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Abstract

The olfactory mucosa (OM) has the unique characteristic of performing an almost contin-

uous and lifelong neurogenesis in response to external injuries, due to the presence of

olfactory stem cells that guarantee the maintenance of the olfactory function. The easy

accessibility of the OM in humans makes these stem cells feasible candidates for the

development of regenerative therapies. In this report we present a detailed characteriza-

tion of a patient-derived OM, together with a description of cell cultures obtained from the

OM. In addition, we present a method for the enrichment and isolation of OM stem cells

that might be used for future translational studies dealing with neuronal plasticity, neuro-

regeneration or disease modeling.

Introduction

The olfactory mucosa (OM) is a specialized tissue that represents the sensory system used for

smelling. It is a part of the nervous system that is exposed to frequent injuries due to its ana-

tomical location and therefore, requires continuous cell turnover.

The OM consists in the olfactory epithelium (OE) and the lamina propria (LP), which is a

layer of connective tissue located beneath the epithelium. The OE is a stratified neuro-epithe-

lium composed of olfactory neurons, supporting cells and basal cells [1]. The axons of the

olfactory neurons extend from the OE to the olfactory bulb.

The OM frame neurons display a regenerative ability that is responsible for continuous

neurogenesis indispensable for preservation of the sensory function. Several studies suggest

that the capability of the olfactory epithelium to regenerate is due to the presence of a hierar-

chical stem cell lineage [2, 3]; furthermore, it has been shown that neuronal stem cells are

located within the basal layer of the OM and that they can generate neurons and all the cell

types present in the OE [4]. Finally, stem cells located in the lamina propria seem to possess

unique properties that differentiate them from other mesenchymal stem cells [5–7]. In consid-

eration of all these features, the OM tissue might represent an accessible source of stem cells.
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In this investigation, we describe cell populations found in the OM of adult patients and

those obtained from OM cell cultures. Furthermore, we produced primary cell cultures from

human OM biopsies; therefore, we isolated putative OM stem cells that were identified

through the retention of the fluorescent dye denominated PKH26.

Materials and methods

Clinical samples

The study has been conducted according to the Declaration of Helsinki. Informed written con-

sent was obtained from all subjects taking part in the study. The research was approved by the

Ethics Committee of the San Paolo Hospital, Milan, Italy. Tissue specimens were collected

under general anesthesia during routinely planned rhinosurgical procedures. Patients demo-

graphics and surgical procedures were reported in Table 1. A single biopsy (3–4 mm2) from

the posterior nasal septum or from the medial wall of the superior turbinate was collected in

the region that was the easiest to access. An incision was made with an 11 blade lancet under

endoscopic vision with a 0˚ scope and the tissue was taken with a Hartmann straight ear for-

ceps. Due to the small quantity of material, some biopsies were used to perform histological

analyses (specimens designated as “paraffin samples” in Table 1) and others were used to

establish a culture (“culture samples” in Table 1). In order to produce an OM cell culture, the

biopsy was immediately placed on ice in an OM medium (DMEM/F12 medium with 10%

FBS, 2 mM glutamine, 1% amphothericin B and 100 U/ml penicillin/streptomycin) and trans-

ferred for processing.

Cell culture

SK-N-BE (2C) cells were grown in RPMI 1640 medium supplemented with 10% FBS, 2 mM

glutamine, 1 mM sodium pyruvate, 0.1 mM non-essential amino acids and 100 U/ml penicil-

lin/streptomycin. U87MG cells were cultured in MEM medium supplemented with 10% FBS,

2 mM glutamine, 1 mM sodium pyruvate, 0.1 mM non-essential amino acids and 100 U/ml

penicillin/streptomycin. Primary fibroblasts and mammary human epithelial cells were iso-

lated as previously described (Pece, Cell 2010).

In order to prepare an OM culture, each sample was digested in a Dispase II solution (2.4 U/

ml) for 1h, 37˚C. The OE and lamina were thus separated by performing a soft brushing with a

Table 1. Information about tissue specimens used.

Number Sample Gender Age Procedure Comorbidities

cultures

samples

1 Posterosuperior septum M 25 septo turbinoplasty none

2 Posterosuperior septum M 56 revision septoplasty schizofrenia

3 Posterosuperior septum F 15 septo turbinoplasty none

4 Superior turbinate M 45 septo turbinoplasty none

5 Superior turbinate M 20 septo turbinoplasty, endoscopic

sinus surgery

trisomy 21

6 normal tissue of the septum (wide middle and

posterior part specimen)

M 46 endoscopic sinus surgery Grade 3 olfactory

neuroblastoma

paraffin

samples

7 Superior turbinate M 49 septo turbinoplasty none

8 Superior turbinate M 23 septo turbinoplasty none

9 Posterosuperior septum M 32 septoplasty and endoscopic

sinus surgery

none

10 Posterosuperior septum M 59 septoplasty and endoscopic

sinus surgery

inverted papilloma

https://doi.org/10.1371/journal.pone.0181151.t001
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lancet. The remaining lamina was cut into 1 mm2 pieces and transferred into Collagenase I solu-

tion, 0,25 mg/ml (10 min, 37˚C). The tissue was re-suspended in epithelium/dispase 1:10 with

PBS and centrifuged at 1500 rpm for 5 min. Red blood cells lysis buffer (Sigma) was added to

remove contaminant cells and it was centrifuged again. The pellet was suspended and plated in

OM medium. When adherent cells reached confluency, they were passaged using trypsin.

