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Abstract

The Nearest Neighbour Imputation (NNI) method has a long history in missing
data imputation. Likewise, multivariate dimensional reduction techniques allow for
preserving the maximum information from the data. Recently, the combined use
of these methodologies has been proposed to solve data imputation problems and
exploit as much as information from the complete part of the data. In this paper
we perform an extensive simulation study to test the performance of this new im-
putation approach (called “Forward Imputation” - ForImp). We compare the two
ForImp methods developed for missing quantitative data (the first one called For-
ImpPCA involving the NNI method and the Principal Component Analysis (PCA)
as a multivariate data analysis technique, and the second one called ForImpMa-
halanobis, which involves the Mahalanobis distance for NNI) with other two im-
putation techniques regarded as benchmark, namely Stekhoven and Bühlmann’s
missForest method, which is a nonparametric imputation technique for continuous
and/or categorical data based on a random forest, and the Iterative PCA, which
is an algorithmic-type technique that imputes missing values simultaneously by an
iterative use of PCA. The simulation study is based on constructing simulated data
with different levels of kurtosis or skewness and strength of linear relationship of
variables, so that the performance of the four methods can be compared on various
data patterns. Distributions used for these simulated data belong to the families
of Multivariate Exponential Power and Multivariate Skew-Normal distributions, re-
spectively. Results tend to favour ForImpMahalanobis especially in the presence of
skew data with small or negative correlations of a same magnitude, or a mix of
negative and positive correlations of low level, whereas ForImpPCA works better
than it when a slightly higher level of correlations is present in the data.

Keywords: Correlation, Data patterns, Kurtosis, Mahalanobis distance, Miss-
Forest, Nearest Neighbour Imputation, Principal Component Analysis, Skewness.

JEL classifications: C15, C18, C38, C63.
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1 Introduction

Missing data are a recurring problem in almost every field of quantitative research. Work-
ing with large datasets inevitably means dealing with incompleteness, hence the need to
find a solution to this problem easy to implement. Very different approaches have been
proposed through the years, like, for example, deletion methods, model-based procedures,
nonparametric or distribution-free procedures, single/multiple imputation, and so on. For
a thorough review and discussion of missing data techniques see Little and Rubin (2002)
and Rässler et al. (2013).

Within the nonparametric framework, distance-based methods expressly consider dis-
tances between complete and incomplete units to impute missing values. The nearest-
neighbour imputation (NNI) is a prominent case of distance-based method, since imputa-
tion is performed by relying on donors, which are the complete units nearest to the incom-
plete ones detected according to a specific, pre-chosen measure of “closeness”. Recently, a
forward imputation (ForImp) approach was introduced by Solaro et al. (2015) as a sequen-
tial distance-based, distribution-free imputation procedure (see also Solaro et al. (2014)).
ForImp applies the NNI method forward and exclusively to the complete part of data that
updates further to every step of an iteration procedure, and possibly in alternation with
a multivariate data analysis (MVDA) technique, which is introduced to synthesize the
information of the complete part of data. In Solaro et al. (2015), two alternative ForImp
methods were specifically proposed for imputing missing quantitative data: (A) ForImp
with the Principal Component Analysis (ForImpPCA – FIP), which involves the NNI
method and PCA as the MVDA technique; (B) ForImp with the Mahalanobis distance
(ForImpMahalanobis – FIM), which involves only NNI applied to the original variables.

This work is addressed to inspect the quality of performance of the FIP and FIM
methods by means of an extensive Monte Carlo simulation study that involves a multi-
tude of different data patterns. This is the objective of Section 2. Alternative imputation
methods were also considered for benchmark, namely: (i) Stekhoven and Bühlmann’smiss-
Forest method (2012); (ii) the Iterative PCA (Nora-Chouteau (1974); Greenacre (1984),
IPCA). The first is a nonparametric imputation technique for continuous and/or categor-
ical data based on a random forest, i.e. a random classifier introduced in the context of
machine learning (Breiman, 2001). The second is an algorithmic-type technique that im-
putes missing values simultaneously by the iterative use of PCA. IPCA is at the core of
the multiple imputation method with PCA, recently introduced by Josse et al. (2011) as a
part of a more general methodology with principal component methods (missMDA). Both
missForest and IPCA are nonparametric methods, suitable in the exploratory framework,
and available in the R environment (R Development Core Team, 2014). In particular,
IPCA is implemented in the R library “missMDA” by Josse et al. (2011), and missForest
in the homonymous R library “missForest” by Stekhoven and Bühlmann (2012).

Another main aspect of concern, which is strictly linked to the performance assessment
carried out in this context, is how to choose the “ideal” imputation method consistently
with the types of data structures at hand. This point is particularly crucial in an explor-
atory framework, like the one we refer to, where no distribution assumption is made on
data. A contribution on this matter is proposed in Section 3, in which descriptive indices
are introduced to synthesize the considered correlation structures and thus recognize, also
by means of kurtosis and skewness indices, the typology of data pattern. Some conclusions
are finally given in Section 4.
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2 Simulation study

The two ForImp methods FIP and FIM perform the imputation of missing quantitative
data in a step-by-step process that is carried out forward and sequentially by starting
from the complete part of data. No initialization of missing data is required. Imputation
is fulfilled by exploiting the covariance/correlation structure inherent in the complete part
of data, which is sequentially updated at every step of the process. The main difference
between the two methods is that FIP involves both the NNI method (applied with a
weighted Minkowski distance of order r, r ≥ 1) and a MVDA technique, i.e. PCA, while
FIM uses only NNI (applied with the Mahalanobis distance). All the methodological details
concerning FIP and FIM are given in Solaro et al. (2015).

With the purpose of assessing and comparing the performance of FIM and FIP, an
extensive Monte Carlo simulation study was undertaken in the presence of data having
different shapes, as given by kurtosis or skewness, and correlation structures. These charac-
teristics, opportunely combined together to produce different data patterns, were treated,
along with data dimensionality (i.e. number of units and variables), as exogenous factors,
in that they are relevant to the data, and not to the methods. On the other hand, op-
tions more closely pertaining to the methods, i.e. donors’ quantiles and metrics (only for
FIP), were regarded as endogenous factors. The main objective of the simulation study
was then to examine the performance of FIM and FIP with respect to both exogenous and
endogenous factors, and detect, if possible, the most effective method according to spe-
cific features of data patterns. In order to generate data having the desired shapes, heavy/
thin-tailed symmetric or skew data respectively, which are very common in real situations,
we relied on two families of multivariate distributions. The first is the Multivariate Expo-
nential Power (MEP) family (Gómez et al., 1998), which belongs to the class of elliptical
symmetric multivariate distributions (Fang et al., 1990). The second is the Multivariate
Skew-Normal (MSN) family of distributions (Azzalini and Dalla Valle, 1996; Azzalini and
Capitanio, 1998).

In Subsect. 2.1, after briefly mentioning MEP and MSN main results, the simulation
design is described across its main steps, i.e. the definition of data patterns and the per-
tinent simulation settings, the simulation procedure and summary of results. These latter
are then presented and analysed in Subsect. 2.2.

2.1 Simulation design

One aspect of main concern was to fix experimental conditions, namely the exogenous
factors, in a way that they would reproduce a variety of data patterns we often encountered
in applications. On this point, besides considering “dimensionality of data” (number of
units and variables) and “seriousness of missingness” (i.e. percentages of missing values),
correlations of variables, kurtosis and skewness of the data distribution were more closely
taken into account, for they were expected to greatly affect the imputation performance.
Specific data patterns were then defined by combining different items of “shape” and
“linear relationship” together. Regarding shape, we considered the two forms: SyKu (i.e.
symmetry and kurtosis), and SK (i.e. skewness). For the linear relationship, we relied on
the structures: ECor (equal correlations, or equicorrelations), PNCor (positive-negative
correlations), and UnbCor (unbalanced correlations), each of which was modulated at
three different levels of correlation strength, e.g. absent/low, moderate, or medium/high.

Another aspect of concern was to restrain, as much as possible, the total number
of simulation scenarios to be run without loosing any meaningful information about the
trends. This is the reason why we performed, at a first stage, an exploratory simulation
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Table 1: Formal definitions of MEP and MSN family of distributions

MEP family of distributions: XXX ∼ MEPp(µ,Σ,κ)

Density function f(x;µ,Σ,κ) = pΓ(p/2)

πp/2Γ(1+p/κ)21+p/κ|Σ|1/2
·

exp{− 1
2 [(x− µ)TΣ−1(x − µ)]κ/2},

µ ∈ Rp, κ > 0, Σp×p (“characteristic matrix”, positive-definite)

Meaning of – Mean vector: E(XXX) = µ

parameters – Variance-covariance matrix: V(XXX) = c(κ, p)Σ,

with: c(κ, p) = 22/κΓ((p+ 2)/κ)/(pΓ(p/κ))

– Kurtosis parameter: κ = 2 → normal distribution

κ < 2 (κ > 2) → leptokurtic (platykurtic) distribution

Skewness indices Univariate: γ1 = 0; Multivariate (MV): γ1MV = 0

MV kurtosis index γ2MV = p2Γ(p/κ)Γ((p+4)/κ)
Γ2((p+2)/κ) − p(p+ 2)

MSN family of distributions: XXX ∼ MSNp(Ω,α)

Density function f(x;Ω,α) = 2φp(x;Ω)Φ(αtx), where:

– φp(x;Ω) is the MVNp(0,Ω) d.f. with correlation matrix Ω

– Φ(·) is the N(0, 1) distribution function, and α ∈ Rp

Meaning of – Mean vector: E(XXX) = µ =
√

2/πδ, with: δ = Ωα√
1+αtΩα

parameters – Variance-covariance matrix: V(XXX) = Σ = Ω− µµt

– Correlation matrix: R = D−1ΣD−1, with:

D = diag
{√

1− 2π−1δ2j

}

j=1,...,p

– Parameter related to the skewness: α ∈ Rp.

