
 Electronic copy available at: http://ssrn.com/abstract=2768095 

 

 

 

 

 

 

 
 

 

Alberto Bucci, Philip Ushchev 

 
 

 

SPECIALIZATION VS 

COMPETITION: AN ANATOMY  

OF INCREASING RETURNS TO 

SCALE 

 
 

 

 

BASIC RESEARCH PROGRAM 

WORKING PAPERS 

 

 
SERIES: ECONOMICS 

WP BRP 134/EC/2016 

 
 

 

 

 

 

 

 

 

 

 

 

This Working Paper is an output of a research project implemented at the National Research University Higher 

School of Economics (HSE). Any opinions or claims contained in this Working Paper do not necessarily reflect the 

views of HSE  

 



 Electronic copy available at: http://ssrn.com/abstract=2768095 

Alberto Bucci1 Philip Ushchev2

Specialization vs Competition: an Anatomy of
Increasing Returns to Scale3

Abstract

We develop a two-sector model of monopolistic competition with a di�erentiated inter-

mediate good and variable elasticity of technological substitution. This setting proves to be

well-suited to studying the nature and origins of external increasing returns. We disentangle

two sources of scale economies: specialization and competition. The former depends only on

how TFP varies with input diversity, while the latter is fully captured by the behavior of the

elasticity of substitution across inputs. This distinction gives rise to a full characterization of

the rich array of competition regimes in our model. The necessary and su�cient conditions

for each regime to occur are expressed in terms of the relationships between TFP and the

elasticity of substitution as functions of the input diversity. Moreover, we demonstrate that,

despite the folk wisdom resting on CES models, specialization economies are in general neither

necessary nor su�cient for external increasing returns to emerge. This highlights the profound

and non-trivial role of market competition in generating agglomeration economies, endogenous

growth, and other phenomena driven by scale economies.
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Introduction

What happens to an economy when it gets larger (say, in terms of population)? The answer

to this question is of paramount importance for understanding, for example, agglomeration

economies in new economic geography, economic growth in endogenous growth theory, the

home market e�ect in international trade, etc. To a large extent, all these phenomena

are driven by external increasing returns to scale (EIRS), meaning that, following a given

increase in the size of the economy, the resulting increase in the aggregate output is more

than proportional. EIRS may emerge for di�erent reasons and they play a fundamental role

in shaping market outcomes. Specialization is among the most important sources of scale

economies: more room for the division of labor is likely to boost aggregate productivity.

On the other hand, EIRS are also inherently driven by product market competition: larger

markets lead to tougher competition across �rms, for higher demand invites more �rms,

which eventually results in lower prices, lower markups, and larger �rms. According to

Sandmo (2011, Ch. 3), this dichotomy has been conceptualized at least as early as by Adam

Smith (1776), who was a prominent spokesman in favor of both a deeper division of labor

and freer competition. We believe, however, that the interaction between these two forces

has never been systematically studied within a uni�ed model. Indeed, in the literature

such forces have been mainly analyzed independently from each other within two di�erent

families of models. While the consequences of specialization have been studied for the most

part by means of two-sector monopolistic competition models in which the �nal good sector

technology displays constant elasticity of substitution (CES) across the di�erentiated inputs

(e.g. Ethier, 1982), the analyses of the competition e�ect have been primarily provided

within monopolistically competitive environments with variable elasticity of substitution on

the consumer's side (Behrens and Murata, 2007; Zhelobodko et al., 2012; Bilbiie et al., 2012;

Bertoletti and Etro, 2016). 4 As a result, the joint role of specialization and competition in

generating EIRS and shaping market outcomes has till now received very little attention.

What makes the understanding of the combined e�ect of these two forces even more

intriguing is that they need not always spur aggregate production. First, according to Kremer

(1993), more complex technologies involving a larger number of production tasks and/or more

di�erentiated intermediate inputs may be detrimental to manufacturing activities, e.g. due to

higher risks of failure. In other words, complexity diseconomies, as opposed to specialization

economies, may occur. Second, recent theoretical studies of market competition show that

tougher competition need not always lead to lower prices. For instance, Chen and Riordan

(2007) have proposed a model of price increasing competition, while Zhelobodko et al. (2012)

study both price-decreasing and price-increasing competition within a uni�ed model.

In this paper, we look closer at the nature and sources of EIRS, and study how they

a�ect the market outcome. To achieve our goal, we develop a two-sector model in which

4Both originating from Dixit and Stiglitz (1977) and Krugman (1979, 1981), these two approaches are
de�nitely related. However, as will be seen below, they di�er in several important respects. Bridging the
two is part of our contribution.
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the production function in the �nal good sector is non-speci�ed. In this model, the spe-

cialization/complexity e�ect is fully captured by how TFP varies with input diversity, while

the competition e�ect is described by the behavior of the elasticity of substitution. For this

reason, in our setting these two magnitudes are treated as fundamental primitives.

Our main �ndings can be summarized as follows. First, although our model generates a

rich array of equilibrium behavior modes, we provide a full characterization of the impact of

horizontal innovation5 on prices, markups, and wages. To be more precise, we state necessary

and su�cient conditions for competition to be (i) either price-decreasing or price-increasing,

(ii) either markup-decreasing or markup-increasing, and (iii) either wage-increasing or wage-

decreasing. The �rst condition involves only TFP as a function of input diversity, the second

is based solely on the behavior of the elasticity of substitution, while the third blends both.

Thus, we clearly map the fundamental primitives of the model into a set of the various modes

of competition it generates.

Second, we endogenize the number of �rms under free entry, and derive a simple nec-

essary and su�cient condition for EIRS in the �nal good sector to occur. This condition is

also expressed in terms of the TFP and the elasticity of substitution as functions of input

diversity, and is shown to be equivalent to the wage-increasing nature of the market out-

come. Furthermore, we demonstrate that specialization economies are, in general, neither

necessary nor su�cient for EIRS to emerge. This unexpected result stands in a sharp con-

trast to what happens in the CES world, where the competition e�ect vanishes because of

the lack of impact of entry on the toughness of competition. As a consequence, under the

CES specialization economies are the only source of EIRS. This explains why specialization

economies have long been viewed as the dominant factor of scale economies,6 while the im-

pact of market competition was, in this regard, de�nitely underestimated. On the contrary,

our result signi�es the non-trivial role of market competition in generating agglomeration

economies, endogenous growth, and other phenomena driven by external increasing returns.

Third, we �nd that the competition e�ect may either reinforce or weaken the impact

of the specialization e�ect on aggregate output. This possibility has not been taken into

account by horizontal R&D-based endogenous growth models (including Benassy, 1998).

These models focus on the positive e�ects of specialization, disregarding other possible e�ects

(of either sign) which stem from an increase in the toughness of market competition. In our

analysis, the way in which the competition e�ect interacts with the specialization e�ect

depends on whether the inverse demand elasticity for the intermediate inputs is a decreasing

or an increasing function of the number of such inputs.

In addition, our approach provides a micro-foundation of the complexity externality,

which may lead to a reduction of TFP in the �nal good sector in response to expanding

variety of intermediate inputs.7

5Following the literature, what we understand by horizontal innovation is entry of new intermediate input
producers.

6See Fujita and Thisse, 2013, Ch. 3, for a modern treatment.
7Examples of how this externality may work in growth theory can be found in Howitt (1999), Dalgaard

and Kreiner (2001), and Bucci (2013).
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Finally, our main results hold for any production function which satis�es the properties

of symmetry, strict quasi-concavity, and constant returns to scale (CRS), as well as having

well-de�ned marginal products of inputs.

