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Introduction

Motivation

Cosmic Microwave Background radiation (CMB) and the Large Scale Structure of the
Universe (LSS) offer a great opportunity to study the primordial physics of the Universe.
In fact, although several models have been developed in the last decades, understanding
what exactly happened during the very early phase of the Universe is still a high task to
accomplish.

The hot Big Bang model allows to explain two of the great discoveries of the last
century, the expansion of the Universe and the CMB. Nevertheless, it presents some
issue, like the horizon and the flatness problem, that only an accelerated expansion can
explain. Inflation provides a mechanism whereby exponential expansion is attained,
thus resolving the Hot Big Bang model flaws. Furthermore, it provides the existence of
primordial fluctuations that seeded the anisotropies of the CMB and the LSS of galaxies
we see today. Unfortunately, several models of inflation was developed, each of them
providing the accelerated expansion, but specific fluctuations. The first aim of my work
was to understand how to constrain all of these model by means of their forecasts. But
this is not the only one.

In fact, CMB allows to understand what the Universe is composed of. Radiation and
matter of course, but there are two more evanescent components, called dark matter
and dark energy. The first one drove the formation of structure, the latter is the main
cause of the accelerated expansion we see today. I wont go into details with dark energy
during this thesis, since it is beyond the purpose of my work. Although dark matter
and dark energy are so important to understand the physics of the present Universe, it is
impossible to observe them directly, since dark matter interacts only gravitationally and
dark energy is, so far, only a name for something we totally don’t understand. We can
derive information about them by studying LSS, thus making ordinary matter a great
probe to the dark components.

So, the question is, how can we derive information from CMB and LSS? Lots of statis-
tical methods were developed with this purpose, but there still room for new ones. Dur-
ing my work, I developed an angular bispectrum estimator for the LSS and a Needlet
trispectrum for the CMB. Bispectrum and trispectrum are the Fourier counterpart of 3-
and 4-points correlation function, thus giving information about the non-Gaussian fea-
tures of the distribution they are evaluated from. Non-Gaussianity, i.e. any deviation
from a Gaussian distribution, is in fact inherited by LSS due to the non-linear clustering
of matter, that evolve from an homogeneous lattice of elementary particles in clusters

ix



x Thesis overview

and filaments. CMB, instead, presents an high level of Gaussianity. But, the possible ex-
istence of deviation from Gaussianity in the anisotropies distribution would give hints
about what kind of model of inflation best describes the actual physics of the primordial
Universe, since each model provides a characteristic non-Gaussianity track in CMB.

Thesis overview

Main results

I based my work well within the spherical function framework. Spherical analysis al-
lows to work with Spherical Harmonics, the orthonormal basis of function on the sphere.
Each function on the sphere can be decomposed by Spherical Harmonics, the property
of the function are inherited by the Harmonics coefficients, with wich is possible to write
the n-points correlation functions and then the polyspectra. Furthermore, I exploit the
Spherical Needlet system, a wavelet system on the sphere with properties that make it
the closest system to spherical harmonics. The analysis was carried on both on simula-
tions of LSS and CMB with the following results.

Angular Bispectrum of LSS: I derived the bispectrum estimator for simulated spher-
ical shells of LSS. In order to make the estimator more computationally feasible, I
derived an optimal binned estimator that allows to evaluate bispectrum on binned
intervals of the multipoles. Both bispectrum and its variance were compared to the
predicted ones, obtained by integrating the matter 3-dimensional bispectrum over
the line-of-sight. The comparison shown that the harmonic bispectrum estimator is
quite reliable and it would be interesting to apply to set of real data in order to con-
strain cosmological parameters.

Needlet Trispectrum of CMB: Trispectrum estimator was developed by means of
the Spherical Needlet system. This system works on asymmetric binned intervals of
multipoles with a reconstruction formula identical to the Spherical Harmonics one.
Furthermore, thanks to their localization property in real space, Spherical Needlets
are statistically stronger in presence of missing observation than Spherical Harmon-
ics that, instead, lose their orthonormality introducing bias in the harmonic coeffi-
cients and then in the statistics. Needlet trispectrum was used in order to constrain
the non-Gaussian parameter gNL with the purpose of constrain non-Gaussianity and
then the inflationary models. The results on gNL shown that the estimator is subop-
timal but also that it is possible, with a minimum computational effort, to constrain
gNL easily in order to test inflation and other gNL estimators.

Organizational note

This thesis is divided into three parts, for a total of 10 chapters. Each part is devoted to
the analysis of a different cosmological observable except for Part I. Part I is composed
by Chapters 1,2 and 3 where polyspectra and modern cosmology are defined. In Part II,
chapters from 4 to 6 analyze the bispectrum of LSS while Part III contains chapters from
7 to 10 with all the work about the Needlet trispectrum of CMB. Each part can be read
individually, withouth reading the others. The Chapters are focused on what follows.

Chapter 1: Mathematical definition of polyspectra is given. Estimator of angular
power spectrum, bispectrum and trispectrum together with their variance are the
main subject of this chapter.
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Chapter 2: The Hot Big Bang theory is explained, with a final focus on its flaws
and how they were solved by Inflation theory.

Chapter 3: The particle that drove Universe dynamics is analyzed, both the con-
stant part and the fluctuations, inherited by CMB and LSS in later times.

Chapter 4: I reviewed the Linear and non-Linear perturbation theory, show-
ing how non-Gaussianity is implicit in the non-linear evolution of matter. Then
I showed that one of the greatest problem in the analysis of the matter distribution
is the degeneration of parameters.

Chapter 5: I show how take a spherical field out of a 3-dimensional field by means
of an integration along the line of sight, i.e. the redshift coordinate. The prediction
of angular power spectrum and bispectrum are developed.

Chapter 6: I show the first results of my work, i.e. the comparison between es-
timated statistics and predicted ones, with comments about the meaning of this
comparison and their consequences.

Chapter 7: Non-Gaussianity in the primordial curvature field is defined by means
of the Bardeen’s potential and the non-Gaussian parameters fNL and gNL together
with the state of the art in their estimation.

Chapter 8: I describe the Spherical Needlet wavelets and their properties, explain-
ing why they are one of the strongest statistics in presence of missing observations.

Chapter 9: By means of the Needlets, a new trispectrum estimator is provided. It
takes advantage of the Wick product, which allows to write an unbiased estimator
with the lowest one among the estimators of the same orders.

Chapter 10: gNL is estimate on Gaussian and non-Gaussian simulations, with dif-
ferent resolutions. An hyperbolic fit is applied in order to estimate the behavior of
the converged covariance matrix withouth reaching convergences and comments
on the results are showed.

Appendix a: Some mathematical results is described in order to make the reader
aware of some obscure passage within the text.
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Setting Up the Framework





CHAPTER 1

Everything You Always Wanted to Know About
Polyspectra* (*But Were Afraid to Ask)

Spherical random fields are of great interest in cosmology. In fact, the two main observ-
ables in cosmology, CMB and LSS (when measured photometrically), can be viewed as
2-dimensional fields that can be described as a spherical random fields centered on the
observer and randomly distributed accordingly to a probability function. The properties
of a random field are due to its probability distribution, which can be fully described by
mean of its moments. The moments of a distribution describe the shape of the distribu-
tion itself. The zeroth-order moment indicates the total probability of the distribution,
i.e. 1, the first-order moment is the mean of the distribution, the second one the variance.
Then the third-order moment is the skewness, that is the asymmetry of the distribution,
and the fourth-order is the kurtosis, parameterizing the relative height of the tails of the
distribution. Higher order moments describe other properties that are beyond the aim
of this thesis.

When we speak about spherical random fields, we can describe moments using the
angular polyspectra. The aim of this chapter is to understand the meaning of these mo-
ments and their relative angular polyspectra, in order to get a rock-solid base on which
develop the models I’ll deal with in the rest of this work.

1.1 Definitions

Let’s take a zero-mean spherical random field T (θ, φ) ≡ T (n). As long as the field is de-
fined over the whole sphere, we can decompose T (n) as well as each function defined on
the sphere using the Spherical Harmonics Ylm(n). The set of {Ylm(n) : l = 0, 1, 2, . . . ;m =
−l,−l+ 1, . . . , l− 1, l} represents an orthonormal basis on the space of square-integrable
function on the sphere L2(S2), thus allowing to rewrite every square-integrable function
on the sphere as a linear combination of Ylm(n) (Marinucci & Peccati 2011),

T (n) =

∞∑
l=0

l∑
m=−l

almYlm(n). (1.1)

where the alm are the harmonic coefficients defined by

alm =

∫
S2

dΩ T (n)Y ∗lm(n). (1.2)

The collection of Spherical Harmonics coefficients {alm} is composed by uncorrelated
zero-mean square-integrable complex-valued random variables (Baldi & Marinucci 2006;

3



4 1.1 Definitions

Baldi et al. 2007), which are also independent when the probability distribution is Gaus-
sian. The alm’s contain all the properties of the field from which they are evaluated,
thus studying the statistics of alm means study the physics of the field. The indexes
{l : l = 0, 1, 2 . . .} are called multipoles and are related to the physical angular scale, i.e.

θ =
π

l
. (1.3)

Thus, the higher the multipole, the smaller the physical scale of interest. The collection
of {m : m = −l, . . . , l} represents the azimuthal orientations of the Spherical Harmonics
on the sky. Each Spherical Harmonic has (2l + 1) azimuthal orientation, and m = 0
represents the azimuthally symmetric Spherical Harmonic,

Y00(θ, φ) ≡ Y00(θ). (1.4)

The moments of the distribution fully characterize the shape and thus the property
of the distribution itself. We can write the nth-order moment as

µ(n) ≡ 〈(T (n)− 〈T (n)〉)n〉 (1.5)

where 〈·〉 stands for ensemble average, i.e. the average of the field among all the possible
realizations. It’s easy to see that, for zero-mean field, the nth-order moment is nothing
but the correlation function of the field. The correlation functions of the field directly
depend on the same-order correlation functions of the harmonic coefficient, i.e. inserting
eq. (1.1) in eq. (1.5)

〈T1(x) · · ·Tn(x)〉 =
∑

l1,...,ln

∑
m1,...,mn

〈al1m1 · · · alnmn〉Yl1m1(x) · · ·Ylnmn(x). (1.6)

Thus, we need to understand how to calculate the number 〈al1m1
· · · alnmn〉. Following

(Marinucci & Peccati 2011) it is possible to do this in a mathematical elegant way. Let’s
first introduce the notion of strongly isotropic field.

Definition 1. Let T = {T (n) : n ∈ S2} be a real-valued spherical random field. Indicating
with g · n = gn the action of g on n, that is, gn stands for the position of the point n after the
rotation g, the field T is said to be strongly isotropic if, for every k ∈ N, every n1 . . . nk ∈
S3 and every g ∈ SO(3) (the group of rotations in R3) the vectors {T (n1), . . . , T (nk)} and
{T (gn1), . . . , T (gnk)} have the same finite-dimensional distribution, i.e.

≡ {T (n1), . . . , T (nk)} dist= {T (gn1), . . . , T (gnk)}. (1.7)

On large scale, the Universe represent an excellent example of isotropic 3-dimensional
field. If we take spherical shells centered on our position of infinitesimal width, the dis-
tribution within is actually a strongly isotropic spherical field in the sense of Definition 1.
Furthermore, also the CMB represents an outstanding realization of a strongly isotropic
spherical field, thus its statistics can be analyzed in view of Definition 1. This consider-
ably simplifies the definitions of the tools I’m going to define.

Consider n = 1. In this case 〈a00〉 = 〈T̄ 〉, where T̄ is the spatial average of the field T ,
and it can be proved that the set of 〈alm〉 = 0 for l ≥ 1.

Let’s consider the n = 2 case. A simple proposition comes in help to whomever is
trying to define the results of 〈almal′m′〉,
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Proposition 1. Let T be a strongly isotropic spherical field and al. = {alm : m = −l, . . . , l}
the vector of harmonic coefficients associated with the scale l. Then the following hold

1. For all l such that 〈||al.||2〉 <∞,

〈al.al.〉 = ClI2l+1, (1.8)

where Cl is a non-negative constant depending only on l and I2l+1 denotes the (2l + 1)×
(2l + 1) identity matrix. Whenever is well defined, the collection {Cl : l ≥ 0} is called
angular power spectrum of the field T .

2. For all l1 and l2 such that 〈||al1.||2〉 <∞ and 〈||al2.||2〉 <∞

〈al1.al2.〉 = 02l+1, (1.9)

where 02l+1 is the (2l1 + 1)× (2l1 + 1) zero matrix.

The proof of Proposition 1 is shown in page 140 of (Marinucci & Peccati 2011). Here
it is omitted because the math involved in goes far beyond the aim of this work. Propo-
sition 1 can be summarized by simply writing

〈alma∗l′m′〉 = δl
′

l δ
m′

m Cl, (1.10)

that will be used as angular power spectrum definition hereafter.
For n ≥ 3, the following theorem defines the form of polyspectra of every order

(Marinucci & Peccati 2010),

Theorem 1. If a random field is strongly isotropic with finite spectral moments of order n ≥ 3,
then for every l1, . . . , ln there exist an array Pl1...ln(λ1, . . . , λn−3), with |l2 − l1| ≤ λ1 ≤
l2 + l1,|l3 − λ1| ≤ λ2 ≤ l3 + λ1,. . .,|ln−2 − λn−4| ≤ λn−3 ≤ ln−2 + λn−4, such that

〈al1m1
. . . alnmn〉 = (−1)mn

l2+l1∑
λ1=|l2−l1|

. . .
∑
λn−3

C
λ1...λn−3ln,−mn
l1m1...ln−1mn−1

Pl1...ln(λ1, . . . , λn−3)

(1.11)

C
λ1...λn−3ln,−mn
l1m1...ln−1mn−1

=
∑
µ1

. . .
∑
µn−3

Cλ1µ1

l1m1l2m2
Cλ2µ2

λ1µ1l3m3
. . . Cln−mnλn−3µn−3ln−1mn−1

(1.12)

with µn = −λn, . . . λn.

For a fixed n ≥ 2, the real-valued array {Pl1...ln(·) : l1 . . . ln ≥ 0} is called the reduced
angular polyspectrum of order n-1 associated with the underlying strongly isotropic
random field.

The Cλiµiljmj ljmk
are the Clebsh-Gordan coefficients (Messiah 1962; Cohen-Tannoudji

et al. 1977). Clebsh-Gordan coefficients arise in quantum mechanics when dealing with
summation of angular momenta. Within this framework, Cl3m3

l1m1l2m2
parametrizes the

probability amplitude of obtaining a single particle with angular momentum l3 and z-
projection m3 as a result of a coupling process between two particle with angular mo-
mentum l1 and l2 and z-projection m1 and m2 respectively (Liboff 1999).

We can rewrite the Clebsh-Gordan coefficients as(
l1 l2 l3
m1 m2 m3

)
:= (−1)l3+m3

1√
2l3 + 1

Cl3m3

l1−m1l2−m2
, (1.13)
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n1
nn

n3

n2

f(n)

n
’1

n
’n

n
’3

n
’2

our sky

Figure 1.1: The statistical isotropy means that every correlation function in harmonic space is
rotationally invariant. The figure shows this principle in real space, the function f(n) is the same
in both {n1, n2, . . . , nn} and {n′1, n′2, . . . , n′n} configurations that actually differ only by a roto-
traslation (Bartolo et al. 2004).

Cl3m3

l1m1l2m2
= (−1)l1−l2+m3

√
2l3 + 1

(
l1 l2 l3
m1 m2 −m3

)
. (1.14)

The matrix-like object is called Wigner 3j symbol (Messiah 1962). It ensures that three
multipoles form a closed triangle in harmonic space. In fact Wigner 3j coefficients are
non-zero if and only if

l1 + l2 + l3 = integer. (1.15)

|li − lj | ≤ lk ≤ li + lj , i, j, k = 1, 2, 3, (1.16)

m1 +m2 +m3 = 0. (1.17)

First condition states that the sum of two multipole has to be a multipole itself. Con-
dition (1.16) is the so-called triangle rule, ensuring that the three multipoles could form
a triangle. The closeness of the triangle is ensured by the fact that the sum of the three
orientations has to be zero (condition (1.17)). In the next sections, I’ll show how the
properties of Wigner 3j makes them the perfect choice when dealing with polyspectra.

Lastly, it must be noted that the strong isotropy of the field imposes a constraint on
the form of the n-point correlation function and then on the form of polyspectra (Hu
2001). In fact, if statistical isotropy holds, the n-point correlation function must be in-
variant under the action of the group SO(3). To see this, let us consider the effect of a
rotation g ∈ SO(3) expressed in terms of the Wigner-D function,

Ylm(gn) =
∑
m′

Dl
m′m(g−1)Yl′m′(n). (1.18)

The action of the rotation on the field is thus

T (gn) =
∑
l

∑
m

almYlm(gn) =
∑
l

∑
mm′

almD
l
m′m(g−1)Ylm′(n) =

=
∑
l

∑
m′

alm′Ylm′(n) = T (n),
(1.19)

that is
alm =

∑
m′

Dl
mm′(g

−1)alm′ ≡
∑
m′

Dl
mm′alm′ , (1.20)
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thus, the following identity must hold for every polyspectra with n ≥ 2 for every rotation
g ∈ SO(3) (fig. 1.1)

〈al1m1
. . . alnmn〉 =

∑
m′1...m

′
n

〈al1m′1 . . . alnm′n〉D
l1
m1m′1

. . . Dln
mnm′n

. (1.21)

1.2 The Angular Power Spectrum

As we already saw, it is possible to write the 2-point correlation function using only
the Spherical Harmonics coefficients properties. It is important to remark that if the
probability distribution of the random field is Gaussian, then the 2-point correlation
function, together with the mean, contains all the statistical properties of the field. The
2-point correlation function, i.e. the variance, is then the only parameter of a Gaussian
distribution, while high-order correlation functions vanish. The only way to get non-
vanishing higher-order term in the correlation function series is to introduce some non-
Gaussianity in the distribution. Therefore, the existence of non-zero connected n > 2-
order correlation functions is an evidence of the non-Gaussian nature of the distribution.
In the next sections, we will see this and how to parametrize the level of non-Gaussianity.

Proposition 1 gives us the form of the 2-point correlation function in harmonic space,

〈alma∗l′m′〉 = δl
′

l δ
m′

m Cl (1.22)

and we called the sequence {Cl : l ∈ N} the angular power spectrum of the distribution.
Physically, the power spectrum measures the amplitude of the fluctuations at a given
scale π/l. The stronger the fluctuation at a given scale the higher the Cl amplitude at the
same scale (fig. 1.2).

It is simple to show that eq. (1.22) obeys to the statistical isotropy (eq. (1.21)), i.e:

〈al1m1
al2m2

〉 =
∑
m′1m

′
2

〈al1m′1al2m′2〉D
l1
m1m′1

Dl2
m2m′2

=

= Cl1
∑
m′1m

′
2

(−1)m
′
2δl2l1 δ

−m′2
m′1

Dl1
m1m′1

Dl2
m2m′2

=

= Cl1δ
l2
l1

∑
m′1

(−1)m1−m′1(−1)−m1Dl1
m1m′1

Dl2
m2−m′1

=

= (−1)−m1δl2l1 δ
m2
−m1

Cl1 ,

(1.23)

in which I used the orthogonality condition for the Wigner-D functions∑
m

(−1)m2−mDl
m1mD

l
−m2−m = δm2

m1
. (1.24)

Optimal Estimator

An estimator is a method to measure the amplitude of a given quantity using a set of
observed data. We define an optimal estimator the unbiased estimator with the lowest
variance among the others, i.e. closest to the Cramer-Rao bound, expressing the lower
bound of the variance of an estimator (Cramér 1946; Rao 1945; Borovkov 1998). Unbiased
means that the ensemble average of the estimator is exactly the value of the quantity one
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Figure 1.2: The CMB power spectrum (wiggly line) compared to a constant temperature field
power spectrum (straight line) (NASA 2012). This image shows how the amplitude of the Cl (on
the y-axis) depends on the strength of the fluctuations of the field. The top three images show the
fluctuation of the CMB (on the left) and the constant field (on the right) at a given scale, locate in
the bottom green region of the angular power spectrum. In the first region, in which π/l ∼ 90◦,
the amplitude of CMB Cl is lower than that of constant field, this means the the fluctuations in
the CMB field are weaker than that of the constant temperature one and this is cleary visible in
the above figure in which the CMB fluctuations are smoother than in the constant field case. In
the two other region, π/l ∼ 1◦ and π/l ∼ 0.25◦, we see that the CMB spectrum is higher, then the
fluctuation are stronger than the constant temperature case.

wants to measure, i.e. given a quantity f and its estimator f̂ , the latter is unbiased if and
only if 〈f̂〉 = f .

In principle, the optimal estimator for the angular power spectrum is:

Ĉl = |alm|2. (1.25)

In fact, for any value of m we got 〈Ĉl〉 = Cl. Here comes the great issue of this chap-
ter: how is it possible to perform an ensemble average within the real-data framework?
Indeed, what we “have” its just one Universe, i.e. only one realization of the sky. We
don’t have an ensemble of universes among which average the estimator. We can take
advantage, again, of the statistical isotropy of the Universe. In fact, isotropy ensures
that there is no preferred direction in the sky, thus, since the integers m represent the
azimuthal orientation of the spherical harmonics throughout the sphere, we can average
the estimators over the collection of {m : |m| ≤ l}, i.e. over different direction in the
same sky, obtaining a way to perform ensemble average among different orientation in
the sky instead of different sky. Unfortunately, the power of them-average is reduced by
its worst consequence, known as cosmic variance: since for low l the number ofm is small,
we’ll have a greater variance as low is the multipole. As l increase, this effect tends to
vanish, so that the estimation get more accurate as we go to smaller scales.
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After this considerations, we can write the actual optimal estimator for the angular
power spectrum as

Ĉl =
1

2l + 1

l∑
m=−l

|alm|2. (1.26)

so that 〈Ĉl〉 = Cl comes immediately introducing the Cl definition in eq. (1.10).
As small as we go with the size of physical scales, i.e. as more as we increase l, the

evaluation of Ĉl could become more and more frustrating since we have to evaluate
more and more harmonic coefficients ((2l + 1) per each l). Luckily, the solution to this
“stronger-effort” requirement is quite simple and involve the harmonic transform of the
original field. Following (Spergel & Goldberg 1999; Komatsu et al. 2002; Komatsu 2002),
we can define the azimuthally averaged harmonic transform of the original spherical field

el(n) =

√
4π

2l + 1

∑
m

almYlm(n) . (1.27)

Thus, we can rewrite the starting field as

T (n) =
1√
4π

∞∑
l=0

√
2l + 1 el(n), (1.28)

hence, the field is decomposed by using the set of e(n) that act like a basis, with constant
coefficients depending on the multipole l,

√
2l + 1/

√
4π. The advantage in the use of the

el maps is that they are independent on the number of m, since they are an harmonic
transformation of the starting field T , thus reducing the calculation effort.

The angular power spectrum estimator thus becomes

Ĉl =

∫
S2

dΩ

4π
|el(n)|2, (1.29)

i.e., the angular power spectrum is just the spatial average of the e2
l .

Let’s talk about variance. The variance of the Cl estimator is easily to obtain,

Var(Ĉl) ≡ 〈Ĉ2
l 〉 − 〈Ĉl〉2

=
1

(2l + 1)2

∑
mm′

〈alma∗lmalm′a∗lm′〉 − C2
l

=
1

(2l + 1)2

∑
mm′

[〈alma∗lm〉〈alm′a∗lm′〉+ 〈alma∗lm′〉〈alm′a∗lm〉+ 〈almalm′〉〈a∗lma∗lm′〉

+ 〈alma∗lmalm′a∗lm′〉c]− C2
l

=
1

(2l + 1)2

∑
mm′

[C2
l + Clδ

−m′
m + Clδ

m′

m + 〈alma∗lmalm′a∗lm′〉c]− C2
l

=
2

2l + 1
C2
l +

1

(2l + 1)2

∑
mm′

〈alma∗lmalm′a∗lm′〉c

The c subscript stands for connect, pointing at the connected 4-point correlation func-
tion, i.e. the trispectrum. The true meaning of the adjective connected is independent
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from lower order statistics. It is important to distinguish between connected and non-
connected component when talking about high-order statistics, since the non-Gaussian
information about the distribution is stored only into the connected part of the statistics.

If the field is Gaussian, the trispectrum term vanishes and the variance becomes sim-
ply:

VarG(Ĉl) =
2

2l + 1
C2
l . (1.30)

1.3 The Angular Bispectrum

If the fluctuations of the random field have a non-Gaussian distribution, mean and vari-
ance are not enough anymore to describe the properties of the distribution. We need to
go to higher order of the correlation function, since the higher order moments don’t van-
ish. The lower order moment is the skewness, parametrized by the 3-point correlation
function. It’s harmonic counterpart is the angular bispectrum, which is possible to derive
by means of theorem 1,

〈al1m1
al2m2

al3m3
〉 = (−1)m3Cl3−m3

l1m1l2m2
Pl1l2l3

= (−1)m3(−1)l1−l2−m3
√

2l3 + 1

(
l1 l2 l3
m1 m2 m3

)
Pl1l2l3

=

(
l1 l2 l3
m1 m2 m3

)
Bl1l2l3

(1.31)

Bl1l2l3 = (−1)l1−l2
√

2l3 + 1Pl1l2l3 (1.32)

Bl1l2l3 is the reduced angular bispectrum of the distribution. We already saw the matrix-
like object in eqq. (1.13) and (1.14). It is the Wigner 3j coefficient, which role is to ensure
that the three multipoles form a closed triangle in harmonic space, thus acting like a
delta function. In fact, whenever one of the three condition in eqq. (1.15)-(1.16) is not
satisfied, the Wigner 3j vanishes and so do the angular bispectrum. The reason for this
behavior is quite simple. The 3-point correlation function measures the excess probabil-
ity of finding three point of the distribution on the vertex of a triangle, i.e. the strength
of fluctuations on triangular configurations. So we must have three multipoles that not
only are able to from a triangle, but also they are oriented in such a way that the tri-
angle is closed (fig. 1.3). Wigner 3j conditions (1.16) and (1.17) impose exactly this two
statements respectively.

l1

l2

l3

Figure 1.3: One admissible angular bispectrum configuration. Only when the three multipoles
form a triangle in harmonic space the bispectrum doesn’t vanish.
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Altough the bispectrum is the first high-order statistics, it identifies with its con-
nected part. In fact, since 〈alm〉 = 0, we’ve got

〈al1m1
al2m2

al3m3
〉 = (〈al1m1

〉〈al2m2
al3m3

〉+ 2 cyc.) + 〈al1m1
al2m2

al3m3
〉c

= 〈al1m1
al2m2

al3m3
〉c

(1.33)

It can be shown that, if the field is strongly isotropic, the 3-point correlation function
could be written as (Hu 2001; Marinucci 2005, 2006)

〈al1m1
al2m2

al3m3
〉 = G{l1,m1; l2,m2; l3,m3} × bl1l2l3 (1.34)

where bl1l2l3 is a real symmetric function of only the 3 multipoles (l1, l2, l3). G is the
Gaunt integral defined as follows

G{l1,m1; . . . ; lnmn} =

∫
S2

Yl1m1
(x) . . . Ylnmn(x)dx

= (−1)mn

√
(2l1 + 1) · · · (2ln + 1)

(4π)n−2(2ln + 1)

∑
λ1...λn−3

Cλ10
l10l20 · · ·C

ln0
λn−30ln−10

×
∑

µ1...µn−3

Cλ1µ1

l1m1l2m2
· · ·Clnmnλn−3µn−3ln−1mn−1

(1.35)

where the Clml1m1l2m2
are the Clebsh-Gordan coefficients.

Then, using the definition of Wigner 3j coefficients (eq. 1.14), for n=3

G{l1,m1; l2m2; l3m3} = (−1)m3

√
(2l1 + 1)(2l2 + 1)

4π(2l3 + 1)
Cl3−m3

l1m1l2m2
Cl30
l10l20

=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
m1 m2 m3

)(
l1 l2 l3
0 0 0

) (1.36)

So, the function Pl1l2l3 , defined in eq. 1.31, must satisfies the relationship

Pl1l2l3 = bl1l2l3(−1)l1−l2
√

2l3 + 1

(
l1 l2 l3
0 0 0

)√
(2l1 + 1)(2l2 + 1)

4π(2l3 + 1)

= bl1l2l3C
l30
l10l20

√
(2l1 + 1)(2l2 + 1)

4π(2l3 + 1)

(1.37)

and the angular bispectrum (1.32) assumes the form

Bl1l2l3 =

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)
bl1l2l3 . (1.38)

The difference between Bl1l2l3 and bl1l2l3 is in the geometry of the field, i.e. the presence
of regions in which the field is not defined, the shape of this regions and so on. Geometry
is contained in Bl1l2l3 , but not in bl1l2l3 , which contains only informations about the
properties of the spherical random field.
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Applying the identity 1.21, we can show that the 3-point correlation function calcu-
lated above (eq. 1.31) satisfies the statistical isotropy

〈al1m1al2m2al3m3〉 =
∑

m′1m
′
2m
′
3

〈al1m′1al2m′2al3m′3〉D
l1
m1m′1

Dl2
m2m′2

Dl3
m3m′3

=

=
∑

m′1m
′
2m
′
3

Bl1l2l3

(
l1 l2 l3
m′1 m′2 m′3

) ∑
LMM ′

(
l1 l2 L
m1 m2 −M

)
×

×
(
l1 l2 L
m′1 m′2 −M ′

)
(2L+ 1)(−1)M+M ′DL

MM ′D
l3
m3m′3

=

=
∑

m′3LMM ′

Bl1l2l3δ
L
l3δ
−M ′
m′3

(
l1 l2 L
m1 m2 −M

)
(−1)M+M ′DL

MM ′D
l3
m3m′3

=

=
∑
m′3M

Bl1l2l3

(
l1 l2 L
m1 m2 −M

)∑
m′3

(−1)M−m
′
3Dl3

M−m′3
Dl3
m3m′3

=

=
∑
m′3M

Bl1l2l3

(
l1 l2 L
m1 m2 −M

)
δ−Mm3

=

= Bl1l2l3

(
l1 l2 L
m1 m2 m3.

)

(1.39)

where I used the orthogonality relation (eq. 1.24) and the group multiplication property
for Wigner-D function

Dl1
m1m′1

Dl2
m2m′2

=
∑
LMM ′

(
l1 l2 L
m1 m2 −M

)(
l1 l2 L
m′1 m′2 −M ′

)
(2L+ 1)(−1)M+M ′DL

MM ′

(1.40)
and the identity

∑
m1m2

(
l1 l2 L
m1 m2 M

)(
l1 l2 L′

m′1 m′2 M ′

)
=
δL
′

L δ
M ′

M

2L+ 1
. (1.41)

1.3.1 Optimal Estimator

Let’s multiply each side of eq. (1.31) by a single Wigner 3j coefficient(
l1 l2 l3
m1 m2 m3

)
(1.42)

and sum both l.h.s and r.h.s. over the three azimuthal orientation m1,m2,m3 as follows

∑
m1m2m3

(
l1 l2 l3
m1 m2 m3

)
〈al1m1

al2m2
al3m3

〉 = Bl1l2l3
∑

m1m2m3

(
l1 l2 l3
m1 m2 m3

)2

. (1.43)

Introducing the following property of Wigner 3-j coefficients,

∑
m1m2m3

(
l1 l2 l3
m1 m2 m3

)2

= 1, (1.44)
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we get ∑
m1m2m3

(
l1 l2 l3
m1 m2 m3

)
〈al1m1

al2m2
al3m3

〉 = Bl1l2l3 . (1.45)

This is enough to define the optimal estimator for the angular bispectrum,

B̂l1l2l3 =
∑

m1m2m3

(
l1 l2 l3
m1 m2 m3

)
al1m1al2m2al3m3 , (1.46)

that is unbiased by definition (〈B̂l1l2l3〉 = Bl1l2l3 is obvious).
Let’s take the azimuthally averaged harmonic transform (eq. 1.27) of the original

field in order to rewrite the bispectrum estimator in a more feasible way (Komatsu 2002;
Komatsu et al. 2002),∫

S2

dΩ

4π
el1(n)el2(n)el3(n) =

=

√
(4π)3

(2l1 + 1)(2l2 + 1)(2l3 + 1)

∑
m1m2m3

al1m1al2m2al3m3G{l1,m1; l2m2; l3m3}

=
∑

m1m2m3

al1m1
al2m2

al3m3

(
l1 l2 l3
m1 m2 m3

)(
l1 l2 l3
0 0 0

)
= B̂l1l2l3

(
l1 l2 l3
0 0 0

)
(1.47)

So the bispectrum estimator takes in account a map resulting in the multiplication of
three el, each of them at one of the requested frequency l,

B̂l1l2l3 =

(
l1 l2 l3
0 0 0

)−1 ∫
S2

dΩ

4π
el1(n)el2(n)el3(n). (1.48)

Equation eq. (1.48) is efficient, because the el’s can be calculated only once and tabulated
in advance, leaving only the integration that is then performed over the whole sphere.