If: α = 0, then: XXX ∼ MVNp(0,Ω)

Skewness indices – Univariate: γ1 = 4−π
2

E(Xj)
3

Var(Xj)3/2
∈ (−0.995,+0.995)

– MV: γ1MV =
(

4−π
2

)2
(µtΣ−1µ)3 ∈ (−0.9905,+0.9905)

MV kurtosis index γ2MV = 2(π − 3)(µtΣ−1µ)2 ∈ (−0.869,+0.869)

study, followed by, at a second stage, supplementary simulations addressed to look more
thoroughly into specific situations.

Multivariate distributions for simulation. Data with the desired patterns were gen-
erated by relying on MEP (Gómez et al., 1998) and MSN (Azzalini and Dalla Valle, 1996;
Azzalini and Capitanio, 1998) families of distributions. They can be regarded as exten-
sions of the multivariate normal (MVN ) distribution in terms of kurtosis or skewness
departures, respectively. To make clearer the role of parameters in our simulation study,
and the data patterns deriving from them, a synthetic collection of the main theoretical
results is given in Table 1. Given the complex patterns of variations among parameters
of the MSN distributions, a few remarks are worth making about the link between the
(α,ω)-parametrization, on one hand, and the correlation coefficient ρ as well as the skew-
ness indices γ1 (univariate) and γ1MV (multivariate), on the other hand. Table 2 reports an
instance of the computations performed for different MSN distributions with p = 3, 5, 10
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Table 2: Values of output correlation coefficient and skewness indices for p = 3, 5 and 10 variables
and different values of ω and α = 1, 4, 10, 30

Output p = 3 p = 5 p = 10
Input α ρ γ1 γ1MV ρ γ1 γ1MV ρ γ1 γ1MV

ω = 0 1 -0.189 0.035 0.141 -0.119 0.018 0.266 -0.061 0.007 0.478
4 -0.262 0.058 0.838 -0.144 0.023 0.895 -0.067 0.007 0.941
10 -0.268 0.060 0.964 -0.146 0.024 0.974 -0.068 0.008 0.982
30 -0.269 0.060 0.988 -0.146 0.024 0.989 -0.068 0.008 0.990

ω = 0.3 1 0.026 0.105 0.254 0.058 0.087 0.507 0.092 0.070 0.799
4 -0.053 0.154 0.891 0.030 0.103 0.945 0.085 0.073 0.977
10 -0.059 0.157 0.974 0.028 0.104 0.983 0.084 0.073 0.988
30 -0.060 0.158 0.989 0.028 0.104 0.990 0.084 0.073 0.990

ω = 0.5 1 0.214 0.186 0.319 0.221 0.179 0.598 0.238 0.163 0.856
4 0.138 0.264 0.910 0.193 0.206 0.957 0.231 0.169 0.981
10 0.132 0.271 0.977 0.191 0.208 0.985 0.231 0.170 0.989
30 0.131 0.272 0.989 0.191 0.209 0.990 0.231 0.170 0.990

ω = 0.8 1 0.609 0.402 0.400 0.592 0.457 0.685 0.587 0.472 0.897
4 0.558 0.571 0.928 0.572 0.524 0.967 0.582 0.489 0.984
10 0.554 0.584 0.980 0.570 0.528 0.987 0.582 0.490 0.990
30 0.554 0.586 0.989 0.570 0.529 0.990 0.582 0.490 0.991

variables, respectively, with the components of the r.v. XXX sharing the same αj = α and
ωlj = ω parameters, (j, l = 1, . . . , p, j ̸= l). The grey lines are introduced to ease reading
and comparing the results.

As expected, with ω and p kept fixed, the skewness indices γ1 and γ1MV increase as α
increases. The same occurs for ω growing, with α and p fixed. On the contrary, by keeping ω
and α fixed, γ1 decreases while γ1MV increases when p increases. Similarly, ceteris paribus,
ρ increases as ω grows, while it tends to decrease with α growing, although mostly in
a subtle way. It is interesting to note, for the following discussion, that the value of ρ is
always lower than ω. In conclusion, while γ1MV is sensitive to variation of ω and α together,
ρ and γ1 are mainly sensitive to ω. As for the number p of variables, ρ and γ1MV increase
as p increases, while γ1 decreases. The only exception is the case (α = 1,ω = 0.8), where
both ρ and γ1 decrease as p increases. However, in the range of the considered values, the
most appreciable numerical variations are observed as ω varies, and for α moving from 1
(a situation of “slighter” skewness) to 4 (situations of “manifest” skewness). For p ≥ 5
and α ≥ 4 the value of ρ, γ1 and γ1MV keep quite stable in magnitude as α varies.

Data patterns and simulation settings. Table 3 collects all the data patterns and the
pertinent simulation settings considered in the exploratory simulation study. Apart from
dimensionality of data and percentage of missing values, input parameters specified in the
table concern the multivariate distributions used for random data generation (Table 1).
Output parameters play a more important role, especially for the subsequent interpreta-
tion of results, since they pertain to characteristics of the final distribution of data. As
such, then, they could be easily ascertained on any real dataset, by computing the usual
summary descriptive statistics.

The SyKu shape was artificially generated through MEP distributions (Table 1), by
using the transformation method described in Gómez et al. (1998) and Solaro (2004),
and fixing the output correlation matrix R rather than the input characteristic matrix Σ

in the MEP density function (d.f.). Attention was then focused on three different types
of distributions, i.e. leptokurtic (κ = 1), normal (κ = 2), and platykurtic (κ = 14). As
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apparent from Table 1, kurtosis depending on the κ parameter only for fixed p, its effect
on imputation performance can be studied straightforwardly, irrespective of the strength
of correlations. The SyKu shape was initially considered in the presence of a non-negative
equicorrelation structure with three different levels of magnitude for ρ, (Table 3).

The SK shape was generated through MSN distributions (Table 1). As before noticed,
output skewness and strength of linear relationship among variables are strictly related
to both vector α and, more importantly, matrix Ω (Table 2). Given the various con-
straints among the parameters, random variate generation by fixing the output ρ and/or
γ1 and γ1MV would have been impracticable. We relied therefore on the method imple-
mented by Azzalini in the R library “sn” (Azzalini, 2013), which is based on the (α,ω)-
parametrization of the MSN d.f.. Interpretation to simulation results was then based on
the relationships between input and output parameters, (e.g. Table 2).

Examinations concerning the SK shape were performed according to the three studies
indicated in Table 3, which essentially differ for the structure assigned to Ω, and con-
sequently the output correlation matrix R. The 1st study refers to the SK-ECor pattern
(skewness with equicorrelations). Matrix Ω contains the same non-negative ω for all the
pairs of the p components. Matrix R preserves the same equicorrelation structure (ECor)
with values of its entries given in Table 2. In particular, three levels of magnitude of
ρs are considered in the simulations: Low-negative ρs (≈ −0.1), resulting from ω = 0;
low-positive ρs (≈ 0.2), corresponding to ω = 0.5; medium-positive ρs (≈ 0.6), given by
ω = 0.8, (Table 2).

The 2nd study concerns the SK-PNCor pattern (skewness with positive and negative
correlations). Matrix Ω contains the same ω in absolute value but with alternating sign.
This produces an output matrix R having positive and negative correlations of a very
similar magnitude (PNCor), according to the structure formally described in Table 3, and
with values in the ranges reported in Table 4. Ranges of ρ coefficients remain quite stable
as p and/or α vary, (punctual values of output parameters are omitted). They are mainly
sensitive to variations of ω parameter. In the simulation study, we considered therefore
the following levels: For ω = 0.2, positive-negative low ρs (ρ1 ≈ −0.3, ρ2 ≈ 0.1, ρ3 ≈ 0.2);
for ω = 0.5, positive-negative moderate ρs (ρ1 ≈ −0.5, ρ2 ≈ 0.4, ρ3 ≈ 0.5); for ω = 0.8,
positive-negative high ρs (ρ1 ≈ −0.75, ρ2 ≈ 0.7, ρ3 ≈ 0.75).

As an instance of the structure of Ω and R regarded in this 2nd study, if p = 5 and
ω = 0.2, matrix Ω is equal to:

Ω =

⎛

⎜

⎜

⎜

⎜

⎝

1 0.2 −0.2 0.2 −0.2
0.2 1 −0.2 0.2 −0.2

−0.2 −0.2 1 −0.2 0.2
0.2 0.2 −0.2 1 −0.2

−0.2 −0.2 0.2 −0.2 1

⎞

⎟

⎟

⎟

⎟

⎠

,

while if α = 1 then matrix R is given by:

R =

⎛

⎜

⎜

⎜

⎜

⎝

1 0.088 −0.299 0.088 −0.299
0.088 1 −0.299 0.088 −0.299

−0.299 −0.299 1 −0.299 0.163
0.088 0.088 −0.299 1 −0.299

−0.299 −0.299 0.163 −0.299 1

⎞

⎟

⎟

⎟

⎟

⎠

,

where: ρ1 = −0.299, ρ2 = 0.088, and ρ3 = 0.163 according to the notation of Table 3.
The 3rd study pertains to the SK-UnbCor pattern (skewness with unbalanced correl-

ations). We assume that the first component in Ω is negatively correlated with all the
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Table 3: Data patterns and experimental conditions in the simulation study

− Number of units in X n = 500; 1000
− Percentage of MCAR missing values 5%; 10%; 20%

• The SyKu shape – Symmetry and Kurtosis
⇒ Data generation from MEPp(0,Σ,κ), with Σ = c−1(κ, p)R, (Table 1):

→ Input parameters → Output parameters
− Number of variables in X − Kurtosis index γ2MV = γ2MV(κ, p)

p = 3; 5; 10 for κ = 1: γ2MV = 7.50, 11.67, 21.82
− Kurtosis parameter for κ = 2: γ2MV = 0, ∀p

κ = 1; 2; 14 for κ = 14: γ2MV = −4.05,−7.25,−15.64

! ECor structure → The SyKu-ECor pattern:
− Correlation coefficient − Correlation coefficient

