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We study the invariance of stochastic differential equations under random diffeomor-
phisms and establish the determining equations for random Lie-point symmetries of
stochastic differential equations, both in Ito and in Stratonovich forms. We also dis-
cuss relations with previous results in the literature. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4982639]

I. INTRODUCTION

Symmetry analysis of differential equations is a powerful and by now a rather standard tool
in the study of deterministic nonlinear problems;> its use in the context of stochastic differential
equations (SDEs)>® is comparatively much less developed (a partial exception being the versions of
Noether’s theorem?? for stochastic variational problems!).

Albeit some concrete results exist, in particular concerned with strongly conserved quantities
related to symmetries'>~'* and to the linearization problem,' a great deal of activity has been so far
devoted to discussing what the suitable definition of symmetry would be in the case of stochastic
differential equations (SDEs in the following); here we refer, e.g., to Refs. 12-20. See also Ref. 21
for a review.

As in the case of deterministic differential equations, these works considered smooth vector
fields in the space of independent and dependent variables (also called the phase space or manifold);
in fact, dealing with smooth vector fields is at the heart of the Sophus Lie approach, in that it allows
us to deal with infinitesimal transformations and hence with linearized problems.

On the other hand, when dealing with SDEs one is from the beginning considering an object
which is not just a smooth vector field; the evolution described by an SDE can be described in terms
of random diffeomorphismes, i.e., a diffeomorphism which depends on a random process. Thus in this
context, it would be quite natural to consider invariance under the same class of transformations.

Actually, this is exactly what has been done by Arnold and Imkeller in their seminal work
on normal forms for SDEs'! (see also the book by Arnold’); as it is well known, the theory of
(Poincaré-Dulac in the case of general dynamical systems or Birkhoff-Gustavsson for Hamiltonian
ones) normal forms>>?? is intimately connected with symmetry properties,>>%* so that the success of
their approach suggests that one can follow the same path in discussing general symmetry properties
of SDEs outside the perturbation approach.

The goal of the present paper is indeed to apply the Arnold-Imkeller approach to the analysis of
symmetries of SDEs. We will see that this can be done without difficulties, and explicit determining
equations for the symmetry of a given SDE can be obtained. The formulation of these is the main
contribution of our paper. We will also consider some concrete examples and determine symmetries
for them, choosing equations which have physical relevance.
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We will assume that the reader has some familiarity with the basic concepts in the theory of
symmetry of (deterministic) differential equations (see, e.g., Refs. 2—4) and also with the basics of
stochastic differential equations (see, e.g., Ref. 5); as the former may not be so familiar to read-
ers primarily interested in SDEs, we will very briefly go over basic concepts for standard (that is,
deterministic) symmetries of SDEs.

We will first consider the simple class of symmetries, in order to focus on the main point of our
contribution, and only later on discuss the most general case. This will make the paper a little longer
than it would be going directly to the most general case, but we trust it will help the reader—not to
say that simple symmetries seem to be the most useful in applications.

The plan of the paper is as follows. After briefly introducing the class of maps to be considered,
i.e., random diffeomorphisms (Sec. II), we will first discuss symmetries of SDEs in the Ito form
(Secs. IIT and IV) in increasing generality and examples of these (Sec. V), passing then to discuss
the case of Stratonovich SDEs (Sec. VI) and examples of these (Sec. VII). We then discuss the
relation between symmetries of an Ito equation and of its Stratonovich counterpart (Sec. VIII); we
also discuss the (lack of) simple algebraic structure of symmetry generators for a given Ito equation
and the (existence of) the same structure for a given Stratonovich equation (Sec. IX). Finally we draw
our brief conclusions in Sec. X.

All the functions and other mathematical objects (manifolds and vector fields) to be considered
will be assumed—unless differently stated—to be smooth; by this we will always mean C.

We will always use (unless differently stated) the Einstein summation convention; we will usually
denote partial derivatives with respect to the ¢ and x variables and later on also with respect to the w*
variables, by the shorthand notation,

& 1= (8)31), & = (8)ox), B = (8]dw").

Il. ALLOWED MAPS
A. Random diffeomorphisms

Arnold and Imkeller'! define a near-identity random map h:Q x M — M, with M a smooth
manifold and Q a probability space, as a measurable map such that

i) Mw,.)eC™M);
(i) h(w,0)=0;
(i) (Dh)(w,0)=id.

Property (i) means that we can consider this as a family of diffeomorphisms (i.e., passing to gen-
erators, of vector fields) on M, depending on elements w of the probability space €. The dependence
is rather arbitrary, i.e., no request of smoothness is present.

We will also refer to the generator of such a map, with a slight abuse of notation, as a random
diffeomorphism. Note that random diffeomorphisms (as well as random maps) only act in M, i.e.,
they do not act on the elements of Q.

In our case, M =R X M,, with R corresponding to the time coordinate, is the phase man-
ifold for the system, while Q will be the path space for the n-dimensional Wiener process
W) ={w!@),..., w" 1))

Moreover, as suggested by the notation above, we should consider M as a fiber bundle over R
(the fibers being M) and & should not act on R.

In the end, introducing local coordinates x’ on M, we want to consider random diffeomorphisms
generated by vector fields of the form

X =10, 5w) 0 + @(x, tw) ;. (D)

A time-preserving random diffeomorphism will be characterized by having 7 =0, while the
fibration-preserving ones (with reference to the fibration M — R) will be characterized by 7 = 7(t).
One should also mention that special care is needed when considering time changes which depend
on x (which is itself a stochastic process) and/or w, which are random time changes.'
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We will start by considering “simple” (i.e., time-preserving) random symmetries in order to
tackle the key problem in the simplest setting; later on (see Section IV) we will consider the general
case.

Remark 1. In the literature one considers also transformations directly?® acting on the Wiener
processes as well; this is related to the so-called “W-symmetries.”?’ We will consider also this class
of transformations, in which case one considers diffeomorphisms (in the extended space (x, t; w))
generated by vector fields of the form X = 7(x, £; w)d; + ¢'(x, £; w)d; + h* (x, t; w)dy. o}

B. Maps acting on the time variable

If we consider vector fields which act on the time variable as well, we should take into account
that the Wiener processes w*(¢) are affected by a change in . In the simplest case, this action on ¢ will
be just a “global” reparametrization of time, i.e., will not depend on the x’() and w(¢) variables.?’

This situation was discussed, in the context of symmetries for SDEs, in Ref. 19 (see Appendix
A there); we give a short account of this discussion here for the sake of completeness.

The probability that a Wiener process w(#) undergoes a change dw = z in the time interval 6 = dt
has a density

dp(z,0) = [1/\/27r6‘] 710 gy,
Under a near-identity map (we will assume 7’ < 1/¢ for all 1)
t—os=t+e1(0), 2)

we have 6 =dr=[1/(1 + £7’)]ds; thus the density dp should now be expressed in terms of 0 =ds
= +e&t’)dr.
Instead of going through computations, we note that if we consider { =V1 + &7’z and the

stochastic process
w(s) = Vl+et’ w(s), 3)

the probability that w(s) undergoes a change ¢ =dw in the time interval 8 = ds has a density
dp(£.6) = [1/V2r0] ¢/ ag.

Thus we conclude that map (2) induces map (3) on the standard Wiener process.