The variance of the bispectrum estimator depends on the pentaspectrum, just like the
Cl variance that depends on the trispectrum. Let’s write the definition of the variance,

Var(B̂l1l2l3) = 〈B2
l1l2l3〉 − 〈Bl1l2l3〉

2

=
∑

m1m2m3

∑
m′1m

′
2m
′
3

〈al1m1al2m2al2m3al1m′1al2m′2al2m′3〉

×
(
l1 l2 l3
m1 m2 m3

)(
l1 l2 l3
m′1 m′2 m′3

)
− 〈Bl1l2l3〉2

(1.49)

We can decompose the pentaspectrum as the connected plus the non-connected part
(Matarrese et al. 1997; Verde et al. 2000a),

〈al1m1
al2m2

al2m3
al1m′1al2m′2al2m′3〉 = 〈al1m1

al2m2
〉〈al2m3

al1m′1〉〈al2m′2al2m′3〉+ 14cyc.

+ 〈al1m1al2m2al2m3〉c〈al1m′1al2m′2al2m′3〉c + 9cyc.

+ 〈al1m1
al2m2

〉〈al2m3
al1m′1al2m′2al2m′3〉c + 14cyc.

+ 〈al1m1al2m2al2m3al1m′1al2m′2al2m′3〉c
(1.50)
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Let’s consider (n > 4)-order polyspectra vanishing, so we are in a quasi-Gaussian regime.
The symmetry of ensemble average (〈almal′m′〉 ≡ 〈al′m′alm〉) allows us to restrict the cal-
culation to the l1 ≥ l2 ≥ l3 case. We can distinguish three sub-cases:

1. l1 > l2 > l3,

VarQG(Bl1l2l3) = Cl1Cl2Cl3 + 3B2
l1l2l3 ;

2. l1 = l2 > l3,

VarQG(Bl1l1l3) = C2
l1Cl3

[
2 +

∑
mm′

(
l1 l1 l3
m −m 0

)
×
(
l1 l1 l3
m′ −m′ 0

)]
+ 5B2

l1l1l3 ;

Note that when l3 = 2l1, VarQG(Bl1l1l3) = C2
l1
Cl3 [2 +

√
2πl1/(1 + 4l1)] + 5B2

l1l1l3
;

3. l1 = l2 = l3 = l,

VarQG(Blll) = C3
l [6 + 9

∑
mm′

(
l l l
m −m 0

)
×
(
l l l
m′ −m′ 0

)
] + 9B2

l1l2l3

≈ C3
l [6 + 9

1.15

2l + 1
] + 9B2

l1l2l3 .

If the field is perfectly Gaussian, also the bispectrum vanishes and the bispectrum
variance becomes:

VarG(Bl1l2l3) ≈ s123Cl1Cl2Cl3 . (1.51)

As long as the Wigner 3j symbols approach 0 as l increases, the above approximation
holds. The parameter s123 allows to distinguish among scalene, isosceles and equilateral
triangle configurations, assuming the values 1, 2 and 6 respectively. For the sake of sim-
plicity, we can define the product of three Cl with the shape function as Cl1l2l3 , thus the
variance can be rewritten as

VarG(Bl1l2l3) = Cl1l2l3 . (1.52)

1.4 The Angular Trispectrum

The four-point correlation function contains information about the kurtosis of the dis-
tribution, that is, the height of the tails relative to a Gaussian distribution for which the
kurtosis vanishes. As we already done for the three-point correlation function, we’ll use
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theorem 1 in order to derive the structure of the four-point correlation function,

〈al1m1al2m2al3m3al4m4〉 = (−1)m4

l2+l1∑
L=|l2−l1|

CLl4−m4

l1m1l2m2l3m3
Pl1l2l3l4(L)

= (−1)m4

∑
L

L∑
M=−L

CLMl1m1l2m2
Cl4−m4

LMl3m3
Pl1l2l3l4

=
∑
LM

(−1)l1−l2−l3+L+M
√

(2L+ 1)(2l4 + 1)

(
l1 l2 L
m1 m2 −M

)
×

×
(
L l3 l4
M m3 m4

)
Pl1l2l3l4(L)

=
∑
LM

(−1)M
(
l1 l2 L
m1 m2 −M

)(
l3 l4 L
m3 m4 M

)
Ql1l2l3l4

(L)

(1.53)

where, to simplify the notation, I used the following substitution

Ql1l2l3l4
(L) = (−1)l1−l2−l3+L

√
(2L+ 1)(2l4 + 1)Pl1l2l3l4 . (1.54)

Ql1l2l3l4
(L) is the angular trispectrum of the distribution. If you are a keen observer you

should have noted that the columns in the second Wigner 3j are different between the
last two lines of eq. (1.53). I was allowed to do this because Wigner 3j symbols are
invariant for even permutation of columns. This is a choice usually made in literature,
in order to have resemblance between the two Wigner 3j symbols in the definition of
trispectrum.

Just like the three-point correlation function, the four-point correlation function de-
pends on the Wigner-3j coefficients that reduce the possible combinations of (l1, l2, l3, l4)
to the ones for which the symbols are not vanishing. The four-point correlation function
measures the excess probability of finding four point on the vertex of a quadrilateral,
i.e. the strength of fluctuation on a quadrilateral configuration. This configuration is
univocally identified by one of its diagonal L, which divides the quadrilateral into two
adjacent triangles (l1, l2, L) and (l3, l4, L) (fig. 1.4). That’s why two Wigner 3j symbols
are present in the definition on the trispectrum: they ensure that the two triangles in
which the quadrilateral is split exist and so the quadrilateral. The value of L thus lies
in max(|l1 − l2|, |l3 − l4|) ≤ L ≤ min(l1 + l2, l3 + l4). Furthermore, the major hint on
the existence of the quadrilateral is given by the m’s. In fact, from the first Wigner 3j we
have

m1 +m2 −M = 0

while from the second we have

m3 +m4 +M = 0.

Thus
m1 +m2 +m3 +m4 = 0

stating that the four multipoles (l1, l2, l3, l4) must close to form a quadrilateral. It is im-
portant to note that the 4-point correlation function results in the sum of the polyspectra
of every possible quadrilateral configuration for a given quadruplet (l1, l2, l3, l4). Indeed,
we have got the sum of Ql1l2l3l4

(L) over the diagonal L. Changing L means change the
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l1

l2
l3

l4

L

Figure 1.4: Quadrilateral configuration for the angular trispectrum. While the four multipoles
(l1, l2, l3, l4) labelled the side of the quadrilateral, L is the diagonal between (l1, l2) and (l3, l4).

shape of the quadrilateral without changing its sides, giving birth to brand new quadri-
lateral on which the trispectrum is evaluated.

It worth noting that the trispectrum is the lowest order statistics for which there exist
a non-vanishing non-connected component, i.e. a component due to the lower order
statistics. In fact we can write

〈al1m1
al2m2

al3m3
al4m4

〉 = (〈al1m1
al2m2

〉〈al3m3
al4m4

〉+ 2 cyc.) + 〈al1m1
· · · al4m4

〉c. (1.55)

For the trispectrum, the non-connected component is fully Gaussian. Furthermore it is
non-vanishing if and only if the multipoles are equal in pairs, i.e. l1 = l2 and l3 = l4, be-
cause of the orhonogal property of the power spectrum (eq. 1.10). It is thus appropriate
to distinguish the two components also in the reduced trispectrum, i.e.

Ql1l2l3l4
(L) = Gl1l2l3l4

(L) + T l1l2l3l4
(L), (1.56)

where Gl1l2l3l4
(L) labels the Gaussian part while T l1l2l3l4

(L) the actual trispectrum.

It is easy to show that also the four-point correlation function obeys the statistical
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isotropy (eq. 1.21)

〈al1m1
al2m2

al3m3
al4m4

〉 =
∑

m′1m
′
2m
′
3m
′
4

〈al1m′1 · · · al4m′4〉D
l1
m1m′1

Dl2
m2m′2

Dl3
m3m′3

Dl4
m4m′4

=
∑

m′1m
′
2m
′
3m
′
4

∑
LM

(−1)MQl1l2l3l4
(L)

(
l1 l2 L
m′1 m′2 −M

)(
l3 l4 L
m′3 m′4 M

)

×
∑

L1M1M ′1

(
l1 l2 L1

m′1 m′2 −M ′1

)(
l1 l2 L1

m1 m2 −M1

)
(2L1 + 1)(−1)M1+M ′1DL1

M1M ′1

×
∑

L2M2M ′2

(
l3 l4 L2

m′3 m′4 −M ′2

)(
l3 l4 L2

m3 m4 −M2

)
(2L2 + 1)(−1)M2+M ′2DL2

M2M ′2

=
∑
LM

(−1)MQl1l2l3l4
(L)

∑
L1M1M ′1

(
l1 l2 L1

m1 m2 −M1

)
(−1)M1+M ′1DL1

M1M ′1
δLL1

δMM ′1

×
∑

L2M2M ′2

(
l3 l4 L2

m3 m4 −M2

)
(−1)M2+M ′2DL2

M2M ′2
δLL2

δM−M ′2

=
∑

L1M1M2

(−1)M1Ql1l2l3l4
(L1)

(
l1 l2 L
m1 m2 −M1

)(
l3 l4 L
m3 m4 −M2

)
×
∑
M

(−1)M2+MDL
M1MD

L
M2−M

=
∑
L1M1

(−1)M1Ql1l2l3l4
(L1)

(
l1 l2 L1

m1 m2 −M1

)(
l3 l4 L1

m3 m4 M1

)
.

(1.57)

To reach the last line we take advantage of eqq. (1.24), (1.40) and (1.41). Furthermore, we
consider that (−1)M2+M = (−1)−M2−M .

1.4.1 Optimal Estimator

The estimator for Ql1l2l3l4(L) is obtained by multiplying both l.h.s. and r.h.s of eq. 1.53
for

(−1)M
′
(
l1 l2 L′

m1 m2 −M ′
)(

l3 l4 L′

m3 m4 M ′

)
(1.58)

and then sum over {m1,m2,m3,m4,M
′}. Exploiting the Wigner 3j orthonormality rela-

tions ∑
m1m2m3

(
l1 l2 l3
m1 m2 m3

)2

= 1; (1.59)

(2l3 + 1)
∑
m1m2

(
l1 l2 l3
m1 m2 m3

)(
l1 l2 l′3
m1 m2 m′3

)
= δ

m′3
m3 δ

l′3
l3

; (1.60)

∑
l3m3

(2l3 + 1)

(
l1 l2 l3
m1 m2 m3

)(
l1 l2 l3
m′1 m′2 m3

)
= δ

m′1
m1 δ

m′2
m2 , (1.61)
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the r.h.s of eq. 1.53 reduces as:∑
LMM ′

(−1)M+M ′
∑
m1m2

(
l1 l2 L
m1 m2 −M

)(
l1 l2 L′

m1 m2 −M ′
)

×
∑
m3m4

(
l3 l4 L
m3 m4 M

)(
l3 l4 L′

m3 m4 M ′

)
Ql1l2l3l4

(L)

=
Ql1l2l3l4

(L)

2L+ 1

(1.62)

and the reduced trispectrum estimator is then:

Q̂l1l2l3l4
(L) = (2L+ 1)

∑
m1m2m3m4M

(−1)M
(
l1 l2 L
m1 m2 −M

)(
l3 l4 L
m3 m4 M

)
× al1m1

al2m2
al3m3

al4m4
.

(1.63)

It’s easy to see that 〈Q̂l1l2l3l4
(L)〉 = Ql1l2l3l4

(L), thus the estimator is unbiased.
We can rewrite the estimator using the azimuthally averaged harmonic transform of

the starting field (eq. 1.27), again for reducing the calculation effort required to estimate
the trispectrum. This time we have to deal with a double integration. In fact,∫

S2

dΩ

4π

dΩ′

4π
el1(n)el2(n)el3(n′)el4(n′)PL(n · n′) =

=

√
(4π)4

(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l4 + 1)

4π

2L+ 1

∑
m1m2m3m4

al1m1al2m2al3m3

× (−1)MG{l1,m1; l2m2;L,−M}G{l3,m3; l4m4;LM},

(1.64)

where PL(n ·n′) is the Legendre polynomial of order L, related to the Spherical Harmon-
ics through the so-called addition formula:∑

M

Y ∗LM (n)YLM (n′) =
2L+ 1

4π
PL(n · n′). (1.65)

Expanding the 3-order Gaunt integral, we obtain the form for the integral estimator of
the reduced bispectrum∫

S2

dΩ

4π

dΩ′

4π
el1(n)el2(n)el3(n′)el4(n′)PL(n · n′) =

=

(
l1 l2 L
0 0 0

)(
l3 l4 L
0 0 0

)
Q̂l1l2l3l4

(L).

(1.66)

Since the trispectrum takes into account all of the possible quadrilateral configura-
tions a quadruplet (l1, l2, l3, l4) can assume, it is more appropriate to write down an esti-
mator that do the same. This aim is reached by performing the sum over the diagonal L
of the reduced angular trispectrum estimator:

Q̂l1l2l3l4
=
∑
L

Q̂l1l2l3l4
(L). (1.67)
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The integral form of this estimator takes into account only one integral,∫
S2

dΩ

4π
el1(n)el2(n)el3(n)el4(n) =

=

√
(4π)4

(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l4 + 1)

∑
m1m2m3m4

al1m1
al2m2

al3m3

× G{l1,m1; l2m2; l3,m3; l4,m4}.

(1.68)

G{l1,m1; l2m2; l3,m3; l4,m4} is the fourth-order Gaunt integral, which, following eq.
(1.35), assumes the form

G{l1,m1; l2m2; l3,m3; l4,m4} =

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l4 + 1)

(4π)4

×
∑
l

(2L+ 1)

(
l1 l2 L
0 0 0

)(
l3 l4 L
0 0 0

)
×
∑
M

(−1)M
(
l1 l2 L
m1 m2 −M

)(
l3 l4 L
m3 m4 M

)
.

(1.69)

Therefore, we get∫
S2

dΩ

4π
el1(n)el2(n)el3(n)el4(n) =

∑
L

(
l1 l2 L
0 0 0

)(
l3 l4 L
0 0 0

)
Ql1l2l3l4

(L), (1.70)

that is, the integral of the product of four el’s is just a renormalization of the full trispec-
trum estimator.

Let’s end this section with the variance of the trispectrum estimator,

Var(Q̂l1l2l3l4
(L)) = 〈Q̂l1l2l3l4

(L)2〉 − 〈Q̂l1l2l3l4
(L)〉2

= (2L+ 1)2
∑

m1,...,m4

∑
m′1,...,m

′
4

∑
MM ′

(
l1 l2 L
m1 m2 −M

)(
l3 l4 L
m3 m4 M

)

×
(
l1 l2 L
m′1 m′2 −M ′

)(
l3 l4 L
m′3 m′4 M ′

)
〈al1m1 · · · al4m4al1m′1 · · · al4m′4〉

− 〈Q̂l1l2l3l4
(L)〉2.

(1.71)

The polyspectrum the variance depends on is the eptaspectrum, which decomposition
using the lower-order statistics is:

〈al1m1
al2m2

al3m3
al4m4

al1m′1al2m′2al3m′3al4m′4〉 =

〈al1m1al2m2〉〈al3m3al4m4〉〈al1m′1al2m′2〉〈al3m′3al4m′4〉+ 419 cyc. perms.

+ 〈al1m1
al2m2

〉〈al3m3
al4m4

〉〈al1m′1al2m′2al3m′3al4m′4〉+ 419 cyc. perms.

+ 〈al1m1al2m2〉〈al3m3al4m4al1m′1〉〈al2m′2al3m′3al4m′4〉+ 279 cyc. perms.

+ 〈al1m1
al2m2

〉〈al3m3
al4m4

al1m′1al2m′2al3m′3al4m′4〉+ 27 cyc. perms.

+ 〈al1m1al2m2al3m3〉〈al4m4al1m′1al2m′2al3m′3al4m′4〉+ 20 cyc. perms.

+ 〈al1m1
al2m2

al3m3
al4m4

〉〈al1m′1al2m′2al3m′3al4m′4〉+ 14 cyc. perms.

+ 〈al1m1al2m2al3m3al4m4al1m′1al2m′2al3m′3al4m′4〉c.

(1.72)
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Due to the high number of cyclic permutation, I’ll report only the Gaussian component
of the variance (see the bispectrum variance eq. 1.51). Again, let’s restrict the evaluation
of variance to the l1 ≥ l2 ≥ l3 ≥ l4 case and the subsequent cases

1. l1 > l2 > l3 > l4,
VarG(Q̂l1l2l3l4

(L)) = (2L+ 1)Cl1Cl2Cl3Cl4 ;

2. l1 = l2 > l3 > l4,

VarG(Q̂l1l1l3l4
(L)) = (2L+ 1)C2

l1Cl3Cl4 [2 +
∑
m1m′1

(
l1 l1 L
m1 m1 0

)(
l1 l1 L
m′1 m′1 0

)
],

As well as with the bispectrum variance, we are dealing with a decreasing term
in l. From now on, for simplicity reasons, I’ll restrict the variance to non-decaying
terms;

3. l1 = l2 = l3 > l4,
VarG(Q̂l1l1l1l4

(L)) = 6(2L+ 1)C3
l1Cl4 ;

4. l1 = l2 = l3 = l4 = l,
VarG(Q̂llll(L)) = 24(2L+ 1)C4

l .

We bump into a situation analogous to that of the bispectrum. We can rewrite
variance in the compact form:

VarG(Q̂l1l2l3l4
(L)) = s1234(2L+ 1)Cl1Cl2Cl3Cl4 = (2L+ 1)Cl1l2l3l4 , (1.73)

where sl1l2l3l4 = 1, 2, 6, 24 depending on the sides of the quadrilateral are different
from each other, two equal and two different, three equal and when the quadrilat-
eral is equilateral respectively.



CHAPTER 2

A Very Brief History of Modern Cosmology

At the beginning of past century, the astronomer Edwin Hubble showed that there exist
a relation between the radial velocity and the distance of galaxies, and in general, of any
object outside the Milky Way (fig. 2.1) (Hubble 1929).

Figure 2.1: The original Hubble’s plot for the velocity-distance relation (Hubble 1929). While the
radial velocities were estimated easily by measuring galaxy redshifts, their distance were mea-
sured by means of the Cepheids variables inside the galaxies, acting like standard candles.

This relation is known as Hubble’s law

Vr = H0 ·D, (2.1)

where Vr is the radial velocity, D is the distance and the constant of proportionality H0

is the so-called Hubble’s constant. The most recent estimate for H0 comes from the Planck
survey (Planck Collaboration et al. 2016c), fixing H0 = 67.8± 0.9 km s−1 Mpc−1.

Hubble’s law holds for any point in the Universe in fact, taking any three points in
space, we have (fig: 2.2)

V12 = V1 −V2 = H0 · (D1 −D2) = H0 ·D12 (2.2)

where V1,V2 are the radial velocity of the galaxy located at the points 1 and 2 with
respect to the point 0, V12 is the radial velocity of galaxy 1 with respect to galaxy 2, D
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represents the distance from one point to another one, following for the indices the same
logic of the radial velocities. Then, every points of the Universe is receding from any
other point with a velocity that grows with the distance, proving that the Universe is
expanding.

O

1

2
D1

D2

D12

V1

V2

V12

Figure 2.2: The effect of the existence of Hubble law. If Universe is receding linearly from one
point, it recedes uniformly from each of its point, thus bringing to an overall expansion.

Several models were elaborated in order to explain the expansion of the Universe.
The most accredited is the Big Bang theory, which is supported by many discoveries of
the past century, namely the Cosmic Microwave Background radiation (CMB) (Penzias
& Wilson 1965), the Large Scale Structure of the Universe (LSS) (Peebles 1980) and the
abundance of light elements (Dodelson 2003).

According to the Big Bang theory, the Universe we live in is the result of an expan-
sion process that started when all of its components were contained in about a single
point, with density and temperature almost infinite. Then, the expansion brought this
singularity to evolve into the Universe we see today. This primordial singularity must
not be thought as embedded in a sort of “cosmic vacuum”, because the space and time
dimensions didn’t exist until the Universe expansion started, both space and time born
together with the Universe, and we can define them only within the Universe itself. As
the Universe expands, its temperature decreases, allowing the formation of elementary
particles. After 10−6 seconds, the Universe is well described by a mixture of protons,
neutrons, electrons and photons, interacting by means of Compton scattering. Due to
the frequent collisions with the electrons in this epoch, photons are thermalized. As the
temperature decreases, ionized nuclei of hydrogen, helium and lithium were formed by
protons and neutrons. When the temperature dropped to T ∼ 3000 K, electronic cap-
ture was allowed, making possible the formation of the firsts stable atoms. This period is
called recombination. After recombination, matter and radiation decoupled and photons
were free to propagate through the whole Universe, showing a blackbody spectrum.
This radiation comes down to us as the CMB. Since the photons travelled freely through
space, what we observe now using the CMB as probe is the Universe at the time of re-
combination. Meanwhile, matter began the process of fragmentation and accretion that
gave birth to the LSS of galaxies we see today.

The expansion of the Universe takes away one point from each other, so that the
physical distance between two objects grows with time. In order to define a distance
that is invariant with respect to the expansion of the Universe, i.e. a comoving distance,
we can define the scale factor a(t). This scale factor is time-depending and it is used to
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parametrize the expansion of the Universe. We can write

d(t) = a(t) · d0, (2.3)

where d(t) is the physical distance, d0 is the comoving distance and a(t) the scale factor.
From now on, we can refer to the expansion of the Universe by using the scale factor
a(t). Conventionally, at the present time, indicated with t0, the value of the scale factor
is set equal to 1.

The scale factor together with the cosmological principle, i.e. the Universe is isotropic
and homogeneous on large scales (hundreds of Mpc), allows one to write the metric of
the Universe, describing the distance of any two points in terms of time and space coor-
dinates. The metric of an homogeneous and isotropic Universe is known as Friedmann-
Lemaitre-Robertson-Walker metric and it’s the base of modern cosmology,

ds2 = −dt2 + a2(t)

[
dr2

1− κr2
+ r2(dθ2 + sin2 θdφ2)

]
(2.4)

where κ is a constant related to the curvature of the Universe (fig. 2.3), that is:

• κ = 1, the Universe is closed and its geometry is represented by a 4-dimensional
sphere where the sum of the angles of a triangle is greater than 180◦;

• κ = −1, the Universe is open, the 4-dimensional behavior is similar to the 3-
dimension saddle, in which the sum of the angles of a triangle is lower than 180◦.

• κ = 0, the Universe is flat and behaves like a 4-dimensional hyper-plane, e.g. the
sum of the angles of a triangle is 180◦;

It is possible to relate the geometry of the Universe to its energy content by means of
Einstein’s equations

Rµν −
1

2
gµνR = 8πGTµν , (2.5)

whereRµν is the Ricci’s tensor describing the curvature of the Universe, thus its geometry,
R is the scalar curvature, obtained by taking the trace of the Ricci’s tensor, G is the usual
gravitational constant, Tµν is the energy-momentum tensor, describing the energy density
of the Universe. In the equation (2.4) and (2.5) I used the convention

c = kB = 1, (2.6)

where c is the speed of light and kB is the Boltzmann’s constant. I will use this conven-
tion throughout this thesis.

In a Universe described by the metric in eq. (2.4), the Einstein’s equations (2.5) re-
duces to the so-called Friedmann’s equations(

ȧ

a

)2

=
8πG

3
ρ− K

a2
, (2.7)

ä

a
= −4πG

3
(ρ+ 3P ) (2.8)

where ρ is the energy density of the Universe and P the associated pressure. Energy and
pressure are related by means of a fluid equation, that for a homogeneous and isotropic
Universe is

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0, (2.9)
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Figure 2.3: Geometry of the Universe in the closed (upper sphere), open (middle saddle) of flat
(bottom plane) case. Red triangles show different behaviors depending on the geometry in which
they are defined. The Ω0 parameter is the total Universe energy density, which measurement
allows to discriminate between different topologies as well as κ. (NASA 2014).

corresponding to the second thermodynamic principle applied to the Universe content
with no exchange of heat between adjacent volumes. Thus, eq. (2.9) says that the ex-
pansion of the Universe is adiabatic. Unfortunately, eq. (2.7), (2.8) and (2.9) are not
independent, since we can derive one of them from the other two. In order to complete
the set of equation, we need an equation of state, i.e. an equation relating energy and
pressure, of the form P = P (ρ). For cosmology purposes, it was shown (Dodelson 2003;
Ryden 2003) that we can simply write

P = wρ. (2.10)

At a first glance, the content of the Universe can be divided into matter (non-relativistic
component) and radiation (relativistic component). There is a third unknown compo-
nent, called dark energy, introduced in order to explain the acceleration of the Universe
discovered by means of observation of type-Ia supernovae (Riess et al. 1998). Since this
component is not relevant for the aim of this thesis I won’t deal with it. We have w = 0
for non-relativistic component and w = 1/3 for the relativistic one.

As long as the Universe expands, the energy density decreases with time (fig. 2.4).
The energy density of the matter scales with the increase in volume of the Universe, i.e.

ρm ∝ a−3. (2.11)

For radiation, instead, we must consider also the cosmic redshift due to the expansion
of the Universe, that adds a factor a−1 to the proportionality relation, giving

ρr ∝ a−4. (2.12)
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Comparing eq. 2.11 and eq. 2.12, it is easy to say that there was a moment in which the
energy density of the Universe was dominated by radiation. Afterwards, the expansion
of the Universe led the energy density of the radiation to decrease more quickly than
the energy density of matter, that became the dominant component in the Universe. We
can thus divide the history of the Universe into two eras, radiation domination (RD) and
matter domination (MD) (fig. 2.4).

Figure 2.4: The energy content of the Universe is dominated by radiation or matter in different
moments.

The Friedmann equations 2.7 and 2.8 allow us to evaluate the rate of the expansion of
the Universe according to its energy density. In fact, according to the dominating com-
ponent, the scale factor changes differently. We can derive the time-evolution of scale
factor in different eras

a ∝ t 1
2 RD, (2.13)

a ∝ t 2
3 MD. (2.14)

It is important to remark that the Hubble constant is not really a constant. Indeed,
it is a time-dependent parameter, and its value depends on the rate of the expansion of
the Universe at the time in which it is calculated (Dodelson 2003). By means of back-
envelope math it is possible to show that

V(t) = H(t)D(t),

ȧ(t)d = H(t)a(t)d,
(2.15)

where V(t) is the receding velocity of a galaxy from another one calculated at time t,
D(t) is the physical distance between this two galaxies and d is the comoving distance,
then

H(t) =
ȧ(t)

a(t)
. (2.16)
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So, just like the scale factor, the Hubble parameter can be used to parametrizes the ex-
pansion of the universe. We can quantify how much the Universe expands between two
moments with the number of e-folds, defined as follows

N =

∫ t1

t0

H(t)dt =

∫ a1

a0

da

a
= ln

(
a1

a0

)
. (2.17)

2.1 Big Bang flaws

The Hot Big bang model describes well the actual dynamics of the Universe. But nev-
ertheless, it isn’t free from problems that could undermine the confidence in it. Here,
two of the main problems of the Hot Big Bang theory are listed, which bring scientist to
formulate the so-called inflationary paradigm.

2.1.1 Horizon problem

For each point in the Universe it is possible to define a casual horizon, i.e. the distance to
the farthest object for which the light emitted has got enough time to reach the observer,

dHOR = a(t)

∫ t0

0

dt

a(t)
=
a(t)

H0

2

1 + 3w
. (2.18)

Because of the presence of w, the dimension of the casual horizon changes depending
on which era the horizon is defined at. Thus, two points separated by a distance greater
than the horizon at any time could not be in casual contact.

Having said that, let’s talk about history of cosmology. In the nineties, the COBE sur-
vey showed that the CMB is uniformely distributed over the sky, with a perfect black-
body spectrum at the temperature of 2.725K (Smoot et al. 1992). Deviation from this
temperature, called anisotropies were found at level of

∆T

T
≈ 10−5, (2.19)

where ∆T is the deviation of the temperature in a point of the sky from the mean value
T . This low-level anisotropy shows the high isotropy level of the CMB. Such a uniform
distribution requires a thermalizing process to be established, thus each point in the
Universe should be in casual contact at the time of recombination. Unfortunately, this is
not the case. In fact, we can define the angular size of the horizon on the last scattering
surface at the moment of recombination. Isotropic CMB required an horizon angular size
greater then 2π, i.e. the angular size of the circle. First, let’s define the last scattering
surface as the fictional surface from which CMB is emitted. Now, let’s consider a flat
geometry and define the angular distance as the ratio

dA =
l

θ
(2.20)

where l is the proper length of an object in the sky and θ is the angular length from the
observer. The angular distance of the last scattering surface is ≈ 13 Mpc. The horizon
length during recombination is about dHOR(trec) ≈ 0.4 Mpc (Ryden 2003). Thus the
angular size of the horizon on the last scattering surface is

θHOR =
dHOR(trec)

dA
≈ 2◦. (2.21)
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Hence, two points at a distance greater than 2◦ on the last scattering surface were not
casual connected at the time of recombination, thus it was impossible to the photons to
be thermalized over the whole Universe, unless the Universe have got the same temper-
ature everywhere without any reason different by a universal fine tuning. The horizon
problem is exactly the inability to account for the reason why the microwave sky is al-
most perfectly isotropic.

2.1.2 The Flatness Problem

The Horizon problem is not the only difficulty that affects the Big Bang model. Let’s
define the critical energy density as the density the content of the Universe must have at
present time in order to be geometrically flat, i.e., using eq. (2.7) with κ = 0,

ρc =
3H0

8πG
, (2.22)

where H0 is the Hubble parameter at present time. Then we can define the density
parameter

Ω =
ρ

ρc
. (2.23)

The present value of the total energy density of the Universe, Ω0, as well as κ, indicates
its the geometry: open if Ω0 < 1, flat if Ω0 = 1 or close if Ω0 > 1. Ω0 was found to be
consistent with one (Hinshaw et al. 2009; Planck Collaboration et al. 2014c, 2016c), thus
consolidating the flat geometry hypothesis.

Let’s rewrite eq. (2.7) in this way

(Ω− 1) =
κ

ȧ2
(2.24)

and insert it into eq. (2.8). Thus, we can analyze the evolution of Ω

d

dt
(Ω− 1) = (Ω− 1)

8πG

3

(
ρ+ 3P

H

)
. (2.25)

We know that P = 0 for matter and P = ρ/3 for radiation, thus ρ+ 3P > 0. This means
that if we have Ω > 1, Ω increase with time, while for Ω < 1 it decrease with time. Then,
to have Ω0 ' 1 today, Ω has been much closer to unity then it is now. In particular, at
the Planck time τp =

√
~G ' 10−44s, we must have |Ωτp − 1| ≤ 10−60. Hence, the actual

observation is justified only if Ω was fine tuned at a value close to one.

2.2 Inflation solutions

The inflationary paradigm was introduced just to account for the horizon and the flat-
ness problems that Big Bang theory is not able to resolve (Guth 1981; Guth & Pi 1982).
Although it was created “ad hoc”, it can explain also the origin of the inhomogeneities
that seeded the LSS of the Universe and the anisotropies of the CMB.

The main idea of the inflationary paradigm is that there was a period during the his-
tory of the Universe, between about 10−36 and 10−32 seconds after the Big Bang (Liddle
& Lyth 2000), in which the expansions was accelerated, that is

d2a

dt2
> 0. (2.26)
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By means of eq. 2.8 we can explicitly write the condition that make inflation possible,
i.e.

P < −ρ
3
. (2.27)

Assuming a flat Universe (κ = 0) and P = −ρ , it is easy to show that we have

ρ = constant,
H = constant

(2.28)

then, using again eq. 2.8, we can write the time dependence of the scale factor during
the inflationary period

a(t) = aee
H(t−te) ti < t < te. (2.29)

that is an exponential expansion. In eq. 2.29, ti and te are the time at which inflation
started and ended respectively.