FACS

Cells were initially treated with trypsin; then FcR (Miltenyi Biotec) in a blocking solution (PBS

0.5% BSA- 2 mM EDTA) was added to the cells for 7 min. Cells were centrifuged at 200g for 5

min, and suspended in blocking solution. Primary antibodies were added for 7 min and after

washing the cells were suspended in PBS for FACS sorting analysis using BD influx Cell Sort-

ing model 646500. Primary antibodies used were: anti-CD31-PE Cy7 (clone 1F11, Beckman

Coulter), anti-CD45-FITC (clone J.33, Beckman Coulter), anti-Epcam-FITC (clone HEA-125,

Miltenyi Biotec) and anti-CD56-PE (clone 51-10C9, BD Pharmingen). The volume of anti-

body added per 25,000 cells was: 0.25 μl for anti-CD31, 3 μl for anti-CD45, 20 μl for anti-

Epcam and 6 μl for anti-CD56.

To sort PKH26 labeled cells, we first calculated the number of PKH26 positive cells per

sphere and divided that by the total number of cells in the sphere. Stem cells constituted a max-

imum of 5% of the total cells. Then, cells were isolated according to their label intensity. After

establishing the negative population gate by the unlabeled control samples we created two

more gates: one for the intense PKH26 labeled cells (less than 5% of cells) and one for the

intermediate PKH26 labeled population.

Purity of sorted populations was verified by flow cytometry.

Immunocytochemistry

Cells were fixed with 4% paraformaldehyde in PBS for 10 min and were incubated in a block-

ing solution (PBS containing 5% normal donkey serum and 0.2% Triton X-100) for 30 min.

Then, coverslips were incubated overnight at 4˚C with primary antibodies as indicated in

Table 2. Immunoreactivities were detected with Alexa Fluor 488-conjugated (1:200, Invitro-

gen), Cy3-conjugated (1:400, Jackson Immunoresearch Laboratories) and Alexa Fluor

647-conjugated (1:200, Invitrogen) secondary antibodies. Nuclei were stained with 4´,6´-dia-

midino-2-phenylindole (Dapi, 5 min, 0.2 ng/ml in PBS, Sigma) and actin filaments with Phal-

loidin-TRITC (40 min, 50 μg/ml, Sigma). Images were captured with an Olympus BX63

microscope and a Leica TCS SP5 confocal microscope equipped with a digital camera and

fluorescent images were combined using Fiji. The aspect ratio of the nuclei (i.e., the ratio

between the longer axis and the shorter axis of the nucleus) was automatically calculated using

Fiji.

PKH26 staining

OM derived cells were stained with 1:5000 PKH26 dye (Sigma) in PBS for 5 minutes; they

were then washed with 10 ml of PBS 1X, centrifuged at 200g, counted and plated at a density

of 5000 cells per ml. Cells were maintained in culture for 7 days before proceeding with a sec-

ond generation of spheres.

Sphere formation assay

OM cultured cells were grown in suspension in stem cell (SC) medium [8] with 1% methylcel-

lulose. Cells were plated at a density of 5000 cells per ml in poly-HEMA treated cells and
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allowed to grow for 7 days. After 7 days sphere formation efficiency was calculated as a ratio

between the number of spheres obtained and the total number of cells plated and is repre-

sented as percentage (X 100).

Methylcellulose was avoided when studying sphere formation in successive generations.

Protein isolation/Western blot

Cells were homogenized in lysis buffer (50 mM Tris HCl pH8, 150 mM NaCl, 1% NP-40, 0.5%

Deoxycholate, 0.1%, sodium dodecyl sulfate (SDS), 5 mM EGTA and proteases inhibitors (Cal-

biochem). Protein concentration was determined by Bradford reagent. Protein extracts (15–

25 μg) were denatured in Laemmli’s sample buffer containing β-mercaptoethanol and bromo-

phenol blue, separated by 10% SDS–polyacrylamide gel electrophoresis and transferred to a

nitrocellulose membrane. The membranes were blocked 30 min at room temperature with 5%

nonfat dry milk in Tris-buffered saline with 0.1% Tween 20 (TBS-T) and incubated in blocking

buffer with the antibodies in Table 2 overnight at 4˚C. After washing with TBS-T, membranes

were incubated for 1 h at room temperature with horseradish peroxidase-conjugated goat anti-

bodies to mouse (1:2000, Dako), rabbit (1:5000, Amersham), or rat (1:1000, Amersham) IgGs

in blocking buffer. Peroxidase activity was detected with Western Lightning Plus reagents

(Perkin Elmer).

Histological analyses

Formalin-fixed biopsies were included in paraffin and serially sectioned into 4-μm sections.

Sections were deparaffinated with histolemon, hydrated through graded alcohol series and

treated to unmask the antigen (1 mM EDTA pH8 with 0.05%Tween 20 for 50 min 95˚C).

After cooling the slides, the sections were washed in PBS and incubated in a blocking solution

(PBS containing 5% normal donkey serum and 0.2% Triton X-100) for 30 min at room tem-

perature. Samples were incubated in blocking buffer with primary antibodies (Table 2) for 1 h

at room temperature. After several PBS washes, the sections were incubated for 1 h at room

Table 2. Primary antibodies.

