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Multitask Protein Function Prediction
Through Task Dissimilarity

Marco Frasca, Nicolò Cesa Bianchi

Abstract—Automated protein function prediction is a challenging problem with distinctive features, such as the hierarchical

organization of protein functions and the scarcity of annotated proteins for most biological functions. We propose a multitask learning

algorithm addressing both issues. Unlike standard multitask algorithms, which use task (protein functions) similarity information as a

bias to speed up learning, we show that dissimilarity information enforces separation of rare class labels from frequent class labels,

and for this reason is better suited for solving unbalanced protein function prediction problems. We support our claim by showing that a

multitask extension of the label propagation algorithm empirically works best when the task relatedness information is represented

using a dissimilarity matrix as opposed to a similarity matrix. Moreover, the experimental comparison carried out on three model

organism shows that our method has a more stable performance in both “protein-centric” and “function-centric” evaluation settings.

Index Terms—Multitask learning; protein function prediction; label propagation algorithm; Gene Ontology; task dissimilarity.
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1 INTRODUCTION

THE constant increase in the volume and variety of
publicly available genomic and proteomic data is a

characteristic trait of modern biomedical sciences. A funda-
mental problem in this area is the assignment of functions
to biological macromolecules, especially proteins. Indeed,
the accurate annotation of protein function would also
have great biomedical and pharmaceutical implications,
since several human diseases have genetic causes. While
molecular experiments provide the most reliable annotation
of proteins, their relatively low throughput and restricted
scope have led to an increasing role for automated function
prediction (AFP). AFP is characterized by unbalanced func-
tional classes with rare positive instances. Moreover, since
only positive membership to functional classes is usually
assessed, negative instances are not uniquely defined, and
different approaches to choose them have been proposed [1],
[2], [3]. Other peculiarities of AFP include: (1) the need
of integrating several heterogeneous sources of genomic,
proteomic, and transcriptomic data in order to achieve more
accurate predictions [4], [5]; (2) the presence of multiple
labels and dependencies among class labels; (3) the hierar-
chical structure of functional classes (a direct acyclic graph
for the Gene Ontology GO [6], a forest of trees for the FunCat
taxonomy [7]) with different levels of specificity.

Recently, two international challenges for Critical
Assessment of Functional Annotation, (CAFA [8] and
CAFA2 [9]) were organized to evaluate computational
methods that automatically assign protein functions. In
particular, CAFA2 emphasized the need for multilabel or
structured-output learning algorithms for predicting a set
of terms, or a subgraph of the GO ontology for a given
protein. In this work we mainly focus on this problem,
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whose solution however requires paying attention also to
the other aspects of AFP.

Several approaches to the predicton of protein func-
tions were proposed in the literature, including sequence-
based [10], [11], [12] and network-based methods [13], [14],
[15], structured output algorithms based on kernels [3],
[16], [17] and hierarchical ensemble methods [18], [19], [20].
In particular, the availability of large-scale networks, in
which nodes are genes/proteins and edges their functional
pairwise relationships, has promoted the development of
several machine learning methods where novel annotations
are inferred by exploiting the topology of the resulting
biomolecular network. Initially, network-based approaches
relied on the so called guilt-by-association (GBA) rule, which
makes predictions assuming that interacting proteins are
likely to share similar functions [21], [22], [23]. Indirect
neighbours were also exploited to modify the notion of
pairwise-similarities among nodes by accounting for pairs
of nodes connected through intermediate ones [24], [25].
Protein functions can be also propagated through the net-
work with an iterative process until convergence [26], [27],
by tuning the amount of propagation allowed in the graph
through Markov random walks [28], [29], by evaluating
the functional flow through the nodes [30], by exploiting
kernelized score functions [31], and by modelling protein
memberships through Markov Random Fields [32] and
Gaussian Random Fields [33], [34]. Furthermore, methods
based on the convergence of classical [35], [36] and multi-
category Hopfield networks [37] were recently proposed to
specifically tackle the class imbalance.

Although protein functions are clearly dependent (see,
e.g., the GO functions, where parent terms include all the
proteins of their children) most AFP methods described
above predict biological functions independently from each
other. Multitask methods, on the other hand, take advantage
of existing dependencies by transferring information be-
tween related tasks, which typically leads to learning faster
than algorithms trained independently on each task.
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In this paper we investigate an alternative approach to
multitask learning based on exploiting task dissimilarities
rather than similarities. In particular, we consider two multi-
task extensions of a known label propagation algorithm [26]:
the first extension follows a standard multitask approach
based on task similarities; the second extension learns in-
stead from task dissimilarities. Both approaches can be nat-
urally applied to the multilabel prediction of proteins. The
prediction tasks we consider are the GO protein functions
of fly, human, and bacteria model organisms. We compute
different measures of similarity/dissimilarity between GO
terms, taking into account both GO structure and protein
annotations. We show that the approach learning from task
dissimilarities greatly helps in unbalanced tasks (by helping
instances labeled with the rare class labels to be correctly
classified), and does not hurt in the more balanced cases.
This is a crucial point in protein function prediction, since
terms better describing protein functions —i.e., the most
specific ones— are the most unbalanced (proteins annotated
with these terms are very rare). On the other hand, learning
from similar tasks tends to be more effective on balanced
settings. Note that the proposed multitask extensions of
label propagation do not increase the overall running time
of the algorithm, allowing its application on large-sized
datasets. Finally, we compare our methods with the state-of-
the-art methodologies for AFP by considering both “term-
centric” and “protein-centric” evaluation settings.

The paper is organized as follows. In Section 2 we
formally introduce the problem and in Section 3 we describe
the proposed multitask label propagation methodology. Sec-
tion 4 is dedicated to the experimental validation of the
method on a real-world application.