2.2.1 Solution to the Big Bang problems

Inflation solves horizon and flatness problem. At the begin of inflation, the Universe is
radiation dominated (Ryden 2003), thus we can write the size of the horizon as

dHOR(ti) = a(ti)

∫ ti

0

dt

a(t)
= a(ti)

∫ ti

0

dt

a(ti)
(
t
t1

) 1
2

= 2ti, (2.30)

where ti is the time at the begin of inflation. At the end of inflation, the horizon size is

dHOR(tf ) = a(tf )

∫ tf

o

dt

a(t)

= a(ti)e
N

∫ ti

0

dt

a(ti)
(
t
t1

) 1
2

+

∫ tf

ti

dt

a(ti)exp(H(ti)(t− ti))

 ,

(2.31)

where tf is the time at the end of inflation and N is the number of e-folds the Universe
was expanded of. If N is large, we have

dHOR(tf ) = eN (2ti +H−1). (2.32)

Thus, considering ti ≈ 10−36 s, H−1 ≈ 1036 s−1 and N ≈ 100 e-foldings, we get

dHOR(ti) = 2ti ≈ 6× 10−28m (2.33)

and
dHOR(ti) = 3ti ≈ 6× 0.8pc, (2.34)

i.e. inflation generates a boost on the horizon. Thus the actual horizon has to be increased
by a factor eN , giving dHOR(trec) ≈ 1043 Mpc, high enough to obtain a casual angular
size many many times larger than 2π.

At the same time, flatness problem is solved by noting that, since H ≈ constant
during inflation, we have

Ω− 1 =
κ

a2H2
, (2.35)
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then Ω is driven towards to one rather than away from it. We can easily check out how
much the Universe has to be expanded to make Ω so close to one like it is today. Since
Ω ∝ a−2 during inflation, we have

|Ω− 1|tf
|Ω− 1|ti

=

(
ai
af

)2

= e−2N , (2.36)

where ti and tf are the times at which the inflation begins and ends respectively. Then,
if we consider |Ω− 1|ti about unity, we must have

N = 30 ln 10 ≈ 70 e− folds. (2.37)





CHAPTER 3

The very first moments of the Universe: Inflation

Last chapter ended with the observation that the existence of a period in which the
Universe expansion was accelerated brings solutions to the open issues of the Hot Big
Bang model. The known components of the Universe, matter and radiation, don’t have
the needed prerequisites to give birth to a period of inflation. Furthermore, the time-
evolution of the scale factor due to matter and radiation is known, equation (2.13) and
(2.14), and it is far from an exponential one.

In order to satisfy the condition in eq. 2.27 and attain inflation, we must introduce a
scalar field φ known as inflaton,

φ(t, x) = φ0(t) + δφ(t, x), (3.1)

where φ0 is the zero-order homogeneous part of the scalar field, whose value is the ex-
pectation value of the inflaton, and δφ is the quantum vacuum fluctuation.

Inflation caused by the only inflaton is a classical example of single-particle model,
that is the simplest model allowing to achieve inflation, representing the so-called stan-
dard scenario. In order to obtain inflation, other models were developed, e.g. taking in
account more then one scalar particle, the so-called multi-fields models. The interac-
tions between particles gives rise to different vacuum fluctuation of the energy density
with respect to the standard scenario. This fluctuation are inherited by curvature, which
perturbations seeded LSS and CMB anisotropies.

3.1 Zero-order part of inflaton

The homogeneous part of the inflaton behaves like a perfect fluid, whose energy density
and pressure are given by

Tµν = −gαν ∂φ
∂xν

∂φ

∂xβ
− gαβ

[
1

2
gµν

∂φ

∂xµ
∂φ

∂xν
+ V (φ)

]
, (3.2)

that is the equation for the energy-momentum tensor of a scalar field φ. Starting from
eq. 3.2, we can rewrite energy and pressure of the inflaton as

ρφ =
1

2
φ̇2 + V (φ), (3.3)

Pφ =
1

2
φ̇2 − V (φ), (3.4)
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respectively. Hence, in order to satisfies the condition in eq. (2.27), we must have

V (φ)� φ̇2, (3.5)

thus the potential energy of the inflaton must be greater than its kinetic energy. This
condition is achieved is we consider a scalar field slowly rolling down its potential, in a
region where the potential is sufficiently flat (fig. 3.1). Solving eq. (2.7), we have

Figure 3.1: Potential for a slow-rolling scalar field. While the inflaton potential is almost constant,
Universe expands exponentially. When the inflaton potential energy reaches the minimum, the
field oscillates, decaying in matter and radiation.

H2 ' 8πG

3
V (φ), (3.6)

so that, in presence of flat potential, H ≈ constant.
Slow-roll can be parametrized by means of two parameters,

ε =
M2
p

2

(
V ′

V

)2

= − Ḣ

H2
, η = M2

p

(
V ′′

V

)
, (3.7)

where Mp ≡ (8πG)−
1
2 ' 2.4× 1018 GeV is the reduced Planck scale. In order to achieve

inflation we must have ε, |η| � 1 (Bartolo et al. 2004). By means of eq. 2.8, it is possible
to show that the slow-roll parameter ε also constraints the end of inflation, that is

ä

a
= Ḣ +H2 = (1− ε)H2 > 0⇔ ε < 1. (3.8)

Then, as long as ε < 1 inflation works. When this condition fails, inflation stops and
begin the phase of monotonically expansion of Universe, driven by radiation first and
matter later.

The end of inflation is achieved when the potential of the scalar field stops to slow-
roll and reaches the minimum. Then, a phase of oscillatory motion of the inflaton about
the minimum of potential begins, during which the scalar field decades into light par-
ticles. This phase is known as reheating because the temperature of the Universe, after
the exponential cooling due to the extremely fast inflationary expansion, reaches pre-
inflationary level (Ryden 2003).
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3.2 Quantum fluctuations of the inflaton

Fluctuations of the matter and photon distribution, that seeded LSS of the Universe and
CMB radiation, were associated to primordial energy density perturbations generated
in the early phases of the Universe evolution, which survive after the inflation. When
the Universe became matter dominated (z ∼ 3200), primeval density inhomogeneities
(δρ ∼ 10−5) were amplified by gravity and grew up into the structures we see today
(Peebles 1980; Coles & Lucchin 2002). Then, there must have been small preexisting
fluctuations on relevant physical length scale (∼ 1 Mpc, typically the scale of a galaxy),
that behave as “seed” for the inhomogeneities, which left the Hubble radius during ra-
diation dominated or matter dominated era. In the Big Bang model, perturbations on
this small scales have to be put in by hand. Inflation, instead, provide a mechanism by
which density perturbations (and gravitational waves) were generated.

In order to achieve a period of inflation, there must have been a scalar field such as
that one in eq. (3.1) which dominates the energy density of the Universe in that mo-
ment. So, quantum perturbations of the scalar field imply fluctuations on the energy-
momentum tensor Tµν , and hence, by means of the Einstein equations (2.5), on the metric
gµν of the Universe, giving rise to perturbations of the curvature ζ (that may be loosely
thought as a gravitational potential in the Universe). Then, these perturbations acts first
on the coupled radiation-matter plasma and latter on matter, giving rise to matter and
temperature perturbations δρ via the Poisson equation∇2ζ = 4πGδρ. These fluctuations
will then start growing, generating anisotropies in the photon distribution and fluctua-
tion in the matter density field.

During inflation, the comoving Hubble radius (aH)−1, that is the scale beyond which
no casual processes can be attained, decrease with time. The quantum fluctuations of the
scalar field that drives the inflation arise on scales smaller then the comoving Hubble
radius, so, one can use the flat space-time quantum field theory to describe the scalar
field vacuum fluctuations (Bartolo et al. 2004). Then, the inflationary expansion stretches
the wavelength of the quantum fluctuations to outside the horizon were they follows a
classical evolution (fig. 3.2). The amplitude of fluctuations is frozen-in since it is not
affected by microscopic physics, and it is fixed at same value δφ at the horizon crossing,
remaining almost unchanged, whereas its wavelength grows exponentially. (The same
mechanism also generates stochastic gravitational waves (Starobinskiǐ 1985; Abbott &
Wise 1984)).

The fluctuations of the scalar field produce primordial perturbations in the energy
density ρφ, which are then inherited by the radiation and matter to which the inflaton
decays during rehating phase after inflation. Once inflation has ended, the Hubble ra-
dius grows faster than the scale-factor, so the fluctuations eventually reenter the Hubble
radius during radiation or matter dominated eras, giving rise to the structure we dealt
above.

The physical wavelength in the range accessible to cosmological observations today
exit the horizon around 60 e-foldings or so before. The spectra of these perturbations
give us a direct observational connection to physics of inflation because they preserve
a signature of inflation. As we shall see, the analysis of CMB anisotropies gives a pow-
erful tools to measure the inflationary perturbations. The WMAP collaboration confirm
for the very first time the detection of adiabatic super-horizon fluctuations (Peiris et al.
2003). These observations were confirmed afterwards by Planck survey (Planck Collab-
oration et al. 2014d,e).
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Figure 3.2: Behaviour of the quantum fluctuations during inflation. R = ζ are the curvature
perturbations, generated during inflation and their wavelengths λ are stretched from microscopic
scales to astronomical scales during inflation.

3.2.1 Quantitative description of quantum perturbations

In order to describe quantitatively the behaviour of the fluctuations of the inflaton and
their evolution during the inflation stage, we define a massless scalar field χ in a pure
de Sitter stage, with Pχ = −ρχ = constant and H = constant, different from the inflaton
(see Bartolo et al. 2004, for details)

χ(t, x) = χ0(t) + δχ(t, x), (3.9)

where χ0(t) is the homogeneous classical value of the scalar field and δχ is the quantum
fluctuation of χ from the expected value.

Performing the Fourier transform of the quantum fluctuations

δχ(t, x) =

∫
d3k

(2π)3/2
eik·xδχk(t), (3.10)

it is possible to write down the equation of motion for the fluctuations

δχ̈k + 3Hδχ̇k +
k2

a2
δχk = 0, (3.11)

that is simple the equation of motion of a damping harmonic oscillator. Then, we can
consider two cases, depending on the relation between the wavelength λ of the fluctua-
tions and the Hubble horizon H−1:
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• λ� H−1, i.e. for wavelengths within the horizon, eq. (3.11) reduces to

δχ̈k +
k2

a2
δχk = 0, (3.12)

that is the equation of motion of an harmonic oscillator. Then, the solution for the
quantum fluctuations is a plane wave

δχk ∝ eiωt (3.13)

where the frequency ω = k/a decrease with time because the scale factor grows
exponentially during inflation. Then, as long as the wavelengths of the fluctua-
tions are within the Hubble radius, the fluctuations oscillate with a wavelength
that grows with time.

• λ� H−1, i.e. for wavelengths beyond the horizon, eq. (3.11) reduces as

δχ̈k + 3Hδχ̇k = 0 (3.14)

indicating that on super-horizon scales, δχk remains constant.

If we consider a scalar field with a non-vanishing mass, the amplitude of super-
horizon fluctuations is not exactly constant, but it acquires a dependence upon time

|δχk| = 2(νχ−3/2) Γ(νχ)

Γ(3/2)

H√
2k3

(
k

aH

)3/2−νχ
(3.15)

where

ν2
χ =

(
9

4
−
m2
χ

H2

)
. (3.16)

then, eq. 3.15 is valid for mχ ≤ 3/2H . On the other hand, if mχ > 3/2H , ν became
imaginary and the amplitude or the perturbations oscillates with time.

If we consider a very light mass for the scalar field, such that mχ � 3/2H , we can
introduce the parameter

ηχ =
m2
χ

3H2
(3.17)

in analogy with the slow-roll parameters ε and η for the inflaton field (eq. 3.7). Then, we
can expand the solution in eq. 3.15 in ηχ and take the lowest order component, i.e.

|δχk| =
H√
2k3

(
k

aH

)3/2−νχ
(3.18)

where
3

2
− νχ ' ηχ. (3.19)

Now, instead to consider a perfect de Sitter stage, we introduce a little deviation. In
fact, during inflation, in a quasi de Sitter expansion, the Hubble parameter evolve with
time as Ḣ = −εH2. Then, we have to put a correction of order ε in eq. 3.15

|δχk| '
H√
2k3

(
k

aH

)ηχ−ε
' H√

2k3

[
1 + (ηχ − ε)ln

(
k

aH

)]
, (3.20)

so we get
|δχ̇k| ' |Hηkδχk| � |Hδχ|, (3.21)

then, the variation of the amplitude of the fluctuations is negligible, so the fluctuations
are (nearly) frozen on super-horizon scales.
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3.2.2 The Power Spectrum

In order to characterize the properties of the fluctuations, we can introduce the power
spectrum. Firstly, define the random scalar field f(t, x) labelling the amplitude of the
perturbations at a given moment t and at a given position x. For such field, we can
perform the Fourier transform as

f(t, x) =

∫
d3k

(2π)3/2
eik·xfk(t), (3.22)

the dimensionless power spectrum P(k) can be defined through

〈fk1f∗k2〉 ≡
2π2

k3
Pf (k)(k1 − k2), (3.23)

where the angled brackets denote ensemble average. From the above definition, we can
rewrite the mean square value of f(t, x) in real space as

〈f2(t, x)〉 =

∫
dk

k
Pf (k), (3.24)

then, the power spectrum Pf is the contribution to the variance of the field f(t, x) per
unit logarithmic interval in the wave number k. Thus, the power spectrum measures the
amplitude of the fluctuations at a given scale k.

To describe the slope of the power spectrum it is standard practice to define a spectral
index nf (k) through

nf (k)− 1 ≡ d lnPf
d ln k

. (3.25)

In the case of a light mass (m� 3/2H) field χ in a de Sitter phase (but also in a quasi
de Sitter phase, as already seen), we find from eq. (3.15) that the power spectrum on
super-horizon scales is given by

Pδχ(k) =

(
H

2π

)2(
k

aH

)3−2νχ

, (3.26)

where νχ is given by eq. (3.16). Thus, in this case the dependence on time is tiny, and the
spectral index slightly deviates from unity

nδχ − 1 = 3− 2νχ = 2ηχ. (3.27)

As we already have seen, fluctuations of the scalar field can be generated on super-
horizon scales as in eq. (3.15) only if the scalar field is light. In fact, it can be shown
that, for very massive scalar field, that is mχ � 3/2H , the fluctuations of the scalar
field remain in the vacuum state and do not produce perturbations on cosmological rel-
evant scales. Indeed, the amplitude of the power spectrum is damped exponentially as
e−2m2

χ/H2 and the spectral index is equal to 4 (Pilo et al. 2004).
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Bispectrum of Large Scale
Structure





CHAPTER 4

Matter Power spectrum, Bispectrum and Parameter
Degeneracy

4.1 Angular Statistics for 3-Dimensional Fields

In order to study the physics that drove matter in the Large Scale Structure we see today,
the only visible observable is the galaxy distribution across the Universe. Assuming that
galaxies trace the matter distribution, their distribution assumes a fundamental role. The
galaxy distribution is described by means of the overdensity function:

δg(n̂, z) =
ng(n̂, z)− n̄(z)

n̄(z)
, (4.1)

where ng(n̂, z) is the number of galaxy in the direction n̂ of the sky at redshift z and n̄ is
the averaged spatial density at the same redshift. Given its Fourier transform,

δk(z) =

∫
d3r δg(n̂, z)e

ik·r, (4.2)

we can define the statistics used to describe the behavior of the distribution and therefore
give hints about the physics of the galaxy clustering. The lowest order statistic is the
power spectrum, i.e. the Fourier counterpart of the two-point correlation function,

〈δk1δk2〉 =

∫
d3r1d

3r2e
−ik1·r1e−ik2·r2 〈δ(r1)δ(r2)〉

= (2π)3δD(k1 + k2)

∫
d3xe−ik·xξ(x)

= (2π)3δD(k1 + k2)P (k1).

(4.3)

The two-points correlation function ξ(x) parametrizes the excess probability to find two
galaxies separated by a certain distance. The power spectrum gives the same informa-
tion, in the form of the power of the distribution at each physical-scale k−1. The highest
the excess probability at a physical scale, the highest is the power of P (k) at the same
scale. Eq. 4.3 shows that it doesn’t matter the orientation of the two-galaxies system in
the distribution, but just the distance between them. This follows directly from homo-
geneity and isotropy of the Universe. For this reason, P depends only on the modulus of
k, not on its orientation. The Dirac delta ensures that, in Fourier space, the two vectors
k have the same modulus and opposite direction, with the starting-point of one located
at the end-point of the other, and vice versa.
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The first higher-order statistic is the bispectrum, that is the Fourier counterpart of the
three-points correlation function:

〈δk1
δk2

δk3
〉 ≡ (2π)3δD(k123)B(k1,k2,k3) , (4.4)

where ki1...in ≡ ki1 + . . . + kin . The three-point correlation function express the excess
probability to find three galaxies placed at the three vertex of a closed triangle, condi-
tion ensured by the presence of the Dirac delta in the above definition. We can use this
information to study the physics of the galaxy clustering, a non-Gaussian process that
introduces non-Gaussianity in the galaxy distribution, easily detectable through the bis-
pectrum.

4.2 Evolution of fluctuations

4.2.1 Initial Conditions

The main legacy of inflation is the generation of curvature perturbations, inherited by
matter. The fluctuations of matter eventually grow thus bringing to the Large Scale
Structure of filaments and clusters of galaxies that we see today. The initial fluctuations
are described by the power spectrum, set by inflation to

PL(k) ∝ δHknsT 2(k) (4.5)

where the L subscript stands for linear, δh parametrizes the amplitude of fluctuations
at earlier time, while T (k) is the transfer function that describes the evolution of per-
turbations (Dodelson 2003). This power spectrum represents our initial condition, thus
Gaussian, since a Gaussian distribution is fully described by its variance.

4.2.2 Perturbation Theory

Let’s assume that

• Matter is (essentially) Cold Dark Matter (CDM);

• We live in a Einstein-De Sitter Universe, i.e. Ωm = 1;

• We are using a Newtonian approximation

1. k >> H , scales smaller than casual horizon,

2. vp << c, velocity of particles is smaller than that of light.

We will use comoving coordinates, related to physical ones as follows:

• Position: r(t) = a(t)x;

• Velocity: v(t) = dr(t)
dt = ȧx + adx

dt = Hax + u(t), where u is the peculiar velocity of
the particles;

• Conformal time: dτ = dt
a(t) .

Using the definition of conformal time, we can rewrite the Hubble parameter as H =
1
a
da
dτ = aH and thus the velocity becomes v(t) = Hx+ u(t).

The expressions for the perturbation are:



Matter Power spectrum, Bispectrum and Parameter Degeneracy 41

• Matter Density: ρ(x, t) = ρ̄(t)[1 + δ(x, t)];

• Velocity: v(x, t) = Hx + u;

• Gravitational Potential: Φtot(x, t) = 2πG
3 ρ̄r2 + Φ(x, t).

In order to understand how the fluctuations evolve, we have to write the equation of
motions, i.e.

1. Continuity eq. ∂ρ∂t +∇r · ρv = 0;

2. Euler eq. ∂v∂t + v · ∇rv = −∇rφt;

3. Poisson eq. ∇2
rφt = 4πGρ.

We consider a pressure-less fluid and the single-stream approximation, i.e. in each point in
space it is defined a unique velocity (it is not possible in non-linearities where there are
chaotic motions and galaxies in the same point may have different velocities). Thus, the
equation of motion evolves as:

1. Continuity equation:
∂δ

∂τ
+∇ · [(1 + δ)u] = 0 (4.6)

2. Euler equation:
∂u

∂τ
+ u∇ · u +Hu +∇φ = 0 (4.7)

3. Poisson equation:

∇2φ =
3

2
H2δ (4.8)

4.2.3 Linear Theory

Eq. (4.6), (4.7) and (4.8) are actually non-linear because of the quadratic term in Euler
equation. Linearize the equations means take the first-order component of the equations,
i.e.

∂δ

∂τ
+ θ = 0, (4.9)

∂θ

∂τ
+Hθ +

3

2
H2δ = 0, (4.10)

where θ is the divergence of the velocity, i.e. θ(x, t) = ∇ · u(x, t).
Let’s move on Fourier space. Single-stream approximation is expected to work also

in Fourier space (for small k’s). Inserting eq. (4.9) in eq. (4.10) we get

∂2δk
∂τ2

+H∂δk
∂τ
− 3

2
H2δk = 0. (4.11)

Consider solution of the type δk = D(τ)Ak, the above equation becomes

∂2D

∂τ2
+H∂D

∂τ
− 3

2
H2D = 0. (4.12)
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Let’s do the ansatz D(τ) = an. The eq. of motion becomes

n2 +
n

2
− 3

2
= 0, (4.13)

with solution n = 1,−3/2. The first solution is the growing mode, the second the decay-
ing mode. Thus we have solution for the density and velocity

δk = Aka+Bka
−3/2. (4.14)

θk = −∂δk
∂τ

= −H
(
Aka−

3

2
Bka

−3/2

)
. (4.15)

The physical meaning of this solution is clear. If we set up initial condition in growing
mode, i.e. Ak 6= 0 and Bk = 0, we have peculiar velocities pointing toward the center of
a perturbation, while in decaying mode it happens the contrary. Since decaying mode
vanishes with time, the net effect of the evolution of perturbation is to cluster around
overdensities.

Solution in ΛCDM

Consider a ΛCDM with Ωm + ΩΛ = 1. The equations of motions reduce as

d2D

dη
+

[
2 +

d lnH

dη

]
d lnD

dη
+
d lnH

dη
D = 0, (4.16)

where η = ln a. In this case, the decaying mode scales as D−(a) ∝ H(a) while the
growing mode

D+(a) =
5

2
H2

0 Ωm0H(a)

∫ a

0

da

a3H3(a)
≡ g(a)H(a). (4.17)

We can define the growth rate

f =
d lnD

d ln a
. (4.18)

For EdS model, f = 1 while for ΛCDM cosmology is f ≈ Ω0.55
m .

4.2.4 Non-Linear Theory

In Linear theory we have δ, θ << 1. These assumptions break down on small scales and
small redshifts, thus we cannot neglect the quadratic term in Euler equation. Let’s define

δNL = δL + δ(2) + δ(3) + . . . ,

where δ(2) ∝ δ2
L, δ(3) ∝ δ3

L and so on.
Let’s assume an EdS Universe. The non-linear equations of motions become

∂δ

∂η
−Θ = ∇ · (δV), (4.19)

∂Θ

∂η
+

1

2
Θ− 3

2
δ = ∇[(V · ∇)V], (4.20)
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where V = − u
H and Θ = ∇ · V. Let’s move again in Fourier space. Now it is more

difficult because of the quadratic terms. The r.h.s of continuity eq. transforms like

F [∇ · (δV)] =

∫
d3k1d

3k2δD(k12 − k)
k12 · k2

k2
2

δk1Θk2 , (4.21)

with k12 = k1 + k2. The r.h.s of Euler eq. instead

F [∇ · ((V · ∇)V)] =

∫
d3k1d

3k2δD(k12 − k)
(k1 · k2)k2

12

2k2
1k

2
2

Θk1Θk2 . (4.22)

Let’s define

ψ =

(
δ

Θ

)
. (4.23)

The equations of motion can be reduced as

∂ψa(k)

∂η
+ Ωabψb(k) =

∫
d3k1d

3k2γabc(k,k1,k2)ψb(k1)ψc(k2) (4.24)

with

Ωab =

(
0 −1
−3/2 1/2

)
. (4.25)

γabc has only two non-vanishing terms

γ112(k,k1,k2) =
k · k2

k2
2

δD(k− k12) ≡ α(k1,k2)δD(k− k12)

γ222(k,k1,k2) =
k2(k1 · k2)

2k2
1k

2
2

δD(k− k12) ≡ β(k1,k2)δD(k− k12) (4.26)

We try to find solution of the type

ψa(k, η) =

∞∑
n=1

anψ(n)
a (k). (4.27)

Substituting ψa in the equation of motions we get the nth-order solution

ψ(n)
a (k) = σab(n)

∫
d3k1d

3k2γbcd(k,k1,k2)

n−1∑
m=1

ψ(n−m)
c (k1)ψ

(m)
d (k2), (4.28)

where

σab(n) =
1

(2n+ 3)(n− 1)

(
2n+ 1 2

3 2n

)
. (4.29)

It is important to note that every solution is written using the low order solutions. As an
example, let’s calculate the second-order correction in perturbation theory,

ψ(2)
a (k) = σab(2)

∫
d3k1d

3k2γbcdψ
(1)
c (k1)ψ

(1)
d (k2), (4.30)

with

σab(2) =
1

7

(
5 2
3 4

)
. (4.31)
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ψ(1) was evaluated in the linear case. Considering only the growing mode, the solution
for the second order correction is

ψ(2)(k) =

(
δ

(2)
k

Θ
(2)
k

)
=

∫
d3k1d

3k2δD(k− k12)

(
F2(k1,k2)

G2(k1,k2)

)
δ

(1)
k1
δ

(1)
k2
, (4.32)

with

F2(k1,k2) =
5

7
+

1

2

k1 · k2

k1k2

(
k1

k2
+
k2

k1

)
+

2

7

(k1 · k2)2

k2
1k

2
2

, (4.33)

and

G2(k1,k2) =
3

7
+

1

2

k1 · k2

k1k2

(
k1

k2
+
k2

k1

)
+

4

7

(k1 · k2)2

k2
1k

2
2

. (4.34)

Eq. (4.32) can be generalized to higher-order as

ψ(n)(k) =

(
δ

(n)
k

Θ
(n)
k

)
=

∫
d3k1...d

3knδD(k− k1...n)

(
Fn(k1, ...,kn)

Gn(k1, ...,kn)

)
δk1 ...δkn . (4.35)

Given F1(k1...,kn) ≡ 1 and G1(k1...,kn) ≡ 1, we can iteratively calculate the F and the
G functions:

Fn(k1, ...,kn) =

n−1∑
m=1

Gm(k1, ...,km)

(2n+ 3)(n− 1)
[(2n+ 1)α(k1,k2)Fn−m(km+1, ...,kn)

+2β(k1,k2)Gn−m(km+1, ...,kn)]

(4.36)

Gn(k1, ...,kn) =
2n

3
Fn(k1, ...,kn)

−
n−1∑
m=1

k · k1...n

(k1...n)2
Fn−m(km+1, ...,kn)Gm(k1, ...km).

(4.37)

It is interesting to note that the difference between the solution of EdS model and
ΛCDM are below the percent level, thus it is possible to use the solutions of EdS as
solutions for the ΛCDM model.

Non-Linear Power Spectrum

Remember that the power spectrum is defined by P (k) = |δk|2. So, substituting δk as a
series we obtain:

〈δk1δk2〉 =
〈
δ

(1)
k1
δ

(1)
k2

〉
+
(〈
δ

(1)
k1
δ

(2)
k2

〉
+
〈
δ

(2)
k1
δ

(1)
k2

〉)
+
(〈
δ

(1)
k1
δ

(3)
k2

〉
+
〈
δ

(3)
k1
δ

(1)
k2

〉
+
〈
δ

(2)
k1
δ

(2)
k2

〉)
+ ...

(4.38)

The first term is of the second order and we know that it gives (2π)3δD(k1 − k2)Plin(k1).
The terms in the first brackets are of the third order, while the terms in the second brack-
ets are of fourth order and so on.
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Now the first term of the first brackets (the second term gives the same contribution):〈
δ

(1)
k1
δ

(2)
k2

〉
=

∫
d3q1d

3q2 F2(q1,q2)δD(k− q12)
〈
δ

(1)
k δ(1)

q1
δ(1)
q2

〉
= 0 (4.39)

for Gaussian initial condition. In the second bracket we have two equal term and a third
one that are 〈

δ
(1)
k1
δ

(3)
k2

〉
≡ δ(k12)P13(k1) = δ(k12)P31(k1) (4.40)

= 3Plin(k1)δD(k12)

∫
d3qF3(−k1,q,−q)Plin(q),

(4.41)

〈
δ

(2)
k1
δ

(2)
k2

〉
≡ δD(k12)P22(k1)

= 2δD(k12)

∫
d3qF 2

2 (q,k− q)Plin(q)Plin(|k− q|).
(4.42)

Tree-Level Bispectrum

The bispectrum at the lowest order in perturbation theory is

〈δk1δk2δk3〉 =
〈
δ

(1)
k1
δ

(1)
k2
δ

(1)
k3

〉
+
〈
δ

(1)
k1
δ

(1)
k2
δ

(2)
k3

〉
+ 2 Perm.

(4.43)

The first term vanishes because of Gaussian initial condition. The second term reduces
as 〈

δ
(1)
k1
δ

(1)
k2
δ

(2)
k3

〉
∝ δD(k123)B(k1,k2,k3)

=

〈
δ

(1)
k1
δ

(1)
k2

∫
d3q1d

3q2 δD(k3 − q12)F2(q1,q2)δ(1)
q1
δ(1)
q2

〉
=

=

∫
d3q1d

3q2 δD(k3 − q12)F2(q1,q2)
〈
δ

(1)
k1
δ

(1)
k2
δ(1)
q1
δ(1)
q2

〉
(4.44)

Expanding the trispectrum into connected and non-connected part and introducing the
lower order term in perturbation theory allows to gets

B(k1,k2,k3) = 2 [F2(k1,k2)Plin(k1)Plin(k2) + 2 Perm. ] . (4.45)

that is the so called tree-level bispectrum. In order to get rid of the scale-dependence of the
triangles, we can define the reduced bispectrum

Q(k1,k2,k3) =
B(k1,k2,k3)

P (k1)P (k2) + 2 Perm.
(4.46)

Let’s fix k1 and k2 and vary the angle between them. Calculations show that it is
easier to find galaxies in a row than in an equilateral configuration (B(k1,k2, 0) >
B(k1,k2, π/2)). Physically, this means that filaments are the preferred structures in the
Universe. Thus, non-linear perturbation theory provides the results of measurements.
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4.3 Parameter Degeneracy

Let’s call ng the number counts of the galaxies in real space. Thus, we can define the
fluctuations of this number count just like we did for the matter density field, i.e.

ng = n̄[1 + δg]. (4.47)

This quantity is important because it is impossible to directly measure the matter density
field because of the dark matter component. What we assume is that galaxies trace the
matter field, i.e.

δg = bδ (4.48)

where δ represents the overdensity field of the matter distribution while b is the linear
prefactor that relate the two field.

As well as it is not possible to directly measure the matter field, it is not possible to
measure the position of galaxies in real space because of their proper motion that affects
the measured distribution. What we get is a distribution in redshift space which power
spectrum is slightly different from the real one. Kaiser (1987) first shows how to relate
the actual power spectrum with the measured ones

P s(k, µ) =

(
1 +

f

b
µ2

)2

b2PL(k) (4.49)

where µ = k · r, f = ∂ logD
∂ log a and PL(k) is the power spectrum of the matter. The normal-

ization of the power spectrum can be set using σ8. What happens is that in the power
spectrum estimate, σ8 is degenerate with f and b (Pezzotta et al. 2016). This means that
we need new statistics in order to remove parameter degeneracy. This role is under-
taken by the bispectrum. Estimators of the 3-dimensional bispectrum were developed
through the last years, but yet, it is not sufficient to completely remove degeneracy. For
this reason, I introduce a new bispectrum estimator in harmonic space, with the aim of
combining it with the matter power spectrum and the 3-dimensional bispectrum estima-
tor and help in the task of removing degeneracy.



CHAPTER 5

Analysis of angular density fields

The aim of this work is to study the behavior of the angular statistics of the distribution
of matter lying on a shell of radius z. Although it seems there are no advantages, since
the number of triangles is lower in 2-dimensional case with respect to the 3-dimensional
one, it is important to derive and work with angular estimators because of the develop-
ment of photometric surveys, in which only the position of galaxy at a given redshift is
measured, so that the result of these measurements is a shell of projected galaxies along
the line of sight. Ongoing and future surveys are going in this direction, i.e. the Dark
Energy Survey (DES), the Physics of Accelerating Universe survey (PAU) and Euclid
survey.

The aim of this work is to develop (and apply to data) estimators of both power
spectrum and bispectrum. It was showed, in fact, that the combined use of both these
statistics allow to improve the results on the constraints (Fry 1994; Scoccimarro et al.
2004; Sefusatti et al. 2012; Sefusatti & Komatsu 2007). Example of projected statistics are
present in literature, for example in (Buchalter et al. 2000; Verde et al. 2000b; Hashimoto
et al. 2016a,b).