Antibody Company Reference Host Dilution IF Dilution WB

Anti-CK14 Covance PRB-155P Rabbit 1:500 1:2000

Anti-CK5 Abcam ab53121 Rabbit 1:100 1:500

Anti-CK8 Home made TROMA-1 Rat 1:200 1:1000

Anti-Epcam Abcam ab32392 Rabbit 1:100 1:2500

Anti-FN Thermo Scientific MA1-12597 Mouse 1:100

Anti-FN Abcam ab299 Rabbit 1:4000

Anti-Ki67 Thermo Scientific RM-9106 Rabbit 1:200

Anti-Nestin Millipore MAB5326 Mouse 1:300

Anti-NSE Dako M0873 Mouse 1:300

Anti-p63 DAKO M7317 Mouse 1:100

Anti-p63 Abcam ab124762 Rabbit 1:1000

Anti-S100 DAKO Z0311 Rabbit 1:500

Anti-S100β Sigma S2532 Mouse 1:100

Anti-Synapto Abcam ab16659 Rabbit 1:100

Anti-SMA Sigma-Aldrich A5228 Mouse 1:1000

Anti-Tuj1 Covance PRB-435P Rabbit 1:1000 1:5000

Anti-Vimentin Bioss bs-0756R Rabbit 1:300

Anti-Vinculin Sigma-Aldrich WH0007414M1 Mouse 1:5000

https://doi.org/10.1371/journal.pone.0181151.t002
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temperature with Alexa Fluor 488-conjugated (1:200, Invitrogen), Cy3-conjugated (1:400,

Jackson Immunoresearch Laboratories), Alexa Fluor 647-conjugated (1:200, Invitrogen), sec-

ondary antibodies. Nuclei were stained with Dapi (5 min, 0.2 ng/ml in PBS). Images were cap-

tured in a Leica TCS SP5 confocal microscope equipped with a digital camera and fluorescent

images were combined using Fiji. All the fluorescent images taken from the tissue sections are

2D projections of 9 consecutive confocal planes located 0.4 μm apart. Some sections were

stained with hematoxylin/eosin and images were captured using the Aperio image Scope

technologies.

RNA extraction, Affymetrix GeneChip hybridization and statistical

analysis

Total RNA was extracted using commercial homogenization (QIAshredder) and purification

(RNeasy Mini Kit) reagents (Qiagen). RNA quality was analyzed with the Agilent 2100 Bioana-

lyzer (Agilent Technologies).

For quantitative real time PCR, RNA was retrotranscribed using iScript Super Mix (Biorad)

and Titan HotTaq EvaGreen qPCR mix (BioAtlas) was used. Expression levels were normal-

ized with respect to the β-ACTIN expression. Primers for human CD271 were (50-30): F, GGAG
AACGTCACGCTGTCCA,R, GCGCCGACATGCTCTGGAG.Primers for human β-ACTIN were:

F, ACCCCAGCCATGTACGTT, R, GGTGAGGATCTTCATGAGGTAG.
Biotin-labelled cDNA targets were synthesized starting from 150 ng of total RNA. Double

stranded cDNA synthesis and related cRNA was performed with Affymetrix GeneChip1 3’

IVT Plus Kit. The fragmented and labeled aRNA was synthesized using the same kit. Labelling

was performed according to the manufacturer’s protocol.

Each eukaryotic GeneChip1 probe array contains probe sets for several B. subtilis genes

that are absent in the samples analyzed (lys, phe, thr, and dap). This Poly-A RNA Control Kit

contains in vitro synthesized polyadenylated transcripts for these B. subtilis genes that are pre-

mixed at staggered concentrations to allow GeneChip1 probe array users to assess the overall

success of the assay. Poly-A RNA Controls final concentration in each target are lys 1:100,000,

phe 1:50,000, thr 1:25,000 and dap 1:6,667.

Hybridization was performed using the Affymetrix GeneChip1 Hybridization, Wash and

Stain Kit. It contains mix for target dilution, DMSO at a final concentration of 10% and pre-

mixed biotin-labelled control oligo B2 and bioB, bioC, bioD and cre controls (Affymetrix cat#

900299) at a final concentration of 50 pM, 1.5 pM, 5 pM, 25 pM and 100 pM respectively. Tar-

gets were diluted in a hybridization buffer at a concentration of 50 ng/μl, denatured at 99˚C

for 5 minutes, incubated at 45˚C for 5 minutes and centrifuged at maximum speed for 5 min-

ute prior to introduction into the GeneChip cartridge. A single GeneChip1 Human Genome

U133A 2.0 was then hybridized with 1each biotin-labeled target. Hybridizations were per-

formed for 16 hours at 45˚C in a rotisserie oven.

GeneChip1 cartridges were washed and stained in the Affymetrix Fluidics Station 450 fol-

lowing the FS450_0002 standard protocol. GeneChip arrays were scanned using an Affymetrix

GeneChip1 Scanner3000 7G. Affymetrix GeneChip1 Command Console software (AGCC)

was used to acquire GeneChip1 images and generate.DAT and.CEL files, which were used

for subsequent analysis with proprietary software.

Expression profiles, preprocessed with the MAS5 algorithm, were exported to GeneSpring

GX software version 7.3 (Agilent Technologies). According to the GeneSpring normalization

procedure, in each analysis the 50th percentile of all measurements was used as a positive con-

trol within each hybridization array and each measurement for each gene was divided by the

value corresponding to the control. The bottom 10th percentile was used for background
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subtraction. Among different hybridization arrays, each gene was divided by the median of its

measurements in all samples. Data was then log transformed for subsequent analysis. Expres-

sion data was prefiltered by considering both MAS5 ‘Absolute Call’ flags and average expres-

sion measurements within each group analyzed. We selected probe sets called present or

marginal (P or M) at least once across all samples. The prefiltering method removed those

probe sets whose expression signal was constantly too close to the background throughout the

entire set of samples. In order to find genes whose expression levels significantly differed

between OM cells and fibroblast, we adopted a supervised method of analysis, using the Gene-

Spring software. Mean values were calculated within the two classes for each probe set, and

fold-change ratios between the OM and the fibroblast were derived. A difference of twofold

cutoff was applied to select upregulated and downregulated genes. A further statistical analysis

was performed using Welch’s approximate t-test and ANOVA, with P-value cutoff of 0.05,

without the assumption of equality of variances. Benjamini and Hochberg false discovery rate

(FDR) was used for multiple testing. By this analysis, 5759 probe sets were found to be signifi-

cantly regulated between the two classes of samples.