In the case of 7 =7(x,1), extra care should be paid: in general this would produce a random
non-smooth map, and only those expressed as integrals should be allowed' (the integration has a
regularizing role); proceeding in a formal way as we will do in the following has indeed in general a
formal value, and the actual well-posedness of the considered maps should be verified in each case.

When the considered non-autonomous map is acceptable, with 7 =7(x, ) (see, e.g., Theorem
8.20 in the book by Oksendal6) or even T =T(x,t; w), one proceeds in a similar way and obtains
exactly the same result (see Section IV). This implies in particular that under (2),

dr

dw® - dw* + 81 (
dt

5 ) dw* = dw* + & swk. @

lil. ITO EQUATIONS—SIMPLE SYMMETRIES

We will consider stochastic differential equations in the Ito form, i.e.,

di' = fi,0)dt + o' (x, 1) dw". (5)
In the following it will be convenient to use the notation
c %u c rik 0%u
Au = —_— + oo - = Ayl + Al 6
; dw*dwk j;I( ) Ox/ Oxk ©

For a function depending only on the (x, #) variables—as in the case of deterministic symmetries—the
first term vanishes identically.
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A. Deterministic symmetries

We will start by considering simple symmetries; in the deterministic case these are generated by
vector fields,

X =¢wna, ©)
while when we look for simple random symmetries we mean those generated by a vector field

Y = ga[(x, t,w)od;. (8)

The determining equations for simple deterministic symmetries of Ito equations (that is, for 7 =0
and ¢ = ¢(x, t)) were determined in Ref. 19 (see also Ref. 20 for extensions) and turned out to be, in
the present notation,

{atyf + @) - @ @) = -4 8, .

OJk (aj‘pl) - ‘)0](6]0—11{) = 0.

B. Random symmetries

We will now consider the case of simple random symmetries, i.e., for vector fields of form (8);
under this we have x* — x' + ¢'(x, w), and hence

dx' s dx' + £dy’
. . . . —~ . 1 .
=dx' + £ [(9;9")dx + (9" dt + (Oee’) dw* + E(Atp’)dt ,
e =fen + e @,
o-ik(x, H— O'ik(x, )+ ¢ (ajO'ik) 901
Plugging these into (5), the latter is mapped into a new Ito equation
' = [fi,0) + (&) nldt + o (x,1) + & @B0) (x, D] dw* (10)

where the variations are given by

G @ =10 ~ P ~ 3 (o) — @D,
6o’ O, =[G — o (¢) — B,
Thus the equations remain invariant if and only if, for all i and £,
{@so") + P@6") = P@Of) = - 3 (8¢,
O + o, (Gi¢) — P(Go')) = 0.

These are the determining equations for simple random symmetries—of form (8)—for the Ito
equation (5).
Note that introducing the vector fields

Y

X=0+f0, X =0+, 0, Y =8, Z, = (6¢), (12)
(11) are simply rewritten as
1 —~
XYl = =2 Z,. [X.%] = 0. (13)

Remark 2. The only difference with respect to the determining equations for deterministic
symmetries (9) is the presence of the dy¢' term in the second equation; but one should how-
ever recall that—despite the formal analogy—the term A¢’ does now also include derivatives with
respect to the w* variables (i.e., the Awtpi term), which are of course absent in (9), where actually
AQ' = Axg'. o
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IV. ITO EQUATIONS—GENERAL RANDOM SYMMETRIES

So far we have considered (invariance of SDEs under) maps generated by vector fields of the
special forms (7) or (8). We want now to remove this limitation and consider general vector fields in
the (x, ¢; w) space, i.e.,

Y = 1(e,;w) 0 + ¢ (x,;w) 0 + h(x, t;w)é}c. (14)
Here we started to use, as mentioned above, the shorthand notation
& = 8/ouw*. (15)
We also write X = 70; + ¢'9; for the restriction of Y to the (x, t) space.

Remark 3. Note that in (14) we are considering also the possibility of direct action on the wk
variables (apart from the action induced by a change in time), as in the approach to W-symmetries.”’ As
already pointed out there, the requirement that the transformed processes w*(¢) = w*(¢) + eh*(x, t, w)
are still Wiener processes implies that w* :Méfwf with M the orthogonal matrix, and hence that
necessarily

= Bk[(x,t;w) w’ (16)

with B a (real) antisymmetric matrix; see Ref. 20 for details. This will be assumed from now on.
(Note moreover that if B does not depend on w, then A(h¥) reduces to its “deterministic” part.) ©

Remark 4. On physical grounds one would be specially interested in the case where the change
of time does not depend on either the realization of the stochastic processes w*() or on the spatial
coordinates x', i.e., on fiber-preserving maps. These will be obtained from the general case by simply
setting 7 = 7(¢). It should also be noted that, beside any physical considerations, a (non-trivially) space
dependent time change would provide a process which is not absolutely continuous with respect to
the original one—thus definitely not of interest in the present context. See also the brief discussion
in Sec. II B. O]

A. The general case

The vector field (14) induces—taking into account also the discussion of Section II B and in
particular Eq. (4)—the infinitesimal map
Xox + e <pi(x, t,w),
t—>t + et(x,tw),

wt —wk + ahk(x,t;w) + gowk.

With this, the Ito equation (5) will read
dx' = [0, 0+ 2@ (v t,w)] de + [oh(x.0) + (60 (x, 1, w)] duwt. (17)

We do of course aim at obtaining explicit expressions for ¢f and for do.
Working, as always, at the first order in &, we have

fi
a]

fillx+ep,t+et]=f(x, t)+8(7i; go’ ) = fi(x, t)+8X[f(x nl,

i

. dot : :
olx+ep,t+et]= O'k(x 1 + 8(7i ¢ —) = o (1) + eX[o(x,0]. (18)
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The differentials d gai, dt, and dh* should be computed by the Ito formula; for a generic function
F(x, t; w) we have, making use of (5),

dF = (8,F)dt + (0;F)dY + (O F)dw" + %(AF)dt
, ~ - 1
=(0,F)dt + (OP)f'dt + o’ dw"] + (G F)dw* + S (8Pt

= @ F) +f(@9;F) + %(AF) dt + [(OF)+ oy (&F)] dw*

=L[F)dt + Yi(F)duw*, (19)

where we have defined the Misawa vector fields Y, and the second order operator L by
. ~ : 1
Yo:=0; +f]3‘, Yk:=3k+o-’k6~, LZ=Y0+§A. (20)

The expressions for d¢', dt, and dh* are immediately obtained specializing (19),
de' = LI¢'dt + Yi(@)dw* , dr = Llt]dt + Yi(r)dw" , dh* = L[KF1dr + (W) dw*. 1)
Using (18) and (21) we can rewrite (17) in the form
dx' + edg' =[f' + eX(fH](dt +edt) + [0} + eX(oTD](dw* + edw" + edh). (22)
We like to write this in the form
dx' = fi(x,t)dt + oi(x,n)dw* + e 6F". (23)
Here, setting dw* = ydw* (with ¢ = (1/2)(6,7), see (4)), we have
SF'=—d¢' + fldr + X(f)dt + ol dh* + yoldw* + X(o)dw*
=f' [L(v)dt + Vi(r)dw* | = [L(") + Yi(¢)] + X(Fdr
+ X(o)dw® + yoidwt + o, [L™dr + Ye(h™)dw* |
= [X(F) = L¢) + £ L(x) + of L(h)] dr
+ [X(0}) = Yilg) + f YD) + ol Ye(h™)] duwt.