2 AUTOMATED PROTEIN FUNCTION PREDICTION

The Automated protein Function Prediction (AFP) problem
can be formalized as semi-supervised learning problem on
a weighted and undirected graph G = (V,E,W ), where
V = {1, . . . , n} is the set of vertices, E ⊂ V ×V is the set of
edges, and W =

[
wij

]
n×n

is the symmetric weight matrix,
where wij is the weight on the edge between vertices i and
j (we assume wii = 0 and wij = 0 for all (i, j) /∈ E).

A set of m binary classification tasks on G is defined by
m labelings y(1), . . . ,y(m) ∈ {−1, 1}n of the nodes in V ,

where y
(k)
i is the label of node i for task k. For any subset

T ⊆ {1, . . . , n} and any vector y = (y1, . . . , yn), we use yT

to denote the vector obtained from y by retaining only the
coordinates in T .

The multitask prediction problem on the graph G is then
defined as follows. Given a set S ⊂ V of training vertices
and the complement set U ≡ V \ S of test vertices, the

learner must predict the test labels y
(1)
U , . . . ,y

(m)
U for each

task given the training labels y
(1)
S , . . . ,y

(m)
S for the same

tasks.

3 METHODS

We first describe the standard label propagation algo-
rithm [26], [38], [39] for single-task classification on graphs.
This will be later extended to the multitask setting.

3.1 Label Propagation (LP)

In the single-task setting, a standard notion of regularity of
a labeling f ∈ {−1, 1}n on a graph G is the weighted cutsize
induced by f and defined as follows:

ΓW
G (f) =

∑

(i,j)∈E
fi 6=fj

wij . (1)

The weighted cutsize can be also expressed as a quadratic
form

ΓW
G (f) =

1

4
f⊤Lf =

1

4

∑

(i,j)∈E

wij(fi − fj)
2 .

The matrix L = D−W is the Laplacian of G, where D is the
diagonal matrix with entries Dii = di =

∑
j wij . The Label

Propagation algorithm minimizes the above quadratic form
over real-valued (rather than binary) labels. More precisely,
LP finds the unique solution of

min
f∈Rn

f⊤Lf

s.t. fi = yi i ∈ S .
(2)

The solution f∗
U of (2) is smooth on G. Namely, if two

vertices i, j ∈ U are connected with a large weight wij , then
f∗
i is close to f∗

j . Indeed, the components i ∈ U of f∗ satisfy
the harmonic property [26]

f∗
i =

1

di

∑

j

wijf
∗
j .

The vector f∗
U can be also written in closed form as

f∗
U = (DUU −WUU )

−1WUS f∗
S (3)

where

W =

(
WUU WUS

W T
US WSS

)

is the weight matrix partitioned in blocks to emphasize the
labeled and unlabeled part of the graph (similarly for the
matrix D). As the components of f∗

U given by (3) are not
in {−1, 1}, the final labeling produced by LP is obtained by
thresholding each component f∗

i for i ∈ U .

3.2 Multitask label propagation (MTLP)

It is fairly easy to use similarity or dissimilarity informa-
tion between tasks in order to generalize LP to multitask
learning, while preserving the regularity of every task in
the sense of (1).

We start by considering multitask LP based on similarity
information. Suppose a m×m symmetric matrix C is given,
where each entry Ckr ∈ [0, 1] quantifies the relatedness
between tasks k and r. Let A = γIm + L be the matrix
where γ > 0, Im is the m × m identity matrix, and L is
the Laplacian of C. The matrix A is symmetric and positive
definite, since A is diagonally dominant with positive di-
agonals, and thus invertible. Denote by Y the n ×m label
matrix whose k-th column is the vector y(k), and by F the
n×m matrix whose k-th column is the vector f (k) .

When learning multiple related tasks, a widely used
approach is requiring that similar tasks be assigned sim-
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ilar labelings. To this end, we introduce the linear map
ψA−1 : Rn×m → R

n×m, defined as follows:

ψA−1(Y ) = Y A
−1 . (4)

It can be shown that the map ψA−1 acts on a multitask
labeling matrix Y by getting closer (in Euclidean distance)
the labelings (columns of Y ) corresponding to tasks that are
similar according to C.

By means of ψA−1 , the exploitation of task similarities
can be encoded into the learning problem (2) as follows:

min
F

trace(F⊤LF )

s.t. Fik = Ỹik i ∈ S, k = 1, . . . ,m
(5)

where Ỹ = ψA−1(Y ) = Y A
−1. The solution to (5) is

F̃U = (DUU −WUU )
−1WUSỸS

where F̃U is the submatrix of F including only the rows

indexed by U , and ỸS is the submatrix of Ỹ including only

the rows indexed by S. By observing that ỸS = YSA
−1, we

have

F̃U =
(
DUU −WUU )

−1WUSYSA
−1 = F ∗

UA
−1

where F ∗
U is the solution of (5) with constraints Fik = Yik for

i ∈ S and k = 1, . . . ,m. The equality F̃U = F ∗
UA

−1 shows
that it is equivalent to apply the task feature map (4) before
or after performing label propagation. This ensures that the
multitask mapping does not increase the label propagation
complexity.

As we show next, this solution does not perform well
on unbalanced classification problems, where some class
(typically the positive class) is largely underrepresented. We
propose here an alternative approach, which exploits the
prior information about task relatedness in an “inverse”
manner. Specifically, we propose a multitask label propa-
gation algorithm which learns multiple tasks by requiring
that dissimilar tasks be assigned dissimilar labelings. As
we see in the experiments, this approach turns out to work
particularly well on unbalanced classification problems.