We believe that our contribution makes a further theoretical advancement compared

to recent work on monopolistic competition with variable elasticity of substitution on the

�nal consumer's side, including Zhelobodko et al. (2012). Indeed, these authors only distin-

guish between price-increasing and price-decreasing competition as in their model, prices and

markups always move in the same direction in response to market size shocks. The reason

behind the deep di�erences in the results of the two settings, despite their formal similarity,

is as follows. The counterpart of our TFP function in Zhelobodko et al. (2012) would be the

aggregate utility measure as a function of product variety. As has been shown recently by

Dhingra and Morrow (2015), the behavior of the utility level in this type of model is crucial

for welfare analysis, but is fully unrelated to the properties of free-entry equilibrium,8 while

the elasticity of substitution yields a su�cient statistic for equilibrium behavior. On the con-

trary, what crucially matters for the market outcome in our model is the interplay between

the specialization/complexity e�ect and the competition e�ect, mathematically captured

through a condition expressed in terms of both the TFP and the elasticity of substitution.

This ultimately justi�es why we need two fundamental primitives instead of one.

Literature review. The pioneering work by Ethier (1982) is crucial for understanding

the role of specialization economies in generating EIRS. Ethier's paper still remains one of the

workhorse models in endogenous growth theory, as well as in urban and regional economics.

Giving full credit to this work, we �nd it fair to say that the way in which the interaction

between specialization and competition may generate EIRS is de�nitely understudied in the

literature. We believe that the main reason for this resides in the widely used assumption that

the technology in the �nal sector has CES. This assumption is appealing as it leads to major

gains in tractability. The �ipside is that the equilibrium markup, which may serve as a reverse

measure of the toughness of competition, remains una�ected by entry, or by market-size

shocks. As a consequence, the competition e�ect is washed out in this type of model. Both

the horizontal innovation paradigm in endogenous growth theory (Grossman and Helpman,

1990; Krugman, 1990, Ch. 11; Romer, 1990; Rivera-Batiz and Romer, 1991), and the

Marshallian externalities approach, �rst used by Abdel-Rahman and Fujita (1990) to study

agglomeration economies at the city level,9 are essentially based on the CES assumption. For

this reason, neither of these literatures allows us to distinguish clearly between the impacts

of specialization/complexity and toughness of competition on aggregate output and wages.

The present paper aims to �ll this gap.

Wage inequality has recently gained new interest in international trade studies (Amiti

and Davis, 2012; Helpman et al., 2010). In this regard, our �ndings suggest that this inequal-

ity may stem, at least in part, from the cross-country di�erences in the interaction between

8See also Benassy (1996) for an earlier contribution in the same line of inquiry.
9Duranton and Puga (2004) and, more recently, Fujita and Thisse (2013) provide extensive surveys of

this strand of literature.
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specialization and competition. Another issue that empirically motivates our theoretical

analysis is the relationship between city size and wages. The exact form of this relationship

is ambiguous, even though it is widely acknowledged by urban and regional economists that

larger cities pay, on average, higher wages. Typically a log-linear relationship implied by the

CES model is estimated with city-speci�c dummies being commonly used to improve the

�t (Duranton, 2014). Our paper provides a microeconomic foundation for potentially more

�exible empirical strategies using non-linear speci�cations and/or non-parametric estimation

methods.10

The rest of the paper is organized as follows. Section 2 describes the model. Section 3

characterizes the equilibrium for a given number of input-producing �rms. We also suggest

a classi�cation of competitive regimes in the intermediate input sector, based on the impact

of entry on prices, markups, and wages. Section 4 deals with a free-entry equilibrium, and

studies how the interaction between the specialization/complexity e�ect and the competition

e�ect generates EIRS. Section 5 concludes.

The Model

The economy is composed by two vertically related sectors. The intermediate inputs sector

(sector I), produces a di�erentiated intermediate good under monopolistic competition.

The number of �rms in this sector (I-�rms) is endogenous due to free entry, while the only

production factor is labor. Workers are homogeneous, each inelastically suppling one unit of

labor. The labor market is perfectly competitive.

The �nal good sector (sector F) involves a unit mass of perfectly competitive �rms

(F -�rms) sharing the same CRS technology, which uses varieties of the intermediate good as

inputs. The main departure of our modeling strategy from Ethier (1982) and other numerous

subsequent papers lies in working with a non-speci�ed production function instead of the

widely used CES technology.

Sector F

The production of the homogenous �nal good requires a continuum [0, n] of inputs, each

representing a speci�c variety of a horizontally di�erentiated intermediate good. All �rms

operating in sector F are endowed with the same production function F :

Y = F (q), (1)

where q = (qi)i∈[0,n] is the vector of inputs used in production, while n stands for the number

10Needless to say, we acknowledge that factors other than specialization economies and market competition
also play a signi�cant role in determining the city size-wage gap. Moreover, this gap may be di�erent across
workers being heterogeneous in experience and/or ability (see, e.g., Baum-Snow and Pavan, 2012). However,
these issues are outside the scope of the present paper.
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(or, more precisely, the mass) of intermediate inputs, as well as for the number of input-

producing �rms.

We make the standard assumptions about F (q). First, F (q) is concave in q, which

implies that each input exhibits a diminishing marginal product (see Appendix 1 for a

mathematical de�nition of marginal product under a continuum of inputs). Second, F (q)

is positive homogenous of degree 1, so that there are CRS. Finally, we focus on symmetric

production functions, i.e. such that any permutation of intermediates does not change

the �nal output, Y . The reason for imposing such a symmetry, which typically holds in

monopolistic competition contexts, is to refrain from placing any ad hoc asymmetries on

sector I.
In what follows, the duality principle will prove useful. Each F -�rm seeks to minimize

production costs,

min
q

nˆ

0

piqidi s.t. F (q) ≥ Y, (2)

treating the total output Y as given. The cost function C (p, Y ), de�ned as the value function

of the cost minimization problem (2), provides a description of the technology dual to the

one based on the production function.11 Because of CRS, a well-de�ned price index for

intermediate goods P (p) exists, which satis�es

C (p, Y ) = Y P (p). (3)

In the CES case, the cost function and the price index are given, respectively, by

C (p, Y ) = Y

 nˆ

0

p1−σi di

1/(1−σ)

and P (p) =

 nˆ

0

p1−σi di

1/(1−σ)

. (4)

To show that our approach is �exible enough to encompass a broad range of the tech-

nologies used in the literature, we proceed by providing a gallery of examples.

1. CES: variations on a theme. The three assumptions just introduced (concavity,

CRS, and symmetry) are simultaneously satis�ed by the standard CES production function:

F (q) ≡

 nˆ

0

qρi di

1/ρ

, 0 < ρ < 1. (5)

At least two immediate extensions of (5) come to mind. First, the constant ρ in (5) may

be replaced by a function of n. This is the case studied by Gali (1995), who assumes that

varieties become better technological substitutes as their number increases, i.e. ρ′(n) > 0.