ρ = 0; 0.3; 0.7 ρ = 0; 0.3; 0.7

• The SK shape – Skewness
⇒ Data generation from MSNp(Ω,α), with Ω = [ωlj ]l,j=1,...,p and α = [αj ]j=1,...,p, (Table 1):

→ Input parameters → Output parameters
− Skewness parameter

αj = α = 1; 4; 10; 30, ∀j

! ECor structure (1st study) → The SK-ECor pattern:
∗ Number of variables and input correlation: ∗ Skewness and output correlation:
− p = 3; 5; 10 − γ1 and γ1MV given in Table 2
− ωlj = ω = 0; 0.5; 0.8 − ρlj = ρ, ∀l, j, with values given in Table 2

! PNCor structure (2nd study) → The SK-PNCor pattern:
∗ Number of variables and input correlation: ∗ Skewness and output correlation:
− p = 5; 10 − γ1 and γ1MV with range given in Table 4

− For odd (even) p, set: m = p− 1 (= p− 2).
− For j = 2, . . . , p: Then, for each j (# is number):

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ω1j = ωj1 = (−1)jω

ωjv = ω if sign(ωlj) = sign(ωlv)

ωjv = −ω if sign(ωlj) ̸= sign(ωlv),

(l, v = 1, . . . , p, l ̸= v ̸= j)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ρjv = ρ1 if ωjv = −ω and #neg. ωjl =
m
2

ρjv = ρ2 if ωjv = ω and:

for odd p : #pos. ωjl =
m
2

for even p : #pos. ωjl =
m
2 + 1

ρjv = ρ3 otherwise,

(l, v = 1, . . . , p, l ̸= v ̸= j)

with ω = 0.2; 0.5; 0.8 with ρ1, ρ2, and ρ3 given in Table 4

! UnbCor structure (3rd study) → The SK-UnbCor pattern:
∗ Number of variables and input correlation: ∗ Skewness and output correlation:
− p = 5 − γ1 and γ1MV with range given in Table 5

−

{

ω1j = ωj1 = −ω,

ωlj = ω/c, for l ̸= 1,
−

{

ρ1j = ρ1,

ρlj = ρ2, for l ̸= 1,

with ω = 0.2; 0.5; 0.8 and c = 1; 1.25; 1.5 with ρ1 and ρ2 given in Table 5

others by a same value −ω, while the other components are positively correlated to each
other by a common parameter equal to ω/c, where c regulates the extent of unbalancing in
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Table 4: The SK-PNCor pattern. Range of variation of output parameters (MSN data, 2nd study)

Output parameters
Input ρ1 ρ2 ρ3 γ1 γ1MV

ω = 0.2 (−0.33,−0.24) (0.05, 0.12) (0.15, 0.20) ( 0.0, 0.4) (0.20, 0.99)
(positive-negative low ρs)

ω = 0.5 (−0.57,−0.48) (0.36, 0.41) (0.48, 0.50) ( 0.0, 0.6) (0.14, 0.99)
(positive-negative moderate ρs)

ω = 0.8 (−0.79,−0.72) (0.66, 0.75) (0.73, 0.78) (−0.1, 0.3) (0.06, 0.99)
(positive-negative high ρs)

Table 5: The SK-UnbCor pattern. Range of variation of output parameters (MSN data, 3rd study)

Output parameters
Input parameters ρ1 ρ2 γ1 γ1MV

ω = 0.2 c = 1 (−0.27,−0.25) (−0.02, 0.03) ( 0.0, 0.1) (0.30, 0.99)
c = 1.25 (−0.26,−0.24) (−0.05, 0.00) ( 0.0, 0.1) (0.28, 0.99)
c = 1.5 (−0.26,−0.24) (−0.07,−0.03) ( 0.0, 0.1) (0.26, 0.99)

(negative low and nearly null ρs)
ω = 0.5 c = 1 (−0.43,−0.41) ( 0.21, 0.27) (−0.1, 0.2) (0.36, 0.99)

c = 1.25 (−0.42,−0.40) ( 0.12, 0.18) (−0.1, 0.2) (0.30, 0.99)
(negative moderate and low ρs)

c = 1.5 (−0.42,−0.39) ( 0.06, 0.13) (−0.1, 0.2) (0.26, 0.99)
(negative moderate and nearly null ρs)

ω = 0.8 c = 1 (−0.68,−0.65) ( 0.57, 0.63) (−0.2, 0.5) (0.41, 0.99)
(negative high and high ρs)

c = 1.25 (−0.68,−0.62) ( 0.33, 0.41) (−0.4, 0.3) (0.33, 0.99)
(negative high and moderate ρs)

c = 1.5 (−0.68,−0.62) ( 0.20, 0.29) (−0.9, 0.3) (0.26, 0.99)
(negative high and low ρs)

the correlation matrix Ω, (Table 3). This produces an output matrix R having the same
structure of Ω (UnbCor) and entries with values in the ranges given in Table 5. Relations
between input and output correlations are now much more sophisticated. In particular,
for ω = 0.2, as c varies, we have always a negative low ρ for the first variable (ρ1 ≈ −0.25)
and nearly null values for the other variables (ρ2 ≈ 0). This case is therefore denoted as
“negative low and nearly null” level. For ω = 0.5, there are two instances of “negative
moderate and low” level (i.e. c = 1; 1.25, where: ρ1 ≈ −0.4 and ρ2 ≈ 0.15; 0.25), and
one “negative moderate and nearly null” level (c = 1.5, where: ρ1 ≈ −0.4 and ρ2 ≈ 0.1).
For ω = 0.8, there are: one “negative high and high” level (c = 1, where: ρ1 ≈ −0.7
and ρ2 ≈ 0.6), one “negative high and moderate” level (c = 1.25, where: ρ1 ≈ −0.7 and
ρ2 ≈ 0.4), and one “negative high and low” level (c = 1.5, where: ρ1 ≈ −0.7 and ρ2 ≈ 0.2).

In conclusion, by combining together the considered number n of units and p of vari-
ables, percentages of missing values (generated through a MCAR mechanism), and the
input parameters related to the MEP or MSN distributions, we examined a total num-
ber of artificial scenarios equal to: 162, in the case of the SyKu shape (MEP data), and:
216 (1st study)+ 144 (2nd study) + 216 (3rd study) = 576, in the case of the SK shape
(MSN data).

It is worth remarking that imputation under the SyKu shape was initially tested in
the presence of the ECor structure only. Supplementary simulations also considering the
PNCor and the UnbCor structures were subsequently performed with additional simulation
settings suggested by the results obtained under the SK shape. The reason is that MSN
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data with α = 1, accounting for situations of slighter skewness, are then quite close to
κ = 2 of the MEP family. Their results were therefore expected to give useful indications
on how further inspecting patterns under the SyKu shape. In addiction, a modified version
of the 3rd study was also introduced for both the SyKu and the SK shapes to examine the
role of the sign of the correlation coefficients concerning the first component.

Simulation procedure. Under each scenario a complete n× p data matrix X∗ (n > p)
was first generated according to a specific MEP or MSN distribution. Then, 1,000 incom-
plete matrices Xt were derived from it by deleting a 5%, 10%, or 20% percentage, re-
spectively, of MCAR values (t = 1, . . . , 1,000). Subsequently, missForest, IPCA, FIP, and
FIM were applied to each Xt with the following options. As for missForest, the maximum
number of iterations was increased from 10 (the default value in the R library “missFor-
est” by Stekhoven and Bühlmann (2012)) to 50. Regarding IPCA, we used the function
“imputePCA” in the R library “missMDA” with the default “Regularized method” (Jos-
se et al., 2011), the maximum number of iterations fixed at 5,000, and the number of
extracted PCs set at the largest possible value, i.e. p − 2 (p ≥ 3). Since for FIM (and
FIP) it is necessary to make a choice for the number of donors (and the metric) the sim-
ulation study was carried out this way. In the case of FIP, PCs were extracted from the
variance-covariance matrix (i.e. option “cor=False”, see Remark 3, Sect. 2.1 in Solaro et
al. (2015)), and donors’ detection was carried out with, respectively, city-block, Euclidean,
and Lagrange distance (r = 1; 2;∞, respectively, in formula (3), Solaro et al. (2015)). Fur-
thermore, for both FIP and FIM we considered four different quantiles q of distances, i.e.
q = 0.05; 0.1; 0.15; 0.2. Therefore, to each incomplete Xt the method FIP was applied in
12 variants (given by the combinations of the three distances with the four quantiles),
while FIM in 4 variants (given by the four quantiles).

Summary of simulation results. The performance of the considered methods was
evaluated and compared by means of the Relative Mean Square Error (RMSE):

mRMSEt =
p

∑

j=1

1
nσ2

j

(x∗
j −mx̃j,t)

t(x∗
j −mx̃j,t), (1)

(t = 1, . . . , 1000), where x∗
j is the j-th column vector of the complete matrix X∗, mx̃j,t is

the j-th column vector of the matrix mX̃t imputed with method m at the t-th simulation
run, and σ2

j is the variance of the j-th variable in X∗.
After that, we carried out descriptive and inferential analyses of RMSE values. De-

scriptive analyses were performed by computing usual synthesis measures (mean, standard
deviation, and quartiles), and displaying results in graphical form, i.e. dotplots of RMSE
median values along with boxplots of RMSE distributions, in order to ease the compar-
ison. With the specific purpose of an inferential analysis, the Jonckheere-Terpstra (J-T)
test (Hollander and Wolfe, 1999) was used to compare the RMSE distributions of the
examined methods obtained under a same simulation scenario against different ordered
alternative hypotheses, and test if these methods produce significantly different results.
These are explained case by case in the next Subsect. 2.2.