5.1 Spherical Projection

Since the distribution of galaxies is clearly 3-dimensional, we need to integrate it along
the line of sight, obtaining a 2-dimensional scalar field defined on the sphere. The inte-
grated distribution is:

δ(n̂) =

∫
dz φ(z)δg(n̂, z), (5.1)

where φ(z) is the radial selection function. In our analysis we will consider all the galax-
ies within a redshift bin centered at the z of interest. The observed galaxy distribution
along the line of sight inside the bin is described by the radial selection φ(z) that charac-
terizes the probability of finding a galaxy within the bin, normalized to unity within the
redshift range of interest ∫

z∈∆z

dz′ φ(z′) = 1. (5.2)

In case of zero-width redshift bin, i.e. the case in which we are considering only the
galaxy located at an exact redshift, the radial selection behaves like a Dirac delta. Other-
wise, the radial selection is composed by a window function W (z), that takes in account
the selection characteristic of the bin, convolved with the probability that a galaxy is lo-
cated inside the bin (Crocce et al. 2011). We can define this probability term according
to the galaxies redshift, the true one or the photometric one, case in which the photo-z
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error of the photometric galaxy survey is taken into account. In the exact case, the ra-
dial selection is simply the number of galaxies Ng per unit of redshift times the window
function:

φ(z) =
dNg
dz

W (z). (5.3)

In the photo-z case, the window function is convolved with the probability that the pho-
tometric measured redshift of the galaxy is the actual redshift of the galaxy P (z|zp) (Bu-
davári et al. 2003)

φ(z) =
dNg
dz

∫
dzp P (z|zp)W (zp) (5.4)

where W (zp) is the photometric redshift window function. In what follows, we will
consider the photo-z contribution to the radial selection, considering a top-hat window
function with same extrema as the redshift bin. Furthermore, we consider the photo-
metric error probability as a Gaussian distribution around the true redshift of the galaxy
(Ma et al. 2006).

5.2 Spherical decomposition

The integrated matter distribution in eq. (5.1) is actually a spherical field, making possi-
ble its decomposition with the Spherical Harmonics. Inserting eq. (4.2) and eq. (5.1) in
eq. (1.2), we obtain the harmonic coefficients for the δ(n̂):

alm =

∫
dΩδ(n̂)Y ∗lm(n̂) (5.5)

=

∫
dzφ(z)

∫
S2

dΩ

∫
d3k

(2π)3
δk(z)eik·rY ∗lm(n̂). (5.6)

The plane-wave expansion:

eik·r = eikrk̂·n̂ = 4π

∞∑
l=0

m=l∑
m=−l

iljl(kr)Y
∗
lm(k̂)Ylm(n̂), (5.7)

gives us the possibility to get rid of the integration over the solid angle Ω exploiting the
orthonormalisation property of the Spherical Harmonics1:

alm = 4πil
∫
dzφ(z)

∫
d3k

(2π)3
δk(z)jl(kr(z))Y

∗
lm(k̂). (5.8)

In the next sections I’ll exploit eq. 5.8 in order to get the prediction models for the angular
spectrum and bispectrum in the integrated galaxy distribution framework.

1∫
S2 dΩ Y ∗lm(n̂)Yl′m′ (n̂) = δl

′
l δ

m′
m
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5.2.1 The angular power spectrum Cl

Recalling eq. (1.10) and (5.8), we can write the angular spectrum of the integrated density
fluctuations as follows:

〈al1m1a
∗
l2m2
〉 =(4π)2il1−l2

∫
dz1dz2φ(z1)φ(z2)

×
∫

d3k1

(2π)3

d3k2

(2π)3
〈δk1

(z1)δk2
(z2)〉

× jl1(k1 r(z1))jl2(k2 r(z2))Y ∗l1m1
(k̂1)Yl2m2

(k̂2) ,

(5.9)

where ri ≡ r(zi). As we already saw in eq. (4.3), the product 〈δk1
(z1)δk2

(z2)〉 defines the
power spectrum of the full distribution. Introducing it in eq. (5.9), we can rewrite:

〈al1m1
a∗l2m2

〉 = (4π)2il1−l2
∫
dz1dz2φ(z1)φ(z2)

×
∫

d3k1

(2π)3

d3k2

(2π)3
(2π)3PL(k1, z1, z2)δD(k1 + k2)

× jl1(k1r(z1))jl2(k2r(z2))Y ∗l1m1
(k̂1)Yl2m2(k̂2).

(5.10)

Using the properties of the δD in spherical coordinate system:

δD(k + k0) =
1

k2
δD(k + k0)δD(k̂ + k̂0), (5.11)

we get:

〈al1m1
a∗l2m2

〉 =
(4π)2

(2π)3
il1−l2

∫
dz1dz2φ(z1)φ(z2)

×
∫
d3k1PL(k1, z1, z2)jl1(k1r(z1)))Y ∗l1m1

(k̂1)

× jl2(−k1r(z2))Yl2m2(−k̂1).

(5.12)

Now, exploiting the parity symmetry of the Spherical Bessel functions and of the Spher-
ical Harmonics,

jl(−x) = (−1)ljl(x) (5.13)

Ylm(−x) = (−1)lYlm(x) (5.14)

and the orthonormality of the Spherical Harmonics, we get:

〈al1m1a
∗
l2m2
〉 = δl2l1 δ

m2
m1

(4π)2il1−l2
∫
dz1dz2φ(z1)φ(z2)

×
∫

dk1

(2π)3
k2

1PL(k1, z1, z2)jl1(k1r(z1))jl2(k2r(z2)).

(5.15)

Thus, the angular spectrum is

Cl =
2

π

∫
k2dk

∫
dz1dz2 φ(z1)φ(z2)jl(kr1)jl(kr2)P (k, z1, z2). (5.16)
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The angular spectrum changes with respect to the scales at which we are evaluating it.
In addition, as we go to smaller and smaller scales, the evaluation of Cl gets computa-
tionally harder because of the oscillatory behavior of the spherical Bessel function jl(x)
for x � 1. Moreover, on the largest scales the redshift space distortions (RSD) become
important, forcing us to add this contribution to the calculation. If we divide the interval
of k into two, small and large scales, we can deal with Cl in two separate ways, allowing
us to write it in a more computationally feasible way.

Large Scales

On the largest scales, we can take advantage of the linear approach to describe the galaxy
power spectrum. In the linear approach the time-dependency of the power spectrum is
simply factorized-out,

P (k, z) ' D(z)2PL(k), (5.17)

where D(z) is the growth function characterizing the time-evolution of the matter fluc-
tuations in the linear regime:

δ(z) = D(z)δL. (5.18)

We can then rewrite the exact formula of the angular power spectrum as:

Cl =
2

π

∫
k2dkPL(k)Ψ2

l (k), (5.19)

with integrated selection function:

Ψl(k) =

∫
dzφ(z)D(z)jl(kr) , (5.20)

where we left implicit the redshift dependence of the line-of-sight distance r = r(z).
As I said earlier, the redshift space distorsions (RSD) play an important role in biasing

the statistics at large scales, while they vanish at the smallest scale. Following Padman-
abhan et al. (2007) and Crocce et al. (2011), in order to account for the RSD effect, we
modified the integrated radial selection Ψl(k) as follows:

ΨRSD
l (k) =

∫
dzφ(z)D(z)

[
(2l2 + 2l − 1)

(2l3)(2l − 1)
jl(kr)

− l(l + 1)

(2l − 1)(2l1 + 1)
jl−2

− (l + 1)(l + 2)

(2l + 1)(2l + 3)
jl+1(kr)

]
.

(5.21)

.

Small Scales

Evaluate the angular power spectrum in eq. (5.16) may be computationally hard. How-
evere, it’s possible to make eq. (5.16) more feasible by exploiting the so-called Limber
approximation (Limber 1953; Kaiser 1992, 1998) that follows from the orthogonality re-
lation of the spherical Bessel functions:∫

dk k2jl(kr1)jl(kr2)f(k) ' π

2

δD(r1 − r2)

r2
1

f

(
l + 1/2

r1

)
. (5.22)
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The higher the l the closer are the approximation results to the exact ones. This approxi-
mation leads to the following expression for Cl’s:

Climbl =

∫
dz

φ2(z)

r2(z)|r′(z)|
P

(
l + 1/2

r(z)
, z

)
. (5.23)

where we use the well-known property of Dirac’s delta:

δD(f(x)) =
∑
i

δD(x− xi)
|f ′(xi)|

, (5.24)

where the xi’s are the zeros of the function f(x). As well as the galaxy distribution, with
the Limber approximation the angular spectrum is just the integral along the line of sight
of the full galaxy power spectrum, convolved with a selection functions.

5.2.2 Angular Bispectrum

Recalling the definition of the harmonic coefficients for the integrated galaxies distribu-
tion (eq. 5.8), we can write the angular bispectrum (1.31) as:

〈al1m1al2m2al3m3〉 =

=
1

π3

{
3∏
i=1

ili
∫
dziφ(zi)

∫
d3ki jli(kir(zi))Y

∗
limi(k̂i)

}
× δD(k123)B(k1, k2.k3, z1, z2, z3) ,

(5.25)

where k123 = k1 + k2 + k3. The next step is to replace the Dirac delta with its integral
representation and take advantage of the plane-wave expansion, eq. (5.7), that is

δD(k123) =

∫
d3x

(2π)3

3∏
i=1

e−iki·x

=8

∫
d3x

3∏
i=1

∑
l′i,m

′
i

il
′
ijl′i(−kix)Yl′im′i(k̂i)Y ∗l′im′i(x̂),

(5.26)

Then, exploiting the orthonormality of the spherical harmonics and the symmetry prop-
erties of the Bessel functions (eq. (5.13)), remembering that i2l = (−1)l, we obtain

〈al1m1
al2m2

al3m3
〉 =

8

π3

3∏
i=1

{∫
dziφ(zi)

∫
dkik

2
i jli(kir(zi))

}
B(k1, k2, k3; z1, z2, z3)

∫
dxx2 jl1(k1x)jl2(k2x)jl3(k3x)

×
∫
d2x̂ Y ∗l1m1

(x̂)Y ∗l2m2
(x̂)Y ∗l3m3

(x̂).

(5.27)

The last line in eq. 5.27 is nothing but the Gaunt’s integral (eq. 1.36). In fact:∫
d2x̂ Y ∗l1m1

(x̂)Y ∗l2m2
(x̂)Y ∗l3m3

(x̂) =

= (−1)m1+m2+m3

∫
d2x̂ Yl1−m1(x̂)Yl2−m2(x̂)Yl3−m3(x̂)

= Gl1l2l3−m1−m2−m3
= (−1)l1+l2+l3Gl1l2l3m1m2m3

= Gl1l2l3m1m2m3
.

(5.28)
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In the second line we used the reality condition for the Spherical Harmonics

Y ∗lm(x) = (−1)mYl−m(x).

In the third line, we consider the fact that Gl1l2l3m1m2m3
6= 0 only if m1 + m2 + m3 = 0,

property heired by the Wigner-3j symbol
(

l1 l2 l3
−m1 −m2 −m3

)
. We considered also the

property of the Wigner-3j(
l1 l2 l3
−m1 −m2 −m3

)
= (−1)l1+l2+l3

(
l1 l2 l3
m1 m2 m3

)
and the fact that l1 + l2 + l3 must be even because of the presence of

(
l1 l2 l3
0 0 0

)
in

the Gaunt integral explicit form. Hence, recalling the definition of the reduced angular
bispectrum, eq. (1.38), we can write

bl1l2l3 =
8

π3

∫
dxx2

3∏
i=1

{∫
dkik

2
i dziφ(zi)jli(kir(zi))jli(kix)

}
×B(k1, k2, k3, z1, z2, z3) (5.29)

Unlike the angular spectrum, the angular bispectrum is hard to provide even at the
smallest scale. The introduction of linear theory, in fact, doesn’t help us to reduce the
amount of computation power we need to evaluate the seven integrals the bispectrum is
composed of. Anyway, we can treat the small scales as well as we’ve done with the Cl’s,
obtaining an extremely simple form for the bispectrum, as we’ll see below.

Limber Approximation

Similarly to the power spectrum, we can apply the Limber approximation, eq. (5.22), to
the integrals over the ki in eq. (5.29) in order to derive a simpler expression expected to
be valid at small scales. We obtain

bl1l2l3 '
∫
dxx2

3∏
i=1

{∫
dzi

φ(zi)

r2
i

δD(ri − x)

}

×B
(
l1 + 1

2

r1
,
l2 + 1

2

r2
,
l3 + 1

2

r3
; z1, z2, z3

)
(5.30)

Introducing f(x) = δD(r1 − x)δD(r2 − x), the integral over x in the previous equation
becomes ∫

dxx2 f(x)δD(r3 − x) = f(r3)δD(r1 − r3)δD(r2 − r3)

=
δD(z1 − z3)

|r′3|
δD(z2 − z3)

|r′3|
, (5.31)

with r′3 ≡ dr3(z)/dz. Finally, integrating over z1 and z2, we obtain the Limber approxi-
mation for the angular bispectrum as

bl1l2l3 =

∫
dzφ(z)3 1

r(z)4|r(z)′|2

B

(
l1 + 1

2

r(z)
,
l2 + 1

2

r(z)
,
l3 + 1

2

r(z)
; z

)
, (5.32)
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where we reinstated the explicit dependence of the line-of-sight distance r on redshift.

5.3 Angular Estimators

We already reviewed the estimators for the angular statistics in chapter 1. The purpose
of this section is to analyze two different aspects of the estimators. First, the case of
incomplete sky maps, then the fact that we have to take into account a large number of
multipoles combinations.

In the case of incomplete maps, what happens is simple. The Spherical Harmonics
orthonormality doesn’t hold anymore, thus introducing some bias in the Harmonic co-
efficients, as we will see in the next section. As long as we work with sky fractions, we
have to reduce this bias as much as possible. Luckily, there exist a powerful approxima-
tion that allows to reconstruct the true statistics starting from a biased one.

The second aspect is quite important since it affects the required computational ef-
forts because of the number of bispectrum configurations, which scales as l3max. Even
at low multipoles, i.e. lmax = 100, the number of bispectrum configurations is too high
to be computed in a short time. I’ll introduce then a binning in the multipoles interval,
in order to evaluate the statistics on the multipole bins. Thus, binned estimators are
required and they will be showed in the respective section.

5.3.1 Incomplete sky coverage

As we have seen, spherical harmonics form an orthonormal basis on the sphere. This
means that the properties of spherical harmonic stand as far as we deal with full-spherical
field. What if the spherical field contains some “gaps”, i.e. region of the sphere in which
the field is not defined? This is the normal routine in cosmological data analysis. For ex-
ample, in CMB analysis, to prevent spurious contribution from galaxy emission or other
foregrounds, it is customery to mask the region where non-cosmological components
are present (i.e. the galactic plane). In LSS analysis, instead, the surveys do not look at
the entire sky, but they are limited within a well-defined region of the sky. This means
that the field that we want to analyse (the photon anisotropy or the number of galaxies
distribution), represent an incomplete-spherical field.

In this case, the spherical harmonics lose their orthonormality. We can define the
coupling integral (Peebles 1980)

Wll′mm′ ≡
∫
S2

dΩ W (n̂)Y ∗lm(n̂)Yl′m′(n̂)

=

∫
S2/G

dΩ Y ∗lm(n̂)Yl′m′(n̂), (5.33)

where W (n̂) is a step function, equal to 0 within the gaps G, 1 otherwise. S2/G indicates
the sky region in which the field is defined.

The coupling integral Wll′mm′ has an important physical meaning. It is the bias af-
fecting the harmonic coefficients evaluated in incomplete-sky analysis, ãlm, with respect
to the exact coefficients alm that are supposed to describe the field if it is measured on the
full sky

ãlm =

∫
S2/G

dΩ T (n̂)Y ∗lm(n̂) =
∑
l′

∑
m′

al′m′Wll′mm′ . (5.34)
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Power spectrum

Since the power spectrum is estimated starting from the alm’s evaluated from the mea-
sured map, in the incomplete sky analysis it is affected by the bias carried by the har-
monic coefficients. It is possible to show (see, e.g. Komatsu et al. 2002), that the power
spectrum defined by the incomplete-sky coeffients ãlm’s can be approximated as

〈C̃l〉 ≡
1

2l + 1

∑
m

〈ãlmã∗lm〉

=
1

2l + 1

∑
l′

Cl′
∑
mm′

|Wll′mm′ |2

' 1

2l + 1
Cl
∑
m

∑
l′m′

∫
S2

dΩ W (n̂)Y ∗lm(n̂)Yl′m′(n̂)

×
∫
S2

dΩ′ W (n̂′)Y ∗lm(n̂′)Yl′m′(n̂
′)

=
1

2l + 1
Cl
∑
m

∫
S2

dΩ W (n̂)Y ∗lm(n̂)

×
∫
S2

dΩ′ W (n̂′)Y ∗lm(n̂′)δD(n̂− n̂′)

=
1

2l + 1
Cl

∫
S2

dΩ W (n̂)
2l + 1

4π
Pl(1)

' fskyCl, (5.35)

with Cl denoting the exact, full-sky power spectrum, while

fsky ≡
∆Ω

4π
, (5.36)

indicates the fraction of the sky the spherical field is defined on. We used the Spherical
Harmonics properties: ∑

lm

Ylm(n̂)Y ∗lm(n̂′) = δD(n̂− n̂′), (5.37)

and ∑
m

Ylm(n̂)Y ∗lm(n̂′) =
2l + 1

4π
Pl(n̂ · n̂′) (5.38)

and the fact that Pl(1) = 1, ∀l. The approximation is justified by the fact that |Wll′mm′ |2
peaks very sharply at l = l′, while Cexactl′ varies much slower than |Wll′mm′ |2 in l′. Thus,
we can consider it almost constant and take it out from the summation. This approxima-
tion works as long as the gaps are small and have simple geometry. In fact, the rapidity
of |Wll′mm′ |2 depends both on the size and of the shape of the mask! Once the approx-
imation is done, the calculation involves only the discrete properties of the Spherical
Harmonics orthogonality (in fact, we use only the property involving the summation,
never the ones with the integral), so that the result depends only on the the number
of l’s and m’s involved in the analysis and never on the integral over the (incomplete)
sphere. The fsky result is exact and depends only on the size of the mask, because, the
assumption on the shape are done when we put Cl′ outside the

∑
l′ .
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Thus, in first approximation, the bias is simply parametrized by a constant fsky de-
pending only on the dataset we are interested in.

The diagonal variance of the estimator changes accordingly,

V ar(C̃l) ≈
V ar(Cl)

fsky
. (5.39)

The more the sky is covered by gaps, the less Cl configurations are detectable in the
distribution, making the variance higher as a consequence of this cosmic variance effect.

Bispectrum

As we have seen, in the cases in which the spherical field is not fully defined, the spher-
ical harmonics are affected by a bias, described by the coupling integral (eq. 5.33), and
this bias is inherited by the angular spectrum as the parameters fsky , that is, the fraction
of the sky without gaps.

We can derive the bias inherited by the bispectrum simply considering the product:

〈ãl1m1 ãl2m2 ãl3m3〉 =
∑
l′1l
′
2l
′
3

∑
m′1m

′
2m
′
3

〈al′1m′1al′2m′2al′3m′3〉

×Wl1l′1m1m′1
Wl2l′2m2m′2

Wl3l′3m3m′3

=
∑
l′1l
′
2l
′
3

bl′1l′2l′3

∑
m′1m

′
2m
′
3

∫
S2

dΩY ∗l1m1
(n̂)Y ∗l2m2

(n̂)Y ∗l3m3
(n̂)

×Wl1l′1m1m′1
Wl2l′2m2m′2

Wl3l′3m3m′3
,

(5.40)

where, in the second equality, we exploit the fact that m1 + m2 + m3 = 0 for the Gaunt
integral and the parity of the summation on the m’s. By means of the same argument
we used for Cl’s, that is bl′1l′2l′3 varies much slower than the coupling integral, and after
a little math, the relation between the incomplete-sky bispectrum and the full-sky one
reduces as (Komatsu et al. 2002):

〈ãl1m1
. . . ãl3m3

〉 ' bl1l2l3
∫
S2

dΩY ∗l1m1
(n̂)Y ∗l2m2

(n̂)Y ∗l3m3
(n̂)

×
∑
l′1m
′
1

∫
S2

dΩ1W (n̂1)Yl′1m′1(n̂1)Y ∗l1m1
(n̂1)

×
∑
l′2m
′
2

∫
S2

dΩ2 W (n̂2)Yl′2m′2(n̂2)Y ∗l2m2
(n̂2)

×
∑
l′3m
′
3

∫
S2

dΩ3 W (n̂3)Yl′3m′3(n̂3)Y ∗l3m3
(n̂3)

= bl1l2l3

∫
S2

dΩ W (n̂)

× Y ∗l1m1
(n̂)Y ∗l2m2

(n̂)Y ∗l3m3
(n̂),

(5.41)

where we used the Spherical Harmonics property showed in eq. (5.37). Clearly, [W (n̂1)]3 =
W (n̂1) since it is a step function. Introducing this in the bispectrum estimator (eq. 1.38),
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using the definition of 3rd-order Gaunt integral (eq. 1.36) we obtain:

〈̃bl1l2l3〉 ' bl1l2l3
∑

m1m2m3

∫
S2

dΩ1Yl1m1(n̂1)Yl2m2(n̂1)Yl3m3(n̂1)

×
∫
S2

dΩW (n̂)Y ∗l1m1
(n̂)Y ∗l2m2

(n̂)Y ∗l3m3
(n̂)

= bl1l2l3

∫
S2

dΩ

4π

dΩ1

4π
W (n̂)× Pl1(n̂ · n̂1)Pl2(n̂ · n̂1)Pl3(n̂ · n̂1)

= fskybl1l2l3 ,

(5.42)

where bl1l2l3 is the full-sky bispectrum. Following Komatsu et al. (2002), we used the
property in eq. (5.38) and the identity:∫ 1

−1

dx

2
Pl1(x)Pl2(x)Pl3(x) =

(
l1 l2 l3
0 0 0

)2

. (5.43)

Just like the angular spectrum, the bias introduced in the bispectrum from a incomplete-
sky analysis is parametrized, in first approximation, by a factor that is the fraction of the
sky in which the field is defined. The reliability of the approximation depends both on
the size and the shape of the mask. As well as the Cl variance, the bispectrum variance
increases due to the cosmic variance, i.e.:

V ar(̃bl1l2l3) ≈ V ar(bl1l2l3)

fsky
. (5.44)

5.3.2 Binned estimators

We will consider, for our measurements, large l-bins both to increase the numerical ef-
ficiency of the bispectrum estimator code, but also to account for the mode-coupling
induced by a relatively small window function and its effect on the power spectrum and
bispectrum variance.

We define the binned estimator for the power spectrum given by

ĈL ≡

∑
l∈L

(2l + 1)Ĉl∑
l∈L

(2l + 1)
, (5.45)

corresponding to a simple weighted average of the Cl estimator, the weights being just
the number of pairs for each multipole.

The variance of the binned estimator is evaluated after a bit of math, following the
same passages that brought to the Cl estimator variance, obtaining:

Var(ĈL) =

∑
l∈L

(2l + 1)VarG(Ĉl)[∑
l∈L

(2l + 1)

]2

+

∑
l∈L

∑
l′∈L

∑
m∈l

∑
m′∈l′

〈alma∗lmal′m′a∗l′m′〉[∑
l∈L

(2l + 1)

]2 .

(5.46)
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If we take just the Gaussian component of (5.46), we obtain

VarG(ĈL) =

∑
l∈L

(2l + 1) 2Ĉl
(2l+1)[∑

l∈L
(2l + 1)

]2

=
2ĈL∑

l∈L(2l + 1)

(5.47)

Note that the form of eq. (5.47) is the same of eq. (1.30).

We can make the Cl estimation more efficient by replacing the numerator of eq. (5.45)
with an integral of the non-normalized binned azimutally averaged harmonic transform
of the spherical field (eq. (1.27)):

eL(n̂) =
∑
l∈L

√
2l + 1el(n̂)

=
∑
l∈L

l∑
m=−l

√
4πalmYlm(n̂). (5.48)

Thus ∫
S2

dΩ

4π
|eL(n̂)|2 =

∑
ll′

∑
mm′

alma
∗
l′m′

∫
S2

dΩYlm(n̂)Y ∗l′m′(n̂)

=
∑
l∈L

∑
m

|alm|2

=
∑
l∈L

(2l + 1)Ĉl. (5.49)

Therefore, we can use the unit eL, i.e.

IL(n̂) =
∑
l∈L

l∑
m=−l

√
4πYlm(n̂), (5.50)

to get the number of pairs allowed inside a bin:∫
S2

dΩ

4π
|IL(n̂)|2 =

∑
ll′

∑
mm′

∫
S2

dΩYlm(n̂)Y ∗l′m′(n̂)

=
∑
ll′

∑
mm′

δl
′

l δ
m′

m

=
∑
l∈L

(2l + 1). (5.51)

so that we can rewrite eq. (5.45) in a more convenient (from the computational point of
view) form:

ĈL =

∫
S2

dΩ
4π |eL(n̂)|2∫

S2
dΩ
4π |IL(n̂)|2

(5.52)
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In order to simplify the notation involved in the binned bispectrum formula, let’s
introduce

t123 ≡ {l1, l2, l3} (5.53)

and
T123 ≡ {L1, L2, L3} (5.54)

so that, assuming a l-bin size ∆L

∑
l1,l2,l3∈T123

≡
∑

t123∈T123

≡
L1+∆L/2∑

l1=L1−∆L/2

L2+∆L/2∑
l2=L2−∆L/2

L3+∆L/2∑
l3=L3−∆L/2

(5.55)

The binned bispectrum estimator is thus defined as:

b̂L1L2L3 =

∑
t123∈T123

h2
l1l2l3

b̂l1l2l3∑
t123∈T123

h2
l1l2l3

=

∑
t123∈T123

Ntripb̂l1l2l3∑
t123∈T123

Ntrip

(5.56)

where Ntrip is the number of triangles in multipole space with different m’s correspond-
ing to the triplet defined by (l1, l2, l3). The variance of the binned estimator is derived
exploiting the pentaspectrum already seen in (1.50). What we get is:

Var(̂bL1L2L3
) =

∑
t123∈T123

h4
l1l2l3

VarG(b̂l1l2l3)[ ∑
t123∈T123

h2
l1l2l3

]2

+

∑
t123∈T123

∑
t′123∈T123

h2
l1l2l3

h2
l′1l
′
2l
′
3
〈b̂l1l2l3 b̂l′1l′2l′3〉

NG

[ ∑
t123∈T123

h2
l1l2l3

]2 .

(5.57)

The NG superscript indicates the non-Gaussian term that arise from the pentaspectrum,
while VarG(b̂l1l2l3) is the Gaussian variance we already saw in eq. (1.30)

VarG(b̂l1l2l3) =

∑
t123∈T123

h2
l1l2l3

sl1l2l3Cl1Cl2Cl3[ ∑
t123∈T123

h2
l1l2l3

]2

=
1∑

t123∈T123

h2
l1l2l3

CL1L2L3

(5.58)

Again, the binned variance assumes the same form of the unbinned one (eq. (1.52)).
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Now let’s take the full binned harmonic transform:

eL(n̂) =
∑
l∈L

l∑
m=−l

almYlm(n̂). (5.59)

and its unit counterpart, multiplied by a tuned factor:

IL(n̂) =
∑
l∈L

√
(4π)−1/3(2l + 1)

l∑
m=−l

Ylm(n̂)δm0 . (5.60)

Starting from (5.59) and (5.60), it is straightforward to obtain :

b̂L1L2L3 =

∫
S2

dΩ
4π eL1

(n̂)eL2
(n̂)eL3

(n̂)∫
S2

dΩ
4π IL1

(n̂)IL2
(n̂)IL3

(n̂)
. (5.61)





CHAPTER 6

N-Body simulations

We are interested in comparing measurements of bispectra estimated using eq. (5.61)
with predictions calculated with eq. (5.32). We applied the estimator to photometric
mocks extracted from the N-body simulation named MICE7680 produced by the MICE
collaboration1 in order to match the specifications od the Dark Energy Survey (DES).
This simulation involved 20483 dark matter particles in a volume of Lbox = 7680h−1Mpc
assuming a ΛCDM cosmology with Ωm = 0.25, Ωb = 0.044 and h = 0.7 (see Fosalba
et al. 2008; Crocce et al. 2010, 2011, for further details). We worked on spherical shells of
varying width extracted from comoving outputs of MICE7680, centered on 125 different
observers placed on a grid. Each shell is placed at redshift z=0.5 from the observer. The
observers were placed in order to reduce the overlap between shells and get the lowest
one among all the possible configurations (again see Crocce et al. 2011, for details).

These shells cover 1/8 of the sky, having right ascension and declination between
0◦ − 90◦ (fig. 6.1).

The radial distribution of the galaxies inside the bin follows the one expected in the
Dark Energy Survey (DES), i. e.

dN

dz
∝
(z
z̄

)2

exp

[
−
(z
z̄

)1.5
]
, (6.1)

where z̄ is the redshift at the center of the bin, i.e. z̄ = 0.5.
The photo-z errors were introduced as random gaussian displacements on the posi-

tion of the galaxies near z̄, so that

d(z) =
1√

2πσz
exp

[
− δz

2

2σz

]
. (6.2)

Due to the presence of the photometric error, much of the small-scales radial informa-
tion is lost. For this reason, we considered the amplitude of the redshift bins larger or
comparable to the photo-z error (Simpson et al. 2009).

The 125 shells were extracted using different redshift bins and photo-z errors. The
results are five different set of mocks with the following parameters:

Case ∆z/(1 + z̄) σz
1 0.03 0.03
2 0.05 0.03
3 0.03 0.06
4 0.05 0.06
5 0.15 0.06

1http://www.ice.cat/mice
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0 187

Figure 6.1: One of the 125 simulated shells. The visible sky cover only 1/8 of the sphere.

6.1 Measurements vs Predictions I: Cl

We applied eq. (1.26) to the first four cases in the previous table in order to reproduce
the Cl’s of the mocked distribution of dark matter. The first case is shown in fig. 6.2. The
measured Cl’s are compared with the exact prediction both linear and non linear and
that from the Limber approximation. The error bars on the Cl’s are the mean standard
deviation, i.e. σ/

√
Nmocks, that explains why the error bars are so small.

The linear predictions took in account the MICE power spectrum at z = 0. The non-
linear power spectrum was extrapolated from the linear one using the halofit model
(Takahashi et al. 2012). As we already wrote, the time-dependence of the linear power
spectrum is factorizable out as the growth function at the z of interest (eq. (5.17)). In
the non-linear regime, the time-dependence is slightly difficult to calculate, since it isn’t
scale-independent. Hence, the best way to get it is to interpolate several non-linear
power spectra at redshift inside the bin. The problem is that it’s not possible to ap-
ply this procedure when we deal with exact prediction because of the double integral
in redshift in the Cl formula (eq. (5.16)). Since the bin width is quite smaller, the scale-
dependence of the non-linear power spectrum should be negligible. For this reason, we
approximated the non-linear time-dependence as

PNL(z) =
D2(z)

D2(z̄)
PNL(z̄). (6.3)

Anyway, we didn’t get rid of the interpolation procedure. In fact, since the Limber
approximated formula contains only one integral in redshift, we could apply the z-
interpolation to it getting the best results for the predictions on small scales.

In the left bottom panel of fig. 6.2 it is possible to see how the exact prediction and
the measurements agrees on the largest scales, where the linear regime is enough to
describe the gravitational clustering (` . 100). On these scales the exact prediction,
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Figure 6.2: Top panels: Cl measured and the predicted one (left panels) and its variance (right
panels). Bottom panels: Ratio between measurements and predictions, both for Cl and ∆C2

l . The
measurements are labeled with black points. NLE stands for non-linear exact prediction, LE for
linear exact prediction, NLL for non-linear Limber approximated prediction. Theory is the vari-
ance calculated according to eq. (6.4)

both linear and non-linear, agree below the 1% level, while this is not the case for the
Limber approximation as expected. On the smallest scales (` & 100), the linear prediction
deviates from the non-linear one and so do the measurements, that anyways stay below
the 10% from the non-linear exact Cl’s. It is reasonable to say that, when we deal with
only one realization of the sky, the confidence level of measurements is well below the 2-
σ level. The reason for this deviation is totally due to the non-linear effects in the mocked
dark matter distribution and in some mask effects that the fsky approximation isn’t able
to account for. Furthermore, the effects of the redshift bins and the photo-z error play an
important role in the measurements-prediction deviation, as we will see further on. The
Limber approximation with non-linear power spectrum is closer to the measurements
because of the z-interpolation procedure we used in order to evaluate the correct time
dependence of the matter power spectrum.