11Duality theory in production, for the case of a �nite set of inputs, was developed in pioneering works by
Shephard (1953) and Uzawa (1964).
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Second, a multiplicative TFP term varying with n may be introduced, like in Ethier (1982)

and Benassy (1998):

F (q) = nν

 nˆ

0

qρi di

1/ρ

, 0 < ρ < 1. (6)

2. Translog technologies. For a simple example of a non-CES technology satisfying

our assumptions, consider a production function given by

lnF (q) =
1

n

nˆ

0

ln qidi−
α

2

 nˆ

0

(ln qi)
2di− 1

n

 nˆ

0

ln qidi

2 , (7)

which may be viewed as an in�nite-dimensional counterpart of the translog speci�cation,

which has been widely used in early empirical works on production functions estimation (for

a survey see, e.g., Kim, 1992). Another example of a tractable non-CES technology is given

by the translog cost function (Feenstra, 2003) satisfying

ln C (p, Y ) = lnY +
1

n

nˆ

0

ln pidi−
β

2

 nˆ

0

(ln pi)
2di− 1

n

 nˆ

0

ln pidi

2 . (8)

3. Kimball-type production functions. Kimball (1995) represents, to the best

of our knowledge, one of the very �rst (and few) macroeconomic papers where a non-CES

production technology is employed in sector F . Namely, the production function Y = F (q)

is implicitly de�ned by means of the so-called ��exible aggregator�:

nˆ

0

φ
( qi
Y

)
di = 1, (9)

where φ(·) is an increasing, strictly concave, and su�ciently di�erentiable function.12

At this stage, a question may arise: does working with an arbitrary well-behaved CRS

technology really buy substantially more �exibility compared to focusing on, say, Kimball's

aggregator (9), or another reasonably broad class of production (or cost) functions? We

believe the answer is positive, the reason being that our approach allows capturing a rich

variety of competition regimes and is �exible enough to capture some empirical controver-

sies a narrower model would not.13 In Section 2.3, we give a mathematically more precise

argument in favor of our modeling strategy.

Specialization economies vs complexity diseconomies. We are now equipped to

give precise de�nitions for the specialization economies and complexity diseconomies. We

�nd it useful, however, to preface the formal de�nitions valid for the general case with a

brief informal discussion based on the special case of the augmented CES technology (6).

12To guarantee that a solution to (9) does exist for any n, one should assume additionally that φ(0) ≤ 0,
while φ(∞) =∞. When φ(·) is a power function, we obtain the CES speci�cation as a special case of (9).

13See Table 1 and the discussion below in Section 3.2.
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In equation (6), when su�ciently negative, ν is a measure of the magnitude of the

complexity e�ect : a larger number of intermediate inputs being simultaneously combined

within the same production process can lead to a reduction in aggregate output (we come

back to this issue immediately below). To be more precise, complexity diseconomies are said

to occur i� ν < 1−1/ρ, otherwise specialization economies take place. The logic behind these

de�nitions is as follows: evaluating the total output Y given by (6) at a symmetric vector of

inputs,14 we obtain Y = nν+1/ρq. The above inequalities keep track of whether Y increases

more or less than proportionately with n. The baseline case described by (5) corresponds to

ν = 0, hence the baseline CES technology always exhibits specialization economies.

In order to extend these de�nitions to any symmetric CRS technology, we consider the

behavior of F at a symmetric outcome, i.e. when qi = q for all i ∈ [0, n]. Denote by ϕ(n)

the level of output that can be produced when a �rm uses one unit of each intermediate

input.15 Given a F -�rm's total expenditure E on intermediate inputs under unit prices, the

specialization economies capture the idea that the division of labor generates productivity

gains, namely a larger variety of intermediate inputs allows to produce a larger amount of

�nal output. To put this in a more formal way, note that, because of CRS, output of the �nal

good equals qϕ(n) when q units of each intermediate are employed. Hence, the specialization

e�ect takes place i�

E

n
ϕ(n) >

E

k
ϕ(k), where k < n.

In other words, specialization economies occur i� ϕ(n)/n increases with n, or, equiva-

lently, when the elasticity of ϕ(n) exceeds 1:

ϕ′(n)n

ϕ(n)
> 1. (10)

Otherwise output of the �nal good decreases with the intermediate inputs' range. In

the latter case, we face complexity diseconomies.

TFP function. Since ϕ(n)/n captures how total output of the �nal good varies with

input diversity, the total quantity of the di�erentiated input employed being �xed, we �nd

it reasonable to dub ϕ(n)/n the TFP function. Since this function will play a crucial role in

what follows, we choose to treat it as one of the two fundamental primitives of our model

(the second one to be de�ned below). We may equivalently de�ne specialization economies

as the situation when the TFP function increases in n.

Specialization vs complexity: a dual description. We now come to developing a

dual description of the trade-o� between specialization and complexity. To do so, we observe

that when the price schedule for the intermediate inputs is symmetric, i.e. when pi = p for all

i ∈ [0, n], then the �nal-good producer will purchase all inputs in equal volumes: q = Y/ϕ(n).

As a consequence, total cost equals Y pn/ϕ(n), while the price index at a symmetric outcome

14i.e. such that qi = q for all i ∈ [0, n], where q > 0 is given.
15Formally, ϕ(n) ≡ F

(
I[0,n]

)
, where IS is an indicator of S ⊆ [0, n].
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boils down to

P =
n

ϕ(n)
p. (11)

Combining (11) with our de�nition of specialization economies, we may conclude that

the price index decreases (increases) with the range of inputs i� specialization economies

(complexity diseconomies) take place.

In order to provide some intuition on the nature of the trade-o� between specialization

economies and complexity diseconomies, consider the following examples. For the standard

CES technology (5), the TFP function is a power function of the form ϕ(n)/n = n1/(σ−1).

Since σ > 1, specialization economies take place. The same is true for any production

function described by the Kimball's �exible aggregator (9) with φ(0) = 0, for which ϕ(n)/n =

φ−1(1/n). On the contrary, the translog production function (7) exempli�es complexity

diseconomies. Indeed, evaluating (7) at a symmetric input vector, we �nd that ϕ(n) = 1

for all n > 0. As a consequence, (10) is violated, which means the presence of complexity

diseconomies. Finally, the dual approach allows to see that the translog cost function (8)

describes a technology which is, in a sense, a borderline case: as implied by (8) and (11),

the TFP function ϕ(n)/n is identically one. Thus, neither specialization economies nor

complexity diseconomies occur, i.e. these two forces fully balance each other.16

Proposition 1 below summarizes the main properties of all the example production

functions mentioned above.

Proposition 1.

(i) Kimball �exible-aggregator technologies (9) satisfying φ(0) = 0 exhibit specialization

economies ;

(ii) the translog production function (7) generates complexity diseconomies ;

(iii) the translog cost function (8) shows exact balance between specialization economies

and complexity diseconomies.

Proof. See Appendix 2. �
This result demonstrates that non-pathological CRS technologies with di�erentiated

inputs exhibit versatile behavior. Proposition 1 also highlights the �exibility of our approach,

which encompasses a wide variety of such technologies. In particular, our way of modeling

production technology is more general than the one proposed by Kimball (1995), for two

very di�erent reasons. First, because in Kimball's original framework the range of inputs

is �xed, it cannot capture the impact of the specialization/complexity e�ect on the market

outcome. Second, as implied by Proposition 1, Kimball-type production functions include

neither the augmented CES, nor the translog technologies.

16See Chen and Chu (2010, Eq. 4, p. 250) for another example of production function where the aggregate
e�ect of variety expansion is suppressed because the specialization and complexity consequences of an increase
in the number of available varieties of intermediate inputs have the same magnitude but opposite sign.
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Sector I

There is a continuum of intermediate input producers sharing the same technology, which

exhibits increasing returns to scale. Firm i's labor requirement for producing output qi is

given by f + cqi, where f > 0 is the �xed cost and c > 0 is the constant marginal production

cost. Thus, the pro�t πi of �rm i is de�ned by πi ≡ (pi − cw)qi − f , where w is the wage

rate.