2.2 Simulation results

Simulation results here presented concern the scenarios with 20% of missing values, since
they better emphasize differences among the four methods missForest, IPCA, FIM, and
FIP (Solaro et al., 2014). An ample collection of the omitted results can be found in the

9



Figure 1: SyKu-ECor pattern (MEP data) – Dotplots of RMSE median values of missForest, IPCA,
FIM and FIP with q = 0.1 donor quantile, and 20% of missing values

RMSE
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electronic supplementary material (ESM). Results are here displayed through dotplots
of RMSE median values. Inspection of boxplots of the various RMSE distributions (in
the ESM) revealed in fact that the median is highly representative for all the methods,
since imputation errors are symmetrically distributed around it with a similar extent of
dispersion (i.e. the boxes have a similar length). Moreover, the graphs here displayed
mostly regard the case of p = 5 variables and n = 1000 units. Besides being common to
all the studies, such a combination of experimental conditions well represents the overall
observed trends.

Descriptive analysis. A few general considerations are worth making before examin-
ing results from each data pattern in detail. As expected, regarding the exogenous factors
“dimensionality” and “correlation”, the four methods share the fact that, on the whole,
their RMSE tends to increase with the dimensionality of data, especially the number of
variables, and to decrease as the value of (both input and output) correlation parameters
increase. This is consistent with the fact that if variables are medium/highly correlated
then imputation is generally subject to smaller errors. Figure 1, which concerns results
obtained under the SyKu shape with the ECor structure (SyKu-ECor pattern), displays
an instance of such a trend. In addiction, the most important factor that seems to discrim-
inate, on the whole, between a “good” and a “less good” imputation method reveals to be
the type of correlation structure along with the magnitude of correlation coefficients. As
it will be seen soon, their impact can get even stronger if data are skew.

Regarding the endogenous factors, proper of FIM and FIP, what can be observed in
general is that if correlations are low then selecting a higher proportion of donors (e.g.
q = 0.2) leads to smaller errors, while if correlations are high, having few donors (e.g.
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Figure 2: SyKu-ECor pattern – Dotplots of RMSE median values of missForest, IPCA, FIM and
FIP with q = 0.05, 0.1, 0.15, 0.2 donor quantiles, 20% of missing values, p = 5 variables, and
n = 1000 units

q = 0.05) implies better results. As for the choice of the distance in FIP, if correlations
are low, then in most of the scenarios the city-block distance (r = 1) turns out to be an
optimal choice, while if correlations are high, Lagrange distance (r = ∞) generally leads
to better results.

To contain the exposition as much as possible, the analysis of the endogenous factors
is exclusively carried out from an inferential point of view, and is reported later on. In
what follows, attention will be paid to the main peculiarities found in each data pattern.

" The SyKu-ECor pattern (symmetry with equicorrelations, derived from MEP data,
Table 3). As it can be clearly noticed in Figure 2, IPCA proves to be the best imputation
method. FIM and FIP tend to have an overlapping and intermediate performance between
IPCA and missForest for small ρs (ρ = 0; 0.3) and low data dimensionality (Figure 1).
For high ρ and high dimensionality, their performance tend however to worsen, especially
FIM, (see e.g. the last panel in Figure 1).

# Kurtosis effect. IPCA proves to be less sensitive than the other methods to kur-
tosis of data distribution, especially when ρ is small. missForest tends to produce
smaller imputation errors under normal data, while it seems more badly affected by
platykurtic data. Regarding FIM and FIP, when ρ = 0 they tend to have smaller
errors for leptokurtic data. As ρ increases, FIP tends to perform better under nor-
mally distributed data, and FIM under platykurtic data, while both the methods
seem to perform worst in the presence of leptokurtic data, especially FIM for higher
ρs (e.g. the last row of panels in Figure 2).
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Figure 3: SK-ECor pattern (MSN data, 1st study) – Dotplots of RMSE median values ofmissForest,
IPCA, FIM and FIP with q = 0.1 donor quantile, 20% of missing values, p = 5 variables, and
n = 1000 units

→ SK shape (derived from MSN data). Interpretation of results in this case is complic-
ated by the little intuitive relationship between input (matrix Ω) and output (matrix R)
correlation structures. Nonetheless, to simplify the graphical layout, dotplots preserve the
indication of the input ω parameters, while results are mainly read by taking into account
the output ρ parameters described in Subsect. 2.1 along with Tables 2, 4, and 5.

" The SK-ECor pattern (skewness with equicorrelations, 1st study, Table 3). Figure 3,
related to p = 5, n = 1000, and q = 0.1 for donor quantile, well represents the trends
observed in the other scenarios. The panels correspond to the three levels of output cor-
relation described in Subsect. 2.1, i.e. low-negative (ω = 0), low-positive (ω = 0.5), and
medium (ω = 0.8) values of ρ (Table 2).

Three different trends can be noticed. Whichever the value of α is, in the presence
of low-negative ρs (ω = 0) FIM is the best imputation method, followed by FIP. IPCA
and missForest have a clear bad performance (1st panel). In the case of low-positive ρs
(ω = 0.5), the points of FIM and FIP tend to overlap, although FIP is slightly better,
thus denoting a similar performance. They are again the best imputation methods, with
the only exception of α = 1, where skewness is less strong (2nd panel). When ρ assumes
medium values (ω = 0.8), the trend becomes opposite. FIM gives the worst results (apart
from an isolated point of missForest for α = 10), while FIP performance is very similar to
IPCA.

# Skewness effect. By looking at the performance of FIM and FIP over the three panels
in Figure 3, a sort of dichotomy between α = 1 and α ≥ 4 seems apparent. This is
particularly marked when ω = 0, since in this case α = 1 represents a situation much
closer to the symmetry than the other values of ω, (see γ1 and γ1MV in Table 2).
Substantially, for low-negative ρs (ω = 0), FIM and FIP perform better when data
are more asymmetrically distributed (α ≥ 4), while in the presence of higher values
of ρ (ω = 0.8), they tend to perform better for data less asymmetrically distributed
(α = 1). The case of low-positive ρs (ω = 0.5) represents an intermediate situation,
since FIM and FIP seem less sensitive to skewness. missForest also proves to be
fairly sensitive to variations of α, but the effect is evidently not monotone, especially
for ω = 0. On the contrary, IPCA looks less sensitive than the other methods to
variations of parameter α.

" The SK-PNCor pattern (skewness with positive and negative correlations, 2nd study,
Table 3). An extract of the results concerning the second study (Table 3) is provided in
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Figure 4: SK-PNCor pattern (MSN data, 2nd study) – Dotplots of RMSE median values of
missForest, IPCA, FIM and FIP with q = 0.1 donor quantile, 20% of missing values, p = 5
variables, and n = 1000 units

Figure 4, with p = 5 variables, n = 1000 units, and q = 0.1 for FIM and FIP. This plot
well represents the other scenarios in this study. The three panels concern the three levels
of output correlations, given by three distinct values of ρ described in Subsect. 2.1 along
with Table 4, i.e. positive-negative (PN) low (ω = 0.2), PN moderate (ω = 0.5), and PN
high (ω = 0.8) values of ρ.

Most remarks would be very similar to the above described SK-ECor pattern. We limit
therefore to point out that: (a) in the presence of PN low ρs (ω = 0.2), FIM is the best
method, and missForest the worst. On the contrary, with higher PN ρs (ω = 0.5; 0.8)
IPCA is the best method, while FIM turns out to be the worst for higher PN ρs (ω = 0.8);
(b) FIP always shows intermediate performances between the best and the worst methods;
(c) missForest tends to improve its performance with the increasing of correlation levels.

# Skewness. Again, it can be observed the dichotomy: α = 1 vs. α ≥ 4 just pointed out
in the previous study (Figure 3). This is common, more or less, to all the methods,
so it can be summed up as follows: (1) in the presence of PN low or moderate ρs
(ω = 0.2; 0.5), all the methods tend to produce smaller errors for more skew data
(α ≥ 4); (2) in the presence of PN high ρs (ω = 0.8), they tend to perform better
for less skew data (α = 1).

" The SK-UnbCor pattern (skewness with unbalanced correlations, 3rd study, Table 3).
As regards the third study (Table 3), Figure 5 shows the results obtained for p = 5 and
n = 1000, with q = 0.1 for FIM and FIP. The full description of input-output correlations
is provided in Subsect. 2.1 along with Table 5.

Overall, it is worth pointing out that: (a) In the presence of the “negative low and
nearly null” level (ω = 0.2), FIM confirms to be the best imputation method, followed by
FIP (Figure 5, 1st row of panels). IPCA and missForest have a worse performance; (b) in
the presence of moderate values of ρ for the first variable (ω = 0.5, 2nd row of panels), FIP
proves mostly to be the best method, (with few exceptions given by: α = 1, c = 1, where
IPCA is better, and: α ≥ 4, c = 1.5, where the best is FIM); (c) the case in which the first
variable has high ρs (ω = 0.8, last row of panels) highlights the main differences among
the methods. In particular, there is an inversion of trend moving from the “negative high
and high” level (c = 1, 1st column, last row), where IPCA is the best method and FIM
the worst, to the “negative high and low” level (c = 1.5, last column, last row), where
FIM is the best method and IPCA the worst. The panel related to the “negative high and
moderate” level (c = 1.25; 2nd column, last row) displays an intermediate situation, where
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Figure 5: SK-UnbCor pattern (MSN data, 3rd study) – Dotplots of RMSE median values of
missForest, IPCA, FIM and FIP with q = 0.1 donor quantile, 20% of missing values, p = 5
variables, and n = 1000 units

missForest, FIM and FIP have a very similar good performance, while IPCA is the worst
method.

# Skewness. Once again, the dichotomy α = 1 vs. α ≥ 4 is clearly visible. In particular,
when ω = 0.2, missForest, FIM, and FIP perform better for more skew data (α ≥ 4)
while IPCA seems less sensitive to variations of α. On the contrary, when ω = 0.8
all the methods tend to perform better for less skew data (α = 1). The case ω = 0.5
is intermediate, showing both the trends, in particular the first for c = 1.5 (better
for more skew), and the second for c = 1 (better for less skew).