We thus conclude that the determining equation for (random) symmetries of the Ito equation (5)
is

X(f) = L(¢) + f'L(x) + ol L(K") = 0, 4
X(op) = Yilg) + f1Yi(@) + o) Yih™") = =5 (8,7) 7.
These can also be finally rewritten, using the explicit form of L and y, as
X(f) = Yo(¢') + f1Yo(m) + of Yoh) = § [a(¢h) + fla() + ol ath)], 25)
X(oh) = Yi(@) + f1Yi(r) + ob Ye(h™) = =5 (1) ok

Several special cases are considered in the following.

Remark 5. This is a system of n + n® linear equations for the 2z + 1 unknown functions
{r, <p1, e hl,...h"}; these reduce to n or n + 1 functions if we consider simple symmetries
or at least symmetries not acting directly on the w variables. Thus the system is over-determined
for all n > 1, and in general we will have no symmetries; even in the case there are symmetries, the
equations are not always easy to deal with, despite being linear, due to the dimension. For n = 1 the
counting of equations and unknown functions would suggest that we always have symmetries, but
the solutions could be only local in some of the variables. 0]

Remark 6. The solutions to the determining equations should then be evaluated on the flow of
the evolution equation (the Ito SDE); this can lead some functions to get less general or even trivial;
see Example 1. o
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Remark 7. We focused on the definition of random symmetries of an SDE and on the determining
equations for these; on the other hand, we have not considered how the symmetries can be used in
the study of the SDE. The first use of symmetries for SDEs should be through the introduction of
symmetry-adapted coordinates; (see Remark 8 in this respect). A more structured approach, relating
simple symmetries to reduction pretty much as for deterministic equations, has been developed by
Kozlov'® in the case of deterministic symmetries of SDEs; we postpone the investigation of the
possibility to extend his results to the framework of random symmetries to future work. )

B. Special cases
It is interesting to consider some special (simpler) cases.

(1) In the case of deterministic simple (time preserving) vector fields, i.e., ¢ = ¢(x,t), T=h =0,
Equations (24) reduce to (9) seen above.

(2) Similarly, in the case of simple random symmetries, i.e., ¢ = p(x,t;w), T=h=0, we get
Equations (11) derived above.

(3) If we consider the case of deterministic fiber-preserving symmetries, i.e., ¢ = ¢(x, t), T = 7(¢),
h =0, Equations (9) reduce to

{atso" - aGf) + FG¢) — &) = -5 a¢,

0f) + ‘ ‘ .y
@) + ¢ @) = oG’ = =3 @m0y (26)

These equations coincide with those derived in Ref. 19, see Theorem 2 there.
(4) When considering W-symmetries of SDEs?” one considered vector fields with, in the present
notation, ¢ = ¢(x,t), T =7(t), h = h(t, w). In this case, Equations (9) reduce to

{cw' = 0Gf) + f1(O¢) — ¢ (Of) = oL@k = S0l athh) = § A,

' (o ol (B : 27
T (@) + ¢ Qo) = 0" + 0, B = - 3 (OT) o @7

These equations were already obtained in Ref. 20, see the corollary to Proposition 1 there.
(5) Letus consider the general case with ¢ = ¢(x, t; w), T = 7(¢, w), h = 0. Equations (9) are in this
case

{a,w" +f @) = ¢ G + T@f) - 1O = 3| am - ah] L

d¢' + oL (@¢) - ¢ (Gol) - 1)) - f1(@GT) = $ @) Tl
(6) As mentioned above (see Remark 4) we are specially interested in the case where 7 =7(¢)
while ¢ and £ are in the general form (up to the restriction on 4 discussed in Remark 3). In

this case the only simplifications in (9) are, of course, in the terms involving 7 and amount to
Yo(7) =(0,7), Yi(r) =0, and A(7) =0. Thus in this case (9) reduce to

X(f) = Yo(@") + f1@m) + o YoUh) = § [a(p) + o sGH)] @)
X(ol) = V(') + ol Ye(h™) = -1 (97) ol
For h =0 (i.e., excluding W-symmetries) these further reduce to
O¢ + 1ot — @ oft — Tof — OO + 3¢ =0, (30)
akgoi + a”k 6jgoi - gofaja'ik - T@taik - %(6ﬂ')0’ik = 0.

(7) Finally, in applications one is often faced with n-dimensional system, depending on n Wiener
processes,
dx' = (M x)dr + a'"j dw'(t),

with M and o constant matrices. It is also frequent that o is diagonal.
In this case (for general, i.e., non-necessarily diagonal, o) the determining equations for simple
random symmetries read

{W) b Ml @) ~ M)+ Lol =0,

7 , 1
(Gk¢") + o, (9i¢") = 0. Gh
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We start by considering the second set of equations; assuming moreover that o is diagonal,
o =diag(1y,..., 4,), these yield
o =¢'E . L,

where we have defined z* := x¥ — A, w* (no sum on k). For functions of this form we get immediately
(using again the ansatz on o) that Ap =0, and hence the first set of determining equations reads
simply as

3‘/)i J ok 680i _oagi
-t (M 1) o) " M. (32)
This is equivalent to
d¢' _oagi T\/ d¢' _
—- = Mg and (M ),, (_sz =0. (33)

The first set of equations implies that

(t—to)M

PE, . =e o, .. N 0),

while the second one states that V' is in the kernel of M7 .

V. EXAMPLES |: SYMMETRIES OF ITO EQUATIONS

A. Simple random symmetries

We start by considering simple random symmetries of Ito equations; in this case the relevant
determining equations are (11). We will consider examples which were already studied—for what
concerns deterministic symmetries—in Ref. 19, so that comparison with results in the deterministic
case is immediate.

Example 1. We start by considering a rather trivial example, i.e., n = 1 and

dx = oo dw(t) (34)

with oo # 0. In this case we just have a system of two equations for the single function ¢ = ¢(x, t; w),
and (11) read

op=—(1/2) r¢,
anD =—-00 (ax‘p)

The solution to the second of these is ¢ = F(z,t), where F is an arbitrary (smooth) function of
z:=x — oow and ¢t. Plugging this into the first equation, we get

3,F = _0'(2) (922F

This is an autonomous linear equation, and it is readily solved (e.g., by considering the Fourier
transform of F'), showing that there are nontrivial simple random symmetries. Note however, these
will grow exponentially fast in time.

It should also be noted that dz = 0 in solutions to Equation (34), see Remark 6.

Example 2. We consider another one-dimensional example, i.e.,

dx = dt + xdw. (35)

This was considered in Ref. 19, where it was shown that it admits no deterministic symmetries. (11)
read now

Ohp + Ovp = =(1/2) A,
¢ — x(Oxp) — (Owep) = 0.
The second equation yields

QD(.X,t,IU) =X¢(Z,l‘), Z:=xe_
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Inserting this in the first equation, and recalling that now the coefficients of different powers of x
must vanish separately, as ¢ = (¢, z), we get two equations,

o+ 2y, =0, 24 + 3z¢; + ZZQWZZ = 0.