Results

Cell populations in the olfactory epithelium tissue

Biopsies of the nasal OM were taken from the superior turbinate and the posterosuperior part

of the septum, both areas are located in the upper nasal cavity, close to the cribriform plate.

The specimens collected were used for the characterization of cell populations within the OE

[9, 10]. Table 1 shows patients characteristics.

After processing the samples, the quality and the cytoarchitecture of the histological sec-

tions were verified using hematoxylin-eosin staining (Fig 1A). Furthermore, immunostaining

of the samples was performed in order to detect specific markers for cell lineages.

Analysis of the immunostaining for the neuro-specific marker Beta 3 Tubulin (Tuj1)

showed that half of the patients presented Tuj1 positive cells characterized by a bipolar spindle

shape (n = 4; Neur sample in Fig 1B). Tuj1 labels the cytoplasm of the olfactory neurons and is

found in the soma, the dendrites (that extend from the soma to the surface of the OM for the

detection of the odorants) and the axon (that crosses the basal lamina and links to other pro-

cesses forming bundles of unmyelinated olfactory fibers that reach the olfactory bulb) (Neur,

Fig 1B). The absence of Tuj1 in some biopsies indicates that an aneuronal epithelium can be

found at least in some areas of the OE (Aneur sample, Fig 1B). Indeed, analysis of two samples

collected from the same patient (number 7) revealed that Tuj1 positive cells were found only

in one of the biopsies, confirming the observations reported in previous studies that describe

patches of non-neuronal tissue in the OE [10–12].

A similar pattern of distribution was obtained with immunostaining for Synaptophysin,

which is a synaptic vesicle protein (Fig 1C) [13].

However, when OE was labeled with an antibody against Neuron-specific Enolase (NSE),

which is a marker of metabolically active neurons [14], all the biopsies displayed NSE positive

cells (Fig 1D). In the Neur samples, in which Tuj1 and Synaptophysin positive cells were pres-

ent, most of the cytoplasmic expression of NSE colocalized with Tuj1 and Synaptophysin in

both the OE and the nerve bundles (Fig 1E and not shown). Interestingly, in those samples

that resulted to be negative for Tuj1, NSE was found to be mainly distributed in the apical lay-

ers of the OM, where sustentacular cells are typically placed, indicating that NSE is not exclu-

sively a neuronal marker. A similar expression pattern was found in the mid turbinate where

only a few Tuj1 positive cells were found (data not shown). In fact, albeit NSE is widely used
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and accepted as a neuronal marker, it has been shown to be expressed in other cell types such

as glial cells and oligodendrocytes [15, 16].

In addition to the olfactory sensory neurons, the OE contains sustentacular cells and basal

cells. Sustencular cells express epithelial markers such as CK8 and Epcam (Epithelial cell adhe-

sion molecule) in the broad supranuclear fraction, that includes the apical surface lined by

numerous microvilli and in the thin portion below the nucleus, that is attached to the basal

lamina through foot processes (Fig 1B and 1F). Accordingly, sustentacular cells have been pre-

viously described to express CK18, which is a marker of epithelial luminal cells in rodents and

humans [10, 17].

Horizontal basal cells are located within the basal lamina and they are considered to be

stem cells capable of generating neuronal and non-neuronal cells of the OE [18–20]. They

share many morphologic and histochemical features with basal cells of the nasal respiratory

epithelium, such as the expression of p63 in the nucleus and CK5 (Fig 1G). It is noteworthy

that the thickness of CK5 expressing cells was higher in Aneur biopsies, where no olfactory

sensory neurons were found (Fig 1G). In addition, markers distribution was gradually chang-

ing since CK5 p63 cells were located in the basal layer, some p63 CK5 CK8 triple positive cells

were found just above the basal layer, whereas CK8 CK5 cells or only CK8 cells had been

found in the apical layers, suggesting that intermediate cell types could also be present in the

Fig 1. Characterization of the human olfactory epithelium. Hematoxylin-Eosin staining of the neuronal and aneuronal (Neur, Aneur) samples

in A and immunostaining for Tuj1 and Nestin in B, for Synaptophysin (Synapto) in C, for NSE in D, for Tuj1 and NSE in E, for Epcam in F and for

CK5 and p63 in G. In most of the panels, CK8 immunostaining was performed and Dapi was used as nuclear counterstaining. Dashed lines

indicate basement membrane, yellow asterisks indicate Bowman´s glands and white asterisk indicates axon fibers. Scale bar in A, 100 μm; in

B-G, 20 μm.

https://doi.org/10.1371/journal.pone.0181151.g001
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aneuronal OE. CK14 positive cells has been shown to be expressed in horizontal basal cells of

rodents [18, 21] and is usually co-expressed with CK5 in the basal epithelial cells [22]. Interest-

ingly, CK14 positive cells were rarely found in the OE (data not shown). Indeed, Holbrook

et al. [10] did not find CK14 positive cells in humans, probably indicating that CK14 expres-

sion is differently regulated in diverse species. CK8 was not detected in horizontal basal cells;

conversely we could observe that sustentacular cells were anchored in the basal lamina through

thin cellular prolongations that expressed CK8 (Fig 1B and 1C).

Globose basal cells are located above the horizontal basal cells. Their identification is more

complex, as described in both humans and rodents [10, 21]. They could be identified by an exclu-

sion criteria, since they do not express either markers for horizontal basal cells (such as CK5 or

p63) or markers of olfactory neurons (such as Tuj1). It has also been described that globose basal

cells are negative for CK18 [10, 17], therefore we expect these cells to be negative also for CK8.