Demand for inputs. The market demand �rm i faces stems from the �rst-order

condition for cost minimization in the F -sector:

pi = λΦ(qi,q), (12)

where Φ(qi,q) ≡ ∂F/∂qi is the marginal product17 of input i, while λ is the Lagrange

multiplier of the �rm's program (2). It follows from the envelope theorem that the value of

λ equals the marginal production cost, i.e. λ = ∂C /∂Y for all Y and p. Combining this

with (3), we obtain the following inverse demand schedule for input i:

pi
P (p)

= Φ(qi,q). (13)

Weak interactions. As stated in the introduction, market interactions between pro-

ducers of inputs are crucial for our results. For a better understanding of the nature of these

interactions, a further inquiry on the properties of the marginal products Φ(qi,q) is needed.

First, Φ(qi,q) decreases in qi, which is a straightforward implication of diminishing

marginal returns. This property means that inverse demands (13) are downward-sloping.

Second, Φ(qi,q) does not vary with individual output qj of any �rm j 6= i, given that the

outputs of �rm i and all the other �rms (except j) remain unchanged (see Appendix 1 for

details). This second property has a far-reaching implication: input-producing �rms are not

involved in truly strategic market interactions, but rather in weak interactions, meaning that

the individual impact of each �rm on the demand schedules of its competitors is negligible.18

In other words, it is the aggregate behavior of �rms that determines the market outcome, as

no single �rm has per se enough market power to strategically manipulate the market. This

is typical in existing monopolistic competition models and is in the line with Chamberlin's

�large group� assumption.

For the sake of illustration, consider again the CES case. The marginal products are

given by

17Formally, the partial derivatives ∂F/∂qi are not well-de�ned in the case of a continuum of inputs, which
may seem to be an obstacle for working within a framework where the functional F is non-speci�ed. It turns
out, however, that putting slightly more structure on the space of input vectors q potentially available for
the �nal good producers makes things work as if the marginal products were well-de�ned. See Appendix 1
for technical details.

18See Combes et al. (2008, Ch. 3) for a thorough discussion on the nature of weak interactions in
monopolistic competition models.
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Φ(qi,q) = qρ−1i A(q), A(q) ≡

 nˆ

0

qρjdj

(1−ρ)/ρ

. (14)

As implied by (14), in the CES case Φ is downward-sloping in qi, while the demand

shifter A(q) is invariant to individual changes in qi.

Firm i faces the inverse demand schedule (13) and seeks to maximize its pro�t. For-

mally, �rm i's pro�t-maximization program is given by

max
pi,qi

[(pi − cw) qi] s.t. pi = P (p)Φ(qi,q), (15)

where P (p) is the price index, which now plays the role of a market aggregate, as it includes

all the information on market prices relevant for �rm i's pro�t-maximizing pricing decisions.

In line with the idea of weak interactions, individual changes in �rms' prices have a

negligible impact on P (p). In other words, each I-�rm takes the value of P as given. Hence,

(15) may be restated as

max
qi

[(PΦ(qi,q)− cw) qi] , (16)

where P may now be treated as a parameter.

The �rst-order condition for (16) is given by

Φ(qi,q) + qi
∂Φ

∂qi
=
cw

P
. (17)

Furthermore, given the mass n of I-�rms, the quantity pro�le q must satisfy the labor

balance condition

c

nˆ

0

qidi+ fn = L, (18)

which equates total labor supply to total labor demand.

The second-order condition, as well as technical details of possibly multiple solutions,

are discussed in Appendix 3.

The role of σ(n). The �rst order condition (17) for pro�t maximization may be recast

as

pi − cw
pi

= η(qi,q), (19)

where η is the marginal product elasticity :

η(qi,q) ≡ −∂Φ

∂qi

qi
Φ(qi,q)

. (20)

At a symmetric outcome, when pi = p and qi = q for all i ∈ [0, n], (19) boils down to
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p− cw
p

=
1

σ(n)
, (21)

where σ(n) is de�ned by

σ(n) ≡ 1

η(qi,q)

∣∣∣∣
qj=qi ∀j∈[0,n]

. (22)

Because σ(n) is a key ingredient of our model, further comments on this function

are needed. First of all, 1/σ(n) represents the pro�t-maximizing markup, hence σ(n) may

serve as a measure of the degree of product market competition. Thus, the behavior of

σ(n) with respect to n shows how the toughness of competition varies with �rm-entry. In

particular, σ′(n) > 0 would mean that competition gets tougher when more �rms enter

the market, which is probably the most plausible case, though not the only possible one.

Second, as stated by (22), σ(n) is also the inverse marginal product elasticity. In other

words, σ(n) keeps track of whether the marginal product decreases at a higher or lower

rate when the intermediate good becomes more di�erentiated. Finally, σ(n) also re�ects the

degree of product di�erentiation. Indeed, note that in the CES case σ(n) = σ is constant,

σ being the elasticity of technological substitution across inputs. Hence, the higher σ, the

less di�erentiated the intermediate good is. In the non-CES case, σ(n) also yields an inverse

measure of product di�erentiation, which now varies with n. It can be shown that σ(n) is, in

fact, the true elasticity of technological substitution across inputs19 evaluated at a symmetric

outcome.

Before proceeding, a comment is in order on why σ(n) is independent of q. This is due

to the CRS assumption, just like in Bilbiie (2012) the analogous property of σ(n) on the

consumption side is due to the homotheticity of preferences. The marginal product Φ(qi,q)

is positive homogenous of degree zero (see Appendix 1 for a formal proof), and so is η(qi,q).

Hence, varying q in (22) evaluated at a symmetric outcome under any given n does not shift

the right-hand side of (22). As a result, σ(n) depends solely on the number of �rms.

The pricing rule (21) implies that competition gets tougher (softer) in response to

entry of new I-�rms when σ(n) increases (decreases). Recalling that 1/σ(n) is the pro�t-

maximizing markup, we may rephrase this as follows: competition may be either markup-

decreasing or markup-increasing. Which of the two scenarios comes true is fully determined

by sector F 's demand for inputs. Under the CES technology pro�t-maximizing markups are

una�ected by entry of new I-�rms. Under the translog technologies, the pro�t-maximizing

markups are given by:

Translog production function Translog expenditure function

1− αn 1
1+βn

Hence, both these technologies induce markup-decreasing competition. Finally, when

the production function is given by (9), we have

19As de�ned by Nadiri (1982). See Parenti et al. (2014) for mathematical details of extending Nadiri's
de�nition to an environment with a continuum of inputs.
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1

σ(n)
= −ξφ

′′(ξ)

φ′(ξ)

∣∣∣∣
ξ=φ−1(1/n)

. (23)

In this case, competition is markup-decreasing i� the elasticity of φ′(·) is an increasing

function, otherwise it is markup-increasing.

The TFP and the elasticity of substitution as the fundamental prim-

itives of the model

We have seen that the TFP-function ϕ(n)/n and the elasticity of substitution σ(n) determine

the key properties of, respectively, the F -sector and the I-sector behavior. For this reason,
we choose to treat these two magnitudes as the fundamental primitives of the model. Such

a choice will prove to be safe, as both the taxonomy of competition regimes (Section 3) and

the necessary and su�cient condition for EIRS to emerge (Section 4) will be given in terms

of these two functions.

We now come back to justifying the level of generality we choose to work on (see the

discussion following equation (9)). At this level of generality, the TFP function and the

elasticity of substitution may be viewed as two independent ingredients of our approach,

in the sense that the information about one of them is generically insu�cient to recover

the other, which makes both of them the true primitives of our model. Focusing on a

more speci�c class of technologies would imply a non-trivial relationship between the two.