Solving these, we have ¥(z,f) = (c1/z) exp[—t/2], with ¢ the arbitrary constant; and hence we
conclude that Equation (35) admits a simple random symmetry,

o(x, 1,w) = "7

Example 3. We pass to consider examples in dimension two; we will write the vector indices (in
X, w, ¢) as lower ones in order to avoid any misunderstanding. The first case we consider is a system
related to the work by Finkel,” i.e.,

dx; =(ay/x))dt + dwy,
dx=axdt + dw,. (36)

Here ay, a; are two non-zero real constants.
The first set of (11) reads in this case

aq ag 1
S @1+ 01 + — 01 + mdrr + 5801 =0,
X X1 2

ap 1
Oer + ;31902 t@mopr + 5 Aap =0, (37
while the second set of determining equation (11) reads

do1 0 _ Op1  der g Opr O¢r g Opa Opp

6w1 axl o (?wz 6)C2 B ’ awl 6)61 611)2 6)62
These of course imply that, setting zz: = xx — wy,
pr(xx, w,wp) = ni(t,21,22) s (X, X, B wr, w) = n2(t, 21, 22).

Plugging these into Equations (37), and again recalling that—as n; = n;(, z1, 20)—the coefficient of
different powers of x; must vanish separately, the first of those equations enforces

m,z1,22) =0,
while in the second we get d772/dz; =0 and the equation reads

ony | Oma 0'm

+ =0.
ot = 02 c')z%

Again this autonomous linear equation is readily solved, showing that there are simple random
symmetries.

Example 4. Finally we will consider another two-dimensional example, which is an Ornstein-
Uhlenbeck type process related to the Kramers equation,
dx1 =x, dt,
dvs = K2 xadt + \2K? dw(?). (38)
Note that we have here a single Wiener process w(#), and correspondingly we will look for solutions

¢ =@ (x1, x0, 1 w).

It was shown in Ref. 19 that this system admits some deterministic symmetries; in particular
there are the symmetries

Xo=0, X1 =01, Xo = eiKzI [61 + Kzaz].
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As in the previous example, we will start from the second set of equations in (11); for our system
these read

(0¢1/0w)=0, (B¢1/0x2) = 0, (Op2/0w) =0, (0¢p2/0x2) = 0.

These of course rule out any possible dependence on w, i.e., show that there is no simple random
symmetry.

B. General random symmetries
Example 5. We will consider again the equations of Example 2, i.e.,

de = dt + xdw.

(39)
We have seen that this does not admit any deterministic symmetry, but it admits one simple random

symmetry. We will now check whether this admits some more general random symmetries; in order

to keep computations simple, we will restrict to the time-independent case 7 =0 and ¢; = h, =0.
In this case, Equations (24) read

1
Xhy +x2hxx 2 B (‘wa +x290xx +thw) =0,

© = Qu — Xy + xhy +x%h, =0.
The second equation requires

e,w) = x (h(x,w)+n@) , z:=w —log(x]).
Plugging this into the first one we get

’ 1 ’ 124
—N@ + @)+ Sn'@) - x.n7@) = hxw) - X2 I (x, w).
Solutions to these are provided by

h(x,w) = ' Bw) + k, n@)=-k,

with k the arbitrary constant and S the arbitrary smooth function.
The random symmetries we obtained in this way are

Y = [xel/x ﬁ(w)] O + [el/x B(w) + k] Ow.

(40)
Example 6. We consider the system

dx;=[1- (xl2 +x§)] xpdt + dwy,

dxy =[1 = (7 +x3)]x2dt + dwy. (41)
This is manifestly covariant under simultaneous rotations in the (x1, x2) and the (w;, w») planes.20

In order to simplify (slightly) the computations, we will look for symmetries which are time-
preserving and time-independent; that is, we assume 7 =0, (0;¢')=0= (8;h%). The first set of (24)
provides now

(9()01 + (9(,01 _ Bhl (9h1

- Oh —d¢1 | O _ Ol Ol
6w1 6)61 6w1 8X1 ’ 6w2 (9x2 awZ 8)C2 ’
9¢r | O¢2 Ok | O O¢r  Opr _ Ohy Ol
811}1 0x1 (9(1)2 3)61 ’

6w2 6x2 - 311)2 aXQ.
Setting zx: = xx — wy, these give
h(x1,x2, wy, wp) = @1(x1,x2, w1, w2) + p1(21,22),

ha(x1, %2, Wy, w2) = Ya(x1, X2, w1, w2) + P2(21,22) ,
where p; are arbitrary smooth functions of (z1, z2).
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Plugging these into the first set of (24) we obtain two equations involving ¢' and derivatives of
i

,0,

dp1 dp1 | 0%p1 . 9%p
1-3x2 —x2 - 2x1x +x(l=x2 —x) == + n(-x>—xH) -— + =0,
( 1 —X3) @1 1X2 @2 1( 1= X) 92 2( 1~ %) 02, Bzf Hzg

dp2 dpr  0*pr %o
1-3x2 —x2 - 2x1x +x(1-2 -2 + (-2 - =+ L2+ =0.
( 1 2)902 1X2 P1 1( 1 2) 02, 2( 1 2) 02 az% (925

These equations can then be solved for ¢ in terms of p, yielding some complicated expressions we
do not report. This shows that we have random symmetries in correspondence with arbitrary functions

pi(z1,22).
When these are linear,

p1L=ro t+trmz +rip, p2 =10+ trma,

and writing y :=[~1+3(x? + x3)], the resulting random symmetries are identified by

e1=1/x) [xl(l —x% =331y +x2(1 = x7 = 3x3)r1p + 207 a0 + 2x1x%r22] ,
e =01/x) [Zx%xzrll + 2x1x%r12 +x1(1 - 3x% - x%)rm +x(1 — 3x% - x%)rzz] ,
hi=(1/x) [rox +ri(wi +2x] = 3w (5] +23)

+ ria(wa + 2x0x = 3wa(x} +x2)) + 2xPxara; + 2x1x§r22] ,
hy=(1/yx) [rgo)( + Zx%xzr“ + 2x1x§r12 + (wy + 2x1x% - 3w1(x% +x§))r21

+ (w2 + 203 = 3w} +13))] .

With the choice
r0=0,r0=0, rii=0, r2=1, ny=-1, rn=0,

we get just simultaneous rotations in the (x|, x2) and (w1, w») planes.?’

Remark 8. It may be interesting, also in the view of Remark 7, to change coordinates as suggested
by the symmetry; we will set x| = p cos(), x, = p sin(:}); and similarly w; = y cos(1), wy = y sin(A).
With these coordinates, Equations (41) read simply

dp=(1-p?) pdt + cos(1 —Ndy — x sin(d-19)dAa,
d¥=(1/p) [sin(A —PHdy + x cos(1—13)dA].

The invariance under simultaneous rotations in the (x, x2) and (w1, wy) planes (i.e., simultaneous
shifts in ¢ and 1) is now completely explicit. o

VI. SYMMETRIES OF STRATONOVICH EQUATIONS

So far we have considered SDE in the Ito form; as it is well known, in some framework it is
convenient to consider instead SDE in the Stratonovich form,

dx' = b(x,0)dt + o, (x,1) o dw*(1). 42)

In particular, these behave “normally” under the change of coordinates (on the other hand, the
Stratonovich integral is not a martingale and its rigorous meaning is not immediate).