Inferential analysis. J-T test is applied (in all cases at the significance level of 0.05) to
verify whether assumed conjectures about specific aspects find support in the simulation
results. Given the copious number of observations (1,000 values in all) for each RMSE
distribution, J-T test has been applied with the asymptotic normal distribution as test
statistic. Once again, results here provided refer to the case of the strongest missingness
we considered, i.e. the 20% of missing values.

One of the main aspects of concern was testing the effects of the endogenous factors,
i.e. (a) donor quantile, and (b) distance in selecting donors, on imputation performance
of FIM ((a) only) and FIP (both (a) and (b)). Another major aspect of concern regards:
(c) comparisons among the performances of IPCA, FIM, and FIP. We have decided to
discard missForest from this analysis because IPCA has proved to perform better than
missForest in almost all the considered scenarios. We have then focused on comparisons
between the best method within those two, and FIM and FIP.
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(a) Effect of donor quantile. Two separate one-sided J-T tests have been carried out
to test the null hypothesis:

H0 : Fq=0.05(x) = Fq=0.1(x) = Fq=0.15(x) = Fq=0.2(x) (2)

against the two ordered alternatives:

H ′
1 : Fq=0.05(x) ≤ Fq=0.1(x) ≤ Fq=0.15(x) ≤ Fq=0.2(x) (3)

and:
H ′′

1 : Fq=0.05(x) ≥ Fq=0.1(x) ≥ Fq=0.15(x) ≥ Fq=0.2(x) (4)

with at least a strict inequality in the ordered alternatives (3)-(4), where Fq=q∗(·) denotes
the distribution function of RMSE obtained with FIP or FIM run at a fixed q = q∗ quantile
of donors.

It is worth noting that rejecting the null hypothesis (2) in favour of the alternative (3)
gives empirical support to the fact that q = 0.05 produces better results than q = 0.2,
but it does not exclude that q = 0.1 (or also q = 0.15) could lead to results as good as
q = 0.05 (analogously for the alternative (4)). Nonetheless, we are mainly interested in
appraising differences in performance between extreme values of donor quantiles, rather
than intermediate quantiles.

Test results are provided separately for FIM and FIP (with the Euclidean distance) in
Tables 6–13. Given the presence of similar trends between the two methods, results can
be summarized as follows:

(1) SyKu-ECor pattern (Tables 6 and 7). Overall, q = 0.2 proves to be better than
q = 0.05 for ρ = 0 and ρ = 0.3. There are only few exceptions when ρ = 0.3, (p = 10,
n = 1000, κ = 1 – for both FIM and FIP –, and κ = 2 – for FIM only –, in which
q = 0.05 is the best choice). On the other hand, when ρ = 0.7, q = 0.05 produces
smaller errors than q = 0.2 (with few exceptions when κ = 14, where q = 0.2 is
better for both FIM and FIP).

(2) SK-ECor pattern (Tables 8 and 9). Apart from few exceptions, when p = 3, q = 0.2
produces better results in both FIM and FIP, regardless of correlation strength.
When p = 5; 10, FIM performs better with q = 0.2 for low ρs (ω = 0; 0.5), and with
q = 0.05 for higher values of ρ (ω = 0.8). FIP has a similar performance with few
exceptions (i.e. when ω = 0.8 with p = 5; 10 variables and n = 500 units, where
q = 0.2 leads to better results than q = 0.05).

(3) SK-PNCor pattern (Tables 10 and 11). FIM requires more donors (q = 0.2) in the
presence of PN low ρs (ω = 0.2) with a smaller number of units (n = 500) for
each α, or with more units (n = 1000) for less skew data (α = 1). In all the other
considered scenarios (i.e. ω = 0.5; 0.8), FIM requires smaller proportions of donors
(q = 0.05). FIP shares the same trend of FIM, except in the presence of PN moderate
ρs (ω = 0.5) with n = 500 units, where q = 0.2 seems more effective.

(4) SK-UnbCor pattern (Tables 12 and 13). FIM and FIP perform very similarly. In the
case of “negative low and nearly null” ρs (ω = 0.2 and c = 1; 1.25; 1.5), q = 0.2 is
to be preferred, while for high ρs (ω = 0.8 and c = 1; 1.25; 1.5), q = 0.05 gives rise
to better results. In the presence of “negative moderate and low or nearly null” ρs
(ω = 0.5 and c = 1; 1.25; 1.5), it is the number of units that makes the difference.
If n = 500, more donors are necessary (q = 0.2), while if n = 1000, fewer donors
(q = 0.05) are better (with only few exceptions in the case of FIP).
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Table 6: SyKu-ECor pattern. J-T test for the effect of donor quantile in FIM

p = 3 p = 5 p = 10
n 500 1000 500 1000 500 1000

ρ = 0 κ = 1, 2, 14 II II II II II II
ρ = 0.3 κ = 1, 2 II II II II II I

κ = 14 II II II II II II
ρ = 0.7 κ = 1, 2 I I I I I I

κ = 14 II II I I I I

Table 7: SyKu-ECor pattern. J-T test for the effect of donor quantile in FIP (with r = 2)

p = 3 p = 5 p = 10
n 500 1000 500 1000 500 1000

ρ = 0 κ = 1, 2, 14 II II II II II II
ρ = 0.3 κ = 1 II II II II II I

κ = 2, 14 II II II II II II
ρ = 0.7 κ = 1, 2 ns I I I I I

κ = 14 II II II I I I

Table 8: SK-ECor pattern. J-T test for the effect of donor quantile in FIM

p = 3 p = 5 p = 10
n 500 1000 500 1000 500 1000

ω = 0 α = 1, 4, 10, 30 II II II II II II
ω = 0.5 α = 1, 4, 10, 30 II II II II II II
ω = 0.8 α = 1, 4 II ns I I I I

α = 10 II I I I I I
α = 30 II ns I I I I

Table 9: SK-ECor pattern. J-T test for the effect of donor quantile in FIP (with r = 2)

p = 3 p = 5 p = 10
n 500 1000 500 1000 500 1000

ω = 0 α = 1, 4, 10, 30 II II II II II II
ω = 0.5 α = 1, 4, 10, 30 II II II II II II
ω = 0.8 α = 1, 4, 10, 30 II II II I II I

Table 10: SK-PNCor pattern. J-T test for the effect of donor quantile in FIM

p = 5 p = 10
n 500 1000 500 1000

ω = 0.2 α = 1 II II II II
α = 4 II ns II ns
α = 10, 30 II I II ns

ω = 0.5 α = 1 II I I I
α = 4, 10, 30 I I I I

ω = 0.8 α = 1, 4, 10, 30 I I I I

Legend in Tables 6–10. I: q = 0.05 ≤ q = 0.1 ≤ q = 0.15 ≤ q = 0.2, and
II: q = 0.05 ≥ q = 0.1 ≥ q = 0.15 ≥ q = 0.2 (at least a strict inequality); ns: not significant.

16



Table 11: SK-PNCor pattern. J-T test for the effect of donor quantile in FIP (with r = 2)

p = 5 p = 10
n 500 1000 500 1000

ω = 0.2 α = 1 II II II II
α = 4, 10, 30 II I II II

ω = 0.5 α = 1, 4, 10, 30 II I II I
ω = 0.8 α = 1, 4, 10, 30 I I I I

Table 12: SK-UnbCor pattern. J-T test for the effect of donor quantile in FIM

p = 5
n = 500 n = 1000

c 1 1.25 1.5 1 1.25 1.5
ω = 0.2 α = 1, 4, 10, 30 II II II II II II
ω = 0.5 α = 1 II II II ns ns ns

α = 4, 10, 30 II II II I I I
ω = 0.8 α = 1, 4, 10, 30 I I I I I I

Table 13: SK-UnbCor pattern. J-T test for the effect of donor quantile in FIP (with r = 2)

p = 5
n = 500 n = 1000

c 1 1.25 1.5 1 1.25 1.5
ω = 0.2 α = 1, 4, 10, 30 II II II II II II
ω = 0.5 α = 1 II II II II II I

α = 4, 10, 30 II II II I I I
ω = 0.8 α = 1, 4, 10, 30 I I I I I I

Legend in Tables 11–13. I: q = 0.05 ≤ q = 0.1 ≤ q = 0.15 ≤ q = 0.2, and
II: q = 0.05 ≥ q = 0.1 ≥ q = 0.15 ≥ q = 0.2 (at least a strict inequality); ns: not significant.

(b) Effect of distance. Once again, two separate one-sided J-T tests have been carried
out to test the null hypothesis:

H0 : Fr=1(x) = Fr=2(x) = Fr=∞(x) (5)

against the two ordered alternatives:

H ′
1 : Fr=1(x) ≤ Fr=2(x) ≤ Fr=∞(x) (6)

and:
H ′′

1 : Fr=1(x) ≥ Fr=2(x) ≥ Fr=∞(x) (7)

(with at least a strict inequality), where Fr=r∗(·) denotes the distribution function of
RMSE obtained from FIP with distance r = r∗.

As before, it is worth noting that if the null hypothesis (5) is rejected in favour of
the alternative (6), thus judging the city-block distance as better than Lagrange, nothing
excludes that the Euclidean distance can be as good as the city-block (an analogous remark
holds for the alternative (7)). While reading the J-T test results, this point has then to be
taken into account.

Results are displayed in Tables 14 to 17. Specifically,
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(1) SyKu-ECor pattern (Table 14). The choice of the metric is significant essentially for
ρ = 0.7 (apart from p = 3 with κ = 14), and p = 10 (excepted ρ = 0 with κ = 1; 2),
in which cases the Lagrange distance leads to better results than city-block. The
choice thus seems mostly tied to the presence of a strong linear relationship between
variables and/or a high dimensionality of data.

(2) SK-ECor pattern (Table 15). With the exception of p = 3, for low-negative ρs (ω = 0)
the best metric turns out the city-block distance, while for moderate ρs (ω = 0.8)
it is Lagrange. The case of low-positive ρs (ω = 0.5) gives rise to less well-framed
results.

