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Abstract

Background: Ticks are among the most important vectors of pathogens causing human and animal disease.
Acaricides are used to control tick infestation, although there are increasing reports of resistance. Recently, over-
expression of ATP-binding cassette (ABC) transporter proteins (P-glycoproteins, PgP) has been implicated in
resistance to the acaricide ivermectin in the ticks Rhipicephalus (Boophilus) microplus and Rhipicephalus sanguineus
sensu lato. Ixodid tick cell lines have been used to investigate drug resistance mechanisms. The aim of the present
study was to evaluate expression of several PgPs in the Ixodes ricinus-derived cell line IRE/CTVM19 and to determine
modulation of expression following treatment with ivermectin.

Findings: IRE/CTVM19 cells were treated with different concentrations of ivermectin (0, 11, 22 or 33 μM) and
incubated for 10 days. Evaluation of viability and relative expression of ABCB1, ABCB6, ABCB8 and ABCB10 genes
were carried out at day 10 post treatment. Cell viability ranged between 84 % and 92 % with no significant
differences between untreated and treated cells. qRT-PCR showed that ABC pump expression was not significantly
modulated by ivermectin treatment. Expression of the ABCB8 PgP subfamily revealed a biphasic trend, based on
the ivermectin concentration. ABCB6 and ABCB10 gene expression was not modulated by ivermectin treatment
and ABCB1 expression was not detected.

Conclusions: This is the first report of PgP expression in an I. ricinus-derived tick cell line. Development of an in
vitro model for the study of acaricide resistance mechanisms would greatly facilitate screening for drug resistance
in ticks.
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Findings
Background
Ticks are among the most important vectors of a wide
range of pathogens causing human and animal diseases,
and several classes of acaricide are widely used to con-
trol tick infestation [1, 2]. However, there is an increas-
ing number of reports of resistance to acaricides
including macrocyclic lactones [3]. One of the most
widely studied mechanisms of drug resistance is associ-
ated with the protein family of ABC transporters, which
transport toxic substances outside the cell, thereby

reducing their concentration inside the cell [4]. These ef-
flux pumps are able to eliminate both endogenous and
exogenous toxins and are an important “first-line” de-
fence mechanism. Recent studies have shown that ABC
transporters are present in a wide range of organisms,
including mammals and arthropods, and have been im-
plicated in drug resistance in ticks [5–7]. A recent study
reported that over-expression of a gene encoding for
ABC-multidrug transporters was associated with in
vitro-induced resistance to ivermectin in the tick cell
line BME26 [8], derived from embryos of the cattle tick
Rhipicephalus (Boophilus) microplus [9]. In addition,
ABC transporters may be involved in detoxification in the
brown dog tick Rhipicephalus sanguineus (sensu lato)
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[10]. Despite increasing evidence that ABC transporters
are likely to be involved in acaricide resistance in ticks,
there have been no studies in Ixodes ricinus, one of the
most important vectors of pathogens causing tick-borne
diseases in Europe. Ixodid tick cell lines have already been
used as a model for the study of drug resistance [8, 11].
The development of an in vitro model for the study of
molecular resistance mechanisms and the screening of
potential genetic markers of resistance in I. ricinus
would be of great scientific interest.
The aim of the present study was to evaluate the ex-

pression of selected members of the ABC transporters
subfamily B (ABCB1, ABCB6, ABCB8 and ABCB10) in
vitro, following ivermectin treatment of the I. ricinus cell
line IRE/CTVM19. Ivermectin was chosen as the test
acaricide both because of its use in previous published
studies on ABC transporters [6–8, 10] and because it
has been shown to be active against I. ricinus ticks [12].

Methods
Reagents
All reagents were purchased from Sigma Aldrich (Milan,
Italy) except where indicated.

Cell line maintenance
Cells of the I. ricinus embryo-derived cell line IRE/
CTVM19 [13] were seeded in flat sided 10 ml tubes
(Nunc) in Leibovitz’s L-15 medium (Life Technologies,
Milan, Italy) supplemented with 20 % fetal bovine serum,
10 % tryptose phosphate broth, 2mM L-glutamine,
penicillin (100 U/ml) and streptomycin (100 μg/ml)
and incubated at 28 °C. Medium (3/4 volume) was re-
placed weekly and cells were split at intervals of at
least 15 days.