Stratonovich equations were also considered by pioneers in the symmetry analysis of differential
equations;'>~'* we are only aware of works dealing with deterministic symmetries of Stratonovich
equations, so we believe a short discussion of their random symmetries is also of interest; this is given
in the present section.
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A. Simple symmetries
1. Simple deterministic symmetries

We will first consider (also in order to familiarize with the notation) the action of a deterministic
vector field (7) on Stratonovich equations.
Under the action of X, Equation (42) is mapped into

dx' + edy' = (' +edgip)dt + (0, +e¢/d;0")) o dw*. (43)
Taking into account (42) and expanding the term d¢, we have that terms of first order in & cancel out
if and only if ' o o o
O dt + B¢ dx = (Pop)dt + (¢ 90)) o dw*. (44)
If now we substitute for dx according to (42), this yields
@) dt + B¢ Pdt + o, 0 dw™) = (FGbYdr + (P o)) o duwt,
which is finally rewritten as
[0’ + V(@3¢ = J@b)] di + [ (3¢) — P@'p] o duw* = 0.

The vanishing of this (for all realizations of the Wiener processes w¥) is possible if and only if
the (n + n?) equations

{a,gi + V@) - P@b) =0 (i=1,....n), s)

oJk(ﬁjgoi) - <pi(8j0'ik) =0 (i,k=1,...,n)
are satisfied. These are the determining equations for the simple deterministic symmetry generators—
of form (7)—of the Stratonovich SDE (42).
Remark 9. We can introduce, as suggested by Misawa,'? the (n + 1) vector fields
Zy =0 + b'(x,1)0;; Zy = 0 (x,1) ;. (46)
With this notation, the determining equations (45) read simply

X,Z,] =0 (u=0,1,...,n). 47)

2. Simple random symmetries

We will now consider again Equation (42), but now discuss its variation under a vector field of
form (8); we will go through the same computation as in Subsection VI A 1.
Under the action of Y, Equation (42) is mapped into

dx' + edy' = (bi+8¢76jbi)dt + (o-ik+8g0i6j0'ik) o dw. (48)

Taking into account (42) and expanding the term d¢, we have that terms of first order in & cancel out
if and only if

@) dt + (B9 dd + (B’ o dw* = (Pab)dt + (Jdo',) o dut. (49)

The last term in the Lh.s. is the only difference with respect to the computation in the deterministic
case. Considering x in the solutions to (42), we get

Gpdt + (B0 Wdt + o7,y o dw™) + (Beg') o dw* = (Job)dt + (PIo',) o dwt,
which is also rewritten as
(0" + D@¢) = P@)] dt + [Geg)) + o (G¢") = PG| 0 dut =0,

and the determining equations for the random simple symmetry generators (of form (8) of the
Stratonovich SDE (42) are therefore

{a,w‘ + V@) - @) =0 (i=1,....n),

“ . i) 50
¢ + o (G - PG = 0Gk=1,....n). (50)
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Remark 10. In order to express this in compact terms, it is convenient to modify slightly the
definition of the (Misawa) vector fields associated with the SDE; we will now write

Yo=8 + bx,0)d = Zy, Yo = & + o' (.08 = & + Z. (51)
Then the determining equations (50) read simply

[Y,Y,] =0 (u=0,1,...,n). (52)

B. Symmetries acting on the time variable

The computations presented in Section VI A above can be extended to cover the case where the
considered transformations act on time as well; in this case the discussion in Section II B should be
taken into account.

1. Deterministic symmetries

In the simpler case, i.e., a smooth transformation not depending on the random variables
(deterministic symmetries), the role of X in (7) will be taken by

Z =10, + goi(x, 1) 0;. (53)

Note that under this we get t — s =t + &7(?).

As discussed above (see Section II B), w¥(¢) is mapped into w*(¢) = V1 + et;wk(¢), and hence
do* =1+ &(;/2)ldw*. Making use of this fact, and proceeding in the same way as above, we get at
first order in &

@) dx + (8,9 dt =[¢ (O;b") + (9D + (O,Db'1dt + [¢/(9;0")) + T(d,07})
+(1/2)@r)0', ] o dwt.

Substituting now for dx’ according to (42), we get
[V @6 + @16 = ¢ (b)) = T(&,b") - (B T)b| dt
+ [ojk(ajgoi) - cpi(z9ja'ik) - T(ata'ik) - (1/2)T'O'ik] o dw® = 0.
The determining equations are therefore

{(6;90’) + b/ (9;¢") - ¢ (9b") - T(d,b) = (BT)b' = 0,

o (@) - PG ) — 1B ) - (/2@ = 0. o

2. Random symmetries

When we consider random symmetries, the computations are slightly more complex. Proceeding
in the same way as earlier on, we obtain the determining equations in the form

{(a,¢i) +b(0¢) - ¢(9) — 1(,b") = (dT)b’ = 0,

PR . . g . . 55
g+ (@Ge) - PG ) - 1@y ) — (1@, = 0. 43

Remark 11. 1f we want to express this in terms of commutation properties, we introduce the
vector fields
Zo=0 + b, t;0)0, Zi = & + o (x,1;0) . (56)
Then the determining equations are rewritten as

[Z0,Z1 =1, (3, + b' 3y),
[Z,Z]1=(1/2)7,0", 8. (57)
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VII. EXAMPLES II: STRATONOVICH EQUATIONS
Example 7. Let us consider the equation
dx = —xdt + x o dw.
In this case the Misawa vector fields are
Yo =0, — x0,, Y1 = 0y + x0.
The requirement that X := ¢(x, f, w)d, commutes with both Y and Y yields

plx,t,w) = e (@), z:=(e"/x).

Example 8. Let us consider the system
dx;=—xpdt + ax; o dwy,
dxr=—x1dt + axy o dw;.
The Misawa vector fields are now
Yo=0, — 0 + x10, Y| = 51 + ard;, Yo = 52 + aro;.
Requiring the vector field
X = o'(rx, bwi,wy) By + @P(xp, X2, 1, wi, w2) B

to commute with Y; and Y, enforces

1 1 2 2
¢ =x1n (21,22, , ¢° = x2n7°(21,22,1),

where we have defined zj := [(awy — log |xx|)/a]. Requiring now that X also commutes with Y, we
get that actually it must be 77! =% = ¢; thus in conclusion the only simple random symmetry of the
system under consideration is

X=(91+62.

This is actually, obviously, a simple deterministic symmetry.

Example 9. We consider again the equation
dx = dt + xdw ,

as in Example 2. The corresponding Stratonovich equation is
dx = [l—g]dt+x0dw.

The determining equations (50) for simple random symmetries of this Stratonovich equation read
O + [1 - (/D] (6xp) + (1/2) =0,
dwe + x(0cp) — ¢=0.

It is immediate to check that these, or more precisely the first of these, do not correspond to the
equations obtained in Example 2. But, this set of equations does admit as a solution,

‘p(-x’ f, w) = 0o exp[w - t/z] 5
which is just the same solution we found in Example 2.
Example 10. When dealing with symmetries of Stratonovich equations, it is customary to
consider the system, first introduced by Misawa,'?

dxi =3 —x2)dt + (x3 —xp) o dw,
dxy=(x; —x3)dt + (x; —x3) o dw,
dxy =0 —x1)dt + (xo —x1) o dw.
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It is well known—and immediately apparent—that this admits the simple symmetry generated by
X=(1/2)(x] +x3 +x3) (01 + 0 + 33)

(and many others, as discussed by Albeverio and Fei'*). Note that this involves only one Wiener
process, which will induce a non-symmetric expression for the equivalent Ito system.
Using (58), the equivalent system of Ito equations turns out to be

dx; =(1/2)Bx3 —xp — 2x1)dt + (x3 —x2)dw,
dxy =(x1 —x3)dt + (x1 —x3)dw,
dx3 = —x))dt + (xp —x1)dw.