The first component of our method is a dissimilarity
matrix C, where Ckr ∈ [0, 1] is measure of dissimilarity
between tasks k and r (we discuss in Section 3.2.2 possible
choices for the matrices C and C).

Given the matrix C, we consider the multitask map ψ
A

:
R
n×m → R

n×m, defined as

ψ
A
(Y ) = Y A (6)

where A = γIm + L, γ > 0, and L is the Laplacian
matrix of C. Unlike the inverse transformation (4), the map
ψ
A

moves the columns of matrix M farther away from
each other, in the sense of the Euclidean distance, in the
corresponding n-dimensional space. We formally show that
in Section 3.2.1. Using ψ

A
instead of ψA−1 in (5), we obtain

the following optimization problem:

min
F

trace
(
F⊤LF

)

s.t. Fik = Ŷik i ∈ S, k = 1, . . . ,m
(7)

with Ŷ = ψ
A
(Y ). Similarly to (5), the solution to (7) is

F̂U =
(
DUU −WUU )

−1WUSYSA = F ∗
UA

where F ∗
U is the solution of (7) with constraints Fik = Yik

for i ∈ S and k = 1, . . . ,m. Just like in the previous case,

the equality F̃U = F ∗
UA shows that it is equivalent to apply

the task feature map (6) before or after performing label
propagation.

We call MTLP-inv the similarity-based method (5) and
MTLP the dissimilarity-base method (7). In the next section
we show some interesting properties of the map ψ

A
which

make MTLP suitable for unbalanced classification problems.

3.2.1 Analysis of the multitask map ψ
A

Given M ∈ R
n×m, let Mi· and M·k be, respectively, the

i-th row and the k-th column of the matrix M . Let also
Pi = {1 ≤ k ≤ m : Yik = 1} be the set of tasks for
which the instance i is positive, and Ni the set of tasks for
which the instance i is negative. We introduce the following
notation: for each k = 1, . . . ,m

d
+
k,i =

∑

r∈Pi

Crk d
−
k,i =

∑

r∈Ni

Crk dk =
m∑

r=1

Crk

and

a
+
k,i =

∑

r∈Pi

Ark a
−
k,i =

∑

r∈Ni

Ark ak =
m∑

r=1

Ark .

The next result shows that the action of the linear map ψ
A

on the label matrix Y is to change the value of each label
without altering the sign. The label of an instance i in task k
is made roughly proportional to the weighted sum of tasks
in C that are dissimilar to k and have a different label for
instance i —see also Corollary 1.

Fact 1. Given Y ∈ {−1, 1}n×m, the task interaction matrix
C ∈ R

m×m, and the map ψ
A

: Rn×m −→ R
n×m such

that Ŷ = ψ
A
(Y ) = Y A, where A = γIm+L, then for

all i = 1, . . . , n it holds

Ŷik =

{
γ + 2d−k,i if Yik = +1

−γ − 2d+k,i if Yik = −1

Proof: By definition, Ŷik =
∑m

r=1 YirArk = a
+
k,i− a

−
k,i.

We distinguish the following two cases.

Case 1. k ∈ Pi. In this case we have a
+
k,i = Akk − d

+
k,i = γ+

dk−d
+
k,i = γ+d

+
k,i+d

−
k,i−d

+
k,i = γ+d

−
k,i, since by definition

dk = d
+
k,i+d

−
k,i for any i ∈ {1, 2, . . . , n}. Moreover, since k ∈

Pi, we have a
−
k,i = −d

−
k,i (by the definition of Laplacian),

and accordingly

Ŷik = γ + d
−
k,i − (−d

−
k,i) = γ + 2d−k,i

Case 2. k ∈ Ni. In this case, it holds a
+
k,i = −d

+
k,i, whereas

a
−
k,i = Akk − d

−
k,i = γ + dk − d

−
k,i = γ + d

+
k,i. It follows

Ŷik = −d
+
k,i − γ − d

+
k,i = −γ − 2d+k,i

The property is proven by observing that k ∈ Pi implies
Yik = +1 and k ∈ Ni implies Yik = −1.
Using Fact 1 we can show that the map ψ

A
tends to increase

the distance between the labelings Y·r and Y·s, for any pair
of distinct tasks r, s ∈ {1, 2, . . . ,m}. Indeed, we can prove
the following.
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Fact 2. Given Y ∈ {−1, 1}n×m, the task interaction matrix
C ∈ R

m×m, and the map ψ
A

: Rn×m −→ R
n×m such

that Ŷ = ψ
A
(Y ) = Y A, where A = γIm + L. Then

for every r, s ∈ {1, 2, . . . ,m} it holds

‖Y·r − Y·s‖
2 ≤ ‖Ŷ·r − Ŷ·s‖

2

for every γ ≥ 1, where ‖ · ‖ is the Euclidean norm.

Proof: We prove this property by showing that (Yir −
Yis)

2 ≤ (Ŷir − Ŷis)
2 for all i ∈ {1, 2, . . . , n}. We distinguish

the following four cases:

Case 1: Yir = Yis = 1. In this case (Yir − Yis)
2 = 0, and

by Fact 1, (Ŷir − Ŷis)
2 = (γ+2d−r,i− γ− 2d−s,i)

2 =

4(d−r,i − d
−
s,i)

2 ≥ 0.

Case 2: Yir = Yis = −1. Even in this case (Yir − Yis)
2 = 0,

whereas (Ŷir − Ŷis)
2 = (−γ− 2d+r,i + γ +2d+s,i)

2 =

4(d+s,i − d
+
r,i)

2 ≥ 0.