(3) SK-PNCor pattern (Table 16). Most of the results concerning PN low ρs (ω = 0.2)
are characterized by the city-block distance as the best one. For PN moderate and
PN high ρs (ω = 0.5; 0.8), the Lagrange distance proves to be the best choice (with
the exception of p = 5, n = 500, and p = 5, n = 1000, α = 30, where test results are
not significant).

(4) SK-UnbCor pattern (Table 17). Apart from several not significant results occurring
for less skew data (α = 1) with low and/or moderate ρs (ω = 0.2; 0.5) and a smaller
number of units (n = 500), most of the times the city-block distance is the best
metric, while Lagrange should be preferred for higher values of ρ (ω = 0.8 and
c = 1; 1.25).

(c) Comparison among IPCA, FIM, and FIP. In order to detect the best method
among the three under the various scenarios, six separate one-sided J-T tests have been
applied at the 0.05 significance level to test the null hypothesis:

H0 : Fm=FIM(x) = Fm=FIP (x) = Fm=IPCA(x), (8)

where Fm=m∗(·) in (8) denotes the empirical distribution function of RMSE of method m∗,
against each of the following six ordered alternatives:

1 = FIM < FIP < IPCA,

2 = FIP < FIM < IPCA,

3 = IPCA < FIP < FIM,

4 = FIM < IPCA < FIP,

5 = FIP < IPCA < FIM,

6 = IPCA < FIM < FIP.

(9)

Comparisons of FIM and FIP with IPCA are performed twice. The first time, by
considering FIM and FIP at their “intermediate” options (donor quantile q = 0.1 – FIM
and FIP –, and Euclidean distance – r = 2, only for FIP –), which are regarded as
possible candidates to be the default options. The second time, at their best endogenous
factor levels detected by the previous J-T test analyses (a) and (b).

For each scenario the best method is then judged as the one that, in case of a significant
result, has associated the smallest p-value, or, equivalently, the highest absolute value on
the reference asymptotic normal distribution.

Results are displayed in Tables 18 to 21. In case of a significant result, the number of the
“most significant” ranking is given according to the numbering of system (9). Moreover,
the cells are differently coloured depending on which method appears as the first in the
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Table 14: SyK-ECor pattern. J-T test for the effect of metrics in FIP (with q = 0.1)

p = 3 p = 5 p = 10
n 500 1000 500 1000 500 1000

ρ = 0 κ = 1, 2 ns ns ns ns ns ns
κ = 14 ns ns ns ns B B

ρ = 0.3 κ = 1, 2, 14 ns ns ns ns B B
ρ = 0.7 κ = 1, 2 B B B B B B

κ = 14 ns ns B B B B

Table 15: SK-ECor pattern. J-T test for the effect of metrics in FIP (with q = 0.1)

p = 3 p = 5 p = 10
n 500 1000 500 1000 500 1000

ω = 0 α = 1 ns ns ns A A A
α = 4, 10, 30 ns ns A A A A

ω = 0.5 α = 1 ns ns ns ns B B
α = 4, 10, 30 ns ns ns A ns ns

ω = 0.8 α = 1 ns ns B B B B
α = 4, 10, 30 ns ns ns B B B

Table 16: SK-PNCor pattern. J-T test for the effect of metrics in FIP (with q = 0.1)

p = 5 p = 10
n 500 1000 500 1000

ω = 0.2 α = 1 ns ns ns A
α = 4, 10, 30 A A ns A

ω = 0.5 α = 1, 4, 10 ns B B B
α = 30 ns ns B B

ω = 0.8 α = 1, 4, 10, 30 B B B B

Table 17: SK-UnbCor pattern. J-T test for the effect of metrics in FIP (with q = 0.1)

p = 5
n = 500 n = 1000

c 1 1.25 1.5 1 1.25 1.5
ω = 0.2 α = 1 ns ns ns A A A

α = 4, 10, 30 A A A A A A
ω = 0.5 α = 1 ns ns ns A A A

α = 4, 10, 30 A A A A A A
ω = 0.8 α = 1, 4, 10, 30 B B A B B A

Legend in Tables 14–17. A: r = 1 ≤ r = 2 ≤ r = ∞, and B: r = ∞ ≤ r = 2 ≤ r = 1 (at least a strict inequality);
ns: not significant.

significant ranking. Grey cells denote rankings 1 and 4, where FIM is the best. Light-grey
cells denote ranking 2 and 5, where FIP is the best. A blank background in the cells
denotes rankings 3 and 6, with IPCA as the best. Comparisons there reported are made
with FIM and FIP applied at their default options. Some further remarks about FIM and
FIP tested at their best endogenous factor levels (not shown in the tables) are given in
the text if they produce significant changes among the rankings in (9).

Regarding the main achieved results:

19



(1) SyKu-ECor pattern (Table 18). With only two exceptions when ρ = 0, IPCA is
always the best imputation method. In addition, the prevalence of ranking 3, instead
of ranking 6, reveals that FIM more frequently performs worse than the other two
methods. Switching the options of FIM and FIP to their best endogenous factor
levels does not produce compelling results, apart from the scenarios with ρ = 0 and
p = 10, where with q = 0.2 and r = ∞, FIP performs better than FIM and IPCA,
in the order.

(2) SK-ECor pattern (1st study, Table 19). Clear separated trends can be read. For low-
negative ρs (ω = 0) the best method is FIM, followed by FIP (ranking 1). As for
the endogenous factors, the three cases in which ranking 6 (IPCA the best) prevails
for α = 1 turn, respectively: (i) to not significant differences when p = 3, if q = 0.2
(and r = 2) is fixed for FIM (and FIP); (ii) to FIM as the best method when p = 5
and n = 500, if q = 0.2 is considered. For low-positive ρs (ω = 0.5), IPCA has the
best performance for p = 3, but with a higher number of variables and more skew
data (α ≥ 4) FIP shows a good performance. In particular, by fixing the endogenous
factors at their best levels, FIP overcomes IPCA by using more donors (q = 0.2)
along with the Euclidean distance (r = 2) when p = 5, or the Lagrange distance
(r = ∞) when p = 10 and n = 500. However, when p = 10 with n = 1000, IPCA
proves again to be the best method, although the observed previous trend seems to
suggest that in the presence of a wider proportion of donors (q > 0.2) FIP could
further improve its performance. Finally, for higher values of ρs (ω = 0.8) IPCA is
always the best method.

(3) SK-PNCor pattern (2nd study, Table 20). In all the considered scenarios with PN
moderate or PN high values of ρ (ω = 0.5; 0.8), IPCA perform better than FIM and
FIP. For low ρs (ω = 0.2) with p = 5, FIM is the best method, followed by FIP,
whereas for p = 10, IPCA proves to have better performances. Anyway, as before,
the trend observed for p = 5 seems to suggest that a wider proportion of donors
could lead to improve the performance of both FIM and FIP.

(4) SK-UnbCor pattern (3rd study, Table 21). This is the study where our methods
exhibit the best results, especially FIM, which performs better than the others in
almost all the considered scenarios. IPCA works better with balanced moderate or
high ρs (c = 1 with ω = 0.5; 0.8), with the only exceptions of n = 1000, α ≥ 4, and
ω = 0.5, where FIP, followed by FIM, is better than IPCA.

Supplementary simulations. As before mentioned, a supplementary study was under-
taken in order to examine additional scenarios, not comprised among those in Table 3 and
formulated a posteriori by taking into account the indications provided by the exploratory
study. The SyKu shape was also considered in the presence of negative equicorrelations,
with magnitude similar to the 1st study of the SK-ECor pattern. Moreover, we also intro-
duced the SyKu-PNCor and SyKu-UnbCor patterns, with correlation matrices R having
entries of magnitude similar to the output R of the SK-PNCor and SK-UnbCor patterns,
respectively (Table 3). Finally, the UnbCor structure was also set up by inserting all pos-
itive correlations. Results are here omitted (a part of them is given in ESM), but the main
indications can be summed up as follows:

• SyKu-ECor, negative equicorrelations. To have consistent matrices R, such that they
were positive-definite, ρ could not be less than nearly −0.2. In all these additional
scenarios, FIM always proves to be the best method, followed by FIP.
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Table 18: SyKu-ECor pattern. J-T test for the best imputation method

p = 3 p = 5 p = 10
n 500 1000 500 1000 500 1000

ρ = 0 κ = 1 3 6 6 3 1 2
κ = 2 3 3 6 3 3 6
κ = 14 6 6 3 6 3 6

ρ = 0.3 κ = 1 6 3 3 3 3 3
κ = 2 3 3 3 3 3 3
κ = 14 3 6 3 3 3 3

ρ = 0.7 κ = 1, 2, 14 3 3 3 3 3 3

Table 19: SK-ECor pattern. J-T test for the best imputation method

p = 3 p = 5 p = 10
n 500 1000 500 1000 500 1000

ω = 0 α = 1 6 6 6 1 1 1
α = 4, 10, 30 1 1 1 1 1 1

ω = 0.5 α = 1 3 3 3 3 3 3
α = 4, 10, 30 3 3 5 2 3 3

ω = 0.8 α = 1, 4, 10, 30 3 3 3 3 3 3

Table 20: SK-PNCor pattern. J-T test for the best imputation method

p = 5 p = 10
n 500 1000 500 1000

ω = 0.2 α = 1 3 1 3 3
α = 4, 10 4 1 3 6
α = 30 1 1 3 6

ω = 0.5 α = 1, 4, 10, 30 3 3 3 3
ω = 0.8 α = 1, 4, 10, 30 3 3 3 3

Table 21: SK-UnbCor pattern. J-T test for the best imputation method

p = 5
n = 500 n = 1000

c 1 1.25 1.5 1 1.25 1.5
ω = 0.2 α = 1 6 6 6 1 1 1

α = 4, 10, 30 4 1 1 1 1 1
ω = 0.5 α = 1 3 3 6 3 2 1

α = 4 3 6 1 2 1 1
α = 10 3 4 1 2 1 1
α = 30 3 1 1 2 1 1

ω = 0.8 α = 1, 4, 10, 30 3 1 1 3 1 1

• SyKu-PNCor and SyKu-UnbCor patterns. Results obtained are very similar to the
SK-PNCor and SK-UnbCor patterns, although platykurtic data seem indicate a
better performance of FIM and FIP.