Itis immediate to check that the determining equations (11) are not satisfied by X; more precisely,
the second set of (11) is (of course) satisfied, while the first set is not: in fact, we get (for all i = 1,
2,3)

. . , , ) 1 .
o' + f1(0i¢") - & (9f") + E(Atp’) = F(x),
where we have written

5 5
F(x) = 2x12 + 3x§ + 3x§ - (Exlxz + 3xx3 + §x1x3 .

VIlIl. SYMMETRIES OF STRATONOVICH VS. ITO EQUATIONS

As it is well known, there is a correspondence between stochastic differential equations in the
Stratonovich and Ito form. In particular, the Stratonovich equation (42) and the Ito equation (5) are
equivalent if and only if the coefficients b and f satisfy the relation

fitx,1) = bi(x, 1) + %[%(H)’)@, t)] oM = Bx ) + pl(x,0). (58)

Note that this involves implicitly the metric (to raise the index in o); as we work in R” we do not
need to worry about this. Moreover, for o (and hence also o’ a constant matrix, we get p=0, i.e.,
b =fl.

Note also that o is the same in (42) and (5); thus (58) can be used in both directions. In
particular, we can immediately use it to rewrite the determining equations for symmetries (of dif-
ferent types) of the Stratonovich equation (42) in terms of the coefficients in the equivalent Ito
equation.

One would be tempted to study symmetries of an Ito equation by studying the symmetries of
the corresponding Stratonovich one. This would be particularly attractive in the view of the fact that
the determining equations (55) for random symmetries of Stratonovich equations are substantially
simpler than the determining equations (24) for symmetries of Ito equations; the same holds at
the level of determining equations for simple random symmetries, as seen by comparing (50) and
(11).

Unfortunately, this way of proceeding would give incorrect results (as also shown by Example
10); this is already clear in the case of simple random—and actually even deterministic—symmetries,
so that we will just discuss this case.

In fact, the determining equations (50) for random symmetries of (42) are immediately rewritten
in terms of the coefficients f* of the equivalent Ito equation as (i,k=1,...,n)

{@wi + [F@e") - @) - 1P/ @G") = ¢ (Gp)] = 0,
akSOl + [OJk (6]‘%7!) - ()0, (ajo—lk)] = O,
where pi (x, 1) is defined in (58).

Note that Equations (59) can be expressed in the compact form (52) of commutation with the

vector fields Y,, defined in (51), except that now the same vector field Yo should now better (but
equivalently) be defined as

(59)

Yo = 8 + [fi(x,0)+ p'(x,1)] 6. (60)
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The determining equations for deterministic symmetries of (5) are also obtained in the same way
from (45), or directly from the above (59) by setting to zero the derivatives with respect to the w*
variables.

However, it is immediate to check that Equations (59) do not coincide with the correct
Equations (11). The difference is due to

, Lo Do [
o' = ¢ @p') - P G)) — S ¢ 0. e

Note that this inequality generally holds (for o # 0) even in one dimension, and even for deterministic
vector fields (i.e., for dy¢' =0).
In fact, in the one-dimensional deterministic case we get

2 2
1 -1

The non-correspondence between the symmetries of an Ito equation and of the corresponding
Stratonovich equation might seem rather surprising at first; however, first of all the notion of cor-
respondence between an Ito and the associated Stratonovich equation is not so trivial, as discussed,
e.g., in the last chapter of the book by Stroock® (see in particular Sec. 8.1.2 there), and second one
should in any case not expect the identity of symmetries, but rather a correspondence between the
two; thus the difference between the symmetries of the two is not so strange.

On the other hand, an Ito equation and the associated Stratonovich equation do carry the same
statistical information. In the view of the discussion and results in Ref. 19, we would expect that
there is a correspondence between symmetries of the Fokker-Planck equation (symmetries of scalar
Fokker-Planck equations were classified in Ref. 26, see also Ref. 27) which are also symmetries of
the Ito equation and symmetries of the equivalent Stratonovich equation. This is indeed the case.

Proposition. Given an Ito equation and the associated Fokker-Planck equation, the symmetries
of the latter which are also symmetries of the Ito equation are also symmetries of the associated
Stratonovich equation.

Proof. In Ref. 19 it was shown that symmetries of the Fokker-Planck equation

Ou+A"3;u + B dju+ Cu=0 (63)
withA=—[(1/2)ccT], B =f' + Za,AU, and C=(9; - f') + (9;Aij have to satisfy the system
U}Fféis +ohriss =0,
A +2 A% g g+ A2, £ =0,
[0, +f0; - A%} ] [ B+ due™] =0, (64)
where

1
k _ _m k m k k k
I“j =0 - ('3,"0']. —Tﬁtcrj - 50']. o,

A== [0 =) +{f.8Y - A" ] (65)

The symmetry of the Fokker-Planck is also a symmetry of the Ito equation if and only if 1“;‘ =0 for
all j, k, since the condition for a symmetry of the Ito equation is given by

AN =0, rj’fzo.

On the other hand, the symmetries of the Stratonovich equation are given by (59), which can now be
written as

O (E = tf) + 0 () +{f. €Y —{p, £} =0,

Iy=0, (66)
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where p' = (1/2)(d /axk)[((rT)f,akf].
Thus it will suffice to show that

A" gL E + 8, (tp) — {p.£Y = 0. (67)
An explicit computation shows that
A . | A 1 4 .
AMOLE v o) —(p. &Y =5 ) [0y, = 5 ) ol O + Tk (68)
J J
This completes the proof. A

IX. ALGEBRAIC STRUCTURE OF SYMMETRIES

It is well known that the Lie-point symmetries (or more precisely the Lie-point symmetry gen-
erators) for a given deterministic differential equation form a Lie algebra.>~* One may wonder if the
same holds in the case of a stochastic differential equation. The question was answered in the negative
by Wafo Soh and Mahomed!© for (first order) Ito equations.

Here we want to discuss this point for Ito equations—confirming of course the result of
Ref. 16—and the analogous problem for Stratonovich ones; we will be satisfied with a discussion in
the framework of simple symmetries (the negative result in the Ito case will a fortiori hold for general
symmetries).

A. lto equations

We will consider vector fields Y = & 0;and Y, = n 0;, which are symmetries for a given SDE;
to these we associate the vector fields Z¢ and Z,, as in (12). By assumption we have
1 = 1 =
[X, Yf] = Ezf’ (X, Yf] =0, [X, Yr]] = EZT] (X, YT]] =0. (69)
We now want to consider
Yo = [Ye, Y] (70)
and wonder if this is also a symmetry for the same SDE.
It is immediate to check that [X, ¥,,] =0, just by the Jacobi identity. As for the first of (13), here
the Jacobi identity implies that [X , Y, ] =[X, [Y¢, ¥, 11 = [Ye, [X, Y11 =[5, [X, Y£]]; using now (69),

this reads |

[x. v,] = 3 {Ye. 2] - 1¥,. 21} (71)

In order to check if the first of (13) is satisfied, we must express Z, in terms of {Y¢, Yy, Zy,, Z;, }.
Using (70) and some simple algebra, we get

rp' =(aE)an' = (an) GiE' + Edan) — WHLE) + 2 Wiy
where we have defined
Wie = [ 0Den’) + (0 0j0n’) = (Bin) (k&) = (D) 3(0kéM)] .