Case 3: Yir = 1 ∧ Yis = −1. In this case, (Yir − Yis)
2 = 4,

and (Ŷir − Ŷis)
2 = (γ+2d−r,i+ γ+2d+s,i)

2 = 4(γ+

d
−
r,i + d

+
s,i)

2. Since both d
+
s,i, d

−
r,i ≥ 0 and γ ≥ 1, it

follows (Yir − Yis)
2 ≤ (Ŷir − Ŷis)

2.
Case 4: Yir = −1 ∧ Yis = 1. Again (Yir − Yis)

2 = 4, and

(Ŷir − Ŷis)2 = (−γ− 2d+r,i−γ− 2d−s,i)
2 = 4(−(γ+

d
+
r,i + d

−
s,i))

2. As d
−
s,i, d

+
r,i ≥ 0 and γ ≥ 1 we have,

like the previous case, (Yir − Yis)
2 ≤ (Ŷir − Ŷis)

2.

The map ψ
A

not only increases the distance between the
instance-indexed label vector for two distinct tasks (as we
just showed), but it also increases the distance between the
task-indexed label vector for two distinct instances. Indeed,
since L is positive semidefinite, it is easy to show that when
γ ≥ 1 the transformation ψ

A
increases the distance between

the labelings Yi· and Yj·, for any pair of distinct instances
i, j ∈ {1, 2, . . . , n}.

We now focus our discussion on another important
feature of the algorithm, which makes our multitask label
propagation appropriate for tasks with very unbalanced
labelings. Specifically, when most entries of each column in
the label matrix Y are −1. In this case, the rows of Y also
contain mostly negative entries. Accordingly, by Fact 1, we
can compensate the preponderance of negatives by applying
the map ψ

A
. We show that with an example.

Consider the task interaction matrix C such that Crs = 1
for all r 6= s. That is, all tasks are strongly dissimilar to each
other. Then

A =




γ +m− 1 −1 . . . −1
−1 γ +m− 1 . . . −1

...
...

...
...

−1 . . . . . . γ +m− 1


 (8)

By Fact 1, it is straightforward to prove the following.

Corollary 1. Fix Y ∈ {−1, 1}n×m and the map ψ
A

:

R
n×m → R

n×m such that Ŷ = ψ
A
(Y ) = Y A, where A

is defined as in (8). Then, for all i = 1, . . . , n it holds that

Ŷik =

{
γ + 2|Ni| if Yik = +1

−γ − 2|Pi| if Yik = −1.

Corollary 1 shows that, when |Pi| ≪ |Ni| = m− |Pi| (that
is, the multitask labeling for vertex i is unbalanced towards

Fig. 1. Toy example with four vertices v1, . . . v4, labeled for three tasks
according to the matrix Y . The test point is instance v1 in all the tasks,
and we apply LP and MTLP to predict it. For tasks 1 and 2 both methods
correctly associate v1 with a negative label. However, in the third task,
only MTLP correctly predicts a positive label for v1.

negatives), the map ψ
A

assigns to positives (Yik = +1)
an absolute value higher than that assigned to negatives
(Yik = −1). An analogous behaviour characterizes our
method when a generic matrix C is considered, as stated in
Fact 1. This simple property allows the rare positive labels to
propagate in the graph. This is unlike the standard LP algo-
rithm, where negative vertices are easily overwhelmed by
the positive vertices during the label propagation process.
The toy example in Figure 1 shows that the application of
the map ψ

A
, where A is defined as in (8), allows to improve

the final classification of vertices. These observations are
empirically confirmed in Section 4.

3.2.2 Task similarities

While MTLP and MTLP-inv are designed to work with
any task matrix, similarity and dissimilarity measures are
typically tailored to specific domains. Different tasks may
share different types of similarities, or may be organized in
a hierarchy with a specific structure —such as a tree or a
directed acyclic graph— where the positive instances of the
children tasks are subsets of the positive instances of their
parent tasks. In the case of a hierarchy, different approaches
for computing the task matrix are possible: considering only
the structure of the hierarchy [40], [41], or combining the
hierarchical information with the information content of the
tasks [42].

In this work we consider two dissimilarity mea-
sures (diss0 and diss3) and three similarity measures
(sim1, sim2, sim3). The similarity measures sim1 and sim2

were introduced by Jiang [43] and Lin [44], respectively.
Both measures are derived from the dissimilarity measure
diss0, whose definition requires a hierarchy over the tasks.
The dissimilarity diss3 is computed directly from the sim-
ilarity sim3, which does not require any hierarchical infor-
mation.

When tasks are organized in a hierarchy, we denote by
anc(k) ⊂ {1, . . . ,m} the set of ancestor tasks of task k in the
hierarchy. Moreover, we use ν(k) to denote the frequency of
positive instances for task k. Since a positive instance for
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a task k is also positive for any r ∈ anc(k), it holds that
ν(k) ≤ ν(r). Finally, we denote by MA(k, r) the common
ancestor of tasks k and r whose frequency ν(MA(k, r)) is
the lowest among all ancestors of k and r.

Let − log(ν(k)) be the information content of task k.
We start by recalling the hierarchical dissimilarity measure
introduced in [44],

diss0(k, r) = − log ν(k)− log ν(r) + 2 log ν(MA(k, r)) .

This is the sum of the information content of k and r minus
the information content of their closest common ancestor
MA(k, r). Note that diss0 is always positive, as MA(k, r) ≥
max{ν(k), ν(r)}. The two hierarchical similarity measures
associated with diss0 are defined as follows.
Jiang similarity measure:

sim1(k, r) =
1

1 + diss0(k, r)
.