• SyKu-UnbCor and SK-UnbCor patterns with all positive correlations. Results are
very similar to those obtained under the corresponding patterns obtained with one
variable negatively correlated with all the others. Therefore, it seems that it is the
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extent of unbalancing among correlations plus the magnitude of absolute correla-
tions, rather than the sign, to be the most important discriminant elements among
the imputation methods.

3 Descriptive criteria for the choice of the imputation method

Simulations performed in this work confirm the idea that which the best imputation
method is, it ultimately depends on the pattern of data. In our intentions, the experimental
conditions in Table 3, along with those considered in the supplementary simulations, were
chosen to interpret, as best as possible, data patterns that might be encountered in prac-
tice.

The main concern is then how a specific data pattern (for instance, one of the kinds
considered in this work) could be recognized in a real dataset. In this regard, we have seen
that strength and structure of correlations of variables, along with symmetric or skew
nature of data distributions, are the elements to be considered in the choice of the “most
suitable” imputation method.

After having valued the range of statistics known in the literature for summing up
variance-covariance or correlation matrices in a scalar (see e.g. Seber (1984)), we have
introduced the criteria defined in Table 22, called correlation indices:

1. Eigenvalue-based indices, given by the relative eigenvalues (RelEig), used for measur-
ing the strength of correlations. In particular, if: R = I(p), then: RelEigs =

1
p for all

s = 1, . . . , p. If: ρjl = 1 for all j ̸= l, then: RelEig1 = 1 and RelEigs = 0 for all s ≥ 2.
The same occurs if R contains any ρjl = −1 in a consistent manner. Moreover, in the
equicorrelation case (i.e. ρjl = ρ, ∀j, l), it was proved (see e.g. Kaiser (1968)) that R
has a unique eigenvalue: λ∗ = 1 + (p − 1)ρ, and (p − 1) eigenvalues: λ = 1 − ρ such
that: λmax = λ∗ > λ (and then: RelEig∗ > RelEig) if ρ > 0, while: λ∗ < λ = λmax

(or RelEig∗ < RelEig) if ρ < 0. In this latter case, the first two eigenvalues λ1 and
λ2 would be both equal to 1− ρ, so that: RelEig1 = RelEig2.

Table 22: Definition of correlation indices

Definition Range
Eigenvalue-based indices:

RelEigs =
λs
p , with: p = tr(R) and: λ1 ≥ . . . ≥ λp, 1

p ≤ RelEig1 ≤ 1
(s = 1, . . . , p) 0 ≤ RelEigs < 1, s ≥ 2

Moment-based indices:

ρ̄abs = 2
p(p−1)

∑p
j=1

∑

l>j |ρjl| ρ̄abs ≥ 0

sdabs =
√

2
p(p−1)

∑p
j=1

∑

l>j(|ρjl|− ρ̄abs)2 sdabs ≥ 0

skewabs =
2

p(p−1)

∑p
j=1

∑
l>j(|ρjl|−ρ̄abs)

3

sd3
abs

skewabs ∈ (−∞,+∞)

Ratio-based indices:

rrho = ρmax

ρmin
, where: ρmax = maxj,l(ρjl) , If |ρmax| ≤ |ρmin|,

and: ρmin = minj,l(ρjl), ρmin ̸= 0 rrho ∈ [−1,+1]

UnbI = sign(rrho)
∑p

j=1

∑
l>j |ρjl |∈ιmax

/N(ιmax)
∑p

j=1

∑
l>j |ρjl |∈ιmin

/N(ιmin)
If |ρmax| > |ρmin|,

with: N(ιmin) and N(ιmax) the occurrences of values in |rrho| > 1

the minimum ιmin or the maximum ιmax interval, resp. |UnbI| ≥ 1
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2. Moment-based indices, given by the average of correlation coefficients in absolute
value (ρ̄abs, absolute mean correlation), which measures the overall magnitude ir-
respective of the sign of correlations, along with the absolute standard deviation
(sdabs), which is an indicator of the unbalancing among the correlations, in that:
sdabs = 0 if |ρjl| = |ρ| for all j ̸= l, plus the absolute skewness index (skewabs), which
indicates if the correlation distribution is more peaked on either smaller (positive
skewness) or greater values (negative skewness). In this sense, the absolute skewness
index gives the shape of the unbalancing among correlations.

3. Ratio-based indices. One of this is given by the ratio of the largest to the smallest
correlation coefficients (rrho). A more refined version we propose is the “unbalancing
index” (UnbI). It is set up by, first, aggregating the correlation coefficients in abso-
lute value of the upper (lower) triangular part of R in intervals. Here we considered
the five intervals: [0, 0.15), [0.15, 0.3), [0.3, 0.5), [0.5, 0.7), [0.7, 1]. Second, by consid-
ering the two extreme observed intervals, the one, ιmin, with a number N(ιmin) of
the smallest coefficients, and the other, ιmax, with a number N(ιmax) of the largest.
Finally, by setting up the adjusted ratio reported in Table 22. The UnbI index then
gives the ratio of the mean of the largest absolute correlations to the mean of the
smallest ones. By definition, it is provided with the same sign of rrho in order to in-
dicate whether the maximum correlation coefficient has discordant sign with respect
to the minimum. These two indices, with ranges of variation reported in Table 22,
aim at reflecting the presence of unbalancing among the coefficients in R. In partic-
ular, the UnbI index should help understand the extent of the unbalancing among
the correlations, in that rrho depends on two single values only (i.e. the observed
minimum and maximum), and does not take into account potential coefficients in R

that could be close to the minimum and/or the maximum (in absolute value). Hence,
to a same value of rrho different values of UnbI could correspond. Much depends on
how absolute correlations fall into the minimum and the maximum observed inter-
vals. Moreover, we have that: rrho = UnbI if, and only if, the mean of the largest
and the smallest absolute correlations coincide with the maximum and the minimum
observed correlations, respectively.

Table 23 contains an instance of computations of the above indices with respect to a
subset of the correlation matrices considered for each data pattern in both the exploratory
and supplementary simulation studies with p = 5 variables. Discussion mainly involves the
first two relative eigenvalues, and especially the second one, since it proved to be greatly
informative about the magnitude and the structure of R. FIM and FIP are considered
at their default options, (i.e. q = 0.1 donor quantile, and Euclidean distance, r = 2, only
for FIP). Once again, IPCA is used as a benchmark for comparisons, whose outcomes are
indicated in the table as coloured rows. Grey-coloured rows refer to experimental situations
where FIM proved to perform better than all the other methods. Light-grey rows denote
the situations in which FIP is either the best method, or shares the best performance with
another method. Blank rows correspond to IPCA as the best method.

Empirical evidence has given support to the following fact:

• Equicorrelation patterns. By construction, equicorrelation matrices always have: sdabs
= 0, an undefined skewabs, and rrho = UnbI = 1 (with the only exception of the
undefined rrho and UnbI for ρ = 0). Evaluation is then entirely based on the relative
eigenvalues and the absolute mean correlation. In particular, by the second relative
eigenvalue it is apparent that FIM performs better than the other considered meth-
ods when: RelEig2 > 1

p . This is the situation in which R contains a same negative
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Table 23: Values of correlation indices computed for p = 5 variables

Indices Eigenvalue-based Moment-based Ratio-based
Data patterns RelEig1 RelEig2 ρ̄abs sdabs skewabs rrho UnbI
Equicorrelation Patterns
SyKu-ECor (for each κ)
ρ = −0.2 0.240 0.240 0.2 0 – 1 1
ρ = −0.1 0.220 0.220 0.1 0 – 1 1
ρ = 0 0.200 0.200 0 0 – – –
ρ = 0.3 0.440 0.140 0.3 0 – 1 1
ρ = 0.7 0.760 0.060 0.7 0 – 1 1
SK-ECor (α = 4)
ρ = −0.144 0.229 0.229 0.144 0 – 1 1
ρ = 0.030 0.224 0.194 0.030 0 – 1 1
ρ = 0.193 0.354 0.161 0.193 0 – 1 1
ρ = 0.572 0.657 0.086 0.572 0 – 1 1

Positive-Negative Correlation Patterns
SyKu-PNCor (for each κ)
ρ1 = −0.20, ρ2 = −0.05, ρ3 = 0.02 0.291 0.210 0.137 0.078 −0.444 −0.100 −4.709
ρ1 = −0.41, ρ2 = 0.16, ρ3 = 0.28 0.461 0.168 0.322 0.113 −0.611 −0.683 −2.158
ρ1 = −0.50, ρ2 = 0.30, ρ3 = 0.40 0.546 0.140 0.430 0.090 −0.626 −0.800 −1.619
ρ1 = −0.50, ρ2 = 0.40, ρ3 = 0.50 0.577 0.120 0.470 0.046 0 −1.000 −1.000
ρ1 = −0.80, ρ2 = 0.70, ρ3 = 0.80 0.816 0.060 0.770 0.046 0 −1.000 −1.143
SK-PNCor (α = 4)
ρ1 = −0.24, ρ2 = −0.04, ρ3 = 0.01 0.309 0.208 0.156 0.098 −0.428 −0.059 −6.697
ρ1 = −0.41, ρ2 = 0.16, ρ3 = 0.28 0.459 0.168 0.320 0.110 −0.617 −0.693 −2.117
ρ1 = −0.49, ρ2 = 0.26, ρ3 = 0.40 0.531 0.147 0.410 0.100 −0.694 −0.693 −1.784
ρ1 = −0.56, ρ2 = 0.37, ρ3 = 0.50 0.600 0.126 0.498 0.086 −0.754 −0.890 −2.098
ρ1 = −0.78, ρ2 = 0.70, ρ3 = 0.77 0.805 0.061 0.760 0.039 −0.852 −0.986 −1.123

