DISSECTING THE ROLE OF THE SMALL RNA ERSA IN PSEUDOMONAS AERUGINOSA MOTILITY AND BIOFILM REGULATION

Marilena Falcone¹, Silvia Ferrara¹, Elio Rossi², Helle Krogh Johansen², Søren Molin³ and Giovanni Bertoni¹

¹University of Milan, Department of Biosciences, Milan, Italy

²Department of Clinical Microbiology, Rigshospitalet, Copenhagen Ø, Denmark

³Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark

Background

ErsA is a novel *Pseudomonas aeruginosa* small RNA responsive to infection-relevant host stimuli. Its transcription is under the control of the alternative sigma factor σ^{22} (AlgT/U), implicated in bacterial virulence. In strain PAO1, ErsA exerts a direct negative post-transcriptional regulation in an incoherent feed-forward loop with σ^{22} on the bi-functional enzyme AlgC, which is involved in the biosynthesis of sugar precursors for alginate and polysaccharide exoproducts.

Objectives

We aim at the characterization of novel target genes regulated by ErsA to expand the knowledge about the ErsA-based regulatory network.

Methods

We employed different approaches: i) bioinformatics analysis, ii) *in vitro* electrophoretic mobility shift assays, iii) *in vivo* translational fusions based on the *gfp* reporter gene, iv) RNA-seq, and v) biofilm and motility assays on mutant strains.

Conclusions

Our results comprise:

i) In silico analyses identified new putative target genes mainly involved in biofilm formation and exopolysaccharides production.

ii) Among these targets, we specifically validated the interaction between ErsA and *amrZ* mRNA, both *in vitro* and *in vivo*

iii) The RNA-seq analysis showed that some of the genes whose expression is positively controlled by ErsA are important for biofilm development (i.e. genes belonging to the *pel* operon, *algD*).

iv) In line with the other results, the ErsA deletion mutant shows a hyper-motile phenotype compared to the wildtype and develops a thin and flat biofilm.

Overall, our results suggest that the small RNA ErsA might represent a relevant post-transcriptional regulator in biofilm development at different levels, likely interacting with different mRNA targets.