Indeed, we observed that some cells above the horizontal basal monolayer did not express CK8.

Characterization of the lamina propria

The lamina propria is located just beneath the epithelium and is composed of loose connective

tissue and olfactory Bowman´s glands. The mucus secreted by these tubuloalveolar glands is

carried towards the surface of the OE by narrow ducts passing through the epithelium (Fig

2A). Cells located in both the compact acini and ducts expressed CK8; and a few CK8-negative

cells located in the external layer of the Bowman´s glands expressed both CK5 and p63 (Fig

1G).Both the compact acini and ducts express CK8 and very few CK5 and p63 double positive

cells, negative for CK8, can be found in the external layer of the Bowman´s glands (Fig 1G).

The calcium binding protein S100, which is a general marker for glia [23], was shown to be

expressed in the glands but not in the OE, as previously reported (Fig 2A, [24]). The connec-

tive tissue presented immunoreactivity almost exclusively for Nestin, S100β, SMA, Vimentin

and Fibronectin (Figs 1B and 2A–2D). Interestingly, some Vimentin positive cells were found

to be immersed in the olfactory epithelium (Fig 2B). The presence of mesenchymal cell mark-

ers in the OE has been previously reported [5, 6]. One OM sample presented nerve fascicles,

Fig 2. Characterization of the olfactory lamina propria. Immunostaining of the olfactory mucosa for S100 and S100β in A, Vimentin (Vim) and CK8

in B, SMA and CK8 in C, Fibronectin (FN) and CK8 in D. Hematoxylin-Eosin staining of nerve fascicles (E) and immunostaining for Tuj1 and Nestin in F,

for Synapto and NSE in G, for Vimentin (Vim) in H, for Fibronectin (FN) in I and for S100 and S100β in J. In all the immunofluorescence panels, Dapi

was used as nuclear counterstaining. In OM, dashed lines indicate basement membrane and yellow asterisks indicate Bowman´s glands. In E-J,

dashed lines indicate the limits of nerve fascicles. Scale bar, 20 μm.

https://doi.org/10.1371/journal.pone.0181151.g002
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some of the cells were neuronal (ie. positive for Tuj1, Synaptophysin and NSE) and most of

them expressed Nestin, Vimentin, Fibronectin, S100 and SMA (Fig 2E–2J).

Proliferative activity in the OM

Ki67 is a nuclear protein expressed in all cell cycle phases except during the resting phase and

beginning of the G1 phase. Immunostaining for Ki67 was performed to address the proliferative

activity of the OM [25]. Sparse Ki67-labeled nuclei were found outside the OE and a few Ki67

cells were present in the outer part of the subepithelial glands and in the connective tissue (Fig

3A). In the OE, some of the proliferating cells were CK8-positive sustentacular cells (Fig 3A).

Other Ki67-positive cells, often forming small clusters, were located close to the basal layer. In

neuronal samples, most of them did not express p63, suggesting that they could be classified as

globose basal cells (Fig 3B). In contrast, the coexpression of Ki67 and p63 was frequent in aneuro-

nal biopsies, confirming the presence of intermediate cell types in these samples (Fig 3B). Ki67

very rarely colocalized with NSE in either neuronal or aneuronal sections (Fig 3C). All this data

indicated that some cell populations of the OM, such as globose basal cells, sustentacular cells and

cells from the lamina propria, are highly proliferative (see all quantitative data in Fig 3D).

Olfactory mucosa cells express ectomesenchymal markers in culture

Biopsies from human nasal mucosa were enzymatically disaggregated and the single-cell sus-

pensions obtained were cultivated with a successful culture establishment rate of 6:6 samples.

Fig 3. Different cell populations of the OM proliferates. In A, immunostaining of the OM for Ki67 and CK8. On the right, same area

with Dapi staining. The insets enlarge positive cells in the OE and the lamina propria. Staining of the Neur and Aneur biopsies for Ki67

and p63 in B and for Ki67, NSE and Dapi in C. Positive cells are magnified in the insets. In A-C, dashed lines indicate basement

membrane and yellow asterisks indicate Bowman´s glands. Scale bar: 20 μm and 10 μm in the inset. D, Quantification of double positive

cells Ki67 NSE, Ki67 p63, Ki67 CK8 respect to total Ki67 cells in neuronal and aneuronal OE. Data are presented as mean ± SEM

(n = 3–2).

https://doi.org/10.1371/journal.pone.0181151.g003
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With the objective of determining the phenotypic identity of the nasal cells in culture, we

performed several antigen-based assays to assess the expression of different cell-specific anti-

gens among our cultures.

To perform these assays, we used other cell cultures as references and controls: (1) SK-N-BE neu-

roblastoma cell line, (2) U87MG glioblastoma cell line, (3) primary fibroblasts and (4) primary epi-

thelial cells. Our cultures were first subject to FACS analysis for anti-CD31 (also named, PECAM-1

or platelet endothelial cell adhesion molecule) and anti-CD45, that represent markers for endothelial

cells and hematopoietic cells, respectively (Fig 4A). None of the olfactory cells in culture expressed

CD31 or CD45, although positive cells were found among epithelial cells (Fig 4A), indicating that

we were not isolating cells of endothelial or hematopoietic nature. We also observed by FACS and

western blot that Epcam was not expressed in our cultures (Fig 4A and 4B). In addition, the pres-

ence of epithelial basal markers (CK5, CK14, p63) was not detected by western blot or immunofluo-

rescence and only a few CK8-positive cells were found in the adhesion culture (Fig 4B and 4C and

data not shown). These results suggested that we were not maintaining in culture epithelial nasal

cells such as sustentacular cells, horizontal basal cells or cells from Bowman´s glands. GFAP expres-

sion was not detected in culture, indicating that we were not isolating unsheathed olfactory cells

(not shown).