To illustrate this point, consider the family of production functions described by Kimball's

�exible aggregator (9). In this case, the TFP function is given by

ϕ(n)

n
= −φ(ξ)

ξ

∣∣∣∣
ξ=φ−1(1/n)

, (24)

while the elasticity of substitution satis�es (23). As a consequence, the two fundamentals

are linked via the aggregator function φ(·), which allows unambiguously recovering one of

them from the other by means of �reverse engineering� (see Appendix 4 for technical details).

Moreover, Kimball's aggregator cannot capture some very simple and intuitive ways of the

elasticity of substitution's potential behavior. In particular, it can be shown (see Appendix 4)

that there exists no aggregator function φ(·), such that the resulting elasticity of substitution

were of the form σ(n) = 1 + βn, i.e. linear in n.20 These arguments illustrate how focusing

on certain classes of production functions may lead to a priori unsuspected restrictions on

the primitives of the model.

20This case corresponds to the translog cost function (8). See, e.g., Bilbiie et al. (2012), or Parenti et al.
(2014).
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Entry and the market outcomes

In this section, we focus on studying the consequences of horizontal innovation (or, equiva-

lently, the entry of new input-producing �rms) on market outcomes. We fully characterize

the behavior of the economy in response to entry and highlight the fundamental role of the

relationship between the TFP function and the elasticity of substitution in shaping various

competition regimes.

Equilibrium for a given number of I-�rms

Because the �nal output is consumed only by workers, product market balance suggests that

Y = wL. This is possible only when the price index P equals 1. Indeed, �rms' pro�ts are

given by (1− P )Y . Hence, if P < 1, each �rm would supply in�nitely many units of Y . On

the contrary, if P > 1, total supply of the �nal good is zero, since no �rm is willing to start

production under negative pro�ts.

Combining P = 1 with (11) pins down the equilibrium price for the intermediate inputs

at a symmetric market con�guration:

p∗(n) =
ϕ(n)

n
. (25)

The intuition behind (25) is as follows. If the price for inputs exceeds ϕ(n)/n, then the

supply of the �nal good, hence the demand for inputs, are equal to zero. Consequently, �rms

producing intermediate goods will reduce prices in order to attract at least some demand.

If, on the contrary, prices are lower than ϕ(n)/n, the supply of Y will be in�nitely large,

and so will be the demands for inputs, which would lead to an increase in prices.

As implied by (25), at a symmetric equilibrium, the input price increases (decreases)

with the number of �rms n in sector I when specialization economies (complexity disec-

onomies) occur (see Section 2.1). This is so because the right-hand side of (25) is exactly

the TFP function.

Equation (25) may seem puzzling, as it implies that market interactions in sector I
are fully irrelevant in determining input prices.21 As a matter of fact, on the one hand it

is absolutely true that the game between input producers depends crucially on the market

structure, and so do the pro�t-maximizing prices when the number of �rms is endogenous (see

Section 4.1 below). On the other hand, however, input-producing �rms accurately anticipate

the equilibrium value of the price index, which is determined outside sector I. Namely, it

is driven to P = 1 by (i) perfect competition in sector F , and (ii) the correctness of the

intermediate �rms' expectations. In other words, under the assumption that the number of

input-producing �rms is given, things work as if these �rms were price-takers, even though

they are actually price makers. We conclude that this property is a distinctive feature of

21Moreover, observe that (25) is fully independent of our assumption that sector I is monopolistically
competitive. This relationship, indeed, would hold under any market structure which allows for a symmetric
equilibrium (e.g., under symmetric Cournot or Bertrand oligopoly).
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models a lá Ethier (1982) compared to models of monopolistic competition a lá Dixit-Stiglitz

(1977), where the �nal good is di�erentiated.

It is also worth mentioning that, because the labor market is perfectly competitive, the

I-�rms take the wage w as given. Thus, the role of the equilibrium wage in this context is

to align pro�t-maximizing prices with (25).

We now determine the equilibrium wages and aggregate �nal output, along with the

equilibrium output per-�rm. Combining (21) with (25) and P = 1 yields

w∗(n) =
1

c

σ(n)− 1

σ(n)

ϕ(n)

n
. (26)

Furthermore, plugging (26) into the product market balance Y = Lw, we obtain:

Y ∗(n) =
L

c

σ(n)− 1

σ(n)

ϕ(n)

n
, (27)

Equations (26) and (27) are important because they suggest a decomposition of equilib-

rium wages and the aggregate �nal output (up to the coe�cients 1/c and L/c, respectively)

into the product of the competition e�ect captured by [σ(n) − 1]/σ(n), and the specializa-

tion/complexity e�ect captured by ϕ(n)/n. The former increases with n i� σ′(n) > 0, while

the latter increases if specialization economies prevail over complexity diseconomies.

Finally, the per-�rm output q∗(n) is determined from the labor balance condition (18),

which takes the form

(cq + f)n = L (28)

at a symmetric outcome. Clearly, q∗(n) = (L− fn)/(cn) always decreases with n.

The impact of entry on prices, wages, and markups

In our model, prices, wages, and markups are all endogenous. Putting together (25), (21),

and (26), we observe that the entry of new �rms need not move these variables in the same

direction. In what follows, we say that competition is (i) Price-decreasing if ∂p∗/∂n < 0, and

price-increasing otherwise; (ii) Markup-decreasing if ∂[(p∗ − cw∗)/p∗]/∂n < 0, and markup-

increasing otherwise; (iii) Wage-decreasing if ∂w∗/∂n < 0, and wage-increasing otherwise.

Proposition 2 summarizes the main results of sub-section 3.1 in terms of the above

taxonomies.

Proposition 2. In the framework of the model presented, competition is (i) price-

increasing (price-decreasing) i� the F-�rms enjoy specialization economies (su�er from com-

plexity diseconomies); (ii) markup-decreasing (markup-increasing) i� σ′(n) > 0 (σ′(n) < 0);

and (iii) wage-increasing (wage-decreasing) i� the following inequality holds (does not hold):

ϕ′(n)n

ϕ(n)
+
σ′(n)n

σ(n)
> 1. (29)

16



Proof. Claims (i) and (ii) follow, respectively, from (25) and (21). The equivalence of

dw∗/dn > 0 to (29), which is implied by (26), proves part (iii). �
The intuition behind Proposition 2 is as follows. Whether competition is price-decreasing

or price-increasing is determined solely by the properties of the TFP function ϕ(n)/n. In

contrast, the behavior of markups in response to entry can be fully characterized in terms of

the elasticity of substitution σ(n) across input varieties. Finally, both ϕ(n) and σ(n) play a

role in determining the impact of entry in sector I on the equilibrium wage. The condition

(29) states that, for the market outcome to be wage-increasing, it must be that either TFP,

or the elasticity of substitution, or both grow su�ciently fast in n.

Two more comments are in order. First, getting a bit ahead of our story, we say here

that (29), which involves both ϕ(n) and σ(n), yields a necessary and su�cient condition

for EIRS to emerge (see Proposition 3 in Section 4). Hence, information about the TFP

function is insu�cient to detect the presence of scale economies: one also needs the elasticity

of substitution which captures the market interactions between I-�rms.

Second, we believe that Proposition 2 also highlights a considerable di�erence between

our results and those recently obtained by Zhelobodko et al. (2012). These authors �nd that

the additional entry of �rms leads to a reduction or hike in markups depending solely on how

the elasticity of substitution varies with the individual consumption level. However, in their

setting markup-decreasing competition is also price-decreasing and (because labor is chosen

to be the numeraire) wage-decreasing, and vice versa. In our model, this is not necessarily

the case. To show this, we �nd it worth contrasting visually our results about the impact of

I-�rms' entry on prices, markups and wages across di�erent types of production functions.