The effects of the mask are clearly visible in the right panels, where it is shown the
measured Gaussian variance of the estimator compared to the theory that predicts it.
The theory is evaluated using the measured Cl’s, i.e.

∆Cth2
l =

2

2l + 1
〈Cmeasl 〉2. (6.4)

The measurements are well below the theory, and this is explained by the diagonal ’leak-
age’ of the Cl covariance matrix when measured on a incomplete sky (Crocce et al. 2011).
The effect of the mask is to mix up the scales, thus leading to non-zero off-diagonal term
in the covariance matrix. The first consequence is that the amplitude of the covariance
diagonal decreases, while the one of the off-diagonal terms increase. In the Gaussian
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Figure 6.3: Trasversal cuts of the normalized Cl covariance matrix at different l’s. The amplitude
of the off-diagonal terms is non-zero even at the furthest scales. The peaks are normalized by the
amplitude of diagonal covariance to show their relative height.

limit, this leakage is described by∫
dl′ Cov(l, l′) =

2

2l + 1
C2
l . (6.5)

and is shown in fig. 6.3. This mask effect can be removed by taking the Cl’s over multi-
pole bins (eq. (5.52)) with ∆l & 2f−1

sky (Cabré et al. 2007). In this case, in fact, the covari-
ance matrix assumes a diagonal form closer to the full-sky one, while the off-diagonal
terms approach to zero (without reaching it, fig. 6.4).

The effect of decreasing the off-diagonal terms is clear in fig. 6.5 where the binned
Cl variances of the first case are shown, with ∆l = 16, 24. In the binned case, the theory
and the measured variances share the same order of magnitude. The tension between
them is due to the sub-20% level off-diagonal terms that, although smaller than in the
unbinned case, don’t vanish at all.

It is important to remark that, at the same time, the theory doesn’t agree with the
variance coming from the predictions, and this happens whether or not the multipole
binning is considered, reflecting the pre-existing tension between measured Cl’s and
predicted ones.

In fig. 6.6 theCl’s for the four cases are shown, compared to the predictions. Variance
isn’t shown because it behaves in the same way as the case 1. Fig. 6.6 tells us a lot about
how the binning in redshift and the photo-z error affects the measured Cl’s. In fact,
the first thing that stands out is that increasing the z-bin width, the Cl’s approach to
zero, while the relative distance to the predictions decreases. This is explained by the
fact that to the increase in the bin width corresponds an increase in the number of dark
matter particles projected on the spherical shell taken into account, whose net effect is
to homogenize the projected field thus decreasing the power of every scale. Indeed,
the excess probability of finding two particles at a certain distance becomes lower as
the homogeneity level grows. The decrease of the relative ratio between measurements
and predictions shows how the incomplete-sky statistics become stronger increasing the
amplitude of the field. Furthermore, it proves that the bin width plays an important role
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Figure 6.4: Transversal cuts of the Cl covariance matrix for two different binnings (∆l = 16, 24).
The amplitude of the off-diagonal terms get close to zero as stronger is the binning. The height of
the diagonal term approach to the real one.

when the Cl’s are estimated from the observed sky.
At the same time, the photo-z error plays another important role, since as it increase,

we have the homogenizing effect and the departure of the measurements from the pre-
dictions. The effect of the photo-z error is to include in the bin particles that are actually
outside it and remove particles that, instead, are inside. In this way, the measurements
are done over a field that is not actually the correct one, bringing an important systematic
bias in the resulting statistics.

The same effects are expected to be observed also in the bispectrum as we are going
to see in the next section.

6.2 Measurements vs Predictions II: Bispectrum

The estimation of the unbinned bispectrum is a highly time-consuming process. Fur-
thermore, we already saw how the scale-mixing effect due to the mask makes useless to
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Figure 6.5: Top panels: Binned variance measured and their relative theory for ∆l = 16(left panels)
and ∆l = 24(right panels). Bottom panels: Ratio between measurements and predictions.

estimate the variance for the unbinned case. For these reasons, we estimated directly the
binned bispectra, considering ∆l = 16, 24 and 40, i.e. 2f−1

sky , 3f−1
sky and 5f−1

sky respectively.
In fig. 6.7 it is possible to see both bispectra and relative variances.

The x-axis is labeled by l1, the first multipole of the triplet (l1, l2, l3) on which the
bispectrum is evaluated. The three multipole in the several configurations follows the
l1 ≥ l2 ≥ l3 rule, so that all the bispectra in plot below a certain l1 have all of the three
multipoles below l1. The vertical lines mark the points in which the three l’s have the
same amplitude, i. e. the bispectrum equilateral configurations. We can immediately see
how the bispectra are consistent with the predictions at 2σ level. Here the predictions
are calculated using the Limber approximation, in order to get rid of the seven-integral
form of eq. (5.29). We considered three form for the bispectrum, depending on which
scales we are interested in. For the linear case we used tree-level (TL) bispectrum (eq.
(4.45)).

For the non-linear regime, we considered two fitted formula. Both of them take the
form of the tree-level bispectrum, but improving the kernel F2, which becomes:

F eff2 (ki,kj) =
5

7
a(ni, ki)a(nj , kj)

+
1

2

k1 · k2

k1k2

(
k1

k2
+
k2

k1

)
b(ni, ki)b(nj , kj)

+
2

7

(
k1 · k2

k1k2

)2

c(ni, ki)c(nj , kj).

(6.6)

In the Scoccimarro-Couchman approach (Scoccimarro & Couchman 2001), the three func-
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Figure 6.6: Comparison between measured and predicted binned Cl’s for four out of five cases,
with ∆l = 24.

tions are written as:

a(n, k) =
1 + σa68 (z)[0.7Q3(n)]1/2(qa1)n+a2

1 + (qa1)n+a2
,

b(n, k) =
1 + 0.2a3(n+ 3)qn+3

1 + qn+3.5
,

c(n, k) =
1 + 4.5a4/[1.5 + (n+ 3)4](qa5)n+3

1 + (qa5)n+3.5
,

(6.7)

where n is the slope of the linear power spectrum at a given k,

n ≡ d logPL(k)

d log k
, (6.8)
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Figure 6.7: Bispectra measured and the predicted ones (left panels) and their variance (right pan-
els), binned with ∆l = 16 (top panels), ∆l = 24 (middle panels) and ∆l = 40 (bottom panels) for
the first case ∆z = 0.03(1 + z̄), σz = 0.03. The vertical lines label the position of the equilateral
configuration. TL stands for Tree-Level bispectrum, SC for Scoccimarro-Couchman and GM for
Gil-Marin. GM bispectra are considered as fiducial model for the bispectra comparison. Variance
best model, i.e. the variance calculated using the measured Cl’s, is taken as fiducial model for the
variance comparison.
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q ≡ k/knl, with knl representing the scale in which the non-linearities start to play a
non-negligible role. We can define this scale as

knlPL(knl)

2π2
= 1. (6.9)

Finally, the function Q3 is defined as

Q3(n) =
4− 2n

1 + 2n+1
. (6.10)

Note that on the linear regime we get a, b, c→ 1, recovering the usual tree-level formula.
The six parameters proposed by SC are

a1=0.25 a4=1
a2=3.5 a5=2
a3=2 a6=-0.2

Gil-Marin (Gil-Marı́n et al. 2012) improved this non-linear formula by adding three new
ai constant parameters, modifying the a, b, c functions as follows,

ã(n, k) =
1 + σa68 (z)[0.7Q3(n)]1/2(qa1)n+a2

1 + (qa1)n+a2
,

b̃(n, k) =
1 + 0.2a3(n+ 3)(qa7)n+3+a8

1 + (qa7)n+3.5+a8
,

c̃(n, k) =
1 + 4.5a4/[1.5 + (n+ 3)4](qa5 + a9)n+3

1 + (qa5)n+3.5+a9
,

(6.11)

with

a1=0.484 a4=0.392 a7=0.128
a2=3.74 a5=1.013 a8=-0.722
a3=-0.849 a6=-0.575 a9=-0.926

Note that GM→SC when a7 → 1 and a8, a9 → 0.
Since the non-linear bispectrum prediction is evaluated using the Limber approxi-

mation, the z-dependence of the non-linear powers spectrum is interpolated, being this
the best procedure to describe it correctly.

Let’s come back to figure 6.7. The more we increase ∆l the more consistent predic-
tions and measurements are. This is especially true for the bispectrum Gaussian vari-
ance, where the effect of the off-diagonal terms on the bispectrum covariance matrix
even in the binned case is shown. Unfortunately, the biasing effect of the off-diagonals
is stronger than in the Cl case, so we must reach a very strong binning to reach complete
consistency.

From now on, we consider ∆l = 24, representing a good trade-off between accuracy
in the estimation and reduction of triangle configurations. In fig. 6.8 we can see how the
bispectrum behaves while measured on different binning and different photo-z errors.
First of all, as the bin width increases, the power associated to each scale reduces, so
that the bispectrum tends to zero when the bin is too wide. The explanation is again the
homogenizing in the dark matter field, just like the Cl. Another affinity with the Cl’s is
the lowering effect due to the photo-z error, changing the dark matter number density
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Figure 6.8: Bispectra measured for the four cases took in account. Each case presents a different
photometric error and redshift width, both write in the top left corner of each plot. The convention
for colors is the same of the previous plot. The blue points mark the non-triangular bins, which
behavior seems depending strongly on the mocks parameters.

in a way that homogenize the density field and increase the error. The new and unex-
pected feature visible in fig. 6.8 is the behavior of what we called non-triangular bins, i.e.
the binned configuration (L1, L2, L3) with Li center of the bin, for which the triangular
property doesn’t hold, i.e. |Lj − lk| � Li � Lj + Lk. This is possible because, even if
the multipoles at the center of the bins doesn’t form a triangle in harmonic space, the
binned configuration contains at least one valid unbinned configuration. In particular,
non-triangular bins are the bins containing the collapsed triangle, i.e. the triangle con-
figurations (l1, l2, l3) for which the identity l1 = l2 + l3 holds. What fig. 6.8 tells is that
one of the main effects of an high photo-z error is to destroy the collapsed configuration,
especially the one composed by smallest scales among the others, thus bringing the bis-



N-Body simulations 71

pectrum power of this configuration to zero. And this is what we actually can see in fig.
6.8.

6.3 Comments

The comparison between the estimated Cl and bispectra and the predicted ones shows
different behavior, depending on the size of the z-bin and of the photo-z error. Analyzing
different cases, we understand the effect of these features, making us aware of possible
difficulties in future analysis. Anyway, the common feature in all cases is the existence of
repeated structure in the estimated bispectrum compared to the predicted ones, although
in ∆l = 24 case, measurements and prediction are consistent within 2σ. There are many
possible explanation for this behavior that will be analyzed in a future work. For now,
results show that an estimation of cosmological parameter is necessary to understand the
power of angular bispectrum estimator in LSS case. This is the main goal of my future
research, in which I hope to show that the angular bispectrum is a powerful tool, to be
put together with the estimators that already are proven to be efficient in LSS analysis.
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CHAPTER 7

Non-Gaussianity in the photon distribution

7.1 Non-Gaussianity in the curvature perturbations

The standard scenario in inflationary cosmology is a model in which there exists only
one scalar field whose potential energy drives inflation. But, what if there exist other
scalar fields whose energy is not dominant? It is expected that their quantum fluctua-
tions would influence those of the dominant field, usually dubbed inflaton, and hence
the curvature perturbations. Many models were developed in order to provide alter-
natives to the standard scenario. Curvaton scenario (Mollerach 1990; Enqvist & Sloth
2002), inhomogeneous reheating scenario (Kofman 2003; Dvali et al. 2004), ghost infla-
tion scenario (Hamed et al. 2004), D-celleretion scenario (Lyth & Riotto 1999) are some
of these models, each of them provides a different mechanism to achieve inflation. One
of the challenges of the new cosmology era is then to discriminate among these models
of inflation, putting some constraints that must be able to rule out the larger possible
number of models.

In order to constrain inflation models, the generic predictions of an accelerated de
Sitter expansion must be tested. The main predictions are the generation of gravity-
wave fluctuations, which produce B-mode polarization in the CMB (Kamionkowski et al.
1997; Seljak & Zaldarriaga 1997), spectral index of comoving curvature perturbations
close to one (Lyth & Riotto 1999), and a distribution of primordial perturbations close
to Gaussian. In particular, testing the Gaussianity offers stringent constraints on the
inflationary scenario.

Introducing a collection of non-linearity parameters {fNL, gNL}, we can parameteriz-
ing the level of non-Gaussianity in the cosmological perturbations through the so-called
Bardeen’s gravitational potential (Bardeen 1980; Salopek & Bond 1990; Gangui et al. 1994;
Verde et al. 2000b; Komatsu & Spergel 2001)

Φ = Φl + fNL(Φ2
l − 〈Φ2

l 〉) + gNL(Φ3
l ), (7.1)

where Φl represents the gravitational potential at linear order. Φ is related to the curva-
ture perturbations by this simple relation (Bartolo et al. 2004)

Φ(n) =
3

5
ζ(n) (7.2)

where ζ is the curvature perturbation field.
Since the beginning of the study of non-Gaussianity using the Bardeen’s potential

(Hodges et al. 1990; Latham & da Costa 1991; Falk et al. 1993), the attention was devoted
to fNL, because the gNL is generally suppressed by inflationary models with respect to
fNL. Furthermore, there exists an optimal estimator compatible with the sensibility of

75
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instruments used to measure CMB anisotropies (Komatsu et al. 2002; Komatsu & Spergel
2001; Santos et al. 2003; Smith et al. 2004; Yadav & Wandelt 2008a,b; Casaponsa et al. 2011;
Planck Collaboration et al. 2014d). For gNL, the Planck survey, although its precision in
the measurements is well below the precision required, has introduced an improvement
that can open the way for a third-order analysis of the curvature perturbations (The
Planck Collaboration 2006; Planck Collaboration et al. 2016b).

As we have seen, the two-point correlation function and its Fourier transform, the
power-spectrum, gives information about the amplitude of the curvature fluctuations. If
they are Gaussian distributed, the power spectrum completely characterizes the statis-
tic of the distribution of the curvature perturbations. In fact, consider a collection of
centered random variables {δi = δ(xi), i = 1, 2, . . .}, the field ∆ = {δi} is Gaussian
distributed if, for any m ∈ card{∆} their m-point joint probability distribution obeys the
multi-variate Gaussian

P (x1, . . . , xm) =
1√

(2π)m det(M)
exp

− m∑
i,j=1

1

2
δi(M)−1δj

 (7.3)

where Mij ≡ 〈δiδj〉 is the covariance matrix and M−1 is its inverse. Eq. (7.3) implies
that Gaussian fields are fully specified by the two-point correlation function and its lin-
ear combinations. If we consider higher-order correlation functions we find that the
odd correlation functions vanish due to the property of the Gaussian moments of a dis-
tribution, while the even correlation function can be written in terms of the two-point
correlation function. In fact, it is possible to divide the higher-order correlation func-
tions into two parts, the connected and the unconnected part. The unconnected part can
be expressed in terms of the lower-order correlation functions, while the connected part
contains the true information about non-Gaussianity of the distribution. As we already
have seen in chapter 1, for a zero-mean random field, the second and third-order con-
nected correlation function coincide with the correlation function themselves, while at
fourth-order one can write

〈f(x1)f(x2)f(x3)f(x4)〉
= 〈f(x1)f(x2)〉〈f(x3)f(x4)〉+ 〈f(x1)f(x3)〉〈f(x2)f(x4)〉
+ 〈f(x1)f(x4)〉〈f(x2)f(x3)〉+ 〈f(x1)f(x2)f(x3)f(x4)〉c

(7.4)

where the subscript c denotes the connected part. For a Gaussian distribution, the con-
nected part of the n > 2-order correlation functions is always vanishing. Otherwise, the
presence of non-vanishing connected part of the n > 2-points gives information about
the non-Gaussian behaviour of the distribution. Thus, the two and three-point corre-
lation functions are the lowest-order statistics able to distinguish non-Gaussian from
Gaussian perturbations. It is important to say that higher-order correlation functions
are related with the self-interactions of the field (or the fields, in which case we have
to consider the interactions between different fields too) that generated the curvature
perturbations (Bartolo et al. 2004).

Just like the two-point correlation function and the power spectrum, we can take the
Fourier transform the two and three-point correlation functions in order to evaluate the
amount of non-Gaussianity of the curvature perturbations, i.e.

〈Φ(k1)Φ(k2)Φ(k3)〉 = (2π)3δ(3)(k1 + k2 + k3)BΦ(k1, k2, k3), (7.5)
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〈Φ(k1)Φ(k2)Φ(k3)Φ(k4)〉 =

= (2π)3δ(3)(k1 + k2 + k3,k4)TΦ(k1, k2, k3, k4),
(7.6)

where δ(3) is the tridimensional Dirac’s delta. BΦ(k1, k2, k3) is the so-called bispectrum,
while TΦ(k1, k2, k3, k4) is the trispectrum. Bispectrum and trispectrum are strictly related
with the parameters that characterize the non-Gaussian curvature perturbation in eq.
7.1. In fact, fNL and gNL parametrize the amplitude of the bispectrum and trispectrum
respectively.

7.1.1 The Bispectrum

In general the bispectrum can be written as

BΦ(k1, k2, k3) = fNLF (k1, k2, k3). (7.7)

The bispectrum is measured on triangular configurations of the three wavenumber k1, k2

and k3. The physics among the generation of the primordial perturbations (Babich et al.
2004) determines the shape of the triangles and the form of F (k1, k2, k3). F (k1, k2, k3) is
a function that depends on the configuration of the three wavenumber k in the Fourier
space and encodes the scale dependence of the bispectrum (Chen 2005, 2010)1. The pos-
sible shape that the harmonic triangle can assume are usually divided in squeezed, equi-
lateral and orthogonal, related to the following kind of non-Gaussianity:

• local non-Gaussianity generating the squeezed triangles, i.e. k1 � k2 ' k3 (Gangui
et al. 1994; Verde et al. 2000b; Wang & Kamionkowski 2000; Komatsu & Spergel
2001; Maldacena 2003). This occurs when primordial non-Gaussianity is generated
on super-horizon scales, e.g. multi-fields models of inflation;

• equilateral non-Gaussianity characterizing the equilateral triangles k1 ' k2 ' k3

(Babich et al. 2004), which can occurs if the three perturbation modes mostly inter-
act when they cross the horizon approximately at the same time, e.g. single field
models such as k-inflation (Chen et al. 2007; Armendáriz-Picón et al. 1999), DBI
inflation (Silverstein & Tong 2004; Alishahiha et al. 2004), ghost inflation (Arkani-
Hamed et al. 2004) and models arising from effective field theories (Cheung et al.
2008);

• orthogonal non-Gaussianity (Senatore et al. 2010), it generates a signal with a positive
peak at the equilateral configuration and a negative peak at the folded configura-
tion, achieved by single-field model with higher-derivatives interactions.

However, there are exceptional cases which are out of the previous list, in which we have
non-Gaussianity with intermediate shapes (Chen & Wang 2010a,b) or superposition of
shapes (Langlois et al. 2008a,b; Arroja et al. 2008; Renaux-Petel 2009), but these models
are beyond the aim of this work.

All of the models listed above predict |fNL| � 1, i.e. a detectable non-Gaussianity
behaviour. On the contrary, the single-field slow-roll inflation provides a quasi-Gaussian
perturbation distribution, and the deviation from the Gaussian statistic is well below the
range of detection, i.e. |fNL| � 1 (Acquaviva et al. 2003; Maldacena 2003). In fact, in

1Although the parameter fNL was found to be almost scale independent (Bartolo et al. 2004; Smidt et al.
2010)
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the single-field slow-roll inflation, the non-linearity parameter should be fNL ' O(ε, η),
where ε and η are the slow-roll parameters (eq. 3.7) (Gangui et al. 1994; Acquaviva et al.
2003; Maldacena 2003). Indeed, the main contribution to the non-Gaussianity in single-
field slow-roll models comes from the non-linear gravitational perturbations, rather than
the inflation self-interactions (Babich et al. 2004). As we have seen in the previous chap-
ter, in order to have a period of inflation the inflaton potential must be very flat, (i.e.
ε, |η| � 1), therefore the self-interaction terms in the inflaton potential and the gravi-
tational coupling must be very small and then non-linearities are suppressed too. On
the other hand, if we consider an additional field χ, different from inflaton, whose en-
ergy density is negligible in comparison with that of the inflaton, its self-interactions
are not constrained by slow-roll condition, thus sizeable non-Gaussianities can be gen-
erated. This is the simplest case in which a detectable non-Gaussianity can be produced.
Then, a detection of non-Gaussianity in the curvature perturbations would rule out the
single-field slow-roll models of inflation.

In recent papers (Planck Collaboration et al. 2014e, 2016b), fNL has be found consis-
tent with zero. A third-order analysis of the curvature perturbation, and then of gNL, be-
comes necessary in order to evaluate the presence or not of primordial non-Gaussianity.

7.1.2 The Trispectrum

We can write the trispectrum as

TΦ(k1, k2, k3, k4) =
25

9
τNL[PΦ(k1)PΦ(k2)PΦ(k3) + (11perm.)] (7.8)

+6gNL[PΦ(k1)PΦ(k2)PΦ(k3) + (3perm.)], (7.9)
where PΦ(ki) is the power spectrum of the distribution, and kij = |ki + kj |. The trispec-
trum written above is divided into the non-connected component (eq. 7.8) and the con-
nected one (eq. 7.9). The parameter gNL introduced in eq. 7.1 is therefore the amplitude
of the connected part of the trispectrum. The parameter τNL is also a non-Gaussianity
parameter, but it is strictly related with the non-linearity parameter fNL (see eq. 7.26
and eq. 7.41 in the next paragraph).

Moreover, the trispectrum can provide a tool to distinguish among the different in-
flationary models. In fact, the same interactions that led to the bispectrum might be
responsible also for a large trispectrum (Planck Collaboration et al. 2014d). Several in-
flationary models have been found in which the bispectrum is suppressed, thus leaving
the trispectrum as the largest higher-order correlator in the data. Large trispectra are
possible in certain curvaton and multi-fields model (Byrnes et al. 2006; Sasaki et al. 2006;
Byrnes & Choi 2010) and single-field models with high derivatives interactions (Chen
et al. 2009; Arroja et al. 2008; Senatore & Zaldarriaga 2011; Bartolo et al. 2010). Recently,
Planck collaboration (Planck Collaboration et al. 2016b) shown a gNL consistent with
zero, but with huge error bars making the statistics poor. New gNL estimator could im-
prove the statistics or, at least, make possible to do consistency checks on the previous
and future results.

7.1.3 Non-Gaussianity for single-field and multi-fields model of inflation

It is possible to evaluate the amplitude of the three non-gaussianity parameters fNL, τNL
and gNL by means of the δN formalism (see Smidt et al. 2010; Starobinsky 1982; Starobin-
skiǐ 1985; Byrnes et al. 2006; Lyth & Rodrı́guez 2005; Suyama & Yamaguchi 2008, for
details).
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During inflation, spacetime expands by a certain number of e-folds N. By Heisen-
berg’s uncertainty principle, expansion for each point of the Universe ends at slightly
different times producing a spatially dependent total e-folds:

N(n) =

∫ tf

ti

H(t, x)dt, (7.10)

where ti is the time at which the inflations begin and tf the time at which it ends, while
H(t, x) is the Hubble parameter. Since point by point differences are small, we can define

N(n) = N̄ + δN(n). (7.11)

The perturbations of the e-folds correspond to perturbation in local expansion, then
we can identify δN with the curvature perturbations ζ = δN . Moreover, we may
parametrize the number of e-folds by the underlying fields ζ = N(φA) − N̄ where φA
represents the initial value for the scalar fields φA = φ̄A + δφA. Then, we can expand the
curvature perturbations as

ζ = δN =
∑
n

1

n!
NA1A2...Anδφ

A1δφA2 . . . δφAn , (7.12)

where we used the Einstein summation convention and Nx is the derivative of N with
respect to the fields x

NA1A2...An =
∂nN

∂φA1∂φA2 . . . ∂φAn
. (7.13)

Then, the power spectrum of the curvature perturbations at first order is

〈ζkζk′〉 = NANBC
AB(k)(2π)3δ3(k + k′), (7.14)

where, in the slow-roll limit, CAB becomes the leading order δABP (k). Likewise, we can
calculate the bispectrum and trispectrum in this formalism

Bζ(k1, k2, k3) = NANBCND[CAC(k1)CBD(k2) + CAC(k2)CBD(k3) + CAC(k3)CBD(k1)]
(7.15)

Tζ(k1, k2, k3, k4) =NA1A2
NB1B2

NCND[CA2B2(k13)CA1C(k2)CB1D(k4) + (11 perms)]

+NA1A2A3
NBNCND[CA1B(k2)CA2C(k3)CA3D(k4) + (3 perms)]

(7.16)

where kij = |ki + kj |. We can compare the above expression with the usual bispectrum
and trispectrum calculated in the slow-roll limit for the curvature perturbation ζ, that
are

B(k1, k2, k3) =
6

5
fNL[Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3) + Pζ(k3)Pζ(k1)], (7.17)

T (k1, k2, k3, k4) =τNL[Pζ(k13)Pζ(k3)Pζ(k4) + (11 perms)]

+
54

25
gNL[Pζ(k2)Pζ(k3)Pζ(k4) + (3 perms)],

(7.18)
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where Pζ(k) = NANBC
AB(k) and therefore in the slow-roll limit Pζ(k) = NAN

AP (k).
We thus obtain the values for each statistic

fNL =
5

6

NANBN
AB

(NCNC)2
; (7.19)

τNL =
NABN

ACNBNC
(NDND)3

; (7.20)

gNL =
25

54

NABCN
ANBNC

(NDND)3
. (7.21)

Single-field models

In the case where a single field dominates the energy density, we may expand ζ using
the formalism in eq. 7.12, as:

ζ = N ′δφ+
1

2
N ′′δφ2 +

1

6
N ′′′δφ3 + . . . , (7.22)

where N ′ = dN/dφ. Then, from equations 7.19-7.21, we have

fNL =
5

6

N ′′

(N ′)2
; (7.23)

τNL =
(N ′′)2

(N ′)4
; (7.24)

gNL =
25

54

N ′′′

(N ′)3
. (7.25)

The results in equations 7.23-7.25 holds for any single field whose energy dominates the
energy density of the Universe during inflation, such as the inflaton or the curvaton.

Equations 7.23 and 7.24 yield a very important consequence of single-field models
namely

τNL =

(
6fNL

5

)2

. (7.26)

This is a general result and therefore, defining ANL = τNL/(6fNL/5)2, ANL 6= 1 may be
used to rule out single-field models all together.

In the case of standard single field inflation, we can calculate the non-linearity param-
eters fNL and gNL in terms of the slow-roll parameters at first (eq. 3.7) and second-order

ξ2 ≡M4
p

V ′V ′′′

V 2
, (7.27)

where Mp is the Planck mass. Then we have (see Byrnes et al. 2006, for details)

fNL =
5

6
(η − 2ε), (7.28)

τNL = (η − 2ε)2, (7.29)
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gNL =
25

54
(2εη − 2η2 + ξ2). (7.30)

Instead, in the curvaton scenario, there exist a weakly interacting scalar field χ together
with the inflaton, whose energy density comes to contribute a significant fraction of the
energy density of the Universe sometimes after inflation (Byrnes & Choi 2010; Byrnes
et al. 2006; Enqvist & Nurmi 2005; Enqvist & Takahashi 2008; Enqvist et al. 2010). After
the decays of the curvaton, its fluctuations produce the primordial curvature perturba-
tions ζ.

The potential of the curvaton is parametrize as follow (Enqvist et al. 2010)

V =
1

2
m2χ2 + λχn+4, (7.31)

where m is the curvaton’s mass and λ is a coupling constant. For such models, N in
equation 7.12 has been worked out giving

fNL =
5

4rχ
(1 + h)− 5

3
− 5rχ

6
, (7.32)

gNL =
25

54

[
9

4rχ
(h̃+ 3h)− 9

rχ
(1 + h) +

1

2
(1− 9h) + 10rχ + 3r2

χ

]
, (7.33)

where

rχ =
3Ωχ,D

4− Ωχ,D
,

h =
χ0χ

′′
0

χ′20

h̃ =
χ2

0χ
′′′
0

χ′30
.

(7.34)

Here Ωχ,D is the energy density at time of curvaton decay, χ0 is the curvaton field during
oscillations just before decays and the primes here denotes derivatives with respect to
time. Unlike the inflatons, in the curvaton models gNL can be significantly large even
fNL is small because the curvaton can have large self interactions.

Multi-fields models

In general τNL ≥ (6fNL/5)2 and equality holds only if NA is an eigenmode of NAB
(Suyama & Yamaguchi 2008). Models in which the equality doesn’t holds are the multi-
fields models.

For multi-fields models is nearly impossible to use the δN formalism, instead one
is forced to work with specific models. For example, consider two-fields models with
scalar fields φ and χ that have a separable potential (Byrnes & Choi 2010; Vernizzi &
Wands 2006; Choi et al. 2007; Battefeld & Easther 2007; Seery & Lidsey 2007)

W = (φ, χ) = U(φ)V (χ). (7.35)

The slow-roll parameters for this models are

εφ =
M2
p

2

(
U,φ
U

)2

, εχ =
M2
p

2

(
V,χ
V

)2

, (7.36)
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ηφφ = M2
p

U,φφ
U

, ηφχ = M2
p

U,φV,φ
W

, ηχχ = M2
p

V,χχ
V

, (7.37)

from which we can define
r̃ =

εχ
εχ
e2(ηφφ−ηχχ)N . (7.38)

For this class of models, in the region where |fNL| > 1 we have

fNL =
5

6
ηχχ

r̃

(1 + r̃)2
e2(ηφφ−ηχχ)N ; (7.39)

gNL =
10

3

r̃(ηφφ − 2ηχχ)− ηχχ
1 + r̃

fNL; (7.40)

τNL =
1 + r̃

r̃

(
6fNL

5

)2

; (7.41)

ANL =
1 + r̃

r̃
. (7.42)

Then, in this class of models, both gNL and τNL are related to fNL and we have |gNL <
fNL| which will therefore be harder to detect. On the other hand, τNL > (6fNL/5)2 so
that non-Gaussianity may be easier to detect in the trispectrum than in the bispectrum
for some multi-fields models.

7.2 Detecting Non-Gaussianity with the CMB anisotropies distribu-
tion

As we have just seen, the inflationary paradigm provides a mechanism which seeds
the inhomogeneities we see today in the photon background (CMB). In particular, the
vacuum fluctuations of the scalar field that generates the inflation (i.e. the inflaton in
the single-field models) were transferred in curvature perturbation. Then, during infla-
tion, they grows till they became larger than the casual horizon. When inflation ends,
the horizon began to expand and the perturbations re-enter within the causal horizon
during the radiation or the matter era, introducing density inhomogeneities in the cou-
pled radiation-matter plasma. Then, this inhomogeneities were amplified by gravity and
grew into structures we see today.

We can quantify the effect of curvature perturbations on the photon distribution by
using the so-called Sach-Wolfe formula (Sachs & Wolfe 1967; Yadav & Wandelt 2010;
Planck Collaboration et al. 2014e; Bartolo et al. 2004)

∆θ

θ
= − 1 + ω

5 + 3ω
ζ, (7.43)

where ∆θ is the deviation of the temperature of the photons from the mean temperature
θ, ζ is the curvature perturbation and ω = −P/ρ is related to the equation of state of the
Universe. Then, during radiation domination era ω = 1/3, while during the matter dom-
ination era ω = 0. Since at recombination, the Universe was in the matter domination
era, so ω = 0, we observe adiabatic temperature fluctuations in the CMB of

∆θ

θ
= −1

3
Φ = −1

5
ζ, (7.44)
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where Φ is the gravitational potential Φ = −3/5ζ.
After recombination, CMB photons became free to propagate throughout the Uni-

verse, without interacting with the now completely neutral matter. Then, the inhomo-
geneities of the photon background due to inflation don’t change with time, thus the
CMB anisotropies distribution that we see today is the same of that at the time of recom-
bination.