Lin similarity measure:

sim2(k, r) =
2 log ν(MA(k, r))

log ν(k) + log ν(r)

Our third similarity measure does not rely on a hierarchy of
tasks. Let P (k) the set of instances that are positive for the
task k.
Information content measure:

sim3(k, r) =





∣∣P (k) ∩ P (r)
∣∣

∣∣P (k) ∪ P (r)
∣∣ if P (k) ∪ P (r) 6= ∅

0 otherwise.

This is the ratio between the number of examples that are
positive for both tasks and the number of examples that
are positive for at least one task. The higher the number
of shared positive examples, the higher the similarity (up
to 1). When two tasks do not share any positive example,
their similarity is zero. In a hierarchy of tasks, tasks with
many positive examples are usually closer to the root (less
specific). In this case the denominator of sim3 tends to
reduce the similarity between the two tasks as opposed
to the case in which the task have a small number of
positive annotations. Indeed, sharing annotations between
two specific tasks (closer to leaves) is more informative than
sharing annotations between two more general tasks (closer
to the root).

In the experiments, we compare learning with similar-
ities sim1(k, r) and sim2(k, r) against learning with the
dissimilarity diss0(k, r). We also compare learning with
sim3(k, r) against diss3(k, r) = 1− sim3(k, r). For each one
of the similarity/dissimilarity measures defined above, we
set Ckr = sim(k, r) and Ckr = diss(k, r) (where necessary,
values are normalized so that all matrix entries lie in the
range [0, 1]).

4 RESULTS AND DISCUSSION

In this section we evaluate our multitask algorithm on
the prediction of the bio-molecular functions of proteins
belonging to some considered model organisms. We start
by describing the experimental setting. Then we compare

the performance of our algorithm against that of state-of-
the-art methods.

4.1 Experimental setting

4.1.1 Data

We considered three different experiments to predict the
protein functions of three model organisms: Drosophila
melanogaster (fly), Homo sapiens (human) and Escherichia
coli (bacteria). Gene networks for model organisms
have been downloaded from the GeneMANIA web-
site (www.genemania.org), and selected in order to cover
different types of data, including co-expression, genetic in-
teractions, shared domains, and physical interactions. The
selected networks are described in Tables 1, 2 and 3.

For every organism, networks were integrated through

Type Source Nodes

Co-expression Baradaran-Heravi et al. [45] 8857

Co-expression Busser et al. [46] 8857

Co-expression Colombani et al. [47] 8857

Co-expression Lundberg et al. [48] 8857

Genetic interactions BioGRID [49] 929

Genetic interactions Yu et al. [50] 1414

Physical interactions Guruharsha et al. A [51] 1866

Physical interactions Guruharsha et al. B [51] 3833

Physical interactions BioGRID [49] 558

Shared protein domains InterPro [52] 5627

TABLE 1
Fly networks.

Type Source Nodes

Co-expression Bahr et al. [53] 7611

Co-expression Balgobind et al. [54] 17522

Co-expression Bigler et al. [55] 17522

Co-expression Botling et al. [56] 17522

Co-expression Clarke et al. [57] 17458

Co-expression Vallat et al. [58] 17521

Common biological PATHWAYCOMMONS [59] 2133

pathways

Common biological Wu et al. [60] 5319

pathways

Physical interactions BioGRID [49] 15800

Physical interactions iRref-GRID [61] 9403

Physical interactions iRref-HPRD [61] 9403

Physical interactions iRref-OPHID [61] 9403

Physical interactions IREF SMALL-SCALE-STUDIES [61] 9036

Shared protein InterPro [52] 15800

domains

Shared protein Pfam [62] 15251

domains

TABLE 2
Human networks.

unweighted sum on the union of genes in the individual
networks. No preprocessing was applied to the individual
networks, whereas each network, denoted by the corre-
sponding connection matrix W , was normalized as follows:

Ŵ = D−1/2WD−1/2
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Type Source Nodes

Co-expression Graham et al. [63] 3959

Co-expression Robbins-Manke et al. [64] 3912

Genetic interactions Babu et al. [65] 715

Genetic interactions Butland et al. [66] 3497

Physical interactions Hu at al [67] 1537

Physical interactions IREF-Dip [61] 633

Physical interactions Y2H - PPI 1063

Shared protein domains InterPro [52] 3005

Shared protein domains Pfam [62] 2726

TABLE 3
Bacteria networks.

where D is the diagonal matrix with diagonal entries dii =∑
jWij .

Protein functions were downloaded from the Gene On-
tology. This ontology is structured as a directed acyclic
graph with different levels of specificity and contains three
branches: Biological Process (BP), Molecular Functions (MF),
and Cellular Components (CC). We considered the experi-
mental annotations in the releases 07.03.16, 16.03.16, and
17.10.16 respectively for fly, human and bacteria organisms.
We performed a dedicated experiment for every branch.

For predicting the most specific terms in the ontology
(i.e., those best describing protein functions), and in order
to consider terms with a minimum amount of prior infor-
mation, we selected all the GO terms with 5 − 100 positive
annotated genes, obtaining 2657 (1742 BP, 539 MF, 376 CC),
5312 (3799 BP, 957 MF, 556 CC), and 1324 (653 BP, 610
MF, 61 CC) terms for fly, human, and bacteria, respectively.
We considered two groups of GO terms according to their
specificity: GO terms with 5-20 and 21-100 annotated pro-
teins, for a total of 2 categories for every GO branch. In the
end, we obtained a total of 10329 fly, 15262 human, and
4132 bacteria genes which have at least one GO positive
annotation in the considered GO release. The obtained tasks
are therefore severely unbalanced toward negatives.