Table 1 provides a summary for the CES and both types of translog technologies.

Translog cost CES production Translog production

function function function

Price No e�ect ↑ ↓
Markup ↓ No e�ect ↓
Wage ↑ ↑ No e�ect

Table 1: The impact of entry on prices, markups and wages for di�erent types of production functions

Table 1 shows that under the translog cost function prices are neutral to entry, while

markups (wages) decrease (increase) in response to a larger number of �rms. In the CES

case, both prices and wages increase in response to more �rms entering the intermediate

input market, while the markup remains unchanged. Finally, with a translog production

function wages remain unchanged when new �rms enter, while both prices and markups fall.

These �ndings highlight the key role of the interaction between the specialization/complexity

e�ect and the competition e�ect in determining the nature of market outcomes.

How can the results summarized by Proposition 2 and Table 1 be related to data?

Rosenthal and Strange (2004) provide strong empirical evidence that wages in larger cities/regions

are higher. Whether the same holds for prices is debatable. For example, Handbury and
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Weinstein (2015) describe higher prices in larger markets as a �common �nding�, but show

that this relationship can be reversed after controlling for several measurement biases. As

seen from claim (i) of Proposition 2, our approach allows for both price-increasing and price-

decreasing competition and draws a clear-cut demarcation between the two cases in terms

of the tradeo� between specialization economies and complexity diseconomies. This uni�-

cation could be viewed as a theoretical reply to the inconclusive empirical �ndings. Finally,

much less empirical work has been done on markups. However, Bellone et al. (2015) provide

evidence that markups are lower at larger markets.

To sum up, a considerable amount of empirical work tends to suggest that larger

markets exhibit higher prices, lower markups, and higher wages. Table 1 reveals that neither

the CES production function, nor any of the two translog technologies can fully capture this

pattern. What kind of production function would be able to do that? Proposition 2 suggests

a quali�ed answer. According to (29), if competition is both price-increasing and markup-

decreasing, then it is also wage-increasing. Hence, any production function that exhibits

both specialization economies (nϕ′(n)/ϕ(n) > 1) and increasing elasticity of substitution

(σ′(n) > 0) generates price-increasing, markup-decreasing and wage-increasing competition.

In particular, any Kimball-type production function, such that φ(0) = 0 and the elasticity

of φ′(·) is an increasing function, does the job.

External increasing returns to scale

This section describes how the interaction between the specialization/complexity e�ect and

the competition e�ect generates production externalities. Hence, it plays a central role within

the whole analysis.

Free-entry equilibrium

We de�ne a symmetric free-entry equilibrium as a vector (p∗, q∗, n∗, w∗, Y ∗), which satis�es

(25), (21), (26), the labor balance condition (28), and the zero pro�t condition

(p− cw)q = wf. (30)

Equilibrium number of �rms. We �rst pin down the equilibrium number n∗ of

I-�rms. To do so, we divide both sides of (30) by pq to obtain

p− cw
p

=
wf

pq
,

which, using pq = wf + cwq, may be restated as follows:

p− cw
p

=
f

f + cq
. (31)

In other words, at a symmetric free-entry outcome the markup of any intermediate
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�rm equals the share of �xed cost in �rm's total production cost. This should not come as

a surprise, because it is the presence of a �xed cost which generates increasing returns to

scale, hence grants market power to �rms.

Combining (31) with the pricing rule (21) and the labor balance (28), we obtain:

σ(n) =
L

fn
. (32)

The equilibrium number of �rms n∗ is uniquely pinned down by (32) i� the elasticity of

σ(n) exceeds −1, which holds when σ(n) is either increasing or decreasing �not too fast� in n.

In other words, (32) has a unique solution n∗ when competition is either markup-decreasing

or �not too much markup-increasing�. If this is not the case, then multiple equilibria may

arise. However, since we assume that σ(n) is continuous and exceeds 1, (32) has always

at least one solution n∗ > 0, which implies that a symmetric free entry equilibrium always

exists.22

Specialization and competition under free entry. Given n∗, using (21) and (30)

yields the equilibrium �rm's size:

q∗ =
f

c
· [σ(n∗)− 1]. (33)

According to (33), any (f/c)-preserving shock that generates additional entry in the

intermediate sector would lead to a hike (a reduction) in �rms' size i� σ(n) is an increasing

(decreasing) function of n.

Plugging (33) into the production function of sector F , we obtain the resulting aggregate
production function:

Y ∗(L) =
L

c
· σ[n∗(L)]− 1

σ[n∗(L)]
· ϕ[n∗(L)]

n∗(L)
, (34)

while plugging n∗ into (26) pins down the equilibrium wage w∗:

w∗ =
1

c
· σ[n∗(L)]− 1

σ[n∗(L)]
· ϕ [n∗(L)]

n∗(L)
. (35)

In equations (34) and (35), the term [σ(n∗)− 1]/σ(n∗) captures the competition e�ect,

which stems from sector I . This term increases with n, hence with the population size

L, i� competiton is markup-decreasing. The term ϕ(n∗(L))/n∗(L) describes the specializa-

tion/complexity e�ect and increases with population i� specialization economies take place,

which is equivalent to price-increaing competition (Proposition 2).

In order to clarify how the degree of competitive toughness may impact the aggregate

production function, we observe that total output Q∗ ≡ n∗q∗ in sector I is given by

Q [L, n∗(L)] =
L

c
·
[
1− f n

∗(L)

L

]
=
L

c
· σ(n∗)− 1

σ(n∗)
. (36)

22In order to choose meaningful equilibria when they are multiple, we can restrict ourselves to stable

equilibria, i.e. those for which the elasticity of σ(n) evaluated at n = n∗ exceeds −1.
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Equation (36) follows from (28), (32), and (33). Using (36), the aggregate production

function (34) may be restated as follows:

Y ∗(L) =
ϕ [n∗(L)]

n∗(L)
Q [L, n∗(L)] . (37)

The �rst term in (37) captures the specialization/complexity e�ect in sector F , while
the second term keeps track of the competition e�ect. In other words, in our framework

competition among input-producing �rms a�ects total output of the �nal good through the

total amount of the intermediate input. More precisely, equations (32) and (36) imply that

Q [L, n∗(L)] increases more (less) than proportionally with L i� competition is markup-

decreasing (markup-increasing). This, in turn, leads to competition generating a tendency

toward external increasing (decreasing) returns to scale in sector F . Compared to the stan-

dard CES model (where Q is readily veri�ed to be exactly proportional to L, so that a

competition e�ect cannot be taken into account), in the general case that we are analyzing

there are two sources of EIRS: the specialization/complexity e�ect and the competition e�ect.

This explains why using a CES production function may cause some limitations in var-

ious economic contexts. To see this in more detail, consider again equations (34) and (35)

above. These two equations are basically the same and di�er just by a constant term (L/c

and 1/c , respectively). When specialization economies take place, the term ϕ[n∗(L)]/n∗(L)

increases with n∗. As for the competition e�ect, [σ(n∗) − 1]/σ(n∗), it rises with n∗ under

markup-decreasing competition, and falls otherwise. Therefore, solely in the former case

(markup-decreasing competition) is the specialization e�ect on both aggregate output and

wages reinforced by the competition e�ect. This is no longer true when competition is

markup-increasing: in this case, the specialization e�ect would be weakened by the compe-

tition e�ect stemming from a larger mass of �rms entering the intermediate sector. Notice

that, if the production function were CES, then the term [σ(n∗) − 1]/σ(n∗), appearing in

both (34) and (35), would be constant. As a consequence, the specialization e�ect would be

the only source of external increasing returns to scale in the �nal good sector.