Treatment of IRE/CTVM19 cells with ivermectin
IRE/CTVM19 cells seeded at a concentration of 3 × 106

cells/ml in 2 ml culture medium per tube were treated
immediately with different concentrations of ivermectin
in 0.1 % DMSO (11 μM, 22 μM or 33 μM). Untreated
cells and cells treated with 0.1 % DMSO only served as
controls. Cultures were incubated for 10 days and
medium was changed on the seventh day. Replacement
media contained the same concentrations of ivermectin
as reported above.

Growth curve and cell viability
For growth rate analysis, four replicate tubes were used
per treatment. On days 0, 5 and 10, a small aliquot of
cell suspension was harvested from each tube, labelled
with Trypan Blue 0.4 % w/v and counted using a haemo-
cytometer. A test of cell viability was also performed on
day 5 of treatment using the LIVE/DEAD Fixable Near-
IR stain kit (Life Technologies). Cells were stained

according to the manufacturer’s instructions and ana-
lysed by flow cytometry. Flow cytometry was performed
using a BD FACSVerse (BD Biosciences, Stockholm,
Sweden) equipped with 488 nm blue and 633 nm red la-
sers, and results were analysed using the FACSDiva (BD
Biosciences) software. Cells frozen at -80 °C and thawed
three times were used as negative controls.

RNA extraction and determination of gene expression
profile after acaricide treatment
On day 10 following the start of ivermectin treatment,
RNA was extracted from samples of resuspended cells
from each replicate culture using an RNeasy Mini Kit
(Qiagen) following the manufacturer’s instructions. RNA
was measured by spectrophotometric analysis for quality
and content and then converted into cDNA using a
QuantiTect Reverse Transcription Kit (Qiagen). The re-
sultant cDNAs were used as templates for molecular
analysis. To date, there is no published information
about I. ricinus sequences for any of the pumps under
investigation (those encoded by the ABCB1, ABCB6,
ABCB8 and ABCB10 genes); thus primers were designed
(Table 1) based on conserved regions of sequences of se-
lected ABC transporters of I. scapularis available in Vec-
torBase (ABCB1: ISCW004310; ABCB6: ISCW021257;
ABCB8: ISCW005908; ABCB10: ISCW008199) [14]. As
an endogenous control, the I. ricinus β-actin gene was
chosen and primers were designed based on the partial
sequence available in Genbank (HQ682101). Primers
were first tested in a traditional PCR using cDNA de-
rived from an untreated control IRE/CTVM19 culture
and reactions were run on a 2 % agarose gel stained with
SYBR Safe Gel and examined under UV light (UView
mini Transilluminator, Biorad) (Fig. 1). The amplifica-
tion fragments, obtained using standard PCR conditions
and the thermal profile indicated below, were sequenced
in order to confirm the specificity of the amplification.

Table 1 Primers used in the present study for evaluation of
expression of the ABC subfamily B genes (ABCB1, ABCB6, ABCB8
and ABCB10) in the Ixodes ricinus cell line IRE/CTVM19

Primer sequences

ABCB1 F: 5′ – TCTTTGCCGTCTTCTACAG – 3′

R: 5′ – CAGGTTCTCTCCAGCGAT – 3′

ABCB6 F: 5′ – AGACTATGTCCTCTTCCTCA – 3′

R: 5′ – CATCTATCACCTCTGCCTT – 3′

ABCB8 F: 5′ – ATCAGGAACGCCGACATC – 3′

R: 5′ – AGTTTCCAGTAGACACCCTT – 3′

ABCB10 F: 5′ – TGTCCTAACCATTGCTCACA – 3′

R: 5′ – TGATGTTCCACTAATGTCCG – 3′

β-Actin F: 5′ – CACGGCATCGTGACCAACTG – 3′

R: 5′ – CGAACATGATCTGAGTCATCTTCTC – 3′
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The resultant sequences were deposited in the EMBL
Nucleotide Sequence Database (ABCB6: LT222036;
ABCB8: LT222037; ABCB10: LT222038).
ABC-B subfamily protein expression was then evalu-

ated by quantitative RT-PCR, using the SYBR Green
master mix kit (EuroClone), according to the manufac-
turer’s instructions. The final concentration of each pri-
mer in all the reactions was 0.4 μM. The amplification
protocol was characterised by a denaturation step (95 °C
for 2 min) and 45 repeated cycles (95 °C for 10 s; 56 °C
for 15 s; 72 °C for 20 s). Fluorescence signals were col-
lected in every cycle and the presence of nonspecific
products was excluded through analysis of the melting
curves. Results were presented as the mean ± S.E.M. of
three experiments with four replicates each, managed by
CFX Manager software (Biorad) and expressed as Rela-
tive Normalised Expression (ΔΔCq).