4.1.2 Evaluation metrics

In order to evaluate the generalization performance of the
compared methods, we applied a 3-fold cross-validation
experimental setting and adopted the Area Under the
Precision-Recall Curve (AUPRC) as “per term” ranking
measure. AUPRC is indeed more informative on unbalanced
settings than the classical area under the ROC curve [68].
Furthermore, following the recent CAFA2 international
challenge, we also considered a “protein-centric evaluation”
to assess performance accuracy in predicting all ontological
terms associated with a given protein sequence [9]. In this
scenario, the multiple-label F-score is used as performance
measure. More precisely, if we indicate as TPj(t), TNj(t)
and FPj(t) respectively the number of true positives, true
negatives, and false positives for the protein j at threshold
t, we can define the “per-protein” multiple-label precision

Prec(t) and recall Rec(t) at a given threshold t as:

Prec(t) =
1

n

n∑

j=1

TPj(t)

TPj(t) + FPj(t)

Rec(t) =
1

n

n∑

j=1

TPj(t)

TPj(t) + FNj(t)

where n is the number of proteins. In other words, Prec(t)
(resp., Rec(t)) is the average multilabel precision (resp.,
recall) across proteins. The multilabel F-measure depends
on t and according to CAFA2 experimental setting, the
maximum achievable F-score (Fmax) is adopted as the main
multilabel “per-protein” metric:

Fmax = max
t

2Prec(t)Rec(t)

Prec(t) + Rec(t)
(9)

4.2 Results

4.2.1 Evaluating GO semantic similarities

This section investigates the impact of the task similar-
ity/dissimilarity measures described in Section 3.2.2 on the
performance of the proposed multitask label propagation
algorithms. Table 4 shows the obtained results. In this
experiment we set γ = γ = 1 (the choice of parameter
γ is discussed in Section 4.2.5). When MTLP-inv uses the
similarity measures sim1, sim2 and MTLP uses diss0 for
MTLP, MTLP outperforms MTLP-inv in both AUPRC and
Fmax. Nevertheless, the GO term similarity sim3 is much
more informative for MTLP-inv, which achieves in this case
results competitive with MTLP (whose performance instead
is nearly indistinguishable when using diss0 or diss3), and
in some cases even better. The difference in favor of MTLP
seems to increase with the data imbalance: on human data
set, the most unbalanced, we observe the highest gap in
favor of MTLP; whereas on the Bacteria data set, the least
unbalanced, the gap is reduced and —in some cases like for
the MF terms— MTLP-inv significantly outperforms MTLP
in terms of average AUPRC. In terms of Fmax, however,
MTLP is always the top method.

Overall, these results suggests that MTLP should be
preferred when the proportion of positives is drastically
smaller than that of negatives. When data are more bal-
anced, MTLP-inv better exploits the similarities among tasks
and, at least in term of AUPRC, is a valid option. In terms
of multilabel accuracy, is always better than MTLP-inv.
Finally, it is worth noting that both methods outperforms
LP in terms of AUPRC (see Section 4.2.3 for LP results),
whereas in terms of Fmax only MTLP achieves better results
than LP. In order to investigate the reasons why, unlike
MTLP-inv, MTLP performance slightly varies with the task
dissimilarity measure, we run MTLP on the fly organism
and CC tasks by randomly generating the matrix C. We
generated matrices with different sparsity (from 5% to 95%,
with steps of 10%) and with different ranges of weight
values. Specifically, we uniformly selected weights in the
interval [0, τ ], with τ ranging from 0.1 to 1, by steps of 0.1.
In Figure 2, we show the heatmap of the average AUPRC
obtained in each experiment. As expected, the results are
considerably worse than those obtained when considering
real dissimilarity matrices (see Table 4). There is a small
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METHODS BP MF CC

All 5-20 21-100 Fmax All 5-20 21-100 Fmax All 5-20 21-100 Fmax

FLY

MTLP diss0 0.140 0.133 0.153 0.247 0.333 0.322 0.355 0.411 0.262 0.265 0.253 0.354

MTLP diss3 0.140 0.133 0.153 0.246 0.333 0.322 0.355 0.410 0.262 0.265 0.253 0.357

MTLP-inv sim1 0.020 0.013 0.031 0.183 0.198 0.179 0.238 0.374 0.150 0.138 0.181 0.306

MTLP-inv sim2 0.020 0.014 0.031 0.170 0.192 0.172 0.235 0.351 0.101 0.082 0.147 0.259

MTLP-inv sim3 0.135 0.129 0.146 0.244 0.328 0.318 0.352 0.381 0.261 0.265 0.251 0.333

HUMAN

MTLP diss0 0.144 0.133 0.165 0.273 0.248 0.247 0.250 0.383 0.224 0.259 0.156 0.317

MTLP diss3 0.145 0.134 0.165 0.275 0.249 0.248 0.250 0.385 0.224 0.259 0.156 0.318

MTLP-inv sim1 0.008 0.005 0.014 0.200 0.093 0.083 0.152 0.330 0.105 0.113 0.090 0.274

MTLP-inv sim2 0.008 0.005 0.012 0.182 0.059 0.050 0.079 0.294 0.066 0.064 0.068 0.223

MTLP-inv sim3 0.139 0.129 0.159 0.244 0.243 0.241 0.244 0.355 0.220 0.256 0.160 0.299

BACTERIA

MTLP diss0 0.119 0.107 0.169 0.210 0.173 0.157 0.238 0.269 0.122 0.105 0.220 0.348

MTLP diss3 0.119 0.107 0.168 0.212 0.173 0.157 0.238 0.276 0.122 0.105 0.219 0.348

MTLP-inv sim1 0.069 0.056 0.123 0.181 0.106 0.092 0.165 0.235 0.101 0.086 0.187 0.246

