stratigraphic analyses may provide 
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new and useful information to better constrain the nature of these chaotic 
units, and consequently the evolution of metamorphic orogenic belts.

In this paper we document the internal structure of different block-
in-matrix rock assemblages occurring in a chaotic rock unit in the Lake 
Miserin ophiolite (LMO), which is part of the eclogite facies Zermatt-
Saas ophiolite (ZSO) (Western Alps; Fig. 1). The application of criteria 
adopted to identify mélange rock units (e.g., by Raymond, 1984; Cowan, 
1985; Orange, 1990; Bettelli and Panini, 1989; Pini, 1999; Festa et al., 
2010, 2012; Wakabayashi, 2015) allowed us to determine that the cha-
otic rock unit resulted from synextensional intraoceanic mass transport 
processes, the evidence of which is exceptionally well preserved in the 
deeply subducted ZSO. Stratigraphic and structural analyses further allow 
us to highlight that the chaotic rock unit is sealed by postextensional 
metasediments, and that, despite the polyphase Alpine deformation and 
metamorphism, a paleounconformity is, uncommonly, still recognizable. 
The overall architecture demonstrates that mass transport processes acted 
along the flanks of structural highs made of mantle rocks in the Juras-
sic Ligurian-Piedmont Ocean (JLPO), that are comparable with those 
observed in present-day magma-poor slow- and ultraslow-spreading ridges 
(Dick et al., 2003; Escartin et al., 2008).

REGIONAL GEOLOGY

The ZSO (Bearth, 1967; see Martin et al., 1994, for a review) was 
emplaced during the closure of a branch of the JLPO, which was inter-
posed between the European and African plates, and was tectonically 
stacked within the western Alpine belt (i.e., the Piedmont Zone; e.g., see 
Dal Piaz et al., 2003). This was the result of deformation and metamor-
phism that occurred during (1) Late Cretaceous–middle Eocene south-
east-dipping subduction, (2) late Eocene–early Oligocene collision and 
northwest-verging accretion, and (3) Oligocene–Neogene exhumation 
(e.g., Dal Piaz et al., 2001). The subduction history in the ZSO is recorded 
by high-pressure mineral assemblages (e.g., Ernst and Dal Piaz, 1978; 
Martin and Tartarotti, 1989; Li et al., 2004; Bucher et al., 2005; Angiboust 
et al., 2009; Angiboust and Agard, 2010) to ultrahigh-pressure mineral 

assemblages (e.g., Reinecke, 1991, 1998; Frezzotti et al., 2012, and ref-
erences therein). The collision and exhumation paths were characterized 
by blueschist facies decompressional conditions (e.g., Barnicoat and Fry, 
1986) and subsequent Barrovian greenschist facies overprint (e.g., Ben-
ciolini et al., 1988).

Based on scattered records of hydrothermal oceanic alteration (Cart-
wright and Barnicoat, 1999; Widmer et al., 2000; Martin et al., 2008) and 
geochemical mid-oceanic ridge basalt affinity (Bearth and Stern, 1979; Dal 
Piaz et al., 1981; Pfeifer et al., 1989), the ZSO was interpreted as consistent 
with a mid-ocean ridge setting of formation. However, the local occurrence 
and mixing and/or juxtaposition of oceanic- and continent-derived mate-
rial and units allowed the different interpretation of the ZSO as either the 
remnant of an hyperextended continental margin in an ocean-continent 
transition zone (e.g., see Beltrando et al., 2014, and references therein) or 
the result of the Alpine tectonic juxtaposition between oceanic and con-
tinental margin units (e.g., Fassmer et al., 2016, and references therein).

The LMO (Fig. 1), including the chaotic rock units, occurs in the 
southern sector of the ZSO (the Mount Avic ultramafic massif; e.g., Dal 
Piaz et al., 2010, and references therein), which consists of serpentinized 
metaperidotite with relict oceanic textures (Fontana et al., 2008, 2015; 
Panseri et al., 2008), that was intruded by Fe-Ti and Mg metagabbros. To 
the north of the LMO (north of Mount Avic), the ZSO is characterized by 
the occurrence of mafic and/or ultramafic metabreccia and metaophicalcite 
(Driesner, 1993; Tartarotti et al., 1998) documenting mantle seafloor exhu-
mation, and Mn ore deposits and Fe-Cu sulfide mineralization attributed 
to oceanic hydrothermal vents (Martin et al., 2008; Tumiati et al., 2010).