This computation shows that

Zy = Ye,Zy] = [V, Ze] + 2Wig . (72)
Combining this with (71), the first of (13) reads simply
W = 0. (73)

But we have already used the condition that Y, Y;, are symmetries of the SDE identified by X, hence
(73) has no reason to be true in general.

Example 11. In order to check and substantiate this claim, we can consider Example 5, i.e., the
Ito equation (39); in that case we have seen that symmetry generators are written in form (40). Let
us consider two different symmetries Y; (i = 1, 2) given by

Yi = [xe'™ piw)] oy + [e"* Biw) + k| du.
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By explicit computation, we have

[V, 2] = —e'* ((ka+e"*Ba) By — (ki +e'7*B1) B3) (xd + 0.

This is (in general) not in form (40), and hence it is (in general) not a symmetry for Equation (39).

B. Stratonovich equations

The situation is quite different for equations in the Stratonovich form. This is rather evident
comparing (11) and (50) (with our previous computation in hindsight).

Lemma. The Lie-point simple symmetry generators of a given Stratonovich SDE form a Lie
algebra.

Proof. We can proceed as above and define now the vector fields
Xo =0 + V3, Xe:=0 + o 0. (74)

(Note here we change slightly our notation with respect to Sec. VI, in order to keep uniformity with
Subsection IX A and to have a notation better suited to the present task.)
The determining equations (50) are now written as

[Xo.¥,] =0, [Xi.%,] = 0. (75)
It is then immediate to check that if Y, is given by (70) and Y, Y;, satisfy the determining equations
[Xo, Yel=0=[Xo, Y, [Xi Yel=0=[X, Y,1,

then—just by the Jacobi identity—(75) is also satisfied. A

X. DISCUSSION AND CONCLUSIONS

Symmetry methods are widely recognized as one of our most effective tools in studying nonlinear
deterministic equations;>> the literature devoted to symmetry methods for stochastic differential
equations is comparatively smaller and moreover only considers the invariance of SDEs (in the Ito
or Stratonovich form) only under deterministic transformations.

In this note we have considered—following the approach by Arnold and Imkeller in their anal-
ysis”!! of normal forms for SDEs transformations—the transformations of SDEs under random
diffeomorphisms, i.e., diffeomorphisms depending on a random (multi-dimensional Wiener) process
and obtained the determining equations for random Lie-point symmetries of Ito stochastic differential
equations.

The case of Stratonovich equations is also treated, in Section VI, and the determining equations
are also obtained in this case.

We have also discussed the relation between symmetries of an Ito equation and those of
the corresponding Stratonovich one; we have shown that in general—in particular, at the excep-
tion of the case where the matrix o (x, ) is actually independent of the space variables x'—these
do not admit the same symmetries. The reason for this lies in the actual meaning of the “cor-
respondence” between Ito and Stratonovich equations.® On the other hand, an Ito equation and
the corresponding Stratonovich one do carry the same statistical information, so that one would
expect correspondence between symmetries to hold when considering symmetries of the associated
Fokker-Planck equation. This is indeed the case, in a sense made precise by our Proposition in
Sec. VIIIL

We have considered a number of concrete examples (both in the Ito and the Stratonovich case),
choosing equations with a physical significance, and explicitly shown that the determining equations
we have written down can be analyzed and explicitly solved, i.e., that our theory is concretely
applicable.

As stressed above (see Remark 7), here we only focused on the proper definition of random
symmetries of an SDE and on the equations which have to be solved to constructively determine
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them; that is, we have not considered how the symmetries can be used in the study of the SDE (this
appears to be a common feature of a large part of the literature devoted to the symmetry of SDEs).

On the other hand, it seems that the use of symmetries in the framework of SDEs should go
through the same general ideas as in the case of deterministic equations; that is, beyond any specific
technique, the presence of symmetries suggests first of all that the analysis will be simpler if using
symmetry-adapted coordinates. A glimpse of this is provided in Example 6 (and Remark 8).

More structured results do exist in the case of deterministic symmetries of SDEs:;!® we will inves-
tigate in future work how these results can be extended to the framework of the random symmetries
introduced here.

ACKNOWLEDGMENTS

Both authors are members of GNFM-INdAM; we thank the group and the institute for their
support.

Ip, Freedman, Brownian Motion and Diffusion (Springer, 1983).

2P. J. Olver, Application of Lie Groups to Differential Equations (Springer, 1986).

3H. Stephani, Differential Equations: Their Solution Using Symmetries (Cambridge University Press, 1989); D.
V. Alexseevsky, A. M. Vinogradov, and V. V. Lychagin, Basic Ideas and Concepts of Differential Geometry (Springer,
1991); G. Gaeta, Nonlinear Symmetries and Nonlinear Equations (Kluwer, 1994); P. J. Olver, Equivalence, Invariants and
Symmetry (Cambridge University Press, 1995); 1. S. Krasil’schik and A. M. Vinogradov, Symmetries and Conservation
Laws for Differential Equations of Mathematical Physics (A.M.S., 1999).

1G. Cicogna and G. Gaeta, Symmetry and Perturbation Theory in Nonlinear Dynamics (Springer, 1999).

SH. P. McKean, Stochastic Integrals (AM.S., 1969); N. Ikeda and S. Watanabe, Stochastic Differential Equations and
Diffusion Processes (North Holland, 1981); F. Guerra, “Structural aspects of stochastic mechanics and stochastic field
theory,” Phys. Rep. 77,263-312 (1981); N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North Holland,
1992); L. C. Evans, An Introduction to Stochastic Differential Equations (A.M.S., 2013).

6 B. Oksendal, Stochastic Differential Equations, 4th ed. (Springer, 1985).

7L. Amold, Random Dynamical Systems (Springer, 1988).

8 D. W. Stroock, Markov Processes from K. Ito’s Perspective (Princeton UP, 2003).

%Y. Kossmann-Schwarzbach, “Les théorémes de Noether. Invariance et lois de conservation au XXe siecle, editions de 1’ecole
polytechnique 2004,” in Noether Theorems: Invariance and Conservation Laws in the XXth Century (Springer, 2009).

10k, Yasue, “Stochastic calculus of variations,” Lett. Math. Phys. 4, 357-360 (1980); J. Funct. Anal. 41, 327-340 (1981);
J. C. Zambrini, “Stochastic dynamics: A review of stochastic calculus of variations,” Int. J. Theor. Phys. 24, 277-327
(1985); T. Misawa, “Noether’s theorem in symmetric stochastic calculus of variations,” J. Math. Phys. 29, 2178-2180
(1988); M. Thieullen and J. C. Zambrini, “Probability and quantum symmetries. I. The theorem of Noether in Schrodinger’s
Euclidean quantum mechanics,” Ann. I.H.P.: Phys. Théor. 67, 297-338 (1997); S. Albeverio, J. Rezende, and J. C. Zambrini,
“Probability and quantum symmetries. II. The theorem of Noether in quantum mechanics,” J. Math. Phys. 47, 062107 (2006).

1, Arnold and P. Imkeller, “Normal forms for stochastic differential equations,” Prob. Theory Relat Fields 110, 559-588
(1998).

12T, Misawa, “New conserved quantities derived from symmetry for stochastic dynamical systems,” J. Phys. A 27, 1L777-L782
(1994).