How scale economies emerge

We are now equipped to characterize the comparative statics of the free-entry equilibrium

with respect to the population size L. Our main interest in this exercise is to reveal how

aggregate output varies with L, namely how EIRS in the F -sector emerge.

Under a positive shock in L, the left-hand side of equation (32) remains unchanged,

while the right-hand side is shifted downwards. As a consequence, the equilibrium mass n∗

of �rms increases with L whenever the equilibrium is stable (see Section 4.1). Combining

this with (34), we �nd that at equilibrium the average product of labor, Y ∗(L)/L, increases

with L i� [σ(n)− 1]ϕ(n)/n is an increasing function of n, or, equivalently, i� competition is

wage-increasing.

We can now state the key result of our paper.
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Proposition 3. External increasing returns to scale take place i� (29) holds, or,

equivalently, i� competition is wage-increasing.

As discussed in Section 3, what renders competition wage-increasing or wage-decreasing

in our model is the interplay between the competition e�ect and the specialization/complexity

e�ect. Therefore, Proposition 3 stresses the importance of the interaction between the two

e�ects in generating Marshallian externalities. Indeed, by comparing (29) with the necessary

and su�cient condition (10) for specialization economies to arise, we �nd that that the for-

mer contains an additional term, nσ′(n)/σ(n), which captures the competition e�ect and is

missing in (10). Hence, (29) and (10) coincide i� σ(n) is constant, which corresponds to the

standard CES case. This explains why both the endogenous growth and the agglomeration

economics literatures have generally explained the emergence of EIRS by appealing solely to

the presence of specialization economies. Meanwhile, the role of market interactions among

�rms in this process has been largely (and perhaps undeservedly) neglected.

As for the relationship between n∗ and L, our analysis shows that n∗ increases less

(more) than proportionally to L i� competition is markup-decreasing (markup-increasing).

Combining this with (34) yields the following result.

Proposition 4. Compared to the CES case, markup-decreasing competition damps

the specialization e�ect, but simultaneously triggers a positive competition e�ect. Under

markup-increasing competition, the situation is reversed.

Table 2 summarizes in a compact way our results about the roles that market-size

and the interaction between the specialization e�ect and the competition e�ect play in de-

termining the equilibrium market-outcome under markup-decreasing and markup-increasing

competition:

σ′(n) > 0 σ′(n) < 0

n∗
increases less than proportionally increases more than proportionally

in response to an increase in L in response to an increase in L

Y ∗, w∗
specialization e�ect weakened, specialization e�ect reinforced,

positive competition e�ect negative competition e�ect

Table 2: The impact of market-size and the interplay between the competition and the specialization

e�ects in determining the equilibrium market-outcome: markup-decreasing vs markup-increasing

competition

Examples

For a better illustration of the role played by the interaction between the specialization/complexity

e�ect and the toughness of competition in generating EIRS, consider the following examples.

CES production function. In this case, equation (32) is linear, i.e. the number of

�rms is proportional to total labor supply L. Hence, the competition e�ect is washed out,

and the specialization e�ect is the only source of external increasing returns. The aggregate

production function is given by
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Y ∗(L) = AL1/(1−ρ), A ≡ ρ

c

(
1− ρ
f

)ρ/(1−ρ)
.

Translog cost function. Combining (8) with (32) yields βn2+n = L/f , which implies

n∗ =
(√

1 + 4L/f − 1
)
/(2β). In this case, the number of �rms grows proportionally to

√
L.

This is because, unlike the CES case, competition is tougher in a larger market. Furthermore,

as stated by part (iii) of Proposition 1, complexity diseconomies and specialization economies

exactly o�set each other. Therefore, the competition e�ect becomes the main force shaping

the resulting aggregate production function which is given by

Y ∗(L) =
f

4βc

(√
1 + 4L/f − 1

)2
. (38)

Equation (38) suggests that the average product of labor Y ∗(L)/L increases in L for all

L ≥ 0. In other words, external increasing returns take place. However, the source of these

increasing returns is radically di�erent from that in the CES case. Namely, agglomeration

economies stem here solely from market interactions between �rms, while in the classical

CES-based models they are generated entirely by technological externalities embodied in

the specialization/complexity tradeo�.

Translog production function. In this case, the competition e�ect is even stronger.

Indeed, as implied by (7), (32) takes the form: 1 − αn = fn/L. Hence, n∗ = L/(αL + f),

which implies that the equilibrium mass of �rms is bounded from above by 1/α. In other

words, even when population L grows unboundedly, the number of �rms the market invites to

operate remains limited due to very tough competition. The aggregate production function

is given by

Y ∗(L) =
α

c
L. (39)

Thus, in the case of the translog production function, the resulting technology exhibits

constant returns to scale. This result is in line with Proposition 3: EIRS arise only when

competition is wage-decreasing, while under the translog production function entry has no

impact on wages (see Table 1 in Section 3.2).

A micro-foundation for an S-shaped production function. Finally, we pro-

vide a simple micro-foundation for an S-shaped aggregate production function, which has

been widely used in growth theory and development economics, especially in the analysis

of poverty traps.23 In this regard, consider a Kimball-type technology associated with the

aggregator function φ(ξ) ≡ aξρ − b, where a and b are positive constants, while 0 < ρ < 1.

Here, a can serve as a measure of �overall� TFP, while b shows the strength of the complexity

externality. Solving in closed form for the production function, we obtain

23See Skiba (1978), and, more recently, Azariadis and Stachurski (2005), as well as Banerjee and Du�o
(2005), for examples on the possible consequences of using S-shaped production functions within these two
branches of economic literature. The idea dates back at least to Shapley and Shubik (1967).
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F (q) = A(n)

 nˆ

0

qρi di

1/ρ

, A(n) ≡
(

a

1 + bn

)1/ρ

. (40)

The TFP function underlying (40) is given by

ϕ(n)

n
=

1

n

(
an

1 + bn

)1/ρ

, (41)

while the elasticity of substitution across inputs is constant and is given by σ = 1/(1 − ρ),

just like in the standard CES case. Using (41), it is readily veri�ed that ϕ(n)/n increases in

the input diversity n for all n < 1/(ρb) and decreases otherwise. Hence, the TFP function is

bell-shaped, meaning that specialization economies occur when the intermediate input is not

too much di�erentiated, otherwise complexity diseconomies prevail.

The resulting aggregate production function Y ∗(L) reads as

Y ∗(L) =
f

1− ρ

(
L

L+ af/(1− ρ)

)1/ρ

. (42)

According to (42), increasing returns to scale arise when L is su�ciently small; other-

wise, decreasing returns to scale occur.

Concluding remarks

Using a two-sector model with a perfectly competitive �nal good sector, a monopolisti-

cally competitive intermediate input sector and variable elasticity of technological substi-

tution across intermediate inputs, we have singled out two sources of EIRS: the specializa-

tion/complexity e�ect and the competition e�ect. The former is generated within the �nal

good sector and shows how employing more varieties of intermediate inputs fosters/deters

the production of the �nal good, while the latter stems from the market interactions among

�rms within the intermediate input sector. The market outcome is determined by the com-

bined behavior of the TFP and the elasticity of substitution, which are both functions of

the input diversity. In other words, the interplay between the competition e�ect and the

specialization/complexity e�ect plays a key role in shaping the equilibrium properties.