In contrast, FACS analysis evidenced a considerable proportion of cells that were positive

for anti-CD56 or NCAM (neural cell adhesion molecule), whereas other cells were labeled

with Tuj1 or NSE antibodies, indicating its ectodermal origin (Fig 4A–4C). Most of the cells

were also positive for Nestin, S100β, Fibronectin and Vimentin (Fig 4B and 4C).

It should be noted that a similar immunoreactivity was detected in primary fibroblasts culti-

vated under the same conditions suggesting, in accordance with previous data, a low specificity

of these antigens to distinguish between OM cells and fibroblasts obtained from human lung

or breast primary samples [26].

Identity of OM cells

The fact that OM derived cell cultures expressed antigens that were also present in primary

fibroblasts led to a more detailed analysis of OM-derived cell cultures.

Our microscope analysis showed that OM cells differed in morphology from fibroblasts

when grown in a culture; the aspect ratio of the nuclei was significantly different (1.52±0.05%

vs. 1.90±0.10% respectively, n = 3, p<0.05; Fig 5A), suggesting a distinct identity of these

cultures.

Thus, to better identify the nature of our cultures, we performed a microarray Affymetrix

analysis using three independent OM cell preparations (Fig 5B). Transcript expression of OM-

derived cells was compared to fibroblast transcriptome data available in published literature

(from which we only extracted the profile of Synovial Fibroblast (SF) cells (GSM606428, GSM

606429, GSM606430, GSM606431). (accession number GSE24598)) [5].

To determine whether OM cells and fibroblast cells were molecularly distinct, we carried

out a supervised analysis to select genes whose expression levels were significantly different

between the two cell types (� 2.0-fold change, P-value <0.05 with multiple testing correction).

This analysis identified a signature of 5759 probe sets, corresponding to 4972 unique genes (S1

Table). By performing a hierarchical clustering we observed that the two populations showed a

clearly different expression profile, although all the 3 OM-derived cultures displayed an homo-

geneous transcriptome.

Interestingly, although we observed that fibroblasts and OM-derived cultures shared the

expression of several antigens, the transcriptional pattern between those cell types differed

strongly.
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Fig 4. Antigenic markers of OM cells in culture. A. Representative FACS data of OM cells, SK-N-BE neuroblastoma cell line,

U87MG glioblastoma cell line, primary fibroblasts (Fib) and primary epithelial cells. The antibodies used were anti-CD31 PE Cy7 and

Stem cells and olfactory mucosa
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We also identified the enriched Gene Ontology terms (cellular component and biological

processes) for the unique 4972 genes identified in our cells and then, established the level of

CD45 FITC in upper panels, and CD56 PE and Epcam FITC in lower panels. Data are presented as dot plots to visualize the expression

of each marker. The percentage of the gated population is included. B. Western blots to detect Fibronectin (FN), Tuj1, Epcam, CK14,

Vimentin (Vim l.e. and h.e., low and high exposure), p63, CK8 and CK5. Vinculin (Vinc) was used as loading control. C. Immunostaining

for Tuj1, NSE, Nestin, S100β, FN, Vim and CK8. Dapi was used to stain nuclei. Bar, 50 μm.

https://doi.org/10.1371/journal.pone.0181151.g004

Fig 5. Identity of OM cells in culture. A. Actin staining using phalloidin and nuclei staining using Dapi of OM cells and fibroblasts.

Images taken in bright field are also presented. B. Hierarchical clustering of transcript expression (> 2 fold, p <0.05) of OM derived cells

was compared to already published fibroblast transcriptome data. C. A network-based organization of the relationship genes-GO terms

for the 4972 genes identified in our cells is shown; nodes represent number of genes that share a term related to nervous system

function and/or localization (i.e. axon, dendrite, neuronal cell body etc.) in comparison with other organs function and/or localization.

Edges connecting nodes represent the number of genes sharing the same term. Node and edge sizes represent the number of genes

possessing a determined term. D. Number of genes that among their GO annotations contain the displayed terms and derivatives of

those terms. E. List of the top 20 up-regulated genes (>2 fold) that contains the term nervous system as GO annotation.

https://doi.org/10.1371/journal.pone.0181151.g005
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relationship between these genes and relevant GO terms regarding organ/system functions,

cellular types and cell type localization; we were then successful in organizing them in a net-

work (Fig 5C and 5D).

As shown in Fig 5C and 5D, the highest level of association was established with GO terms

containing the sub-term “neuro”, also with a high association between "nervous system",

"axon" and "neuronal cell body" terms. In comparison, other terms related to other organ/sys-

tems had a lower level of association with the identified genes, indicating that the changing

genes could potentially establish a neuronal state.

Fig 5E lists the top 20 up-regulated genes (>2 fold) expressed in OM respect to those

expressed in fibroblasts that contains the term nervous system as GO annotation, showing

that these genes are directly related with neurological functions.

Stem cells purification from clonal spheres

We next determined to establish if our OM cultures contain cells with stem cells characteris-

tics. We approached this question by assessing if our cell cultures could generate clonal three-

dimensional spheres in suspension growth conditions, in particular in a serum-free medium

supplemented with mitogens. To do so, disaggregated cells were seeded in poly-HEMA-coated

plates (to avoid cellular adhesion to the plastic) and in the presence of 1% methylcellulose to

prevent the formation of aggregates. Sphere formation efficiency (SFE) was considerably

higher in OM cell cultures than in fibroblasts, demonstrating the presence of sphere initiating

cells in the OM cultures and therefore suggesting the presence of stem cells within in vitro cul-

tures of human OM (Fig 6A).