LMO

The LMO consists of serpentinite stratigraphically overlain, through 
a metaophicalcite horizon, by a composite chaotic unit (CCU) made of 
serpentinite blocks and disrupted metasandstone and metabreccia horizons 
with ultramafic composition, embedded within a carbonate-rich matrix. A 
calcschist unit (CSU) directly overlies either the CCU or the serpentinite 
and metaophicalcite (Figs. 2A–2C).
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The serpentinite derives from peridotite and consists of antigorite with 
mesh texture, Ti clinohumite, oxides (Cr-Ni–rich magnetite, ilmenite, and 
chromite with Cr# ranging between 60 and 80), and diopside with relict augite 
composition (enstatite

47–49
-ferrosilite

1–2
-wollastonite

48–50
). Upward the serpen-

tinite is covered by a metaophicalcite horizon as thick as 1 m characterized by 
sets of veins to 1–2 cm thick filled with carbonate, antigorite, or talc, which 
bound decimeter- to meter-sized clasts of massive serpentinite (Fig. 3A).

The LMO was deformed during at least three superposed Alpine-related 
deformation phases (D1, D2, D3). D1 is coeval to the subduction-related 
eclogite facies metamorphism, and developed the S1 foliation, which is 
parallel to the lithological contacts and overprinted the primary surfaces 
(i.e., the S0 sedimentary bedding). D2 is coeval to the collision-related 

blueschist to greenschist facies reequilibration, and is characterized by 
north-south–trending isoclinal folds (Fig. 2D) that pervasively deform the 
metaophiolite succession. D2 folds developed a west-northwest–dipping 
axial plane foliation (the S2) and are characterized by boudinage along 
long fold limbs. D3 is coeval to the exhumation stage and is character-
ized by northwest-southeast–trending gentle folds (Fig. 2E) that deform 
the previous D1 + D2 structural architecture.

CCU

The CCU corresponds to a wedge-shaped unit in cross section, which 
shows a thickness of ~40 m and tapers out from east-northeast and north to 
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west and south (Fig. 2), showing lateral and vertical changes in the facies 
of its block-in-matrix fabric. It consists of three types of broken forma-
tion (sensu Hsü, 1968), BrFm1, BrFm2, and BrFm3, and a sedimentary 
mélange/olistostrome (sensu Raymond, 1984; Festa et al., 2012, 2015b), 
called here SedMé. The contact between the different types of chaotic 
rock units is transitional and does not show any traces of Alpine-related 
mylonitic deformation, even if folded and deformed by the Alpine tec-
tonics. In the following, we refer to mélange as a body of mixed rocks, 
containing both exotic (i.e., extraformational origin) and native (i.e., intra-
formational origin) components in a pervasively deformed matrix (see 
Raymond, 1984; Festa et al., 2012). We refer to broken formations (sensu 
Hsü, 1968) as stratally disrupted units that preserve the lithological and 
chronological identity, and contain only native components.

BrFm1

The BrFm1 consists of different superposed bodies of ultramafic 
metabreccia ranging in thickness from 1 to 3 m (Figs. 2F, 2G), and is 
characterized by internal grading. Metabreccia varies from clast sup-
ported to matrix supported, with irregular to subrounded clasts ranging 
in size from decimeters to centimeters (Fig. 3B). The matrix consists 
of a coarse-grained metasandstone of the same composition as clasts. 
Rare elongated blocks as much as 50 cm long are randomly distributed 
within the metabreccia. The BrFm1 shows a lenticular shape at a scale 
of hundreds of meters with a maximum thickness of ~15 m (Figs. 2F, 
2G). The contact with serpentinite is sharp, locally corresponding to a 
decimeter-thick layer of coarse- to medium-grained metasandstone with 
ultramafic composition. In the western sector of the area, the BrFm1 is 
directly overlain with a sharp contact by the CSU (see following) while 
southward, it gradually passes to the BrFm3 via the gradual increases of 
the carbonate component in the metasandstone.

BrFm2

The BrFm2 consists of decimeters-thick disrupted horizons, clast sup-
ported and matrix supported, metabreccia, and coarse-grained metasand-
stone embedded in a carbonate-rich matrix (Fig. 3C), which gradually 
passes upward from calcschist to whitish marble. It crops out in the 
northern sectors of the study area (Fig. 2A), showing a wedge-like shape 
varying from zero to ~15 m in thickness from south-southwest to north-
northeast (Figs. 2F, 2G), and directly overlies the metaophicalcite horizon 
through a sharp contact marked by a centimeters-thick calcschist horizon. 
Disrupted horizons of detrital ultramafic metabreccia are prevalent in the 
basal part, and show an internal grading marked by angular to irregularly 
shaped clasts, to centimeters in size, passing to metasandstone. Those 
horizons are asymmetrically to symmetrically boudinaged at the scale of 
meters and define a planar alignment that is consistent with extensional 
shearing associated with D2 deformation (Fig. 3C). Elongated blocks show 
a medium to high aspect ratio (i.e., long axis/short axis), with the long 
axis aligned in a north-south direction, and an irregular flat to ellipsoidal 
shape corresponding to different degrees of extensional shearing of the 
primary bedding plane, coherent with the D2 deformation. The marble 
matrix prevails in the upper part, showing a transitional contact with the 
overlying SedMé unit.