Unbalanced Correlation Patterns
SyKu-UnbCor (for each κ)
• One var. negatively correlated
ρ1 = −0.60, ρ2 = 0.60 0.680 0.080 0.600 0 – −1.000 −1.000
ρ1 = −0.60, ρ2 = 0.40 (κ = 14) 0.588 0.120 0.480 0.098 0.408 −0.667 −1.500
ρ1 = −0.60, ρ2 = 0.20 0.507 0.160 0.360 0.196 0.408 −0.333 −3.000
ρ1 = −0.40, ρ2 = 0.20 (κ = 14) 0.431 0.160 0.280 0.098 0.408 −0.500 −2.000
ρ1 = −0.30, ρ2 = 0 0.320 0.200 0.120 0.147 0.408 0 –
• All positive correlations
ρ1 = 0.18, ρ2 = 0.50 0.518 0.184 0.373 0.161 −0.408 2.860 2.860
ρ1 = 0.40, ρ2 = 0.05 0.376 0.190 0.190 0.171 0.408 8.000 8.000
ρ1 = 0.40, ρ2 = 0.20 (κ = 2, 14) 0.431 0.160 0.280 0.098 0.408 2.000 2.000
ρ1 = 0.60, ρ2 = 0.20 0.507 0.160 0.360 0.196 0.408 3.000 3.000
ρ1 = 0.60, ρ2 = 0.40 (κ = 2, 14) 0.588 0.120 0.480 0.098 0.408 1.500 1.500
ρ1 = 0.60, ρ2 = 0.60 0.680 0.080 0.600 0 – 1.000 1.000
SK-UnbCor (α = 4)
• One var. negatively correlated
ρ1 = −0.66, ρ2 = 0.58 0.690 0.083 0.612 0.036 0.408 −0.889 −1.000
ρ1 = −0.63, ρ2 = 0.34 0.574 0.131 0.456 0.137 0.408 −0.551 −1.816
ρ1 = −0.63, ρ2 = 0.21 0.523 0.157 0.378 0.203 0.408 −0.339 −2.952
ρ1 = −0.42, ρ2 = 0.22 0.445 0.156 0.298 0.098 0.408 −0.520 −1.922
ρ1 = −0.39, ρ2 = 0.07 0.380 0.186 0.199 0.158 0.408 −0.179 −5.596
ρ1 = −0.26, ρ2 = −0.04 0.291 0.208 0.128 0.105 0.408 0.163 6.135
• All positive correlations
ρ1 = 0.18, ρ2 = 0.50 0.518 0.184 0.373 0.161 −0.408 2.860 2.860
ρ1 = 0.20, ρ2 = 0.10 0.317 0.180 0.141 0.052 0.408 2.090 2.090
ρ1 = 0.44, ρ2 = 0.24 0.463 0.151 0.321 0.096 0.408 1.802 1.782
ρ1 = 0.59, ρ2 = 0.33 0.557 0.133 0.437 0.128 0.408 1.782 1.782
ρ1 = 0.63, ρ2 = 0.21 0.519 0.159 0.373 0.204 0.408 3.019 3.019
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ρ. On the other hand, if RelEig2 ≈ 1
p , FIP tends to perform better than FIM and

IPCA, or as well as the best method between FIM and IPCA. The two conditions
concerning RelEig2 can be relaxed if data are skew. In this sense, FIM can be again
the best method even if RelEig2 < 1

p (see e.g. the second and third rows under the
SK-ECor pattern, where FIM and FIP are jointly the best methods). This means
that for FIM and FIP skewness of data implies better results than symmetry also
in the presence of slightly higher positive correlations. On the other hand, if data
are (nearly) symmetric FIM and FIP proves to perform better than IPCA only for
negative ρs. Finally, as RelEig1 approaches to 1 and RelEig2 to 0, that is with the
increasing of the correlation magnitude, IPCA produces the best results.

• Positive-negative correlation patterns. By the last two columns in Table 23 (rrho and
UnbI), it is apparent that PN-Cor patterns can present a more or less marked unbal-
ancing among correlations. Nonetheless, this is an indirect consequence of the way in
which matrices R were obtained from the (α,ω)-parameterization of the MSN stud-
ies (Subsect. 2.1), whilst the main objective was to define correlation matrices having
both positive and negative entries of a similar magnitude. The performance of the
methods is now linked to a plurality of indices, in particular RelEig2 along with ρ̄abs,
skewabs, rrho, and UnbI. Regarding these last two, under the considered scenarios we
always have: rrho ∈ [−1, 0) and UnbI ≤ −1. Once again, FIM performs better than
the other methods if RelEig2 ≥ 1

p . Otherwise, in the presence of skew data FIM is
still better if these following conditions jointly occur: ρ̄abs ≤ 0.3 (low/moderate ab-
solute mean correlation), skewabs > −0.65 (not too marked unbalancing towards the
largest absolute correlations), rrho > −0.7 (maximum correlation far smaller than
the absolute minimum correlation), and UnbI ≤ −2 (mean of the largest absolute
correlations more than twice the mean of the smallest absolute correlations). To its
turn, FIP is the best method when such indices are very close to those thresholds,
or slightly overcome them, especially ρ̄abs, which can be a little higher. On the other
hand, if data are symmetric, the above thresholds become smaller in absolute value,
especially for ρ̄abs, skewabs, and rrho. Finally, IPCA confirms to have the best per-
formances for lower values of RelEig2 (< 1

p), with ρ̄abs ≥ 0.45, skewabs < −0.7,
rrho < −0.8, and UnbI > −2, for both skew and symmetric data.

• Unbalanced correlation patterns. Remarks similar to the PN-Cor patterns can be
advanced. Once again, the performance of the methods seems mostly tied to the
values assumed by RelEig2, ρ̄abs, skewabs, rrho, and UnbI, jointly considered. Under
the considered patterns, we have: (i) −1 ≤ rrho < 0 and UnbI ≤ −1, in the case of
a unique variable negatively correlated with all the others, (with the only exception
in the last row of SK-UnbCor); (ii) rrho = UnbI ≥ 1, in the case of all positive
correlations. Moreover, skewabs assumes only the two values: −0.408 or 0.408, i.e.
unbalancing towards larger or smaller absolute correlations, respectively, (with a
unique exception of non-definiteness). Again, FIM performs better than the others
when RelEig2 ≥ 1

p . Otherwise, as before, the absolute mean correlation has to be:
(i) ρ̄abs < 0.4 under these additional conditions: skewabs > 0 (unbalancing towards
lower values), −0.4 < rrho < 0, and UnbI < −2, in the case of one negatively cor-
related variable, or: (ii) skewabs > 0 and rrho = UnbI > 3, in the case of all positive
correlations. Hence, a low/moderate average magnitude of absolute correlations does
not suffice for FIM to perform at best. Unbalancing has to be towards lower correl-
ations. An empirical counterexample is given by the case: ρ1 = 0.18 and ρ2 = 0.50
in Table 23, under both SyKu-UnbCor and SK-UnbCor patterns. Here we have:
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ρ̄abs = 0.373, i.e. a moderate average magnitude, but correlations are unbalanced
towards the highest value of 0.5 (skewabs < 0). In this case, neither FIM nor FIP
perform well. Moreover, FIP proves again to perform better than the others when
the above considered indices are very close to their thresholds, or slightly overcome
them, especially rrho, which can be around −0.5 in the case of one negatively cor-
related variable, or close to 2 when correlations are all positive. Otherwise, IPCA
proves to perform better than FIM and FIP in the presence of higher magnitudes of
correlations (ρ̄abs ≥ 0.6, say), with a stronger unbalancing towards absolute larger
values (mainly captured by skewabs < 0). Overall, these results seem sharper for FIM
and FIP if data are skew, thus supporting the fact that they tend to perform better
here than in the presence of symmetric data. Moreover, under the SyKu-UnbCor
patterns light-grey-coloured rows in Table 23, indicating FIP as the best, refer to
platykurtic data (κ = 14), and sometimes also to normal data (κ = 2), supporting
the idea of a slight kurtosis effect.

4 Discussion and conclusions

By taking into account the above illustration, along with the previous descriptive and
inferential analyses, the main impressive findings of the work can now be given in the
form of practical hints for users. In particular, with regard to the methods FIM and FIP
it can be concluded that:

1. FIM works well especially in the presence of data with small or negative correlations
of a same magnitude (ECor patterns, Table 23), or a mix of negative and positive
correlations (PNCor and UnbCor patterns, Table 23), provided that such correlation
coefficients are more or less strongly unbalanced towards lower absolute values. Such
considerations hold particularly for skew data;

2. FIP has characteristics similar to FIM, but tends to perform best with a slightly
higher level of correlations, i.e. small/medium correlations, according to the findings
obtained under the PNCor patterns and UnbCor patterns, (Table 23).

Otherwise, in the presence of either symmetric or skew data with medium/high cor-
relations, especially unbalanced towards higher values, other imputation methods such as
IPCA could give better results. To this regard, it is worth remarking that, while not show-
ing satisfactory results in most scenarios of the present study, missForest (not inspected
by the J-T test) was expressly designed for imputation in the case of mixed-type data.
This could explain its lacking effectiveness for quantitative data.

Finally, as concerns the analysis of the endogenous factors of FIM and FIP:

i. the choice concerning donor quantiles appears to be much linked to the magnitude of
correlation of variables. In particular, very small correlations would require a higher
number of donors, while very high correlations a smaller number. However, it could
be argued that in general a good choice is to fix the percentage of donors equal to
10% (which is settled as default option in FIM and FIP) or 15%.

ii. Overall, as concerns FIP, differences among the various Minkowski distances here
considered (i.e. city-block, Euclidean, and Lagrange distances) did not appear too
substantial in the considered comparisons among the methods. Euclidean distance
could hence be used as a default metric. Nonetheless, the performance of FIP can be
improved by taking into account the data structure more carefully, for instance by
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considering that in the presence of higher levels of correlations the Lagrange distance
seems a better choice than the city-block distance.
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