To better characterize these putative stem cells, we determined if the OM spheres could be

serially passaged, as typically done by stem cells [8, 27]. Therefore, we generated a first sphere

generation (called F1 generation) that was successively dissociated: the resulting suspension

was re-plated to generate the next consecutive generation of spheres (F2). As shown in Fig 6B,

OM spheres could be serially passaged for at least 3 times and presented a SFE that remarkably

did not decrease substantially in the successive generations. When OM spheres were immu-

nostained using different markers, we found that spheres stained positive for Tuj1, NSE,

S100β, Vim and FN (Fig 6C). In agreement with the analysis performed on adhesion OM cul-

tures, OM spheres did not express basal epithelial markers and only a few contained 1 or 2

CK8-positive cells per sphere (9±1.4% of the total spheres, n = 2; Fig 6C and data not shown).

Stem cells could perform one or two rounds of division and then return to a quiescence

state. Considering the presence of putative stem cells in our cultures and with the intent of

identifying and isolating them, we used the PKH26 technology [27–29]. The PKH26 staining

allows the stem cells to be identified as a consequence of their ability to retain a lipophilic fluo-

rescent dye (PKH26) [27–29], which is progressively diluted during proliferation in the pre-

cursor’ progeny.

We prepared a pool of 3 different OE-derived cultures that were stained with PKH26; then we

put them in a suspension culture to allow the formation of a primary generation OM spheres.

After 7 days, most of the cells that formed the OM-derived spheres were not stained by PKH26,

confirming the expected dilution of the dye during cell proliferation while few cells were still

PKH26-labelled (Fig 6D). Then, we trypsinized the spheres and re-plate the cells to allow the for-

mation of a second generation of spheres to further dilute the dye.

Cells from the second generation of spheres were dissociated and different fractions of

PKH26-labeled OM cells were purified by FACS sorting (Fig 6D) based on the intensity of the

dye (bright, intermediate and negative). Afterwards, all the fractions were re-plated separately

to generate further spheres in order to investigate the stem cell content in each fraction.
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Importantly, the SFE was higher in the PKH26-bright labeled cells than in the rest of the frac-

tions, indicating that we were indeed enriching in OM stem cells (Fig 6D).

In previous studies, purification of stem cells located in the lamina propria was performed

using a membrane marker called CD271, which is specifically expressed in mesenchymal stem

cells [6]. In agreement with these results, we observed a higher expression level of CD271 in

PKH26-positive labeled cells, indicating that PKH26 dye can be used to purify stem cells from

human OM (Fig 6E).

Fig 6. Characterization of OM spheres and method to isolate putative OM stem cells. A. SFE of OM samples and fibroblasts in the presence of

methylcellulose. Example of a typical OM sphere. B. SFE of OM samples in suspension culture for 3 generations. Data are presented as mean ±SEM

(n = 3). C. Immunostaining of OM spheres for Tuj1, Nestin, NSE, S100β, Vim, FN and CK8. Dapi was used to stain nuclei. D. On the left, example of an

OM sphere labeled with PKH26 and Dapi. Representative FACS data of OM cells labeled with PKH26. On the right, sorted populations (positive,

intermediate and negative) are shown. Quantification of SFE obtained from each sorted population. Data are presented as mean ±SEM (n = 3). E.

Quantitative RTPCR for the expression of CD271 in PKH26-labeled cells. Data were normalized to the reference gene β-ACTIN (ACT). Bar, 50 μm.

https://doi.org/10.1371/journal.pone.0181151.g006
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Discussion

In the current study we have taken advantage of the easy accessibility of the olfactory mucosa

to perform non-invasive biopsies that were processed to characterize the cell populations con-

tained in the OM. This complex tissue supports functional restoration after injury, suggesting

that its turnover is driven by the differentiation of stem cells lying in the OM.

In agreement with previous findings, we observed that some of the biopsies lacked olfactory

neurons [9, 10, 12]. Patches of neuronal disruptions in nasal epithelium could correspond to

the OE margins [10], to zones where the olfactory neurons are depleted or, in the most

extreme cases, to metaplastic areas of respiratory epithelium [9, 11, 12, 30]. It has been shown

that neuronal discontinuity increases with age, but it is also influenced by specific conditions

such as the presence of polyps [1, 11, 12]. Our data on the expression of p63 and cytokeratins

suggests that the aneuronal epithelium is organized differently. We also observed that both

Tuj1 and Synaptophysin could be used as markers to assess the presence of olfactory neurons,

but this was not the case for NSE. Interestingly, the NSE distribution pattern was similar to

that of the Protein Gene Product 9.5 (PGP9.5), which is another neuron-specific ubiquitin

hydrolase, indicating that neither NSE nor PGP95 are good candidates to detect olfactory neu-

rons [10].

In addition, our experiments indicate that different cell types are cycling in the OM. Some

Ki67 positive cells were found in the connective tissue whereas others, such as some sustentac-

ular and globose basal cells, were present within the OE. Further studies have also shown that

the globose basal cells represent the highly proliferative precursor compartment in the OE,

whereas the horizontal basal cells represent the quiescent stem cells [18–20].

Importantly, the cellular composition of the OM has been shown to be altered in neuropsy-

chiatric and neurodevelopmental disorders, indicating that a detailed study of the OM could

provide information on live patients, possibly leading to identification of illness biomarkers

(revised in [31]).

In order to identify OM stem cells, we have successfully set up OM cell cultures from differ-

ent human biopsies (6 out of 6 samples). We have been able to establish cell cultures even from

samples that lacked olfactory neurons, indicating that the biopsies did not contain an homoge-

neous cell population, highlighting its intrinsic variability. Despite this heterogeneity, there

was similarity among cell cultures when considering protein expression and transcriptional

profiles.