MTLP-inv sim2 0.053 0.043 0.094 0.109 0.057 0.045 0.107 0.117 0.106 0.089 0.207 0.281

MTLP-inv sim3 0.121 0.108 0.176 0.189 0.181 0.165 0.247 0.247 0.123 0.107 0.212 0.289

TABLE 4
Comparison according to average AUPRC and multilabel F-measure (Fmax) between MTLP and MTLP-inv using the semantic similarity measures
described in Section 3.2.2. Column All is the average across all GO terms, column 5-20 is the average across GO terms with at most 20 positive
genes, and column 21-100 is the average across terms with more than 20 positives. Best results are in boldface. Results are underlined when the

difference between MTLP and MTLP-inv is statistically significant (Wilcoxon signed rank test, p-value < 0.05).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.95

0.85

0.75

0.65

0.55

0.45

0.35

0.25

0.15

0.05

0.1833 0.1833 0.1837 0.1844 0.1848 0.1861 0.1888 0.1905 0.1937 0.1957

0.1834 0.1833 0.184 0.1848 0.1869 0.1884 0.1902 0.1915 0.1937 0.1954

0.1837 0.1837 0.1847 0.1852 0.1865 0.187 0.1875 0.1899 0.1934 0.1959

0.1835 0.1836 0.1839 0.1842 0.1851 0.1858 0.1871 0.1891 0.1925 0.1945

0.1836 0.1836 0.1838 0.1842 0.1853 0.1858 0.1868 0.1878 0.1892 0.1933

0.1836 0.1835 0.1839 0.1839 0.1858 0.1869 0.1884 0.1889 0.1917 0.1941

0.1835 0.1839 0.1839 0.1844 0.1863 0.1875 0.189 0.1902 0.1912 0.1922

0.1836 0.1836 0.1837 0.1854 0.1861 0.1874 0.1877 0.19 0.192 0.1936

0.1835 0.1835 0.1836 0.1837 0.1841 0.1856 0.1862 0.1873 0.1878 0.1895

0.1835 0.1835 0.1835 0.1835 0.1835 0.1847 0.1847 0.1852 0.1855 0.1857

Fig. 2. Average AUPRC values achieved by MTLP method of fly data
and CC GO terms when the matrix C is randomly generated. Values of
τ are reported on the columns, whereas row labels show the proportion
of nonzero entries in the generated matrix. The lighter the color, the
larger the corresponding AUPRC value.

AUPRC variation from the different random data, with
higher AUPRC when the dissimilarity matrix is denser and
with larger entries (the former seems to affect the results
more than the latter). This is consistent with Fact 1, since the
lower the weight and/or the sparser the matrix, the closer
MTLP is to LP. Finally, on randomly generated dissimilarity
matrices MTLP performs even worse than LP, as we can see
from Figure 4.
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5
0
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Fig. 3. Average AUPRC performance across all GO terms (All), across
GO terms with at most 20 positive instances (5), and across terms with
more than 20 positives (21).
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4.2.2 Grouping GO terms for multitask mapping

Following the approach proposed in [4], in addition to the
strategy grouping GO terms by branch (i) adopted in the
previous section, we have examined an alternative way
for grouping the terms to be considered in the multitask
map (6) when running MTLP algorithm. Specifically, we
grouped GO terms not just by GO branch (BP, MF, and CC),
but also by taking into account the number of annotated
proteins (ii), obtaining 6 groups: BP with 5-20 (1119 terms)
and 21-100 (623 terms) annotations, MF 5-20 (362 terms),
21-100 (177 terms), and CC 5-20 (267 terms), 21-100 (109
terms). The corresponding results on fly data are reported
in Figure 3. AUPRC results show negligible differences
between strategies (i) and (ii), for both MTLP and MTLP-inv.
More clear is the difference in terms of Fmax, with opposite
behaviour between MTLP and MTLP-inv: MTLP has worse
performance in all GO branches; MTLP-inv instead tends to
perform better (see for instance MF results). Indeed, black
lines (grouping strategy (ii)) in correspondence of Fmax are
always between grey lines (grouping strategy (i)). However,
the best results are still achieved by MTLP when grouping
terms by GO branch, and accordingly we consider this
strategy in the rest of the paper.

4.2.3 Prediction of GO functions for fly, human, and bacte-

ria organisms

MTLP (γ = 1) was compared with state-of-the-art graph-
based methodologies applied to the prediction of protein
functions. We considered: LP, the label propagation algo-
rithm described in Section 3.1; COSNetM [15], an extension
of a node classifier designed for unbalanced settings [36];
RW, the classical t-step random walk algorithm [69]; GBA,
a method based on the guilt-by-association assumption [23];
MS-kNN, one of the best methods in the recent CAFA2
challenge applying the kNN algorithm to each network
independently, and then combining the obtained predic-
tions [70].

In order to deal with label imbalance in LP, we applied a
label normalization step before running label propagation.
This step normalizes the labels of each GO term so that
positive and negative labels sum to 1. In our experiments,
this variant of LP performs much better than the vanilla LP
algorithm. For the RW algorithm we set the limit on the
number of iterations to 100, since higher values did not im-
prove the performance while increasing the computational
burden. Finally, we set to 5 the parameter k for the kNN
algorithm, as a result of a tuning process on training data.