By means of the anisotropy of the CMB, we can then study the primeval fluctuations
of the inflation fields. Having defined the last scattering surface as the imaginary sphere
around us from which the CMB was emitted, we can then define the CMB as a random
field on this sphere (Dodelson 2003; Durrer 2008). Every function f on the sphere enjoys
the following spectral decomposition (Marinucci & Peccati 2011)

f(n) =

∞∑
l=0

l∑
m=−l

almYlm(n), (7.45)

that is, the Fourier transform on the sphere. Ylm are the orthonormal basis of the space
of the functions on the sphere, known as Spherical Harmonics. If the field f represents
the CMB anisotropies distribution on the sphere, we can easily relate the harmonic coef-
ficients alm of the spectral decomposition of eq. 7.45 with the primordial fluctuations Φ
(eq. 7.2) as (Yadav & Wandelt 2010; Planck Collaboration et al. 2014e)

alm = 4π(−i)l
∫

d3k

(2π)3
Φ(k)gl(k)Y ∗lm(k̂), (7.46)

where Φ(k) is the primordial curvature perturbations for a comoving wavevector k and
gl(k) is the radiation transfer function.

Hence, the higher order correlation function for the temperature anisotropies field
T = ∆θ/θ can be expressed by ensemble average of linear combination of the harmonic
coefficients, e.g. the bispectrum

〈T (x1)T (x2)T (x3)〉 =
∑
l1l2l3

∑
m1m2m3

〈al1m1
al2m2

al3m3
〉Yl1m1

(x1)Yl2m2
(x2)Yl3m3

(x3), (7.47)

and thus, using eq. 7.46, we can relate them to the same order correlation functions of
the curvature perturbation

〈al1m1al2m2al3m3〉 ←→ 〈Φ(k1)Φ(k2)Φ(k3)〉. (7.48)

Then, the evaluation of the higher-order correlation functions for the CMB allows to eval-
uate that of the primordial gravitational potential and then of the primordial curvature
perturbations. Then, by means of the Bardeen’s potential (eq. 7.1), we can evaluate fNL
and gNL through the CMB anisotropy distribution analysis. The recent result on fNL
on the Planck survey data (Planck Collaboration et al. 2016b), show that the single-field
models seems to be the excellent candidate to explain how the inflation was produced,
i.e.

f localNL = 0.8± 5.0 (1σ),

fequilNL = −4± 43 (1σ),

forthoNL = −26± 21 (1σ),

(7.49)
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while for gNL,
glocalNL = (−9.0± 7.7)× 104 (1σ). (7.50)

Note that the error bars on gNL do not allows to consider significant the result above. In
order to study high-order non-Gaussianity, a finer statistics must be provided.



CHAPTER 8

The Spherical Needlet Wavelets

Although the Spherical Harmonics enjoy several useful properties, they are not localized
on the sphere in real space, that is, they shows a global character on the sphere. If the
sphere presents a gap, some correlations are added to the {alm}, leading the harmonic
coefficients to lose their uncorrelation properties. We can say that the global character of
Spherical Harmonics implies that the effects of missing fraction of the sphere are spread
throughout the whole {alm} array (Marinucci & Peccati 2011). Denoting by G the gap of
the sphere, the definition of harmonic coefficients became

aGlm =

∫
S2/G

T (n)Y ∗lm(n)dΩ . (8.1)

So, the correlation between alm at different scales is provided by

〈aGl1m1
aG∗l2m2

〉 = 〈

[∫
S2/G

T (n)Y ∗l1m1
(n)dΩ

∫
S2/G

T (n′)Yl2m2
(n′)dΩ ′

]
〉

=
∑
l1m1

∑
l2m2

〈alma∗l′m′〉

[∫
S2/G

Ylm(n)Y ∗l1m1
(n)dΩ

∫
S2/G

Y ∗l′m′(n′)Yl2m2(n′)dΩ ′

]
=
∑
lm

ClWlml1m1
Wl′m′l2m2

(8.2)

where Wlml1m1
denotes the so-called coupling factors

Wlml1m1
:=

∫
S2/G

Ylm(n)Y ∗l1m1
(n)dΩ . (8.3)

Whenever G = ∅, i.e. when the spherical random field is fully observed, eq. 8.3 repre-
sents nothing but the orthonormality property of the Spherical Harmonics, thus

Wlml1m1
= δl1l δ

m1
m ,

so the uncorrelation properties of harmonic coefficients is recovered

〈al1m1a
∗
l2m2
〉 = Cl1δ

l2
l1
δm2
m1
.

The problem of incomplete spherical random fields is a relevant issue in CMB analy-
sis. In fact, the last scattering surface is hiding by the Milky Way and other point sources
spread throughout the sky, generating a radiation that affects the photon distribution of
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the CMB. Although many software were developed in order to reduce the impact of this
foregrounds, there are some regions that are irreversibly affected by spurious contribu-
tions. To improve the statistics, we have to remove this regions (Cabella et al. 2006).

In order to improve the statistics involving an incomplete sphere we can use the
Spherical Wavelets (Potts et al. 1996; Freeden & Schreiner 1998; Wiaux et al. 2007; An-
toine & Vandergheynst 1998). A wavelet is a wave-like oscillation localized both in real
and in harmonic domain. When spectral decomposition of the field by means of wavelet
transform is made, one is decomposing the field locally into contributions living at differ-
ent scales. This, in principle, avoids the problems occurring due the global behavior of
Spherical Harmonics and makes the statistics stronger in presence of gap and/or miss-
ing observations of the field. Different procedures in wavelet domain were developed in
CMB and cosmology analysis since past years (McEwen et al. 2007; Barreiro et al. 2000;
Cayón et al. 2001, 2003).

During my PhD, I worked with a specific class of spherical wavelets, the so-called
Spherical Needlets. Since the introduction (Narcowich et al. 2006b,a), Spherical Needlets
were studied in order to be applied to spherical field and therefore to the CMB (Baldi
et al. 2006; Pietrobon et al. 2006; Marinucci et al. 2008). In the following paragraphs I’ll
describe the Spherical Needlets framework and the properties that make them different
from other wavelet system (Baldi et al. 2006, 2007).

8.1 Standard Spherical Needlets

Spherical Harmonics form an orthonormal basis of the space of square-integrable func-
tions on the two-dimensional sphere L2(S2). Then, it is possible to decompose this space
into the direct sum of orthogonal spaces which are spanned by the Spherical Harmonics

L2(S2) =

∞⊕
l=0

Hl, (8.4)

where Hl = Hl(S2) = span{Ylm,m = −l . . . l}. Then, define Kl =
⊕l

k=0Hk as the
space of restrictions to sphere S2 of polynomials of degree less than l. Starting from
(Narcowich et al. 2006b,a), it is possible to say that for all j ∈ N, there exist a finite subset
Xj of S2, whose elements are called cubature points {ξjk ∈ S2}, and positive real numbers
λjk > 0 called cubature weights, indexed by elements of Xj , such that

∀f ∈ Kl,
∫
S2

f(n)dΩ =
∑

ξjk∈Xj

λjkf(ξjk). (8.5)

It is known that the points in {Xj}∞j=0 are almost εj distributed with εj := κB−j , and
the coefficients {λjk} are such that λjk ≈ cB−2j , card{X} ≈ B2j . In other words, the
cubature points and the cubature weights are such that, for all polynomials Ql(n) of
degree smaller than Bj+1, ∑

k

Ql(ξjk)λjk =

∫
S2

Ql(n)dΩ . (8.6)

The set of cubature points and related cubature weight have a deeper meaning within
the framework of the sphere in view of the construction of the Needlet trispectrum (Mar-
inucci & Peccati 2011; Baldi et al. 2007). First,it is useful to recall the definition of the
standard open balls in S2

B◦(a, α) = {x : (a, x) < α} (8.7)
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and that of close balls
B(a, α) = {x : (a, x) ≤ α}, (8.8)

having used d(x, y) = arccos(〈x, y〉) to indicate the distance between x and y on the
sphere. Then, define a maximal net as follows

Definition 2. For any ε > 0, Ξε = {x1, . . . , xn) is a maximal ε-net if x1, . . . , xn are in S2,
∀ i 6= j, d(xi, xj) > ε, and the set is maximal for this property, i.e.

∀ x ∈ S2, d(x,Ξε) ≤ ε, ∪xi∈ΞεB(xi, ε) = S2, (8.9)

and ∀ i 6= j, B(xi, ε/2) ∩B(xj , ε/2) = ∅. (8.10)

An ε-net is then a grid of point at distance at least ε. On the sphere, the number of
points can be bounded by the following lemma (Baldi et al. 2007)

Lemma 1. Let Ξε = {x1, . . . , xn} be a maximal ε-net. Then

4

ε2
≤ N ≤ 4

ε2
π2. (8.11)

The ε-net can be used to construct a partition of the sphere into disjoint set, each of
them associated with a single point in the net. This partition can be made by means of
Voronoi cells

Definition 3. Let Ξε be a maximal ε-net. For all xi ∈ Ξε, the associated family of Voronoi cells
is defined by:

V(xi) = {x ∈ S2 : ∀ j 6= i, d(x, xi) ≤ d(x, xj)}. (8.12)

From (Marinucci & Peccati 2011) and (Baldi et al. 2007), I recall some properties of
the voronoi cells on the sphere. First, B(xi, ε/2) ⊂ V ⊂ B(xi, ε), hence, identifying with
σ the area of a subset on the sphere, one has σ(V(xi)) ≈ ε2. Also, if two Voronoi cells are
adjacent, i.e. V(xi)∩V(xj) 6= ∅, then d(xi, xj) ≤ 2ε. Then, it is possible to recall the set of
cubature points and weights in views of the framework of Voronoi cells:

• The cubature points {ξjk} can be taken to form a maximal εj-net, with εj ≈ B−j ;

• The cubature weights {λjk} are of order B−2j , i.e. for all j, k we have λjk ≈
σ(X (ξjk)), the area of the associated Voronoi cell.

The properties of cubature points and weights, such as the definition of Voronoi’s cells,
will be used in the derivation of the Needlet trispectrum.

Moreover, the set of cubature points is crucial in view of the definiton of Spherical
Needlets, because Spherical Needlets are defined on this set,

Definition 4. A family of Spherical Needlets {ψjk} is defined by setting

ψjk(n) :=
√
λjk

∑
l

b

(
l

Bj

) l∑
m=−l

Ylm(ξjk)Y ∗lm(n) (8.13)

ψjk(n) :=
√
λjk

∑
l

b

(
l

Bj

)
2l + 1

4π
Pl(〈ξjk, x〉), (8.14)

where x ∈ S2, {λjk, ξjk} are a set of cubature points and weights, Pl(.) is the Legendre polyno-
mial of l-th order, B > 1 is a constant and b(.) is a weight function satisfying the three follow
conditions
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• compact support, b(.) > 0 in (B−1, B), and it is equal to zero otherwise,

• partition of unity, for all ζ ≥ 1

∞∑
j=0

b2
(
ζ

Bj

)
= 1 (8.15)

• smoothness b(.) ∈ CM , i.e., it is M times continuously differentiable, for some M =
1, 2, . . . or M =∞.

There are many possible constructions satisfying the three conditions on b(.) listed in
definition 4. The following recipe (Baldi et al. 2006; Marinucci & Peccati 2011) allows to
write the so-called standard Needlets:

• STEP 1: Construct the C∞, compactly supported function

φ1(t) =


exp

(
− 1

1−t2

)
, −1 ≤ t ≤ 1

0, otherwise.
(8.16)

• STEP 2: Construct the C∞, non-decreasing function

φ2(u) =

∫ u
−1
φ1(t)∫ 1

−1
φ1(t)

. (8.17)

The function φ2 is normalized so that φ2(−1) = 0, φ2(1) = 1.

• STEP 3: Construct the function

φ(t) =


1 if 0 ≤ t ≤ 1

B

φ2

[
1− 2B

B−1

(
t− 1

B

)]
if 1

B < t ≤ 1

0 if t > 1.

(8.18)

this step implements a change of variables so that the resulting function φ(.) is
constant on (0, B−1) and monotonically decreasing to zero in the interval (B−1, 1).
Indeed, it can be checked out that

1− 2B

B − 1

(
t− 1

B

)
=

{
1 for t = 1

B
−1 for t = 1

(8.19)

and

φ

(
1

B

)
= φ2(1) = 1

φ(1) = φ2(−1) = 0.

(8.20)

• STEP 4: Construct

b(ζ) =

√
φ
( x
B

)
− φ(n), −∞ < x <∞. (8.21)

The resulting function b(.) is C∞ and satisfies the three condition listed in the
Spherical Needlets definition, for all M = 1, 2, . . ..
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Spherical Needlet coefficients βjk are provided by the analytical formula

βjk =

∫
S2

T (n)ψjk(n)dΩ

=
√
λjk

∑
l

b

(
l

Bj

) l∑
m=−l

{∫
S2

T (n)Y ∗lm(n)

}
Ylm(ξjk)

=
√
λjk

∑
l

b

(
l

Bj

) l∑
m=−l

almYlm(ξjk).

(8.22)

It is easy to show that sample mean of Needlet coefficients is identically zero at all scales
j

∑
k

βjk
√
λjk =

Bj+1∑
l=Bj−1

l∑
m=−l

b

(
l

Bj

)
alm

[∑
k

λjkYlm(ξjk)

]

=

Bj+1∑
l=Bj−1

l∑
m=−l

b

(
l

Bj

)
alm

[∫
S2

Ylm(n)dΩ

]
= 0.

(8.23)

The main difference between the Spherical Needlets and the spherical harmonics lies
in the fact that the latter form an orthonormal basis for the space of square-integrable
function on the sphere whereas Spherical Needlets don’t because of redundant elements.
Spherical Needlets, instead, form a tight frame, that can be viewed as the closer system
to a basis

Definition 5. Given a Hilbert space of functionsH with inner product 〈., .〉, a countable family
of functions {ek : k = 1, 2, 3, . . .} is called a frame if there exist universal constants c, C called
frame bounds, such that for all f ∈ H

c||f ||2 ≤
∑
k

|〈f, ek〉|2 ≤ C||f ||2. (8.24)

The frame is called tight if c = C.

In order to deal with spherical random fields, L2(S2) must be taken as the Hilbert
space with the usual inner product

〈f, g〉 :=

∫
S2

fgdΩ . (8.25)

In particular, Spherical Needlets form a tight frame with c = C = 1 (Marinucci & Peccati
2011), so it is possible to rewrite eq. 8.24 as follows∑

k

|〈f, ek〉|2 ≡
∫
S2

f(n)2dΩ . (8.26)

This equation represents the norm-preserving property of the fields, property that is
shared by all the orthonormal systems. In such sense, a tight frame is the closest system
to an orthonormal basis.
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The norm-preserving property can be rewritten as follows:

∑
jk

β2
jk =

∑
jk

λjk

{∑
l

b

(
l

Bj

)∑
m

almYlm(ξjk)

}2

=
∑
j

∑
l1l2

b

(
l1
Bj1

)
b

(
l2
Bj2

) ∑
m1m2

al1m1
a∗l2m2

∑
k

λjkYl1m1
(ξjk)Y ∗l2m2

(ξjk)

=
∑
j

∑
l1l2

b

(
l1
Bj1

)
b

(
l2
Bj2

) ∑
m1m2

al1m1
a∗l2m2

δl2l1 δ
m2
m1

=
∑
j

∑
l

b2
(

l

Bj

)∑
m

|alm|2 =
∑
l

(2l + 1)Ĉl,

(8.27)

where
Ĉl =

1

2l + 1

∑
m

|alm|2, (8.28)

providing the correct normalization for Spherical Needlets. Then, Needlets coefficients
seems to act just like the harmonic coefficients. This analogy become more strictly when
we write the reconstruction formula for the Spherical Needlets, providing the way to re-
construct the starting field from the Spherical Needlets using the Needlet coefficients.
Indeed, for all the functions f ∈ L2(S2) with corresponding coefficients {βjk = βjk(f)},
we have∑
jk

βjkψjk(n)

=
∑
j

∑
l1

l1∑
m1=−l1

b

(
l1
Bj

)
b

(
l2
Bj

)
al1m1Yl1m1(n)

∑
l2

l2∑
m2=−l2

∑
k

Yl1m1(ξjk)Y ∗l1m1
(ξjk)λjk

(8.29)

Using the property of cubature points and weight in eq. 8.6, we have that∑
k

Yl1m1
(ξjk)Y ∗l1m1

(ξjk)λjk =

∫
S2

Yl1m1
(ξjk)Y ∗l1m1

(ξjk)dΩ = δl2l1 δ
m2
m1
, (8.30)

then, ∑
jk

βjkψjk(n)

=
∑
j

∑
l1

l1∑
m1=−l1

b

(
l1
Bj

)
b

(
l2
Bj

)
al1m1

Yl1m1
(n)
∑
l2

l2∑
m2=−l2

δl2l1 δ
m2
m1

=
∑
l1

l1∑
m1=−l1

al1m1
Yl1m1

(n),

(8.31)

so that
f(n) =

∑
jk

βjkψjk(n). (8.32)
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Eqq. 8.27 and 8.32 are directly consequence of the partion of unity property (eq. 8.15)
characteristic of tight frames. This simple reconstruction formula is then typical of tight
frame, and does not hold for other wavelet systems (Marinucci & Peccati 2011). Its simi-
larity with the Spherical Harmonics reconstruction formula

f(n) =
∑
lm

almYlm(n) (8.33)

makes the Spherical Needlets the best wavelet system usable to replace the Spherical
Harmonics basis.

8.1.1 Properties

Localization property and missing observations

Spherical Needlets enjoy an excellent localization property in the real domain (Nar-
cowich et al. 2006b,a).

Proposition 2. Consider the function ψjk(n) defined in 8.13; then there exist a constant cM > 0
such that, for every x ∈ S2:

|ψjk(n)| ≤ cMB
j

(1 +Bj arccos〈ξjk, x〉)M
uniformly in(j, k). (8.34)

where 〈., .〉 is the Euclidean inner product, whereas arccos〈., .〉 is the natural distance
on the unit sphere between two points. For b(.) ∈ C∞, eq. 8.34 holds for M ∈ N, that is,
Needlets are quasi-exponentially localized around any cubature point ξjk. Otherwise,
the value of ψjk goes to zero quasi-exponentially as j goes to infinity. Hence, at smaller
values of B, Needlets are more concentrated in harmonic space, because less multipoles
entering in any Needlet, instead larger values of B ensure a faster decay in real space,
and a stronger behaviour when the spherical field is not fully considered, that is, if there
exist gaps in the sphere. The localization property, indeed, has a significant consequence:
Spherical Needlets coefficients are asymptotically unaffected by the presence of gaps in
the sphere (Baldi et al. 2006).

LetG ⊂ S2 be a set of points removed from the sphere. Calling T̃ the field obtained by
subtraction of the field defined in G from the starting field T , then T̃ (n) = T (n)S2/GI(n)

and Gε :=
{
x ∈ S2 : d(x,G) ≤ ε

}
. Moreover, define the neighbourhood of radius ε

around the set G ⊂ S2. Then, write β∗jk to indicate the random Needlet coefficients
evaluated on the partially observed sphere, so that

β∗jk =

∫
S2

T̃ (n)ψjk(n)dΩ =

∫
S2/G

T (n)ψjk(n)dΩ

= βjk −
∫
G

T (n)ψjk(n)dΩ

(8.35)

Proposition 3. For ξjk ∈ S2/Gε. We have√
〈
{
β∗jk − βjk

}2

〉 ≤ cMB
jΩG

(1 +Bjε)M

√
〈T 2(n)〉. (8.36)

As in the previous Proposition, for b(.) ∈ C∞, eq. 8.36 holds for M ∈ N, so that the
contributions of missing observations to the statistic of the field goes to zero asymptot-
ically as j goes to infinity. Furthermore, the greater is parameter B, the stronger is the
behaviour against incomplete sphere, that is in our framework, incomplete sky coverage.
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Uncorrelation property

Spherical Needlets are asymptotically uncorrelated for any fixed angular distance, as
the frequencies grows, going to infinity. To show this property, we first needs to recall
some arguments and write some consequences of the Needlets properties. First of all,
the compact support in harmonic domain entails that random Needlets coefficients are
uncorrelated whenever |j−j′| ≥ 2 due to the orthonormality of the Spherical Harmonics,
indeed.

〈βjkβj′k′〉 =
√
λjkλj′k′

∑
ll′

b

(
l

Bj

)
b

(
l′

Bj′

)∑
mm′

〈almal′m′〉Ylm(ξjk)Yl′m′(ξj′k′)

=
√
λjkλj′k′

∑
ll′

b

(
l

Bj

)
b

(
l′

Bj′

)∑
mm′

Clδ
l′

l δ
m′

m Ylm(ξjk)Y ∗l′m′(ξj′k′).

(8.37)

If |j − j′| ≥ 2 the two sum in eq. 8.37 don’t have common multipoles, then δl
′

l = 0 and
we have

〈βjkβj′k′〉 = 0. (8.38)

For j = j′, it is possible to write the variance of the Needlet coefficients as

〈β2
jk〉 = λjk

∑
l

b2
(

l

Bj

)
Cl

l∑
m=−l

Ylm(ξjk)Y ∗lm(ξjk)

= λjk
∑
l

2l + 1

4π
b2
(

l

Bj

)
Cl =: σ2

jk > 0

(8.39)

Note that we have σ2
jk ≈: σ2

j uniformly over k (Marinucci & Peccati 2011), where

σ2
j :=

1

Nj

∑
l

2l + 1

4π
b2
(

l

Bj

)
Cl, Nj := card {Xj} . (8.40)

The follows conditions is necessary so that the uncorrelation property holds

Condition 1. There exist M ∈ N, α > 2 and a sequence of functions {gj(.)} such that

Cl = l−αgj

(
l

Bj

)
> 0, for Bj−1 < l < Bj+1, (8.41)

where
c−1
0 ≤ gj ≤ c0 for all j ∈ N, (8.42)

and for r = 1, . . . ,M

sup
j

sup
B−1≤u≤B

∣∣∣∣ d′du′ gj(u)

∣∣∣∣ ≤ cr some c1, . . . , cM > 0. (8.43)

Condition 1 entails a weak smothness requirment on the behaviour of the angular
power spectrum, which is trivially satisfied by cosmological revelant models (Marin-
ucci & Peccati 2011), where power spectrum usually behaves as an inverse polynomial
(Dodelson 2003; Scodeller et al. 2011)

Cl = 〈|alm|2〉 ' G(l)l−α, (8.44)
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where G(l) is some smooth function,
The correlation coefficients can be then derived as

Corr(βjk, βjk′) =
〈βjkβjk′〉√
〈β2
jk〉〈β2

jk′〉

=

√
λjkλjk′

∑
l b

2
(
l
Bj

)
2l+1
4π ClPl(〈ξjk, ξjk′〉√

λjkλjk′
∑
l b

2
(
l
Bj

)
2l+1
4π Cl

(8.45)

then (Baldi et al. 2006)

Lemma 2. Under Condition 1 the following inequality holds

|Corr(βjk, βjk′)| ≤
CM

(1 +Bjd(ξjk, ξjk′))M
, some CM > 0, (8.46)

where d(ξjk, ξjk′) = arccos(〈ξjk, ξjk′〉) is the standard distance on the sphere.

Spherical Needlets coefficients are then asymptotically uncorrelated at any fixed an-
gular distance d(ξjk, ξjk′) as the frequency j grows to infinity. This property is not a
consequence of the localization property. In fact, it is possible to find many counterex-
ample in the functional analysis literature (Marinucci & Peccati 2011).

8.1.2 Mexican Needlets

Another definition of Spherical Needlets alternative to the tandard Needlets is the so-
called Mexican Needlets (Geller & Mayeli 2007b, 2009, 2007a; Freeden & Schreiner 1998).
Mexican Needlets were introduced removing the condition on the compact support
of the kernel of Spherical Needlets. This means that in the harmonic space, mexican
Needlets are larger than Spherical Needlets, because they contain all the multipoles. The
resulting kernel thus involves polynomials of infinitely large order, making exact cuba-
ture formula no more holding. In place of eq. 8.21 we have

b

(
l

Bj

)
=

(
l(l + 1)

B2j

)p
exp

(
− l(l + 1)

B2j

)
(8.47)

that, inserted in definition 8.13, brings to

ψjk(x; p) :=
√
λjk

∞∑
l=0

(
l(l + 1)

B2j

)p
exp

(
− l(l + 1)

B2j

)
2l + 1

4π
Pl(〈x, ξjk〉). (8.48)

Remark 1. It is important to note that for p = 1, mexican Needlets provide a very good ap-
proximation of the so-called Spherical Mexican Hat Wavelets (SMHW) as the frequency j grows
to infinity. This kind of wavelets has been used in many works of statistical cosmology and in
particular in the study of the CMB (Curto et al. 2009, 2011, 2012).

The introduction of high order terms is allowed by the absence of a compact support
in the harmonic domain. This brings to an improvement of the localization property of
the mexican Needlet in the harmonic domain, but also to a worsening of the localization
properties in the real space, due to the “uncertainty principle” of Fourier transform, for
which is not possible for a function and its Fourier transform to be simultaneously very
small (Marinucci & Peccati 2011; Havin & Joricke 1994). Otherwise, mexican Needlets
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are better concentrated in real space than standard ones, due the fact they introduce a
Gaussian decay at each scale. This property together with the fact they are well-defined
by formula in eq. 8.47 in real space (unlike the standard Needlets due the lack of us-
able formulas), allows to implement mexican Needlets directly on the sphere (Geller &
Mayeli 2007b, 2009) rather than only in the frequencies domain.

The mexican Needlet coefficients are given by

βjk(p) =

∫
S2

T (n)ψjk(x; p)dΩ =

∫
S2

∑
lm

almYlm(n)ψjk(x; p)dΩ

=
√
λjk

∑
l

(
l(l + 1)

B2j

)p
exp

(
− l(l + 1)

B2j

)∑
m

almYlm(ξjk).

(8.49)

Due the lack of an exact cubature formula, it is no longer possible use the mexican
Needlets coefficients to write an exact reconstruction formula just like the one obtained
for the standard Needlets (eq. 8.32). But, it can be easily show that mexican Needlets
provide a more powerful uncorrelation property with respect to the standard Needlets
(Lan & Marinucci 2008a; Mayeli 2008). The explicitly expression for the correlation coef-
ficient is

Corr(βjk1;p, βjk2;p) =

∑
l(
l(l+1)
B2j )2pe−

2l(l+1)

B−2j (2l + 1)ClPl(〈ξjk1ξjk2〉)∑
l(
l(l+1)
B2j )2pe−

2l(l+1)

B−2j (2l + 1)Cl
. (8.50)

Then, we have

Proposition 4. Assume Condition 1 holds with α < 4p + 2 and M ≥ 4p + 2 − α; then there
exist some constant CM > 0 such that

|Corr(βjk1;p, βjk2;p)| ≤
CM

(1 + j−1Bj arccos(〈ξjk1ξjk2〉))(4p+2−α)
(8.51)

The parameter α is linked to angular power spectrum, representing its decaying rate
(Marinucci & Peccati 2011). Random mexican Needlet coefficients are correlated if the
parameter α is greater than or equal to 4p+2, whereas they present a better uncorrelation
property with respect to standard Needlets when α < 4p + 2, due to the j−1 in the
denominator of eq. 8.51. This is expressed by the following proposition

Proposition 5. Under Condition 1, for α > 4p + 2, ∀ε ∈ (0, 1), there exist a positive δ = δε,
such that

lim
j→∞

inf Corr(βjk1;p, βjk2;p) > 1− ε, (8.52)

for all {ξjk, ξjk′} such that d(ξjk, ξjk′) ≤ δ.

The explanation of this different behaviour of Needlet coefficients between standard
and mexican Needlets is quite simple and depends on the lack of compact support for
the latters. In fact, the lowest scale taking in account the lowest multipoles that are the
most affected by cosmic variance. Because of the standard Needlets compact support
in the frequencies domain, these low-frequency components are dropped out, ensuring
the uncorrelation of random coefficients at high frequencies. This doesn’t happen with
the mexican Needlets, in which none of the components are ruled out due to the lack of
compact support. The low frequencies components become then relevant for mexican
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Needlets when the condition on α of proposition 4 is not satisfied, i.e. the spectrum de-
cays too fast. Instead, when the angular power spectrum is decaying “slowly enough”,
asymptotic uncorrelation of the random coefficients is ensured. It should be noted that
for cosmological application α = 2 provides an excellent fit to the data, granting asymp-
totic uncorrelation even for p = 1 (Marinucci & Peccati 2011). In (Scodeller et al. 2011),
numerical results show that for CMB-like power spectra, the uncorrelation property of
mexican Needlets is more powerful than standard Needlets, justifying the use of this
new kind of Spherical Needlets.





CHAPTER 9

The Needlet Trispectrum

The main effort in constraining non-Gaussianity was focused on the bispectrum, and
then in constraining fNL, because of the fact that inflationary trispectrum is generally
suppressed with respect to the bispectrum. There is a significant literature on the trispec-
trum estimator (Smith et al. 2015; Fergusson et al. 2010; Regan et al. 2015; Kogo & Ko-
matsu 2006; Hu 2001), showing how it is possible to constrain gNL optimally using
Spherical Harmonics based estimator. The aim of my work is to introduce an estima-
tor stronger than the Spherical Harmonics one in presence of masks, able to constrain
gNL, thus giving an independent way to measure inflationary parameter that can sup-
port all of the existing methods. An estimator close to mine was developed by (Regan
et al. 2015), but it was tested only on low resolution maps, thus not giving reliable in-
formation with respect to the data we have today from, i.e., Planck survey (Planck Col-
laboration et al. 2014a, 2016a). In what follows, I’ll derive the optimal Needlet system
based trispectrum estimator and I will show how does it behave when applied to high-
resolution CMB data, with the aim to apply it to the real high resolution data of Planck
and thus obtaining a brand new estimation for gNL.

9.1 Derivation of the Optimal Trispectrum Estimator

In order to provide a rigorous trispectrum estimator, I have to introduce a new method
to calculate the polyspectrum of a spherical random field. This section is based upon the
conclusions of (Marinucci & Wigman 2012).

Let T (n) be a zero-mean Gaussian and isotropic spherical random field and consider
the spectral decomposition

T (n) =
∑
l

Tl(n), (9.1)

where
Tl(n) =

∑
m

almYlm(n). (9.2)

Consider functionals of the form

Zl =

Q∑
q=0

bq

∫
S2

[
Tl(n)√
〈T 2
l (n)〉

]q
dΩ , for some Q ∈ N, bq ∈ R. (9.3)

This polynomial statistics represent a renormalization of the sum of the polyspectra of the
random field T . Then, there exist coefficients β0 . . . βp such that it is possible to rewrite

97
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the functionals Zl in terms of Hermite polynomials

Zl =

Q∑
q=0

βq

∫
S2

Hq

(
Tl(n)√
〈T 2
l (n)〉

)
dΩ (9.4)

where Hq is the q-th order Hermite polynomial (see (Marinucci & Wigman 2012) for the
details). The Hermite polynomials are the polynomials with the lowest variance among
the other polynomials (Marinucci & Peccati 2011). This fact make the new definition
of polyspectra in eq. 9.4 suitable for the construction of the optimal estimator for these
statistics.

While for the bispectrum we have to consider the third-order Hermite polynomial
H3(n) = x3 − 1, for the trispectrum the fourth-order Hermite polynomial must be used

H4(x) = x4 − 6x2 + 3. (9.5)

A difficulty in the case of Hermite polynomials is that they are functions of a variable,
that is, the ratio Tl(n)√

〈T 2
l (n)〉

. Instead, polyspectra are functions of two or more random

variables, labelled by the multipoles li. Therefore, in the next paragraph, I ’ll introduce
a multi-variate form of the Hermite polynomials, called Wick Product, with the same
property of low variance of the Hermite polynomials.