13T, Misawa, “Conserved quantities and symmetry for stochastic dynamical systems,” Phys. Lett. A 195, 185-189 (1994);
A method for deriving conserved quantities from the symmetry of stochastic dynamical systems,” Nuovo Cimento B 113,
421-428 (1998); Conserved quantities and symmetries related to stochastic dynamical systems,” Ann. Inst. Stat. Math. 51,
779-802 (1999).

145 Albeverio and S. M. Fei, “A remark on symmetry of stochastic dynamical systems and their conserved quantities,” J.
Phys. A 28, 6363-6371 (1995).

13Y. N. Grigoriev, N. H. Ibragimov, S. V. Meleshko, and V. E. Kovalev, Symmetries of Integro-Differential Equations with
Applications in Mechanics and Plasma Physics (Springer, 2010).

16 C. Wafo Soh and F. M. Mahomed, “Integration of stochastic ordinary differential equations from a symmetry standpoint,”
J. Phys. A 34, 177-192 (2001).

17G. Unal, “Symmetries of Ito and Stratonovich dynamical systems and their conserved quantities,” Nonlinear Dyn. 32,
417-426 (2003); B. Srihirun, S. V. Meleshko, and E. Schulz, “On the definition of an admitted Lie group for stochastic
differential equations with multi-Brownian motion,” J. Phys. A 39, 13951-13966 (2006); S. Mei and F. X. Mei, “Conserved
quantities and symmetries related to stochastic Hamiltonian systems,” Chin. Phys. 16, 3161-3167 (2007); E. Fredericks and
F. M. Mahomed, “Symmetries of first-order stochastic ordinary differential equations revisited,” Math. Methods Appl. Sci.
30, 2013-2025 (2007); A formal approach for handling Lie point symmetries of scalar first-order Ito stochastic ordinary
differential equations,” J. Nonlinear. Math. Phys. 15-S1, 44-59 (2008); S. V. Meleshko and E. Schulz, “A new set of
admitted transformations for autonomous stochastic ordinary differential equations,” ibid. 17, 179-196 (2010); R. Kozlov,
“The group classification of a scalar stochastic differential equation,” J. Phys. A 43, 055202 (2010); On maximal Lie
point symmetry groups admitted by scalar stochastic differential equations,” 44, 205202 (2011); On symmetries of the
Fokker-Planck equation,” J. Eng. Math. 82, 39-57 (2013).


http://dx.doi.org/10.1016/0370-1573(81)90078-8
http://dx.doi.org/10.1007/bf00402586
http://dx.doi.org/10.1016/0022-1236(81)90079-3
http://dx.doi.org/10.1007/bf00669792
http://dx.doi.org/10.1063/1.528145
http://dx.doi.org/10.1063/1.2199087
http://dx.doi.org/10.1007/s004400050159
http://dx.doi.org/10.1088/0305-4470/27/20/004
http://dx.doi.org/10.1016/0375-9601(94)90150-3
http://dx.doi.org/10.1023/a:1004095516648
http://dx.doi.org/10.1088/0305-4470/28/22/012
http://dx.doi.org/10.1088/0305-4470/28/22/012
http://dx.doi.org/10.1088/0305-4470/34/1/314
http://dx.doi.org/10.1023/a:1025669920594
http://dx.doi.org/10.1088/0305-4470/39/45/006
http://dx.doi.org/10.1088/1009-1963/16/11/003
http://dx.doi.org/10.1002/mma.942
http://dx.doi.org/10.2991/jnmp.2008.15.s1.4
http://dx.doi.org/10.1142/s1402925110000702
http://dx.doi.org/10.1088/1751-8113/43/5/055202
http://dx.doi.org/10.1088/1751-8113/44/20/205202
http://dx.doi.org/10.1007/s10665-012-9588-3

053503-20 G. Gaeta and F. Spadaro J. Math. Phys. 58, 053503 (2017)

18 R. Kozlov, “Symmetry of systems of stochastic differential equations with diffusion matrices of full rank,” J. Phys. A 43,
245201 (2010).

19 G. Gaeta and N. Rodriguez-Quintero, “Lie-point symmetries and stochastic differential equations,” J. Phys. A 32, 8485-8505
(1999).

20 G. Gaeta, “Lie-point symmetries and stochastic differential equations. II,” J. Phys. A 33, 4883-4902 (2000).

21 G. Gaeta, “Symmetry of deterministic versus stochastic non-variational differential equations,” Phys. Rep. (to be published).

22V. 1. Amnold, Geometrical Methods in the Theory of Ordinary Differential Equations (Springer, 1983).

Bc. Elphick, E. Tirapegui, M. E. Brachet, P. Coullet, and G. Iooss, “A simple global characterization for normal forms of
singular vector fields,” Phys. D 29, 95-127 (1987); Addendum,” 32, 488 (1988); G. Iooss and M. Adelmeyer, Topics in
Bifurcation Theory and Applications (World Scientific, 1992).

24 G. Gaeta, “Poincaré normal and renormalized forms,” Acta Appl. Math. 70, 113-131 (2002); S. Walcher, “On differential
equations in normal form,” Math. Ann. 291, 293-314 (1991); On transformation into normal form,” J. Math. Anal. Appl.
180, 617-632 (1993).

25 F. Finkel, “Symmetries of the Fokker-Planck equation with a constant diffusion matrix in 2 + 1 dimensions,” J. Phys. A 32,
2671-2684 (1999).

2@, Cicogna and D. Vitali, “Generalised symmetries of Fokker-Planck-type equations,” J. Phys. A 22, L.453-1.456 (1989);
Classification of the extended symmetries of Fokker-Planck equations,” ibid. 23, L85-L88 (1990).

2TW. M. Shtelen and V. I. Stogny, “Symmetry properties of one-and two-dimensional Fokker-Planck equations,” J. Phys. A
22, .539-1.543 (1989); S. Spichak and V. Stognii, “Symmetry classification and exact solutions of the one-dimensional
Fokker-Planck equation with arbitrary coefficients of drift and diffusion,” ibid. 32, 8341-8353 (1999).

28 As opposed to the “indirect” action due to the modification of the Wiener process induced by the action on the time variable;
see below.

29 Actually, in order to end up with an equation possibly of the same type (not to say about it being exactly the same equation
as the original one), the transformed processes w should be only a function of the (transformed) time 7, i.e., w = w(7); this
amounts to requiring that the transformation of time does not depend on the space coordinates x’. On the other hand, it
could depend on the Wiener processes themselves.


http://dx.doi.org/10.1088/1751-8113/43/24/245201
http://dx.doi.org/10.1088/0305-4470/32/48/310
http://dx.doi.org/10.1088/0305-4470/33/27/306
http://dx.doi.org/10.1016/0167-2789(87)90049-2
http://dx.doi.org/10.1016/0167-2789(88)90071-1
http://dx.doi.org/10.1023/a:1013974115113
http://dx.doi.org/10.1007/bf01445209
http://dx.doi.org/10.1006/jmaa.1993.1420
http://dx.doi.org/10.1088/0305-4470/32/14/008
http://dx.doi.org/10.1088/0305-4470/22/11/001
http://dx.doi.org/10.1088/0305-4470/23/3/001
http://dx.doi.org/10.1088/0305-4470/22/13/002
http://dx.doi.org/10.1088/0305-4470/32/47/312