In Figures 4 and 5 we show the obtained results in terms
of AUPRC and Fmax, on BP and CC terms respectively
(on MF terms the methods showed a similar behaviour).
Interestingly, MTLP always achieves the highest AUPRC
averaged over all tasks (All), with statistically significant im-
provements over the second top method (p-value < 0.001),
except for bacteria data and for BP terms on fly data. When
comparing with LP method, the improvement is always
significant, except for CC (bacteria data). COSNetM is the
second method on human and fly data sets, while on bacteria
LP (CC) and RW (BP) rank as second method. Furthermore,
and more importantly, MTLP improvements are more no-
ticeable on the most unbalanced terms, which are those best

characterizing the biological functions of genes. GBA, MS-
kNN and RW methods seem suffer the strongly unbalanced
setting, and perform worse than LP, with the exception of
RW on bacteria data set. The good performance of COSNetM
in this unbalanced setting is likely due to its cost-sensitive
strategy, which requires learning two model parameters.
This extra learning step increases its computation time.
Indeed, COSNetM takes on average around 4 seconds on
a Linux machine with Intel Xeon(R) CPU 3.60GHz and 32
Gb RAM to perform an entire cross validation cycle for one
task on fly data, whereas both LP and MTLP take on average
slightly less than one second. This confirms our observation
that applying the map ψ

A
after label propagation does not

increase the algorithm complexity, and just slightly increases
the execution time for computing ψ

A
.

Even in terms of Fmax MTLP obtains the best results,
with LP second-best method (except on BP —fly data).
This shows that our method can achieve good predictive
capabilities both when predicting single GO terms and
when predicting a GO multilabel for single proteins. On the
other side, the compared methods tend to have competitive
performance in only one scenario. For instance, RW poorly
performs in terms of Fmax, whereas, unlike AUPRC, MS-
kNN achieves good Fmax results: on BP (fly data) it is
the best method after MTLP. Even COSNetM, which is the
second method in terms of AUPRC, achieves the third or
the fourth best Fmax rank.

4.2.4 Evaluating different powers of the Laplacian matrix

A further experiment was carried out to analyze how MTLP
performance changes when using the map ψ

A,p(Y ) =

Y A
p

for p ≥ 1
2 , instead of ψ

A
(Y ) = Y A. We empirically

tested on the fly organism different values of p, fixing the
parameter γ = 1 and using the diss3 measure. The results
are shown in Figure 6. We considered p = 1

2 , 2, 3, 4, 5. Except
for BP terms, where the map ψ

A,1/2 performs slightly better
than ψ

A,1, all choices of p 6= 1 lead to worse results. In
particular, the performance strongly decays for p > 2.

4.2.5 Impact of parameter γ

Large values of the γ parameter, introduced in Section 3.2,
tend to reduce the multitask contribution encoded in A,
since A is diagonally dominant and absolute labels assigned
to positives and negatives vertices by the map ψ

A
tend to be

almost the same (see Fact 1). Hence, this allows to “regulate”
to some extent the method between multitask and singletask
label propagation. We experimentally tuned γ on fly and
human data from 0.25 to 1.5 with step size 0.25. It turns
out there is a negligible difference, with results reported in
Table 4 and corresponding to γ = 1. This is expected, since
m is much larger than 1 in the considered experiments. For
this reason, we also performed another experiment in which
we selected a smaller subset of terms in the BP branch (a
similar trend is observed for the MF and CC branches).
Specifically, we ran our algorithm on a subset of 42 terms
for the fly organism, by varying γ in the specified range. The
results are shown in Table 5. Confirming our observations,
our method is more sensitive to γ values in this setting,
and the overall trend is that the average AUPRC tends to
decrease when γ becomes larger (similarly to Fmax). This not
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Fig. 4. Average AUPRC performance across all GO terms (All), across GO terms with at most 20 positive instances (5), and across terms with more
than 20 positives (21).
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Fig. 5. Average multi-label F-measure performance across all GO terms.
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Fig. 6. Average AUPRC values achieved by MTLP of fly data with
different values of the parameter p.

γ All 5-20 20-100

0.25 0.158 0.150 0.182

0.5 0.157 0.151 0.177

0.75 0.145 0.134 0.178

1 0.144 0.133 0.178

1.25 0.140 0.130 0.175

1.5 0.139 0.129 0.174

TABLE 5
AUPRC of the MTLP method (p = 1, task similarity measure diss3

averaged across 42 selected MF GO terms for human data by varying
the parameter γ. Column All is the average across all tasks, column
5-20 is the average across terms with at most 20 annotations, and

column 21-100 is the average across terms with more than 20 positives.

surprising: as we explained, with large values of γ MTLP
behaves closer to LP, whose results are lower in this setting.

5 CONCLUSIONS

We have shown that task relatedness information repre-
sented through task dissimilarity is better suited for la-
bel propagation in unbalanced protein function prediction
than task similarity. The proposed multitask label propaga-
tion algorithm compared favourably with the state-of-the-
art methodologies for protein function prediction on three
model organisms. Although we gained some intuition and

collected empirical evidence, we are still invesigating the
multitask problems where our approach is most effective.
Specifically, it would be useful to investigate whether dis-
similarity information helps when coupled with multitask
algorithms different from label propagation. For example,
linear learning algorithms such as SVM or Perceptron.
Laplacian spectral theory is also likely to help us shed some
further light on the properties of our method.
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Nicolò Cesa Bianchi is professor of Computer
Science at the University of Milano, Italy. He
held visiting positions with UC Santa Cruz, Graz
Technical University, Ecole Normale Superieure
(Paris), Google, and Microsoft Research. He re-
ceived a Google Research Award and a Xe-
rox University Affairs Committee Award. His re-
search interests include theory and applications
of machine learning, sequential optimization,
and algorithmic game theory. On these top-
ics, he published two monographs: Prediction,

Learning, and Games and Regret Analysis of Stochastic and Non-
stochastic Multi-armed Bandit Problems.