SedMé

The SedMé shows a wedge-like shaped geometry ranging in thick-
ness from few meters to 15–20 m, oriented from southwest to north-
east (Figs. 2F, 2G). In the northwestern sector, it directly overlies the 

massive serpentinite and the metaophicalcite. It is characterized by a 
block-in-matrix fabric (Figs. 3D, 3E) with mainly rounded to irregu-
lar and equiangular exotic blocks of massive to veined serpentinite and 
metaophicalcite, decimeters to 1 m in size, embedded within a whitish 
marble matrix. The blocks show a low aspect ratio (i.e., main aspect ratio 
of 1.0–1.6). Carbonate veins, decimeters long and as much as 1–2 cm 
thick, are bounded within the blocks and do not cross the matrix (Fig. 
3E). Blocks are randomly distributed within the matrix and only rare 
elongate blocks are aligned with the S2 foliation. The matrix commonly 
includes centimeters-thick horizons of metabreccia consisting of angular 
or subangular clasts of serpentinite (Fig. 3F). These horizons are foliated 
(S1, S2) and folded (D2), constraining the brecciation process as having 
occurred before the D1 deformation stage (i.e., before the subduction-
related deformation stage; Fig. 3G). In the upper part of the unit, blocks 
decrease in size (to decimeters) and the matrix is gradually interfingered 
with centimeters-thick levels of calcschist that mark the transition to the 
overlying BrFm3.

BrFm3

The BrFm3 represents the uppermost part of the CCU. It has character-
istics similar to those of the BrFm2, and consists of a calcschist and marble 
matrix, embedded disrupted horizons and bed fragments, decimeters to 
meters long and to decimeters thick, of medium-grained metasandstone 
with ultramafic composition (Fig. 3H). The elongated to sigmoidal shapes 
of blocks are consistent with D2-related boudinage. The mean aspect ratio 
of blocks is medium to high (as for the BrFm2). This unit, which has 
an average thickness of ~10 m, decreases in thickness toward the west-
northwest, where it directly overlies the BrFm1 and/or the serpentinite, 
and it is followed upward by the CSU (Figs. 2F, 2G).

CSU

The different units of the CCU and underlying massive serpentinite 
are unconformably overlain by layered carbonate-rich calcschist (CSU, 
Fig. 2) that is devoid of any ophiolite-derived detrital material and alter-
nates with levels of quartz-rich schist. The basal contact is sharp and 
corresponds to a depositional surface as inferred from the lack of any 
associated mylonitic structure (Fig. 3I). The unconformable contact at 
the base of the CSU is folded together with the units below due to the 
superposition of D2- and D3-related folding (Fig. 2B).

LMO AS A PRODUCT OF JURASSIC MASS TRANSPORT 
PROCESSES

Although the Alpine subduction to collisional processes and meta-
morphism strongly deformed the primary structural tectono-sedimentary 
setting (e.g., Gerya et al., 2002), our tectonostratigraphic reconstruction 
documents that in this sector of the ZSO, the inherited intraoceanic archi-
tecture is well preserved in the LMO. Direct application of the criteria 
used to identify mélange rock units allowed us to interpret the tectonic 
significance of the CCU. We infer that the BrFm1 and SedMé fabrics 
formed by a close association of intraoceanic tectonics and mass transport 
processes acting at the time of Jurassic extensional tectonics, whereas the 
chaotic block-in-matrix arrangement of BrFm2 and BrFm3 is related to 
the tectonic dismemberment of their primary stratigraphic organization 
by means of the Alpine D1 and D2 deformations.

The BrFm1, which consists of blocks and matrix with similar composi-
tions, corresponds to a serpentinite matrix broken formation, composed of 
only native components. The latter were disrupted in situ by extensional 
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tectonics and related mechanical fracturing of the mantle rocks that were 
exhumed to the seafloor and subsequently reworked by mass transport 
processes with a limited run-out distance of downslope transport.