Data analysis
One-way ANOVA with Dunnett’s post-hoc test was
performed using GraphPad Prism version 6(GraphPad

Software, San Diego California USA, www.graphpad.com).
P-values < 0.05 were considered statistically significant.

Results and discussion
Growth curve analysis revealed a doubling-time of ap-
proximately ten days for IRE/CTVM19 cells under all
conditions. IVM treatment modified cell morphology and
adherance to the plastic tube, but did not alter cell viabil-
ity (Fig. 2). As measured by Trypan Blue exclusion assay
(data not shown) and flow-cytometry (Fig. 3), viability was
92 % in the untreated control cells and between 84 % and
88 % in cells treated with DMSO alone or with IVM.
Differences between groups were not significant.
Quantitative RT-PCR analysis showed that ABC gene

expression was present in IRE/CTVM19 cells but not
significantly modulated following ivermectin treatment
(Fig. 4). Expression of the ABCB1 gene was not detect-
able at any time point in any condition (data not shown).
ABCB6, ABCB8 and ABCB10 were detected, but no sig-
nificant differences were seen between untreated and
treated cultures or between different doses of IVM.

Fig. 1 Primer couples tested in traditional PCR. All fragments were approximately 101–157 bp long. The no-template control (NTC) presented a
spot due to primer dimerization

Fig. 2 Morphology and density of IRE/CTVM19 cell line following IVM treatment. Increasing concentration of IVM (b: 11 μM; c: 22 μM; d: 33 μM)
determined larger and more vacuolated cells compared to untreated control (a). Pictures were captured at 100 × magnification
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To the authors’ knowledge, this is the first report of
expression and modulation of ABC transporters in an I.
ricinus-derived cell line. The relative expression of ABC
genes in ivermectin-treated cells ranged between 0.5 and
1.6 fold compared to the time zero control. Interestingly,
ABCB8 expression showed a particular, biphasic dose-
response relationship, with a low-dose stimulation and a
high-dose return to the control level, as reported by
Calabrese for drug-resistant vertebrate cell lines [15].

The results presented here indicate the need for further
study.
Furthermore, ivermectin has been incriminated as an

inhibitor of detoxification mechanisms in mammalian
cell lines [16] and the results regarding ABCB8 in the
present study suggest that the inhibitor effect may also
be true for I. ricinus tick cell lines. In the only other
similar in vitro study published so far [8], a clear role for
ivermectin could be demonstrated both in terms of

Fig. 3 IRE/CTVM19 cell viability on day 5 of cultivation either untreated (L-15), treated with 0.1% DMSO alone (DMSO 0.1 %) or treated with
ivermectin (IVM) in 0.1 % DMSO at concentrations of 11, 22 or 33 μM. Cells were evaluated by flow cytometry following Live vs. Dead® staining
and data represents the mean of four replicate tubes ± S.E.M. Viability measured by Trypan Blue exclusion on days 5 and 10 was comparable
(data not shown)

Fig. 4 Expression of ABCB6, ABCB8 and ABCB10 genes in IRE/CTVM19 cells untreated (L-15), treated with 0.1% DMSO alone (DMSO) or treated
with different concentrations of ivermectin (IVM) in 0.1% DMSO. Results were expressed as Relative Normalised Expression (ΔΔCt) vs expression of
the housekeeping gene (β-Actin) and were presented as the mean ± S.E.M. of three experiments performed with four replicates each
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establishment of a lethal concentration 50 (LC50) and of
a resistant tick cell sub-line. In that study, up-regulation
of several ABC genes (ABCB10, ABCC1, ABCB7,
ABCC2) was observed in the ivermectin-resistant cell
sub-line BME26-IVM.
Interestingly, the I. ricinus cell line used in the present

study was able to tolerate a much higher concentration
of ivermectin, 30 μg/ml (33 μM), than the unselected
BME26 cell line that did not survive after exposure to a
concentration of ivermectin of 12.5 μg/ml or the
resistant sub-line BME26-IVM for which the LC50 was
calculated as 15.1 μg/ml [7]. Differences between the
biology of the two tick species from which the cell lines
were derived (I. ricinus and R. microplus), between the
phenotypic composition of the cell lines themselves and/
or in the culture conditions used (such as medium com-
position and incubation temperature) may explain the
differences in the outcome of treatment and should be
taken into account when refining the in vitro model of I.
ricinus. Finally, it would be of interest to develop this in
vitro model with cell lines from other economically im-
portant tick species and to evaluate the effect of different
acaricides that have been reported to be losing their
efficacy in the field [17].
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