Using specific antibodies, we have demonstrated that our cell cultures mostly expressed

markers present in lamina propria. The expression of neuron-specific proteins (such as Tuj1

or NSE) was faint in comparison to neuroblastoma or glioblastoma cell lines and the presence

of epithelial markers was very rare, suggesting that we did not isolate or maintain in vitro cells

derived from the OE. Accordingly, these data indicates that our culture milieu was selecting

cells belonging to the lamina propria, even though the OM tissue contained additional cell

types. Therefore, we hypothesized that although other groups have shown that OM cultures

can contain both non-epithelial and epithelial cells [6, 7], it might be more difficult to maintain

epithelial cells in vitro, due to their slow rate of growth in a serum-free medium and to an

impaired adherence to the plastic plate [7].

Albeit OM cells and fibroblasts displayed similar immunoreactivity, we observed that they

had a different morphology and transcriptional pattern. Interestingly, further analysis on those

genes that were differently regulated in these cultures demonstrated that most of them were

related to the neuronal system. For example, among a panel of common secreted growth fac-

tors [32] we observed a high expression of the Brain-derived Neurotrophic Factor (BDNF),

which is a protein secreted by both neural stem cells (NSCs) and mesenchymal stem cells
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(MSCs). Furthermore, our cells showed a high expression of Ephrin-B3 (EFNB3), which is a

cell surface transmembrane ligand for Eph receptors, that induces synaptogenesis, modulates

synaptic function and regulates spine morphogenesis [33]. In addition, a two-fold increase in

Glycoprotein M6B (GPM6B) expression levels is also present in our cells. Glycoprotein M6B

represents a neuroplasticity-related gene that interacts with the serotonin transporter and is

down-regulated in the hippocampus of chronically stressed animals and in cases of depressed

suicides [34, 35]. A further interesting example is Roundabout, Axon Guidance Receptor,

Homolog 1 (ROBO1) whose expression is implicated in several tumors of the nervous system:

a low expression of ROBO1 is related to brain metastasis indicating a poor prognosis, whereas

a high expression is common in gliomas [36, 37].

In agreement with our results, Delorme et al [5] demonstrated that the transcriptomic pro-

file of OM cells in culture was not closely related to primary fibroblasts of synovial origin.

Interestingly, OM cells seemed to be highly similar to bone marrow stem cells, but with some

singular characteristics like the over-expression of neuronal genes. Altogether these data indi-

cates that OM cells could be considered as a subgroup of mesenchymal cells with neuronal

traits. Their unique ectomesenchymal nature could be probably explained by their develop-

mental origin, since they might arise from neural crest [38] or by a niche effect; indeed, they

are found in a neuronal environment, in close proximity to a neurogenic area.

Several researchers have studied the multipotency of olfactory stem cells and it has been

shown that they can generate many different cell types including neural cells, osteoblasts, adi-

pocytes, chondrocytes and cochlear hair cells [6, 7, 39–41]. This potential for differentiation

combined with a direct accessibility explains the interest in the cultivation and purification of

cells from OM [6, 26].

Thus OM has been proposed as a source of stem cells for tissue regeneration. However, little

is known about stem cell markers that may allow to purify them. Therefore, in order to identify

and isolate OM stem cells we assessed the ability of OM ex-vivo cultures to form spheroids

derived from a single cell in low attachment culture conditions. We have shown that OM

derived cultivated cells are able to form free-floating spheres when seeded at low density in

serum-free suspension cultures. Importantly, such spheres can be serially propagated suggest-

ing the presence of stem like cells.

Unexpectedly we have observed that fibroblast cultures were also able to form spheres.

However, it is noteworthy that the SFE was higher in cells derived from OM tissue than it was

in terminally differentiated fibroblasts, confirming a high stem cell content in OM cells.

The immunostaining of the neurospheres have shown that the antigens expressed are simi-

lar to the OM adherent cells, suggesting that they originate from mesenchymal stem cells, as

already reported [5–7].

Taking advantage of the quiescent nature of stem cells, we developed a method based on

the functional labelling by PKH26 staining, with the intent of isolating and purifying putative

stem cells. PKH26 has been previously used to isolate mammary stem cells from normal and

tumoral breast tissue but this is the first paper that applies this technology to OM tissue [27–

29]. By using PKH26, we were able to identify a fraction of cells that had a high content in

stem cells, as shown by its high SFE value.

CD271 (Low-affinity nerve growth factor receptor) has been shown to be highly expressed

in stem cells located in the lamina propria by immunostaining [6]. Lindsay et al [6] showed

that these cells can form colonies and can differentiate (secrete fat and produce bone) by using

a kit that select for CD271 expressing cells. Interestingly, CD271 was enriched in PKH26-posi-

tive cells by qPCR analysis. Although this marker could not clearly discriminate between the

PKH26 high and intermediate cells, it could discriminate the negative-non forming spheres-

fraction from the PKH-labeled cells, showing that either by PKH labeling or by CD271
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staining, the cell population identified contains pluripotent cells. It will be interesting in a

future work, to use both markers in combination to better characterize such populations.

Therefore, this work contributes to deepen the characterization of the human OM and

importantly, it presents a method that can be used to enrich and isolate OM stem cells from an

easy to access tissue. These stem cells could be differentiated in vitro and be beneficial to per-

form autologous transplantations or disease modeling [42, 43].

Supporting information

S1 Table. Genes differentially expressed in OM cells. List of the genes identified in

OM cells whose expression levels significantly different in our analysis (� 2.0-fold change,

P-value <0.05) together with their relevant GO terms regarding biological process, cellular

localization and molecular function.
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