We have fully characterized market behavior in terms of the relationships between the

two above e�ects. This characterization has been useful in clarifying the origins of external

increasing returns. In particular, we have shown that, due to the interference of a non-trivial

competition e�ect, the presence of specialization economies is neither necessary nor su�cient

for scale economies to emerge. This result highlights the limitations of the CES monopolistic

competition approach to modeling the scale externalities, which overlooks the relevance of

the competition e�ect, as the level of market power does not vary with the number of �rms.

Therefore, our analysis points to the need for more work on the role of market competition

in shaping agglomeration economies, endogenous growth and other economic phenomena
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driven by scale e�ects. Finally, we argue that our theoretical �ndings are in line with recent

empirical evidence on the behavior of prices, markups and wages with respect to the size of

the economy.

A last remark is in order. Our decomposition of scale economies into two components

has been done at the theoretical level. However, given the growing amount of applied research

aimed at estimating the impacts of TFP shocks and variable markups on the economy, we

believe that a similar exercise can also be done empirically. Using our model as a basic

setting for structural econometrics would require extensions to the cases of heterogeneous

�rms, multiple �nal-good sectors, and probably also imperfect market structures alternative

to monopolistic competition, where one can build on d'Aspremont et al. (1996, 2007),

Atkeson and Burstein (2008), and Amiti et al. (2016). We leave these tasks for future

research.
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Appendices

Appendix 1. Marginal products under a continuum of inputs

We restrict our attention to such input vectors q that have a �nite second moment, i.e.´ n
0
q2i di < ∞. In other words, q ∈ L2 ([0, n]). Intuitively, this assumption allows mean and

variance of the input vector to be well-de�ned.

We also assume Frechet-di�erentiability, i.e. we postulate that there exists a functional

Φ : R+ × L2 → R+, such that

F (q + h) = F (q) +

nˆ

0

Φ(qi,q)hidi+ ◦ (||h||2) for all q,h ∈ L2. (43)

In (43), || · ||2 stands for the L2-norm, i.e. ||h||2 ≡
√´ n

0
h2idi, whereas Φ(qi,q) is the

marginal product of intermediate input i. Concavity of F implies that Φ is decreasing in qi.

Lemma. Let F : L2 → R+ be a Frechet-di�erentiable functional, which is positive

homogeneous of degree 1. Then (i) Φ(qi,q) is positive homogenous of degree zero in (qi,q),

and (ii) the Euler's identity

F (q) =

nˆ

0

qiΦ(qi,q)di, (44)

holds.

Proof. To prove (i), rewrite (43) as follows:
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F (tq + th) = F (tq) +

nˆ

0

Φ(tqi, tq)thidi+ ◦ (t||h||2) for all q,h ∈ L2, t ∈ R+. (45)

Dividing both sides of (45) by t and using homogeneity of F , we obtain

F (q + h) = F (q) +

nˆ

0

Φ(tqi, tq)hidi+ ◦ (||h||2) . (46)

Combining (43) with (46), we �nd that φ(tqi, tq) is a Frechet derivative of F computed at

q for any t > 0. By uniqueness of Frechet derivative, φ(tqi, tq) must be independent of t,

which proves part (i) of the Lemma.

To prove part (ii), note that (43) implies the following identity:

F ((t+ τ)q)− F (tq)

τ
=

nˆ

0

Φ(tqi, tq)qidi+
◦(τ)

τ
for all τ ∈ R. (47)

Using homogeneity of F and Φ, we obtain (44) as the limiting case of (47) under τ → 0.

Q.E.D.

Appendix 2. Proof of Proposition 1.

(i) If a production function satis�es (9), we have

ϕ(n)

n
=

1/n

φ−1(1/n)
. (48)

Because φ(·) is increasing and concave, it must be that φ−1(·) is increasing and convex.

If φ(0) = 0, then the elasticity of φ−1(·) always exceeds 1. As a consequence, ϕ(n)/n

decreases in 1/n and increases with n.

When φ(0) 6= 0, the above argument is no longer valid. Indeed, as implied by (41),

production function given by (40) provides a counterexample. This completes the proof of

(i).

(ii)-(iii). As shown in Section 2.1, under (7) we have ϕ(n) = 1, while (8) yields ϕ(n) = n

for all n > 0. Combining this with the de�nition (10) of specialization economies completes

the proof. �

Appendix 3. SOC and no multiplicity of equilibria

Observe that the left-hand side of (17) is positive homogenous of degree zero. This implies

that the solution of (17) cannot be unique. Indeed, multiplying a solution of (17) by a

constant yields another solution. The �proper� equilibrium is pinned down by the labor

balance condition (18).
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To guarantee that equation (17) is compatible with pro�t-maximizing behavior by

�rms, the second-order condition must hold, which amounts to assuming that the real oper-

ating pro�t [Φ(qi,q)− cw/P ] qi of �rm i is strictly quasi-concave in qi for all q.

In order to ensure that a continuum of asymmetric Nash equilibria in the �rms'

quantity-setting game does not arise, we introduce a stronger assumption: the left-hand

side of (17) is decreasing in qi for any q. Imposing this condition is equivalent to assuming

that the operating pro�t of each �rm is strictly concave in its output. This assumption holds

for the CES and, more generally, for any production function of the type (9) such that

−φ
′′′(ξ)

φ′′(ξ)
ξ < 2 for all ξ > 0.

This rules out the possibility of asymmetric equilibria because (17) has a unique solu-

tion q∗i (q), which is the same for all �rms i ∈ [0, n]. See, e.g., Gorn et al. (2012) for a formal

treatment of multiple asymmetric equilibria in a monopolistically competitive setting.

Appendix 4. The relationships between ϕ(n) and σ(n) within Kimball

family

We show here how focusing on the family of Kimball's �exible aggregator technoilogies (9)

may generate �rm, hence potentially restrictive, linkages between the two fundamentals,

ϕ(n) and σ(n). Then, the elasticity σ(n) of substitution across di�erentiated inputs can be

uniquely pinned down if one knows the TFP function ϕ(n)/n. Indeed, observe that (24)

implies

φ(ξ) =
1

ϕ−1(1/ξ)
.

Plugging φ(·) into (23) yields σ(n) as a single-valued function of n.

In order to recover the TFP function knowing σ(n), we proceed as follows. Using (23)

and observing that n = 1/φ(ξ), we �nd that a candidate aggregator function φ(·) must be

an increasing and concave solution to the following second-order ODE:

d2φ

dξ2
= −1

ξ

dφ

dξ
· 1

σ(1/φ)
. (49)

Whether (49) has a solution satisfying the desired properties for a given function σ(·)
is a priori unclear. The following result illustrates the restrictions imposed by focusing on

Kimball's family of technologies.

Claim. There exists no increasing and concave aggregator function φ(·), under which
(9) would generate a linearly increasing elasticity of substitution σ(n) = 1 + βn with β > 0.

Proof. Assume the contrary. Then, using σ(n) = 1 + βn and (49), a candidate

aggregator function φ(·) must be an increasing and concave solution to
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d2φ

dξ2
= −1

ξ

dφ

dξ
· φ

φ+ β
. (50)

The general solution of (50) is de�ned as a solution to

ξ = A exp

{
−exp(a)

β
· Ei [a− ln(β + φ)]

}
, (51)

where A > 0 and a ∈ R are integration constants, while Ei(·) is the exponential integral

de�ned by

Ei(x) ≡
∞̂

1

exp(−xz)

z
dz.

It is readily veri�ed that the right-hand side of (51) is a decreasing function of φ for

any given values of A and a. As a consequence, each solution φ(ξ) to (50) is a decreasing

function, hence it cannot serve as an aggregator function in (9). �
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