9.1.1 Wick Product

Wick product was introduced in (Wick 1950) and it is often used in applied mathematics
(Hu & Yan 2009; Kaligotla & Lototsky 2010). It is defined by this recursive formula

::= 1

∂:X1,...,Xk:
∂Xi

=: X1, . . . , Xi−1, Xi+1, . . . , Xk : for k ≥ 1

and the property of null mean holds, 〈: x1 . . . xk :〉 = 0 for k ≥ 1.
In order to apply Wick product to polyspectra, I had to derive the first four order

polynomials. At the first order, Wick product is simply the subtraction of the expected
value from the variables itself:

: X := X − 〈X〉 (9.6)

for k = 2 one has:

: X1, X2 := X1X2 − 〈X1〉X2 + 〈X1〉X2 + 2〈X1〉〈X2〉 − 〈X1X2〉 (9.7)

for k = 3:

: X1, X2, X3 : = X1X2X3

− 〈X1〉X2X3 − 〈X2〉X1X3 − 〈X3〉X1X2

+ 2〈X1〉〈X2〉X3 + 2〈X1〉〈X3〉X2 + 2〈X2〉〈X3〉X1

− 〈X1X2〉X3 − 〈X1X3〉X2 − 〈X2X3〉X1

− 〈X1X2X3〉
+ 2〈X1〉〈X2X3〉+ 2〈X2〉〈X1X3〉+ 2〈X3〉〈X1X2〉
− 2〈X1〉〈X2〉〈X3〉 − 2〈X1〉〈X3〉〈X2〉 − 2〈X2〉〈X3〉〈X1〉

(9.8)
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then, for k = 4:

: X1, X2, X3, X4 : = X1X2X3X4

− 〈X1〉X2X3X4 − 〈X2〉X1X3X4

− 〈X3〉X1X2X4 − 〈X4〉X1X2X3

+ 2〈X1〉〈X2〉X3X4 + 2〈X1〉〈X3〉X2X4 + 2〈X1〉〈X4〉X2X3

+ 2〈X2〉〈X3〉X1X4 + 2〈X2〉〈X4〉X1X3 + 2〈X3〉〈X4〉X1X2

− 〈X1X2〉X3X4 − 〈X1X3〉X2X4 − 〈X1X4〉X2X3

− 〈X2X3〉X1X4 − 〈X2X4〉X1X3 − 〈X3X4〉X1X2

− 〈X1X2X3〉X4 − 〈X1X3X4〉X2

− 〈X1X2X4〉X3 − 〈X2X3X4〉X2

(9.9)

+ 2〈X1〉〈X2X3〉X4 + 2〈X2〉〈X1X3〉X4 + 2〈X3〉〈X1X2〉X4

+ 2〈X1〉〈X2X4〉X3 + 2〈X2〉〈X1X4〉X3 + 2〈X4〉〈X1X2〉X3

+ 2〈X1〉〈X3X4〉X2 + 2〈X3〉〈X1X4〉X2 + 2〈X4〉〈X1X3〉X2

+ 2〈X2〉〈X3X4〉X1 + 2〈X3〉〈X2X4〉X1 + 2〈X4〉〈X2X3〉X1

− 6〈X1〉〈X2〉〈X3〉X4 − 6〈X1〉〈X2〉〈X4〉X3

− 6〈X1〉〈X3〉〈X4〉X2 − 6〈X2〉〈X3〉〈X4〉X1

+ 2〈X1〉〈X2X3X4〉+ 2〈X2〉〈X1X3X4〉
+ 2〈X3〉〈X1X2X4〉+ 2〈X4〉〈X1X2X3〉
− 6〈X1〉〈X2〉〈X3X4〉 − 6〈X1〉〈X3〉〈X2X4〉

− 6〈X1〉〈X4〉〈X2X3〉 − 6〈X2〉〈X3〉〈X1X4〉
− 6〈X2〉〈X4〉〈X1X3〉 − 6〈X3〉〈X4〉〈X1X2〉
+ 2〈X1X2〉〈X3X4〉+ 2〈X1X3〉〈X2X4〉+ 2〈X1X4〉〈X2X3〉
+ 24〈X1〉〈X2〉〈X3〉〈X4〉 − 〈X1X2X3X4〉.

Consider then Gaussian centered random variables, 〈Xi〉 = 0, 〈X2
i 〉 = σi and 〈XiXj〉 =

σij . Due to the vanishing property of the Gaussian variables odd moments, the fourth-
order Wick product (eq. 9.9) reduces as follows

: X1, X2, X3, X4 : = X1X2X3X4

− σ12X3X4 − σ13X2X4 − σ23X1X4

− σ14X2X3 − σ24X1X3 − σ34X1X2

+ 2σ12σ34 + 2σ13σ24 + 2σ14σ23

− 〈X1X2X3X4〉.

(9.10)

Thanks to Diagram Formula (appendix A) we can decompose the term in the last line of
eq. (9.10) as

〈X1X2X3X4〉 = σ12σ34 + σ13σ24 + σ14σ23, (9.11)

thus obtaining:

: X1, X2, X3, X4 : = X1X2X3X4

− σ12X3X4 − σ13X2X4 − σ23X1X4

− σ14X2X3 − σ24X1X3 − σ34X1X2

+ σ12σ34 + σ13σ24 + σ14σ23.

(9.12)
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If we consider only one gaussian centered random variable 〈Xi〉 = 0, 〈X2
i 〉 = σi, one has

: X,X,X,X := X4 − 6σX2 + 3σ2 (9.13)

When σ = 1, the fourth-order Wick product is the Hermite polynomial of order four
becomes

: X,X,X,X := X4 − 6X2 + 3 (9.14)

confirming the first hypothesis about Wick product, that is, Wick product is the multidi-
mensional analogue of Hermite polynomials (9.5).

When the variables involved in the Wick product are non-Gaussian, what we get
taking the expected value of the Wick product is:

〈: X1, X2, X3, X4 :〉 = 〈X1X2X3X4〉 − (σ12σ34 + σ13σ24 + σ14σ23) (9.15)

that is the definition of the connected part of the trispectrum (see eq. (1.55), exactly what
we want to measure with our estimator.

In order to prove the property of lowest variance of the Wick polynomials, consider
a fourth-order polynomials in four variables, written as follows

P (X1, X2, X3, X4) = X1X2X3X4

+ c1X2X3X4 + c2X1X3X4

+ c3X1X2X4 + c4X1X2X3

+ c12X3X4 + c13X2X4 + c14X2X3

+ c23X1X4 + c24X1X3 + c34X1X2

+ c123X4 + c124X3 + c134X2 + c234X1

+ c1234.

(9.16)

It is possible to rewrite this polynomial in terms of Wick product

P (X1, X2, X3, X4) =: X1X2X3X4 :

+ c1X2X3X4 + c2X1X3X4 + c3X1X2X4 + c4X1X2X3

+ (c12 + 〈X1X2〉)X3X4 + (c13 + 〈X1X3〉)X2X4

+ (c14 + 〈X1X4〉)X2X3 + (c23 + 〈X2X3〉)X1X4

+ (c24 + 〈X2X4〉)X1X3 + (c34 + 〈X3X4〉)X1X2

+ c123X4 + c124X3 + c134X2 + c234X1

+ c1234 − 2〈X1X2〉〈X3X4〉 − 2〈X1X3〉〈X2X4〉
− 2〈X2X3〉〈X1X4〉+ 〈X1X2X3X4〉
=: X1X2X3X4 : +Q(X1, X2, X3, X4),

(9.17)

where Q(X1, X2, X3, X4) is a third order polynomial in (X1, X2, X3, X4). It is readily
seen that : X1X2X3X4 : is uncorrelated with any polynomials of order smaller than four
in the same variables. In fact, the uncorrelation with polynomials of order three or one is
provided by the property of Gaussian variables, whose odd moments are always equal
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to 0

〈: X1, X2, X3, X4 : X1X2X3〉 = 〈X2
1X

2
2X

2
3X4〉

− 〈X1X2〉〈X1X2X
2
3X4〉 − 〈X1X3〉〈X1X

2
2X3X4〉

− 〈X2X3〉〈X2
1X2X3X4〉 − 〈X1X4〉〈X1X

2
2X

2
3 〉

− 〈X2X4〉〈X2
1X2X

2
3 〉 − 〈X3X4〉〈X2

1X
2
2X3〉

+ (2〈X1X2〉〈X3X4〉+ 2〈X1X3〉〈X2X4〉
+ 2〈X2X3〉〈X1X4〉 − 〈X1X2X3X4〉)× 〈X1X2X3〉
= 0,

(9.18)

while the uncorrelation with second order polynomials is provided by means of the
Diagram Formula (see appendix A)

〈: X1, X2, X3, X4 : X1X2〉 = 〈X2
1X

2
2X3X4〉

− 〈X1X2〉〈X1X2X3X4〉 − 〈X1X3〉〈X1X
2
2X4〉

− 〈X2X3〉〈X2
1X2X4〉 − 〈X1X4〉〈X1X

2
2X3〉

− 〈X2X4〉〈X2
1X2X3〉 − 〈X3X4〉〈X2

1X
2
2 〉

+ 2〈X1X2〉2〈X3X4〉+ 2〈X1X3〉〈X2X4〉〈X1X2〉
+ 2〈X2X3〉〈X1X4〉〈X1X2〉 − 〈X1X2X3X4〉〈X1X2〉
= 0

(9.19)

Hence we have:

Var{P (X1, X2, X3, X4)} = Var{: X1X2X3X4 : +Q(X1, X2, X3, X4)}
= Var{: X1X2X3X4 :}+ Var{Q(X1, X2, X3, X4)}
+ 2Cov{: X1X2X3X4 :, Q(X1, X2, X3, X4)}
= Var{: X1X2X3X4 :}+ Var{Q(X1, X2, X3, X4)}
≥ Var{: X1X2X3X4 :}.

(9.20)

Then, eq. 9.20 entails the property of lowest variance for Wick Product. Although the
proof is limited to the case of fourth order Wick product, that is, the case strictly related
to the trispectrum, conclusions are more general and holds for every order of the Wick
polynomials.

9.2 The Optimal Trispectrum Estimator

In order to write the Trispectrum estimator, we recall eq. 9.4, replacing Wick product
instead of the Hermite polynomials∫

S2

: T̂l1(n)T̂l2(n)T̂l3(n)T̂l4(n) : dΩ =

∫
S2

[T̂l1(n)T̂l2(n)T̂l3(n)T̂l4(n)

− (Γl1l2 T̂l3(n)T̂l4(n) + 5cyc.)
+ (Γl1l2Γl3l4 + 2cyc.)]dΩ ,

(9.21)

where dΩ is the Lebesgue measure of S2, T̂li(n) =
Tli (n)

〈T 2
li

(n)〉 and Γlilj = 〈T̂li(n)T̂lj (n)〉. We

can divide integral in eq. 9.21 into two components. The first component is composed
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by the first term, that is, the fourth-order Fourier momentum of the field∫
S2

T̂l1(n)T̂l2(n)T̂l3(n)T̂l4(n)dΩ , (9.22)

giving the estimator of the trispectrum, while the second component is composed by all
the remaining terms, forming a quadratic term. The effect of this quadratic term is to
minimize the variance of the trispectrum, without introducing bias in the trispectrum
expected value.

Taking the numerator of eq. 9.22, we obtain∫
S2

Tl1(n)Tl2(n)Tl3(n)Tl4(n)dΩ

=

∫
S2

∑
m1m2m3m4

al1m1
al2m2

al3m3
al4m4

Yl1m1
(n)Yl2m2

(n)Yl3m3
(n)Yl4m4

(n)dΩ

=
∑

m1m2m3m4

al1m1
al2m2

al3m3
al4m4

×G{l1,m1; l2,m2; l3,m3; l4,m4}

(9.23)

where G{l1,m1; l2,m2; l3,m3; l4,m4} is the fourth-order Gaunt integral,

G{l1,m1; l2,m2; l3,m3; l4,m4}

=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l4 + 1)

4π

∑
LM

(2L+ 1)×

×
(
l1 l2 L
m1 m2 −M

)(
l3 l4 L
m3 m4 M

)(
l1 l2 L
0 0 0

)(
l3 l4 L
0 0 0

) (9.24)

Hence, we have∫
S2

Tl1(n)Tl2(n)Tl3(n)Tl4(n)dΩ

=
(4π)2√

(2l1 + 1)(2l1 + 2)(2l1 + 3)(2l1 + 4)

∑
m1...m4

al1m1al2m2al3m3al4m4√
Cl1Cl2Cl3Cl4

×

×
√

(2l1 + 1)(2l1 + 2)(2l1 + 3)(2l1 + 4)

4π

∑
LM

(2L+ 1)(−1)M (−1)−M×

×
(
l1 l2 L
m1 m2 −M

)(
l3 l4 L
m3 m4 M

)(
l1 l2 L
0 0 0

)(
l3 l4 L
0 0 0

)
Q̂l1l2l3l4

(L)

= (4π)
3
2

∑
L

(
l1 l2 L
0 0 0

)(
l3 l4 L
0 0 0

)
× Q̂l1l2l3l4

(L),

(9.25)

that is the same of eq. (1.70). As we have just seen, the introducing of the quadratic term
make the variance of the trispectrum systematically lower then any other fourth-order
statistic. The trispectrum estimator written in eq. 9.21 is then the optimal trispectrum
estimator.

The asymptotic behaviour of the optimal trispectrum estimator in eq. 9.21 is analyzed
in (Marinucci & Wigman 2012) and (Cammarota & Marinucci 2013) where is proved that
the polyspectra of a spherical random fields behave as the normal distribution as the
frequency goes to infinity
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Theorem 2. For all q such that cq > 0, we have

h2l;q√
V ar(h2l;q)

→d N (0, 1), asl→∞, (9.26)

where
hl;q =

∫
S2

Hq(fl(n))dΩ . (9.27)

9.3 The Needlet Trispectrum

The aim of my PhD work was to construct the best optimal estimator for the trispectrum
of a spherical random field. First, I derived the optimal estimator of trispectrum using
the standard Fourier transform on the 2-sphere, that is the deconvolution by means of
Spherical Harmonics. Then, in view of the bad behaviour of the Spherical Harmonics in
case of incomplete sphere, I defined a new framework in which perform the deconvo-
lution of the field, the Spherical Needlets. Now, combining the statistical robustness of
Spherical Needlets with the optimal trispectrum estimator, I’m going to derive the opti-
mal estimator for the trispectrum which is also the stronger in case of incompleteness of
the sphere. A similar procedure was used for the bispectrum (Lan & Marinucci 2008b)
and used to test the non-Gaussianity of the CMB (Pietrobon et al. 2009, 2010; Rudjord
et al. 2009, 2010) with good results.

9.3.1 Optimal Estimator

As we already saw, the optimal trispectrum estimator is evaluated by means of combi-
nation of four Fourier components of the field T (n):

T (n) =

∞∑
l=0

Tl(n), (9.28)

Tl(n) =

l∑
m=−l

almYlm(n). (9.29)

This components can be written by means of the Spherical Harmonics orthonormal pro-
jection operator

Ll =

l∑
m=−l

Ylm(n)Y ∗lm(n′). (9.30)

Convolving the field with the projection operator, one obtains

Tl(n) = Ll ∗ T =

∫
S2

T (n′)
l∑

m=−l

Ylm(n)Y ∗lm(n′)dΩ ′ =

l∑
m=−l

almYlm(n). (9.31)

To obtain the form of the Needlet trispectrum, I should use the frame projection operator,
analogue to the orthonormal projection operator in the frame framework

√
λjk

∑
l

b

(
l

Bj

)
Ll, (9.32)
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so that

Tl(n) =

∫
S2

T (n′)
√
λjk

∑
l

b

(
l

Bj

)∑
m

Ylm(n)Y ∗lm(n′)dΩ ′

=
√
λjk

∑
lm

∑
l′m′

b

(
l

Bj

)
al′m′Ylm(n)

∫
S2

Y l
′

m′(n′)Y ∗lm(n′)dΩ ′

=
√
λjk

∑
lm

∑
l′m′

b

(
l

Bj

)
al′m′Ylm(n)δl

′

l δ
m′

m

=
√
λjk

∑
lm

b

(
l

Bj

)
almYlm(n).

(9.33)

Eq. 9.32 represent a continuous operator on the sphere. But, as it is just seen in the defi-
nition, Spherical Needlets are defined in a discrete subset of the sphere, whose elements
are the cubature points. Then, we need to discretize the results of eq. 9.33, embedding
them in the set of cubature points. Losely speaking, since eq. 9.33 holds for every points
of the sphere, then it must holds a fortiori in a subset of S2. Discretizing eq. 9.33, one
obtains

Tl(ξjk) =
√
λjk

∑
lm

b

(
l

Bj

)
almYlm(ξjk) = βjk, ∀ξjk ∈ S2, (9.34)

that is the definition of the random Needlets coefficients, as just seen in eq. 8.22. Then,
replacing Tl with βjk and discretizing the sum, I obtain the main results of this thesis,
the Spherical Needlets optimal trispectrum estimator

Jj1j2j3j4
=

√
4π

Nj4

∑
k4

: βj1k1βj2k2βj3k3βj4k4 :

σj1σj2σj3σj4
δj1j2j3j4(k1, k2, k3, k4), j1 ≤ j2 ≤ j3 ≤ j4,

(9.35)

: βj1k1βj2k2βj3k3βj4k4 :=
βj1kβj2kβj3kβj4k
σj1σj2σj3σj4

+ Cj1j2j3j4k
, (9.36)

where

δj1j2j3j4(k1, k2, k3, k4) = I(ξj4k4 ∈ Vj3k3)I(ξj3k3 ∈ Vj2k2)I(ξj2k2 ∈ Vj1k1). (9.37)

I is the indicator function, different from zero only when the condition between the
brackets is verified, whereas Vjk is the Voronoi cell related to the cubature point ξjk.
The quadratic term is expressed as follows:

Cj1j2j3j4k
=− Γj1j2 β̂j3kβ̂j4k − Γj1j3 β̂j2kβ̂j4k − Γj1j4 β̂j2kβ̂j3k

− Γj2j3 β̂j1 β̂j4 − Γj2j4 β̂j1 β̂j3 − Γj3j4 β̂j1 β̂j2
+ Γj1j2Γj3j4 + Γj1j3Γj2j4 + Γj1j4Γj2j3

− 〈β̂j1kβ̂j2kβ̂j3kβ̂j4k〉,

(9.38)

Γjijj = 〈βjikiβjjkj 〉. (9.39)

Some assumptions has been made to calculate the trispectrum. Following the nota-
tion used in (Lan & Marinucci 2008b) and (Marinucci & Peccati 2011), I assumed that the
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cubature points are nested, i.e. for j′ > j,Xj ⊂ Xj′ and the cubature weights are constant
over k, i.e. λjk = 4π/Nj , where, Nj = card{Xj}. Then, the role of δj1j2j3j4(k1, k2, k3, k4)
is to ensure that the sum runs over the unique value of k3 such that ξj4k4 ∈ Vj3k3 , k2 such
that ξj4k4 , ξj3k3 ∈ Vj2k2 and k1 such that ξj4k4 , ξj3k3ξj2k2 ∈ Vj1k1 .

9.3.2 Mean Subtraction

In (Donzelli et al. 2012) it is shown tat in presence of nearly isotropic noise, the behavior
of the linear correction term of the bispectrum, analogue to the trispectrum quadratic
term, is well approximated by subtracting scale-by-scale the sky average of wavelet or
Needlet coefficients. An analogue behavior for the quadratic term could allow to reduce
the amount of calculation needed for its computation.

The Needlet coefficients sky average is defined as

β∗j =
1

N

∑
k

βjk, (9.40)

then, replacing the sky average to the Needlet coefficients and rewriting the Needlet
trispectrum, one obtains

1

N

∑
k

(βj1k − β∗j1)(βj2k − β∗j2)(βj3k − β∗j3)(βj4k − β∗j4)

=
1

N

∑
k

(βj1kβj2k − βj1kβ∗j2 − β
∗
j1βj2k + β∗j1β

∗
j2)×

× (βj3kβj4k − βj3kβ∗j4 − β
∗
j3βj4k + β∗j3β

∗
j4)

=
1

N

∑
k

βj1kβj2kβj3kβj4k − β∗j1

{
1

N

∑
k

βj2kβj3kβj4k

}

− β∗j2

{
1

N

∑
k

βj1kβj3kβj4k

}
− β∗j3

{
1

N

∑
k

βj1kβj2kβj4k

}

− β∗j4

{
1

N

∑
k

βj1kβj2kβj3k

}
+ β∗j1β

∗
j2

{
1

N

∑
k

βj3kβj4k

}

+ β∗j1β
∗
j3

{
1

N

∑
k

βj3kβj4k

}
+ β∗j1β

∗
j4

{
1

N

∑
k

βj2kβj3k

}

+ β∗j2β
∗
j3

{
1

N

∑
k

βj1kβj4k

}
+ β∗j2β

∗
j4

{
1

N

∑
k

βj1kβj3k

}

+ β∗j3β
∗
j4

{
1

N

∑
k

βj1kβj1k

}
− 3β∗j1β

∗
j2β
∗
j3β
∗
j4

(9.41)

where I replaced the proper indexes of the Needlet coefficients ki with the index k, in
order to simplify the notation of eq. 9.35. Eq. 9.41 shows that, even in the fullsky
case, with isotropic noise, it is not possible to simplify the quadratic term with the mean
subtraction approximation. Then, we have to compute all the components in order to
calculate the quadratic term.





CHAPTER 10

gNL Estimation

10.1 The Needlet gNL Estimator

So far, I analytically derived the optimal Needlet trispectrum estimator (eq. 9.35). It is
possible to use this formula in order to evaluate the magnitude of gNL from the CMB
data, as already done for fNL (Rudjord et al. 2009; Donzelli et al. 2012). In this approach
a χ2 minimization procedure is used. Let’s define

χ2(gNL) = dT (gNL)C−1d(gNL), (10.1)

where d is the data vector and C−1 is the inverse of the correlation matrix of data,

Cij = 〈didj〉 − 〈di〉〈dj〉. (10.2)

The data vector d is defined by means of the trispectrum Jj1j2j3j4

di = Jj1j2j3j4
(observed)− 〈Jj1j2j3j4

〉(gNL) (10.3)

for all the combinations of (j1, j2, j3, j4) satisfying the quadrilateral condition

max(|ji−jj−jk|, |jj−ji−jk||jk−jj−ji|) ≤ jz ≤ ji+jj+jk, i, j, k, z = 1, 2, 3, 4. (10.4)

Jj1j2j3(observed) is the Needlet trispectrum of the observed CMB data, for which we
want to estimate gNL and 〈Jj1j2j3〉(gNL) is the expectation value of the Needlet trispec-
trum for a given value of gNL, evaluated as follow. Consider a non-Gaussian collection
of {alm}. Each of them is the result of the sum

alm = aGlm + fNLa
NG,1
lm + gNLa

NG,2
lm , (10.5)

where the aGlm’s are Gaussian Harmonic coefficients while the aNG,ilm ’s represent the non-
Gaussian alm of order i. fNL and gNL are arbitrary reference values. Let’s assume fNL =
0, so that

alm = aGlm + gNLa
NG,2
lm . (10.6)

We have seen that the Needlet coefficients are directly related to the Harmonic coefficient
(eq. 8.22). Thus we can relate non-Gaussian Harmonic coefficients to the Needlet ones:

alm = aGlm + gNLa
NG,2
lm −→ βGjk + gNLβ

NG
jk = βjk. (10.7)
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Hence, the non-Gaussian trispectrum is

〈Jj1j2j3〉(gNL) =

〈∑
k

β̂j1kβ̂j2kβ̂j3kβ̂j4k

〉

= gNL

(〈∑
k

β̂NGj1k β̂
G
j2kβ̂

G
j3kβ̂

G
j4k

〉
+

〈∑
k

β̂Gj1kβ̂
NG
j2k β̂

G
j3kβ̂

G
j4k

〉
〈∑

k

β̂Gj1kβ̂
G
j2kβ̂

NG
j3k β̂

G
j4k

〉
+

〈∑
k

β̂Gj1kβ̂
G
j2kβ̂

G
j3kβ̂

NG
j4k

〉)
+O((β̂NGjk )2)

≈ gNL(〈JNG,G,G,Gj1j2j3
〉+ 〈JG,NG,G,Gj1j2j3

〉+ 〈JG,G,NG,Gj1j2j3
〉+ 〈JG,G,G,NGj1j2j3

〉)

= gNL〈Ĵj1j2j3〉,

(10.8)

where we considered
〈∑

k β̂
G
j1k
β̂Gj2kβ̂

G
j3k
β̂Gj4k

〉
= 0 by definition of Gaussianity.

Having defined the non-Gaussian trispectrum, we can search for the extrema of χ2

dχ2(gNL)

dgNL
= 0, (10.9)

thus obtaining

gNL =
〈Ĵj1j2j3〉tC

−1Jj1j2j3(observed)

〈Ĵj1j2j3〉tC
−1〈Ĵj1j2j3〉

(10.10)

where t stand for transpose of the vector. Hence, using this formula allows to measure
gNL of a map knowing its trispectrum. Let’s see how this is implemented in the software
I wrote and what results it gave.

10.2 Software Implementation

The software I wrote to estimate gNL take advantage of the C++ HEALPix libraries1 (Hi-
erarchical Equal Area and iso-Latitude Pixelation) (Górski et al. 2005), developed with
the aim to provide subroutines useful for spherical analysis. The HEALPix code al-
lows to analyse spherical functions by discretizing the sphere in grids of iso-latitude and
equal-area cells, i.e. the pixels, and compute the spherical functions at the center of the
pixels. The number of pixels in which the sphere can be divided is constrained by the
condition of iso-latitude and equal-area. At the lowest resolution, the sphere is divided
into 12 pixels. We can express the resolution of the grid using the parameterNside, which
defines the number of divisions along the side of a base-resolution pixel and must be a
power of 2. Thus, Nside = 1, 2, 4, 8, ...2n and the number of pixels scales as

Npix = 12 ·N2
side. (10.11)

In order to include the HEALPix libraries, I had to manage eq. 9.35. In fact, the
summation over the cubature points of eq. 9.35 must be replaced by a summation on
the center of the pixels of the sphere. Since the HEALPix partition is set finer than the
cubature partition of the sphere at the maximum scale j4, it represents an improvement

1http://healpix.sourceforge.net/
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on the statistical significance of the results and does not introduce computational error
in the results. Thus, we can rewrite the Needlet trispectrum estimator as

Jj1j2j3j4
=

Npix∑
k=1

[
βj1kβj2kβj3kβj4k
σj1σj2σj3σj4

+ Cj1j2j3j4k

]
, (10.12)

where k labels the centers of the pixels on the HEALPix grid. It is easy to see how I have
dropped out a constant factor of normalization. Indeed, in the estimation of the gNL
parameter, this factor is elided by calculus.

Rudjord et al. (2009) and subsequently Donzelli et al. (2012) developed a software,
written in FORTRAN, to estimate the fNL parameter from the Needlet bispectrum with
a χ2 procedure analogue to that I described above. In their code, the HEALPix libraries
are used efficiently and parallelization is adopted in order to decrease the computation
time. Therefore, I took advantage of the solutions adopted in that code in the writing of
my C++ code for the trispectrum.

Unfortunately, the amount of memory and time required in the computation increase
in the trispectrum case. Each scale ji in the trispectrum formula (eq. 10.12) implies the
calculation of an entire CMB map in which at every pixel k is assigned the corresponding
Needlet coefficient βjik. Then, assuming that the maps are stored in arrays of single
precision variables (each of them has dimension 4 byte) and a resolution of Nside = 512,
we have that every map requires 12 ·N2

side · 4/(1024)2 ' 14Mb. For the bispectrum, the
number of permutations (j1, j2, j3) satisfying the triangle condition for 11 Needlet scales
is about 200, then the memory required is at least 2.7 Gb. But the number of permutations
(j1, j2, j3, j4) satisfying the quadrilateral condition is about 1000, thus the trispectrum
estimation requires at least 14 Gb of memory. The quantity of memory required is then
much greater for the trispectrum than for the bispectrum calculation.

Furthermore, we have to consider the memory necessary to the calculation of the
Γjijj and 〈β̂j1kβ̂j2kβ̂j3kβ̂j4k〉 terms of the quadratic term, adding about 1000 maps for 11
Needlet scales in the computation of the trispectrum. Thus the memory required doubles
when we calculate the correction term.

In order to decrease the computational time, I implemented a parallel code using
the MPI and OpenMP libraries. I run the code on the Numenor Computing Cluster of
the Observational Cosmology Group at Department of Physics at University of Milano.
This is composed by 8 computing nodes each with 12 Intel Xeon ES-2620 processors at
2.0 GHz with 8 Gb of RAM per core, for a total of 96 Gb per node.

10.2.1 Dataset

The gNL estimation took advantage of the Planck public data, recently released by the
Planck collaboration (http://pla.esac.esa.int/pla).

Gaussian maps were generated using the CMB power spectrum estimated by the
Planck survey (Planck Collaboration et al. 2014b)(fig. 10.1). Each map is smoothed with a
simulated instrumental beam with the same resolution of the Planck 70 GHz channel, i.e.
FWHM = 13.01′ (fig. 10.2) (The Planck Collaboration 2006). Furthermore, I considered
two cases. In the first the sky is fully observed and no instrumental noise is added. In
the second I introduced the instrumental anisotropic noise of Planck 70 GHz channel
(fig. 10.3), and the sky is incomplete. The mask applied cuts the Galactic plane and
remove point-sources of foregrounds, covering 30% of the sky (fig. 10.4).

999 non-Gaussian maps are generated using a sets of non-Gaussian harmonics coeffi-
cients alm = aGlm+fNLa

NG,1
lm +gNLa

NG,2
lm created using the algorithm described in (Elsner

http://pla.esac.esa.int/pla
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Figure 10.1: The Planck confidence spectrum. All of the peaks are clearly visible, while monopole
l = 0 and dipole l = 1 are set to zero.
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Figure 10.2: The Gaussian beam applied to data. Its shape is Gaussian, the width in real space is
FWHM= 13.01′.

& Wandelt 2009). I imposed fNL = 0, then the only contribution to the non-Gaussian
alm’s is the aNG,2lm term. Unfortunately, the aNG,2lm term are not fully tested by the author.
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Figure 10.3: Instrumental noise of Planck 70 GHz channel. Noise is evidently anisotropic due
to the number of observation per sky region. The more times Planck satellites observed one sky
region, the lower is the noise in that region. The two symmetric blue region are located at the poles
of Planck satellite rotation motion.

0 1

Figure 10.4: The mask used in analysis. The narrow strip covers the galactic plane and point-
sources of foregrounds are removed.
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Figure 10.5: The Needlet window function calculated for 12 different scales. Each scale take in
account a limited number of multipoles that grows with the Needlet scale. The sum of the square
of b(·) for a certain multipole is 1 as required by the partition of the unity property (eq. (8.15)).

10.2.2 Software pipeline

The code is partitioned into different pieces. Each piece carries out a different task. The
first piece is able to generate maps both from input Cl or alm with the aim of calculate
the complete set of trispectra for each map. The procedure is simple:

1. The complete set of Needlets are generated, based on the input parameters (fig.
10.5);

2. Cl or alm, beam, noise and mask are read and in case the Needlet variance,

3. From input Cl or alm a map is generated. In the former case an input seed is re-
quired, the code is able to use a different seed to different map generating routines.
To each map beam, noise and mask, and variance are applied;

4. Needlet transform is applied, giving birth to Nj new maps;

5. For each map, trispectrum is calculated;

6. Point 3-5 are repeated till the number of trispectrum required is reached.

If the aim of the process is to compute the variance, point 5 changes: each map is
summed up in order to get first the variance for each Needlet scale and then the Γj1j2
maps. The variance is evaluated using a formula that reduces the possibility of being
affect by numerical errors, i.e.

Var(x)[p] =
1

N − 1

 N∑
i=1

(xi[p]− x1[p])2 −

(
N∑
i=1

(xi[p]− x1[p])

)2
 (10.13)

where x represents the Needlet coefficient map at a certain scale, p is the pixel and N is
the number of maps on which the variance is calculated. To each term is subtracted the
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Figure 10.6: Maps used in analysis. From top to bottom, the first map is the original map, taking
in account all the multipoles. The other three maps are Needlet maps evaluated for the first, the
fifth and the twelth Needlet scale. The j = 1 map show the characteristic of a quadrupole, since it
takes in account only the l = 2 multipole. The j = 5 map shows how as increasing the scale the
size of the fluctuations decreases and the shape of the mask (fig. 10.4) becomes clearer. In the last
map, where the only highest multipoles are take in account, the size of the fluctuations is almost
invisible.
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value of the first map at the same pixel, since

Var(x−K) = Var(x) (10.14)

when K is constant. This subtraction allows to remove crass numerical error, allowing
to obtain the exact value for the statistics we’re looking for.

In order to estimate gNL using the Needlet trispectrum, I followed this pipeline:

• Generate a set of simulations of Gaussian sky maps using the CMB power spec-
trum. These maps are smoothed with an instrumental beam and random noise is
added. Then, they are then multiplied with a mask in order to remove the Galactic
region and point-source of non-Galactic emission. A Needlet transform is applied
to each map in order to evaluate the standard deviations of the Needlet coeffi-
cients βjk and the Γj1j2 maps, used in the evaluation of the trispectrum, as seen in
eq. 10.12.