The block-in-matrix arrangement of the SedMé represents the emplace-
ment of exotic components with respect to the carbonate matrix. The ran-
dom distribution of rounded to irregularly shaped blocks (i.e., low aspect 
ratio) suggests an original emplacement through gravitational processes 
(see following) rather than tectonic slicing. The occurrence of carbonatic 
veins, which are within the same blocks, also constrains their exotic nature, 
sourced from the primary ophicalcite horizon. The characteristics of this 
sedimentary mélange correspond to the passive margin olistostrome type 
of Festa et al. (2016) that formed in intraoceanic settings.

The BrFm2 and BrFm3 consist of calcschist with disrupted horizons 
of metasandstone and metabreccia with an ultramafic composition that 
represent native components (i.e., turbiditic horizons) with respect to the 
carbonate-rich matrix (e.g., Balestro et al., 2015b).

CCU: A Record of Tectono-Sedimentary Processes

The wedge-shaped architecture of the CCU, its internal fabric, com-
position, and subdivision, and the nature of the contacts with the underly-
ing serpentinite and the overlying unconformable CSU, suggest different 

mechanisms of tectonically induced mass transport sedimentation spatially 
and temporally associated with extensional deformation and erosion along 
an intraoceanic bathymetric high (Figs. 4A–4D). The vertical and lateral 
organization of the BrFm2 represents the deposition of channelized tur-
bidites. The occurrence of brecciated horizons alternating with calcschist 
in the lower part of this succession suggests proximal deposition close to 
a submarine escarpment with high depositional energy, recording a first 
extensional stage of mantle denudation (Fig. 4A). The gradual upward 
increasing of the carbonate component within the matrix and decreasing 
of grain size within the ultramafic detrital horizons are consistent with the 
progressive decrease of depositional energy, suggesting in turn a decrease 
of tectonic activity and/or deepening of the relative sea level. However, the 
occurrence of turbidites with lithics of only ultramafic composition within 
the middle to upper part of the BrFm2 clearly shows that their source area 
and the depositional setting of this part of the ZSO were not influenced 
by material coming from the erosion of continental margin rocks.

The block-in-matrix arrangement of the SedMé, with serpentinite 
blocks embedded within a carbonate matrix, records a main and abrupt 
pulse of extensional tectonics (Fig. 4B). The random distribution of 
blocks within the matrix and the occurrence of carbonate veins confined 
within the blocks suggest their collapse from bathymetric and/or structural 
highs, exposing both serpentinized peridotite and ophicalcite. The upward 
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decrease of block size to the gradual transition to BrFm3 is consistent 
with the gradual decrease in magnitude of the tectonic activity.

BrFm3 records a new turbiditic input (Fig. 4C), comparable in both 
composition and interpretation to that described here for BrFm2. Its direct 
superposition onto the BrFm1 (see Fig. 3B) and locally onto the serpenti-
nite suggests that the BrFm1 was originally located on a topographic high 
mainly consisting of mantle rocks exposed to in situ mechanical fracturing 
and erosion, thus representing part of the source area for the ultramafic 
detrital components interfingered within the CCU (Figs. 4B, 4C).

The wedge shape of the CCU is consistent with the vertical change of 
facies of each single unit and with a paleoescarpment probably dipping 
east-northeast (present-day coordinates).

The unconformable deposition of the CSU (Fig. 4D), overlying both 
the CCU and the serpentinite, represents a postextensional succession that 
was deformed during Alpine tectonic stages, together with the underlying 
sequence. Ophiolitic detrital material is lacking and the occurrence of 
quartz-rich schist records an input of continent-derived sediments within 
the basin, which was thus filled by distal mixed siliciclastic-carbonatic 
turbidites reworking a passive margin source area. This depositional 
stage, which coincides with significant terrigenous input into the basin, 
is comparable to Early Cretaceous postextensional deposits preserved 
in the unmetamorphosed Ligurian units in the northern Apennines (e.g., 
Decandia and Elter, 1972).