• Read 700 non-Gaussian simulations in order to find the mean non-Gaussian trispec-
trum 〈Jj1j2j3j4

〉(gNL).

• Produce another set of Gaussian simulation. Beam, noise and mask are applied
as above. After the Needlet transform, these maps are used to obtain the Needlet
trispectra Jj1j2j3j4

. These trispectra are used to find the covariance matrix C. This
converges very slowly, thus the need for a large number of simulations.

• Generate a set of simulated Gaussian maps and estimate gNL from this maps in
order to obtain the error bars on gNL;

• Read a set of 299 non-Gaussian simulations in order to estimate gNL from them.

Second piece computes the covariance matrix Cij . It’s easy to show that the covari-
ance matrix depend only on the measured trispectra. In fact

Cij = 〈didj〉 − 〈di〉〈dj〉
= 〈(Ji − gNL〈Ĵi〉)(Jj − gNL〈Ĵj〉)〉 − 〈(Ji − gNL〈Ĵi〉)〉〈(Jj − gNL〈Ĵj〉)〉
= 〈JiJj〉 − 〈Ji〉〈Jj〉,

(10.15)

where Ji represents the trispectrum at a given configuration (j1, j2, j3, j4).
Finally, the third piece computes gNL implementing eq. (10.10).

10.3 Code Validation at Nside = 128

The code was validated first at Nside = 128 in order to be fast at the cost of precision.
The purpose of the validation is to check if the results are consistent with ginputNL and the
error bars are consistent with the Cramer-Rao bound, in order to understand if whether
or not the Needlet trispectrum is optimal. We have that for Nside = 128,

σCR ≈ 6.58 · 105. (10.16)

A set of data was generated and analyzed four times, changing the number of Needlet
scales involved, Nj = 8, 10, 12, 14. For the all of them, no mask or noise were added. The
multipoles were bounded to l ≤ 150.
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First of all, variance was estimated over 10000 Gaussian maps, ensuring conver-
gence. Then, 700 out of 1000 non-gaussian maps were used to estimate the non-Gaussian
trispectrum 〈Ĵj1j2j3j4

〉. The remaining 299 were used to compute a set of non-Gaussian
maps with ginputNL = 3 · 105 with the aim of constraining gNL for all of these. Finally, I
computed 400 sets of trispectra, each of them composed by 320 trispectra, from as many
maps. 50 sets were used to constrain gNL, the other 350 for the slowly converging co-
variance matrix. The covariance matrix, indeed, was calculated using different numbers
of trispectra, in order to find out when the convergence happens. In particular, I used
30, 60, 90, 120, 150, 200, 250, 300, 350 sets in order.

It is important to note that the gNL’s are distributed following a quasi-Gaussian prob-
ability function, as we expected since the convergence of the trispectrum is very slow.
For this reason, the estimation of gNL and σgNL were made performing a Gaussian fit on
the central part of the distribution, since it is perfectly Gaussian (fig. 10.7).
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Figure 10.7: Histogram of gNL using 100 bins (points) with the Gaussian fit (line) made using the
central part of the histogram. It fits very well the entire distribution, thus Gaussian fit is the way I
estimated gNL through the analysis.

10.3.1 Gaussian Analysis

Let’s list the first results, the Gaussian gNL estimated using Nj = 8 Needlet scales vary-
ing the number of set using to estimate the covariance matrix,, Nset

cov ,
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Nset
cov gNL σgNL

30 (−4.0± 6.7) · 103 (6.85± 0.07) · 105

60 (−3.5± 5.8) · 103 (6.76± 0.06) · 105

90 (−2.5± 5.6) · 103 (6.74± 0.06) · 105

120 (−2.2± 5.9) · 103 (6.74± 0.06) · 105

150 (−1.9± 5.9) · 103 (6.74± 0.06) · 105

200 (−1.5± 5.8) · 103 (6.74± 0.06) · 105

250 (−1.6± 6.3) · 103 (6.74± 0.06) · 105

300 (−1.6± 6.1) · 103 (6.74± 0.06) · 105

350 (−1.5± 5.6) · 103 (6.74± 0.06) · 105

The error on gNL and σgNL are the standard error of the fit, which are of the same
order of magnitude of the standard error of the mean

σx̄ =
σ√
N

(10.17)

and of standard deviation
σσ =

σ√
2(N − 1)

, (10.18)

where N is the number of simulation used to estimate gNL and σgNL . The results show
how the value of gNL is always consistent with zero, within the standard error of the
mean. The σgNL ’s, unfortunately, are quite far from the Cramer-Rao bound, approxi-
mately 6.58 · 105. But, there’s an interesting trend. As long as we increase the number
of simulations involved in the evaluation of the covariance matrix, the value of σgNL
decreases. This is very likely due to the fact that the inverse covariance is biased: even
though the covariance matrix estimated from N simulation is unbiased, this is not true
for the inverse, which is a non-linear operation. This has been studied in (Dodelson &
Schneider 2013; Andersen 2003; Hartlap et al. 2007; Taylor et al. 2013). Thus, we can fit
this set of points with a suitable function to see how σgNL behaves with the increase of
Nset
cov . What I found is that the best fitting function is

f(x) =
a

x
+ b, (10.19)

finding (fig. 10.8)

a/105 b/105

3.4± 0.5 6.719± 0.006

Thus, since the hyperbole shows an asymptotic behavior with x→∞, it is impossible for
σgNL to decrease under a given value, fixed by the horizontal asymptote of the hyperbole
in eq. (10.19), i.e. y(x) = b. Hence, the inferior limit for σgNL evaluated with Nj = 8 is
b = (6.719± 0.006) · 105, well above the Cramer-Rao bound.

From fig. 10.8, we can derive interesting information. First, we observe a plateau in
the data from Nset

cov on. This means that the covariance converged already with few sets
of trispectra. This feature will be compared with the behaviour of the hyperbole in the
other N − j cases, to see in which case the covariance converges faster.

Second, the error-bars of σgNL , coming from the Gaussian fit over the data, seems to
high with respect to the fluctuations of the data around the fitted curve. This gives rise
to some doubt on the reliability of the fitting error bars, in particular it seems plausible
that the error estimated are overestimating the real error. I wrote that the errors have
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Figure 10.8: Hyperbole fit over the set of σgNL resulting from the analysis performed withNj = 8.
On the x-axis, the number of simulation used to compute the covariance matrix are placed. The
hyperbole fit seems to be the best fitting function to the data.

the same order of magnitude of the standard error on σgNL , and it is true. Can two
independent way to estimate the same quantity both overestimate it? In principle, one
is brought to think not, since, indeed, the two ways are independent. Since I’m a bit
meticulous, I tried a third way to estimate the error of the σgNL , the bootstrap.

Bootstrap analysis pretends to repeat an experiment using the very proper results
of the experiment itself. From the data, a new set of data is extracted randomly, of the
same size of the original dataset, without avoiding repetition in the random choice of
the elements. This new set pretends to be the realization of a second experiment. This
procedure is repeated as much as one wanted. From each set of data, mean ans σ, thus
bringing to have a set of means and a set of σ’s distributed according to a Gaussian
distribution from which mean value and standard error can be estimated. Bootstrap
thus allow to estimate the error of σgNL by pretending to repeat the analysis I performed
only once. The results of bootstrap is a perfectly Gaussian distribution for the σ’s with a
standard error equal for each covariance matrix case,

σσgNL = 4.3 · 103,

same order of magnitude of the fit error, just a bit lower in magnitude. The difference
in σ’s doesn’t change the fact that the errors on σgNL seem overestimated. Actually, this
is not the case. The only thing I can say is that the error on σgNL , just like the error on
gNL, depends on the number of data used for the estimation. In particular, decrease as
the number of data increases. Thus, the only thing we can do to make the error bars
decrease is increase the number of trispectra. Unfortunately, trispectrum computation is
hard in terms of computational time, thus increasing the number of trispectra is not an
option. We have to make a tradeoff between Number of trispectra and amplitudes of the
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error bars. I’ll come back to this point in the next section, when I’ll show what happens
when the analysis is performed ove Nside = 2048 maps.

Let’s pass to the next case, the Nj = 10. Gaussian results are listed below.

Nset
cov gNL σgNL

30 (−3.1± 5.6) · 103 (6.94± 0.06) · 105

60 (−3.2± 6.1) · 103 (6.80± 0.06) · 105

90 (−2.3± 5.7) · 103 (6.74± 0.06) · 105

120 (−1.9± 6.6) · 103 (6.73± 0.07) · 105

150 (−1.8± 5.9) · 103 (6.71± 0.06) · 105

200 (−1.6± 6.3) · 103 (6.71± 0.06) · 105

250 (−1.6± 5.7) · 103 (6.70± 0.06) · 105

300 (−1.7± 6.5) · 103 (6.70± 0.06) · 105

350 (−2.0± 6.3) · 103 (6.69± 0.06) · 105

Again, the value of gNL is always consistent with zero, as we expected, and the error
bars on the mean are consistent with the ones of the previous case. Speaking about σgNL ,
the results in the Nj = 10 case improved, with σgNL approaching to the Cramer-Rao
bound. The error bars on σgNL coming from bootstrap analysis are uniformly equal to
σσgNL = 4.3 · 103, closer to the ones coming from the Gaussian fit. Let’s see the inferior
limit for σgNL fitting the hyperbole over the data (fig. 10.9),

a/105 b/105

8.1± 0.3 6.664± 0.004
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Figure 10.9: Hyperbole fit over the set of σgNL resulting from the analysis performed with Nj =
10. It is important to note that the plateau vanishes increasing the number of scale.

Thus, increasing the number of trispectra used in the computation of the covariance
matrix, could bring to a σgNL ≈ 6.664, very close to the Cramer-Rao bound. The plateau
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we saw in the Nj = 8 case tends to vanish. This means that increasing the number of
scale brings the convergence speed of covariance matrix to decrease. Thus, with respect
to the previous case, now more trispectra are required in order to compute a correct
covariance matrix.

As we increased the number of scale, we saw an improvement in the σgNL values, ap-
proaching the Cramer-Rao bound. Let’s see if the difference between them is decreased
by increasing the number of scales. For Nj = 12 we have

Nset
cov gNL σgNL

30 (−8.9± 6.1) · 103 (7.27± 0.06) · 105

60 (−7.0± 6.5) · 103 (6.99± 0.06) · 105

90 (−5.3± 5.8) · 103 (6.91± 0.06) · 105

120 (−4.9± 5.5) · 103 (6.87± 0.06) · 105

150 (−2.4± 6.4) · 103 (6.95± 0.06) · 105

200 (−5.5± 6.0) · 103 (6.82± 0.06) · 105

250 (−5.9± 6.1) · 103 (6.81± 0.06) · 105

300 (−5.9± 5.9) · 103 (6.804± 0.059) · 105

350 (−6.3± 6.0) · 103 (6.800± 0.060) · 105

The answer is no. Although gNL is almost always consistent with zero, with error bars
consistent with the ones in the previous case, σgNL tends to get away from its optimal
value. The bootstrap value for the error of σgNL is 4.2 · 103, close to the fit one, as in the
previous cases. The result of the hyperbolic fit is

a/105 b/105

15.0± 1.3 6.76± 0.02

The plateau we saw in the first case is almost vanished, confirming the hypothesis of
high number of trispectra required by the covariance matrix. The worsening of the σgNL
are to give to the decreased power in each Needlet scale due to the increase in the number
of the Needlet scales. The Needlet window b(·) can, in fact, be viewed as an anisotropic
binning of the multipoles. The more multipoles within a bin, the more power the bin
owns, thus improving the statistic. But, there’s a limit in the binning. In fact, if the
number of bins is too small, the resolution power of the statistics decreases thus leaving
the statistics weacker, as we saw in the Nj = 8 case.

For completeness, I’ll show also the Nj = 14 case.

Nset
cov gNL σgNL

30 (3.0± 6.9) · 103 (8.68± 0.07) · 105

60 (−0.7± 7.4) · 103 (8.40± 0.07) · 105

90 (−1.0± 7.4) · 103 (8.33± 0.07) · 105

120 (−1.8± 6.7) · 103 (8.29± 0.07) · 105

150 (−2.4± 7.2) · 103 (8.27± 0.07) · 105

200 (−2.6± 6.5) · 103 (8.24± 0.07) · 105

250 (−2.9± 7.0) · 103 (8.22± 0.07) · 105

300 (−2.8± 7.4) · 103 (8.21± 0.07) · 105

350 (−2.9± 7.3) · 103 (8.20± 0.07) · 105

and the result of the fit on σgNL

a/105 b/105

15.5± 1.3 8.15± 0.02
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Figure 10.10: Hyperbole fit over the set of σgNL resulting from the analysis performed with Nj =
12.
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Figure 10.11: Hyperbole fit over the set of σgNL resulting from the analysis performed with Nj =
14.
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It is important to note how the differences between points and curve in fig. 10.11 almost
vanished. We can say that, increasing the number of the bins brought improvement in
measuring the exact values of σgNL , although the values are too high for a statistics that
claims to be optimal.

10.3.2 Non-Gaussian Analysis

Let’s what happens when the analysis is performed over non-Gaussian maps, with ginputNL =
3 · 105. For all the four cases, I used the covariance matrix calculated with the highest
number of trispectra among the others, Nset

cov = 350,

Nj gNL σgNL
8 (1.1± 0.4) · 105 (7.2± 0.4) · 105

10 (1.0± 0.5) · 105 (7.2± 0.5) · 105

12 (1.2± 0.5) · 105 (7.2± 0.5) · 105

14 (1.8± 0.5) · 105 (8.2± 0.5) · 105

Taking gNL±σgNL , I found values consistent with the input. Unfortunately, the standard
error of the mean shows that there is something wrong, since the values of gNL are
not even close to ginputNL . As we will see later, this is due to the low resolution of the
analyzed maps. In fact, increasing the resolution make the statistic stronger, as we will
see further on. Furthermore, the values of σgNL are consistent with the respectively
values in the Gaussian case, although higher, likely because the number of trispectra
used in the analysis is quite small (only 299 trispectra).

10.4 Validation at Planck Resolution, Nside = 2048

As I have validated the code at low resolution, is time to see what happens whenNside is
high enough to be compared with the most recent data. I’m referring to the Planck mis-
sion, which measured the sky at a very how resolution, parametrized by the HEALPix
number Nside = 2048. A recent paper (Regan et al. 2015) shown that the Needlet trispec-
trum is suboptimal at Nside = 512, I wanted to see if this is due to the estimator itself or
the low resolution maps used in that analysis.

In order to simulate the outcomes of a real experiment, I added noise and multiplied
by a mask the map involved in the analysis. Furthermore, since the evaluation of trispec-
trum at such high resolution is really time expensive, I could analyze only one set of data
using only one choice of Nj . The choice fell to Nj = 12, since the maximum multipole
increased by a factor 10 with respect to the Nside = 128 case, lmax = 1600.

Variance was evaluated over 5000 maps. Then the non-Gaussian trispectra followed
the same choices of the Nside = 128 case. Were calculated 200 sets of trispectra, 150 for
the covariance matrix, 50 for the gNL estimation. The number of trispectra per set is 320.

As the resolution increased, the Cramer-Rao bound decreases. thus, now σgNL has to
be compared to approximately 7 · 104.

Thus, the results of the analysis of Gaussian maps are:

Nset
cov gNL σgNL

30 (9.7± 0.9) · 103 (1.302± 0.009) · 105

60 (9.6± 0.9) · 103 (1.259± 0.009) · 105

90 (9.7± 0.9) · 103 (1.244± 0.009) · 105

120 (9.5± 0.9) · 103 (1.237± 0.009) · 105

150 (9.4± 0.9) · 103 (1.232± 0.009) · 105
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Again, the estimates of gNL and σgNL are shown with the Gaussian fit error that, again,
is of the same order of magnitude of the statistical standard one. Surprisingly, although
gNL ± σgNL is perfectly consistent with zero, so doesn’t the estimates of the exact value
of the mean, as you can see in the second column of the above table. This could be due
to an inefficient number of Needlet scales applied in the analysis. This is an aspet that
deserve further studies in the next future.

Let’s see how does the σgNL behaves. Immediately, the high difference between σgNL
estimated and the Cramer-Rao bound stand out, as the former is almost twice the latter.
This is another clue of an inefficient number of Needlet scales. But we can extrapolate
a great information about the distribution of the σgNL . Fitting the latter with the usual
hyperbolic function, one obtains

a/105 b/105

2.61± 0.02 1.2150± 0.0003

Thus the lowest value σgNL can reach is 1.215 · 105. But we can use the hyperbolic fit
for another, noble reason. In fact, if the hyperbolic fit performed over the first three
points give results consistent with the fit done over 5 points, it means that 3 points are
sufficient to constrain the curve, thus we can resolve the computational time issue by
estimating a low number of trispectra, computing the covariance matrix and then fitting
the hyperbole over the results. The results of the 3-points fit is

a/105 b/105

2.60± 0.02 1.2153± 0.0005

consistent with the 5-point cases. That’s indeed a great news, thus only 90 sets of trispec-
tra are required to perform a confident hyperbolic fit on the data. But, how much con-
fident is the fit over 5-points? In order to test the goodness of the fit, I added 2 more
points

Nset
cov gNL σgNL

40 (9.6± 0.9) · 103 (1.280± 0.009) · 105

50 (9.6± 0.9) · 103 (1.267± 0.009) · 105

so the fit is now performed over 7 points, improving its statistics

a/105 b/105

2.60± 0.01 1.2150± 0.0003

The results are perfectly consistent with the above ones. Again, I wanted to test what
happens if I consider only the first points, so I fit the hyperbole over the first 4 points,
obtaining

a/105 b/105

2.63± 0.01 1.2155± 0.0007

i.e. another consistent results. Thus, 60 sets are well enough in order to estimate the
covariance matrix, since it is possible to constrain the value of σgNL when more trispectra
are involved, by simply fitting an hyperbole. This is actually the main results of my work
on the CMB trispectrum. The results of the fitting are shown in fig. 10.12

Let’s see what happens when the non-Gaussian maps (ginputNL = 3 · 105) are analyzed.
What we get is
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Figure 10.12: Hyperbole fit over the set of σgNL resulting from the analysis performed at Nside =
2048. The four fitted hyperbole are indistinguishable one from another, confirming by eye the
consistency among them.

Nset
cov gNL σgNL

350 (3.0± 0.1) · 105 (2.4± 0.1) · 105

that is, the value of gNL is perfectly constrained, although the σgNL is almost double
the same statistics in the Gaussian case. This is due probably to the low number of
noon-Gaussian maps involved in the analysis, just like the Nside = 128 cases, where the
non-Gaussian σgNL was higher than in the Gaussian case.

I can conclude by saying that the validation of the trispectrum estimator at Planck
resolution needs some more work, but the road started with this work is absolutely the
right one.





Future directions

In this work I showed how to apply angular bispectrum and Needlet trispectrum esti-
mator to LSS and CMB data respectively.

First I showed a series of known results about polyspectra, starting from their math-
ematical definitions, their physical description, the estimators and their variance. We
saw how the angular spectrum is related to the amplitude of fluctuations, while bispec-
trum and trispectrum are the harmonic counterpart of the 3-point and 4-point correla-
tion function, thus parameterizing the excess probability of finding three or four point
in a give triangular or quadrilateral configuration respectively. Although they should be
evaluated through an ensemble average, I showed how the simple average over the m’s,
describing the orientation of the multipoles, is sufficient to get the right form of the stat-
ics, even if this introduce an effect of cosmic variance, i.e. the variance of the estimator
is greater at lower multipoles where the number of m’s is small.

Then, I reviewed the standard cosmology and, through the Hot Big Bang model
flaws, I introduced the Inflation Theory. The dynamics during inflation is due to a scalar
field, the inflaton, which energy density dominates the energy content of the Universe.
Fluctuation of the Inflaton were inherited by matter and radiation, seeding the Large
Scale Structure of galaxies and the Cosmic Microwave Background radiation that we see
today.

In Part II, I reviewed the linear and non-linear perturbation theory, in order to show
how non-Gaussianity is introduced in the matter field through non-linear evolution.
Then I showed how it is possible to treat a 3-dimensional field like the matter distribution
as a spherical field, by convolving by a selection function and integrating along the line
of sight, that is, the z coordinate. Angular estimator are re-introduced and their binned
form is showed together with their binned variance. Hence, I showed the results of the
analysis in which measurements of four sets of 125 spherical shell taken from a comoving
simulation of 3-dimensional matter distribution. In particular, the comparison between
the prediction and the estimated Cl and bispectrum. The comparison showed how the
binning in redshift and the photometrical error affects our measurements, in particular
the higher the bin the closer prediction and measurements are. At cost of power loss
at each scale. Besides, the higher the photometrical error the worst the comparison is,
and it is quite expected. In the bispectrum case, I applied the Scoccimarro-Couchman
and Gil-Marin fitting formulae to compute the non-linear bispectrum, showing that the
latter is better than the former. Furthermore, I found that one of the effect of the photo-z
error is to destroy the collapsed triangle configuration, bring the power of the measured
bispectrum to zero. In the next future, will be of interest apply the angular bispectrum
estimator to real data with the aim of constrain cosmological parameters and compare

125



the results with predicted one. In this way, we will understand how well the bispectrum
estimator can help in removing the parameter degeneracy that affect the LSS physics.

In Part III, I first reviewed the non-Gaussianity in the photon distribution, showing
how we can parametrize it by means of Bardeen’s potential through the non-Gaussian
parameter fNL and gNL. Then I show the Spherical Needlet Wavelet framework and the
property that makes them the closest system to the orthonormal basis of the Spherical
Harmonics and the best wavelet system in order to constrain parameters from spheri-
cal distribution with missing parts. Thus, the Needlet trispectrum is derived, take ad-
vantage of the Wick theorem that allows to write a polynomial with the lowest avari-
ance among the other polynomials of the same order. I then implemented the Needlet
trispectrum in a C++ code that was then validated. I showed that the Needlet trispec-
trum estimator is suboptimal, but it will be helpful in constraining gNL and validates
the results of other gNL estimators. Furthermore, I showed that the main problem in the
gNL estimation is the convergence of the covariance matrix but that with a hyperbolic
fit, it is possible to constrain the behavior of the converged covariance matrix even with
low trispectra. Besides, the estimation of gNL over non-Gaussian maps showed that the
maps resolution is important, since with low-resolution maps I found impossible to re-
cover the input gNL. It will need more analysis to understand the behavior of the Needlet
trispectrum with high resolution maps and different number of scales than the one used
in this work. Anyway, the results of the Needlet trispectrum estimator applied to real
data maps should appear in the next release of Planck papers.

The results of this work are of great importance at the light of the ongoning and the
forthcoming surveys like Planck, the Dark Energy Survey (DES) and Euclid, and could
help in the analysis of the physics of the odiern and the primordial Universe.
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APPENDIX A

Groups, Irreducible Representations and Diagram
Formula

A.1 Basic definitions of Groups

A group is a set which an associative binary operation which admits an identity element
and an inverse:

Definition 6. A group G is a set of elements, denoted as g1, g2 . . . with a binary operation ◦
such that the following properties are verified:

• (g1 ◦ g2) ∈ G for all g1, g2 ∈ G;

• there exists an identity elemente e ∈ G such that g ◦ e = g = e ◦ g for alla g ∈ G;

• for all g ∈ G, there exist an inverse element g−1 ∈ G such that g ◦ g−1 = g−1 ◦ g = e;

• for all (g1, g2, g3) ∈ G, the equality (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3) is satisfied.

The set of non-singular n × n matrices with real coefficients is called the real general
linear group, and it is denoted by GL(n,R). The binary operation is the ordinary matrix
multiplication and the identity element is the identity matrix of order n, In.

Among the subgroups ofGL(n,R) of crucial importance is the Special orthogonal group
SO(n) = {A : A ∈ GL(n,R), A′A = In and |A| = 1}. The group SO(3) admits a
geometrical representation as the set of vector rotations in R3.

Let V be a normed vector space overC. A representation ofG in V is a homomorfism π,
from G into GL(V ), such that the mapping G× V → V : (g, v)→ π(g)(v) is continuous.
Given a representation (π, V ), we say that a subset A ⊆ V is π-invariant if, for every
v ∈ A and for every g ∈ G, one has that π(g)v ∈ A. A representation π of G in V is
irreducible if the only closed π-invariant subspace of V are {0} and V . The Peter-Weyl
Theorem states that, given a topological compact group G,

• the complete set of unitary irreducible representation of G is a countable family of
dl×dl matrix-valued function πl, l = 1, 2, . . ., with dl denoting the dimension of πl;

• the matrix coefficients {
√
dlπ

l
uv(.)} form an orthonormal basis of the space L2(G)

of square integrable function with respect the Haar measure.

The Peter-Weyl Theorem is the theoretical cornerstone round which we shall define such
fundamental objects as Wigner matrices, spherical harmonics and Clebsh-Gordan coefficients.
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A.2 Wigner’s D matrices

Wigner-s D matrices {Dl(g) : l = 0, 1, . . .} provide a complete set of irreducible matrix
representation for SO(3), having dimension (2l + 1) × (2l + 1) for every l = 0, 1, 2, . . ..
Several properties of these objects can be derived as special cases of the general theory
of representations for compact groups.

• Additive property, for all g1, g2 ∈ SO(3) we have

Dl(g1)Dl(g2) = Dl(g1g2), l = 0,
1

2
, 1, . . . , (A.1)

which is equivalent to the relation

Dl
mn(g1g2) =

l∑
k=−l

Dl
mk(g1)Dl

kn(g2). (A.2)

• Orthonormality, ∫
SO(3)

Dl
mn(g)Dl′∗

m′n′(g)dg =
1

2l + 1
δl
′

l δ
m′

m δn
′

n ; (A.3)

• Unitary Properties, ∑
m

Dl
mn(g)Dl∗

mn(g) = δn
′

n (A.4)

A.3 Spherical Harmonics

Let us now introduce the class of Spherical Harmonics

{Ylm(θ, φ) : l = 0, 1, 2, . . . ; m = −l, . . . , l}, (A.1)

where (θ, φ) ∈ S2 labelled a point on the sphere S2.

Definition 7. For every integer l = 0, 1, 2, . . ., and every m = −l, . . . , l, the spherical harmon-
ics function of index (l,m), written Ylm : S2 → C, is defined as the mapping

Ylm(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Plm(cosθ)eimφ, m ≥ 0, (A.2)

Ylm(θ, φ) = (−1)mY ∗l−m(θ, φ), m < 0, (A.3)

where {Plm} denotes the associated Legendre function, which is defined in terms of the Legendre
Polynomials {Pl : l = 0, 1, . . .} by the equation

Plm(µ) = (= 1)m(1− µ2)m/2
dm

dµm
, l = 0, 1, 2, . . . , m = 0, 1, . . . , l (A.4)
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In the sequel, for all x ∈ S2, we shall write

Ylm(x) := Ylm(θ, φ), x = (sin θ cosφ, sin θ sinφ, cos θ). (A.5)

We shall also use dσ(x) to denote the Lebesgue measure on the sphere, which, in spherical
coordinates is defined as

dσ := sin θdθdφ. (A.6)

The properties of Spherical Harmonics as listed below:

• Orthonormality: for all l, l′,m,m′∫
S2

Ylm(x)Y ∗l′m′(x)dσ(x) = δl
′

l δ
m′

m . (A.7)

As a consequence of orthonormality property we have,∫
S2

Ylm(x)dσx =
√

4π

∫
S2

Ylm(x)Y ∗00(x)dσ(x) = 0. (A.8)

• Symmetry: for all x ∈ S2

Y ∗lm(x) ≡ (−1)mYlm(θ,−φ); (A.9)

• Addition Formula: for all x ∈ S2

l∑
m=−l

Y ∗lm(x)Ylm(y) =
2l + 1

4π
Pl(〈x, y〉), (A.10)

where Pl is the lth Legendre polynomial and 〈·, ·〉 denotes the usual Euclid inner
product. In particular, for all x ∈ S2,

l∑
m=−l

Ylm(x)Y ∗lm(x) =
2l + 1

4π
. (A.11)

• Behaviour under rotations: for all g ∈ SO(3) and all x ∈ S2, denote by g · x the
position of x after the rotation g. Then, one has

Ylm(g · x) =
∑
m′

Dl
m′m(g−1)Ylm′(x). (A.12)

The most important results for the Spherical Harmonics is the Peter-Weyl Theorem on the
sphere

Theorem 3. For all complex-valued functions f ∈ L2(S2) that is, the space of the square inte-
grable functions on the sphere, we have

f(x) =
∑
lm

almYlm(x), (A.13)

where
alm :=

∫
S2

f(x)Y ∗lm(x)dσ(x) = (−1)ma∗l−m. (A.14)
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A.4 The Clebsh-Gordan coefficients

We can exploit the family of Wigner D matrices {Dl : l = 0, 1, 2, . . . in order to build
alternative (reducible) representation, either by forming the tensor product {Dl1 ⊗Dl2 :

l1, l2 ≥ 0 or by considering direct sums {⊕l2+l1
l=|l2l1|Dl:l1,l2≥0

, whose dimension is (2l1 +

1)(2l2 + 1) × (2l1 + 1)(2l2 + 1). There exist a unitary matrix Cl1l2 , known as a Clebsh-
Gordan matrix, such that

{Dl1 ⊗Dl2} = Cl1l2{⊕
l1+l2
l=|l2−l1|D

l}C∗l1l2 . (A.1)

The matrix Cl1l2 is a {(2l1 + 1)(2l2 + 1) × (2l1 + 1)(2l2 + 1)} block matrix, whose block,
of dimension (2l2 + 1)× (2l + 1), are customarily denoted by Cll1(m1)l2

. The elements of
the lth block are indexes by m2 over rows and m over columns. More precisely

Cl1l2 = [Cl.l1(m1)l2.
]m1=−l1,...,l1; l=|l2−l1|,...,l2+l1 , (A.2)

Cl.l1(m1)l2.
= [Clml1m1l2m2

]m2=−l2,...,l2; m=−l,...,l. (A.3)

The Clebsh-Gordan coefficients for SO(3) are defined as the collection {Clml1m1l2m2
} of the

elements of the unitary matrices Cl1l2 .
These coefficients have developed in the quantum theory of angular momentum,

where Clml1m1l2m2
represents the probability amplitude that two particles with total angu-

lar momentum l1, l2 and momentum projection on the z-axis m1 and m2 are couples to
form a system with total angular momentum l and projection m (Liboff (1999)). Their
use in the analysis of isotropic random fields is much more recent (Hu (2001)).

A.5 Diagram Formula

A Diagram gamma of order (l1, . . . , lp) is a set of points {(j, l) : 1 ≤ j ≤ p, 1 ≤ l ≤ lj}
called vertices and a partition of these points into pairs

{((j, l), (k, s) : 1 ≤ l ≤ k ≤ p; 1 ≤ l ≤ lj ; 1 ≤ s ≤ lk)}, (A.1)

called edges, such that no vertex can be linked with itself (j, l) 6= (k, s), and each pair
(a, b) appears in one and only one edge. Then, if the integer l1+. . .+lp is odd, no diagram
can be written. We denote by Γ(l1, . . . , lp) the set of all diagrams of order (l1, . . . , lp).

We say that a diagram has a flat edge if there is at least one pair ((i, j), (i′, j′)) such
that i = i′. We write ΓF for the set of diagrams hving at least one flat edge, and ΓF∗ for
the collection of all diagrams with no flat edges. Then, the Diagram Formula is expressed
by the following proposition:

Proposition 6. Let (Z1, . . . , Zp) be a centered Gaussian vector, and let γij = 〈[ZiZj ]〉, i, j =
1, . . . , p, where 〈·〉 denotes the ensemble average, be its covariance. Let Hl1 , . . . ,Hlp be Hermite
polynomials of degrees l1, . . . , lp ≥ 1 respectively. Then,

〈[Πp
j=1Hlj (Zj)]〉 =

∑
G∈ΓF∗ (l1,...,lp)

Π1≤i≤j≤pγ
ηij(G)
ij (A.2)

where, for each diagram G, ηij(G) is the exact number of edges between the ith row and the jth
row of the diagram G.

The Diagram Formula provides a combinatorial description of the moments asso-
ciated with Hermite transformations of Gaussian random variables (Peccati & Taqqu
(2010); Shyraev (1984)).
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per ringraziare tutti quelli che mi sono stati vicini e che mi hanno dato una mano nei
vari momenti che si sono succeduti. La paura di non riuscire ad elencarli tutti fa tremare
le mie dita mentre digito sulla tastiera, ma proverò comunque a fare un elenco quanto
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