LMO and the Jurassic Ligurian-Piedmont Seafloor

Preorogenic reconstruction of the LMO implies tectonic denudation 
of lithospheric mantle at the seafloor of the JLPO, as it has been docu-
mented in modern slow- and ultraslow-spreading ridges (e.g., Cannat, 
1993; Dick et al., 2003; Escartin et al., 2008) and inferred for some areas 
of the Alps and Apennines (e.g., Tricart and Lemoine, 1991; Lagabrielle, 
2009; Tartarotti et al., 2011; Sansone et al., 2012; Beltrando et al., 2014; 
Balestro et al., 2015a). Metaophicalcite records the early history of mantle 
exhumation by extensional tectonics and concurrent hydrothermal fluid 
circulation on the seafloor. Brecciation and MTDs recorded in the CCU 
are evidence of tectonically induced sedimentation, thus representing 
synextensional (synrift) deposits. Similar serpentinite breccias have been 
observed in the Atlantic Ocean, along the western median valley wall of 
the MARK (Mid Atlantic Ridge–Kane Fracture Zone) area. Submersible 
diving on Alvin (Karson et al., 1987) and Nautile (Mével et al., 1991) 
reveals that this region is characterized by active faulting and mass wast-
ing dominated by extensive debris-slide deposits (Karson and Lawrence, 
1997). Along steep fault scarps, foliated serpentinites are directly overlain 
by coarse, clast-supported breccia consisting of angular cobbles of foli-
ated serpentinite in a matrix of consolidated carbonate. Furthermore, in 
the median valley wall of the MARK area, mass transport processes have 
produced rock deposits with angular shapes (see Karson and Lawrence, 
1997), similar to those found in our CCU. In our model, the serpentinite 
breccia of BrFm1 could have been reactivated by normal faults, providing 
the source material delivered to clastic material and blocks of the SedMé. 
Similar, but much farther away, structural highs of mantle rocks repre-
sented the source material for the turbiditic intercalation within the BrFm2 
and BrFm3, suggesting that the turbiditic deposition within this part of the 
ZSO was not contaminated by material sourced from continental margins.

The recognition of the unconformable deposition of the postexten-
sional CSU, sealing the synextensional LMO architecture, is comparable 
with the Valanginian–early Aptian postrift siliciclastic rocks interfinger-
ing with carbonate-rich turbiditic deposits in the well-documented deep 
Galicia margin (e.g., Winterer et al., 1988).The similarity to the Early 
Cretaceous postextensional calcschist in other Alpine (Festa et al., 2015a) 

and northern Apennines (e.g., Decandia and Elter, 1972) ophiolites marks 
the critical timing of the final opening stages of the JLPO.

Our results have profound implications for the physiography and geo-
dynamics of the JLPO: the occurrence of preorogenic, synextensional 
deposits indicates that the seafloor of the JLPO should have been char-
acterized by regions of active faulting responsible for the formation of a 
rugged seafloor topography exposed to widespread gravitational processes 
(Fig. 4E). The composition of detrital material within the different units 
of the CCU, which is exclusively of ultramafic composition and lacks 
any continental-derived material, may suggest that in Late Jurassic time 
the LMO was located far from the continental margin, i.e., at the time of 
mantle exhumation and synextensional (i.e., synrift) deposition. There-
fore, this evidence may suggest that the LMO represents a depositional 
setting located in the oceanward part of an ocean-continent transition 
setting, protected by the deposition of continental derived material, or 
an embryonic oceanic basin far from the continental margins. Although 
it is not within the scope of this work, the latter interpretation seems to 
better agree with (1) the geochemical and isotopic data from this region 
(e.g., see Cartwright and Barnicoat, 1999; Widmer et al., 2000; Martin 
et al., 2008), (2) the recent interpretation of the contact between ZSOs 
and continental units (i.e., Etirol-Levaz slice) as a product of the Alpine 
tectonics (e.g., Fassmer et al., 2016), and (3) the lack of any kind of 
continental-derived material within the CCU.

CONCLUSIONS

Our findings document an exceptionally preserved record of MTDs 
and turbiditic sedimentation in the deeply subducted ZSO, which formed 
by intraoceanic tectono-sedimentary processes during the Late Jurassic 
synrift stages of the LPO basin. The understanding of the meaning of each 
type of chaotic rock unit within the LMO, as well as the recognition of a 
paleounconformity, allow us to detail the role played by different pulses 
of extensional tectonics associated with mantle exhumation and their 
control on sedimentation. This reconstruction as an eclogitized collisional 
orogenic belt is significant, because the occurrence of chaotic rock units 
may be commonly confused and interpreted as the exclusive product of 
subduction-related tectonics, obscuring the record of an important pre-
orogenic history. In particular, in orogenic belts such as the Western Alps, 
in which subduction tectonics represent an efficient mechanism of rock 
mixing (e.g., see Cloos, 1982; Federico et al., 2007; Festa et al., 2012; 
Platt, 2015; Raymond and Bero, 2015; Wakabayashi, 2015; Ukar and 
Cloos, 2016), the application of criteria derived from the study of mélange 
rock units represents a useful methodology not only to discriminate the 
process (i.e., gravitational versus tectonics) for the mixing of oceanic 
and continental blocks, but also to provide complementary data to better 
constrain paleogeographic reconstructions.
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